WO2013038889A1 - Solar cell interconnector material, solar cell interconnector, and solar cell with interconnector - Google Patents

Solar cell interconnector material, solar cell interconnector, and solar cell with interconnector Download PDF

Info

Publication number
WO2013038889A1
WO2013038889A1 PCT/JP2012/071411 JP2012071411W WO2013038889A1 WO 2013038889 A1 WO2013038889 A1 WO 2013038889A1 JP 2012071411 W JP2012071411 W JP 2012071411W WO 2013038889 A1 WO2013038889 A1 WO 2013038889A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
interconnector
layer
plating layer
plating
Prior art date
Application number
PCT/JP2012/071411
Other languages
French (fr)
Japanese (ja)
Inventor
稔也 津田
友森 龍夫
興 吉岡
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to KR1020147009313A priority Critical patent/KR101968788B1/en
Priority to CN201280045102.4A priority patent/CN103814157B/en
Publication of WO2013038889A1 publication Critical patent/WO2013038889A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • C25D7/126Semiconductors first coated with a seed layer or a conductive layer for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell interconnector material, a solar cell interconnector, and a solar cell with an interconnector.
  • the solar cell interconnector is a wiring material that plays a role of collecting electrical energy converted mainly by the solar cells by connecting the solar cells made of crystalline Si.
  • a solder-coated rectangular copper wire obtained by coating a rectangular copper wire with solder hot dipping has been used as an interconnector material for such a solar cell.
  • solder-coated flat copper wire is used as an interconnector material for solar cells
  • Patent Document 1 proposes an interconnector material for a solar cell in which a flat aluminum substrate is subjected to copper plating and coated with solder hot dipping.
  • a flat aluminum substrate is subjected to copper plating, since copper is expensive, a cheaper interconnector material that does not use copper is required.
  • the present invention has been made in view of such a situation, and its purpose is substantially free of copper and is relatively inexpensive, and the occurrence of defects such as cracking and peeling of the film due to the thermal history of soldering.
  • An object of the present invention is to provide a solar cell interconnector material and a solar cell interconnector that are effectively prevented.
  • Another object of the present invention is to provide a solar cell with an interconnector obtained by using such an interconnector for solar cells.
  • the present inventors have found that the above problems can be solved by a solar cell interconnector material having a Ni plating layer having a thickness of 0.2 ⁇ m or more and an Sn plating layer in order from the substrate side on the Al substrate surface.
  • the present invention has been completed.
  • an interconnector material for a solar cell which has a Ni plating layer and a Sn plating layer having a thickness of 0.2 ⁇ m or more in order from the substrate side on the surface of the Al substrate. Is done.
  • the present invention it is obtained by forming a solder layer on the surface of the Sn plating layer of the interconnector material for solar cell, and the Sn—Ni alloy layer is sequentially formed on the surface of the Al substrate from the substrate side.
  • an interconnector for a solar cell characterized by having a solder layer.
  • the Sn—Ni alloy layer is formed by causing diffusion in the Ni plating layer and the Sn plating layer by heat at the time of forming the solder layer.
  • the ratio of the Ni strength of the Sn—Ni alloy layer when analyzed by high-frequency glow discharge optical emission spectrometry to the Ni strength of the Ni plating layer before thermal diffusion is “Ni strength of Sn—Ni alloy layer”. / Ni strength of Ni plating layer before thermal diffusion "is preferably 0.15 or more.
  • the Sn—Ni alloy layer is continuously formed so as to cover the surface of the Al base.
  • a solar battery cell with an interconnector wherein any one of the above solar battery interconnectors is connected to a solar battery cell.
  • the solar battery interconnector and the solar battery cell are connected by soldering.
  • the present invention it is not necessary to substantially use copper, so that it is relatively inexpensive, and the occurrence of defects such as cracking and peeling of the film due to the thermal history of soldering is effectively prevented.
  • the interconnector material for solar cells, the interconnector for solar cells, and the solar cell with an interconnector obtained using such an interconnector for solar cells can be provided.
  • FIG. 1 is a diagram showing a configuration of a solar cell interconnector material 100 according to the present embodiment.
  • FIG. 2 is a diagram showing a configuration of the solar cell interconnector 200 according to the present embodiment.
  • FIG. 3 is a diagram showing a configuration of a solar cell interconnector 200a in which the thickness of the Ni plating layer 20 before thermal diffusion is less than 0.2 ⁇ m.
  • 4A is a cross-sectional photograph of the solar cell interconnector sample of Example 2
  • FIG. 4B is a cross-sectional photograph of the solar cell interconnector sample of Comparative Example 1.
  • FIG. 1 is a diagram showing a configuration of a solar cell interconnector material 100 according to the present embodiment.
  • FIG. 2 is a diagram showing a configuration of the solar cell interconnector 200 according to the present embodiment.
  • FIG. 3 is a diagram showing a configuration of a solar cell interconnector 200a in which the thickness of the Ni plating layer 20 before thermal diffusion is less than 0.2 ⁇ m.
  • FIG. 1 is a diagram showing a configuration of a solar cell interconnector material 100 according to the present embodiment. As shown in FIG. 1, the solar cell interconnector material 100 according to this embodiment is formed by forming a Ni plating layer 20 and a Sn plating layer 30 on both surfaces of an Al base 10 in this order.
  • the aluminum plate constituting the Al base 10 is not particularly limited, and a pure aluminum plate or any JIS standard 1000 series, 2000 series, 3000 series, 5000 series, 6000 series, or 7000 series aluminum alloy sheet is used. Among them, a 1000 series O material is particularly preferable.
  • the thickness of the Al base 10 is not particularly limited, and may be a thickness that can secure sufficient conductivity as a solar cell interconnector, but is preferably 0.1 to 0.5 mm.
  • the Ni plating layer 20 is formed by performing nickel plating on the Al base material 10.
  • the method for forming the Ni plating layer 20 on the Al base 10 is not particularly limited, but it is difficult to directly provide the Ni plating layer on the Al surface, so the Zn layer is formed in advance by displacement plating. After that, a Ni plating layer is preferably formed thereon.
  • a method for forming a Zn layer as the underlayer will be described.
  • a pure aluminum plate or an aluminum alloy plate constituting the Al base 10 is subjected to a degreasing process, and then subjected to acidic etching and smut removal, followed by Zn substitution plating.
  • the substitution plating of Zn is performed through the steps of nitric acid immersion treatment, first Zn substitution treatment, zinc nitrate stripping treatment, and second Zn substitution treatment.
  • the water washing process is implemented after the process of each process.
  • the Zn layer formed by the first Zn substitution treatment and the second Zn substitution treatment is slightly dissolved when Ni plating is performed.
  • the Zn layer is desirably formed so that the coating amount in the state after Ni plating is preferably in the range of 5 to 500 mg / m 2 , more preferably in the range of 30 to 300 mg / m 2 .
  • the coating amount of the Zn layer can be adjusted by appropriately selecting the concentration of Zn ions in the treatment liquid and the time for immersion in the treatment liquid in the second Zn substitution treatment.
  • the Ni plating layer 20 is formed by performing Ni plating on the Zn layer as the base layer.
  • the Ni plating layer 20 may be formed using any plating method of electroplating or electroless plating.
  • the thickness of the Ni plating layer 20 is 0.2 ⁇ m or more, preferably 0.2 to 3.0 ⁇ m, more preferably 0.5 to 2.0 ⁇ m.
  • the Sn plating layer 30 is formed by heat generated when the solder layer is formed. And a Ni—Sn alloy layer by diffusion.
  • the Sn plating layer 30 is formed on the Ni plating layer 20 by performing Sn plating.
  • the Sn plating layer 30 may be formed using any plating method of electroplating or electroless plating.
  • the thickness of the Sn plating layer 30 is preferably 0.5 to 3.0 ⁇ m. When the thickness of the Sn plating layer 30 is too thin, solder wettability at the time of forming the solder layer on the Sn plating layer 30 is lowered, and it becomes difficult to form a good solder layer. On the other hand, if the Sn plating layer 30 is too thick, the effect of improving the solder wettability by increasing the thickness is saturated, which is disadvantageous in terms of cost.
  • FIG. 2 is a diagram showing a configuration of the solar cell interconnector 200 according to the present embodiment.
  • the solar cell interconnector 200 according to the present embodiment uses the solar cell interconnector material 100 shown in FIG. 1 and forms the solder layer 50 on the Sn plating layer 30 of the solar cell interconnector material 100. As shown in FIG. 2, an Sn—Ni alloy layer 40 and a solder layer 50 are formed in this order on both surfaces of the Al base 10.
  • the solder layer 50 can be formed by performing molten solder plating on the Sn plating layer 30 constituting the interconnector material 100 for a solar cell shown in FIG.
  • the Ni plating layer constituting the solar cell interconnector material 100 shown in FIG. 1 is formed by forming the solder layer 50 by hot-dip solder plating and by heat when the solder layer 50 is formed.
  • the Sn—Ni alloy layer 40 is formed below the solder layer 50 as shown in FIG.
  • the bath temperature of the molten solder plating when forming the solder layer 50 is preferably 140 to 300 ° C., more preferably 180 to 250 ° C. Further, the immersion time in performing the molten solder plating is preferably 3 to 15 seconds. If the bath temperature of the molten solder plating is too low, or if the immersion time when performing the molten solder plating is too short, the formation of the solder layer 50 becomes insufficient, while the bath temperature of the molten solder plating is too high. In the case where the immersion time in performing the molten solder plating is too long, the Sn component contained in the solder layer 50 diffuses to the Al base material 10, and solid solution hardening occurs between Al and Sn. May occur, and the Sn—Ni alloy layer 40 may be cracked or peeled off.
  • the thickness of the solder layer 50 is not particularly limited, but is preferably 10 to 30 ⁇ m, more preferably 15 to 30 ⁇ m.
  • the Sn—Ni alloy layer 40 is diffused between the Ni plating layer 20 and the Sn plating layer 30 constituting the solar cell interconnector material 100 shown in FIG. 1 when the solder layer 50 is formed.
  • the thickness of the Ni plating layer 20 before thermal diffusion that constitutes the Sn—Ni alloy layer 40 is 0.2 ⁇ m or more, preferably 0.2 to 3.0 ⁇ m, more preferably 0.5. Since the thickness is set to ⁇ 2.0 ⁇ m, the Sn—Ni alloy layer 40 after thermal diffusion can be continuously formed so as to cover the surface of the Al base 10. That is, the Sn—Ni alloy layer 40 after thermal diffusion can be formed in such a manner that there is no break.
  • An interrupted portion 41 is generated in the layer 40a.
  • the interrupted portion 41 is generated, the adhesiveness between the Al base 10 and the Sn—Ni alloy layer 40a is deteriorated starting from the interrupted portion 41, and the Sn-Ni alloy layer 40a is not cracked.
  • a corrosive substance enters through a problem that peeling is likely to occur or a crack generated during processing or the like, a potential difference due to the corrosive substance is generated in the interrupted portion 41, and the corrosion proceeds. This will cause a malfunction.
  • the thickness of the Ni plating layer 20 before thermal diffusion that constitutes the Sn—Ni alloy layer 40 is set to 0.2 ⁇ m or more, so that Sn— The Ni alloy layer 40 can be continuously formed so as to cover the surface of the Al base 10, thereby effectively solving the above problem. If the thickness of the Ni plating layer 20 before thermal diffusion is too thick, the effect of increasing the thickness is saturated, which is disadvantageous in terms of cost.
  • the Ni intensity of the Sn—Ni alloy layer 40 when analyzed by the high-frequency glow discharge optical emission spectrometry is “Sn—Ni relative to the Ni intensity of the Ni plating layer 20 before thermal diffusion.
  • the ratio of “Ni strength of alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” is preferably 0.15 or more, more preferably 0.18 or more, and further preferably 0.34 or more. .
  • the upper limit of the ratio is 1 or less.
  • the ratio of “Ni strength of Sn—Ni alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” is too low, that is, the Ni content in the Sn—Ni alloy layer 40 is small and Sn content is low. If the ratio is too large, the Sn component in the Sn—Ni alloy layer 40 diffuses into the Al base 10 and solid solution hardening occurs between Al and Sn, and the Sn—Ni alloy layer 40 Cracking or peeling may occur.
  • Ni strength of Sn—Ni alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion is determined using, for example, a high-frequency glow discharge optical emission spectrometer. 40 and the Ni plating layer 20 before thermal diffusion were measured while sputtering with Ar plasma, and in the Sn—Ni alloy layer 40 and the Ni plating layer 20 before thermal diffusion, each of the portions with the highest Ni strength was measured. The data were respectively obtained as the Ni strength of the Sn—Ni alloy layer 40 and the Ni strength of the Ni plating layer 20 before thermal diffusion, and these were used to calculate “Ni strength of the Sn—Ni alloy layer 40 / before thermal diffusion”. The “Ni strength of the Ni plating layer 20” can be calculated.
  • the method of setting the ratio of “Ni strength of Sn—Ni alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” in the above range is not particularly limited.
  • the thickness of the Ni plating layer 20 before thermal diffusion is set to 0.2 ⁇ m or more, and the bath temperature of the molten solder plating when forming the solder layer 50 and the immersion time when performing the molten solder plating are within the above-described ranges. And a method of controlling them.
  • the solar cell interconnector 200 is replaced with an Al-alloy 10 instead of a structure in which the Sn—Ni alloy layer 40 is directly formed.
  • a configuration in which the Sn—Ni alloy layer 40 is formed on the substrate 10 via the Ni plating layer 20 may be employed.
  • the bath temperature of the molten solder plating when the solder layer 50 is formed, and the immersion time when performing the molten solder plating the Ni plating layer 20 is entered.
  • the Sn component does not completely diffuse. Therefore, in such a case, the Ni plating layer 20 remains between the Al base 10 and the Sn—Ni alloy layer 40.
  • the solar cell interconnector 200 of the present embodiment is formed by diffusion between the Ni plating layer having a thickness of 0.2 ⁇ m or more and the Sn plating layer 30 due to heat when the solder layer 50 is formed. Since the Sn—Ni alloy layer 40 is provided, it is possible to effectively prevent the occurrence of defects such as cracking and peeling of the Sn—Ni alloy layer 40 due to the thermal history of soldering. Moreover, the solar cell interconnector 200 of the present embodiment does not substantially contain copper, and is therefore relatively inexpensive and advantageous in terms of cost.
  • the solar cell with an interconnector obtained by connecting the solar cell interconnector 200 and the solar cell by soldering using the solar cell interconnector 200 of the present embodiment is good in quality. Moreover, it is also excellent in cost.
  • the Sn—Ni alloy layer 40 and the solder layer 50 are formed on both surfaces of a long Al plate (coil) according to the above-described method. Those formed in this order can be obtained by slitting them to the required width. In the solar cell interconnector 200 thus obtained, the Sn—Ni alloy layer 40 and the solder layer 50 are formed on the upper and lower surfaces, while the surface forming the thickness direction (slit surface) The Sn—Ni alloy layer 40 and the solder layer 50 are not formed.
  • the solar cell interconnector 200 of the present embodiment can be obtained, for example, by forming the Sn—Ni alloy layer 40 and the solder layer 50 on the entire surface of the flat Al wire according to the above-described method. it can.
  • the obtained solar cell interconnector 200 does not go through the slit process unlike the above-described method, and therefore, the interconnector described in Patent Document 1 (Japanese Patent Laid-Open No. 2006-49666) described above is used.
  • the Sn—Ni alloy layer 40 and the solder layer 50 are formed on both the upper and lower surfaces and the surface forming the thickness direction.
  • the size of the solar cell interconnector 200 according to this embodiment is not particularly limited, but the thickness is usually 0.1 to 0.7 mm, preferably 0.1 to 0.5 mm, and the width is Usually, it is 0.5 to 10 mm, preferably 1 to 6 mm, and the length may be appropriately set according to the arrangement of solar cells and the like.
  • Example 1 As a material for forming the Al base 10, an A1100-based O material was prepared (thickness 0.3 mm, width 40 mm, length 120 mm). Then, the Al base material is degreased with an alkali solution, then etched in sulfuric acid, then desmutted in nitric acid, sodium hydroxide: 150 g / L, Rochelle salt: 50 g / L, oxidized The first Zn substitution treatment was performed by dipping in a treatment solution containing zinc: 25 g / L and ferrous chloride 1.5 g / L.
  • the Al base material subjected to the first Zn substitution treatment is immersed in a 400 g / L nitric acid aqueous solution to remove the deposited Zn, and then in the same treatment liquid as the treatment liquid used in the first Zn substitution treatment.
  • a Zn layer was formed on the Al substrate with a coating amount of 100 mg / m 2 by performing the second Zn substitution treatment by dipping for 10 seconds.
  • Ni plating layer 20 having a thickness of 0.2 ⁇ m on the Zn layer.
  • Bath composition nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid 30 g / L pH: 3-5
  • the solar cell interconnector material 100 was obtained.
  • Bath composition stannous sulfate 30 g / L, sulfuric acid 70 ml / L, appropriate amount of brightener and antioxidant pH: 1 to 2
  • the obtained solar cell interconnector material 100 is immersed in a molten solder plating bath made of Sn—Pb solder whose bath temperature is adjusted to 200 ° C. for 3 seconds to form a solder layer 50 having a thickness of 20 ⁇ m.
  • the solar cell interconnector 200 shown in FIG. 2 was manufactured.
  • the solar cell interconnector 200 manufactured in this example is the one before slitting, and the size is 40 mm in width and 120 mm in length. By slitting together with the arrangement of solar cells, etc., It can be suitably used as a solar cell interconnector.
  • the ratio of “Ni strength of Sn—Ni alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” was measured by the following method. That is, first, using a high-frequency glow discharge emission spectroscopic analyzer (GDS-3860, manufactured by Rigaku Corporation), Sn-Ni alloy layer 40 and thermal diffusion under the conditions of high-frequency power: 40 W and photomultiplier voltage (Ni): 370 V. The previous Ni plating layer 20 was measured while sputtering with Ar plasma. Then, from the obtained measurement data, the peak value of each Ni intensity is obtained in the Sn—Ni alloy layer 40 and in the Ni plating layer 20 before thermal diffusion, and the respective Ni intensity of the Sn—Ni alloy layer 40 is obtained. As the strength and Ni strength of the Ni plating layer 20 before thermal diffusion, “Ni strength of the Sn—Ni alloy layer 40 / Ni strength of the Ni plating layer 20 before thermal diffusion” was calculated. The results are shown in Table 1.
  • the continuity of the Sn—Ni alloy layer 40 is determined by observing the cross section of the solar cell interconnector 200 with a field emission scanning electron microscope (FE-SEM) (JSM-6330F, manufactured by JEOL Ltd.). evaluated. As a result of observation with a field emission scanning electron microscope, a discontinuous portion as shown in FIG. 3, that is, a portion where the solder layer 50 is in direct contact with the surface of the Al base 10 (Al When the Ni content ratio is substantially zero on the surface of the base material 10), it is determined that the Sn—Ni alloy layer 40 has no continuity, and such a discontinuous portion is observed. If not, it was determined that the continuity of the Sn—Ni alloy layer 40 was “present”. The results are shown in Table 1.
  • Example 2 Except that the thickness of the Ni plating layer 20 was changed to 0.5 ⁇ m (Example 2), 1 ⁇ m (Example 3), and 1.5 ⁇ m (Example 4), respectively, The battery interconnector material 100 and the solar cell interconnector 200 were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 5 The interconnector material for solar cells was the same as in Example 1 except that the temperature of the molten solder plating tank when forming the solder layer 50 was changed from 200 ° C. to 250 ° C. and the solder layer 50 was formed with a thickness of 20 ⁇ m. 100 and solar cell interconnector 200 were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 6 In the same manner as in Example 5, except that the thickness of the Ni plating layer 20 was changed to 0.5 ⁇ m (Example 6), 1 ⁇ m (Example 7), and 1.5 ⁇ m (Example 8), respectively.
  • the battery interconnector material 100 and the solar cell interconnector 200 were obtained and evaluated in the same manner. The results are shown in Table 1.
  • FIG. 4 (A) shows a cross-sectional photograph of the solar cell interconnector sample of Example 2
  • FIG. 4 (B) shows a cross-sectional photograph of the solar battery interconnector sample of Comparative Example 1.
  • Example 2 there is no discontinuous portion in the Sn—Ni alloy layer 40, and the Sn—Ni alloy layer 40 is continuous so as to cover the surface of the Al base material 10. Can be confirmed.
  • Comparative Example 1 it can be confirmed that there is a discontinuity in the Sn—Ni alloy layer 40 and the Sn—Ni alloy layer 40 has no continuity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Provided is a solar cell interconnector material characterized by having, on an Al substrate surface, a 0.2μm or thicker Ni plating layer, and a Sn plating layer, in that order from the substrate side. By means of this invention, it is possible to provide a solar cell interconnector material and a solar cell interconnector which are comparatively cheap while containing essentially no copper, and which effectively prevent problems such as peeling and cracking of coatings due to the thermal history of soldering.

Description

太陽電池用インターコネクタ材料、太陽電池用インターコネクタ、およびインターコネクタ付き太陽電池セルInterconnector material for solar cell, interconnector for solar cell, and solar cell with interconnector
 本発明は、太陽電池用インターコネクタ材料、太陽電池用インターコネクタ、およびインターコネクタ付き太陽電池セルに関する。 The present invention relates to a solar cell interconnector material, a solar cell interconnector, and a solar cell with an interconnector.
 太陽電池用インターコネクタは、主として、結晶Siからなる太陽電池セル間を繋ぎ、太陽電池セルが変換した電気エネルギーを集電する役割を果たす配線材である。近年、このような太陽電池用のインターコネクタ材として、平角銅線を、はんだ溶融めっきで被覆してなる、はんだ被覆平角銅線が使用されている。 The solar cell interconnector is a wiring material that plays a role of collecting electrical energy converted mainly by the solar cells by connecting the solar cells made of crystalline Si. In recent years, a solder-coated rectangular copper wire obtained by coating a rectangular copper wire with solder hot dipping has been used as an interconnector material for such a solar cell.
 しかしながら、このようなはんだ被覆平角銅線を、太陽電池用のインターコネクタ材として使用した場合には、次のような問題がある。すなわち、はんだ被覆平角銅線と、太陽電池セルとをはんだ付けにより接合した際における熱履歴により、はんだに含まれるSnが、平角銅線を構成するCu内に拡散してしまい、Cu-Snの金属間化合物が生成してしまい、このようなCu-Snの金属間化合物は脆く、そのため、カーケンダルボイド(空孔)の生成やクラックの原因となり、品質的に劣るという問題がある。 However, when such a solder-coated flat copper wire is used as an interconnector material for solar cells, there are the following problems. That is, Sn contained in the solder diffuses into Cu constituting the rectangular copper wire due to the thermal history when the solder-coated rectangular copper wire and the solar battery cell are joined by soldering, and Cu—Sn An intermetallic compound is generated, and such an intermetallic compound of Cu—Sn is brittle. Therefore, there is a problem that the generation of a Kirkendall void (hole) or a crack is caused, resulting in poor quality.
 これに対し、たとえば、特許文献1では、平角アルミ基材に、銅めっきを施し、これをはんだ溶融めっきで被覆してなる太陽電池用のインターコネクタ材が提案されている。一方で、この特許文献1では、平角アルミ基材に、銅めっきを施すものであるが、銅は高価であるため、銅を使用しない、より安価なインターコネクタ材が求められている。 On the other hand, for example, Patent Document 1 proposes an interconnector material for a solar cell in which a flat aluminum substrate is subjected to copper plating and coated with solder hot dipping. On the other hand, in this patent document 1, although a flat aluminum substrate is subjected to copper plating, since copper is expensive, a cheaper interconnector material that does not use copper is required.
特開2006-49666号公報JP 2006-49666 A
 本発明は、このような実状に鑑みてなされ、その目的は、銅を実質的に含有せず比較的安価であり、かつ、はんだ付けの熱履歴による、皮膜の割れや剥離などの不具合の発生が有効に防止された太陽電池用インターコネクタ材料、および太陽電池用インターコネクタを提供することにある。また、本発明は、このような太陽電池用インターコネクタを用いて得られるインターコネクタ付き太陽電池セルを提供することも目的とする。 The present invention has been made in view of such a situation, and its purpose is substantially free of copper and is relatively inexpensive, and the occurrence of defects such as cracking and peeling of the film due to the thermal history of soldering. An object of the present invention is to provide a solar cell interconnector material and a solar cell interconnector that are effectively prevented. Another object of the present invention is to provide a solar cell with an interconnector obtained by using such an interconnector for solar cells.
 本発明者等は、Al基材表面に、基材側から順に、0.2μm以上の厚みのNiめっき層、およびSnめっき層を有する太陽電池用インターコネクタ材料により、上記課題を解決できることを見出し、本発明を完成させるに至った。 The present inventors have found that the above problems can be solved by a solar cell interconnector material having a Ni plating layer having a thickness of 0.2 μm or more and an Sn plating layer in order from the substrate side on the Al substrate surface. The present invention has been completed.
 すなわち、本発明によれば、Al基材表面に、基材側から順に、0.2μm以上の厚みのNiめっき層、およびSnめっき層を有することを特徴とする太陽電池用インターコネクタ材料が提供される。 That is, according to the present invention, there is provided an interconnector material for a solar cell, which has a Ni plating layer and a Sn plating layer having a thickness of 0.2 μm or more in order from the substrate side on the surface of the Al substrate. Is done.
 また、本発明によれば、上記の太陽電池用インターコネクタ材料のSnめっき層の表面にはんだ層を形成することにより得られ、Al基材表面に、基材側から順に、Sn-Ni合金層、およびはんだ層を有することを特徴とする太陽電池用インターコネクタが提供される。
 本発明の太陽電池用インターコネクタにおいて、前記Sn-Ni合金層は、前記Niめっき層および前記Snめっき層に、前記はんだ層を形成する際における熱により拡散を起こさせることにより形成されたものであり、高周波グロー放電発光分光分析法により分析した際の前記Sn-Ni合金層のNi強度と、熱拡散前の前記Niめっき層のNi強度との比が、「Sn-Ni合金層のNi強度/熱拡散前のNiめっき層のNi強度」で、0.15以上であることが好ましい。
 本発明の太陽電池用インターコネクタにおいて、前記Sn-Ni合金層が、前記Al基材表面を覆うように、連続的に形成されていることが好ましい。
In addition, according to the present invention, it is obtained by forming a solder layer on the surface of the Sn plating layer of the interconnector material for solar cell, and the Sn—Ni alloy layer is sequentially formed on the surface of the Al substrate from the substrate side. And an interconnector for a solar cell, characterized by having a solder layer.
In the solar cell interconnector of the present invention, the Sn—Ni alloy layer is formed by causing diffusion in the Ni plating layer and the Sn plating layer by heat at the time of forming the solder layer. Yes, the ratio of the Ni strength of the Sn—Ni alloy layer when analyzed by high-frequency glow discharge optical emission spectrometry to the Ni strength of the Ni plating layer before thermal diffusion is “Ni strength of Sn—Ni alloy layer”. / Ni strength of Ni plating layer before thermal diffusion "is preferably 0.15 or more.
In the interconnector for a solar cell of the present invention, it is preferable that the Sn—Ni alloy layer is continuously formed so as to cover the surface of the Al base.
 さらに、本発明によれば、上記いずれかの太陽電池用インターコネクタを太陽電池セルに接続してなることを特徴とするインターコネクタ付き太陽電池セルが提供される。
 本発明のインターコネクタ付き太陽電池セルにおいて、前記太陽電池用インターコネクタと前記太陽電池セルとが、はんだ付けに接続されていることが好ましい。
Furthermore, according to the present invention, there is provided a solar battery cell with an interconnector, wherein any one of the above solar battery interconnectors is connected to a solar battery cell.
In the solar battery cell with an interconnector of the present invention, it is preferable that the solar battery interconnector and the solar battery cell are connected by soldering.
 本発明によれば、銅を実質的に使用する必要が無く、そのため、比較的安価であり、しかも、はんだ付けの熱履歴による、皮膜の割れや剥離などの不具合の発生が有効に防止された太陽電池用インターコネクタ材料、および太陽電池用インターコネクタ、ならびに、このような太陽電池用インターコネクタを用いて得られるインターコネクタ付き太陽電池セルを提供することができる。 According to the present invention, it is not necessary to substantially use copper, so that it is relatively inexpensive, and the occurrence of defects such as cracking and peeling of the film due to the thermal history of soldering is effectively prevented. The interconnector material for solar cells, the interconnector for solar cells, and the solar cell with an interconnector obtained using such an interconnector for solar cells can be provided.
図1は、本実施形態に係る太陽電池用インターコネクタ材料100の構成を示す図である。FIG. 1 is a diagram showing a configuration of a solar cell interconnector material 100 according to the present embodiment. 図2は、本実施形態に係る太陽電池用インターコネクタ200の構成を示す図である。FIG. 2 is a diagram showing a configuration of the solar cell interconnector 200 according to the present embodiment. 図3は、熱拡散前のNiめっき層20の厚みを0.2μm未満とした太陽電池用インターコネクタ200aの構成を示す図である。FIG. 3 is a diagram showing a configuration of a solar cell interconnector 200a in which the thickness of the Ni plating layer 20 before thermal diffusion is less than 0.2 μm. 図4(A)は、実施例2の太陽電池用インターコネクタ試料の断面写真、図4(B)は、比較例1の太陽電池用インターコネクタ試料の断面写真である。4A is a cross-sectional photograph of the solar cell interconnector sample of Example 2, and FIG. 4B is a cross-sectional photograph of the solar cell interconnector sample of Comparative Example 1. FIG.
 以下、図面に基づいて、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<太陽電池用インターコネクタ材料>
 図1は、本実施形態に係る太陽電池用インターコネクタ材料100の構成を示す図である。図1に示すように、本実施形態に係る太陽電池用インターコネクタ材料100は、Al基材10の両面に、Niめっき層20、およびSnめっき層30を、この順に形成されてなる。
<Interconnector materials for solar cells>
FIG. 1 is a diagram showing a configuration of a solar cell interconnector material 100 according to the present embodiment. As shown in FIG. 1, the solar cell interconnector material 100 according to this embodiment is formed by forming a Ni plating layer 20 and a Sn plating layer 30 on both surfaces of an Al base 10 in this order.
 Al基材10を構成するアルミニウム板としては、特に限定されず、純アルミニウム板や、JIS規格の1000系、2000系、3000系、5000系、6000系、7000系のいずれのアルミニウム合金板も用いることができるが、なかでも、1000系のO材が特に好ましい。Al基材10の厚みは、特に限定されず、太陽電池用インターコネクタとして十分な導電性が確保できるような厚みとすればよいが、好ましくは0.1~0.5mmである。 The aluminum plate constituting the Al base 10 is not particularly limited, and a pure aluminum plate or any JIS standard 1000 series, 2000 series, 3000 series, 5000 series, 6000 series, or 7000 series aluminum alloy sheet is used. Among them, a 1000 series O material is particularly preferable. The thickness of the Al base 10 is not particularly limited, and may be a thickness that can secure sufficient conductivity as a solar cell interconnector, but is preferably 0.1 to 0.5 mm.
 Niめっき層20は、Al基材10上に、ニッケルめっきを施すことにより形成される。Al基材10上に、Niめっき層20を形成する方法としては、特に限定されないが、Al表面上に、Niめっき層を直接設けることは困難であるため、あらかじめ、Zn層を置換めっきによって形成した後、その上にNiめっき層を形成するのが好ましい。以下、下地層としてZn層を形成する方法について、説明する。 The Ni plating layer 20 is formed by performing nickel plating on the Al base material 10. The method for forming the Ni plating layer 20 on the Al base 10 is not particularly limited, but it is difficult to directly provide the Ni plating layer on the Al surface, so the Zn layer is formed in advance by displacement plating. After that, a Ni plating layer is preferably formed thereon. Hereinafter, a method for forming a Zn layer as the underlayer will be described.
 まず、Al基材10を構成する純アルミニウム板またはアルミニウム合金板について、脱脂処理を行ない、次いで、酸性エッチングおよびスマット除去を行った後、Znの置換めっきを行なう。Znの置換めっきは、硝酸浸漬処理、第一Zn置換処理、硝酸亜鉛剥離処理、第二Zn置換処理の各工程を経ることにより行なわれる。この場合、各工程の処理後には水洗処理を実施する。なお、第一Zn置換処理および第二Zn置換処理により形成されるZn層は、Niめっきを施す際にわずかに溶解する。そのため、Zn層は、Niめっき後の状態における皮膜量が、好ましくは5~500mg/mの範囲、より好ましくは30~300mg/mの範囲となるように形成することが望ましい。なお、Zn層の皮膜量は、処理液中のZnイオンの濃度および第二Zn置換処理において処理液中に浸漬する時間を適宜選択することで調整することができる。 First, a pure aluminum plate or an aluminum alloy plate constituting the Al base 10 is subjected to a degreasing process, and then subjected to acidic etching and smut removal, followed by Zn substitution plating. The substitution plating of Zn is performed through the steps of nitric acid immersion treatment, first Zn substitution treatment, zinc nitrate stripping treatment, and second Zn substitution treatment. In this case, the water washing process is implemented after the process of each process. The Zn layer formed by the first Zn substitution treatment and the second Zn substitution treatment is slightly dissolved when Ni plating is performed. Therefore, the Zn layer is desirably formed so that the coating amount in the state after Ni plating is preferably in the range of 5 to 500 mg / m 2 , more preferably in the range of 30 to 300 mg / m 2 . The coating amount of the Zn layer can be adjusted by appropriately selecting the concentration of Zn ions in the treatment liquid and the time for immersion in the treatment liquid in the second Zn substitution treatment.
 次いで、下地層としてのZn層の上に、Niめっきを施すことで、Niめっき層20を形成する。Niめっき層20は、電気めっき法または無電解めっき法のいずれのめっき法を用いて形成してもよい。Niめっき層20の厚みは、0.2μm以上であり、好ましくは0.2~3.0μm、より好ましくは0.5~2.0μmである。Niめっき層20は、後述するように、太陽電池用インターコネクタ材料100を構成するSnめっき層30上に、はんだ層を形成した際に、はんだ層を形成する際における熱により、Snめっき層30と拡散することで、Ni-Sn合金層を形成することとなる層である。 Next, the Ni plating layer 20 is formed by performing Ni plating on the Zn layer as the base layer. The Ni plating layer 20 may be formed using any plating method of electroplating or electroless plating. The thickness of the Ni plating layer 20 is 0.2 μm or more, preferably 0.2 to 3.0 μm, more preferably 0.5 to 2.0 μm. As will be described later, when the Ni plating layer 20 is formed on the Sn plating layer 30 constituting the interconnector material 100 for a solar cell, the Sn plating layer 30 is formed by heat generated when the solder layer is formed. And a Ni—Sn alloy layer by diffusion.
 Snめっき層30は、Niめっき層20上に、Snめっきを行なうことにより形成される。Snめっき層30は、電気めっき法または無電解めっき法のいずれのめっき法を用いて形成してもよい。Snめっき層30の厚みは、好ましくは0.5~3.0μmである。Snめっき層30の厚みが薄すぎると、Snめっき層30上にはんだ層を形成する際における、はんだ濡れ性が低下し、良好なはんだ層を形成し難くなる。一方、Snめっき層30の厚みが厚すぎると、厚みを増加させることによる、はんだ濡れ性の向上効果が飽和してしまうため、コスト的に不利となる。 The Sn plating layer 30 is formed on the Ni plating layer 20 by performing Sn plating. The Sn plating layer 30 may be formed using any plating method of electroplating or electroless plating. The thickness of the Sn plating layer 30 is preferably 0.5 to 3.0 μm. When the thickness of the Sn plating layer 30 is too thin, solder wettability at the time of forming the solder layer on the Sn plating layer 30 is lowered, and it becomes difficult to form a good solder layer. On the other hand, if the Sn plating layer 30 is too thick, the effect of improving the solder wettability by increasing the thickness is saturated, which is disadvantageous in terms of cost.
<太陽電池用インターコネクタ>
 図2は、本実施形態に係る太陽電池用インターコネクタ200の構成を示す図である。本実施形態に係る太陽電池用インターコネクタ200は、図1に示す太陽電池用インターコネクタ材料100を用い、太陽電池用インターコネクタ材料100のSnめっき層30上に、はんだ層50を形成することにより製造され、図2に示すように、Al基材10の両面に、Sn-Ni合金層40、およびはんだ層50を、この順に形成されてなる。
<Solar cell interconnector>
FIG. 2 is a diagram showing a configuration of the solar cell interconnector 200 according to the present embodiment. The solar cell interconnector 200 according to the present embodiment uses the solar cell interconnector material 100 shown in FIG. 1 and forms the solder layer 50 on the Sn plating layer 30 of the solar cell interconnector material 100. As shown in FIG. 2, an Sn—Ni alloy layer 40 and a solder layer 50 are formed in this order on both surfaces of the Al base 10.
 はんだ層50は、図1に示す太陽電池用インターコネクタ材料100を構成するSnめっき層30上に、溶融はんだめっきを施すことにより形成することができる。なお、本実施形態においては、溶融はんだめっきにより、はんだ層50を形成することにより、はんだ層50を形成した際における熱により、図1に示す太陽電池用インターコネクタ材料100を構成するNiめっき層20とSnめっき層30との間で拡散が起こり、これにより、図2に示すように、はんだ層50の下に、Sn-Ni合金層40が形成されることとなる。 The solder layer 50 can be formed by performing molten solder plating on the Sn plating layer 30 constituting the interconnector material 100 for a solar cell shown in FIG. In the present embodiment, the Ni plating layer constituting the solar cell interconnector material 100 shown in FIG. 1 is formed by forming the solder layer 50 by hot-dip solder plating and by heat when the solder layer 50 is formed. As a result, the Sn—Ni alloy layer 40 is formed below the solder layer 50 as shown in FIG.
 なお、はんだ層50を形成する際における、溶融はんだめっきの浴温は、好ましくは140~300℃であり、より好ましくは180~250℃である。また、溶融はんだめっきを行なう際にける浸漬時間は、好ましくは3~15秒である。溶融はんだめっきの浴温が低すぎる場合や、溶融はんだめっきを行なう際にける浸漬時間が短すぎる場合には、はんだ層50の形成が不十分となり、一方、溶融はんだめっきの浴温が高すぎる場合や、溶融はんだめっきを行なう際にける浸漬時間が長すぎる場合には、はんだ層50に含まれるSn成分が、Al基材10まで拡散してしまい、AlとSnとの間で固溶硬化が起こってしまい、Sn-Ni合金層40の割れや、剥離が発生してしまう場合がある。 The bath temperature of the molten solder plating when forming the solder layer 50 is preferably 140 to 300 ° C., more preferably 180 to 250 ° C. Further, the immersion time in performing the molten solder plating is preferably 3 to 15 seconds. If the bath temperature of the molten solder plating is too low, or if the immersion time when performing the molten solder plating is too short, the formation of the solder layer 50 becomes insufficient, while the bath temperature of the molten solder plating is too high. In the case where the immersion time in performing the molten solder plating is too long, the Sn component contained in the solder layer 50 diffuses to the Al base material 10, and solid solution hardening occurs between Al and Sn. May occur, and the Sn—Ni alloy layer 40 may be cracked or peeled off.
 はんだ層50の厚みは、特に限定されないが、好ましくは10~30μm、より好ましくは15~30μmである。 The thickness of the solder layer 50 is not particularly limited, but is preferably 10 to 30 μm, more preferably 15 to 30 μm.
 Sn-Ni合金層40は、上述したように、はんだ層50を形成する際に、図1に示す太陽電池用インターコネクタ材料100を構成するNiめっき層20とSnめっき層30との間で拡散が起こることにより形成される合金層である。本実施形態においては、Sn-Ni合金層40を構成することとなる熱拡散前のNiめっき層20の厚みを0.2μm以上、好ましくは0.2~3.0μm、より好ましくは0.5~2.0μmとしているため、熱拡散後のSn-Ni合金層40を、Al基材10の表面を覆うように、連続的に形成することができる。すなわち、熱拡散後のSn-Ni合金層40を途切れ部分の無いような態様で形成することができる。 As described above, the Sn—Ni alloy layer 40 is diffused between the Ni plating layer 20 and the Sn plating layer 30 constituting the solar cell interconnector material 100 shown in FIG. 1 when the solder layer 50 is formed. Is an alloy layer formed by the occurrence of In the present embodiment, the thickness of the Ni plating layer 20 before thermal diffusion that constitutes the Sn—Ni alloy layer 40 is 0.2 μm or more, preferably 0.2 to 3.0 μm, more preferably 0.5. Since the thickness is set to ˜2.0 μm, the Sn—Ni alloy layer 40 after thermal diffusion can be continuously formed so as to cover the surface of the Al base 10. That is, the Sn—Ni alloy layer 40 after thermal diffusion can be formed in such a manner that there is no break.
 一方で、熱拡散前のNiめっき層20の厚みを0.2μm未満とした場合には、図3に示すように、はんだ層50を形成した際に形成される熱拡散後のSn-Ni合金層40aには、途切れ部分41が発生してしまう。そして、途切れ部分41が発生した場合には、この途切れ部分41を起点として、Al基材10とSn-Ni合金層40aとの密着性が低下してしまい、Sn-Ni合金層40aの割れや剥離が生じやすくなるという不具合や、加工時等に発生したクラックを介して、腐食物が進入した場合に、この途切れ部分41において腐食物に起因する電位差が生じてしまい、腐食が進行してしまうという不具合が生じてしまうこととなる。 On the other hand, when the thickness of the Ni plating layer 20 before thermal diffusion is less than 0.2 μm, the Sn—Ni alloy after thermal diffusion formed when the solder layer 50 is formed as shown in FIG. An interrupted portion 41 is generated in the layer 40a. When the interrupted portion 41 is generated, the adhesiveness between the Al base 10 and the Sn—Ni alloy layer 40a is deteriorated starting from the interrupted portion 41, and the Sn-Ni alloy layer 40a is not cracked. When a corrosive substance enters through a problem that peeling is likely to occur or a crack generated during processing or the like, a potential difference due to the corrosive substance is generated in the interrupted portion 41, and the corrosion proceeds. This will cause a malfunction.
 これに対して、本実施形態によれば、Sn-Ni合金層40を構成することとなる熱拡散前のNiめっき層20の厚みを0.2μm以上とすることにより、熱拡散後のSn-Ni合金層40を、Al基材10の表面を覆うように、連続的に形成することができ、これにより、上記問題を有効に解決できるものである。なお、熱拡散前のNiめっき層20の厚みが厚すぎると、厚みを増加させることによる効果が飽和してしまうため、コスト的に不利となる。 On the other hand, according to the present embodiment, the thickness of the Ni plating layer 20 before thermal diffusion that constitutes the Sn—Ni alloy layer 40 is set to 0.2 μm or more, so that Sn— The Ni alloy layer 40 can be continuously formed so as to cover the surface of the Al base 10, thereby effectively solving the above problem. If the thickness of the Ni plating layer 20 before thermal diffusion is too thick, the effect of increasing the thickness is saturated, which is disadvantageous in terms of cost.
 また、本実施形態においては、高周波グロー放電発光分光分析法により分析した際のSn-Ni合金層40のNi強度が、熱拡散前のNiめっき層20のNi強度に対して、「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」の比率で、0.15以上であることが好ましく、より好ましくは0.18以上、さらに好ましくは0.34以上である。なお、該比率の上限は、1以下である。 In the present embodiment, the Ni intensity of the Sn—Ni alloy layer 40 when analyzed by the high-frequency glow discharge optical emission spectrometry is “Sn—Ni relative to the Ni intensity of the Ni plating layer 20 before thermal diffusion. The ratio of “Ni strength of alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” is preferably 0.15 or more, more preferably 0.18 or more, and further preferably 0.34 or more. . The upper limit of the ratio is 1 or less.
 「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」の比率を上記範囲とすることにより、Sn-Ni合金層40中に含有されるSn成分のAl基材10中への拡散を防止することができ、これにより、Sn成分が、Al基材10中に拡散することにより引き起こされる不具合、すなわち、AlとSnとの間で固溶硬化が起こってしまい、Sn-Ni合金層40の割れや剥離が発生してしまうという不具合を有効に防止することができる。一方、「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」の比率が低過ぎると、すなわち、Sn-Ni合金層40中のNi含有割合が少なく、Sn含有割合が多過ぎると、Sn-Ni合金層40中のSn成分が、Al基材10中に拡散してしまい、AlとSnとの間で固溶硬化が起こってしまい、Sn-Ni合金層40の割れや剥離が発生してしまう場合がある。 By setting the ratio of “Ni strength of Sn—Ni alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” to the above range, an Sn base material of Sn component contained in Sn—Ni alloy layer 40 Diffusion into 10 can be prevented, thereby causing a problem caused by the Sn component diffusing into the Al base material 10, that is, solid solution hardening occurs between Al and Sn, It is possible to effectively prevent a problem that the Sn—Ni alloy layer 40 is cracked or peeled off. On the other hand, if the ratio of “Ni strength of Sn—Ni alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” is too low, that is, the Ni content in the Sn—Ni alloy layer 40 is small and Sn content is low. If the ratio is too large, the Sn component in the Sn—Ni alloy layer 40 diffuses into the Al base 10 and solid solution hardening occurs between Al and Sn, and the Sn—Ni alloy layer 40 Cracking or peeling may occur.
 なお、本実施形態において、「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」は、たとえば、高周波グロー放電発光分光分析装置を用いて、Sn-Ni合金層40および熱拡散前のNiめっき層20を、Arプラズマによりスパッタリングしながら測定を行い、Sn-Ni合金層40中および熱拡散前のNiめっき層20中において、それぞれ最もNi強度が高かった部分のデータを、それぞれ、Sn-Ni合金層40のNi強度、および熱拡散前のNiめっき層20のNi強度として求め、これらを用いて、「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」を算出することができる。 In the present embodiment, “Ni strength of Sn—Ni alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” is determined using, for example, a high-frequency glow discharge optical emission spectrometer. 40 and the Ni plating layer 20 before thermal diffusion were measured while sputtering with Ar plasma, and in the Sn—Ni alloy layer 40 and the Ni plating layer 20 before thermal diffusion, each of the portions with the highest Ni strength was measured. The data were respectively obtained as the Ni strength of the Sn—Ni alloy layer 40 and the Ni strength of the Ni plating layer 20 before thermal diffusion, and these were used to calculate “Ni strength of the Sn—Ni alloy layer 40 / before thermal diffusion”. The “Ni strength of the Ni plating layer 20” can be calculated.
 また、本実施形態において、「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」の比率を上記範囲とする方法としては、特に限定されるものではないが、たとえば、熱拡散前のNiめっき層20の厚みを0.2μm以上とし、はんだ層50を形成する際における、溶融はんだめっきの浴温、および溶融はんだめっきを行なう際にける浸漬時間を上述した範囲に制御する方法などが挙げられる。 In the present embodiment, the method of setting the ratio of “Ni strength of Sn—Ni alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” in the above range is not particularly limited. For example, the thickness of the Ni plating layer 20 before thermal diffusion is set to 0.2 μm or more, and the bath temperature of the molten solder plating when forming the solder layer 50 and the immersion time when performing the molten solder plating are within the above-described ranges. And a method of controlling them.
 なお、本実施形態に係る太陽電池用インターコネクタ200としては、図3に示すように、Al基材10の上に、直接、Sn-Ni合金層40が形成されている構成に代えて、Al基材10の上に、Niめっき層20を介して、Sn-Ni合金層40が形成されているような構成であってもよい。特に、熱拡散前のNiめっき層20の厚みや、はんだ層50を形成する際における、溶融はんだめっきの浴温、および溶融はんだめっきを行なう際にける浸漬時間によっては、Niめっき層20中へのSn成分の拡散が完全に進行しない場合もある。そのため、このような場合には、Al基材10と、Sn-Ni合金層40との間に、Niめっき層20が残存することとなる。 As shown in FIG. 3, the solar cell interconnector 200 according to the present embodiment is replaced with an Al-alloy 10 instead of a structure in which the Sn—Ni alloy layer 40 is directly formed. A configuration in which the Sn—Ni alloy layer 40 is formed on the substrate 10 via the Ni plating layer 20 may be employed. In particular, depending on the thickness of the Ni plating layer 20 before thermal diffusion, the bath temperature of the molten solder plating when the solder layer 50 is formed, and the immersion time when performing the molten solder plating, the Ni plating layer 20 is entered. In some cases, the Sn component does not completely diffuse. Therefore, in such a case, the Ni plating layer 20 remains between the Al base 10 and the Sn—Ni alloy layer 40.
 本実施形態の太陽電池用インターコネクタ200は、はんだ層50を形成した際における熱により、厚み0.2μm以上のNiめっき層と、Snめっき層30との間で拡散が起こることにより形成されるSn-Ni合金層40を備えるものであるため、はんだ付けの熱履歴による、Sn-Ni合金層40の割れや剥離などの不具合の発生を有効に防止することができる。しかも、本実施形態の太陽電池用インターコネクタ200は、銅を実質的に含有しないものであり、そのため、比較的安価であり、コスト的にも有利なものである。 The solar cell interconnector 200 of the present embodiment is formed by diffusion between the Ni plating layer having a thickness of 0.2 μm or more and the Sn plating layer 30 due to heat when the solder layer 50 is formed. Since the Sn—Ni alloy layer 40 is provided, it is possible to effectively prevent the occurrence of defects such as cracking and peeling of the Sn—Ni alloy layer 40 due to the thermal history of soldering. Moreover, the solar cell interconnector 200 of the present embodiment does not substantially contain copper, and is therefore relatively inexpensive and advantageous in terms of cost.
 そのため、本実施形態の太陽電池用インターコネクタ200を用い、太陽電池用インターコネクタ200と、太陽電池セルとをはんだ付けにより接続することにより得られるインターコネクタ付き太陽電池セルは、品質的に良好であり、しかも、コスト的にも優れたものである。 Therefore, the solar cell with an interconnector obtained by connecting the solar cell interconnector 200 and the solar cell by soldering using the solar cell interconnector 200 of the present embodiment is good in quality. Moreover, it is also excellent in cost.
 なお、このような本実施形態の太陽電池用インターコネクタ200としては、たとえば、長尺のAl板(コイル)の両面に、上述した方法にしたがい、Sn-Ni合金層40、およびはんだ層50を、この順に形成したものを、必要な幅にスリットすることにより得ることができる。このようにして得られる太陽電池用インターコネクタ200は、上下面に、Sn-Ni合金層40、およびはんだ層50が形成されている一方で、厚み方向を形成する面(スリット面)には、これらSn-Ni合金層40、およびはんだ層50が形成されていないこととなる。 As such a solar cell interconnector 200 of this embodiment, for example, the Sn—Ni alloy layer 40 and the solder layer 50 are formed on both surfaces of a long Al plate (coil) according to the above-described method. Those formed in this order can be obtained by slitting them to the required width. In the solar cell interconnector 200 thus obtained, the Sn—Ni alloy layer 40 and the solder layer 50 are formed on the upper and lower surfaces, while the surface forming the thickness direction (slit surface) The Sn—Ni alloy layer 40 and the solder layer 50 are not formed.
 あるいは、本実施形態の太陽電池用インターコネクタ200としては、たとえば、平角Al線の表面全面に、上述した方法にしたがい、Sn-Ni合金層40、およびはんだ層50を形成することにより得ることもできる。そして、この場合には、得られる太陽電池用インターコネクタ200は、上述した方法とは異なり、スリット工程を経ないため、上述した特許文献1(特開2006-49666号公報)に記載のインターコネクタと同様に、上下面および厚み方向を形成する面のいずれにも、Sn-Ni合金層40、およびはんだ層50が形成されたものとなる。 Alternatively, the solar cell interconnector 200 of the present embodiment can be obtained, for example, by forming the Sn—Ni alloy layer 40 and the solder layer 50 on the entire surface of the flat Al wire according to the above-described method. it can. In this case, the obtained solar cell interconnector 200 does not go through the slit process unlike the above-described method, and therefore, the interconnector described in Patent Document 1 (Japanese Patent Laid-Open No. 2006-49666) described above is used. Similarly, the Sn—Ni alloy layer 40 and the solder layer 50 are formed on both the upper and lower surfaces and the surface forming the thickness direction.
 なお、本実施形態に係る太陽電池用インターコネクタ200のサイズは、特に限定されないが、厚みが、通常、0.1~0.7mm、好ましくは0.1~0.5mmであり、幅が、通常、0.5~10mm、好ましくは1~6mmであり、また、長さについては、太陽電池の配列等に応じて適宜設定すればよい。 The size of the solar cell interconnector 200 according to this embodiment is not particularly limited, but the thickness is usually 0.1 to 0.7 mm, preferably 0.1 to 0.5 mm, and the width is Usually, it is 0.5 to 10 mm, preferably 1 to 6 mm, and the length may be appropriately set according to the arrangement of solar cells and the like.
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
<実施例1>
 Al基材10を形成するための材料として、A1100系のO材を準備した(厚さ0.3mm、幅40mm、長さ120mm)。そして、Al基材を、アルカリ液で脱脂し、次いで硫酸中でエッチング処理を施し、次いで硝酸中で脱スマット処理を施した後、水酸化ナトリウム:150g/L、ロッシェル塩:50g/L、酸化亜鉛:25g/L、塩化第一鉄1.5g/Lを含む処理液中に浸漬して第一Zn置換処理を行った。次いで、第一Zn置換処理を行ったAl基材を、400g/Lの硝酸水溶液中に浸漬して置換析出したZnを除去した後、第一Zn置換処理で用いた処理液と同じ処理液中に、10秒間浸漬することで第二Zn置換処理を行うことで、100mg/mの皮膜量で、Al基材上にZn層を形成した。
<Example 1>
As a material for forming the Al base 10, an A1100-based O material was prepared (thickness 0.3 mm, width 40 mm, length 120 mm). Then, the Al base material is degreased with an alkali solution, then etched in sulfuric acid, then desmutted in nitric acid, sodium hydroxide: 150 g / L, Rochelle salt: 50 g / L, oxidized The first Zn substitution treatment was performed by dipping in a treatment solution containing zinc: 25 g / L and ferrous chloride 1.5 g / L. Next, the Al base material subjected to the first Zn substitution treatment is immersed in a 400 g / L nitric acid aqueous solution to remove the deposited Zn, and then in the same treatment liquid as the treatment liquid used in the first Zn substitution treatment. In addition, a Zn layer was formed on the Al substrate with a coating amount of 100 mg / m 2 by performing the second Zn substitution treatment by dipping for 10 seconds.
 次いで、Zn層を形成したAl基材10について下記条件にてニッケルめっきを行い、Zn層上に、厚さ0.2μmのNiめっき層20を形成した。
  浴組成:硫酸ニッケル250g/L、塩化ニッケル45g/L、ほう酸30g/L
  pH:3~5
  浴温:60℃
  電流密度:1~5A/dm
Next, nickel plating was performed on the Al base material 10 on which the Zn layer was formed under the following conditions to form a Ni plating layer 20 having a thickness of 0.2 μm on the Zn layer.
Bath composition: nickel sulfate 250 g / L, nickel chloride 45 g / L, boric acid 30 g / L
pH: 3-5
Bath temperature: 60 ° C
Current density: 1 to 5 A / dm 2
 次いで、Niめっき層20を形成したAl基材10について、下記条件にてスズめっきを行い、Niめっき層上に、厚さ0.5μmのSnめっき層30を形成することで、図1に示す太陽電池用インターコネクタ材料100を得た。
  浴組成:硫酸第一錫30g/L、硫酸70ml/L、適量の光沢剤および酸化防止剤
  pH:1~2
  浴温:40℃
  電流密度:5~10A/dm
Next, the Al base material 10 on which the Ni plating layer 20 is formed is subjected to tin plating under the following conditions, and a Sn plating layer 30 having a thickness of 0.5 μm is formed on the Ni plating layer. The solar cell interconnector material 100 was obtained.
Bath composition: stannous sulfate 30 g / L, sulfuric acid 70 ml / L, appropriate amount of brightener and antioxidant pH: 1 to 2
Bath temperature: 40 ° C
Current density: 5-10 A / dm 2
 次いで、得られた太陽電池用インターコネクタ材料100を、浴温を200℃に調整したSn-Pbはんだからなる溶融はんだめっき槽に、3秒間浸漬することで、厚み20μmのはんだ層50を形成することで、図2に示す太陽電池用インターコネクタ200を製造した。なお、本実施例で製造した太陽電池用インターコネクタ200は、スリット前のものであり、そのサイズは、幅40mm、長さ120mmであり、太陽電池の配列等に併せて、スリットすることにより、太陽電池用インターコネクタとして適宜使用可能なものである。そして、得られた太陽電池用インターコネクタ材料100および太陽電池用インターコネクタ200を用いて、以下の方法にしたがい、「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」の比率、およびSn-Ni合金層40の連続性の評価を行った。 Next, the obtained solar cell interconnector material 100 is immersed in a molten solder plating bath made of Sn—Pb solder whose bath temperature is adjusted to 200 ° C. for 3 seconds to form a solder layer 50 having a thickness of 20 μm. Thus, the solar cell interconnector 200 shown in FIG. 2 was manufactured. In addition, the solar cell interconnector 200 manufactured in this example is the one before slitting, and the size is 40 mm in width and 120 mm in length. By slitting together with the arrangement of solar cells, etc., It can be suitably used as a solar cell interconnector. Then, using the obtained solar cell interconnector material 100 and solar cell interconnector 200, according to the following method, "Ni strength of Sn-Ni alloy layer 40 / Ni of Ni plating layer 20 before thermal diffusion" The ratio of “strength” and the continuity of the Sn—Ni alloy layer 40 were evaluated.
 「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」の比率は、次の方法により測定した。すなわち、まず、高周波グロー放電発光分光分析装置(GDS-3860、リガク社製)を用いて、高周波電力:40W、フォトマル電圧(Ni):370Vの条件で、Sn-Ni合金層40および熱拡散前のNiめっき層20を、Arプラズマによりスパッタリングしながら測定を行った。そして、得られた測定データから、Sn-Ni合金層40中および熱拡散前のNiめっき層20中において、それぞれのNi強度のピーク値を得て、それぞれを、Sn-Ni合金層40のNi強度、および熱拡散前のNiめっき層20のNi強度として、「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」を算出した。結果を表1に示す。 The ratio of “Ni strength of Sn—Ni alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” was measured by the following method. That is, first, using a high-frequency glow discharge emission spectroscopic analyzer (GDS-3860, manufactured by Rigaku Corporation), Sn-Ni alloy layer 40 and thermal diffusion under the conditions of high-frequency power: 40 W and photomultiplier voltage (Ni): 370 V. The previous Ni plating layer 20 was measured while sputtering with Ar plasma. Then, from the obtained measurement data, the peak value of each Ni intensity is obtained in the Sn—Ni alloy layer 40 and in the Ni plating layer 20 before thermal diffusion, and the respective Ni intensity of the Sn—Ni alloy layer 40 is obtained. As the strength and Ni strength of the Ni plating layer 20 before thermal diffusion, “Ni strength of the Sn—Ni alloy layer 40 / Ni strength of the Ni plating layer 20 before thermal diffusion” was calculated. The results are shown in Table 1.
 また、Sn-Ni合金層40の連続性は、太陽電池用インターコネクタ200の断面を、電界放出形走査電子顕微鏡(FE-SEM)(JSM-6330F、日本電子社製)により観察を行なうことにより評価した。電界放出形走査電子顕微鏡による観察の結果、Sn-Ni合金層40に、図3に示すような途切れ部分、すなわち、はんだ層50が、直接、Al基材10表面に接触している部分(Al基材10表面において、Niの含有割合が実質的にゼロである部分)が観察された場合には、Sn-Ni合金層40の連続性「無し」と判断し、そのような途切れ部分が観察されなかった場合には、Sn-Ni合金層40の連続性「有り」と判断した。結果を表1に示す。 The continuity of the Sn—Ni alloy layer 40 is determined by observing the cross section of the solar cell interconnector 200 with a field emission scanning electron microscope (FE-SEM) (JSM-6330F, manufactured by JEOL Ltd.). evaluated. As a result of observation with a field emission scanning electron microscope, a discontinuous portion as shown in FIG. 3, that is, a portion where the solder layer 50 is in direct contact with the surface of the Al base 10 (Al When the Ni content ratio is substantially zero on the surface of the base material 10), it is determined that the Sn—Ni alloy layer 40 has no continuity, and such a discontinuous portion is observed. If not, it was determined that the continuity of the Sn—Ni alloy layer 40 was “present”. The results are shown in Table 1.
<実施例2~4>
 Niめっき層20の厚みを、それぞれ、0.5μm(実施例2)、1μm(実施例3)、および1.5μm(実施例4)に変更した以外は、実施例1と同様にして、太陽電池用インターコネクタ材料100および太陽電池用インターコネクタ200を得て、同様に評価を行った。結果を表1に示す。
<Examples 2 to 4>
Except that the thickness of the Ni plating layer 20 was changed to 0.5 μm (Example 2), 1 μm (Example 3), and 1.5 μm (Example 4), respectively, The battery interconnector material 100 and the solar cell interconnector 200 were obtained and evaluated in the same manner. The results are shown in Table 1.
<実施例5>
 はんだ層50を形成する際の溶融はんだめっき槽の温度を200℃から250℃に変更し、はんだ層50を厚み20μmで形成した以外は、実施例1と同様にして、太陽電池用インターコネクタ材料100および太陽電池用インターコネクタ200を得て、同様に評価を行った。結果を表1に示す。
<Example 5>
The interconnector material for solar cells was the same as in Example 1 except that the temperature of the molten solder plating tank when forming the solder layer 50 was changed from 200 ° C. to 250 ° C. and the solder layer 50 was formed with a thickness of 20 μm. 100 and solar cell interconnector 200 were obtained and evaluated in the same manner. The results are shown in Table 1.
<実施例6~8>
 Niめっき層20の厚みを、それぞれ、0.5μm(実施例6)、1μm(実施例7)、および1.5μm(実施例8)に変更した以外は、実施例5と同様にして、太陽電池用インターコネクタ材料100および太陽電池用インターコネクタ200を得て、同様に評価を行った。結果を表1に示す。
<Examples 6 to 8>
In the same manner as in Example 5, except that the thickness of the Ni plating layer 20 was changed to 0.5 μm (Example 6), 1 μm (Example 7), and 1.5 μm (Example 8), respectively. The battery interconnector material 100 and the solar cell interconnector 200 were obtained and evaluated in the same manner. The results are shown in Table 1.
<比較例1,2>
 Niめっき層20の厚みを、それぞれ、0.1μm(比較例1)、および0.15μm(比較例2)に変更した以外は、実施例1と同様にして、太陽電池用インターコネクタ材料100および太陽電池用インターコネクタ200を得て、同様に評価を行った。結果を表1に示す。
<Comparative Examples 1 and 2>
Except for changing the thickness of the Ni plating layer 20 to 0.1 μm (Comparative Example 1) and 0.15 μm (Comparative Example 2), respectively, the solar cell interconnector material 100 and The solar cell interconnector 200 was obtained and evaluated in the same manner. The results are shown in Table 1.
<比較例3,4>
 Niめっき層20の厚みを、それぞれ、0.1μm(比較例3)、および0.15μm(比較例4)に変更した以外は、実施例5と同様にして、太陽電池用インターコネクタ材料100および太陽電池用インターコネクタ200を得て、同様に評価を行った。結果を表1に示す。
<Comparative Examples 3 and 4>
Except for changing the thickness of the Ni plating layer 20 to 0.1 μm (Comparative Example 3) and 0.15 μm (Comparative Example 4), respectively, the solar cell interconnector material 100 and The solar cell interconnector 200 was obtained and evaluated in the same manner. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、Niめっき層20の厚みを0.2μm以上とした実施例1~8においては、「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」の比率がいずれも高く、また、いずれも、Sn-Ni合金層40が、Al基材10表面を覆うように連続的に形成されており、図3に示すような途切れ部分は確認されなかった。 As shown in Table 1, in Examples 1 to 8 in which the thickness of the Ni plating layer 20 was 0.2 μm or more, “Ni strength of the Sn—Ni alloy layer 40 / Ni strength of the Ni plating layer 20 before thermal diffusion” In any case, the Sn—Ni alloy layer 40 is continuously formed so as to cover the surface of the Al base 10, and no discontinuity as shown in FIG. 3 is confirmed. It was.
 一方、Niめっき層20の厚みを0.2μm未満とした比較例1~4においては、「Sn-Ni合金層40のNi強度/熱拡散前のNiめっき層20のNi強度」の比率がいずれも低く、また、いずれも、Sn-Ni合金層40に途切れ部分が確認され、Sn-Ni合金層40は連続性を有しないものであった。 On the other hand, in Comparative Examples 1 to 4 in which the thickness of the Ni plating layer 20 was less than 0.2 μm, the ratio of “Ni strength of Sn—Ni alloy layer 40 / Ni strength of Ni plating layer 20 before thermal diffusion” In both cases, a discontinuous portion was confirmed in the Sn—Ni alloy layer 40, and the Sn—Ni alloy layer 40 did not have continuity.
 ここで、図4(A)に、実施例2の太陽電池用インターコネクタ試料の断面写真を、図4(B)に、比較例1の太陽電池用インターコネクタ試料の断面写真を、それぞれ示す。図4(A)からも確認できるように、実施例2においては、Sn-Ni合金層40に途切れ部分が存在せず、Sn-Ni合金層40が、Al基材10表面を覆うように連続的に形成されていることが確認できる。その一方で、比較例1においては、Sn-Ni合金層40に途切れ部分が存在し、Sn-Ni合金層40は連続性を有しないものであることが確認できる。 Here, FIG. 4 (A) shows a cross-sectional photograph of the solar cell interconnector sample of Example 2, and FIG. 4 (B) shows a cross-sectional photograph of the solar battery interconnector sample of Comparative Example 1. As can be confirmed from FIG. 4A, in Example 2, there is no discontinuous portion in the Sn—Ni alloy layer 40, and the Sn—Ni alloy layer 40 is continuous so as to cover the surface of the Al base material 10. Can be confirmed. On the other hand, in Comparative Example 1, it can be confirmed that there is a discontinuity in the Sn—Ni alloy layer 40 and the Sn—Ni alloy layer 40 has no continuity.
100…太陽電池用インターコネクタ材料
200…太陽電池用インターコネクタ
 10…Al基材
 20…Niめっき層
 30…Snめっき層
 40…Sn-Niめっき層
 50…はんだ層
DESCRIPTION OF SYMBOLS 100 ... Solar cell interconnector material 200 ... Solar cell interconnector 10 ... Al base material 20 ... Ni plating layer 30 ... Sn plating layer 40 ... Sn-Ni plating layer 50 ... Solder layer

Claims (6)

  1.  Al基材表面に、基材側から順に、0.2μm以上の厚みのNiめっき層、およびSnめっき層を有することを特徴とする太陽電池用インターコネクタ材料。 An interconnector material for a solar cell, comprising a Ni plating layer and a Sn plating layer having a thickness of 0.2 μm or more in order from the substrate side on the Al substrate surface.
  2.  請求項1に記載の太陽電池用インターコネクタ材料のSnめっき層の表面にはんだ層を形成することにより得られ、
     Al基材表面に、基材側から順に、Sn-Ni合金層、およびはんだ層を有することを特徴とする太陽電池用インターコネクタ。
    It is obtained by forming a solder layer on the surface of the Sn plating layer of the solar cell interconnector material according to claim 1,
    An interconnector for a solar cell, comprising an Sn—Ni alloy layer and a solder layer in order from the substrate side on the surface of the Al substrate.
  3.  前記Sn-Ni合金層は、前記Niめっき層および前記Snめっき層に、前記はんだ層を形成する際における熱により拡散を起こさせることにより形成されたものであり、
     高周波グロー放電発光分光分析法により分析した際の前記Sn-Ni合金層のNi強度と、熱拡散前の前記Niめっき層のNi強度との比が、「Sn-Ni合金層のNi強度/熱拡散前のNiめっき層のNi強度」で、0.15以上であることを特徴とする請求項2に記載の太陽電池用インターコネクタ。
    The Sn—Ni alloy layer is formed by causing diffusion in the Ni plating layer and the Sn plating layer by heat in forming the solder layer,
    The ratio between the Ni strength of the Sn—Ni alloy layer and the Ni strength of the Ni plating layer before thermal diffusion when analyzed by high-frequency glow discharge optical emission spectrometry is “Ni strength / heat of Sn—Ni alloy layer”. The interconnector for solar cells according to claim 2, wherein the Ni strength of the Ni plating layer before diffusion is 0.15 or more.
  4.  前記Sn-Ni合金層は、前記Al基材表面を覆うように、連続的に形成されていることを特徴とする請求項2または3に記載の太陽電池用インターコネクタ。 The solar cell interconnector according to claim 2 or 3, wherein the Sn-Ni alloy layer is continuously formed so as to cover the surface of the Al base material.
  5.  請求項2~4のいずれかに記載の太陽電池用インターコネクタを太陽電池セルに接続してなることを特徴とするインターコネクタ付き太陽電池セル。 A solar battery cell with an interconnector, wherein the solar battery interconnector according to any one of claims 2 to 4 is connected to a solar battery cell.
  6.  前記太陽電池用インターコネクタと前記太陽電池セルとが、はんだ付けに接続されていることを特徴とする請求項5に記載のインターコネクタ付き太陽電池セル。 The solar cell with an interconnector according to claim 5, wherein the solar cell interconnector and the solar cell are connected by soldering.
PCT/JP2012/071411 2011-09-16 2012-08-24 Solar cell interconnector material, solar cell interconnector, and solar cell with interconnector WO2013038889A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147009313A KR101968788B1 (en) 2011-09-16 2012-08-24 Solar cell interconnector material, solar cell interconnector, and solar cell with interconnector
CN201280045102.4A CN103814157B (en) 2011-09-16 2012-08-24 Cross tie part material used for solar batteries, cross tie part used for solar batteries and the solar battery cell with cross tie part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-202489 2011-09-16
JP2011202489A JP5858698B2 (en) 2011-09-16 2011-09-16 Interconnector material for solar cell, interconnector for solar cell, and solar cell with interconnector

Publications (1)

Publication Number Publication Date
WO2013038889A1 true WO2013038889A1 (en) 2013-03-21

Family

ID=47883123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071411 WO2013038889A1 (en) 2011-09-16 2012-08-24 Solar cell interconnector material, solar cell interconnector, and solar cell with interconnector

Country Status (4)

Country Link
JP (1) JP5858698B2 (en)
KR (1) KR101968788B1 (en)
CN (1) CN103814157B (en)
WO (1) WO2013038889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034300A1 (en) * 2012-08-29 2014-03-06 株式会社オートネットワーク技術研究所 Connector terminal and material for connector terminals

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258305A (en) * 2012-06-13 2013-12-26 Toyo Kohan Co Ltd Interconnector for solar cell, and solar cell with interconnector
JP5887305B2 (en) * 2013-07-04 2016-03-16 Jx金属株式会社 Metal foil for electromagnetic shielding, electromagnetic shielding material, and shielded cable
AU2017374799B2 (en) * 2016-12-16 2023-06-22 Haldor Topsøe A/S Deposition of a coating on an interconnect for solid oxide cell stacks
CN110760803A (en) * 2019-11-29 2020-02-07 东北大学 Composite coating for stainless steel connector of solid oxide fuel cell and preparation method thereof
CN112331412A (en) * 2020-10-20 2021-02-05 南通德晋昌光电科技有限公司 Supply system of interconnection strips and processing technology thereof
CN113937177A (en) * 2021-10-15 2022-01-14 苏州元昱新能源有限公司 Manufacturing method of aluminum base material photovoltaic welding strip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345969A (en) * 1992-06-12 1993-12-27 Kobe Steel Ltd Al series alloy metallic material excellent in solderability and plating adhesion
JP2006219736A (en) * 2005-02-14 2006-08-24 Toyo Kohan Co Ltd Surface-treated al sheet
JP2008006206A (en) * 2006-06-30 2008-01-17 Toto Ltd Toilet seat device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121660A (en) * 1997-07-03 1999-01-26 Hitachi Cable Ltd Connecting wire for solar battery
JP4622375B2 (en) 2004-08-06 2011-02-02 日立電線株式会社 Flat rectangular conductor for solar cell and lead wire for solar cell
JP2006206977A (en) * 2005-01-28 2006-08-10 Toyo Kohan Co Ltd SURFACE-TREATED Al SHEET HAVING EXCELLENT SOLDERABILITY
KR101612955B1 (en) * 2009-06-17 2016-04-15 엘지전자 주식회사 Interconnector and solar cell module having the same
CN202054913U (en) * 2011-03-01 2011-11-30 无锡新大中薄板有限公司 Weldable tin plating aluminum alloy strip
CN102071446B (en) * 2011-03-01 2012-05-02 无锡新大中薄板有限公司 Continuous electroplating process for weldable aluminum coiled material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345969A (en) * 1992-06-12 1993-12-27 Kobe Steel Ltd Al series alloy metallic material excellent in solderability and plating adhesion
JP2006219736A (en) * 2005-02-14 2006-08-24 Toyo Kohan Co Ltd Surface-treated al sheet
JP2008006206A (en) * 2006-06-30 2008-01-17 Toto Ltd Toilet seat device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034300A1 (en) * 2012-08-29 2014-03-06 株式会社オートネットワーク技術研究所 Connector terminal and material for connector terminals

Also Published As

Publication number Publication date
JP2013065640A (en) 2013-04-11
KR20140066221A (en) 2014-05-30
CN103814157A (en) 2014-05-21
JP5858698B2 (en) 2016-02-10
CN103814157B (en) 2016-05-11
KR101968788B1 (en) 2019-04-12

Similar Documents

Publication Publication Date Title
WO2013038889A1 (en) Solar cell interconnector material, solar cell interconnector, and solar cell with interconnector
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP5312368B2 (en) Metal composite substrate and manufacturing method thereof
US8337997B2 (en) Composite material for electrical/electronic part and electrical/electronic part using the same
JP6734185B2 (en) Sn plated material and manufacturing method thereof
WO2014080765A1 (en) Substrate for flexible devices and method for producing same
TWI558478B (en) Metal foil for base material
CN103931034A (en) Collector plate for fuel cells and method for producing same
CN101426961A (en) Heat-resistant Sn-plated Cu-Zn alloy strip suppressed in whiskering
ES2586820T3 (en) Aluminum galvanized
JP5186816B2 (en) Steel plate for containers and manufacturing method thereof
JP7187162B2 (en) Sn-plated material and its manufacturing method
JP4090483B2 (en) Conductive connection parts
WO2020204018A1 (en) Surface-treated plate for alkaline secondary battery, and method for manufacturing same
JP2010090400A (en) Electroconductive material and method for manufacturing the same
JP7162026B2 (en) Surface-treated plate for alkaline secondary battery and manufacturing method thereof
JP2009097050A (en) Tin-plated material for electronic parts
JP5892851B2 (en) Interconnector material for solar cell, interconnector for solar cell, and solar cell with interconnector
JP2007002341A (en) Electroconductive material plate for forming connecting parts and manufacturing method therefor
JP4400372B2 (en) Sn-based plated steel sheet excellent in solderability, corrosion resistance and whisker resistance, and method for producing the same
WO2013187234A1 (en) Interconnector for solar cell, and solar cell with interconnector
JP2020105627A (en) Copper alloy sheet, copper alloy sheet with plating film, and method of producing the same
JP2004360004A (en) Tinned steel sheet superior in solderability
JP4571895B2 (en) Surface-treated steel sheet for environment-friendly electronic parts with excellent solder wettability, whisker resistance, and appearance stability over time, and method for producing the same
JP4321123B2 (en) Tin-plated steel sheet with excellent solderability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280045102.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147009313

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12831728

Country of ref document: EP

Kind code of ref document: A1