WO2013042198A1 - Probe - Google Patents

Probe Download PDF

Info

Publication number
WO2013042198A1
WO2013042198A1 PCT/JP2011/071372 JP2011071372W WO2013042198A1 WO 2013042198 A1 WO2013042198 A1 WO 2013042198A1 JP 2011071372 W JP2011071372 W JP 2011071372W WO 2013042198 A1 WO2013042198 A1 WO 2013042198A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
elastic body
contact pins
axial direction
conductor
Prior art date
Application number
PCT/JP2011/071372
Other languages
French (fr)
Japanese (ja)
Inventor
憲司 安澤
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2011/071372 priority Critical patent/WO2013042198A1/en
Publication of WO2013042198A1 publication Critical patent/WO2013042198A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support

Definitions

  • One embodiment of the present invention relates to a probe.
  • a pair of holding plates, a pair of plungers slidably projecting from open ends of narrow holes formed in the pair of holding plates, and a conductive coil that slidably supports the pair of plungers Probes with springs are known. Some of these probes are filled with a gel-like or rubber-like insulating elastic body between a pair of holding plates.
  • the present invention aims to improve the electrical characteristics of a probe.
  • an elastic body is interposed between a pair of contact pins.
  • the elastic body presses the pair of contact pins in a direction away from each other.
  • the pair of contact pins are electrically connected by a conductor provided separately from the elastic body.
  • the electrical characteristics of the probe can be improved.
  • FIG. 2 is a cross-sectional view of the inspection probe shown in FIG. 1. It is a figure explaining the assembly method of the electrically-conductive mechanism shown by FIG. It is a figure which shows the 1st modification of the elastic body shown by FIG. It is a figure which shows the modification of the conductor shown by FIG. It is a figure which shows the 2nd modification of the elastic body shown by FIG. It is a figure which shows the 3rd modification of the elastic body shown by FIG. It is a figure which shows the 4th modification of the elastic body shown by FIG. It is a figure which shows the 5th modification of the elastic body shown by FIG. It is a figure which shows the 6th modification of the elastic body shown by FIG.
  • an inspection probe 10 is an example of a probe and includes a pair of holding plates 12 and 14.
  • the pair of holding plates 12 and 14 are each formed in a flat plate shape and are overlapped with each other in the plate thickness direction.
  • a plurality of holding holes 16 and 18 are formed in the pair of holding plates 12 and 14, respectively. Each of the plurality of holding holes 16 communicates with the plurality of holding holes 18. The plurality of holding holes 16 together with the plurality of holding holes 18 form a plurality of holding spaces 20. The plurality of holding spaces 20 are formed side by side in the vertical direction and the horizontal direction when the pair of holding plates 12 and 14 are viewed in plan.
  • each conductive mechanism 22 is accommodated in the plurality of holding spaces 20, respectively.
  • the plurality of conductive mechanisms 22 have the same configuration.
  • each conductive mechanism 22 includes a capsule 24, a pair of contact pins 26 and 28, an elastic body 30, and a conductive body 32.
  • the capsule 24 has a pair of containers 34 and 36 divided in the overlapping direction (A direction) of the pair of holding plates 12 and 14.
  • the pair of containers 34 and 36 are each formed in a cup shape.
  • a hole 38 is formed in the bottom of one container 34 so as to penetrate in the overlapping direction of the pair of holding plates 12 and 14.
  • a hole 40 penetrating in the overlapping direction of the pair of holding plates 12 and 14 is formed at the bottom of the other container 36.
  • a flange 42 extending along the circumferential direction of the container 34 is formed at the opening side end of one container 34, and the opening side end of the other container 36 is provided with the container 36.
  • a flange 44 extending along the circumferential direction is formed.
  • One container 34 and the other container 36 are assembled in a state where the flanges 42 and 44 are overlapped.
  • a groove 46 is formed in the above-described one holding plate 12 along the inner peripheral surface of the holding hole 16, and flanges 42 and 44 are engaged with the groove 46.
  • the flanges 42 and 44 are thus engaged with the grooves 46, whereby the capsule 24 is held by the pair of holding plates 12 and 14.
  • the pair of contact pins 26 and 28 are electrically conductive, and are arranged with the overlapping direction of the pair of holding plates 12 and 14 as the axial direction.
  • the pair of contact pins 26 and 28 are spaced apart from each other in the axial direction.
  • One contact pin 26 has a pin main body portion 48 whose tip is formed in a tapered shape, and a retaining portion 50 formed at the base of the pin main body portion 48.
  • the pin main body 48 is inserted into the hole 38 in a state having a gap with the inner peripheral surface of the hole 38, whereby one of the contact pins 26 is movable in the axial direction.
  • the diameter of the retaining portion 50 is increased as the distance from the pin main body portion 48 is increased, thereby preventing the one contact pin 26 from coming off from the capsule 24.
  • the retaining portion 50 is formed with a recess 52 that opens to the opposite side of the pin body portion 48.
  • the other contact pin 28 has a pin body portion 58 having a tapered tip, and a retaining portion 60 formed at the base of the pin body portion 58.
  • the pin main body 58 is inserted into the hole 40 with a gap from the inner peripheral surface of the hole 40, whereby the other contact pin 28 is movable in the axial direction.
  • the diameter of the retaining portion 60 is increased as the distance from the pin main body portion 58 increases, thereby preventing the other contact pin 28 from coming off from the capsule 24.
  • the retaining portion 60 is formed with a recess 62 that opens to the opposite side of the pin body portion 58.
  • the elastic body 30 is formed in a solid cylindrical shape extending along the axial direction (A direction) of the pair of contact pins 26 and 28.
  • the elastic body 30 is a non-conductor and is made of, for example, an insulating elastic material.
  • the elastic body 30 is made of silicon rubber as an example of an insulating elastic material. It is preferable that the hardness (Shore A hardness) of this silicon rubber is set to about Shore A 30 °, for example.
  • the end 30A on one axial side of the elastic body 30 is press-fitted into the recess 52, and the end 30B on the other axial side of the elastic body 30 is press-fitted into the recess 62.
  • the elastic body 30 is thus interposed between the pair of contact pins 26 and 28 and presses the pair of contact pins 26 and 28 in a direction away from each other.
  • the elastic body 30 may be interposed between the pair of contact pins 26 and 28 in a free state, or may be interposed between the pair of contact pins 26 and 28 in a compressed state.
  • the conductor 32 is formed integrally with the pair of contact pins 26, 28, and conducts the pair of contact pins 26, 28.
  • the conductor 32 is formed in a band shape and is wound around the elastic body 30 in a spiral shape.
  • the conductor 32 has elasticity by being formed in a spiral shape, but the elastic modulus of the conductor 32 is set lower than that of the elastic body 30.
  • the conductor 32 may be a slice formed when the pair of contact pins 26 and 28 are formed by cutting.
  • the above conductive mechanism 22 is assembled, for example, in the following manner. That is, as shown in the upper diagram of FIG. 3, first, the conductor 32 formed integrally with the pair of contact pins 26 and 28 is brought into a linearly extended state. Then, as shown in the lower diagram of FIG. 3, the end 30 ⁇ / b> A on the one axial side of the elastic body 30 is press-fitted into the recess 52 of one contact pin 26.
  • the other contact pin 28 is swung around the elastic body 30, and the conductor 32 is spirally wound around the elastic body 30, and the other contact pin 28 has a recess 62 on the other side in the axial direction of the elastic body 30.
  • the end 30B is press-fitted. As shown in FIG. 2, the pin main body portions 48 and 58 are inserted into the hole portions 38 and 40, respectively, and the pair of containers 34 and 36 are assembled to assemble the conductive mechanism 22.
  • the inspection probe 10 including the plurality of conductive mechanisms 22 assembled in this way is used as follows. That is, as shown in FIG. 2, an inspection object 70 such as a CPU (Central Processing Unit) is disposed on one holding plate 12 side of the inspection probe 10. On the other hand, a test board 72 such as a system board is disposed on the other holding plate 14 side of the inspection probe 10.
  • an inspection object 70 such as a CPU (Central Processing Unit) is disposed on one holding plate 12 side of the inspection probe 10.
  • a test board 72 such as a system board is disposed on the other holding plate 14 side of the inspection probe 10.
  • the plurality of contact pins 26 are pressed against the conductive pads 74 of the test object 70, and the plurality of contact pins 28 are pressed against the conductive pads 76 of the test substrate 72, respectively.
  • the pair of contact pins 26 and 28 are pressed against the conductive pads 74 and 76, respectively, the pair of contact pins 26 and 28 are moved toward each other, and the elastic body 30 is elastically compressed. Therefore, the elastic force of the elastic body 30 acts on the pair of contact pins 26 and 28, thereby bringing the pair of contact pins 26 and 28 into stable contact with the conductive pads 74 and 76, respectively.
  • the conductor 32 is spirally wound around the elastic body 30 as described above, even if the pair of contact pins 26 and 28 are moved toward and away from each other, this movement is not affected. It will be elastically deformed accordingly. Accordingly, the conductive state of the pair of contact pins 26 and 28 by the conductor 32 is thereby maintained.
  • the elastic body 30 is interposed between the pair of contact pins 26 and 28.
  • the elastic body 30 presses the pair of contact pins 26 and 28 in a direction away from each other.
  • the pair of contact pins 26 and 28 are electrically connected by a conductor 32 provided separately from the elastic body 30.
  • the elastic body 30 having an elastic function for pressing the pair of contact pins 26 and 28 and the conductor 32 having a conductive function for conducting the pair of contact pins 26 and 28 are separated.
  • the conductor 32 does not need to have an elastic function, the entire length (line length) of the conductor 32, that is, the conduction path between the pair of contact pins 26 and 28 can be shortened.
  • the electrical resistance between a pair of contact pins 26 and 28 can be made low, the electrical characteristic of the probe 10 for a test
  • the conductor 32 is formed integrally with the pair of contact pins 26 and 28. Therefore, it is possible to suppress a contact failure between the pair of contact pins 26 and 28 and the conductor 32.
  • the conductor 32 is formed in a strip shape having a larger cross-sectional area than a conventional compression coil formed in a linear shape. Therefore, the electrical resistance of the conductor 32, that is, the electrical resistance between the pair of contact pins 26 and 28 can be further reduced. As described above, the electrical characteristics of the inspection probe 10 can be further improved.
  • the elastic body 30 having an elastic function and the conductor 32 having a conductive function are separated, even if the elastic body 30 is deteriorated, it is avoided that the conductive function is affected. can do.
  • the conductor 32 is formed in a strip shape having a large cross-sectional area, a large current can be passed through the conductor 32. Thereby, this inspection probe 10 can be used for a test for a large current.
  • the elastic body 30 and the conductor 32 are separated, so that the conductor 32 can be made a specification with an emphasis on the conduction function. This makes it possible to use the inspection probe 10 for a test for measuring precise electrical characteristics.
  • the conductor 32 is spirally wound around the elastic body 30 formed in a cylindrical shape. As shown in FIG. 3, such a structure is such that one end 30 ⁇ / b> A of the elastic body 30 in the axial direction is press-fitted into the recess 52 of one contact pin 26, and the other contact pin 28 is elastic body 30. It can be easily manufactured by swiveling around. Therefore, the manufacturing process can be simplified and the cost can be reduced.
  • the elastic body 30 is made of silicon rubber, and is formed in a columnar shape extending along the axial direction of the pair of contact pins 26 and 28. Therefore, the elastic modulus of the elastic body 30 and thus the contact pressure of the pair of contact pins 26 and 28 can be changed only by changing the hardness of the silicon rubber without changing the shape of the elastic body 30.
  • the elastic body 30 formed in a cylindrical shape extending along the axial direction of the pair of contact pins 26 and 28 is used. Therefore, the elastic body 30 is elongated in the axial direction. Even if not, the elastic force of the elastic body 30 can be ensured. Thereby, the pitch of the plurality of contact pins 26 (the plurality of contact pins 28) can be reduced, and the inspection probe 10 can be downsized in the axial direction of the pair of contact pins 26 and 28.
  • the elastic body 30 is made of silicon rubber, it is possible to suppress the elastic function from being lowered and to suppress the elastic body 30 from being affected by the solution due to washing or the like.
  • silicon rubber has high heat resistance, the use of the silicon rubber for the elastic body 30 makes it possible to use the inspection probe 10 in a high temperature environment.
  • the conductor 32 is formed integrally with the pair of contact pins 26, 28, but may be formed integrally with one of the pair of contact pins 26, 28.
  • the contact pin separated from the conductor 32 among the pair of contact pins 26 and 28 is connected to the conductor 32 by any one of soldering, brazing, welding, and welding, for example. Is preferred.
  • the elastic body 30 is formed in a columnar shape, it may be formed in a prismatic shape, or may be formed in a columnar shape having another cross-sectional shape.
  • the hardness may be different between adjacent ones. If comprised in this way, about the some contact pins 26 and 28, contact pressure and a stroke can be varied by adjoining.
  • the elastic body 30 may have a through hole 80 penetrating along the axial direction of the pair of contact pins 26 and 28.
  • the material can be reduced and the elastic body 30 can be softened (elasticity can be lowered) as compared with the case where the elastic body 30 is formed solid. .
  • the conductor 32 is not spiral, but may extend in the axial direction of the pair of contact pins 26 and 28.
  • an extra length portion 82 is formed on the conductor 32 so as to follow the contact / separation of the pair of contact pins 26, 28. It is desirable.
  • the conductor 32 when the conductor 32 extends in the axial direction of the pair of contact pins 26 and 28 as described above, the conductor 32 may be inserted into the through hole 80 shown in FIG. 4 described above. If comprised in this way, it can avoid that the conductor 32 interferes and contacts with the member provided in the exterior of the elastic body 30, and it can suppress that this conductor 32 is damaged. it can.
  • the elastic body 30 may be gradually expanded in diameter toward the axial intermediate portion 30C.
  • the elastic body 30 is formed in an oval shape with the axial direction of the pair of contact pins 26 and 28 as the major axis direction.
  • the elastic body 30 has a shape in which a pair of truncated cones are combined.
  • the elastic body 30 when the elastic body 30 is gradually expanded in diameter toward the axial intermediate portion 30C, the elastic body 30 is formed in a cylindrical shape having a constant cross section in the axial direction as shown in FIG. As compared with the above, the elastic force can be increased.
  • the elastic body 30 since the axial direction intermediate portion 30C of the elastic body 30 has a larger diameter than the end portions 30A and 30B on both sides in the axial direction, when the elastic body 30 is compressed, the elastic body 30 becomes the axial direction intermediate portion. It is crushed starting from 30C. Therefore, the elastic body 30 can be prevented from being bent starting from a portion other than the axial intermediate portion 30C.
  • the recesses 52 and 62 may be shaped to match the shapes of the end portions 30 ⁇ / b> A and 30 ⁇ / b> B on both sides in the axial direction of the elastic body 30.
  • the end portions 30A and 30B on both sides in the axial direction of the elastic body 30 are formed in a tapered shape that decreases in diameter toward the tip, the end portions 30A and 30B on both sides in the axial direction of the elastic body 30 are Each of the recesses 52 and 62 can be smoothly inserted.
  • the recesses 52 and 62 may be formed shallowly in accordance with the shapes of the end portions 30A and 30B on both sides in the axial direction of the elastic body 30 formed in an elliptical spherical shape. If constituted in this way, processing work of a pair of contact pins 26 and 28 can be decreased.
  • the axial intermediate portion 30 ⁇ / b> C which is the portion having the largest outer diameter in the elastic body 30, is set at the axial central portion of the elastic body 30.
  • the axial intermediate portion 30 ⁇ / b> C may be set at a position shifted in the axial direction from the axial central portion of the elastic body 30.
  • the central portion in the axial direction of the elastic body 30 is the middle portion where the distances from the end faces on both sides in the axial direction of the elastic body 30 are equal.
  • the axial intermediate portion 30C of the elastic body 30 may be the axial central portion of the elastic body 30, or may be a portion slightly shifted in the axial direction from the axial central portion.
  • the elastic forces acting on each of the pair of contact pins 26 and 28 can be made different from each other.
  • the axial intermediate portion 30 ⁇ / b> C is set so as to be shifted to the other contact pin 28 side from the axial central portion of the elastic body 30. For this reason, the elastic force acting on the other contact pin 28 is larger than the elastic force acting on the one contact pin 26.
  • the diameter of the elastic body 30 is gradually increased toward the intermediate portion 30C in the axial direction, and a through hole 80 is formed in the elastic body 30 as shown in FIG. May be.
  • the conductor 32 may be inserted into the through hole 80.
  • the elastic body 30 is made of silicon rubber, but may be made of other rubber.
  • the elastic body 30 may have a plurality of rubber portions overlapping in the axial direction. That is, in this modified example, the elastic body 30 includes a pair of first rubber portions 84 and 86 that are separated in the axial direction of the elastic body 30 and an example of the plurality of rubber portions, and the pair of first rubber portions 84 and 86. And a second rubber portion 88 located between the two. The pair of first rubber portions 84 and 86 are located on both axial sides of the elastic body 30. The second rubber portion 88 is formed longer in the axial direction of the elastic body 30 than each of the pair of first rubber portions 84 and 86.
  • the second rubber portion 88 may have a hardness (Shore A hardness) different from that of the pair of first rubber portions 84 and 86. In this way, when the plurality of rubber portions have different hardnesses in the axial direction, the necessary elasticity can be obtained without being caught by the characteristics when the elastic body 30 is formed of one material. Can do.
  • the second rubber portion 88 may have a hardness higher than that of each of the pair of first rubber portions 84 and 86.
  • the pair of first rubber portions 84 and 86 is set to about Shore A 10 ° and the second rubber portion 88 is set to about Shore A 30 °.
  • the pair of first rubber portions 84 and 86 and the second rubber portion 88 may have different rubber materials.
  • silicon rubber, chlorobrene rubber, or the like is preferably used as the rubber material.
  • the elastic body 30 has a plurality of rubber portions overlapping in the axial direction, and gradually increases in diameter toward the axial intermediate portion 30C as shown in FIGS. May be. Further, in this case, as shown in FIG. 4, a through hole 80 may be formed in the elastic body 30, and the conductor 32 may be inserted into the through hole 80.
  • first rubber portions 84 and 86 and the second rubber portion 88 shown in FIG. 9 may be formed by integral molding, or after being formed separately, for example, by bonding or the like. It may be integrated.
  • the second rubber portion 88 may have a hardness lower than that of each of the pair of first rubber portions 84 and 86.
  • the elastic body 30 may be formed in a spiral shape with the axial direction of the pair of contact pins 26 and 28 as the central axis.
  • Convex portions 90 and 92 are formed at both ends of the spirally formed elastic body 30, and the convex portions 90 and 92 are press-fitted into the concave portions 52 and 62, respectively.
  • the conductor 32 may be formed in a spiral shape as long as it is provided so as not to be entangled with the elastic body 30. . Further, the conductor 32 is formed so as to extend in the axial direction of the pair of contact pins 26 and 28 as shown in FIG. 5, and then inside the elastic body 30 formed in a spiral shape as shown in FIG. It may be inserted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

The purpose of the invention is to improve the electrical properties of a probe. In the probe (10), elastic bodies (30) are interposed between pairs of contact pins (26, 28). The elastic body (30) presses the pair of contact pins (26, 28) in a direction that separates the two. The pair of contact pins (26, 28) is connected by a conductor (32) that is provided separately from the elastic body (30). Thus, in the probe (10), the elastic bodies (30) that press the pair of contact pins (26, 28) and have an elastic function are separated from the conductors (32) that connect the pair of contact pins (26, 28) and have a conducting function.

Description

プローブprobe
 本発明の一態様は、プローブに関する。 One embodiment of the present invention relates to a probe.
 従来、一対の保持板と、この一対の保持板に形成された細穴の開口端から摺動可能に突出された一対のプランジャと、この一対のプランジャを摺動自在に支持する導電性のコイルばねとを備えたプローブが知られている。また、このプローブのなかには、一対の保持板の間にゲル状又はゴム状の絶縁性弾性体が充填されたものがある。 Conventionally, a pair of holding plates, a pair of plungers slidably projecting from open ends of narrow holes formed in the pair of holding plates, and a conductive coil that slidably supports the pair of plungers Probes with springs are known. Some of these probes are filled with a gel-like or rubber-like insulating elastic body between a pair of holding plates.
実用新案登録第3059385号公報Utility Model Registration No. 3059385 特開昭63-257239号公報JP-A 63-257239
 しかしながら、このプローブのように、コイルばねが、一対のプランジャを摺動自在に支持する弾性機能と、一対のプランジャを導通する導電機能とを有する場合には、次の問題がある。 However, when the coil spring has an elastic function for slidably supporting the pair of plungers and a conductive function for conducting the pair of plungers like this probe, there are the following problems.
 すなわち、このようなコイルばねにおいては、弾性機能を確保するために、線長を長くする必要がある。ところが、コイルばねの線長を長くすると、一対のプランジャ間の導通経路が長くなる。このため、一対のプランジャ間の電気抵抗が高くなり、プローブの電気特性が劣る虞がある。 That is, in such a coil spring, it is necessary to increase the wire length in order to ensure an elastic function. However, when the wire length of the coil spring is increased, the conduction path between the pair of plungers is increased. For this reason, the electrical resistance between the pair of plungers is increased, and the electrical characteristics of the probe may be deteriorated.
 一つの側面では、本発明は、プローブの電気特性を向上させることを目的とする。 In one aspect, the present invention aims to improve the electrical characteristics of a probe.
 上記目的を達成するために、本願の開示する技術では、一対の接触ピンの間に、弾性体が介在されている。この弾性体は、一対の接触ピンを互いに離間する方向に押圧する。また、一対の接触ピンは、弾性体とは別に設けられた導電体によって導通されている。 In order to achieve the above object, in the technology disclosed in the present application, an elastic body is interposed between a pair of contact pins. The elastic body presses the pair of contact pins in a direction away from each other. The pair of contact pins are electrically connected by a conductor provided separately from the elastic body.
 本願の開示する技術によれば、プローブの電気特性を向上させることができる。 According to the technique disclosed in the present application, the electrical characteristics of the probe can be improved.
検査用プローブの一部断面を含む斜視図である。It is a perspective view containing the partial cross section of the probe for a test | inspection. 図1に示される検査用プローブの断面図である。FIG. 2 is a cross-sectional view of the inspection probe shown in FIG. 1. 図1に示される導電機構の組立方法を説明する図である。It is a figure explaining the assembly method of the electrically-conductive mechanism shown by FIG. 図1に示される弾性体の第一変形例を示す図である。It is a figure which shows the 1st modification of the elastic body shown by FIG. 図1に示される導電体の変形例を示す図である。It is a figure which shows the modification of the conductor shown by FIG. 図1に示される弾性体の第二変形例を示す図である。It is a figure which shows the 2nd modification of the elastic body shown by FIG. 図1に示される弾性体の第三変形例を示す図である。It is a figure which shows the 3rd modification of the elastic body shown by FIG. 図1に示される弾性体の第四変形例を示す図である。It is a figure which shows the 4th modification of the elastic body shown by FIG. 図1に示される弾性体の第五変形例を示す図である。It is a figure which shows the 5th modification of the elastic body shown by FIG. 図1に示される弾性体の第六変形例を示す図である。It is a figure which shows the 6th modification of the elastic body shown by FIG.
 以下、本願の開示する技術の一実施形態を図面に基づいて詳細に説明する。 Hereinafter, an embodiment of the technology disclosed in the present application will be described in detail with reference to the drawings.
 図1に示されるように、本願の開示する技術の一実施形態に係る検査用プローブ10は、プローブの一例であり、一対の保持板12,14を有している。この一対の保持板12,14は、それぞれ平板状に形成されており、互いに板厚方向に重ね合わされている。 As shown in FIG. 1, an inspection probe 10 according to an embodiment of the technology disclosed in the present application is an example of a probe and includes a pair of holding plates 12 and 14. The pair of holding plates 12 and 14 are each formed in a flat plate shape and are overlapped with each other in the plate thickness direction.
 この一対の保持板12,14には、複数の保持穴16,18がそれぞれ形成されている。複数の保持穴16の各々は、複数の保持穴18とそれぞれ連通されている。この複数の保持穴16は、複数の保持穴18と共に、複数の保持空間20を形成している。この複数の保持空間20は、一対の保持板12,14を平面視した場合の縦方向及び横方向にそれぞれ並んで形成されている。 A plurality of holding holes 16 and 18 are formed in the pair of holding plates 12 and 14, respectively. Each of the plurality of holding holes 16 communicates with the plurality of holding holes 18. The plurality of holding holes 16 together with the plurality of holding holes 18 form a plurality of holding spaces 20. The plurality of holding spaces 20 are formed side by side in the vertical direction and the horizontal direction when the pair of holding plates 12 and 14 are viewed in plan.
 この複数の保持空間20には、導電機構22がそれぞれ収容されている。この複数の導電機構22は、互いに同一の構成とされている。図2に示されるように、各導電機構22は、カプセル24、一対の接触ピン26,28、弾性体30、及び、導電体32を有している。 The conductive mechanisms 22 are accommodated in the plurality of holding spaces 20, respectively. The plurality of conductive mechanisms 22 have the same configuration. As shown in FIG. 2, each conductive mechanism 22 includes a capsule 24, a pair of contact pins 26 and 28, an elastic body 30, and a conductive body 32.
 カプセル24は、一対の保持板12,14の重ね合わせ方向(A方向)に分割された一対の容器34,36を有している。この一対の容器34,36は、それぞれカップ状に形成されている。一方の容器34の底部には、一対の保持板12,14の重ね合わせ方向に貫通する孔部38が形成されている。同様に、他方の容器36の底部には、一対の保持板12,14の重ね合わせ方向に貫通する孔部40が形成されている。 The capsule 24 has a pair of containers 34 and 36 divided in the overlapping direction (A direction) of the pair of holding plates 12 and 14. The pair of containers 34 and 36 are each formed in a cup shape. A hole 38 is formed in the bottom of one container 34 so as to penetrate in the overlapping direction of the pair of holding plates 12 and 14. Similarly, a hole 40 penetrating in the overlapping direction of the pair of holding plates 12 and 14 is formed at the bottom of the other container 36.
 また、一方の容器34における開口側の端部には、この容器34の周方向に沿って延びるフランジ42が形成されており、他方の容器36における開口側の端部には、この容器36の周方向に沿って延びるフランジ44が形成されている。そして、一方の容器34と他方の容器36とは、フランジ42,44が重ね合わされた状態で組み付けられている。 Further, a flange 42 extending along the circumferential direction of the container 34 is formed at the opening side end of one container 34, and the opening side end of the other container 36 is provided with the container 36. A flange 44 extending along the circumferential direction is formed. One container 34 and the other container 36 are assembled in a state where the flanges 42 and 44 are overlapped.
 また、上述の一方の保持板12には、保持穴16の内周面に沿って溝46が形成されており、この溝46には、フランジ42,44が係合されている。そして、このようにしてフランジ42,44が溝46に係合されることにより、カプセル24は、一対の保持板12,14に保持されている。 Further, a groove 46 is formed in the above-described one holding plate 12 along the inner peripheral surface of the holding hole 16, and flanges 42 and 44 are engaged with the groove 46. The flanges 42 and 44 are thus engaged with the grooves 46, whereby the capsule 24 is held by the pair of holding plates 12 and 14.
 一対の接触ピン26,28は、それぞれ導電性を有しており、一対の保持板12,14の重ね合わせ方向を軸方向として配置されている。また、この一対の接触ピン26,28は、互いに軸方向に離間されている。 The pair of contact pins 26 and 28 are electrically conductive, and are arranged with the overlapping direction of the pair of holding plates 12 and 14 as the axial direction. The pair of contact pins 26 and 28 are spaced apart from each other in the axial direction.
 一方の接触ピン26は、先端が先細り状に形成されたピン本体部48と、このピン本体部48の基部に形成された抜止部50とを有している。ピン本体部48は、孔部38の内周面と隙間を有した状態でこの孔部38に挿入されており、これにより、一方の接触ピン26は、軸方向に移動可能とされている。 One contact pin 26 has a pin main body portion 48 whose tip is formed in a tapered shape, and a retaining portion 50 formed at the base of the pin main body portion 48. The pin main body 48 is inserted into the hole 38 in a state having a gap with the inner peripheral surface of the hole 38, whereby one of the contact pins 26 is movable in the axial direction.
 また、抜止部50は、ピン本体部48から遠ざかるに従って拡径されており、これにより、一方の接触ピン26のカプセル24からの抜けが抑制されている。また、この抜止部50には、ピン本体部48と反対側に開口する凹部52が形成されている。 Further, the diameter of the retaining portion 50 is increased as the distance from the pin main body portion 48 is increased, thereby preventing the one contact pin 26 from coming off from the capsule 24. The retaining portion 50 is formed with a recess 52 that opens to the opposite side of the pin body portion 48.
 同様に、他方の接触ピン28は、先端が先細り状に形成されたピン本体部58と、このピン本体部58の基部に形成された抜止部60とを有している。ピン本体部58は、孔部40の内周面と隙間を有した状態でこの孔部40に挿入されており、これにより、他方の接触ピン28は、軸方向に移動可能とされている。 Similarly, the other contact pin 28 has a pin body portion 58 having a tapered tip, and a retaining portion 60 formed at the base of the pin body portion 58. The pin main body 58 is inserted into the hole 40 with a gap from the inner peripheral surface of the hole 40, whereby the other contact pin 28 is movable in the axial direction.
 また、抜止部60は、ピン本体部58から遠ざかるに従って拡径されており、これにより、他方の接触ピン28のカプセル24からの抜けが抑制されている。また、この抜止部60には、ピン本体部58と反対側に開口する凹部62が形成されている。 Moreover, the diameter of the retaining portion 60 is increased as the distance from the pin main body portion 58 increases, thereby preventing the other contact pin 28 from coming off from the capsule 24. The retaining portion 60 is formed with a recess 62 that opens to the opposite side of the pin body portion 58.
 弾性体30は、一対の接触ピン26,28の軸方向(A方向)に沿って延びる中実の円柱状に形成されている。この弾性体30は、非導電体とされており、例えば、絶縁性弾性材料により構成されている。この弾性体30は、絶縁性弾性材料の一例として、シリコンゴム製とされている。このシリコンゴムの硬度(ショアA硬度)は、例えば、ショアA30°程度に設定されていると好適である。 The elastic body 30 is formed in a solid cylindrical shape extending along the axial direction (A direction) of the pair of contact pins 26 and 28. The elastic body 30 is a non-conductor and is made of, for example, an insulating elastic material. The elastic body 30 is made of silicon rubber as an example of an insulating elastic material. It is preferable that the hardness (Shore A hardness) of this silicon rubber is set to about Shore A 30 °, for example.
 この弾性体30の軸方向一方側の端部30Aは、凹部52に圧入され、この弾性体30の軸方向他方側の端部30Bは、凹部62に圧入されている。そして、弾性体30は、このようにして一対の接触ピン26,28の間に介在されており、一対の接触ピン26,28を互いに離間する方向に押圧する。なお、この弾性体30は、自由状態で一対の接触ピン26,28の間に介在されていても良く、また、圧縮状態で一対の接触ピン26,28の間に介在されていても良い。 The end 30A on one axial side of the elastic body 30 is press-fitted into the recess 52, and the end 30B on the other axial side of the elastic body 30 is press-fitted into the recess 62. The elastic body 30 is thus interposed between the pair of contact pins 26 and 28 and presses the pair of contact pins 26 and 28 in a direction away from each other. The elastic body 30 may be interposed between the pair of contact pins 26 and 28 in a free state, or may be interposed between the pair of contact pins 26 and 28 in a compressed state.
 導電体32は、一対の接触ピン26,28と一体に形成されており、一対の接触ピン26,28を導通している。この導電体32は、帯状に形成されており、弾性体30に螺旋状に巻き付けられている。この導電体32は、螺旋状に形成されることで弾性を有しているが、この導電体32の弾性率は、弾性体30の弾性率よりも低く設定されている。この導電体32は、例えば、一対の接触ピン26,28が切削加工により形成される際に形成された切片とされていても良い。 The conductor 32 is formed integrally with the pair of contact pins 26, 28, and conducts the pair of contact pins 26, 28. The conductor 32 is formed in a band shape and is wound around the elastic body 30 in a spiral shape. The conductor 32 has elasticity by being formed in a spiral shape, but the elastic modulus of the conductor 32 is set lower than that of the elastic body 30. For example, the conductor 32 may be a slice formed when the pair of contact pins 26 and 28 are formed by cutting.
 なお、以上の導電機構22は、例えば、次の要領で組み立てられる。すなわち、図3の上図に示されるように、はじめに、一対の接触ピン26,28と一体に形成された導電体32が直線状に延ばされた状態とされる。そして、図3の下図に示されるように、一方の接触ピン26の凹部52に弾性体30の軸方向一方側の端部30Aが圧入される。 The above conductive mechanism 22 is assembled, for example, in the following manner. That is, as shown in the upper diagram of FIG. 3, first, the conductor 32 formed integrally with the pair of contact pins 26 and 28 is brought into a linearly extended state. Then, as shown in the lower diagram of FIG. 3, the end 30 </ b> A on the one axial side of the elastic body 30 is press-fitted into the recess 52 of one contact pin 26.
 また、他方の接触ピン28が弾性体30の周囲を旋回されて、導電体32が弾性体30に螺旋状に巻き付けられ、他方の接触ピン28の凹部62に弾性体30の軸方向他方側の端部30Bが圧入される。そして、図2に示されるように、孔部38,40にピン本体部48,58がそれぞれ挿入されると共に、一対の容器34,36が組み付けられることにより、導電機構22が組み立てられる。 Further, the other contact pin 28 is swung around the elastic body 30, and the conductor 32 is spirally wound around the elastic body 30, and the other contact pin 28 has a recess 62 on the other side in the axial direction of the elastic body 30. The end 30B is press-fitted. As shown in FIG. 2, the pin main body portions 48 and 58 are inserted into the hole portions 38 and 40, respectively, and the pair of containers 34 and 36 are assembled to assemble the conductive mechanism 22.
 また、このようにして組み立てられた複数の導電機構22を備えた検査用プローブ10は、次のようにして使用される。すなわち、図2に示されるように、検査用プローブ10における一方の保持板12側に、例えばCPU(Central Processing Unit)等の検査対象物70が配置される。一方、検査用プローブ10における他方の保持板14側には、例えばシステムボード等の試験基板72が配置される。 Further, the inspection probe 10 including the plurality of conductive mechanisms 22 assembled in this way is used as follows. That is, as shown in FIG. 2, an inspection object 70 such as a CPU (Central Processing Unit) is disposed on one holding plate 12 side of the inspection probe 10. On the other hand, a test board 72 such as a system board is disposed on the other holding plate 14 side of the inspection probe 10.
 そして、複数の接触ピン26が検査対象物70の導電パッド74にそれぞれ押圧されると共に、複数の接触ピン28が試験基板72の導電パッド76にそれぞれ押圧される。一対の接触ピン26,28が導電パッド74,76にそれぞれ押圧されると、一対の接触ピン26,28が互いに接近する側に移動され、弾性体30が弾性圧縮される。従って、一対の接触ピン26,28には、弾性体30の弾性力が作用し、これにより、一対の接触ピン26,28が導電パッド74,76にそれぞれ安定して接触した状態とされる。 Then, the plurality of contact pins 26 are pressed against the conductive pads 74 of the test object 70, and the plurality of contact pins 28 are pressed against the conductive pads 76 of the test substrate 72, respectively. When the pair of contact pins 26 and 28 are pressed against the conductive pads 74 and 76, respectively, the pair of contact pins 26 and 28 are moved toward each other, and the elastic body 30 is elastically compressed. Therefore, the elastic force of the elastic body 30 acts on the pair of contact pins 26 and 28, thereby bringing the pair of contact pins 26 and 28 into stable contact with the conductive pads 74 and 76, respectively.
 なお、導電体32は、上述のように、弾性体30に螺旋状に巻き付けられているので、一対の接触ピン26,28が互いに接近する側及び離間する側に移動されても、この移動に応じて弾性変形する。従って、これにより、導電体32による一対の接触ピン26,28の導通状態が維持される。 Since the conductor 32 is spirally wound around the elastic body 30 as described above, even if the pair of contact pins 26 and 28 are moved toward and away from each other, this movement is not affected. It will be elastically deformed accordingly. Accordingly, the conductive state of the pair of contact pins 26 and 28 by the conductor 32 is thereby maintained.
 そして、一対の接触ピン26,28が導電パッド74,76にそれぞれ接触した状態で、検査用プローブ10を介して検査対象物70と試験基板72との間で信号の送受が行われ、これにより、検査対象物70が検査される。また、この信号の送受状況から検査対象物70が正常に動作するか否かが判定される。 Then, in a state where the pair of contact pins 26 and 28 are in contact with the conductive pads 74 and 76, signals are transmitted and received between the inspection object 70 and the test substrate 72 via the inspection probe 10, thereby. The inspection object 70 is inspected. Further, whether or not the inspection object 70 operates normally is determined from the transmission / reception status of this signal.
 次に、上述の検査用プローブ10の作用及び効果について説明する。 Next, the operation and effect of the above-described inspection probe 10 will be described.
 以上詳述したように、上述の検査用プローブ10では、一対の接触ピン26,28の間に、弾性体30が介在されている。この弾性体30は、一対の接触ピン26,28を互いに離間する方向に押圧する。また、一対の接触ピン26,28は、弾性体30とは別に設けられた導電体32によって導通されている。 As described in detail above, in the above-described inspection probe 10, the elastic body 30 is interposed between the pair of contact pins 26 and 28. The elastic body 30 presses the pair of contact pins 26 and 28 in a direction away from each other. The pair of contact pins 26 and 28 are electrically connected by a conductor 32 provided separately from the elastic body 30.
 このように、この検査用プローブ10では、一対の接触ピン26,28を押圧する弾性機能を有する弾性体30と、一対の接触ピン26,28を導通する導電機能を有する導電体32とが分離されている。従って、導電体32は、弾性機能を備える必要がないので、この導電体32の全長(線長)、つまり、一対の接触ピン26,28の間の導通経路を短くすることができる。これにより、一対の接触ピン26,28の間の電気抵抗を低くすることができるので、検査用プローブ10の電気特性を向上させることができる。 As described above, in the inspection probe 10, the elastic body 30 having an elastic function for pressing the pair of contact pins 26 and 28 and the conductor 32 having a conductive function for conducting the pair of contact pins 26 and 28 are separated. Has been. Therefore, since the conductor 32 does not need to have an elastic function, the entire length (line length) of the conductor 32, that is, the conduction path between the pair of contact pins 26 and 28 can be shortened. Thereby, since the electrical resistance between a pair of contact pins 26 and 28 can be made low, the electrical characteristic of the probe 10 for a test | inspection can be improved.
 しかも、導電体32は、一対の接触ピン26,28と一体に形成されている。従って、一対の接触ピン26,28と導電体32との間に接触不良が生じることを抑制することができる。また、この導電体32は、従来の線状に形成された圧縮コイルよりも断面積の大きな帯状に形成されている。従って、導電体32の電気抵抗、つまり、一対の接触ピン26,28の間の電気抵抗をより低くすることができる。以上より、検査用プローブ10の電気特性をより向上させることができる。 Moreover, the conductor 32 is formed integrally with the pair of contact pins 26 and 28. Therefore, it is possible to suppress a contact failure between the pair of contact pins 26 and 28 and the conductor 32. The conductor 32 is formed in a strip shape having a larger cross-sectional area than a conventional compression coil formed in a linear shape. Therefore, the electrical resistance of the conductor 32, that is, the electrical resistance between the pair of contact pins 26 and 28 can be further reduced. As described above, the electrical characteristics of the inspection probe 10 can be further improved.
 また、上述のように、弾性機能を有する弾性体30と、導電機能を有する導電体32とが分離されているので、仮に弾性体30が劣化した場合でも、導電機能に影響が及ぶことを回避することができる。 Further, as described above, since the elastic body 30 having an elastic function and the conductor 32 having a conductive function are separated, even if the elastic body 30 is deteriorated, it is avoided that the conductive function is affected. can do.
 また、導電体32が断面積の大きい帯状に形成されているので、この導電体32に大電流を流すことが可能となる。これにより、この検査用プローブ10を大電流用の試験に使用することが可能となる。 Further, since the conductor 32 is formed in a strip shape having a large cross-sectional area, a large current can be passed through the conductor 32. Thereby, this inspection probe 10 can be used for a test for a large current.
 また、弾性体30と導電体32とが分離されることで、導電体32については導通機能を重視した仕様とすることができる。これにより、この検査用プローブ10を精密な電気特性を測定する試験に使用することが可能となる。 In addition, the elastic body 30 and the conductor 32 are separated, so that the conductor 32 can be made a specification with an emphasis on the conduction function. This makes it possible to use the inspection probe 10 for a test for measuring precise electrical characteristics.
 また、導電体32は、円柱状に形成された弾性体30に螺旋状に巻き付けられている。このような構造は、図3に示される如く、一方の接触ピン26の凹部52に弾性体30の軸方向一方側の端部30Aが圧入された状態で、他方の接触ピン28が弾性体30の周囲を旋回されることで、簡単に製造される。従って、製造工程を簡素化することができると共に、低コスト化することができる。 Further, the conductor 32 is spirally wound around the elastic body 30 formed in a cylindrical shape. As shown in FIG. 3, such a structure is such that one end 30 </ b> A of the elastic body 30 in the axial direction is press-fitted into the recess 52 of one contact pin 26, and the other contact pin 28 is elastic body 30. It can be easily manufactured by swiveling around. Therefore, the manufacturing process can be simplified and the cost can be reduced.
 また、弾性体30は、シリコンゴム製とされると共に、一対の接触ピン26,28の軸方向に沿って延びる円柱状に形成されている。従って、この弾性体30の形状を変えずにシリコンゴムの硬度を変更するだけで、弾性体30の弾性率、ひいては、一対の接触ピン26,28の接触圧を変更することができる。 Further, the elastic body 30 is made of silicon rubber, and is formed in a columnar shape extending along the axial direction of the pair of contact pins 26 and 28. Therefore, the elastic modulus of the elastic body 30 and thus the contact pressure of the pair of contact pins 26 and 28 can be changed only by changing the hardness of the silicon rubber without changing the shape of the elastic body 30.
 ところで、仮に、上述の弾性体30の代わりに、一対の接触ピン26,28の間に圧縮バネを介在させた場合に、複数の接触ピン26(複数の接触ピン28)のピッチを狭くしようとすると、圧縮バネの弾性を確保するためには、圧縮バネを軸方向に長くする必要がある。このため、一対の接触ピン26,28の間に圧縮バネを介在させた場合には、一対の接触ピン26,28の軸方向に検査用プローブを小型化することが困難となる。 By the way, if a compression spring is interposed between the pair of contact pins 26, 28 instead of the elastic body 30 described above, the pitch of the plurality of contact pins 26 (the plurality of contact pins 28) is to be reduced. Then, in order to ensure the elasticity of the compression spring, it is necessary to lengthen the compression spring in the axial direction. For this reason, when a compression spring is interposed between the pair of contact pins 26 and 28, it is difficult to downsize the inspection probe in the axial direction of the pair of contact pins 26 and 28.
 この点、上述の検査用プローブ10では、一対の接触ピン26,28の軸方向に沿って延びる円柱状に形成された弾性体30が用いられているので、弾性体30を軸方向に長くしなくても、弾性体30の弾性力を確保することができる。これにより、複数の接触ピン26(複数の接触ピン28)のピッチを狭くすることができると共に、一対の接触ピン26,28の軸方向に検査用プローブ10を小型化することができる。 In this regard, in the above-described inspection probe 10, the elastic body 30 formed in a cylindrical shape extending along the axial direction of the pair of contact pins 26 and 28 is used. Therefore, the elastic body 30 is elongated in the axial direction. Even if not, the elastic force of the elastic body 30 can be ensured. Thereby, the pitch of the plurality of contact pins 26 (the plurality of contact pins 28) can be reduced, and the inspection probe 10 can be downsized in the axial direction of the pair of contact pins 26 and 28.
 また、弾性体30は、シリコンゴム製とされているので、弾性機能が低下することを抑制することができる共に、弾性体30が洗浄などによる溶液の影響を受けることも抑制することができる。また、シリコンゴムは、耐熱性が高いので、弾性体30にシリコンゴムを用いることにより、検査用プローブ10を高温環境下で使用することが可能となる。 Further, since the elastic body 30 is made of silicon rubber, it is possible to suppress the elastic function from being lowered and to suppress the elastic body 30 from being affected by the solution due to washing or the like. In addition, since silicon rubber has high heat resistance, the use of the silicon rubber for the elastic body 30 makes it possible to use the inspection probe 10 in a high temperature environment.
 次に、上述の検査用プローブ10の変形例について説明する。 Next, a modified example of the above-described inspection probe 10 will be described.
 上述の検査用プローブ10において、導電体32は、一対の接触ピン26,28と一体に形成されていたが、一対の接触ピン26,28の一方と一体に形成されていても良い。なお、一対の接触ピン26,28のうち導電体32と別体とされた接触ピンは、例えば、半田付け、ろう付け、溶接、及び、溶着のうちいずれかにより導電体32と接続されると好適である。 In the inspection probe 10 described above, the conductor 32 is formed integrally with the pair of contact pins 26, 28, but may be formed integrally with one of the pair of contact pins 26, 28. In addition, when the contact pin separated from the conductor 32 among the pair of contact pins 26 and 28 is connected to the conductor 32 by any one of soldering, brazing, welding, and welding, for example. Is preferred.
 また、弾性体30は、円柱状に形成されていたが、角柱状に形成されていても良く、また、その他の断面形状を有する柱状に形成されていても良い。 Further, although the elastic body 30 is formed in a columnar shape, it may be formed in a prismatic shape, or may be formed in a columnar shape having another cross-sectional shape.
 また、上述の検査用プローブ10に備えられた複数の弾性体30は、互いに同一の硬度とされていたが、例えば、隣り合う同士で硬度が異なっていても良い。このように構成されていると、複数の接触ピン26,28については、隣り合う同士で接触圧及びストロークを異ならせることができる。 Further, although the plurality of elastic bodies 30 provided in the above-described inspection probe 10 have the same hardness, the hardness may be different between adjacent ones. If comprised in this way, about the some contact pins 26 and 28, contact pressure and a stroke can be varied by adjoining.
 また、図4に示されるように、弾性体30は、一対の接触ピン26,28の軸方向に沿って貫通する貫通孔80を有していても良い。このように構成されていると、弾性体30が中実に形成された場合に比して、材料を減らすことができると共に、弾性体30を柔らかくすることができる(弾性を低くすることができる)。 Further, as shown in FIG. 4, the elastic body 30 may have a through hole 80 penetrating along the axial direction of the pair of contact pins 26 and 28. When configured in this manner, the material can be reduced and the elastic body 30 can be softened (elasticity can be lowered) as compared with the case where the elastic body 30 is formed solid. .
 また、図5に示されるように、導電体32は、螺旋状ではなく、一対の接触ピン26,28の軸方向に延びていても良い。なお、導電体32が一対の接触ピン26,28の軸方向に延びる場合には、一対の接触ピン26,28の接離に追従できるように、この導電体32に余長部82が形成されることが望ましい。 Further, as shown in FIG. 5, the conductor 32 is not spiral, but may extend in the axial direction of the pair of contact pins 26 and 28. When the conductor 32 extends in the axial direction of the pair of contact pins 26, 28, an extra length portion 82 is formed on the conductor 32 so as to follow the contact / separation of the pair of contact pins 26, 28. It is desirable.
 また、このように、導電体32が一対の接触ピン26,28の軸方向に延びる場合には、この導電体32が、上述の図4に示される貫通孔80に挿通されていても良い。このように構成されていると、導電体32が弾性体30の外部に設けられた部材と干渉や接触することを回避することができ、この導電体32に傷が付くことを抑制することができる。 In addition, when the conductor 32 extends in the axial direction of the pair of contact pins 26 and 28 as described above, the conductor 32 may be inserted into the through hole 80 shown in FIG. 4 described above. If comprised in this way, it can avoid that the conductor 32 interferes and contacts with the member provided in the exterior of the elastic body 30, and it can suppress that this conductor 32 is damaged. it can.
 また、図6,図7に示されるように、弾性体30は、軸方向中間部30Cに向かうに従って徐々に拡径されていても良い。図6に示される変形例では、弾性体30が一対の接触ピン26,28の軸方向を長軸方向とする楕円球状に形成されている。一方、図7に示される変形例では、弾性体30が一対の円錐台を組み合わせた形状とされている。 Further, as shown in FIGS. 6 and 7, the elastic body 30 may be gradually expanded in diameter toward the axial intermediate portion 30C. In the modification shown in FIG. 6, the elastic body 30 is formed in an oval shape with the axial direction of the pair of contact pins 26 and 28 as the major axis direction. On the other hand, in the modification shown in FIG. 7, the elastic body 30 has a shape in which a pair of truncated cones are combined.
 このように、弾性体30が軸方向中間部30Cに向かうに従って徐々に拡径されていると、図2に示される如く弾性体30が軸方向に一定の断面を有する円柱状に形成された場合に比して、弾性力を増加させることができる。 In this way, when the elastic body 30 is gradually expanded in diameter toward the axial intermediate portion 30C, the elastic body 30 is formed in a cylindrical shape having a constant cross section in the axial direction as shown in FIG. As compared with the above, the elastic force can be increased.
 また、弾性体30の軸方向中間部30Cが軸方向両側の端部30A,30Bよりも大径とされているので、弾性体30が圧縮された場合には、弾性体30が軸方向中間部30Cを起点として潰される。従って、弾性体30が軸方向中間部30C以外の部分を起点として折れ曲がることを抑制することができる。 Further, since the axial direction intermediate portion 30C of the elastic body 30 has a larger diameter than the end portions 30A and 30B on both sides in the axial direction, when the elastic body 30 is compressed, the elastic body 30 becomes the axial direction intermediate portion. It is crushed starting from 30C. Therefore, the elastic body 30 can be prevented from being bent starting from a portion other than the axial intermediate portion 30C.
 また、図6,図7に示されるように、凹部52,62は、弾性体30における軸方向両側の端部30A,30Bの形状に合わせた形状とされていても良い。この場合には、弾性体30の軸方向両側の端部30A,30Bが先端に向かうに従って縮径するテーパ状に形成されているので、この弾性体30の軸方向両側の端部30A,30Bを凹部52,62にそれぞれ円滑に挿入することができる。 Further, as shown in FIGS. 6 and 7, the recesses 52 and 62 may be shaped to match the shapes of the end portions 30 </ b> A and 30 </ b> B on both sides in the axial direction of the elastic body 30. In this case, since the end portions 30A and 30B on both sides in the axial direction of the elastic body 30 are formed in a tapered shape that decreases in diameter toward the tip, the end portions 30A and 30B on both sides in the axial direction of the elastic body 30 are Each of the recesses 52 and 62 can be smoothly inserted.
 また、図6に示されるように、凹部52,62は、楕円球状に形成された弾性体30における軸方向両側の端部30A,30Bの形状に合わせて浅く形成されていても良い。このように構成されていると、一対の接触ピン26,28の加工作業を少なくすることができる。 Further, as shown in FIG. 6, the recesses 52 and 62 may be formed shallowly in accordance with the shapes of the end portions 30A and 30B on both sides in the axial direction of the elastic body 30 formed in an elliptical spherical shape. If constituted in this way, processing work of a pair of contact pins 26 and 28 can be decreased.
 また、図6,図7に示される変形例において、弾性体30における外径の最も大きい部分である軸方向中間部30Cは、弾性体30の軸方向中央部に設定されていた。しかしながら、図8に示されるように、この軸方向中間部30Cは、弾性体30の軸方向中央部から軸方向にずれた位置に設定されていても良い。 6 and 7, the axial intermediate portion 30 </ b> C, which is the portion having the largest outer diameter in the elastic body 30, is set at the axial central portion of the elastic body 30. However, as shown in FIG. 8, the axial intermediate portion 30 </ b> C may be set at a position shifted in the axial direction from the axial central portion of the elastic body 30.
 なお、本実施形態において、弾性体30の軸方向中央部とは、弾性体30の軸方向両側の端面からの距離が等しいちょうど真ん中の部分のことである。一方、弾性体30の軸方向中間部30Cは、弾性体30の軸方向中央部でも良く、また、軸方向中央部から軸方向に少しずれた部分であっても良い。 In the present embodiment, the central portion in the axial direction of the elastic body 30 is the middle portion where the distances from the end faces on both sides in the axial direction of the elastic body 30 are equal. On the other hand, the axial intermediate portion 30C of the elastic body 30 may be the axial central portion of the elastic body 30, or may be a portion slightly shifted in the axial direction from the axial central portion.
 このように構成されていると、一対の接触ピン26,28の夫々に作用する弾性力を互いに異ならせることができる。この図8に示される変形例では、一例として、軸方向中間部30Cが、弾性体30の軸方向中央部よりも他方の接触ピン28側にずれて設定されている。このため、他方の接触ピン28に作用する弾性力の方が、一方の接触ピン26に作用する弾性力よりも大きくなっている。 With this configuration, the elastic forces acting on each of the pair of contact pins 26 and 28 can be made different from each other. In the modification shown in FIG. 8, as an example, the axial intermediate portion 30 </ b> C is set so as to be shifted to the other contact pin 28 side from the axial central portion of the elastic body 30. For this reason, the elastic force acting on the other contact pin 28 is larger than the elastic force acting on the one contact pin 26.
 また、図6~図8に示される如く、弾性体30が、軸方向中間部30Cに向かうに従って徐々に拡径された上で、図4に示される如く弾性体30に貫通孔80が形成されても良い。また、この場合に、この貫通孔80に導電体32が挿通されても良い。 Further, as shown in FIGS. 6 to 8, the diameter of the elastic body 30 is gradually increased toward the intermediate portion 30C in the axial direction, and a through hole 80 is formed in the elastic body 30 as shown in FIG. May be. In this case, the conductor 32 may be inserted into the through hole 80.
 また、上記各例において、弾性体30は、シリコンゴム製とされていたが、その他のゴム製とされていても良い。 In each of the above examples, the elastic body 30 is made of silicon rubber, but may be made of other rubber.
 また、図9に示されるように、弾性体30は、軸方向に重なり合う複数のゴム部を有していても良い。つまり、この変形例において、弾性体30は、複数のゴム部の一例として、弾性体30の軸方向に離間する一対の第一ゴム部84,86と、この一対の第一ゴム部84,86の間に位置する第二ゴム部88とを有している。一対の第一ゴム部84,86は、弾性体30の軸方向両側に位置されている。第二ゴム部88は、一対の第一ゴム部84,86の各々よりも弾性体30の軸方向に長く形成されている。 Further, as shown in FIG. 9, the elastic body 30 may have a plurality of rubber portions overlapping in the axial direction. That is, in this modified example, the elastic body 30 includes a pair of first rubber portions 84 and 86 that are separated in the axial direction of the elastic body 30 and an example of the plurality of rubber portions, and the pair of first rubber portions 84 and 86. And a second rubber portion 88 located between the two. The pair of first rubber portions 84 and 86 are located on both axial sides of the elastic body 30. The second rubber portion 88 is formed longer in the axial direction of the elastic body 30 than each of the pair of first rubber portions 84 and 86.
 また、この第二ゴム部88は、一対の第一ゴム部84,86と異なる硬度(ショアA硬度)を有していても良い。このように、複数のゴム部が軸方向に隣り合う同士で異なる硬度を有していると、弾性体30が一材質で形成された場合の特性に捉われずに、必要な弾性を得ることができる。 The second rubber portion 88 may have a hardness (Shore A hardness) different from that of the pair of first rubber portions 84 and 86. In this way, when the plurality of rubber portions have different hardnesses in the axial direction, the necessary elasticity can be obtained without being caught by the characteristics when the elastic body 30 is formed of one material. Can do.
 また、この図9に示される変形例において、第二ゴム部88は、一対の第一ゴム部84,86の各々よりも高い硬度を有していても良い。例えば、一対の第一ゴム部84,86がショアA10°程度に設定され、第二ゴム部88がショアA30°程度に設定されると好適である。 In the modification shown in FIG. 9, the second rubber portion 88 may have a hardness higher than that of each of the pair of first rubber portions 84 and 86. For example, it is preferable that the pair of first rubber portions 84 and 86 is set to about Shore A 10 ° and the second rubber portion 88 is set to about Shore A 30 °.
 このように構成されていると、弾性体30が圧縮された場合でも、弾性体30が第二ゴム部88を起点として折れ曲がることを抑制することができる。 With this configuration, even when the elastic body 30 is compressed, the elastic body 30 can be prevented from being bent starting from the second rubber portion 88.
 また、この図9に示される変形例において、一対の第一ゴム部84,86と第二ゴム部88とでゴムの素材が異なっていても良い。このゴムの素材としては、例えば、シリコンゴムや、クロロブレンゴム等が用いられると好適である。 Further, in the modification shown in FIG. 9, the pair of first rubber portions 84 and 86 and the second rubber portion 88 may have different rubber materials. For example, silicon rubber, chlorobrene rubber, or the like is preferably used as the rubber material.
 また、図9に示される如く、弾性体30が、軸方向に重なり合う複数のゴム部を有した上で、図6~図8に示される如く、軸方向中間部30Cに向かうに従って徐々に拡径されても良い。また、この場合に、図4に示される如く弾性体30に貫通孔80が形成されても良く、また、この貫通孔80に導電体32が挿通されても良い。 Further, as shown in FIG. 9, the elastic body 30 has a plurality of rubber portions overlapping in the axial direction, and gradually increases in diameter toward the axial intermediate portion 30C as shown in FIGS. May be. Further, in this case, as shown in FIG. 4, a through hole 80 may be formed in the elastic body 30, and the conductor 32 may be inserted into the through hole 80.
 また、図9に示される一対の第一ゴム部84,86と第二ゴム部88とは、一体成形により形成されていても良く、また、別体に形成された上で、例えば接着等により一体化されても良い。 Further, the pair of first rubber portions 84 and 86 and the second rubber portion 88 shown in FIG. 9 may be formed by integral molding, or after being formed separately, for example, by bonding or the like. It may be integrated.
 また、この図9に示される変形例において、第二ゴム部88は、一対の第一ゴム部84,86の各々よりも低い硬度を有していても良い。 In the modification shown in FIG. 9, the second rubber portion 88 may have a hardness lower than that of each of the pair of first rubber portions 84 and 86.
 また、弾性体30は、図10に示されるように、一対の接触ピン26,28の軸方向を中心軸とする螺旋状に形成されていても良い。この螺旋状に形成された弾性体30の両端部には、凸部90,92がそれぞれ形成されており、この凸部90,92は、凹部52,62にそれぞれ圧入される。 Further, as shown in FIG. 10, the elastic body 30 may be formed in a spiral shape with the axial direction of the pair of contact pins 26 and 28 as the central axis. Convex portions 90 and 92 are formed at both ends of the spirally formed elastic body 30, and the convex portions 90 and 92 are press-fitted into the concave portions 52 and 62, respectively.
 また、このように弾性体30が螺旋状に形成される場合に、導電体32(図2参照)は、弾性体30と絡まないように設けられるのであれば、螺旋状とされていても良い。また、導電体32は、図5に示される如く一対の接触ピン26,28の軸方向に延びて形成された上で、図9に示される如く螺旋状に形成された弾性体30の内側に挿通されても良い。 In addition, when the elastic body 30 is formed in a spiral shape as described above, the conductor 32 (see FIG. 2) may be formed in a spiral shape as long as it is provided so as not to be entangled with the elastic body 30. . Further, the conductor 32 is formed so as to extend in the axial direction of the pair of contact pins 26 and 28 as shown in FIG. 5, and then inside the elastic body 30 formed in a spiral shape as shown in FIG. It may be inserted.
 以上、本願の開示する技術の一実施形態について説明したが、本願の開示する技術は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。 As mentioned above, although one embodiment of the technique disclosed in the present application has been described, the technique disclosed in the present application is not limited to the above, and various modifications may be made without departing from the spirit of the present invention. Of course, it is possible.
 以下、符合の説明を記す。
10 検査用プローブ
26,28 接触ピン
30 弾性体
30C 軸方向中間部(弾性体における外径の最も大きい部分の一例)
32 導電体
80 貫通孔
84,86 第一ゴム部(複数のゴム部の一部の一例)
88 第二ゴム部(複数のゴム部の一部の一例)
In the following, the description of the sign will be described.
DESCRIPTION OF SYMBOLS 10 Probe 26,28 Contact pin 30 Elastic body 30C Axis direction intermediate part (an example of a part with the largest outer diameter in an elastic body)
32 Conductor 80 Through- hole 84, 86 First rubber part (an example of a part of a plurality of rubber parts)
88 Second rubber part (an example of part of multiple rubber parts)

Claims (11)

  1.  導電性を有すると共に、互いに軸方向に離間され、且つ、軸方向に移動可能とされた一対の接触ピンと、
     前記一対の接触ピンの間に介在され、前記一対の接触ピンを互いに離間する方向に押圧する弾性体と、
     前記一対の接触ピンを導通する導電体と、
     を備えたプローブ。
    A pair of contact pins that have electrical conductivity, are axially spaced from each other, and are movable in the axial direction;
    An elastic body interposed between the pair of contact pins and pressing the pair of contact pins away from each other;
    A conductor for conducting the pair of contact pins;
    Probe with.
  2.  前記導電体は、前記一対の接触ピンの少なくとも一方と一体に形成されている、
     請求項1に記載のプローブ。
    The conductor is formed integrally with at least one of the pair of contact pins.
    The probe according to claim 1.
  3.  前記弾性体は、前記一対の接触ピンの軸方向に沿って延びる柱状に形成されている、
     請求項2に記載のプローブ。
    The elastic body is formed in a column shape extending along the axial direction of the pair of contact pins.
    The probe according to claim 2.
  4.  前記導電体は、前記弾性体に螺旋状に巻き付けられている、
     請求項3に記載のプローブ。
    The conductor is spirally wound around the elastic body,
    The probe according to claim 3.
  5.  前記弾性体は、絶縁性弾性材料により構成され、前記一対の接触ピンの軸方向に沿って延びる柱状に形成されている、
     請求項1又は請求項2に記載のプローブ。
    The elastic body is made of an insulating elastic material and is formed in a column shape extending along the axial direction of the pair of contact pins.
    The probe according to claim 1 or claim 2.
  6.  前記弾性体は、前記一対の接触ピンの軸方向に沿って貫通する貫通孔を有している、
     請求項5に記載のプローブ。
    The elastic body has a through-hole penetrating along the axial direction of the pair of contact pins.
    The probe according to claim 5.
  7.  前記導電体は、前記貫通孔に挿通されている、
     請求項6に記載のプローブ。
    The conductor is inserted through the through hole,
    The probe according to claim 6.
  8.  前記弾性体は、軸方向中間部に向かうに従って徐々に拡径されている、
     請求項5~請求項7のいずれか一項に記載のプローブ。
    The elastic body is gradually expanded in diameter toward the axially intermediate portion,
    The probe according to any one of claims 5 to 7.
  9.  前記弾性体における外径の最も大きい部分は、前記弾性体の軸方向中央部から軸方向にずれた位置に設定されている、
     請求項8に記載のプローブ。
    The largest outer diameter portion of the elastic body is set at a position shifted in the axial direction from the axial central portion of the elastic body.
    The probe according to claim 8.
  10.  前記弾性体は、軸方向に重なり合う複数のゴム部を有し、
     前記複数のゴム部は、軸方向に隣り合う同士で異なる硬度を有している、
     請求項5~請求項9のいずれか一項に記載のプローブ。
    The elastic body has a plurality of rubber portions overlapping in the axial direction,
    The plurality of rubber portions have different hardnesses in adjacent axial directions,
    The probe according to any one of claims 5 to 9.
  11.  前記複数のゴム部は、
     前記弾性体の軸方向に離間する一対の第一ゴム部と、
     前記一対の第一ゴム部の間に位置し、前記一対の第一ゴム部の各々よりも高い硬度を有する第二ゴム部と、
     を有している、
     請求項10に記載のプローブ。
    The plurality of rubber portions are
    A pair of first rubber portions spaced apart in the axial direction of the elastic body;
    A second rubber part located between the pair of first rubber parts and having a higher hardness than each of the pair of first rubber parts;
    have,
    The probe according to claim 10.
PCT/JP2011/071372 2011-09-20 2011-09-20 Probe WO2013042198A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071372 WO2013042198A1 (en) 2011-09-20 2011-09-20 Probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071372 WO2013042198A1 (en) 2011-09-20 2011-09-20 Probe

Publications (1)

Publication Number Publication Date
WO2013042198A1 true WO2013042198A1 (en) 2013-03-28

Family

ID=47914011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071372 WO2013042198A1 (en) 2011-09-20 2011-09-20 Probe

Country Status (1)

Country Link
WO (1) WO2013042198A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211755A (en) * 1998-01-30 1999-08-06 Fujitsu Ltd Testing apparatus for electronic device
JP2001050977A (en) * 1999-08-16 2001-02-23 Machine Active Contact:Kk Spring probe for continuity inspection
JP2008046100A (en) * 2006-08-10 2008-02-28 Leeno Industrial Inc Probe device for inspection and its manufacturing method
JP3159662U (en) * 2010-03-11 2010-05-27 蔡永基Tsai,Yung−Chi Non-destructive inspection module
JP2011039048A (en) * 2009-08-07 2011-02-24 Samsung Electronics Co Ltd Tester and semiconductor device test apparatus with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211755A (en) * 1998-01-30 1999-08-06 Fujitsu Ltd Testing apparatus for electronic device
JP2001050977A (en) * 1999-08-16 2001-02-23 Machine Active Contact:Kk Spring probe for continuity inspection
JP2008046100A (en) * 2006-08-10 2008-02-28 Leeno Industrial Inc Probe device for inspection and its manufacturing method
JP2011039048A (en) * 2009-08-07 2011-02-24 Samsung Electronics Co Ltd Tester and semiconductor device test apparatus with the same
JP3159662U (en) * 2010-03-11 2010-05-27 蔡永基Tsai,Yung−Chi Non-destructive inspection module

Similar Documents

Publication Publication Date Title
KR101593572B1 (en) Electrical connector with insulation member
JP5291585B2 (en) Contactor and electrical connection device
US9435827B2 (en) Probe-connection-type pogo pin and manufacturing method thereof
KR100854267B1 (en) Fabrication method of pogo pin and test socket using the same
KR101409821B1 (en) Compliant contact assembly and method of scrubbing a test site by a compliant contact member
JP5367234B2 (en) Contacts used in integrated circuit testing
KR102166677B1 (en) MEMS pogo pin and testing method using same
KR102002694B1 (en) Conductive contact and anisotropic conductive sheet with the same
US9535092B2 (en) Spring probe
CN102738626A (en) Contact probe and semiconductor device socket including contact probe
CN104769783A (en) Contact element for transmitting high-frequency signals between two circuit boards
KR101620541B1 (en) Connector for electrical connection
KR101841107B1 (en) Bifurcated probe apparatus
KR101973609B1 (en) Rubber socket for semiconductor test including conductive part mixed regular conductive particles and irregular conductive particles
KR102052918B1 (en) Probe member for pogo pin, the method of manufacturing the same and pogo pin comprising the same
KR102232789B1 (en) Multi-layer MEMS spring pin
JP4390983B2 (en) Contact probe and manufacturing method thereof
KR20190001735A (en) Probe member for pogo pin, the method of manufacturing the same and pogo pin comprising the same
JP7442680B2 (en) High performance external cylindrical spring pin
KR101865375B1 (en) Twist-type PION pin of test socket and and assembling method of the same
CN111239592B (en) Chip test seat
KR101138964B1 (en) Test socket
JP2017142138A (en) Probe pin and anisotropic conductive member
WO2013042198A1 (en) Probe
KR101841108B1 (en) Bifurcated probe apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP