WO2013038642A1 - 給電装置及び車両の受電装置 - Google Patents
給電装置及び車両の受電装置 Download PDFInfo
- Publication number
- WO2013038642A1 WO2013038642A1 PCT/JP2012/005719 JP2012005719W WO2013038642A1 WO 2013038642 A1 WO2013038642 A1 WO 2013038642A1 JP 2012005719 W JP2012005719 W JP 2012005719W WO 2013038642 A1 WO2013038642 A1 WO 2013038642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- power
- power supply
- unit
- information indicating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/126—Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00034—Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Definitions
- the present invention relates to a power feeding device that performs non-contact power feeding to a vehicle and a power receiving device for a vehicle that performs non-contact power reception.
- a power supply system for supplying power in a non-contact manner to a vehicle that runs on electricity (for example, an electric vehicle or a hybrid vehicle) has been developed.
- the power receiving device is mounted on the vehicle, while the power feeding device is installed on the ground or the like of the parking space. Then, power is transmitted from the power feeding device to the power receiving device while the vehicle is stopped in the parking space.
- a power reception coil and a power supply coil are provided in the power reception unit of the power reception device and the power supply unit of the power supply device, respectively, and power is transmitted from the power supply unit to the power reception unit by an electromagnetic induction method.
- Patent Document 1 discloses the following non-contact power feeding system.
- This power supply system is configured so that a power supply request can be transmitted to a power supply device when a parking brake of the vehicle is applied so that power is supplied in a state where the vehicle is stopped.
- An object of the present invention is to provide a power feeding device capable of preventing an abnormal power feeding state from occurring due to the positions of the power feeding unit and the power receiving unit being shifted after the power feeding unit and the power receiving unit are positioned and power feeding is started. It is to provide a power receiving device for a vehicle.
- a power feeding device includes a power feeding unit that performs power feeding in a non-contact manner to a power receiving unit mounted on a vehicle, a power feeding side communication unit that communicates with a vehicle side communication unit mounted on the vehicle, A power supply side control unit that performs operation control of the power supply unit, and the power supply side control unit detects motion of the vehicle from the vehicle side communication unit after the power supply unit starts power supply.
- the power supply side communication unit issues a power supply stop command transmitted from the vehicle side communication unit based on the information indicating presence of motion detection of the vehicle.
- the structure which stops the electric power feeding by the said electric power feeding part is taken.
- a power receiving device for a vehicle is a power receiving device mounted on a vehicle, the power receiving unit receiving power in a non-contact manner from a power feeding unit of a power feeding device provided outside the vehicle, and the power feeding
- a vehicle-side communication unit that communicates with a power supply-side communication unit provided in the apparatus; and a vehicle-side control unit that inputs detection information of a motion detection unit that is mounted on the vehicle and detects the movement of the vehicle.
- the vehicle-side control unit receives information indicating the presence of motion detection or a command to stop power supply when detection information indicating the presence of motion detection is input from the motion detection unit after the start of power reception by the power reception unit.
- a configuration is adopted in which transmission is performed from the vehicle side communication unit to the power supply side communication unit.
- the power feeding unit and the power receiving unit when the positions of the power feeding unit and the power receiving unit are aligned and power feeding is started, and the positions of the power feeding unit and the power receiving unit are shifted, the power feeding is stopped and an abnormal power feeding state occurs. Can be prevented.
- Flowchart explaining the charging procedure of the first embodiment Flowchart explaining the charging procedure of the second embodiment
- the figure explaining the direction component of the acceleration detected by the acceleration sensor Flowchart explaining the charging procedure of the third embodiment Flowchart for explaining the charging procedure of the fourth embodiment
- FIG. 1 is a configuration diagram showing a main part of a vehicle power supply system according to Embodiment 1 of the present invention.
- the vehicle power supply system includes a power receiving device 20 mounted on the vehicle 10 and a power feeding device 30 installed on the ground of the parking space.
- the power receiving device 20 includes a vehicle side communication unit 104, a power receiving unit 103, and a vehicle side control unit 101, and a wheel speed sensor 108 of the vehicle 10 and a storage battery 102 are connected to the power receiving device 20.
- the power feeding device 30 includes a power feeding side communication unit 105, a power feeding unit 106, and a power feeding side control unit 107.
- the vehicle 10 is an electric vehicle or a hybrid vehicle that can travel with electric power, and includes a storage battery 102 that stores electric power for traveling.
- the storage battery 102 is, for example, a large capacity lithium ion battery.
- the vehicle-side communication unit 104 and the power-feeding-side communication unit 105 can perform data communication wirelessly in a state where the vehicle 10 is in the vicinity of the power-feeding device 30. Via the vehicle side communication unit 104 and the power supply side communication unit 105, the vehicle side control unit 101 and the power supply side control unit 107 perform data communication with each other wirelessly.
- the power feeding unit 106 includes a power feeding coil, and an alternating current is supplied to the coil to send power to the power receiving unit 103 by an electromagnetic induction method.
- the power receiving unit 103 has a power receiving coil and receives power from the power feeding unit 106 by an electromagnetic induction method. And the power receiving part 103 sends the received electric power to the storage battery 102 (its charging circuit).
- the power supply side control unit 107 includes a storage unit that stores a control program. According to the control program, the power supply side control unit 107 receives commands and information from the vehicle side control unit 101 via the power supply side communication unit 105, and drives the power supply unit 106. Take control.
- the vehicle-side control unit 101 has storage means that stores a control program, and sends commands and information to the power-feeding-side control unit 107 via the vehicle-side communication unit 104 according to this control program, and drives the power receiving unit 103.
- the drive control of the power reception unit 103 includes control for opening and closing a circuit of the power reception unit 103, control for opening and closing an electric circuit between the power reception unit 103 and the storage battery 102 (its charging circuit), and the like.
- the wheel speed sensor 108 is a sensor provided in the vehicle 10 in order to detect the rotation state of the wheel in an ABS (Antilock Brake System).
- the wheel speed sensor 108 is a sensor that can detect that the tire of the vehicle 10 has rotated a minute amount, and outputs, for example, one detection pulse for each predetermined amount of rotation.
- the rotation amount of the tire that can be detected by the wheel speed sensor 108 is a short length (for example, 4 centimeters or the like) in terms of the movement amount of the vehicle 10, and an allowable error in alignment between the power receiving unit 103 and the power feeding unit 106. It is set to a length of about.
- an ABS wheel speed sensor may be used instead of a dedicated one provided in the vehicle 10 for power reception control.
- FIG. 2 is a flowchart for explaining the charging procedure of the first embodiment.
- steps S201 and S202 are processes performed by the user
- steps S203 to S206 are processes executed by the vehicle-side control unit 101 according to the control program.
- step S201 When charging the storage battery 102 of the vehicle 10, first, the user stops the vehicle 10 at a charging stop position with a predetermined accuracy. Thereby, the power receiving unit 103 and the power feeding unit 106 are aligned with accuracy within a predetermined error (step S201). Subsequently, the user performs an operation for starting charging (step S202). If no operation is performed (“None” in step S202), the charging operation is not started and the charging process ends.
- step S202 can be performed by the user operating an operation switch (not shown) in the vehicle 10. And the operation signal of this operation switch is sent to the vehicle side control part 101, and the vehicle side control part 101 starts the subsequent charging process.
- the charging start operation in step S202 may be executed by providing a charging start operation switch in the parking lot and operating the operation switch by the user.
- the operation signal of the operation switch may be transmitted to the vehicle control unit 101 via the vehicle side communication unit 104 by radio.
- an operation switch for starting charging may be provided in the parking lot, and an operation signal of the operation switch may be input to the power supply side control unit 107.
- this operation signal may be sent to the vehicle side control part 101 by communication with the electric power feeding side communication part 105 and the vehicle side communication part 104, and a charging process may be started.
- a detection device that detects that the vehicle 10 has stopped at the charging stop position is provided, and that the detection device detects that the vehicle has stopped is regarded as an operation to start charging, and this detection signal is transmitted to the vehicle-side communication unit. It may be configured to be sent to 104.
- the vehicle side control unit 101 transmits a power supply start request to the power supply apparatus 30 via the vehicle side communication unit 104 (step S203).
- This power supply start request is sent to the power supply side control unit 107 via the power supply side communication unit 105.
- the power supply side control unit 107 Based on this request, the power supply side control unit 107 performs drive control of the power supply unit 106 to start power supply.
- the power supply start request is preferably transmitted only when the vehicle speed is zero, that is, when it is confirmed that the vehicle is stopped.
- the vehicle-side control unit 101 After transmitting the power supply start request, the vehicle-side control unit 101 subsequently monitors the output of the wheel speed sensor 108 (step S204) and monitors the charging status (whether charging is complete) (step S205). Shift processing to a processing loop that is repeatedly executed.
- the vehicle-side control unit 101 determines that charging is complete when, for example, the storage battery 102 is fully charged. Then, when there is an output from the wheel speed sensor 108 and the vehicle-side control unit 101 determines that the wheel has rotated, or when the vehicle-side control unit 101 determines that charging is complete, the processing of the vehicle-side control unit 101 performs step S204. , S205 is exited from the processing loop.
- the vehicle-side control unit 101 transmits a power supply stop request to the power supply apparatus 30 via the vehicle-side communication unit 104 (step S206).
- This power supply stop request is sent to the power supply side control unit 107 via the power supply side communication unit 105, and the power supply side control unit 107 controls the power supply unit 106 based on this request to stop power supply. Then, the charging process ends.
- the vehicle-side control unit 101 monitors the output of the wheel speed sensor 108 during power feeding, and stops feeding when there is this output. . Therefore, in the vehicular power supply system, even when a positional deviation occurs between the power receiving unit 103 and the power feeding unit 106 during power feeding, an abnormal power feeding state in which a leakage magnetic field and unnecessary radiation increase may occur. Is prevented.
- the vehicle 10 may include an acceleration sensor that detects the vertical and horizontal accelerations of the vehicle 10, and the output of the acceleration sensor may be output to the vehicle-side control unit 101. Further, the vehicle-side control unit 101 determines that the vehicle 10 has moved in the front-rear direction based on the output of the wheel speed sensor 108, and determines that the vehicle 10 has fluctuated in the vertical direction or the left-right direction based on the output of the acceleration sensor. It is good also as a structure to discriminate
- the vehicular power supply system according to the second embodiment of the present invention has the same configuration as the system according to the first embodiment, and only part of the processing is different from that of the first embodiment. Similar components and processes are denoted by the same reference numerals and description thereof is omitted.
- FIG. 3 is a flowchart for explaining the charging procedure of the first embodiment.
- the process proceeds to a processing loop of steps S204 and S205.
- a power supply stop request is sent to the power supply apparatus 30 in step S206 to stop power supply.
- the vehicle-side control unit 101 when there is an output from the wheel speed sensor 108 during the processing loop of steps S204 and S205 and the processing loop is exited, the vehicle-side control unit 101 sends the motion detection information via the vehicle-side communication unit 104.
- This motion detection information is information indicating that the positions of the power reception unit 103 and the power supply unit 106 are shifted and this positional deviation may exceed the allowable error. And if motion detection information is transmitted, after confirming the stop of the electric power feeding part 106, the vehicle side control part 101 will complete
- FIG. 4 is a flowchart showing a control procedure of the power supply side control unit 107 according to the second embodiment.
- the power supply side control unit 107 Before the start of power supply, the power supply side control unit 107 inputs the reception data of the power supply side communication unit 105 and monitors the reception of the power supply start request (step S301). And the electric power feeding side control part 107 will drive the electric power feeding part 106, and will start electric power feeding, if this electric power feeding start request
- the power feeding side control unit 107 monitors the reception of the motion detection information from the power receiving device 20 (step S303) and the reception of the power feeding stop request from the receiving device 20 (step S304). Shift processing to the processing loop to be performed.
- a power supply stop request is received via the power supply side communication unit 105 or when motion detection information is received, the processing loop of steps S303 and S304 of the power supply side control unit 107 is exited.
- the power supply side control unit 107 controls the power supply unit 106 to stop the power supply (step S305).
- the vehicle-side control unit 101 monitors the output of the wheel speed sensor 108, and when there is this output, motion detection information is sent to the power feeding device 30. Send.
- the power supply side control unit 107 monitors whether or not motion detection information is received, and stops power supply when the motion detection information is received. Therefore, in the vehicular power supply system, even when a positional deviation occurs between the power receiving unit 103 and the power feeding unit 106 during power feeding, an abnormal power feeding state in which a leakage magnetic field and unnecessary radiation increase may occur. Is prevented.
- FIG. 5 is a configuration diagram showing a main part of the vehicle power supply system according to the third embodiment of the present invention.
- the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
- an acceleration sensor 109 is employed instead of the wheel speed sensor 108 in order to detect slight movement of the vehicle 10 during power feeding.
- FIG. 6 shows a diagram for explaining the operation of the acceleration sensor 109.
- the acceleration sensor 109 is a sensor that detects accelerations in three axial directions orthogonal to each other, is installed in the vehicle 10 in a predetermined direction, and sends a detection output to the vehicle-side control unit 101. Based on this detection output, the vehicle-side control unit 101 can recognize the acceleration in the traveling direction Xb, the acceleration in the right direction Yb, and the acceleration in the vertical downward direction Zb of the vehicle 10. Further, the output of the acceleration sensor 109 always shows the output of gravitational acceleration even when the vehicle 10 is not moving.
- an acceleration sensor mounted in advance in the vehicle 10 for some function (for example, a car navigation function) provided in the vehicle 10 may be used, or provided exclusively for power reception control. May be used.
- the acceleration sensor 109 is not limited to a three-axis sensor, and may be configured to detect only an acceleration in one axis direction such as the longitudinal direction of the vehicle 10, for example.
- An alternative function of the wheel speed sensor 108 of the first embodiment is realized by the acceleration sensor 109 detecting the longitudinal acceleration of the vehicle 10. Further, by combining the acceleration sensor that detects the acceleration in the front-rear direction and the acceleration sensor that detects the acceleration in the vertical direction or the left-right direction of the vehicle 10, the certainty of the detection of the movement of the vehicle 10 can be improved.
- FIG. 7 is a flowchart for explaining the charging procedure of the third embodiment.
- the vehicle-side control unit 101 executes the following processing. That is, first, the vehicle-side control unit 101 inputs a detection result (acceleration As) of the acceleration sensor 109 at that time point (that is, when the vehicle 10 is stopped) in order to obtain a subsequent acceleration change, and stores this value. (Step S209). Subsequently, the vehicle-side control unit 101 transmits a power supply start request to the power supply apparatus 30 (step S210). Then, power supply is started by transmitting the power supply start request.
- a detection result acceleration As
- the vehicle-side control unit 101 shifts the process to a processing loop (steps S211 to S213) for monitoring the presence or absence of acceleration change and the completion of charging. That is, the vehicle-side control unit 101 first inputs the detection result (acceleration At) at that time of the acceleration sensor 109, and subtracts the acceleration As stored in step S209 from this acceleration At to obtain an acceleration change. (Step S211). Subsequently, the acceleration change is compared with a threshold value to determine whether the threshold value is exceeded (step S212). As a result, if the threshold value is exceeded, the processing of the vehicle-side control unit 101 exits from the processing loop of steps S211 to S213. On the other hand, if it does not exceed the threshold value, the vehicle-side control unit 101 confirms whether charging is complete (step S213), returns to step S211 if not completed, and exits the processing loop if completed.
- the threshold value for the discrimination process in step S212 is set as follows. That is, since the acceleration sensor 109 is fixed to the heavy vehicle 10, the output is not changed as long as a small force or vibration is applied to the vehicle 10, and the vehicle 10 is slightly changed from front to back and left and right (for example, 0. Even when a large force such as 2 to 2 cm) is applied, the change in output is relatively small. Therefore, the threshold value is set to a value that can identify an acceleration change such that the vehicle 10 slightly moves back and forth and from side to side, and this threshold value may be almost zero.
- Step S214 the vehicle-side control unit 101 transmits a power supply stop request to the power supply device 30.
- the power supply stop request By transmitting the power supply stop request, the power supply of the power supply device 30 is stopped, and the charging process is completed.
- the vehicle-side control unit 101 monitors the output of the acceleration sensor 109 during power feeding, and stops power feeding when an acceleration change equal to or greater than a threshold is detected based on this output. It is like that. Therefore, in the vehicular power supply system, even if a positional shift occurs between the power receiving unit 103 and the power feeding unit 106 during power feeding, an abnormal power feeding state in which leakage magnetic field and unnecessary radiation increase may occur. Is prevented.
- the power receiving device 20 may be configured to ignore a certain change in the sensor output.
- the vehicle-side control unit 101 inputs a detection signal from a door opening / closing sensor of the vehicle 10, and greatly changes the threshold value used in the determination processing in step S ⁇ b> 212 for a predetermined period from the door opening / closing based on the detection signal.
- the configuration is as follows. With this configuration, the power receiving device 20 can ignore changes in the sensor output due to opening / closing of the door and raising / lowering of the driver.
- the vehicle-side control unit 101 uses the acceleration detection output after the charging operation. It is good also as a structure which calculates the moving amount
- FIG. 8 is a flowchart for explaining the charging procedure of the fourth embodiment.
- the vehicle power supply system of the fourth embodiment has the same configuration as that of the third embodiment.
- Part of the operation of power reception device 20 is the same as that of the second and third embodiments, and the operation of power supply device 30 is the same as that of the third embodiment.
- the same processing steps as those of the second and third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
- the processes of steps S201, S202, S209, and S210 in FIG. 8 are performed, and the process shifts to the process loop of steps S211 to S213.
- a power supply stop request is sent to the power supply apparatus 30 in step S206 to stop power supply.
- the vehicle-side control unit 101 sends the motion detection information to the vehicle-side communication unit 104.
- This motion detection information is information indicating that the positional deviation between the power reception unit 103 and the power supply unit 106 may exceed the allowable error of the power supply operation.
- the power supply side control unit 107 receives this information via the power supply side communication unit 105 as described in the flowchart of FIG. And based on this motion detection information, the electric power feeding side control part 107 controls the electric power feeding part 106, and stops electric power feeding.
- the vehicle-side control unit 101 monitors the output of the acceleration sensor 109 and transmits motion detection information to the power feeding device 30 when there is a change in acceleration. . Further, according to the power feeding device 30 of the fourth embodiment, during power feeding, the power feeding side control unit 107 monitors whether or not the motion detection information is received, and stops power feeding when the motion detection information is received. . Therefore, in this vehicle power supply system, even if a position shift occurs between the power receiving unit 103 and the power supply unit 106 during power supply, an abnormal power supply state in which leakage magnetic field and unnecessary radiation increase is caused. Is prevented.
- the power receiving device detects the movement of the vehicle 10 based on the output of the wheel speed sensor 108 or the acceleration sensor 109.
- the power receiving device uses both detections in combination to detect the small size of the vehicle 10. It is good also as a structure which detects a motion more accurately.
- the power receiving device may be configured to detect a change in the relative position between the power feeding device 30 and the vehicle 10 using a reflective photosensor (photo reflector).
- the configuration for performing non-contact power transmission is a configuration of an electromagnetic induction method using a power feeding coil and a power receiving coil.
- this non-contact power transmission configuration may be any type of configuration as long as the power receiving unit and the power feeding unit need to be accurately positioned during power feeding. With such a configuration, the present invention can be effectively applied.
- the present invention is useful for a power receiving device that is mounted on a vehicle that runs on electricity and receives power from outside without contact, and a power feeding device that supplies power.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Secondary Cells (AREA)
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
Abstract
給電が開始された後に、給電部と受電部の位置がずれて異常な給電状態を発生させてしまうことを防止できる給電装置及び車両の受電装置を提供する。この給電装置30は、車両10に搭載された受電部103へ非接触で給電を行う給電部106と、車両10に搭載された車両側通信部104と通信を行う給電側通信部105と、給電部106の動作制御を行う給電側制御部107とを備える。給電側制御部107は、給電部106による給電の開始後、給電側通信部105が車両側通信部104から車両の動き検知有りを示す情報を受信した場合に、給電部106による給電を停止させる。
Description
本発明は、車両へ非接触の給電を行う給電装置及び非接触で受電を行う車両の受電装置に関する。
近年、電気で走行する車両(例えば電気自動車またはハイブリッド自動車など)に対して、非接触で給電を行う給電システムについて開発がなされている。このような給電システムでは、車両に受電装置が搭載される一方、駐車スペースの地面等に給電装置が設置される。そして、車両が駐車スペースに停車している間に給電装置から受電装置へ送電が行われる。受電装置の受電部と給電装置の給電部とには、例えば受電用のコイルと給電用のコイルとがそれぞれ設けられ、給電部から受電部へ電磁誘導方式で電力が送られる。
また、本発明に関連する技術として、特許文献1には、次のような非接触の給電システムが開示されている。この給電システムは、車両が停止した状態で給電が行われるように、車両のパーキングブレーキが掛けられた場合に、給電要求を給電装置へ送信できるようにしたものである。
電磁誘導方式により非接触で車両に給電を行う給電システムにおいては、給電装置の給電部と受電装置の受電部とが数センチ以内の誤差で位置合わせされた状態で、給電を行う必要がある。給電部と受電部との位置が合っていないと、漏洩磁界および不要輻射が増大して、正常な給電が行えなくなるという課題が発生する。
また、このような非接触の給電システムでは、給電の開始時に両者の位置が正確に合っていても、その後の給電中に両者の位置がずれてしまうと、上記と同様に漏洩磁界および不要輻射が増大して異常な給電状態となってしまう。
例えば、上記特許文献1のシステムでは、パーキングブレーキが掛けられて車両の停止状態が確認されてから給電が開始されるが、給電中に、パーキングブレーキが緩められて車両が動いてしまうと、上記と同様に異常な給電状態が発生してしまう。また、パーキングブレーキが掛けられたままであっても、ブレーキの緩みや劣化等で制動の効き具合が悪くなっている場合に、上記と同様に異常な給電状態が発生しえる。例えば、車両に人がもたれかかった場合、傾斜途中に車輪が乗り上げて車両が停止している場合、可動物に車輪が乗り上げて車両が停止している場合、または、地震が発生した場合などに、停車中でも車両が数センチ程度移動してしまう可能性がある。
本発明の目的は、給電部と受電部との位置が合って給電が開始された後に、給電部と受電部の位置がずれて異常な給電状態が発生してしまうことを防止できる給電装置及び車両の受電装置を提供することである。
本発明の一態様に係る給電装置は、車両に搭載された受電部へ非接触で給電を行う給電部と、前記車両に搭載された車両側通信部と通信を行う給電側通信部と、前記給電部の動作制御を行う給電側制御部と、を具備し、前記給電側制御部は、前記給電部による給電の開始後、前記給電側通信部が前記車両側通信部から前記車両の動き検知有りを示す情報を受信した場合、あるいは、前記給電部による給電の開始後、前記車両の動き検知有りを示す情報に基づき前記車両側通信部から送信される給電停止指令を前記給電側通信部が受信した場合に、前記給電部による給電を停止させる構成を採る。
本発明の一態様に係る車両の受電装置は、車両に搭載される受電装置であって、前記車両の外部に設けられた給電装置の給電部から非接触で受電を行う受電部と、前記給電装置に設けられた給電側通信部と通信を行う車両側通信部と、前記車両に搭載されて前記車両の動きを検知する動き検知部の検知情報を入力する車両側制御部と、を具備し、前記車両側制御部は、前記受電部による受電の開始後、前記動き検知部から動き検知有りを示す検知情報を入力した場合に、動き検知有りを示す情報、或いは、給電を停止させる指令を前記車両側通信部から前記給電側通信部へ送信させる構成を採る。
本発明によれば、給電部と受電部との位置が合わされて給電が開始された後、給電部と受電部の位置がずれた場合に、給電が停止されて、異常な給電状態が発生してしまうことを防止できる。
以下、本発明の各実施の形態について図面を参照して詳細に説明する。
(実施の形態1)
図1は、本発明の実施の形態1の車両用電力供給システムの要部を示す構成図である。
図1は、本発明の実施の形態1の車両用電力供給システムの要部を示す構成図である。
本発明の実施の形態1の車両用電力供給システムは、車両10に搭載される受電装置20と、駐車スペースの地面に設置される給電装置30とを備えている。受電装置20は、車両側通信部104と、受電部103と、車両側制御部101とを備え、この受電装置20には、車両10の車輪速センサ108と、蓄電池102とが接続されている。給電装置30は、給電側通信部105と、給電部106と、給電側制御部107とを備えている。
車両10は、電力により走行することが可能な電気自動車またはハイブリッド自動車などであり、走行用の電力を蓄える蓄電池102を備えている。蓄電池102は、例えば大容量のリチウムイオン電池などである。
車両側通信部104と給電側通信部105とは、車両10が給電装置30の近傍にある状態で無線によりデータ通信可能にされる。これらの車両側通信部104と給電側通信部105とを介して、車両側制御部101と給電側制御部107とが無線により互いにデータ通信を行う。
給電部106は、給電用のコイルを有し、このコイルに交流電流を流して電磁誘導方式により受電部103へ電力を送る。
受電部103は、受電用のコイルを有し、電磁誘導方式により給電部106から電力を受ける。そして、受電部103は、受電した電力を蓄電池102(その充電回路)へ送る。
給電側制御部107は、制御プログラムを記憶した記憶手段を有し、この制御プログラムに従って、給電側通信部105を介して車両側制御部101から指令および情報を受け取り、また、給電部106の駆動制御を行う。
車両側制御部101は、制御プログラムを記憶した記憶手段を有し、この制御プログラムに従って、車両側通信部104を介して給電側制御部107へ指令および情報を送り、また、受電部103の駆動制御を行う。受電部103の駆動制御には、受電部103の回路を開閉する制御と、受電部103と蓄電池102(その充電回路)との間の電路を開閉する制御等が含まれる。
車輪速センサ108は、ABS(Antilock Brake System)において車輪の回転状態を検出するために車両10に設けられているセンサである。この車輪速センサ108は、車両10のタイヤが微小量回転したことを検知可能なセンサであり、所定量の回転ごとに例えば1つの検出パルスを出力する。車輪速センサ108が検知可能なタイヤの回転量は、車両10の移動量に換算して、短い長さ(例えば4センチなど)であり、受電部103と給電部106との位置合わせの許容誤差程度の長さに設定されている。なお、車輪速センサ108としては、ABSの車輪速センサを流用したものでなく、受電の制御のために専用に車両10に設けられたものを採用してもよい。
図2は、実施の形態1の充電手順を説明するフローチャートである。図2において、ステップS201,S202はユーザが行う処理であり、ステップS203~S206は車両側制御部101が制御プログラムに従って実行する処理である。
車両10の蓄電池102へ充電を行う場合、先ず、ユーザは、車両10を所定の精度で充電用の停止位置に停車させる。これにより、受電部103と給電部106とが所定の誤差内の精度で位置合わせされる(ステップS201)。続いて、ユーザは、充電開始の操作を行う(ステップS202)。操作が行われなければ(ステップS202の「無し」)充電動作は開始されずに、この充電処理は終了する。
なお、ステップS202の充電開始の操作は、ユーザが車両10内で図示略の操作スイッチを操作することで実行されるように構成できる。そして、この操作スイッチの操作信号が車両側制御部101へ送られることで、車両側制御部101がその後の充電処理を開始する。
或いは、ステップS202の充電開始の操作は、駐車場に充電開始の操作スイッチを設けて、ユーザがこの操作スイッチを操作することで実行されるようにしてもよい。そして、この操作スイッチの操作信号が無線により車両側通信部104を介して車両用制御部101へ送られるように構成してもよい。或いは、駐車場に充電開始の操作スイッチが設けられ、この操作スイッチの操作信号が、給電側制御部107に入力される構成としてもよい。そして、この操作信号が、給電側通信部105と車両側通信部104との通信により車両側制御部101へ送られて、充電処理が開始されてもよい。また、車両10が充電用の停止位置に停車したことを検出する検出装置を設け、この検出装置が車両の停車を検出したことを充電開始の操作とみなして、この検出信号が車両側通信部104へ送られるように構成してもよい。
充電開始の操作があると、車両側制御部101は、給電開始要求を車両側通信部104を介して給電装置30へ送信する(ステップS203)。この給電開始要求は、給電側通信部105を介して給電側制御部107へ送られ、この要求に基づき給電側制御部107は給電部106の駆動制御を行って給電を開始する。なお、給電開始要求は、車両の速度がゼロのとき、すなわち、車両が停止中であることが確認されたときのみ送信可能にすると好ましい。
給電開始要求を送信したら、続いて、車両側制御部101は、車輪速センサ108の出力の監視(ステップS204)と、充電状況(充電完了となったか否か)の監視(ステップS205)とを繰り返し実行する処理ループへ処理を移行させる。車両側制御部101は、例えば蓄電池102が満充電となった場合に充電完了と判別する。そして、車輪速センサ108の出力があって車両側制御部101が車輪が回転したと判別するか、或いは、車両側制御部101が充電完了と判別すると、車両側制御部101の処理がステップS204,S205の処理ループから抜ける。
処理ループを抜けたら、車両側制御部101は、給電停止要求を車両側通信部104を介して給電装置30へ送信する(ステップS206)。この給電停止要求は、給電側通信部105を介して給電側制御部107へ送られ、給電側制御部107はこの要求に基づき給電部106を制御して給電を停止させる。そして、充電処理が終了する。
この実施の形態1の受電装置20によれば、給電中に車両側制御部101が車輪速センサ108の出力を監視して、この出力があった場合に、給電を停止させるようになっている。従って、車両用電力供給システムにおいては、給電中に受電部103と給電部106との間に位置ズレが生じた場合でも、漏洩磁界および不要輻射が増大するような異常な給電状態になることが防止される。
なお、実施の形態1において、車両10は、車両10の上下方向および左右方向の加速度を検出する加速度センサを備え、この加速度センサの出力が車両側制御部101へ出力される構成としてもよい。さらに、車両側制御部101は、車輪速センサ108の出力に基づき車両10が前後方向に移動したことを判別するとともに、加速度センサの出力に基づき車両10が上下方向または左右方向に変動したことを判別する構成としてもよい。そして、車両側制御部101は、これら前後方向の移動を判別した場合、または、上下方向または左右方向の変動を判別した場合に、給電を停止させるための制御を行ってもよい。
このような構成とすることで、給電中に車両10が前後方向に移動した場合のみならず、左右または上下に変動するような事態が生じた場合にも、給電を停止させて、漏洩磁界および不要輻射が増大するような異常な給電状態になることを防止することができる。
(実施の形態2)
本発明の実施の形態2の車両用電力供給システムは、実施の形態1のシステムと同様の構成であり、処理の一部が実施の形態1と異なるのみである。同様の構成および処理については同一符号を付して説明を省略する。
本発明の実施の形態2の車両用電力供給システムは、実施の形態1のシステムと同様の構成であり、処理の一部が実施の形態1と異なるのみである。同様の構成および処理については同一符号を付して説明を省略する。
図3は、実施の形態1の充電手順を説明するフローチャートである。
実施の形態2では、実施の形態1と同様に、図3のステップS201~S203の処理が行われた後、ステップS204,S205の処理ループへ移行する。そして、処理ループの中で充電完了と判断されると、ステップS206で給電停止要求が給電装置30へ送られて給電が停止される。
また、実施の形態2では、ステップS204,S205の処理ループ中に車輪速センサ108の出力があって処理ループを抜けると、車両側制御部101は、動き検知情報を車両側通信部104を介して給電装置30へ送信する(ステップS207)。この動き検知情報は、受電部103と給電部106との位置がずれて、この位置ズレが許容誤差を上回る可能性のあることを示す情報となる。そして、動き検知情報が送信されたら、給電部106の停止を確認したあと車両側制御部101は充電処理を終了する。
図4は、実施の形態2の給電側制御部107の制御手順を示すフローチャートである。
給電側制御部107は、給電開始前には、給電側通信部105の受信データを入力して給電開始要求の受信の監視を行う(ステップS301)。そして、給電側制御部107は、この給電開始要求が受信されたら、給電部106を駆動して給電を開始する(ステップS302)。
給電が開始されると、給電側制御部107は、受電装置20からの動き検知情報の受信の監視(ステップS303)と、受信装置20からの給電停止要求の受信の監視(ステップS304)とを行う処理ループへ処理を移行させる。そして、給電側通信部105を介して給電停止要求が受信されるか、或いは、動き検知情報が受信されると、給電側制御部107のステップS303,S304の処理ループを抜ける。
ステップS303,S304の処理ループを抜けると、給電側制御部107は、給電部106を制御して給電を停止させる(ステップS305)。
この実施の形態2の受電装置20によれば、給電中、車両側制御部101が、車輪速センサ108の出力を監視して、この出力があった場合に、給電装置30へ動き検知情報を送信する。また、この実施の形態2の給電装置30によれば、給電中、給電側制御部107が動き検知情報の受信の有無を監視し、この受信があった場合に、給電を停止させる。従って、車両用電力供給システムにおいては、給電中に受電部103と給電部106との間に位置ズレが生じた場合でも、漏洩磁界および不要輻射が増大するような異常な給電状態になることが防止される。
(実施の形態3)
図5は、本発明の実施の形態3の車両用電力供給システムの要部を示す構成図である。この実施の形態3の車両用電力供給システムの構成または動作において、実施の形態1と同様のものは同一符号を付して説明を省略する。
図5は、本発明の実施の形態3の車両用電力供給システムの要部を示す構成図である。この実施の形態3の車両用電力供給システムの構成または動作において、実施の形態1と同様のものは同一符号を付して説明を省略する。
実施の形態3の車両用電力供給システムでは、給電中における車両10の僅かな移動を検知するために車輪速センサ108の代わりに、加速度センサ109を採用している。
図6には、加速度センサ109の作用を説明する図を示す。図6に示すように、加速度センサ109は、互いに直交する3軸方向の加速度をそれぞれ検出するセンサであり、車両10に所定の向きで設置されて、検出出力を車両側制御部101へ送る。車両側制御部101は、この検出出力に基づいて、車両10の進行方向Xbの加速度、右側方向Ybの加速度、鉛直下方向Zbの加速度を認識することができる。また、加速度センサ109の出力には、車両10が動いていないときでも、常に、重力加速度の出力が現れる。
この加速度センサ109としては、車両10に備わる何らかの機能(例えばカーナビケーション機能)のために車両10に予め搭載されている加速度センサを流用してもよいし、受電の制御のために専用に設けられたものを採用してもよい。なお、加速度センサ109は、3軸のセンサに限られず、例えば車両10の前後方向など、1軸方向の加速度のみを検出可能な構成でもよい。加速度センサ109が車両10の前後方向の加速度を検知することで実施の形態1の車輪速センサ108の代替的な機能が実現される。また、前後方向の加速度を検知する加速度センサと、車両10の上下方向または左右方向の加速度を検知する加速度センサとを組み合わせることで車両10の動きの検出の確実性を向上させることができる。
図7は、実施の形態3の充電手順を説明するフローチャートである。
実施の形態3では、実施の形態1と同様にステップS201,S202の処理が行われて充電操作がなされると、車両側制御部101は、次のような処理を実行する。すなわち、先ず、車両側制御部101は、以降の加速度変化を求めるために、その時点(すなわち車両10の停止時)の加速度センサ109の検出結果(加速度As)を入力して、この値を記憶する(ステップS209)。続いて、車両側制御部101は、給電装置30へ給電開始要求を送信する(ステップS210)。そして、この給電開始要求の送信により給電が開始される。
給電が開始されたら、車両側制御部101は、加速度変化の有無と充電完了の監視を行う処理ループ(ステップS211~S213)へ処理を移行させる。すなわち、車両側制御部101は、先ず、加速度センサ109のその時点の検出結果(加速度At)を入力して、この加速度AtからステップS209で記憶された加速度Asを減算して、加速度変化を求める(ステップS211)。続いて、この加速度変化と閾値とを比較して、閾値を超えているか判別する(ステップS212)。その結果、閾値を超えていれば、ステップS211~S213の処理ループから車両側制御部101の処理が抜ける。一方、閾値を超えていなければ、車両側制御部101は充電完了か確認し(ステップS213)、未完了であればステップS211へ戻り、完了であれば処理ループを抜ける。
ステップS212の判別処理の閾値は、次のように設定される。すなわち、加速度センサ109は、重量の大きな車両10に固定されているため、小さな力や振動が車両10へ加わった程度では、出力を変化させず、車両10が前後左右に僅か(例えば、0.2~2cm)に動くような大きな力が加わっても、出力の変化は比較的小さくなる。従って、上記の閾値には、このように車両10が前後左右に僅かに動くような加速度変化が識別できる値が設定され、この閾値はほぼゼロとなる場合もある。
ステップS211~S213の処理ループ中、加速度変化が閾値を超えた場合、或いは車両側制御部101が充電完了と判別した場合には、車両側制御部101は給電停止要求を給電装置30へ送信する(ステップS214)。この給電停止要求の送信により、給電装置30の給電が停止されて、充電処理が終了する。
この実施の形態3の受電装置20によれば、給電中に車両側制御部101が加速度センサ109の出力を監視し、この出力に基づき閾値以上の加速度変化が検出されると、給電を停止させるようになっている。従って、車両用電力供給システムにおいては、給電中に受電部103と給電部106との間に位置ずれが生じた場合でも、漏洩磁界および不要輻射が増大するような異常な給電状態になることが防止される。
なお、加速度センサ109の感度が高くて、車両10が全く動かないような小さな振動等によってもセンサ出力が変化する場合には、受電装置20は一定のセンサ出力の変化を無視する構成としてもよい。例えば、車両側制御部101は、車両10のドアの開閉センサから検出信号を入力し、且つ、この検出信号に基づきドアの開閉から所定期間だけステップS212の判別処理で使用する閾値を大きく設定変更する構成とする。このように構成することで、受電装置20は、ドアの開閉や運転手の昇降によるセンサ出力の変化を無視することができる。さらに、加速度センサ109の感度および検出精度が非常に高くて、加速度の検出から車両10の移動量が正確に算出できるような場合には、車両側制御部101は加速度の検出出力から充電操作後の車両10の移動量を算出する構成としてもよい。そして、車両側制御部101は、算出した移動量に基づいて給電を停止させる制御を行う構成としてもよい。
(実施の形態4)
図8は、実施の形態4の充電手順を説明するフローチャートである。この実施の形態4の車両用電力供給システムは、実施の形態3と構成が同一である。また、受電装置20の動作の一部は、実施の形態2および実施の形態3のものと同一であり、給電装置30の動作は、実施の形態3のものと同一である。図8の処理ステップにおいて、実施の形態2,3の処理ステップと同じ処理ステップは、同一符号を付して詳細な説明を省略する。
図8は、実施の形態4の充電手順を説明するフローチャートである。この実施の形態4の車両用電力供給システムは、実施の形態3と構成が同一である。また、受電装置20の動作の一部は、実施の形態2および実施の形態3のものと同一であり、給電装置30の動作は、実施の形態3のものと同一である。図8の処理ステップにおいて、実施の形態2,3の処理ステップと同じ処理ステップは、同一符号を付して詳細な説明を省略する。
実施の形態4では、実施の形態3と同様に、図8のステップS201,S202,S209,S210の処理が行われて、ステップS211~S213の処理ループに移行する。そして、この処理ループの中で車両側制御部101が充電完了と判別すると、ステップS206で給電停止要求が給電装置30へ送られて給電が停止される。
実施の形態4では、ステップS211,S213の処理ループ中、車両側制御部101が加速度変化を検出して処理ループを抜けると、車両側制御部101は、動き検知情報を車両側通信部104を介して給電装置30へ送信する(ステップS207)。この動き検知情報は、受電部103と給電部106との位置ズレが給電動作の許容誤差を超える可能性があることを示す情報となる。
動き検知情報が送信されると、給電側制御部107は、図4のフローチャートで説明したように、給電側通信部105を介してこの情報を受信する。そして、この動き検知情報に基づいて、給電側制御部107は、給電部106を制御して給電を停止させる。
この実施の形態4の受電装置20によれば、給電中、車両側制御部101は、加速度センサ109の出力を監視し、加速度変化があった場合に、動き検知情報を給電装置30へ送信する。また、この実施の形態4の給電装置30によれば、給電中、給電側制御部107は、上記の動き検知情報の受信の有無を監視し、この受信があった場合に、給電を停止させる。従って、この車両用電力供給システムにおいては、給電中に受電部103と給電部106との間に位置ずれが生じた場合でも、漏洩磁界および不要輻射が増大するような異常な給電状態になることが防止される。
以上、本発明の各実施の形態について説明した。
なお、各実施の形態では、受電装置が車輪速センサ108または加速度センサ109の出力に基づき車両10の動きを検出するようにしているが、受電装置は両者の検出を併用して車両10の小さな動きをより精度高く検出する構成としてもよい。また、受電装置は反射型のフォトセンサ(フォトリフレクタ)を用いて、給電装置30と車両10との相対位置の変化を検出する構成としてもよい。
また、各実施の形態において、非接触で送電を行う構成は、給電コイルと受電コイルとを用いた電磁誘導方式の構成としている。しかしながら、この非接触で送電を行う構成は、給電中に受電部と給電部との位置が正確に合っている必要のある構成であれば、どのような方式の構成であってもよい。このような構成であれば、本発明は有効に適用できる。
また、上記実施の形態では、本発明をハードウェアと制御部によるソフトウェアとの連携により実現する構成を例にとって説明したが、ソフトウェアにより実現した部分はハードウェアによって実現することも可能である。
2011年9月15日出願の特願2011-201726の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
本発明は、電気で走行する車両に搭載されて外部から非接触で受電を行う受電装置、および、給電を行う給電装置に有用である。
10 車両
20 受電装置
30 給電装置
101 車両側制御部
102 蓄電池
103 受電部
104 車両側通信部
105 給電側通信部
106 給電部
107 給電側制御部
108 車輪速センサ
109 加速度センサ
20 受電装置
30 給電装置
101 車両側制御部
102 蓄電池
103 受電部
104 車両側通信部
105 給電側通信部
106 給電部
107 給電側制御部
108 車輪速センサ
109 加速度センサ
Claims (10)
- 車両に搭載された受電部へ非接触で給電を行う給電部と、
前記車両に搭載された車両側通信部と通信を行う給電側通信部と、
前記給電部の動作制御を行う給電側制御部と、
を具備し、
前記給電側制御部は、
前記給電部による給電の開始後、前記給電側通信部が前記車両側通信部から前記車両の動き検知有りを示す情報を受信した場合、あるいは、前記給電部による給電の開始後、前記車両の動き検知有りを示す情報に基づき前記車両側通信部から送信される給電停止指令を前記給電側通信部が受信した場合に、前記給電部による給電を停止させる
給電装置。 - 前記動き検知有りを示す情報は、前記車両の車輪速センサが車輪の回転を検知したことを示す情報である
請求項1記載の給電装置。 - 前記動き検知有りを示す情報には、さらに、前記車両の加速度センサが前記車両の左右又は上下の加速度変化を検知したことを示す情報が含まれる
請求項2記載の給電装置。 - 前記動き検知有りを示す情報は、前記車両の加速度センサが車両の加速度変化を検知したことを示す情報である
請求項1記載の給電装置。 - 前記加速度センサは、車両の前後方向、上下方向および左右方向を含む三次元方向のうち、少なくとも所定の一方向の加速度変化を検知する
請求項4記載の給電装置。 - 車両に搭載される受電装置であって、
前記車両の外部に設けられた給電装置の給電部から非接触で受電を行う受電部と、
前記給電装置に設けられた給電側通信部と通信を行う車両側通信部と、
前記車両に搭載されて前記車両の動きを検知する動き検知部の検知情報を入力する車両側制御部と、
を具備し、
前記車両側制御部は、
前記受電部による受電の開始後、前記動き検知部から動き検知有りを示す検知情報を入力した場合に、動き検知有りを示す情報、あるいは、給電を停止させる指令を前記車両側通信部から前記給電側通信部へ送信させる
車両の受電装置。 - 前記動き検知部は、前記車両の車輪の回転を検知する車輪速センサである
請求項6記載の車両の受電装置。 - 前記動き検知有りを示す情報には、さらに、前記車両の加速度センサが前記車両の左右又は上下の加速度変化を検知したことを示す情報が含まれる
請求項7記載の車両の受電装置。 - 前記動き検知部は、前記車両の加速度を検知する加速度センサであり、
前記動き検知有りを示す検知情報は、加速度の変化有りを示す情報である
請求項6に記載の車両の受電装置。 - 前記加速度センサは、車両の前後方向、上下方向および左右方向を含む三次元方向のうち、少なくとも所定の一方向の加速度変化を検知する
請求項9記載の車両の受電装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-201726 | 2011-09-15 | ||
JP2011201726A JP2013063004A (ja) | 2011-09-15 | 2011-09-15 | 給電装置及び車両の受電装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013038642A1 true WO2013038642A1 (ja) | 2013-03-21 |
Family
ID=47882893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/005719 WO2013038642A1 (ja) | 2011-09-15 | 2012-09-10 | 給電装置及び車両の受電装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013063004A (ja) |
WO (1) | WO2013038642A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10381885B2 (en) | 2013-03-22 | 2019-08-13 | Panasonic Intellectual Property Management Co., Ltd. | Power-feeding device |
CN114514140A (zh) * | 2019-09-18 | 2022-05-17 | 株式会社电装 | 车辆供电系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6222986B2 (ja) * | 2013-05-16 | 2017-11-01 | キヤノン株式会社 | 電子機器、制御方法、プログラム及び記録媒体 |
JP6566614B2 (ja) * | 2014-08-08 | 2019-08-28 | キヤノン株式会社 | 充電装置及びその制御方法 |
JP6672547B2 (ja) * | 2016-04-19 | 2020-03-25 | 株式会社ダイヘン | 非接触電力伝送システム、および、受電装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010226945A (ja) * | 2009-02-25 | 2010-10-07 | Maspro Denkoh Corp | 移動体の電力供給システム |
WO2010137145A1 (ja) * | 2009-05-28 | 2010-12-02 | トヨタ自動車株式会社 | 充電システム、車両および充電システムの制御方法 |
-
2011
- 2011-09-15 JP JP2011201726A patent/JP2013063004A/ja not_active Withdrawn
-
2012
- 2012-09-10 WO PCT/JP2012/005719 patent/WO2013038642A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010226945A (ja) * | 2009-02-25 | 2010-10-07 | Maspro Denkoh Corp | 移動体の電力供給システム |
WO2010137145A1 (ja) * | 2009-05-28 | 2010-12-02 | トヨタ自動車株式会社 | 充電システム、車両および充電システムの制御方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10381885B2 (en) | 2013-03-22 | 2019-08-13 | Panasonic Intellectual Property Management Co., Ltd. | Power-feeding device |
EP2985867B1 (en) * | 2013-03-22 | 2020-04-29 | Panasonic Intellectual Property Management Co., Ltd. | Power-feeding device |
US10766373B2 (en) | 2013-03-22 | 2020-09-08 | Panasonic Intellectual Property Management Co., Ltd. | Power-feeding device |
CN114514140A (zh) * | 2019-09-18 | 2022-05-17 | 株式会社电装 | 车辆供电系统 |
CN114514140B (zh) * | 2019-09-18 | 2024-04-26 | 株式会社电装 | 车辆供电系统 |
Also Published As
Publication number | Publication date |
---|---|
JP2013063004A (ja) | 2013-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013038642A1 (ja) | 給電装置及び車両の受電装置 | |
JP5735614B2 (ja) | 無線電力伝送システム、送電ユニットおよび受電ユニット | |
KR101922781B1 (ko) | 충전 장치 | |
US10059207B2 (en) | Crash detection when a motor vehicle is at a standstill | |
JP6384416B2 (ja) | 車両制御装置 | |
US10766373B2 (en) | Power-feeding device | |
KR20180050715A (ko) | 유도성 에너지 전송 방법 및 유도성 에너지 전송 장치를 작동하기 위한 장치 | |
KR101952540B1 (ko) | 전동 킥보드 장치 | |
JP6025185B1 (ja) | 給電システムおよび給電方法 | |
JP2009148108A (ja) | 車両用非接触式充電装置 | |
JP2007189769A (ja) | 交通システムの充電方法及び充電システム | |
KR20140040206A (ko) | 차량 작동 방법 및 장치, 컴퓨터 프로그램, 및 컴퓨터 프로그램 제품 | |
US10583745B2 (en) | Non-contact power transmission system | |
JP2015104161A (ja) | 非接触送電装置および非接触電力伝送システム | |
JP2015101225A (ja) | 車両制御装置 | |
JP2017093253A (ja) | バッテリパックおよびこれを備えたバッテリシステム | |
CN115071460A (zh) | 车辆充电系统及车辆 | |
CN103238262A (zh) | 车载充电器及其程序 | |
CN103986199A (zh) | 电动车辆的充电装置 | |
JP2016211210A (ja) | 駐車設備システム | |
JP2019047611A (ja) | 非接触充電装置、及び、非接触充電方法 | |
US9278621B2 (en) | Vehicular control system and its operating method | |
JP6097484B2 (ja) | 充電システム、車載器、充電装置、車両 | |
JP2021023034A (ja) | 車載用の非接触充電装置及び車両 | |
JP2019097290A (ja) | 車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12832371 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12832371 Country of ref document: EP Kind code of ref document: A1 |