WO2013042456A1 - 対物光学系、撮像装置および内視鏡 - Google Patents

対物光学系、撮像装置および内視鏡 Download PDF

Info

Publication number
WO2013042456A1
WO2013042456A1 PCT/JP2012/069361 JP2012069361W WO2013042456A1 WO 2013042456 A1 WO2013042456 A1 WO 2013042456A1 JP 2012069361 W JP2012069361 W JP 2012069361W WO 2013042456 A1 WO2013042456 A1 WO 2013042456A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
objective optical
aperture stop
lens
optical axis
Prior art date
Application number
PCT/JP2012/069361
Other languages
English (en)
French (fr)
Inventor
勉 笹本
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2013516824A priority Critical patent/JP5373228B2/ja
Priority to CN201280029275.7A priority patent/CN103608713B/zh
Priority to EP12833049.5A priority patent/EP2759862B1/en
Publication of WO2013042456A1 publication Critical patent/WO2013042456A1/ja
Priority to US14/100,630 priority patent/US8988516B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor

Definitions

  • the present invention relates to an objective optical system, an imaging device, and an endoscope.
  • a pupil modulation element is used as means for expanding the depth of field (see, for example, Patent Documents 1 and 2).
  • the pupil modulation element has an effect of making the optical transfer function substantially constant over a wide depth of field.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an objective optical system, an imaging apparatus, and an endoscope that can expand the depth of field with a simple configuration.
  • an aperture stop having an opening that is disposed at an intermediate position of the optical axis and allows incident light from an object to pass therethrough, and the brightness stop is provided at a portion that matches the optical axis.
  • an objective optical system having a light shielding part that blocks the incident light.
  • an image of an object can be acquired by photographing an optical image of incident light that has passed through an aperture of an aperture stop and formed an image with an imaging device or the like.
  • the modulation transfer function (MTF) representing the resolution with respect to the spatial frequency of the image generally decreases monotonously from the lower side of the spatial frequency toward the higher side.
  • the decrease in the modulation transfer function is stopped halfway and becomes substantially level in the high frequency region. That is, sufficient resolution can be obtained from the low frequency region to the high frequency region where sufficient resolution has not been obtained conventionally. In this way, the depth of field can be expanded with a simple configuration in which a light shielding portion is simply provided at a part of the aperture of the aperture stop.
  • the imaging performance can be improved.
  • the brightness stop may have one opening and the one light-shielding portion provided inside the opening.
  • the brightness diaphragm satisfies the following conditional expression (1).
  • Q (area of the light shielding portion / area of the opening) ⁇ 100.
  • the said light shielding part is good also as a metal film-forming on the surface of glass.
  • the brightness stop may have a plurality of openings arranged so as to surround the optical axis.
  • the light shielding portion may be formed by depositing a metal on the glass surface.
  • the brightness stop may be made of metal.
  • an aperture stop can be manufactured by the simple method of only forming the through-hole used as an opening part in the flat plate which consists of metals.
  • an imaging apparatus including any one of the above-described objective optical systems and an imaging element that captures an optical image of the object imaged by the objective optical system.
  • the depth of field is expanded by the light-shielding portion provided at a position coincident with the optical axis of the aperture stop, so that the image is clear over a wide range in the optical axis direction. Captured images can be acquired.
  • the light shielding portion has a shape connecting points that are inversely proportional to the distance from the center of each pixel of the image sensor to a pixel adjacent to the pixel. By doing in this way, the expansion effect of the depth of field by the arrangement direction of an image sensor can be acquired equally.
  • a third aspect of the present invention is an endoscope including any one of the imaging devices described above.
  • FIG. 1 is a lens cross-sectional view showing an overall configuration of an objective optical system according to an embodiment of the present invention. It is a front view of the aperture stop with which the objective optical system of FIG. 1 is provided.
  • FIG. 3 is a diagram for explaining the positional relationship between the aperture stop of FIG. 2 and the arrangement direction of pixels of the image sensor, and shows the aperture stop of FIG. 2. It is a figure explaining the positional relationship of the aperture stop of FIG. 2 and the arrangement direction of the pixel of an image sensor, and has shown the array of the pixel of an image sensor.
  • 2 is a graph showing an example of an MTF of the objective optical system in FIG. 1 and an example of an MTF of a conventional objective optical system. It is a front view which shows the modification of the brightness stop of FIG.
  • FIG. 6 is a lens cross-sectional view showing the overall configuration of an objective optical system according to Example 5 of the present invention. It is a front view of the aperture stop with which the objective optical system of Example 5 of this invention is provided. It is a lens sectional view showing the whole objective optical system composition concerning Example 6 of the present invention. It is a front view of the aperture stop with which the objective optical system of Example 6 of this invention is provided. It is a lens sectional view showing the whole objective optical system composition concerning Example 7 of the present invention. It is a front view of the aperture stop with which the objective optical system of Example 7 of this invention is provided. It is a lens sectional view showing the whole objective optical system composition concerning Example 8 of the present invention.
  • the objective optical system 1 includes, in order from the object side, the first to fifth lenses L1 to L5, the second lens and the third lens, and the fifth lens.
  • Parallel plates F1 and F2 disposed on the image side of the lens, and an aperture stop S formed on the image side surface of the parallel plate F1.
  • the first to fifth lenses L1 to L5 are made of a single glass material and have optical characteristics rotationally symmetric with respect to the optical axis O.
  • Parallel plates F1 and F2 are cover glasses made of optically transparent brazing material.
  • the aperture stop S includes an opening (area indicated by hatching) A through which incident light that has entered the first lens L ⁇ b> 1 from an object (not shown) passes, and the objective optical system 1. And a light-shielding portion B that blocks incident light.
  • the opening A has a circular outer shape with a radius ⁇ centered on the optical axis O.
  • the light-shielding part B is a regular tetragon having a length of one side about the optical axis O, and has a point-symmetric shape with respect to the optical axis O.
  • the aperture stop S is manufactured by forming a peripheral part C of the opening A and a light-shielding part B by directly forming a metal film on the image side surface of the parallel plate F1 by vapor deposition or the like. Thereby, the aperture stop S having a structure in which the light shielding part B is arranged at the center of the opening A can be easily manufactured.
  • the aperture stop S may be manufactured by depositing a metal film on a flat surface such as a plano-convex lens.
  • the peripheral portion C having a circular outer shape is illustrated, but the outer shape of the peripheral portion C is not particularly limited, and may be, for example, a rectangle.
  • the aperture stop S satisfies the following conditional expression (1).
  • Q (area of light shielding part B / area of opening A) ⁇ 100 It is.
  • Conditional expression (1) defines the ratio between the area of the opening A and the area of the light-shielding part B.
  • Q is 4 or less, the effect of expanding the depth of field (described later) by the aperture stop S cannot be obtained sufficiently, which is not preferable.
  • Q is 50 or more, it is not preferable because incident light is blocked excessively, thereby reducing the quality of an image acquired by the image sensor 2.
  • the aperture stop S preferably satisfies the following conditional expression (1-1), more preferably satisfies the following conditional expression (1-2), and most preferably satisfies (1-3). (1-1) 15 ⁇ Q ⁇ 40 (1-2) 15 ⁇ Q ⁇ 35 (1-3) 20 ⁇ Q ⁇ 35
  • the objective optical system 1 constitutes an imaging device 10 together with an imaging device 2 such as a CCD or a CMOS.
  • the imaging apparatus 10 takes an optical image of an object imaged on the imaging surface by bonding a parallel plate F2 to a glass lid that seals the imaging surface of the imaging element 2.
  • pixels 2b are arranged in a square along two mutually perpendicular directions (X-axis direction and Y-axis direction).
  • the objective optical system 1 is 45 with respect to the X-axis direction and the Y-axis direction in which the direction of the side of the light-shielding portion B of the aperture stop S (see arrow P) is the pixel arrangement direction. It is arrange
  • the light shielding part B has a shape connecting points that are inversely proportional to the distance from the center of one pixel to the pixel adjacent to the pixel, thereby increasing the depth of field by the light shielding part B described later. Appear uniformly in each direction of the image, which is preferable.
  • the MTF of the objective optical system 1 has characteristics as shown by a solid line in FIG. That is, the MTF (vertical axis) monotonously decreases as the spatial frequency (horizontal axis) increases in the low-frequency region, but the decrease temporarily stops in the high-frequency region and changes to be almost flat.
  • the MTF is a function indicating the contrast response to the spatial frequency of the image, and the higher the MTF at a certain spatial frequency, the clearer the structure having a dimension corresponding to that spatial frequency can be resolved. Therefore, according to the objective optical system 1 having the MTF characteristic shown in FIG. 4, a sufficiently high resolution is maintained even in the high frequency region.
  • MTF is represented by the autocorrelation function of the pupil function.
  • the autocorrelation function of the pupil function of the objective optical system 1 according to the present embodiment temporarily stops decreasing due to the presence of the light shielding part B at the position of the optical axis corresponding to the center position of the pupil. Along with this, the decrease in MTF also remains in the high frequency region.
  • an MTF of an objective optical system having a conventional brightness stop that is configured by only an opening without a light shielding portion is shown by a broken line in FIG. According to such a conventional objective optical system, MTF continues to decrease monotonously from the low frequency side toward the high frequency side.
  • a range in which the MTF has a sufficient value in the high frequency region for example, a range exceeding 10% is expanded.
  • the range in the direction of the optical axis O of the field of view where sufficient resolution can be obtained is expanded, that is, the depth of field is substantially expanded.
  • the depth of field can be effectively expanded while the configuration is simple, in which the light-shielding portion B is simply provided at the position coincident with the optical axis O of the aperture stop S. There is an advantage that you can.
  • the optical image formed on the imaging surface 2c Does not include an asymmetrical aberration component with respect to the optical axis O.
  • the endoscope including the imaging device 10 according to the present embodiment a clear image can be obtained over a sufficiently wide depth of field without depending on a special image processing device, a zoom function, or the like.
  • the MTF of the objective optical system 1 tends to decrease in a low frequency region as compared with a conventional objective optical system using an aperture stop. Such a decrease in resolution in the low frequency region is sufficiently satisfactorily corrected by performing image processing on the image acquired by the image sensor 2.
  • image processing for example, the MTF by the objective optical system 1 is calculated by simulation, and based on the result, the low frequency region of the MTF is set to have a predetermined characteristic.
  • the square light shielding portion B is exemplified, but the shape of the light shielding portion B is not limited to this.
  • the light shielding part B may be circular.
  • a plurality of openings may be provided so as to surround the optical axis O. Even in this case, it is possible to improve the MTF in the high frequency region with a simple and inexpensive configuration, thereby increasing the depth of field.
  • the shape of the peripheral portion C of the opening A is not limited to the circular shape as shown in FIG. 2 and may be other shapes.
  • the openings A are evenly arranged with respect to the optical axis O along the pixel arrangement direction (X-axis direction, Y-axis direction). It is preferable. With this arrangement, the depth of field can be evenly expanded at each position of the image.
  • the brightness stop S ′ shown in FIG. 5 is easily manufactured by forming a light-shielding portion B by forming a metal film on the lens surface, similarly to the brightness stop S shown in FIG.
  • the aperture stop S ′ can also be easily manufactured by forming a through hole in a flat plate made of a light-shielding material such as metal to form the opening A.
  • Examples 1 to 14 of the above-described embodiment will be described with reference to FIGS.
  • the configuration of the objective optical system of each embodiment will be described first, and the effect of expanding the depth of field by each objective optical system will be described after the description of the configuration.
  • r is a radius of curvature
  • d is a surface interval
  • ne is a refractive index with respect to e-line
  • ⁇ d is an Abbe number with respect to d-line
  • OBJ is an object plane
  • IMG is an image plane.
  • the surface number corresponding to the aperture stop is marked with S.
  • IMG indicates an image plane.
  • Example 1 The objective optical system according to Example 1 of the present invention has a lens configuration shown in FIG. 6 and the following lens data.
  • the aperture stop is formed on the image side surface (sixth surface) of the cover glass.
  • Q 14.9.
  • the objective optical system according to Example 2 of the present invention has a lens configuration shown in FIG. 8 and the following lens data.
  • the aperture stop is formed on the image side surface (sixth surface) of the cover glass.
  • Q 15.9.
  • Example 3 The objective optical system according to Example 3 of the present invention has a lens configuration shown in FIG. 10 and the following lens data.
  • the aperture stop is formed on the image side surface (sixth surface) of the cover glass.
  • Q 26.8.
  • Example 4 The objective optical system according to Example 4 of the present invention has the lens configuration shown in FIG. 12 and the following lens data.
  • the aperture stop is formed on the image side surface (seventh surface) of the cover glass.
  • Q 32.4.
  • Example 5 The objective optical system according to Example 5 of the present invention has a lens configuration shown in FIG. 14 and the following lens data.
  • the aperture stop is formed on the object side surface (fifth surface) of the cover glass.
  • Q 36.2.
  • Example 6 The objective optical system according to Example 6 of the present invention has a lens configuration shown in FIG. 16 and the following lens data.
  • Q 13.7.
  • Example 7 The objective optical system according to Example 7 of the present invention has the lens configuration shown in FIG. 18 and the following lens data.
  • the aperture stop is formed on the object side surface (fifth surface) of the cover glass.
  • Q 17.1.
  • Example 8 The objective optical system according to Example 8 of the present invention has the lens configuration shown in FIG. 20 and the following lens data.
  • the aperture stop is formed on the image side surface (fifth surface) of the cover glass.
  • Q 21.7.
  • Example 9 The objective optical system according to Example 9 of the present invention has the lens configuration shown in FIG. 22 and the following lens data.
  • the aperture stop is disposed between the second lens and the cover glass (fifth surface).
  • Q 24.1.
  • Example 10 The objective optical system according to Example 10 of the present invention has the lens configuration shown in FIG. 24 and the following lens data.
  • the aperture stop is formed on the plane (fourth surface) of the plano-convex lens.
  • Q 27.1.
  • Example 11 The objective optical system according to Example 11 of the present invention has the lens configuration shown in FIG. 26 and the following lens data.
  • the aperture stop is formed on the image side surface (sixth surface) of the cover glass.
  • Q 35.0.
  • Example 12 The objective optical system according to Example 12 of the present invention has the lens configuration shown in FIG. 28 and the following lens data.
  • the aperture stop is formed on the image side surface (sixth surface) of the cover glass.
  • the aperture stop has four openings that are squarely arranged around the optical axis, and a light-shielding portion that is a portion excluding these openings.
  • Example 13 The objective optical system according to Example 13 of the present invention has the lens configuration shown in FIG. 30 and the following lens data.
  • the aperture stop is formed on the joint surface (sixth surface) between the cover glass and the plano-convex lens. As shown in FIG. 31, the aperture stop has four openings that are squarely arranged around the optical axis, and a light-shielding portion that is a portion excluding these openings.
  • Example 14 The objective optical system according to Example 14 of the present invention has the lens configuration shown in FIG. 32 and the following lens data.
  • the aperture stop is formed on the object side surface (fifth surface) of the cover glass.
  • the aperture stop has four openings that are squarely arranged around the optical axis, and a light-shielding portion that is a portion excluding these openings.
  • the depth of field was calculated based on the resolution of the imaging device assumed to be used. That is, a range in the optical axis direction in which the MTF is 10% or more with respect to the spatial frequency corresponding to 2.5 pixels of the image sensor was calculated as the depth of field.
  • Example 1 in the case of Example 1, it is used in combination with an image sensor having a pitch of 1.5 ⁇ , which is the distance between the centers of adjacent pixels in the arrangement direction.
  • an MTF graph as shown in FIG. 34 is obtained. As shown in FIG. 34 is obtained.
  • the MTF changes according to the distance (object distance) from the front end surface of the objective optical system, becomes the maximum at the object distance corresponding to the focus position of the objective optical system, and the object distance is in focus. Decreases as it gets closer or further away from the position. In such a graph, the range of the object position where the MTF is 10% or more was calculated as the depth of field.
  • the depth of field (unit: mm) of the objective optical system having the same lens configuration as that of the objective optical system according to each embodiment of the present invention and in which only the brightness stop is replaced with the conventional brightness stop. ) was calculated in the same manner. That is, in the comparative example with respect to Example 1 to Example 14, the depth of field of the objective optical system provided with an aperture stop having only one opening having a radius ⁇ or ⁇ was calculated.
  • Table 1 shows the depths of field of the objective optical systems according to Examples 1 to 14 of the present invention and the objective optical systems according to the comparative examples. As described above, each of the objective optical systems according to Examples 1 to 14 of the present invention has a wider depth of field as compared with a conventional objective optical system including an aperture stop.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Diaphragms For Cameras (AREA)

Abstract

 簡易な構成によって被写界深度を拡大する。光軸(O)の途中位置に配置されて物体からの入射光を通過させる開口部(A)を有する明るさ絞り(S)を備え、該明るさ絞り(S)が、光軸(O)に一致する部分に入射光を遮断する遮光部(B)を有する対物光学系を提供する。また、上記の対物光学系と、該対物光学系によって結像された物体の光学像を撮影する撮像素子とを備える撮像装置を提供する。

Description

対物光学系、撮像装置および内視鏡
 本発明は、対物光学系、撮像装置および内視鏡に関するものである。
 従来、内視鏡等の撮像装置に備えられる光学系において、被写界深度を拡大する手段として瞳変調素子が用いられている(例えば、特許文献1および2参照。)。瞳変調素子は、広い被写界深度にわたって光学的伝達関数をほぼ一定とする作用を有する。
特開2000-98302号公報 特開2003-235794号公報
 しかしながら、瞳変調素子の光学面は複雑な3次元形状を有しているため、製造が非常に難しく、製造コストが高くなるという不都合がある。
 本発明は、上述した事情に鑑みてなされたものであって、簡易な構成によって被写界深度を拡大することができる対物光学系、撮像装置および内視鏡を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の第1の態様は、光軸の途中位置に配置されて物体からの入射光を通過させる開口部を有する明るさ絞りを備え、該明るさ絞りが、前記光軸に一致する部分に前記入射光を遮断する遮光部を有する対物光学系である。
 本発明の第1の態様によれば、明るさ絞りの開口部を通過して結像した入射光の光学像を撮像素子等によって撮影することにより物体の画像を取得することができる。
 この場合に、像の空間周波数に対する分解能を表す変調伝達関数(MTF)は、一般に空間周波数の低い側から高い側に向かって単調に減少する。本発明によれば、明るさ絞りの光軸と一致する位置に設けられた遮光部により、変調伝達関数の減少は途中で留まり、高周波領域において略横ばいとなる。すなわち、低周波領域から、従来十分な分解能が得られなかった高周波領域にわたって十分な分解能が得られる。このように、明るさ絞りの開口の一部に遮光部を設けるだけの簡易な構成によって被写界深度を拡大することができる。
 上記第1の態様においては、複数のレンズを備え、全ての前記レンズが、前記光軸に対して回転対称な形状を有することが好ましい。
 このようにすることで、対物光学系から射出される光束には光軸に対して非対称な収差成分が含まれないので結像性能を向上することができる。
 上第1の態様においては、前記明るさ絞りが、1つの前記開口部と、該開口部の内側に設けられた1つの前記遮光部とを有する構成であってもよい。この構成においては、前記明るさ絞りが、下記条件式(1)を満足することが好ましい。
 (1)    4 < Q < 50
 ただし、Q=(前記遮光部の面積/前記開口部の面積)×100である。
 このようにすることで、開口部を通過する入射光の光量を十分に確保しつつ、遮光部による被写界深度の拡大効果を十分に得ることができる。
 また、上記の開口の内側に遮光部を有する構成においては、前記遮光部が、ガラスの表面に金属を成膜してなることとしてもよい。
 このようにすることで、レンズやカバーガラス等の表面に金属を成膜するだけの簡便な方法で明るさ絞りを製造することができる。
 上記第1の態様においては、前記明るさ絞りが、前記光軸を囲むように配列された複数の前記開口部を有する構成であってもよい。この構成においては、前記遮光部が、ガラスの表面に金属を成膜してなることとしてもよい。
 このようにすることで、レンズやカバーガラス等の表面に金属を成膜するだけの簡便な方法で明るさ絞りを製造することができる。
 また、上記の複数の前記開口部を有する構成においては、前記明るさ絞りが、金属からなることとしてもよい。
 このようにすることで、金属からなる平板に開口部となる貫通穴を形成するだけの簡便な方法で明るさ絞りを製造することができる。
 本発明の第2の態様は、上記いずれかに記載の対物光学系と、該対物光学系によって結像された前記物体の光学像を撮影する撮像素子とを備える撮像装置である。
 本発明の第2の態様によれば、明るさ絞りの光軸と一致する位置に設けられた遮光部によって被写界深度が拡大されることにより、光軸方向の広い範囲にわたって像が鮮明に撮影された画像を取得することができる。
 上記第2の態様においては、前記遮光部は、前記撮像素子の各画素の中心からその画素に隣接する画素までの距離に反比例する点を結んだ形状を有することが好ましい。
 このようにすることで、撮像素子の配列方向による被写界深度の拡大効果を均等に得ることができる。
 本発明の第3の態様は、上記いずれかに記載の撮像装置を備える内視鏡である。
 本発明によれば、簡易な構成によって被写界深度を拡大することができるという効果を奏する。
本発明の一実施形態に係る対物光学系の全体構成を示すレンズ断面図である。 図1の対物光学系が備える明るさ絞りの正面図である。 図2の明るさ絞りと撮像素子の画素の配列方向との位置関係を説明する図であり、図2の明るさ絞りを示している。 図2の明るさ絞りと撮像素子の画素の配列方向との位置関係を説明する図であり、撮像素子の画素の配列を示している。 図1の対物光学系のMTFの一例と従来の対物光学系のMTFの一例とを示すグラフである。 図2の明るさ絞りの変形例を示す正面図である。 本発明の実施例1に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例1の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例2に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例2の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例3に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例3の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例4に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例4の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例5に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例5の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例6に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例6の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例7に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例7の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例8に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例8の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例9に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例9の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例10に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例10の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例11に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例11の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例12に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例12の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例13に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例13の対物光学系が備える明るさ絞りの正面図である。 本発明の実施例14に係る対物光学系の全体構成を示すレンズ断面図である。 本発明の実施例14の対物光学系が備える明るさ絞りの正面図である。 所定の空間周波数におけるMTFと物体距離との関係を模式的に示すグラフである。
 以下に、本発明の一実施形態に係る対物光学系1及び該対物光学系1を備える撮像装置10について図1から図5を参照して説明する。
 本実施形態に係る対物光学系1は、図1に示されるように、物体側から順に第1から第5のレンズL1からL5と、第2のレンズと第3のレンズの間および第5のレンズの像側に配置された平行平板F1,F2と、平行平板F1の像側面に形成された明るさ絞りSとを備えている。
 第1から第5のレンズL1からL5は、単一の硝材から構成されるとともに、光軸Oに対して回転対称な光学特性を有する。
 平行平板F1,F2は、光学的に透明な哨材からなるカバーガラス等である。明るさ絞りSは、図2に示されるように、物体(図示略)から第1のレンズL1に入射された入射光を通過させる開口部(ハッチングで示される領域)Aと、対物光学系1の光軸Oと一致する位置に形成され入射光を遮断する遮光部Bとを有している。開口部Aは、光軸Oを中心とする半径Φの円形の外形を有している。遮光部Bは、光軸Oを中心とする一辺の長さlの正四角形であり、光軸Oに対して点対称の形状を有している。
 明るさ絞りSは、平行平板F1の像側面に直接金属を蒸着等によって成膜して開口部Aの周辺部Cおよび遮光部Bを形成することにより製造されている。これにより、開口部Aの中央に遮光部Bが配される構造の明るさ絞りSを容易に製造することができる。
 なお、明るさ絞りSは、平凸レンズ等の平面に金属を成膜することにより製造されてもよい。また、図2において、外形が円形の周辺部Cを例示しているが、周辺部Cの外形に特に制限はなく、例えば、矩形等でもよい。
 明るさ絞りSは、以下の条件式(1)を満たしている。
(1)    4 < Q< 50
 ただし、
 Q=(遮光部Bの面積/開口部Aの面積)×100
 である。
 条件式(1)は、開口部Aの面積と遮光部Bの面積との比率を規定している。Qが4以下の場合、明るさ絞りSによる被写界深度の拡大効果(後述)を十分に得られないため好ましくない。一方、Qが50以上の場合、入射光が過度に遮断されることにより撮像素子2によって取得される画像の質を低下させるため好ましくない。
 なお、明るさ絞りSは、好ましくは以下の条件式(1-1)を満たし、より好ましくは以下の条件式(1-2)を満たし、最も好ましくは(1-3)を満たす。
(1-1)    15 < Q< 40
(1-2)    15 < Q< 35
(1-3)    20 < Q< 35
 本実施形態に係る対物光学系1は、CCDやCMOSのような撮像素子2とともに撮像装置10を構成している。撮像装置10は、撮像素子2の撮像面を封止するガラスリッドに平行平板F2が接合され、撮像面に結像された物体の光学像を撮影する。
 撮像面2aには、図3Bに示されるように、互いに直交する2軸方向(X軸方向およびY軸方向)に沿って画素2bが正方配列されている。対物光学系1は、図3Aに示されるように、明るさ絞りSの遮光部Bの辺の方向(矢印P参照。)が画素の配列方向であるX軸方向およびY軸方向に対して45°傾くように、撮像素子2に対して配置される。このように、遮光部Bが、一の画素の中心から該画素に隣接する画素までの距離に反比例する点を結んだ形状を有することで、後述する遮光部Bによる被写界深度の拡大効果が画像の各方向に均等に現れることとなり、好ましい。
 次に、このように構成された対物光学系1およびこれを備える撮像装置10の作用について説明する。
 本実施形態に係る対物光学系1のMTFは、図4に実線で示されるような特性を有する。すなわち、MTF(縦軸)は、低周波領域においては空間周波数(横軸)の増加に伴って単調に減少するが、高周波領域においては減少が一旦留まって略横ばいに変化する。ここで、MTFは、像の空間周波数に対するコントラストの応答を示した関数であり、ある空間周波数においてMTFが高いほどその空間周波数に対応する寸法の構造を鮮明に解像することができる。したがって、図4に示されるMTFの特性を有する対物光学系1によれば、高周波領域においても分解能が十分に高い状態が維持される。
 このようなMTFの特性は以下のように説明される。MTFは、瞳関数の自己相関関数によって表わされる。本実施形態に係る対物光学系1の瞳関数の自己相関関数は、瞳の中心位置に相当する光軸の位置に遮光部Bが存在することにより減少が一旦留まる。これに伴いMTFも高周波領域で減少が留まることとなる。
 本実施形態の参考例として、遮光部を有さず開口部のみによって構成される従来の明るさ絞りを備える対物光学系のMTFを図4に破線で示す。このような従来の対物光学系によれば、MTFは低周波側から高周波側に向かって単調に減少し続ける。
 このように、本実施形態に係る対物光学系1および撮像装置10によれば、高周波領域においてMTFが十分な値を有する範囲、例えば、10%を超える範囲が拡大される。これは、十分な分解能が得られる視野の光軸O方向の範囲が拡大される、すなわち、被写界深度が実質的に拡大されることを意味する。このように、本実施形態によれば、明るさ絞りSの光軸Oと一致する位置に遮光部Bを設けるだけの簡易な構成でありながら、被写界深度を効果的に拡大することができるという利点がある。
 さらに、対物光学系1を構成する全てのレンズL1からL5および明るさ絞りSが光軸Oに対して回転対称な光学的特性を有しているので、撮像面2cに形成される光学像には光軸Oに対して非対称な収差成分が含まれない。これにより、画像処理の効果を最大限に発揮することができるという利点がある。また、本実施形態に係る撮像装置10を備える内視鏡によれば、特別な画像処理装置やズーム機能等に頼らなくとも、十分に広い被写界深度にわたって鮮明な画像を得ることができるという利点がある。
 なお、本実施形態に係る対物光学系1のMTFは、従来の明るさ絞りを用いた対物光学系に比べ、低周波領域において減少する傾向がある。このような低周波領域における分解能の低下は、撮像素子2によって取得された画像に対して画像処理を施すことによって十分に良好に補正される。画像処理は、例えば、対物光学系1によるMTFをシミュレーションにより算出し、その結果に基づいてMTFの低周波領域が所定の特性となるように設定される。
 本実施形態においては、正方形の遮光部Bを例示したが、遮光部Bの形状はこれに限定されるものではない。例えば、図2において、遮光部Bを円形としてもよい。また、光軸Oを囲むように複数の開口部を設けてもよい。このようにしても、簡易で安価な構成でありながら高周波領域におけるMTFを向上させ、それにより被写界深度を拡大することができる。また、開口部Aの周辺部Cの形状も、図2に示されるような円形に限定されるものではなく、他の形状としてもよい。
 開口部Aが複数設けられる場合には、図5に示されるように、開口部Aは、画素の配列方向(X軸方向、Y軸方向)に沿って光軸Oに対して均等に配列されることが好ましい。このような配列にすることで、被写界深度を画像の各位置において均等に拡大することができる。
 図5に示される明るさ絞りS’は、図2に示される明るさ絞りSと同様に、レンズ面に金属を成膜して遮光部Bを形成することにより容易に製造される。また、明るさ絞りS’は、金属等の遮光性を有する材料からなる平板に貫通穴を加工して開口部Aを形成することによっても容易に製造されることができる。
 次に、上述した実施形態の実施例1から14について図6から図34を参照して説明する。なお、各実施例の対物光学系の構成について先に説明し、各対物光学系による被写界深度の拡大効果については構成の説明の後に説明する。各実施例に記載のレンズデータにおいて、rは曲率半径、dは面間隔、neはe線に対する屈折率、νdはd線に対するアッべ数、OBJは物体面、IMGは像面である。また、明るさ絞りに相当する面番号にはSを付している。レンズ断面図において、IMGは像面を示している。
〔実施例1〕
 本発明の実施例1に係る対物光学系は、図6および下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスの像側面(第6面)に形成されている。明るさ絞りは、図7に示されるように、光軸を中心とし半径Φ=0.33mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.226mmの正方形の遮光部とを有している。条件式(1)において、Q=14.9である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 17.00  1.
  1        ∞  0.47  1.88815  40.76
  2   0.8120  0.42  1.
  3        ∞  0.73  1.93429  18.90
  4  20.4054  0.15  1.
  5        ∞  0.56  1.51564  75.00
  6(S)     ∞  0.05  1.
  7        ∞  1.23  1.88815  40.76
  8  -1.9073  0.20  1.
  9   5.9797  1.18  1.73234  54.68
 10  -1.3347  0.43  1.93429  18.90
 11  -3.8757  0.97  1.
 12        ∞  2.20  1.51825  64.14
IMG        ∞  0.00
各種データ
像高     0.986
焦点距離   1.000
レンズ全長  8.582
Fナンバー  1.282
画角     139.1°
〔実施例2〕
 本発明の実施例2に係る対物光学系は、図8及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスの像側面(第6面)に形成されている。明るさ絞りは、図9に示されるように、光軸を中心とし半径Φ=0.32mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.226mmの正方形の遮光部とを有している。条件式(1)において、Q=15.9である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 15.20  1.
  1        ∞  0.45  1.88815  40.76
  2   0.8070  0.42  1.
  3        ∞  0.75  1.93429  18.90
  4 -18.8610  0.32  1.
  5        ∞  0.33  1.51564  75.00
  6(S)     ∞  0.06  1.
  7        ∞  1.20  1.88815  40.76
  8  -1.9010  0.10  1.
  9   6.3883  1.14  1.73234  54.68
 10  -1.3423  0.43  1.93429  18.90
 11  -3.9950  0.94  1.
 12        ∞  2.40  1.51825  64.14
IMG        ∞  0.00
各種データ
像高     0.943
焦点距離   1.00003
レンズ全長  8.537
Fナンバー  1.356
画角     128.8°
〔実施例3〕
 本発明の実施例3に係る対物光学系は、図10及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスの像側面(第6面)に形成されている。明るさ絞りは、図11に示されるように、光軸を中心とし半径Φ=0.2465mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.226mmの正方形の遮光部とを有している。条件式(1)において、Q=26.8である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 15.00  1.
  1        ∞  0.41  1.88815  40.76
  2   0.8450  0.38  1.
  3        ∞  0.74  1.85504  23.78
  4  -9.6236  0.19  1.
  5        ∞  0.57  1.51564  75.00
  6(S)     ∞  0.00  1.
  7        ∞  0.16  1.
  8   9.4949  1.25  1.83932  37.16
  9  -1.9712  0.05  1.
 10   3.9867  1.25  1.69979  55.53
 11  -1.2696  0.43  1.93429  18.90
 12  -5.8760  1.04  1.
 13        ∞  0.75  1.51825  64.14
 14        ∞  0.75  1.61379  50.20
IMG        ∞  0.00
各種データ
像高     0.96
焦点距離   1.00215
レンズ全長  7.968
Fナンバー  1.319
画角     130.8°
〔実施例4〕
 本発明の実施例4に係る対物光学系は、図12及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスの像側面(第7面)に形成されている。明るさ絞りは、図13に示されるように、光軸を中心とし半径Φ=0.224mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.226mmの正方形の遮光部とを有している。条件式(1)において、Q=32.4である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 12.50  1.
  1        ∞  0.41  1.88815  40.76
  2   0.8765  0.59  1.
  3 -10.1322  0.73  1.85504  23.78
  4  -4.2878  0.18  1.
  5        ∞  0.57  1.51564  75.00
  6        ∞  0.00  1.
  7(S)     ∞  0.16  1.
  8   9.6120  1.30  1.83932  37.16
  9  -2.0932  0.05  1.
 10   4.5979  1.27  1.69979  55.53
 11  -1.2298  0.44  1.93429  18.90
 12  -6.2165  0.54  1.
 13        ∞  1.50  1.51825  64.14
 14        ∞  0.75  1.61379  50.20
IMG        ∞  0.00
各種データ
像高     0.96
焦点距離   1.00000
レンズ全長  8.487
Fナンバー  1.644
画角     129.9°
〔実施例5〕
 本発明の実施例5に係る対物光学系は、図14及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスの物体側面(第5面)に形成されている。明るさ絞りは、図15に示されるように、光軸を中心とし半径Φ=0.225mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.24mmの正方形の遮光部とを有している。条件式(1)において、Q=36.2である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 11.50  1.
  1        ∞  0.45  1.88815  40.76
  2   0.8064  0.42  1.
  3        ∞  0.73  1.85504  23.78
  4 -16.2332  0.17  1.
  5        ∞  0.56  1.51564  75.00
  6(S)     ∞  0.03  1.
  7        ∞  1.24  1.88815  40.76
  8  -1.8966  0.09  1.
  9   6.4116  1.13  1.73234  54.68
 10  -1.3374  0.43  1.93429  18.90
 11  -4.0282  0.89  1.
 12        ∞  2.50  1.51825  64.14
IMG        ∞  0.00
各種データ
像高     0.943
焦点距離   1.000
レンズ全長  8.649
Fナンバー  1.703
画角     127.6°
〔実施例6〕
 本発明の実施例6に係る対物光学系は、図16及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスと平凸レンズとの接合面(第6面)に形成されている。明るさ絞りは、図17に示されるように、光軸を中心とし半径Φ=0.28mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.184mmの正方形の遮光部とを有している。条件式(1)において、Q=13.7である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 19.50  1.
  1        ∞  0.50  2.18246  33.01
  2   0.9683  0.42  1.
  3        ∞  0.72  1.93429  18.90
  4  -5.4027  0.15  1.
  5        ∞  0.56  1.51564  75.00
  6(S)     ∞  0.00  1.
  7        ∞  1.54  1.88815  40.76
  8  -2.0953  0.20  1.
  9   6.8599  1.18  1.73234  54.68
 10  -1.3201  0.43  1.93429  18.90
 11  -3.7233  0.83  1.
 12        ∞  2.50  1.51825  64.14
IMG        ∞  0.00
各種データ
像高     0.94
焦点距離   0.99999
レンズ全長  9.024
Fナンバー  1.56
画角     127.7°
〔実施例7〕
 本発明の実施例7に係る対物光学系は、図18及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスの物体側面(第5面)に形成されている。明るさ絞りは、図19に示されるように、光軸を中心とし半径Φ=0.27mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.198mmの正方形の遮光部とを有している。条件式(1)において、Q=17.1である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 18.10  1.
  1        ∞  0.33  1.88814  40.78
  2   0.6783  0.60  1.
  3   3.5348  1.37  1.73234  54.68
  4  -1.3630  0.09  1.
  5(S)     ∞  0.35  1.52495  59.89
  6        ∞  0.52  1.
  7   2.9104  1.26  1.69979  55.53
  8  -0.9191  0.26  1.85504  23.78
  9  -3.8252  0.61  1.
 10        ∞  1.23  1.51825  64.14
IMG        ∞  0.00
各種データ
像高     0.895
焦点距離   0.99988
レンズ全長  6.608
Fナンバー  4.236
画角     117.1°
〔実施例8〕
 本発明の実施例8に係る対物光学系は、図20及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスの像側面(第5面)に形成されている。明るさ絞りは、図21に示されるように、光軸を中心とし半径Φ=0.24mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.198mmの正方形の遮光部とを有している。条件式(1)において、Q=21.7である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 17.00  1.
  1        ∞  0.36  1.88814  40.78
  2   0.7364  0.64  1.
  3   2.7059  1.42  1.73234  54.68
  4  -1.5183  0.10  1.
  5(S)     ∞  0.38  1.52495  59.89
  6        ∞  0.51  1.
  7   2.2462  0.99  1.69979  55.53
  8  -0.9387  0.25  1.85504  23.78
  9  -5.8320  0.72  1.
 10        ∞  0.95  1.51825  64.14
IMG        ∞  0.00
各種データ
像高     0.971
焦点距離   1.00001
レンズ全長  6.3091
Fナンバー  4.415
画角     135.4°
〔実施例9〕
 本発明の実施例9に係る対物光学系は、図22及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、第2のレンズとカバーガラスとの間(第5面)に配置されている。明るさ絞りは、図23に示されるように、光軸を中心とし半径Φ=0.26mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.226mmの正方形の遮光部とを有している。条件式(1)において、Q=24.1である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 15.50  1.
  1        ∞  0.35  1.77066  71.79
  2   0.7698  0.71  1.
  3  14.2136  1.79  1.73234  54.68
  4  -1.5257  0.03  1.
  5(S)     ∞  0.04  1.
  6        ∞  0.50  1.49557  75.00
  7        ∞  0.62  1.
  8   5.3840  1.00  1.79196  47.37
  9  -1.2014  0.29  1.93430  18.90
 10  -3.2349  0.73  1.
 11        ∞  1.85  1.61379  50.20
IMG        ∞  0.00
各種データ
像高     1.02
焦点距離   1.00001
レンズ全長  7.902
Fナンバー  1.452
画角     149.6°
〔実施例10〕
 本発明の実施例10に係る対物光学系は、図24及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、平凸レンズの平面(第4面)に形成されている。明るさ絞りは、図25に示されるように、光軸を中心とし半径Φ=0.26mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.24mmの正方形の遮光部とを有している。条件式(1)において、Q=27.1である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 13.60  1.
  1  34.3018  0.45  1.88815  40.76
  2   0.8496  0.69  1.
  3   5.3201  0.93  1.83932  37.16
  4(S)     ∞  0.03  1.
  5        ∞  1.58  1.81078  40.88
  6  -1.7164  0.11  1.
  7   4.1479  1.18  1.73234  54.68
  8  -1.2969  0.35  1.93429  18.90
  9  -6.0600  0.89  1.
 10        ∞  1.56  1.51825  64.14
IMG        ∞  0.00
各種データ
像高     1.00
焦点距離   1.00001
レンズ全長  7.7648
Fナンバー  4.078
画角     136.7°
〔実施例11〕
 本発明の実施例11に係る対物光学系は、図26及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスの像側面(第6面)に形成されている。明るさ絞りは、図27に示されるように、光軸を中心とし半径Φ=0.31mmの円形の外形を有する開口部と、光軸を中心とし一辺l=0.325mmの正方形の遮光部とを有している。条件式(1)において、Q=35.0である。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 14.50  1.
  1        ∞  0.50  2.18246  33.01
  2   0.9456  0.46  1.
  3        ∞  0.72  1.93429  18.90
  4  -7.4010  0.40  1.
  5        ∞  0.56  1.51564  75.00
  6(S)     ∞  0.23  1.
  7  18.8830  1.24  2.18246  33.01
  8  -2.6600  0.20  1.
  9   6.2845  1.17  1.73234  54.68
 10  -1.3129  0.45  1.93429  18.90
 11  -8.7654  1.10  1.
 12        ∞  2.06  1.51825  64.14
IMG        ∞  0.00 
各種データ
像高     0.935
焦点距離   1.00002
レンズ全長  9.089
Fナンバー  4.119
画角     128.7°
〔実施例12〕
 本発明の実施例12に係る対物光学系は、図28及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスの像側面(第6面)に形成されている。明るさ絞りは、図29に示されるように、光軸を中心に正方配列された4つの開口部と、これらの開口部を除く部分である遮光部とを有している。開口部の半径φ=0.0926mm、開口部の中心間距離の半分m=0.120mmである。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 13.50  1.00000
  1        ∞  0.41  1.88815  40.76
  2   0.8450  0.38  1.00000
  3        ∞  0.74  1.85504  23.78
  4  -9.6236  0.19  1.00000
  5        ∞  0.57  1.51564  75.00
  6(S)     ∞  0.16  1.00000
  7   9.4949  1.25  1.83932  37.16
  8  -1.9677  0.05  1.00000
  9   3.9867  1.25  1.69979  55.53
 10  -1.2696  0.43  1.93429  18.90
 11  -5.8760  1.01  1.00000
 12        ∞  1.50  1.51825  64.14
IMG        ∞  0.00
各種データ
像高     0.96
焦点距離   1.00001
レンズ全長  7.937
Fナンバー  1.624
画角     131.2°
〔実施例13〕
 本発明の実施例13に係る対物光学系は、図30及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスと平凸レンズとの接合面(第6面)に形成されている。明るさ絞りは、図31に示されるように、光軸を中心に正方配列された4つの開口部と、これらの開口部を除く部分である遮光部とを有している。開口部の半径φ=0.093mm、開口部の中心間距離の半分m=0.140mmである。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 14.80  1.
  1        ∞  0.50  2.18246  33.01
  2   0.9683  0.42  1.
  3        ∞  0.72  1.93429  18.90
  4  -5.4027  0.15  1.
  5        ∞  0.56  1.51564  75.00
  6(S)     ∞  0.00  1.
  7        ∞  1.54  1.88815  40.76
  8  -2.0953  0.20  1.
  9   6.8599  1.18  1.73234  54.68
 10  -1.3201  0.43  1.93429  18.90
 11  -3.7233  0.85  1.
 12        ∞  2.50  1.51825  64.14
IMG        ∞  0.00
各種データ
像高     0.94
焦点距離   0.99999
レンズ全長  9.042
Fナンバー  1.565
画角     127.1°
〔実施例14〕
 本発明の実施例14に係る対物光学系は、図32及び下記のレンズデータに示されるレンズ構成を有している。本実施例において明るさ絞りは、カバーガラスの物体側面(第5面)に形成されている。明るさ絞りは、図33に示されるように、光軸を中心に正方配列された4つの開口部と、これらの開口部を除く部分である遮光部とを有している。開口部の半径φ=0.120mm、開口部の中心間距離の半分m=0.144mmである。
レンズデータ
面番号        r     d       ne     νd
OBJ        ∞ 19.80  1.
  1        ∞  0.33  1.88814  40.78
  2   0.6783  0.60  1.
  3   3.5348  1.37  1.73234  54.68
  4  -1.3630  0.09  1.
  5(S)     ∞  0.35  1.52495  59.89
  6        ∞  0.52  1.
  7   2.9104  1.26  1.69979  55.53
  8  -0.9191  0.26  1.85504  23.78
  9  -3.8252  0.60  1.
 10        ∞  1.23  1.51825  64.14
IMG        ∞  0.00
各種データ
像高     0.895
焦点距離   0.99988
レンズ全長  6.6
Fナンバー  2.091
画角     117.1°
 次に、上述した本発明の実施例1から14に係る対物光学系および該対物光学系を備える撮像装置による被写界深度の拡大効果について説明する。
 各実施例に係る対物光学系について、表1に示されるように、使用が想定される撮像素子の解像度に基づいて被写界深度を算出した。すなわち、撮像素子の画素の2.5個分に相当する空間周波数に対してMTFが10%以上となる光軸方向の範囲を被写界深度として算出した。
Figure JPOXMLDOC01-appb-T000001
 例えば、実施例1の場合、配列方向に隣接する画素同士の中心間隔の距離であるピッチが1.5μである撮像素子と組み合わせて使用される。この場合の画素2.5個分に相当する空間周波数fは、
 空間周波数f=1/(2.5×1.5e-3)=266.7(本/mm)
と算出される。次に、対物光学系の視野の光軸方向の各位置において、空間周波数266.7(本/mm)に相当するMTFを算出すると、図34に示されるようなMTFのグラフが得られる。MTFは、図34に示されるように、対物光学系の先端面からの距離(物体距離)応じて変化し、対物光学系の合焦位置に対応する物体距離において最大となり、物体距離が合焦位置よりも近くまたは遠くなるにしたがって減少する。このようなグラフにおいて、MTFが10%以上となる物体位置の範囲を被写界深度として算出した。
 また、比較例として、本発明の各実施例に係る対物光学系と同一のレンズ構成有し、明るさ絞りのみを従来の明るさ絞りに代えた対物光学系の被写界深度(単位:mm)についても同様の方法で算出した。つまり、実施例1から実施例14に対する比較例においては、半径Φまたはφの1つの開口部のみを有する明るさ絞りを備えた対物光学系の被写界深度を算出した。
 本発明の実施例1から14に係る対物光学系および各比較例に係る対物光学系の被写界深度は表1に示される通りである。このように、本発明の実施例1から14に係る対物光学系は、従来の明るさ絞りを備える対物光学系と比較して、いずれも広い被写界深度を有している。
1 対物光学系
2 撮像素子
10 撮像装置
L1~L5 レンズ
F1,F2 平行平板
A 開口部
B 遮光部
C 周辺部
O 光軸
S,S’ 明るさ絞り

Claims (11)

  1.  光軸の途中位置に配置されて物体からの入射光を通過させる開口部を有する明るさ絞りを備え、
     該明るさ絞りが、前記光軸に一致する部分に前記入射光を遮断する遮光部を有する対物光学系。
  2.  複数のレンズを備え、
     全ての前記レンズが、前記光軸に対して回転対称な形状を有する請求項1に記載の対物光学系。
  3.  前記明るさ絞りが、1つの前記開口部と、該開口部の内側に設けられた1つの前記遮光部とを有する請求項1または請求項2に記載の対物光学系。
  4.  前記明るさ絞りが、下記条件式(1)を満足する請求項3に記載の対物光学系。
     (1)    4 < Q < 50
     ただし、
     Q:(前記遮光部の面積/前記開口部の面積)×100
     である。
  5.  前記遮光部が、ガラスの表面に金属を成膜してなる請求項3または請求項4に記載の対物光学系。
  6.  前記明るさ絞りが、前記光軸を囲むように配列された複数の前記開口部を有する請求項1または請求項2に記載の対物光学系。
  7.  前記遮光部が、ガラスの表面に金属を成膜してなる請求項6に記載の対物光学系。
  8.  前記明るさ絞りが、金属からなる請求項6に記載の対物光学系。
  9.  請求項1から請求項8のいずれかに記載の対物光学系と、
     該対物光学系によって結像された前記物体の光学像を撮影する撮像素子とを備える撮像装置。
  10.  前記遮光部は、前記撮像素子の一の画素の中心から該画素に隣接する画素までの距離に反比例する点を結んだ形状を有する請求項9に記載の撮像装置。
  11.  請求項9または請求項10に記載の撮像装置を備える内視鏡。
PCT/JP2012/069361 2011-09-21 2012-07-30 対物光学系、撮像装置および内視鏡 WO2013042456A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013516824A JP5373228B2 (ja) 2011-09-21 2012-07-30 撮像装置および内視鏡
CN201280029275.7A CN103608713B (zh) 2011-09-21 2012-07-30 物镜光学系统、拍摄装置以及内窥镜
EP12833049.5A EP2759862B1 (en) 2011-09-21 2012-07-30 Object optical assembly, image capture device, and endoscope
US14/100,630 US8988516B2 (en) 2011-09-21 2013-12-09 Imaging device and endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-205912 2011-09-21
JP2011205912 2011-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/100,630 Continuation US8988516B2 (en) 2011-09-21 2013-12-09 Imaging device and endoscope

Publications (1)

Publication Number Publication Date
WO2013042456A1 true WO2013042456A1 (ja) 2013-03-28

Family

ID=47914236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069361 WO2013042456A1 (ja) 2011-09-21 2012-07-30 対物光学系、撮像装置および内視鏡

Country Status (5)

Country Link
US (1) US8988516B2 (ja)
EP (1) EP2759862B1 (ja)
JP (1) JP5373228B2 (ja)
CN (1) CN103608713B (ja)
WO (1) WO2013042456A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793755A (zh) * 2013-10-30 2016-07-20 奥林巴斯株式会社 摄像装置
WO2016204001A1 (ja) * 2015-06-18 2016-12-22 オリンパス株式会社 内視鏡用対物光学系
WO2017104268A1 (ja) * 2015-12-14 2017-06-22 オリンパス株式会社 斜視対物光学系及びそれを備えた斜視用内視鏡

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9177223B2 (en) * 2014-01-14 2015-11-03 Welch Allyn, Inc. Edge detection in images
DE102015002869B3 (de) * 2014-12-14 2016-06-16 Sopro-Comeg Gmbh Stablinsensystem mit Sternblende
US11163169B2 (en) 2016-06-07 2021-11-02 Karl Storz Se & Co. Kg Endoscope and imaging arrangement providing improved depth of field and resolution
US10324300B2 (en) 2016-06-07 2019-06-18 Karl Storz Se & Co. Kg Endoscope and imaging arrangement providing depth of field
US11307430B2 (en) 2016-06-07 2022-04-19 Karl Storz Se & Co. Kg Optical device and method for providing improved depth of field and resolution modes
US11690497B2 (en) * 2018-11-27 2023-07-04 Fujikura Ltd. Lens unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179958A (ja) * 1990-11-14 1992-06-26 Nikon Corp 投影露光装置および投影露光方法
JP2000098302A (ja) 1998-09-28 2000-04-07 Olympus Optical Co Ltd 空間周波数変換手段とそれを備えた光学系
JP2003235794A (ja) 2002-02-21 2003-08-26 Olympus Optical Co Ltd 電子内視鏡システム
JP2004537749A (ja) * 2001-07-27 2004-12-16 アイシス イノベイシヨン リミテツド 焦点された光線を発生させる方法及び装置
JP2007227896A (ja) * 2006-01-27 2007-09-06 Fujitsu Ltd 半導体装置の製造方法
JP2008511859A (ja) * 2004-09-03 2008-04-17 オートマティック・レコグニション・アンド・コントロール・インコーポレイテッド 球面収差範囲が制御され中央を掩蔽した絞りを有する多焦点距離レンズを使用した拡張焦点深度
JP2009288682A (ja) * 2008-05-30 2009-12-10 Olympus Medical Systems Corp 内視鏡対物光学系

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1096072B (de) * 1956-08-30 1960-12-29 Continental Elektro Ind Ag Blendenplatte, insbesondere zur Gesichtsfeldbegrenzung in optischen Instrumenten, und Herstellungsverfahren
JPS5420725A (en) * 1977-07-16 1979-02-16 Nippon Chemical Ind Variable softtfocus filter
JPH04171415A (ja) * 1990-11-02 1992-06-18 Nikon Corp 長焦点深度高分解能照射光学系
JPH04251239A (ja) * 1991-01-09 1992-09-07 Hiroyoshi Sugibuchi 立体視撮影装置
JP3372980B2 (ja) * 1993-01-22 2003-02-04 オリンパス光学工業株式会社 内視鏡
JPH0784221A (ja) * 1993-09-14 1995-03-31 Matsushita Electric Works Ltd 集光用光学装置とこれに付加される光学的付加装置及びこれらを用いた測定機器
US6069651A (en) * 1995-04-20 2000-05-30 Olympus Optical Co., Ltd. Imaging apparatus for endoscopes
JP3507244B2 (ja) * 1996-03-13 2004-03-15 キヤノン株式会社 走査光学装置及び該装置を用いたレーザープリンタ
KR100607528B1 (ko) * 1998-05-13 2006-08-02 후지 샤신 필름 가부시기가이샤 데이타 촬영 기입장치 및 데이타 촬영 기입장치를 갖춘카메라
EP1269244A2 (en) * 2000-04-03 2003-01-02 Pocketscope.com LLC Lenses and uses, including microscopes
JP4054222B2 (ja) * 2002-06-05 2008-02-27 オリンパス株式会社 内視鏡装置用光源装置
US7160249B2 (en) * 2003-03-28 2007-01-09 Olympus Corporation Endoscope image pickup unit for picking up magnified images of an object, a focus adjustment apparatus and method, and a focus range check apparatus and method for the same
US20040227839A1 (en) * 2003-05-13 2004-11-18 Stavely Donald J. Systems and methods for determining focus from light collected by the periphery of a lens
WO2006066706A2 (en) * 2004-12-22 2006-06-29 Carl Zeiss Laser Optics Gmbh Optical illumination system for creating a line beam
JP5222815B2 (ja) * 2009-09-08 2013-06-26 三洋電機株式会社 バックフォーカス調整機構を具えた撮像装置
DE102009041405B4 (de) * 2009-09-14 2020-08-20 Carl Zeiss Smt Gmbh Maskeninspektionsmikroskop mit variabler Beleuchtungseinstellung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179958A (ja) * 1990-11-14 1992-06-26 Nikon Corp 投影露光装置および投影露光方法
JP2000098302A (ja) 1998-09-28 2000-04-07 Olympus Optical Co Ltd 空間周波数変換手段とそれを備えた光学系
JP2004537749A (ja) * 2001-07-27 2004-12-16 アイシス イノベイシヨン リミテツド 焦点された光線を発生させる方法及び装置
JP2003235794A (ja) 2002-02-21 2003-08-26 Olympus Optical Co Ltd 電子内視鏡システム
JP2008511859A (ja) * 2004-09-03 2008-04-17 オートマティック・レコグニション・アンド・コントロール・インコーポレイテッド 球面収差範囲が制御され中央を掩蔽した絞りを有する多焦点距離レンズを使用した拡張焦点深度
JP2007227896A (ja) * 2006-01-27 2007-09-06 Fujitsu Ltd 半導体装置の製造方法
JP2009288682A (ja) * 2008-05-30 2009-12-10 Olympus Medical Systems Corp 内視鏡対物光学系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2759862A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793755A (zh) * 2013-10-30 2016-07-20 奥林巴斯株式会社 摄像装置
EP3064977A4 (en) * 2013-10-30 2017-06-07 Olympus Corporation Image pickup device
WO2016204001A1 (ja) * 2015-06-18 2016-12-22 オリンパス株式会社 内視鏡用対物光学系
JP6109461B1 (ja) * 2015-06-18 2017-04-05 オリンパス株式会社 内視鏡用対物光学系
US10018827B2 (en) 2015-06-18 2018-07-10 Olympus Corporation Objective optical system for endoscope
WO2017104268A1 (ja) * 2015-12-14 2017-06-22 オリンパス株式会社 斜視対物光学系及びそれを備えた斜視用内視鏡
JP6173648B1 (ja) * 2015-12-14 2017-08-02 オリンパス株式会社 斜視対物光学系及びそれを備えた斜視用内視鏡
US9933610B2 (en) 2015-12-14 2018-04-03 Olympus Corporation Oblique-viewing objective optical system and endoscope for oblique viewing using the same

Also Published As

Publication number Publication date
US20140092225A1 (en) 2014-04-03
CN103608713A (zh) 2014-02-26
EP2759862A1 (en) 2014-07-30
EP2759862A4 (en) 2015-05-06
US8988516B2 (en) 2015-03-24
EP2759862B1 (en) 2016-04-27
CN103608713B (zh) 2016-08-17
JPWO2013042456A1 (ja) 2015-03-26
JP5373228B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5373228B2 (ja) 撮像装置および内視鏡
CN113721348B (zh) 摄像用光学镜组及电子装置
TWI620955B (zh) 光學成像系統
US9645358B2 (en) Optical image capturing system
US10295791B2 (en) Optical image capturing system
TWI417596B (zh) 廣視角攝影鏡頭
TWI443371B (zh) 取像系統鏡頭組
TWI440925B (zh) 單焦點攝像鏡組
TWI616677B (zh) 光學成像系統
TWI632393B (zh) 光學成像系統
TWI630415B (zh) 光學成像系統
WO2012169369A1 (ja) 光学ユニットおよび内視鏡
TWI638202B (zh) 光學成像系統
TWI683150B (zh) 光學成像系統
TWI440920B (zh) 取像攝影鏡頭組
TW201825952A (zh) 光學成像系統
TWI703369B (zh) 光學成像系統
TWI475245B (zh) 攝像用光學透鏡組及其攝像裝置
JPWO2007088917A1 (ja) 広角レンズおよびこれを用いた光学装置並びに広角レンズの製造方法
TWI630414B (zh) 光學成像系統(二)
KR20170001640U (ko) 근적외선 이미징 렌즈
US20190025547A1 (en) Optical image capturing system
TWM511632U (zh) 相機模組及電子裝置
TWI808084B (zh) 光學成像系統
CN104977700B (zh) 一种用于dmd相机的光学系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013516824

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012833049

Country of ref document: EP