WO2013038624A1 - Method for producing capacitive touch panel sensor substrate, capacitive touch panel sensor substrate, and display device - Google Patents

Method for producing capacitive touch panel sensor substrate, capacitive touch panel sensor substrate, and display device Download PDF

Info

Publication number
WO2013038624A1
WO2013038624A1 PCT/JP2012/005649 JP2012005649W WO2013038624A1 WO 2013038624 A1 WO2013038624 A1 WO 2013038624A1 JP 2012005649 W JP2012005649 W JP 2012005649W WO 2013038624 A1 WO2013038624 A1 WO 2013038624A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
panel sensor
capacitive touch
sensor substrate
conductive material
Prior art date
Application number
PCT/JP2012/005649
Other languages
French (fr)
Japanese (ja)
Inventor
宏希 後藤
松政 健司
港 浩一
保浩 檜林
元気 原田
由佳 山内
吉隆 松原
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to TW101133494A priority Critical patent/TW201333792A/en
Publication of WO2013038624A1 publication Critical patent/WO2013038624A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a method for manufacturing a capacitive touch panel sensor substrate, a capacitive touch panel sensor substrate, and a display device.
  • the touch panel is a touch panel that allows the operator to input data by touching a transparent surface on the display screen with a finger or the like and detecting the touched position.
  • This touch panel has been used frequently in recent years because it enables direct and intuitive input rather than key input.
  • this touch panel is often combined with a display panel such as a liquid crystal to input and output information in an integrated manner.
  • the touch panel detection method includes, for example, a resistance film type, a capacitance type, an ultrasonic type, and an optical type, and until now, the resistance film type, which was relatively superior in terms of manufacturing cost, has been the mainstream.
  • a resistive touch panel having a structure in which an air layer is provided between two transparent conductive films has low optical characteristics (for example, transmittance), and it cannot be said that durability and operating temperature characteristics are sufficient. Improvements have been sought.
  • capacitive touch panels that do not have moving parts have high optical characteristics and are superior to resistance film types in terms of durability and operating temperature characteristics, so they are especially developed for high-reliability applications such as in-vehicle use.
  • This type of capacitive touch panel can be broadly classified into a surface type and a projected type, and a surface type is used for a large product of 10 type (25.4 cm size) or more. In many cases, the projection type is used for small products of size 6 or less.
  • a surface type with a simple electrode plate structure is likely to be large, but it is difficult to detect two or more contact points simultaneously.
  • a projection type with a complicated electrode plate structure is disadvantageous for an increase in size, but two or more contact points can be detected simultaneously.
  • a sensor substrate for a projected capacitive touch panel generally includes a first transparent electrode arranged in the x direction, a second transparent electrode arranged in the y direction, and a first transparent electrode on a transparent substrate.
  • the first connection part that connects the first transparent electrodes
  • the second connection part that connects the second transparent electrodes
  • the part where the first connection part and the second connection part intersect And an insulating layer for electrically insulating the second connecting portion.
  • an extraction wiring connecting these transparent electrodes and the control circuit is formed on the transparent base material.
  • a protective layer is formed on the transparent base so that it covers almost the entire surface except the connection part of the lead-out wiring connected to the control circuit. (See, for example, Patent Document 3).
  • the projected capacitive touch panel includes a film type using a resin film such as polyethylene terephthalate (PET) and a glass type using non-alkali glass or soda lime glass as materials for the transparent substrate.
  • PET polyethylene terephthalate
  • the film type has the advantage that the manufacturing cost is low and it is difficult to break, but because the transparency is inferior and the resistance value of the transparent electrode on the film is high, the electrode part cannot be made small. It is often used for small products.
  • molybdenum (Mo) / aluminum (Al) / molybdenum film is formed by a sputtering method from the viewpoint of high conductivity and easy microfabrication, and photolithography using a positive resist (
  • a method of performing etching / resist peeling after the step is also widely used.
  • ITO indium tin oxide
  • a metal film is formed by sputtering on the substrate placed in the vacuum vessel. After that, it is necessary to perform protective film formation, etching, and protective film peeling, and not only there are many processes, but also the equipment cost is high.
  • this photolithography method after applying a photosensitive conductive paste on a substrate, the exposed portion of the coating film is photocrosslinked by irradiating the substrate with ultraviolet light through a photomask corresponding to the desired extraction wiring. It is a method of forming a lead-out wiring part by curing after removing the unexposed portion of the coating film from the substrate using a developing solution.
  • the object of the present invention is to produce a capacitive touch panel sensor substrate, rather than a conventional manufacturing method in which a transparent electrode, a connecting portion, an insulating layer, a lead-out wiring, and a protective layer are individually formed and patterned. It is an object of the present invention to provide a method for manufacturing a touch panel sensor substrate excellent in display quality, which can be manufactured at a low cost and does not impair visibility even when a metal material is used for a connection portion.
  • Another object of the present invention is to provide a touch panel sensor substrate that is inexpensively manufactured using the manufacturing method and has excellent display quality. Furthermore, it is to provide a cover glass-integrated touch panel sensor substrate that can be manufactured at a lower cost by reducing the number of components by using a cover glass for the transparent base material. Moreover, it is providing the display apparatus which has the above-mentioned electrostatic capacitance type touch panel sensor board
  • a transparent base material comprising: an insulating layer formed on a portion to be removed; and (F) an extraction wiring connected to the (A) first transparent electrode and the (B) second transparent electrode.
  • the step of forming the (E) insulating layer after performing one step of the step of forming or the step of forming the (D) second connecting portion, and the step of forming the (E) insulating layer.
  • step (C) forming the first connection portion or the step (D) forming the second connection portion is performed, and the (D) second connection portion and the (( F)
  • a method for manufacturing a capacitive touch panel sensor substrate is provided, wherein the reflectance of the lead-out wiring is in the range of 0% to 30%.
  • the conductor width of the (D) second connection portion may be in the range of 3 ⁇ m to 20 ⁇ m.
  • the conductive material may be a photosensitive conductive material.
  • the photosensitive conductive material may contain (G) a black material, (H) metal particles, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, and (K) a resin.
  • the (G) black material may be any one of a black pigment, a pseudo black mixture of two or more pigments, a black dye, and a metal compound.
  • the black material may be carbon black having an average particle diameter in the range of 10 nm to 500 nm.
  • the (H) metal particles are selected from gold (Au), silver (Ag), platinum (Pt), copper (Cu), palladium (Pd), iridium (Ir), rhodium (Rh), and aluminum (Al).
  • One or more metals may be included.
  • the particle diameter of the (H) metal particles may be in the range of 0.1 ⁇ m to 4 ⁇ m.
  • the (I) photopolymerization initiator may contain one or more O-acyloxime compounds.
  • the carbon black content may be in the range of 1 wt% to 100 wt% with respect to the weight of the (H) metal particles.
  • the conductive material for the (D) second connection portion and the (F) extraction wiring may be formed by a printing method and finely patterned by a photolithography method.
  • a capacitive touch panel sensor substrate manufactured by the above-described method for manufacturing a capacitive touch panel sensor substrate.
  • A a first transparent electrode, (B) a second transparent electrode, and (C) the first (A) first transparent electrode connected to each other.
  • a transparent layer comprising: an insulating layer formed at an intersecting portion of the substrate; and (F) an extraction wiring connected to the (A) first transparent electrode and the (B) second transparent electrode.
  • the (D) second connection portion is formed of the same material as the (F) lead-out wiring using a conductive material.
  • the conductor width of the (D) second connection portion may be in the range of 3 ⁇ m to 20 ⁇ m.
  • the conductive material may be a photosensitive conductive material.
  • the photosensitive conductive material may contain (G) a black material, (H) metal particles, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, and (K) a resin.
  • the (G) black material may be any one of a black pigment, a pseudo black mixture of two or more pigments, a black dye, and a metal compound.
  • the (G) black material may be carbon black having an average particle diameter in the range of 10 nm to 500 nm.
  • the (H) metal particles are selected from gold (Au), silver (Ag), platinum (Pt), copper (Cu), palladium (Pd), iridium (Ir), rhodium (Rh), and aluminum (Al). One or more metals may be included.
  • the particle diameter of the (H) metal particles may be in the range of 0.1 ⁇ m to 4 ⁇ m.
  • the (I) photopolymerization initiator may contain one or more O-acyloxime compounds.
  • the carbon black content may be in the range of 1 wt% to 100 wt% with respect to the weight of the (H) metal particles.
  • the transparent substrate may be the same as the cover glass. According to still another aspect of the present invention, a display device including the above-described capacitive touch panel sensor substrate is provided.
  • the conventional transparent electrode, connecting portion, insulating layer, lead-out wiring, and protective layer are each formed more independently than a manufacturing method for patterning. It is possible to provide a method for manufacturing a touch panel sensor substrate excellent in display quality that can be manufactured at low cost and does not impair visibility even when a metal material is used for a connection portion.
  • a touch panel sensor substrate that is inexpensively manufactured using the manufacturing method and has excellent display quality. Furthermore, by using a cover glass for the transparent base material, it is possible to provide a cover glass integrated touch panel sensor substrate that can be manufactured at a lower cost by reducing the number of components. In addition, it is possible to provide a display device having the above-described capacitive touch panel sensor substrate.
  • the second transparent electrode is interposed through the insulating layer.
  • the plane schematic diagram which shows an example of a capacitive touch panel sensor board
  • the first transparent electrode is inserted through the first transparent electrode, the second transparent electrode, and the insulating layer.
  • the plane schematic diagram which shows an example of the capacitive touch panel sensor board
  • FIG. 2 is a cross-sectional view taken along line AA ′ in FIG. 1. Sectional drawing in the BB 'line of FIG. The figure which shows the relationship between the reflectance in a capacitive touch panel sensor board
  • the schematic diagram which shows the flat type display apparatus provided with the electronic input device which has a touch-panel function in a prior art example in a cross section.
  • a method for manufacturing a projected capacitive touch panel sensor substrate according to the present invention and a projected capacitive touch panel sensor substrate manufactured using the same will be described in detail based on the embodiments thereof.
  • substrate of this invention is not limited to the following structures, unless the summary is exceeded.
  • FIG. 1 and 2 are plan views of the touch panel sensor substrate according to the first embodiment of the present invention, seen through the protective film 6.
  • FIG. 1 and FIG. 2 are examples in which the positional relationship among the first connection portion 3, the second connection portion 4, and the insulating layer 5 is different.
  • 4A shows a cross-sectional view taken along line AA ′ in FIG. 1
  • FIG. 4B shows a cross-sectional view taken along line BB ′ in FIG.
  • the projected capacitive touch panel sensor substrate according to the first embodiment includes a first transparent electrode 1, a second transparent electrode 2, and a first connection portion on a transparent substrate 10. 3, the second connection portion 4, the insulating layer 5, and the extraction wiring 20.
  • the insulating layer 5 is disposed in order to prevent and insulate the second connecting portion 4 orthogonal to the first connecting portion 3.
  • the projected capacitive touch panel sensor substrate according to the first embodiment can further include a protective film 6.
  • FIG. 1 shows a structure in which a first connection portion 3 is formed in the lowermost layer, an insulating layer 5 is provided thereon, and a second connection portion 4 is formed on the insulating layer 5.
  • the second connection portion 4 may be formed in the lowermost layer
  • the insulating layer 5 may be provided on the second connection portion 4
  • the first connection portion 3 may be formed on the insulating layer 5.
  • the first connection portion 3 and the second connection portion 4 may be in either the x direction or the y direction with respect to the transparent substrate 10.
  • glass plates such as a soda lime glass, a low alkali borosilicate glass, an alkali free alumino borosilicate glass, or a polyethylene terephthalate (PET), a triacetyl cellulose (A plastic plate or plastic film made of TAC), polymethyl methacrylate (PMMA), polycarbonate (PC), or the like may be used.
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • FIG. 3A is a projected view of a touch panel formed on the transparent base material 10 and including the touch panel sensor substrate according to the first embodiment and the cover glass 30.
  • a frame layer (bezel) is formed in a rectangular frame shape on the surface of the cover glass 30 on the touch panel sensor substrate side (that is, the surface of the cover glass 30 facing the transparent base material 10) (not shown). ).
  • This frame layer is formed so as to overlap, for example, the extraction wiring 20 when the touch panel sensor substrate according to the first embodiment formed on the transparent base material 10 and the cover glass 30 are overlapped.
  • FIG. 3B is a diagram showing the structure of a cover glass integrated projection type capacitive touch panel sensor substrate using a cover glass for the transparent base material 10.
  • the transparent base material 10 includes, for example, an aluminosilicate glass (for example, , "Gollila (Corning)", “IOX-FS (Corning)", “Dragonrail (Asahi Glass)”) or chemically strengthened special glass plates such as soda lime glass Can do.
  • a cover glass is used for the transparent base material 10
  • a single transparent base material component is provided to provide both a frame layer (bezel) (not shown) and the touch panel sensor 40 on a large glass substrate that is a base material. The number of points can be reduced, and a touch panel can be manufactured at low cost.
  • a normal cover glass is chemically strengthened after dividing a large glass substrate into individual pieces, sufficient strength is easily obtained.
  • a cover glass is used for the transparent substrate 10
  • the process of dividing the tempered glass into individual pieces by a method such as chemical etching or mechanical cutting is necessary, and there is a problem that the strength is weakened by dividing the reinforced large substrate into individual pieces. there were.
  • tempered glass such as cover glass is often used for the transparent substrate 10.
  • the first transparent electrode 1 and the second transparent electrode 2 are not particularly limited as long as the first transparent electrode 1 and the second transparent electrode 2 can be disposed on the surface of the transparent substrate 10.
  • ITO inorganic conductive materials such as polyethylene dioxythiophene / polystyrene sulfonic acid (PEDOT / PSS), polyaniline, polypyrrole, and other organic conductive materials can be used. These materials may be used alone or in combination of two or more. Among these, it is preferable to use ITO in terms of transparency and resistance value.
  • the first connection part 3 is formed simultaneously with the first transparent electrode 1 using the same transparent conductive material as the material of the first transparent electrode 1.
  • the first connection portion 3 is also formed at the same time, which means that a continuous transparent electrode pattern is formed without interruption in the x direction.
  • the second transparent electrode 2 arranged in the y direction with respect to the transparent substrate 10 is also formed simultaneously with the first transparent electrode 1 and the first connection portion 3. However, since the second transparent electrode 2 is not formed at the same time as the second connection portion 4, the second transparent electrode 2 is not yet connected in the y direction at this point.
  • the second connection portion 4 is formed simultaneously with the extraction wiring 20 using the same conductive material as that of the extraction wiring 20 through the insulating layer 5.
  • the connection part of the x direction with respect to the transparent base material 10 is the first connection part 3
  • the connection part of the y direction is the second connection part 4.
  • the x direction and the y direction may be reversed. That is, a structure in which the connection portion in the x direction is used as the second connection portion 3 and formed simultaneously with the extraction wiring 20 using the same conductive material as the material of the extraction wiring 20 may be used.
  • Examples of the conductive material of the second connection portion 4 and the extraction wiring 20 include gold (Au), silver (Ag), platinum (Pt), copper (Cu), palladium (Pd), iridium (Ir), rhodium (
  • a photosensitive conductive material such as a conductive paste in which conductive powders such as Rh) and aluminum (Al) are dispersed in an organic binder to impart photosensitivity can be preferably used.
  • the reflectance of the second connection part 4 and the extraction wiring 20 can be easily achieved by absorbing, scattering, and diffracting light from a metal film such as Mo, Al, Ag, Cu, Pd obtained by sputtering. And can be controlled within a range of 0% to 30%. Thereby, since the problem of pattern appearance can be easily avoided and the manufacturing cost can be suppressed, these conductive materials are preferably used. Furthermore, other known techniques for reducing the reflectance may be applied. If the reflectivity exceeds 30%, the degree of reflection of external light under normal use conditions increases, so that the pattern can be seen with the naked eye and display quality is degraded.
  • the “reflectance” in the first embodiment refers to the reflectance at 550 nm when the glass substrate surface side is measured using an ultraviolet-visible spectrophotometer.
  • “reflectance” refers to the substantial reflectance of the second connecting portion 4 itself and the extraction wiring 20 itself. That is, “reflectance is 0%” means a state in which incident light is not reflected by the second connection portion 4 itself and the extraction wiring 20 itself.
  • the reflectance is measured as a value including specular reflection as described later.
  • specular reflection The value of light reflection (so-called specular reflection) by the glass substrate itself is about 4%.
  • a Mo / Al / Mo three-layer structure (hereinafter also referred to as “MAM”) is formed by sputtering at a thickness of about 350 mm / 2000 mm / 350 mm, respectively, and after a photolithography process using a positive resist. Etching / resist stripping methods have been frequently used.
  • this metal material has a high reflectance, even if the second connection portion 4 in the display area is finely formed to have a conductor width of 8 ⁇ m ⁇ conductor length of about 200 ⁇ m, it is visually visible under normal use conditions. As a result, there is a problem of degrading display quality.
  • the blackening of the second connection portion 4 and the extraction wiring 20 serves to make the second connection portion 4 inconspicuous.
  • the conductor width of the second connection portion 4 is preferably in the range of 3 ⁇ m to 20 ⁇ m. If the conductor width of the second connection portion 4 is less than 3 ⁇ m, a malfunction (hereinafter also referred to as “electrostatic breakdown”) is likely to occur when a transient voltage such as static electricity is generated. On the other hand, when the conductor width of the second connection portion 4 is larger than 20 ⁇ m, not only the pattern is easily seen with the naked eye, but also the problem that the transmittance of the display area is lowered occurs.
  • the conductor thickness of the second connection portion 4 is preferably in the range of 1 ⁇ m or more and 5 ⁇ m or less. If the conductor thickness of the second connection portion 4 is less than 1 ⁇ m, sufficient conductivity cannot be obtained, and conduction failure may occur. On the other hand, if the conductor thickness of the second connection portion 4 is thicker than 5 ⁇ m, ultraviolet light does not reach the bottom during exposure in the photolithography process, and pattern formation becomes difficult.
  • the “conductor width” is the line width of the second connection portion 4, and the “conductor thickness” is the film thickness of the second connection portion 4.
  • the insulating layer 5 and the protective film 6 can be formed using known materials conventionally used for insulating layers and protective films.
  • inorganic films such as SiO 2 and SiN x and organic materials such as transparent resins are used. Can be mentioned. Since inorganic films are formed of SiO 2 or SiN x by a CVD method, a sputtering method, or the like, there is a problem that the manufacturing cost becomes high, such as an increase in energy consumption and the number of processes.
  • an organic material may be used.
  • a UV curable coating composition containing a polymerizable group-containing oligomer, monomer, photopolymerization initiator and other additives can be used.
  • ITO ⁇ Method for manufacturing capacitive touch panel sensor substrate>
  • the first transparent electrode 1, the second transparent electrode 2, and the first connection part 3 ITO that is generally used in many cases is suitable, but is not limited.
  • the characteristics of ITO or the characteristics as a transparent electrode pattern may be selected.
  • an ITO film a film having a film thickness of 30 nm and a sheet resistance value of about 100 ⁇ / ⁇ is formed by a thin film forming unit of a sputtering apparatus.
  • a resist pattern is formed by a photolithographic method including a series of steps of resist coating, exposure, and development using an etching-resistant photosensitive resin.
  • a pattern is formed through ITO etching and a resist peeling process.
  • a pattern is formed through ITO etching and a resist peeling process.
  • a large number of patterns having a conductor width of 50 ⁇ m to 100 ⁇ m and a conductor length of 200 ⁇ m to 500 ⁇ m are formed.
  • a photosensitive conductive material such as a conductive paste whose reflectance is controlled within a range of 0% to 30% is formed by a printing method such as screen printing, and a photolithographic method. Can be obtained by fine patterning.
  • the photolithographic method after applying a photosensitive conductive material on a substrate, the exposed portion of the coating is cured by photocrosslinking by irradiating the substrate with ultraviolet light through a photomask corresponding to the desired extraction wiring.
  • the unexposed portion of the coating film is removed from the base material using a developer and then baked to form a lead-out wiring pattern.
  • the metal electrode pattern itself can be used as an index of alignment with respect to a layer on which a subsequent pattern is formed.
  • an alignment mark can be provided independently in the same layer as the second connection portion 4 and the extraction wiring 20. Independently providing a mark for alignment can generally achieve higher accuracy in the alignment process in which a position correction amount is determined from pattern recognition and a movement for position correction is output.
  • the insulating layer 5 is formed so as to cover a range including the effective area of the first connection portion 3 or the second connection portion 4.
  • an insulating function can be obtained by forming a SiO 2 film with a thickness of 100 nm or more.
  • the organic insulating film can be formed by a photolithography method.
  • a photosensitive organic insulating film material having a refractive index of 1.53 and a volume resistivity of 2 ⁇ 10 15 ⁇ ⁇ cm is applied to a dry film by a coating method such as spray coating, spin coating, slit die coating, roll coating, or bar coating.
  • the coating is applied so that the thickness is 0.2 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m. If necessary, the dried film is exposed through a mask having a predetermined pattern provided in contact or non-contact with the film.
  • the kind of light beam at the time of exposure is not particularly limited, and examples thereof include visible light, ultraviolet rays, far infrared rays, electron beams, X-rays, etc. Among them, ultraviolet rays are preferable.
  • the illuminance of the light beam is not particularly limited, but is preferably 5 to 150 mW / cm 2 at 365 nm, and particularly preferably 15 to 35 mW / cm 2 .
  • a patterned insulating layer 5 having a transmittance exceeding 97% can be obtained.
  • the protective film 6 is provided with an effective area of the first transparent electrode 1, the second transparent electrode 2, the first connection part 3, the second connection part 4, the insulating layer 5, and the extraction wiring 20. It is formed over the range to include.
  • the protective film 6 can be formed using the materials and methods described in the description of the insulating layer 5 so that the dry film thickness is 0.5 to 20 ⁇ m, more preferably 1.0 to 10 ⁇ m.
  • the protective film 6 since the protective film 6 forms the outermost layer of the capacitive touch panel sensor substrate, it is desirable that the protective film 6 be disposed as widely as possible to serve as a planarization layer.
  • the protective film 6 may have a structure overlapping with a part of the metal layer 6b to be the formed terminal electrode.
  • the photosensitive conductive material used in the first embodiment has at least (G) black material, (H) metal particles, and (I) photopolymerization in order to control the reflectance within the range of 0% to 30%.
  • a photosensitive conductive material containing an initiator, (J) a polymerizable polyfunctional monomer, and (K) resin can be used.
  • the black material is selected from the group consisting of (L) one or more black pigments, (M) a pseudo black mixture of two or more pigments, (N) one or more black dyes, and (O) a metal oxide. At least one or more types of blackening components can be used as essential components. Moreover, the (P) solvent can also be contained in the photosensitive electrically-conductive material, and another additive can be included as needed.
  • the second connection part 4 and the lead-out wiring 20 constituting the capacitive touch panel sensor substrate according to the first embodiment are referred to as exposure, development, and thermosetting after the photosensitive conductive material is applied on the transparent substrate 10. It may be formed through a so-called photolithography process.
  • black pigment for example, aniline black or perylene black pigment can be used.
  • Black pigments such as Pigment Black 1, 6, 7, 12, 20, 31, 32 can be used.
  • the average particle size of the black pigment is preferably in the range of 10 nm to 500 nm, more preferably in the range of 10 nm to 300 nm.
  • the pseudo black mixture is, for example, a pigment used when forming a colored transparent layer of a color filter.
  • a yellow (YELLOW) pigment may be added in addition to a red pigment and a blue pigment.
  • yellow pigments absorb light in the low wavelength region of visible light, that is, light having a wavelength of 500 nm or less (for example, “Shoji Shiji (1965)“ Printing Ink Class ”(Nihon Printing Shimbun) P170. 173).
  • the yellow pigment absorbs low-wavelength visible light and can be made closer to black.
  • Examples of yellow (YELLOW) pigments include C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 144, 146, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, 173, 17 , It includes the 175,176,177,179,180
  • a violet pigment may be further added.
  • violet pigments include C.I. I. Pigment violet 1, 19, 23, 27, 29, 30, 32, 37, 40, 42, 50.
  • a pigment such as an orange pigment or a green pigment may be added.
  • the orange pigment include C.I. I. Pigment orange 36, 43, 51, 55, 59, 61, 71, 73, and the like.
  • the green pigment include C.I. I. And green pigments such as CI Pigment Green 7, 10, 36, 37, and 58.
  • an organic black pigment can be used as an auxiliary agent for reducing the reflectance. I. PBK 1, 30, 31, etc. are listed.
  • Examples of the chemical structure of the (N) black dye include triphenylmethane, anthraquinone, benzylidene, oxonol, cyanine, phenothiazine, pyrrolopyrazole azomethine, xanthene, phthalocyanine, benzopyran, and indigo. Can be mentioned. Of these, pyrazole azo dyes, anilinoazo dyes, pyrazolotriazole azo dyes, pyridone azo dyes, anthraquinone dyes, and anthrapyridone dyes are preferable.
  • colorant known dyes can be used as long as they are soluble in an organic solvent. Examples thereof include oil-soluble dyes, acid dyes or derivatives thereof, direct dyes, and modern dyes. Examples of the pigment used for the black dye include C.I. I. Acid Black 1, 24, 26, 31, 48, 50, 52, 52: 1, 58, 60, 63: 2, 64, 107, 109, 110, 112, 113, 118, 140, 155, 170, 172, 177 187, 188, 194, 207, 222, C.I. I. Direct Black 17, 19, 22, 51, 62, 91, 112, 117, 118, 122, 132, 146, 154, 159, 169, 173, C.I. I. Solvent Black 3, 4, 5, 27, 28, 29, 34, 45.
  • the black dye used in the first embodiment may be a pseudo black mixture of two or more dyes, or a pseudo black mixture having a light shielding property.
  • C.I. I. Acid Red1, 6, 9, 14, 18, 35, 37, 42, 50, 52, 57, 73, 87, 88, 89, 92, 97, 106, 111, 114, 118, 128, 134, 138, 143 143: 1,145,158,183,186,211,214,215,217,219,225,226,249,254,256,257,259,260,261,263,266,274,276,278 289, 299, 301, 303, 307, 315, 316, 317, 336, 337, 341, 355, 357, 359, 362, 366, 383, 399, 405, 407, 414, 416, 426, C.I.
  • a pseudo black color is obtained by mixing at least a dye composed of a system pigment.
  • pigments used for yellow (YELLOW) dyes include I.I. Acid Yellow 3, 17, 38, 40: 1, 42, 44: 1, 49, 61, 65, 67, 72, 79, 110, 114, 116, 117, 119, 121, 127, 129, 135, 141, 143, 155, 158, 161, 194, 204, 207, 220, 232, 235, 241, C.I. I. Direct Yellow 12, 86, 87, 130, 142, C.I. I. Reactive Yellow 84, 102 and the like.
  • a violet dye may be further added.
  • pigments used in violet dyes include C.I. I. Acid Violet 21, 42, 43, 47, 48, 49, 54, 97, 102 etc. are mentioned.
  • dyes such as orange dyes and green dyes may be added.
  • the pigment used for the orange dye include C.I. I. Orange 10, 19, 33, 50, 56, 67, 80, 108, 122, 142, 166, 130, C.I. I. Direct Orange 26, 39, C.I. I. Reactive Orange 1, 4 etc. are mentioned.
  • the pigment used as the green dye include C.I. I. Acid Green3, 5, 22, 25, 27, 28, 41 etc. are mentioned.
  • Examples of (O) metal compounds include silver oxide, iron oxide, zinc oxide, triiron tetroxide, cobalt oxide, titanium oxide, tin oxide, indium oxide, magnesium oxide, copper chromite, copper chromate, and cobalt-iron.
  • Composite oxide, cobalt-iron-chromium composite oxide, nickel-iron-chromium composite oxide, copper-iron-manganese composite oxide, cobalt-nickel composite oxide, titanium-vanadium-antimony composite oxide, tin-antimony Metal oxides such as composite oxide molybdenum disulfide can be used.
  • metal sulfides such as copper sulfide, iron sulfide, palladium sulfide, molybdenum disulfide and zinc sulfide, and metal nitrides such as titanium nitride, copper nitride and lithium nitride can be used.
  • the metal particles contained in the photosensitive conductive material are oxidized after pattern formation using an oxidizing agent such as sodium chlorite, sodium hypochlorite, and sodium nitrite and an alkaline aqueous solution of sodium hydroxide and sodium phosphate. You may form as a thing.
  • the particle diameter of (O) metal compound exists in the range of 0.1 micrometer or more and 4 micrometers or less.
  • the blackened layer may be formed by depositing tellurium chloride by using metallic tellurium, tellurium dioxide and hydrochloric acid.
  • the content of the above blackening component (hereinafter also simply referred to as “black material”) is within the range of 1 wt% or more and 100 wt% or less based on the solid content of (H) metal particles. Preferably, it is in the range of 1 wt% or more and 70 wt% or less.
  • the content of the black material is less than 1% by weight, the reflectance is high, so that a thin wiring must be formed. On the other hand, when it exceeds 100% by weight, the sensitivity is lowered and it is difficult to obtain a thin wiring.
  • carbon black can also be used as the black material in the photosensitive conductive material used in the first embodiment in order to control the reflectance within a range of 0% to 30%.
  • Carbon black may be a black pigment having a light shielding property.
  • Examples of commercially available carbon black that can be used include # 260, # 25, # 30, # 32, # 33, # 40, # 44, # 45, # 45L, # 47, # 50, # 52, MA7, MA8.
  • MA11, MA100, MA100R, MA100S, MA230 Mitsubishi Chemical Corporation
  • Printex L Printex P, Printex 30, Printex 35, Printex 40, Printex 45, Printex 55, Printex 60, 350 PrintP, 300
  • carbon black alone such as Black 4, Special Black 350, Special Black 550 (and above, manufactured by DEGUSSA), MHI Black # 201, # 220, # 2 3 (or more, Mikuni Color Ltd.) can be used carbon black dispersion such. Carbon black may be used individually by 1 type, or 2 or more types may be mixed and used for it.
  • the average primary particle diameter of carbon black of the photosensitive conductive material used in the first embodiment is preferably in the range of 10 nm to 500 nm, more preferably in the range of 100 nm to 500 nm, and still more preferably in the range of 100 nm to 300 nm. Within the following range.
  • the average primary particle diameter of carbon black is smaller than 10 nm, it is difficult to disperse at a high concentration, and it is difficult to obtain a photosensitive black composition having good temporal stability.
  • carbon black having an average primary particle size larger than 500 nm is used, the blackness is lowered. Therefore, in order to provide sufficient blackness, the ratio of carbon black in the photosensitive conductive material must be increased. Adversely affects pattern processability.
  • the average primary particle size of carbon black is 100 nm or more, better dispersibility can be obtained.
  • the content of carbon black in the photosensitive conductive material is preferably in the range of 1 to 100% by weight, more preferably in the range of 1 to 3% by weight, based on the solid content of the metal particles. Is within. When the content of carbon black is less than 1% by weight, a sufficient reflectance reduction effect cannot be obtained, and when it is more than 100% by weight, it is difficult to obtain conductivity, and the second connecting portion 4 and the extraction wiring 20 Formation can be difficult.
  • the average particle diameter of the (H) metal particles of the photosensitive conductive material used in the first embodiment is preferably in the range of 0.1 ⁇ m to 4 ⁇ m.
  • the average particle diameter is smaller than 0.1 ⁇ m, the concealing property becomes high, so that ultraviolet light does not reach the bottom during exposure, and pattern formation becomes difficult.
  • the average particle diameter is larger than 4 ⁇ m, the linearity and resolution in the fine pattern are not preferable.
  • the (H) metal particles are Ag particles
  • the average particle diameter is in the range of 0.5 ⁇ m to 4 ⁇ m.
  • the amount of metal particles used is preferably in the range of 40% by weight to 90% by weight, more preferably in the range of 50% by weight to 90% by weight, based on the total solid content of the photosensitive conductive material. More preferably, it is in the range of 65 wt% or more and 90 wt% or less.
  • the added amount of metal particles is less than 40% by weight, sufficient resistivity cannot be obtained as a wiring, and if it exceeds 90% by weight, ultraviolet light does not reach the bottom during exposure, making pattern formation difficult. .
  • Examples of the (I) photopolymerization initiator of the photosensitive conductive material used in the first embodiment include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)]. It is necessary to use at least one O-acyloxime compound such as O- (acetyl) -N- (1-phenyl-2-oxo-2- (4′-methoxy-naphthyl) ethylidene) hydroxylamine.
  • the O-acyloxime compound has excellent curing characteristics even in a highly concealable photosensitive conductive material because it generates methyl radicals and phenyl radicals with high mobility with high efficiency. These photopolymerization initiators can be used alone or in combination.
  • Examples of the photopolymerization initiator that can be used by mixing with an O-acyloxime compound include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2 Acetophenone compounds such as -hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, benzoin Benzoin compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxyben Benzophenone compounds such as phenone, acrylated benzophenone, 4-benzoyl
  • the amount of photopolymerization initiator used is preferably in the range of 0.1 wt% to 50 wt%, more preferably 0.2 wt% to 20 wt%, based on the total solid content of the photosensitive conductive material. % Or less.
  • (I) As a sensitizer for a photopolymerization initiator for example, ⁇ -acyloxy ester, acylphosphine oxide, methylphenylglyoxylate, benzyl, 9,10-phenanthrenequinone, camphorquinone, ethylanthraquinone , 4,4'-diethylisophthalophenone, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, triethanolamine, methyldiethanolamine, triisopropanolamine, 4-dimethylamino Methyl benzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, 2-ethylhexyl 4-dimethylaminobenzoate, N, N-dimethylparatoluidine, 4,4 ′ -Bis
  • sensitizers can be used alone or in combination.
  • the amount of the sensitizer used is preferably in the range of 0.5% by weight to 50% by weight, more preferably 1% by weight to 30% by weight, based on the total amount of the photopolymerization initiator and the sensitizer. Within range.
  • Examples of the (J) polymerizable polyfunctional monomer and oligomer of the photosensitive conductive material used in the first embodiment include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- Hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, ⁇ -carboxyethyl (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, Tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, polyethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, 1,6-hexanedi Diglycidyl ether di (meth) acrylate, bisphenol A digly
  • the polyfunctional urethane acrylate which has the (meth) acryloyl group obtained by making polyfunctional isocyanate react with the (meth) acrylate which has a hydroxyl group is arbitrary and is not particularly limited.
  • one type of polyfunctional urethane acrylate may be used alone, or two or more types may be used in combination. These can be used alone or in admixture of two or more.
  • the (K) resin of the photosensitive conductive material used in the first embodiment is a linear polymer having a carboxyl group.
  • a (meth) acrylic copolymer resin or an epoxy resin and (meth) acrylic acid or Examples thereof include an epoxy-modified acrylate resin obtained by further reacting the anhydride reaction product with a polybasic carboxylic acid or an anhydride thereof.
  • the above-mentioned (K) resin is preferably an alkali-soluble type. This is because, in order to pattern the photosensitive conductive material in the photolithography process, it is common to impart alkali solubility to the resin and enable development with an aqueous alkali solution. Although development can be performed with an alkaline aqueous solution without using an alkali-soluble resin, unexposed portions of details are removed by development in order to obtain a conductor width of 20 ⁇ m or less, particularly 10 ⁇ m or less. There is a need. In order to obtain a pattern having good linearity, it is necessary to increase the alkali-soluble contrast between the unexposed portion and the exposed portion. For these purposes, it is preferable to increase developability by giving the resin alkalinity.
  • the (meth) acrylic copolymer resin of the photosensitive conductive material used in the first embodiment is a copolymer resin containing at least a (meth) acrylic monomer in its constituent components, for example, as a (meth) acrylic monomer (Meth) acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, allyl acrylate, benzyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, glycidyl acrylate, aminoethyl Acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, Butyl methacrylate, allyl methacrylate, benz
  • Examples of the epoxy resin used for the epoxy-modified acrylate resin include phenol novolac, cresol novolac, and those having a bisphenol A or bisphenol F skeleton.
  • Examples of the (P) organic solvent of the photosensitive conductive material used in the first embodiment include cyclohexanone, ethyl cellosolve acetate, butyl cellosolve acetate, ethyl carbitol acetate, 1-methoxy-2-propyl acetate, diethylene glycol dimethyl ether, ethylbenzene, Examples include ethylene glycol diethyl ether, xylene, ethyl cellosolve, methyl-n amyl ketone, propylene glycol monomethyl ether, petroleum solvent, and the like. These can be used alone or in combination.
  • the addition amount of the organic solvent is preferably within a range of 5% by weight or more and 20% by weight or less based on the total amount of the photosensitive conductive material.
  • a radical scavenger may be included as the photosensitive conductive material used in the first embodiment.
  • the radical scavenger has a function of deactivating active radicals, and by adding it to the photosensitive conductive material, it becomes possible to suppress the curing reaction in the unexposed part caused by light scattering by (H) metal particles. The dimensional accuracy of the conductor pattern can be improved.
  • radical scavenger examples include hydroquinone derivatives such as hydroquinone, methylhydroquinone, methoquinone, kinopower MNT (manufactured by Kawasaki Kasei Co., Ltd.), non-flex alba, non-flex CBP, non-flex EBP (above, manufactured by Seiko Chemical Co., Ltd.) and the like.
  • More than one type can be used.
  • the addition amount of the radical scavenger it can be added within a range of 0.01 wt% or more and 0.1 wt% or less based on the total solid content of the photosensitive conductive material. If the added amount of the radical scavenger is less than 0.01% by weight, the effect of improving the dimensional accuracy of the conductor pattern cannot be obtained. appear.
  • a storage stabilizer can be contained.
  • the storage stabilizer include quaternary ammonium chlorides such as benzyltrimethyl chloride and diethylhydroxyamine, organic acids such as lactic acid and oxalic acid, and organic acids such as methyl ether, t-butylpyrocatechol, triethylphosphine, and triphenylphosphine. Examples thereof include phosphine and phosphite.
  • the storage stabilizer can be contained in an amount in the range of 0.1 wt% to 10 wt% based on the total amount of the photosensitive conductive material.
  • the photosensitive conductive material used in the first embodiment can contain a surfactant.
  • surfactants include polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, alkali salt of styrene-acrylic acid copolymer, sodium alkylnaphthalenesulfonate, sodium alkyldiphenyletherdisulfonate, lauryl sulfate monoethanolamine, lauryl Anionic surfactants such as triethanolamine sulfate, ammonium lauryl sulfate, monoethanolamine stearate, sodium stearate, sodium lauryl sulfate, monoethanolamine of styrene-acrylic acid copolymer, polyoxyethylene alkyl ether phosphate ester; Polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Nonionic surfactants such as alkyl ether
  • a silane coupling agent can be included in the photosensitive conductive material used in the first embodiment in order to improve adhesion to the substrate.
  • silane coupling agents include KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-802. , KBM-803, KBE-9007 (above, manufactured by Shin-Etsu Silicone), Z-6011, Z-6020, Z-6030, Z-6040, Z-6043, Z-6094, Z-6519 (above, Toray Dow Corning) Etc.).
  • the silane coupling agent can be contained in an amount in the range of 0.1 wt% or more and 1 wt% or less based on the total amount of the photosensitive conductive material.
  • the photosensitive conductive material used in the first embodiment includes (L) at least one black pigment, (M) a pseudo black pigment mixture of at least two pigments, and (N) at least one black pigment.
  • (H) metal particles, (I) photopolymerization initiator, (J) polymerizable polyfunctional monomer, comprising as essential components at least one blackening component selected from the group consisting of black dyes and (O) metal compounds , (K) resin, (P) solvent, surfactant and the like are blended in a predetermined composition, stirred with a stirrer, and then kneaded with a three-roll mill.
  • another photosensitive conductive material used in the first embodiment is carbon black, (H) metal particles, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, and (K) an alkali-soluble resin. (P) It can obtain by mix
  • blending components such as a solvent and surfactant
  • the manufacturing method of the 2nd connection part 4 and the extraction wiring 20 using a photosensitive electrically-conductive material in 1st embodiment is demonstrated below.
  • Examples of the method for applying the photosensitive conductive material to the transparent substrate 10 include screen printing, gravure offset printing, reverse offset printing, relief printing, die coating, and bar coating, and screen printing is generally used.
  • pre-baking is performed as necessary to evaporate the organic solvent. For example, a hot air circulation oven, a hot plate, or an IR oven can be used for pre-baking.
  • pattern exposure is performed through a photomask corresponding to the desired second connection portion 4 and extraction wiring 20.
  • a normal high-pressure mercury lamp may be used as the exposure light source.
  • the exposure amount is preferably about 10 to 200 mJ / cm 2 from the viewpoint of tact time.
  • Development is performed following exposure. An alkaline aqueous solution is used as the developer.
  • a tetramethylammonium hydroxide aqueous solution or a potassium hydroxide aqueous solution is preferably used, but a sodium carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a mixed aqueous solution of both, or a surfactant suitable for them. You may use what added.
  • an arbitrary extraction wiring 20 is obtained by performing a heat treatment.
  • the heat treatment is performed at 130 to 250 ° C. for 10 to 60 minutes using a heat drying oven. Due to the curing shrinkage of the resin due to the heat treatment, the silver powder of the extracted wiring pattern comes into contact with each other and has sufficient conductivity and also improves the resistance to chemicals and the like.
  • the present invention is not limited to this. For example, after forming the 2nd connection part 4 and the extraction wiring 20, you may form the 1st transparent electrode 1, the 2nd transparent electrode 2, and the 1st connection part 3.
  • a display device is a display device having the above-described projected capacitive touch panel sensor substrate. Since this display device has the above-described projected capacitive touch panel sensor substrate, it is possible to provide a display device that can be manufactured at low cost and has excellent display quality.
  • Example 1.1 >> Hereinafter, the first embodiment will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the gist of the present invention. In addition, the notation “1.1” in the 1.1st example means “the 1st example in the first embodiment”.
  • the pseudo black pigment mixture B is obtained by dispersing a red pigment and a blue pigment in an alkali-soluble resin dissolved in a solvent.
  • red pigments and blue pigments include C.I. I. Pigment red 254 and C.I. I. A mixture of CI Pigment Blue 15: 3 at a ratio of 1: 1 was used.
  • photosensitive conductive material 1.1.1 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 1.1.1.
  • photosensitive conductive material 1.1. ⁇ described below means “photosensitive conductive material ⁇ in the first example of the first embodiment”. That is, “photosensitive conductive material 1.1.1” means “photosensitive conductive material 1 in the first example of the first embodiment”.
  • Pigment Black 32 7.2 parts silver powder (average particle size d50 1.5 ⁇ m) 65 parts photopolymerization initiator Irgacure OXE02 (manufactured by BASF) 0.2 parts polymerizable polyfunctional monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 6 Part alkali-soluble resin A 17.28 parts radical scavenger methyl hydroquinone 0.02 part organic solvent 1-methoxy-2-propyl acetate 4 parts surfactant Adecanate B-940 (manufactured by ADEKA) 0.1 part silane coupling agent KBM-502 (manufactured by Shin-Etsu Silicone) 0.2 parts
  • Photosensitive conductive materials 1.1.2 to 1.1.9 were obtained in the same manner as photosensitive conductive material 1.1.1 except that the composition was changed to the materials shown in Table 1.
  • photosensitive conductive material 1.1.10 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 1.1.10.
  • Pseudo black pigment mixture B 7.2 parts silver powder (average particle size d50 1.5 ⁇ m) 65 parts photopolymerization initiator Irgacure OXE02 (manufactured by BASF) 0.2 parts polymerizable polyfunctional monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) ) 6 parts alkali-soluble resin
  • Photosensitive conductive materials 1.1.1.11 to 1.1.17 were obtained in the same manner as photosensitive conductive material 1.1.10, except that the composition was changed to the materials shown in Table 1.
  • Acid Black 24 7.2 parts silver powder (average particle diameter d50 1.5 ⁇ m) 65 parts photopolymerization initiator Irgacure OXE02 (manufactured by BASF) 0.2 parts polymerizable polyfunctional monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 6 Part alkali-soluble resin A 17.28 parts radical scavenger methyl hydroquinone 0.02 part organic solvent 1-methoxy-2-propyl acetate 4 parts surfactant Adecanate B-940 (manufactured by ADEKA) 0.1 part silane coupling agent KBM-502 (manufactured by Shin-Etsu Silicone) 0.2 parts
  • Photosensitive conductive materials 1.1.19 to 1.1.25 were obtained in the same manner as photosensitive conductive material 1.1.18, except that the composition was changed to the materials shown in Table 1.
  • photosensitive conductive material 1.1.26 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 1.1.26.
  • Photosensitive conductive materials 1.1.27 to 1.1.33 were obtained in the same manner as photosensitive conductive material 1.1.26, except that the composition was changed to the materials shown in Table 1.
  • photosensitive conductive material 1.1.34 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 1.1.34.
  • Example 1.1.1 (Example 1.1.1)
  • Example 1.1. ⁇ means “Example ⁇ in the first example of the first embodiment”.
  • Comparative Example 1.1. ⁇ means “Comparative Example ⁇ in the first example of the first embodiment”. That is, “Example 1.1.1” means “Example 1 in the first example of the first embodiment”. Similarly, “comparative example 1.1.1” means “comparative example 1 in the first example of the first embodiment”.
  • the photosensitive conductive material 1.1.1 was applied by screen printing using a screen printing plate (material: stainless steel, manufactured by Tokyo Process Service Co., Ltd.) of mesh 500, and 90 ° C. on a hot plate. The film was dried for 5 minutes to dry the coating film. Thereafter, exposure is performed through a photomask having a desired opening at 50 to 200 mJ / cm 2 using a high-pressure mercury lamp as a light source, and then for 30 to 60 seconds with a 0.2 wt% aqueous sodium bicarbonate solution. shower development was performed. After washing with water, heat treatment was performed at 230 ° C.
  • the second connecting portion 4 having a conductor width of 6 to 20 ⁇ m ⁇ conductor length of 200 ⁇ m was obtained.
  • the sheet resistance of the photosensitive conductive material layer was 0.2 ⁇ / ⁇ , and the conductor thickness was 3.0 ⁇ m.
  • an acrylic negative resist was spin-coated and dried on a hot plate to dry the coating film. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the insulating layer 5.
  • the insulating layer 5 has a width of 60 ⁇ m ⁇ length of 120 ⁇ m so as to cover only the effective portion of the second connection portion 4.
  • an ITO film having a film thickness of 30 nm was formed by a sputtering apparatus, a novolac positive resist was spin-coated, dried on a hot plate, and the coating film was dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the tetramethylammonium hydroxide aqueous solution. After washing with water, wet etching is performed using an etching solution containing oxalic acid as a main component, and the resist is removed using a potassium hydroxide resist stripping solution. Then, the first transparent electrode 1 is subjected to heat treatment in an oven. The 2nd transparent electrode 2 and the 1st connection part 3 were formed. The sheet resistance of the ITO film was 100 ⁇ / ⁇ .
  • an acrylic negative resist was applied by spin coating and dried on a hot plate to dry the coating film. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the protective layer 6 to obtain a capacitive touch panel sensor substrate.
  • the protective layer 6 was formed so as to cover the entire region excluding the connection portion connected to the extraction wiring 20 and the control circuit of the touch panel sensor substrate.
  • Example 11.1 ⁇ Production of capacitive touch panel sensor substrate> The same procedure as in Example 1.1.1 was performed except that the photosensitive conductive material 1.1.2 to 1.1.34 was used instead of the photosensitive conductive material 1.1.1.
  • Example 1.1.30 ⁇ Production of capacitive touch panel sensor substrate>
  • the second connection portion 4 and the lead-out wiring 20 were prepared, and the mixture was 40 ° C. in a sulfuric acid (10 wt%) / sodium persulfate (0.5 wt%) mixture.
  • the substrate was immersed for 2 minutes.
  • the substrate was immersed for 2 minutes at 0 ° C. to oxidize the silver powder. Thereafter, a touch panel sensor substrate was produced in the same manner as in Comparative Example 1.1.1.
  • connection part 4 and the lead-out wiring 20 were prepared.
  • the second connecting portion 4 having a conductor width of 6 to 20 ⁇ m ⁇ conductor length of 200 ⁇ m was obtained.
  • the sheet resistance of the Mo / Al / Mo film was 0.2 ⁇ / ⁇ .
  • Example 1.1.1 the capacitive touch-panel sensor board
  • connection pattern appearance The electrostatic capacitance type touch panel sensor substrate obtained in Examples 1.1.1 to 1.1.30 and Comparative Examples 1.1.1 to 1.1.6 was used so that the light from above and outside the fluorescent light box When placed on a light-shielded blackboard and reflected by changing the angle under a fluorescent lamp as external light, it was evaluated whether the second connecting portion 4 could be visually observed.
  • the evaluation criteria are shown below. ⁇ ...
  • the second connection 4 is not visible either on the fluorescent light box or on the blackboard ⁇ ...
  • the second connection 4 is slightly visible on either the fluorescent light box or on the blackboard ⁇ ... Fluorescent light
  • the second connecting part 4 is clearly visible either on the box or on the blackboard-... the pattern cannot be formed because the pattern is not peeled off or cannot be resolved Note that ⁇ and ⁇ are usable levels.
  • a photosensitive conductive material is applied by screen printing using a screen printing plate of mesh 500 (material: stainless steel, manufactured by Tokyo Process Service Co., Ltd.) and dried on a hot plate at 90 ° C. for 5 minutes. And the coating film was dried. Thereafter, exposure is performed through a photomask having a desired opening at 50 to 200 mJ / cm 2 using a high-pressure mercury lamp as a light source, and then shower development is performed with a 0.2 wt% sodium bicarbonate aqueous solution for 60 seconds. Carried out.
  • a sensitivity of less than 150 mJ / cm 2 is good, 150 mJ / cm 2 or more A value of less than 200 mJ / cm 2 can be used, and a value of 200 mJ / cm 2 or more is marked as x because of insufficient sensitivity.
  • Electrostatic breakdown evaluation> The electrostatic capacity type touch panel sensor substrate obtained in Examples 1.1.1 to 1.1.30 and Comparative Examples 1.1.1 to 1.1.6 was used as an electrostatic discharge simulator (KES4021 manufactured by Kikusui Electronics Corporation). ) was used to evaluate electrostatic breakdown. As evaluation criteria, a case where no disconnection occurred at an applied voltage of 10 kV was indicated as “ ⁇ ”, and a case where a disconnection occurred was indicated as “x”. The composition of the photosensitive conductive material is shown in Table 1, and the evaluation results are shown in Table 2.
  • Example 1.2 >> Hereinafter, the first embodiment will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the gist of the present invention.
  • the 1.2th example is an example when carbon black is used as the black material.
  • the notation “1.2” in the above 1.2 example means “the 2nd example in the first embodiment”.
  • photosensitive conductive material 1.2.1 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 1.2.1. Note that the notation “photosensitive conductive material 1.2. ⁇ ” shown below means “photosensitive conductive material ⁇ in the second example of the first embodiment”. That is, “photosensitive conductive material 1.2.1” means “photosensitive conductive material 1 in the second example of the first embodiment”.
  • Carbon Black MHI Black # 220 (manufactured by Mikuni Dye Co., Ltd.) 3.6 parts Carbon black content 33%, solid content 40%, average particle size 125 nm Silver powder (average particle size d50 1.5 ⁇ m) 65 parts photopolymerization initiator Irgacure OXE02 (manufactured by BASF) 0.2 parts polymerizable polyfunctional monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 6 parts alkali-soluble resin A 20.
  • radical scavenger methylhydroquinone 0.02 parts organic solvent 1-methoxy-2-propyl acetate 4 parts silane coupling agent KBM-502 (manufactured by Shin-Etsu Silicone) 0.2 parts surfactant Adecanate B-940 (ADEKA) 0.1 parts)
  • Photosensitive conductive materials 1.2.2 to 1.2.14 were obtained in the same manner as photosensitive conductive material 1.2.1 except that the composition was changed to a mixture of materials described in Table 3 described later. It was.
  • Example 1.2.1 Note that the notation “Example 1.2. ⁇ ” shown below means “Example ⁇ in the second example of the first embodiment”. In addition, the notation “Comparative Example 1.2. ⁇ ” means “Comparative Example ⁇ in the second example of the first embodiment”. That is, “Example 1.2.1” means “Example 1 in the second example of the first embodiment”. Similarly, “Comparative example 1.2.1” means “Comparative example 1 in the second example of the first embodiment”.
  • the photosensitive conductive material 1.2.1 is applied by screen printing using a screen printing plate (material: stainless steel, manufactured by Tokyo Process Service Co., Ltd.) of mesh 500, and is heated at 90 ° C. on a hot plate. The film was dried for 5 minutes to dry the coating film. Thereafter, exposure is performed through a photomask having a desired opening at 50 to 200 mJ / cm 2 using a high-pressure mercury lamp as a light source, and then for 30 to 60 seconds with a 0.2 wt% aqueous sodium bicarbonate solution. shower development was performed. After washing with water, heat treatment was performed at 230 ° C.
  • a second connection portion 4 having a conductor width of 6 to 22 ⁇ m ⁇ conductor length of 200 ⁇ m was obtained.
  • the sheet resistance of the photosensitive conductive material layer was 0.2 ⁇ / ⁇ , and the conductor thickness was 3.0 ⁇ m.
  • an acrylic negative resist was spin-coated and dried on a hot plate to dry the coating film. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the insulating layer 5.
  • the insulating layer 5 has a width of 60 ⁇ m ⁇ length of 120 ⁇ m so as to cover only the effective portion of the second connection portion 4.
  • an ITO film having a film thickness of 30 nm was formed by a sputtering apparatus, a novolac positive resist was spin-coated, dried on a hot plate, and the coating film was dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the tetramethylammonium hydroxide aqueous solution. After washing with water, wet etching is performed using an etching solution containing oxalic acid as a main component, and the resist is removed using a potassium hydroxide resist stripping solution. Then, the first transparent electrode 1 is subjected to heat treatment in an oven. The 2nd transparent electrode 2 and the 1st connection part 3 were formed. The sheet resistance of the ITO film was 100 ⁇ / ⁇ .
  • an acrylic negative resist was applied by spin coating and dried on a hot plate to dry the coating film. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the protective layer 6 to obtain a capacitive touch panel sensor substrate.
  • the protective layer 6 was formed so as to cover the entire region excluding the connection portion connected to the extraction wiring 20 and the control circuit of the touch panel sensor substrate.
  • Example 12.1 ⁇ Production of capacitive touch panel sensor substrate> The same procedure as in Example 1.2.1 was performed, except that the photosensitive conductive material 1.2.2 to 1.2.14 was used instead of the photosensitive conductive material 1.2.1.
  • connection part 4 and the lead-out wiring 20 were prepared.
  • a second connection portion 4 having a conductor width of 6 to 22 ⁇ m ⁇ conductor length of 200 ⁇ m was obtained.
  • the sheet resistance of the Mo / Al / Mo film was 0.2 ⁇ / ⁇ .
  • Example 1.2.1 Example 1.2.1, and obtained the capacitive touch-panel sensor board
  • Example 1.1 Capacitive touch panel sensor substrates obtained in Examples 1.2.1 to 1.2.12 and Comparative Examples 1.2.1 to 1.2.3 are described in Example 1.1 above. Evaluation was performed using the same method. The evaluation criteria are also the same as the evaluation criteria described in the above-mentioned first embodiment. Therefore, the description is omitted here. Table 3 shows the composition of the photosensitive conductive material, and Table 4 shows the evaluation results.
  • the pattern appearance evaluation is “O” or “O” in the examples evaluated in the sensitivity evaluation and the electrostatic breakdown evaluation.
  • This relational expression (1) is a relational expression calculated by the least square method using the points shown in FIG. In other words, the lower the reflectivity, the better the pattern appearance even when the conductor width is larger. When the reflectivity is higher, the conductor width needs to be reduced in order to improve the pattern appearance.
  • the structure of the projected capacitive touch panel sensor substrate according to the second embodiment is substantially the same as the structure of the projected capacitive touch panel sensor substrate described in the first embodiment. That is, the projected capacitive touch panel sensor substrate according to the second embodiment includes the first transparent electrode 1, the second transparent electrode 2, the first connection portion 3, and the second connection on the transparent base material 10. It has the connection part 4, the insulating layer 5, and the extraction wiring 20. The insulating layer 5 is disposed in order to prevent and insulate the second connecting portion 4 orthogonal to the first connecting portion 3. Further, the projected capacitive touch panel sensor substrate according to the second embodiment can further have a protective film 6. Thus, hereinafter, a projected capacitive touch panel sensor substrate according to a second embodiment will be described with reference to FIGS. 1 and 2.
  • the second connection portion 4 and the extraction wiring 20 are different.
  • the other parts that is, the first transparent electrode 1, the second transparent electrode 2, the first connection part 3, the insulating layer 5, and the protective film 6) are the same. Therefore, only this different part is demonstrated here and description is abbreviate
  • the second connection portion 4 and the extraction wiring 20 are made of a metal material having a reflectance in the range of 0% to 10%.
  • Metals such as Mo (molybdenum), Al (aluminum), Ag (silver), Cu (copper), Pd (palladium) are preferably used, and in order to achieve both conductivity and reflectivity, for example, with Mo oxide It is more preferable to use Al together.
  • a Mo / Al / Mo three-layer structure (hereinafter also referred to as “MAM”) is formed by sputtering at a thickness of about 350 mm / 2000 mm / 350 mm, respectively, and after a photolithography process using a positive resist. Etching / resist stripping methods have been frequently used.
  • this metal material has a high reflectivity, even if the second connection portion 4 in the display area is finely formed to have a width of about 8 ⁇ m and a length of about 200 ⁇ m, it can be visually recognized under normal use conditions. For this reason, there is a problem of degrading display quality.
  • the blackening of the second connection portion 4 and the extraction wiring 20 serves to make the second connection portion 4 inconspicuous.
  • the present inventors have made it possible to reduce the visual appearance of the pattern by improving the reflectivity of the metal material within the range of 0% to 10%, thereby improving the display quality. I found out that I can do it.
  • the reflectance is preferably 8% or less, and more preferably 5% or less.
  • a three-layer structure of oxidized Mo / Al / Mo having a thickness of about 350 mm / 2000 mm / 350 mm is formed on the transparent base material 10 through the photolithography process and the etching / resist stripping process in the same manner as MAM.
  • a pattern is formed in the order of oxidized Mo / Al / Mo from the lower layer.
  • the method for manufacturing the projected capacitive touch panel sensor substrate according to the second embodiment is substantially the same as the method for manufacturing the projected capacitive touch panel sensor substrate described in the first embodiment.
  • the manufacturing processes of the second connection portion 4 and the extraction wiring 20 are different. For this reason, in the second embodiment, only the manufacturing process different from the above-described first embodiment will be described, and the other manufacturing processes (that is, the first transparent electrode 1, the second transparent electrode 2, the first The description of the manufacturing process of the connecting portion 3, the insulating layer 5, and the protective film 6) is omitted.
  • the above-described three-layered laminated film of oxidized Mo / Al / Mo is formed by a thin film forming means such as a sputtering apparatus, and a resist pattern is formed by the above-described photolithography method. . Thereafter, a pattern is formed through a metal etching and resist stripping process.
  • the thickness of each layer can be, for example, 350 mm / 2000 mm / 350 mm in order from the lower layer, and pattern etching of these layers can be performed by wet etching using an etching solution containing phosphoric acid, nitric acid, and acetic acid.
  • the second connection portion 4 and the lead-out wiring 20 may be formed by patterning a metal thin film other than the above, such as Al-based, Ag-based, etc., by a photolithography / etching process, etc. It can be appropriately selected depending on the pattern accuracy, conductivity, size, etc. of the electrode plate.
  • a conductive powder such as a conductive paste in which conductive powder such as silver, copper, or carbon is dispersed in an organic binder to provide photosensitivity.
  • a conductive conductive material can be preferably used.
  • the reflectance of the second connection portion 4 and the lead-out wiring 20 can be easily controlled to 10% or less. It is preferably used because the problem can be easily avoided and the manufacturing cost can be suppressed.
  • metal films such as Mo, Al, Ag, Cu, and Pd obtained by sputtering by appropriately selecting the particle size of conductive powder such as silver, copper, and carbon. It is easy to control the reflectance to 10% or less. Furthermore, other known techniques for reducing the reflectance may be applied.
  • a photosensitive conductive material such as a conductive paste whose reflectance is controlled to 10% or less is formed by a printing method such as screen printing, and is finely patterned by a photolithographic method.
  • a connection part is formed simultaneously, the problem that the connection part formed under normal use conditions can be visually recognized can be solved.
  • the photolithographic method after applying a photosensitive conductive material on a substrate, the exposed portion of the coating film is cured by photocrosslinking by irradiating ultraviolet light through a photomask corresponding to a desired extraction wiring, and a developer solution. This is a method for forming a lead-out wiring pattern by baking after removing the unexposed portion of the coating film.
  • the metal electrode pattern itself can be used as an index of alignment with respect to a layer on which a subsequent pattern is formed.
  • an alignment mark can be provided independently in the same layer as the second connection portion 4 and the extraction wiring 20. Independently providing a mark for alignment can generally obtain higher accuracy in the alignment process of determining a position correction amount from pattern recognition and outputting a movement for position correction.
  • Photosensitive conductive material As the photosensitive conductive material used in the second embodiment, a known material can be used as long as it can form the lead wiring 20 and the connection portions 3 and 4, and is not particularly limited.
  • a photosensitive conductive material described above (R) silver powder, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, (K) an alkali-soluble resin, and (Q) a radical scavenger (P)
  • a photosensitive conductive material containing a solvent can be used, and other additives can be included as necessary.
  • the lead-out wiring 20 constituting the capacitive touch panel sensor substrate according to the second embodiment is subjected to a so-called photolithography process of exposure, development, and thermosetting after applying the photosensitive conductive material described above onto the transparent substrate 10. Formed by.
  • the average particle size of the (R) silver powder of the photosensitive conductive material used in the second embodiment is preferably 3 ⁇ m or less. Further, regarding the shape of (R) silver powder, there are, for example, flakes, needles, and spheres, but spherical silver powder is desirable from the viewpoint of screen printability and light scattering during exposure.
  • the amount of (R) silver powder used is preferably 65 to 85% by weight, more preferably 70 to 80% by weight, based on the total solid content of the photosensitive conductive material.
  • Examples of the (I) photopolymerization initiator of the photosensitive conductive material used in the second embodiment include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl).
  • Acetophenones such as 2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one
  • benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxyben Benzophenone compounds such as phenone, acrylated benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, thioxanthone, 2-chlorothioxanthone, Thioxanthone compounds such as 2-
  • photopolymerization initiators can be used alone or in combination.
  • the amount of the photopolymerization initiator used is preferably 0.5 to 50% by weight, more preferably 1 to 20% by weight, based on the total solid content of the photosensitive conductive material.
  • the sensitizer for (I) the photopolymerization initiator the sensitizer described in the first embodiment can be used. Therefore, the description is omitted here.
  • the (J) polymerizable polyfunctional monomer and oligomer of the photosensitive conductive material used in the second embodiment it is possible to use the (J) polymerizable polyfunctional monomer and oligomer described in the first embodiment. it can. Therefore, the description is omitted here.
  • the (K) alkali-soluble resin of the photosensitive conductive material used in the second embodiment is the (K) alkali-soluble resin described in the first embodiment. Therefore, the description is omitted here.
  • the (meth) acrylic copolymer resin of the photosensitive conductive material used in the second embodiment the (meth) acrylic copolymer resin described in the first embodiment can be used. Therefore, the description is omitted here.
  • compounds having an unsaturated bond such as styrene or cyclohexylmaleimide can be used as components other than the (meth) acrylic monomer.
  • the (Q) radical scavenger of the photosensitive conductive material used in the second embodiment has a function of deactivating active radicals.
  • R light from silver powder It becomes possible to suppress the curing reaction in the unexposed part caused by scattering, and the dimensional accuracy of the conductor pattern can be improved.
  • Q As a kind of radical scavenger, (Q) radical scavenger demonstrated by the above-mentioned 1st embodiment can be used. Therefore, the description is omitted here.
  • the (L) solvent of the photosensitive conductive material used in the second embodiment the (L) solvent described in the first embodiment can be used. Therefore, the description is omitted here.
  • the photosensitive conductive material used in the second embodiment may contain carbon black in order to control the reflectance to 0% or more and 10% or less.
  • Carbon black may be a black pigment having a light shielding property.
  • Examples of commercially available carbon black that can be used include # 260, # 25, # 30, # 32, # 33, # 40, # 44, # 45, # 45L, # 47, # 50 manufactured by Mitsubishi Chemical Corporation.
  • Carbon black may be used individually by 1 type, or 2 or more types may be mixed and used for it.
  • Carbon black having a specific surface area of 50 to 200 m 2 / g is used from the viewpoint of pattern shape.
  • the pattern shape is deteriorated.
  • the dispersant used in combination with carbon black is excessively adsorbed. Therefore, in order to express various physical properties, it is necessary to add a large amount of dispersant.
  • Carbon black preferably has a dibutyl phthalate (hereinafter referred to as “DBP”) oil absorption of 120 cc / 100 g or less from the viewpoint of sensitivity. Further, the average primary particle diameter of carbon black is preferably 20 to 50 nm.
  • the content of carbon black in the photosensitive conductive material is preferably 3 to 100% by weight, more preferably 5 to 50% by weight, based on the solid content of the conductive powder. When the content of carbon black is more than 100% by weight, it is difficult to obtain conductivity, and it may be difficult to form a connection part and a lead-out wiring.
  • a storage stabilizer can be contained in order to stabilize the viscosity with time of the photosensitive conductive material used in the second embodiment.
  • the storage stabilizer the storage stabilizer described in the first embodiment can be used. Therefore, the description is omitted here.
  • the photosensitive conductive material used in the second embodiment can contain a surfactant.
  • the surfactant the surfactant described in the first embodiment can be used. Therefore, the description is omitted here.
  • the photosensitive conductive material used in the second embodiment includes (R) silver powder, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, (K) an alkali-soluble resin, and (Q). It can be obtained by blending a radical scavenger, (P) a solvent, a surfactant and the like with a predetermined composition, stirring with a stirrer, and kneading with a three-roll mill.
  • the manufacturing method of the 2nd connection part 4 and the extraction wiring 20 using a photosensitive electrically-conductive material is the same as the manufacturing method demonstrated in the above-mentioned 1st embodiment. Therefore, the description is omitted here.
  • a display device is a display device having the above-described projected capacitive touch panel sensor substrate (not shown). Since this display device has the above-described projected capacitive touch panel sensor substrate, it is possible to provide a display device that can be manufactured at low cost and has excellent display quality.
  • Example 2.1 >> Hereinafter, the second embodiment will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the spirit of the present invention. Note that the notation “2.1” in the 2.1 example above means “the 1st example in the second embodiment”.
  • a carbon black dispersion was prepared by dispersing for 5 hours in a sand mill using 1 mm glass beads. The carbon black dispersion obtained had a DBP oil absorption of 74 cc / 100 g and a specific surface area of 79 m 2 / g.
  • photosensitive conductive material 2.1.1 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 2.1.1.
  • photosensitive conductive material 2.1. ⁇ described below means “photosensitive conductive material ⁇ in the first example of the second embodiment”. That is, “photosensitive conductive material 2.1.1” means “photosensitive conductive material 1 in the first example of the second embodiment”.
  • Silver powder (average particle size D50 1.5 ⁇ m) 130 parts carbon black dispersion 20 parts photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts alkali-soluble resin 38.78 parts radical scavenger methyl hydroquinone 0.02 parts organic solvent 1-methoxy-2-propyl acetate 8 parts surfactant Adecanate B-940 (ADEKA) 0.2 parts At this time, the ratio of the silver powder to the total solid content was 77.6% by weight, and the ratio of the radical scavenger to the total solid content was 0.012% by weight.
  • Example 2.1.1 ⁇ Production of capacitive touch panel sensor substrate> (Example 2.1.1)
  • Example 2.1. ⁇ described below means “Example ⁇ in the first example of the second embodiment”.
  • the notation “Comparative Example 2.1. ⁇ ” means “Comparative Example ⁇ in the first example of the second embodiment”. That is, “Example 2.1.1” means “Example 1 in the first example of the second embodiment”. Similarly, “comparative example 2.1.1” means “comparative example 1 in the first example of the second embodiment”.
  • a film of Mo, Al, and Mo was formed by sputtering at a thickness of 350 mm / 2000 mm / 350 mm respectively, a novolac positive resist was spin-coated, dried on a hot plate, and coated Was dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the tetramethylammonium hydroxide aqueous solution. After washing with water, wet etching is performed using an etching solution mainly composed of phosphoric acid, nitric acid, and acetic acid. After removing the resist using a potassium hydroxide resist stripping solution, heat treatment is performed in an oven. The connection part 4 and the lead-out wiring 20 were prepared. The obtained second connection portion 4 was 8 ⁇ m wide ⁇ 200 ⁇ m long. The sheet resistance of the oxidized Mo / Al / Mo film was 0.2 ⁇ / ⁇ .
  • an acrylic negative resist was spin-coated and dried on a hot plate to dry the coating film. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the insulating layer 5.
  • the insulating layer 5 has a width of 60 ⁇ m ⁇ length of 120 ⁇ m so as to cover only the effective portion of the second connection portion 4.
  • an ITO film having a film thickness of 30 nm was formed by a sputtering apparatus, a novolac positive resist was spin-coated, dried on a hot plate, and the coating film was dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the tetramethylammonium hydroxide aqueous solution. After washing with water, wet etching is performed using an etching solution containing oxalic acid as a main component, and the resist is removed using a potassium hydroxide resist stripping solution. Then, the first transparent electrode 1 is subjected to heat treatment in an oven. The 2nd transparent electrode 2 and the 1st connection part 3 were formed. The sheet resistance of the ITO film was 100 ⁇ / ⁇ .
  • an acrylic negative resist was applied by spin coating, dried on a hot plate, and the coating film was dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the protective layer 6 to obtain a capacitive touch panel sensor substrate.
  • the protective layer 6 was formed so as to cover the entire region excluding the connection portion connected to the extraction wiring 20 and the control circuit of the touch panel sensor substrate.
  • Example 2.1.2 A capacitive touch panel sensor substrate was obtained in the same manner as in Example 2.1.1 except that the size of the second connection portion 4 was changed to 10 ⁇ m wide ⁇ 200 ⁇ m long.
  • Example 2.1.3 A capacitive touch panel sensor substrate was obtained in the same manner as in Example 2.1.1 except that the size of the second connection portion 4 was set to 15 ⁇ m wide ⁇ 200 ⁇ m long.
  • the photosensitive conductive material 2.1.1 was applied by screen printing using a screen printing plate (material: stainless steel, manufactured by Tokyo Process Service Co., Ltd.) of mesh 500, and 100 ° C. on a hot plate. The film was dried for 5 minutes to dry the coating film. After that, exposure was performed through a photomask having a desired opening at 100 mJ / cm 2 using a high-pressure mercury lamp as a light source, and then shower development was performed for 30 seconds with a 0.2 wt% aqueous sodium bicarbonate solution. did. After washing with water, heat treatment was performed at 230 ° C.
  • the obtained second connection portion 4 was 8 ⁇ m wide ⁇ 200 ⁇ m long. Other than that was carried out similarly to Example 2.1.1, and obtained the capacitive touch-panel sensor board
  • the sheet resistance of the photosensitive conductive material layer was 0.2 ⁇ / ⁇ .
  • Example 2.1.5 A capacitive touch panel sensor substrate was obtained in the same manner as in Example 2.1.4 except that the size of the second connection portion 4 was set to 15 ⁇ m wide ⁇ 200 ⁇ m long.
  • Example 2.1.6 Example 2 except that photosensitive conductive material 2.1.2 was used instead of photosensitive conductive material 2.1.1, and the size of the second connecting portion 4 was 15 ⁇ m wide ⁇ 200 ⁇ m long.
  • a capacitive touch panel sensor substrate was obtained.
  • Comparative Example 2.1.1 A capacitive touch panel sensor substrate was obtained in the same manner as in Example 2.1.4 except that Mo was used instead of oxidized Mo.
  • the capacitive touch panel sensor substrate according to the third embodiment includes a transparent protective substrate and a transparent protective substrate among the capacitive touch panel sensor substrates described in the first embodiment and the second embodiment.
  • This transparent protective substrate integrated capacitive touch panel sensor substrate has a structure in which both a frame layer for decoration and a touch panel sensor are formed on a transparent protective substrate.
  • FIGS. 6A and 6B are schematic views showing a cross-sectional structure of a flat display device provided with an electronic input device having a touch panel function
  • FIG. 6A is a combination of a transparent protective substrate and a touch panel formed separately in a later process.
  • FIG. 6B shows an example in which the sensor layer of the touch panel is directly formed on the transparent protective substrate as an embodiment of the decorative transparent protective substrate integrated touch panel according to the third embodiment.
  • a touch panel type flat display device includes a display panel, a panel driving unit, a touch position detection unit, and the like.
  • FIGS. 6A and 6B show examples of an active matrix type color liquid crystal display device as a display panel.
  • the liquid crystal 150 is disposed so as to face each other.
  • the decorative transparent protective substrate integrated touch panel according to the third embodiment is configured integrally with a transparent protective substrate arranged on the viewing side of the flat display device as shown in FIG.
  • a sensor layer having a plurality of pixel portions and a signal line for sensing a touch position is provided on one surface facing the type display device.
  • FIG. 7 is a schematic view showing an embodiment of the decorative transparent protective substrate integrated touch panel according to the third embodiment in plan view.
  • 8A and 8B are schematic views showing in cross section the configuration of one embodiment and another embodiment of the decorative transparent protective substrate integrated touch panel shown in FIG.
  • the decorative transparent protective substrate integrated touch panel 100 includes a frame portion 103 that divides a display area of a predetermined shape on one surface side of the transparent protective substrate 102. If necessary, a planarizing film 104 is provided on the transparent protective substrate 102 on which the frame portion 103 is formed.
  • a plurality of first translucent electrodes 105 arranged intermittently in the X-axis direction and the Y-axis direction orthogonal to the X-axis direction and the X-axis direction and the Y-axis direction, respectively,
  • a plurality of transparent conductive film patterns arranged two-dimensionally are provided as a plurality of second light transmissive electrodes 106 disposed between rows and columns of the first light transmissive electrodes 105.
  • a jumper portion 107 for electrically connecting the transparent conductive film patterns of the sensor layer and an insulating film 108 for preventing an electrical short circuit between the transparent conductive film pattern layers in the jumper portion 107 are provided.
  • each of the first translucent electrodes 105 aligned in the X-axis direction passes through a through hole (not shown) of the insulating film 108 at the intersection of the first translucent electrode 105 and the second translucent electrode 106.
  • the plurality of jumpers 107 made of conductive films arranged in the X-axis direction and the Y-axis direction are electrically connected to each other.
  • a wiring portion 109 that leads the wiring from the end portion of the sensor layer onto the frame portion 103 and reaches the terminal portion 110 is provided.
  • the wiring portion 109 detects an electric signal through the terminal portion 110 to detect an electric signal. Further, a protective film 111 that covers the frame portion 103 and the display area is provided on the entire upper surface of the display device.
  • the jumper part 107 and the wiring part 109 are made of the same conductive film formed using a photosensitive resin composition containing metal particles.
  • the transparent protective substrate 102 of 3rd embodiment is corresponded when the cover glass is used in the transparent base material 10 of 1st, 2nd embodiment mentioned above.
  • the first translucent electrode 105 corresponds to the first transparent electrode 1 of the first and second embodiments described above.
  • the second translucent electrode 106 corresponds to the second transparent electrode 2 of the first and second embodiments described above.
  • the jumper portion 107 corresponds to the second connection portion 4 of the first and second embodiments described above.
  • the insulating film 108 corresponds to the insulating layer 5 of the first and second embodiments described above.
  • the wiring portion 109 corresponds to the extraction wiring 20 of the first and second embodiments described above.
  • the photosensitive resin composition containing metal particles is applied to the entire surface of the frame portion and the display area, and then exposed to ultraviolet rays through a photomask having the jumper portion 107 and the wiring portion as openings, and then developed.
  • the jumper portion 107 and the wiring portion are collectively formed at a predetermined position at the same stage.
  • a frame portion 103 that divides a display area having a predetermined shape is formed on one surface side of a cover glass to be a transparent protective substrate 102.
  • the transparent protective substrate 102 is a transparent front plate that is the outermost surface of the touch panel sensor, and is a member that is touched by the user.
  • a substrate having a transmittance of 80% or more with respect to visible light can be used, and a substrate having a transmittance of 95% or more can be preferably used.
  • the transparent protective substrate 102 may be generally used for a liquid crystal display device.
  • an inorganic transparent substrate such as glass or a transparent resin substrate such as polycarbonate, polymethyl methacrylate, polyethylene terephthalate, and cyclic olefin copolymer can be used.
  • a capacitive type is recommended for the touch panel function of the decorative transparent protective substrate integrated touch panel 100 according to the third embodiment.
  • the material and thickness of the transparent protective substrate 102 can be appropriately selected according to the specifications of the display panel to be applied.
  • the glass substrate is optimal. It is.
  • the cover glass is usually produced by strengthening soda lime glass, and it is recommended to use glass having a strengthening depth of 10 ⁇ m to 50 ⁇ m, preferably 20 ⁇ m to 30 ⁇ m.
  • the frame portion 103 is a rectangular annular light-shielding layer formed on the peripheral edge on one surface side of the cover glass using a light-shielding material, and partitions a display area of a predetermined shape such as a rectangle in the central window portion. And it plays the role which hides the wiring part 109 provided in the peripheral part of a touch panel sensor.
  • the frame portion 103 is formed using a negative photosensitive colored resin composition or ink and is generally black.
  • the photosensitive colored resin composition applied to the frame portion 103 is, for example, a colorant is dispersed in a resin binder using a dispersant, and a monomer, a photopolymerization initiator, a sensitizer, a solvent, or the like is added to the dispersion. Prepared.
  • the colorant is for coloring the frame portion 103 into a desired color.
  • pigments and dyes can be used, it is desirable to use pigments because of their excellent durability.
  • the pigment may be either an organic pigment or an inorganic pigment, and the amount of the pigment is not particularly limited.
  • the frame portion 103 can be formed from a cured product of the photosensitive colored resin composition in a predetermined pattern using a photosensitive colored resin composition by a known photolithography method.
  • a photosensitive colored resin composition is applied and dried on a transparent protective substrate 102 using a coater, and pre-baked to form a photosensitive colored resin layer.
  • the photosensitive colored resin layer is subjected to proximity exposure using an ultra-high pressure mercury lamp lamp or the like to transfer the mask pattern.
  • the frame portion 103 may be formed by developing with a developing solution such as an aqueous sodium carbonate solution, thoroughly washing with water after development, and further drying and heating to cure.
  • the frame portion 103 may be formed on the transparent protective substrate 102 by screen printing using ink as a light shielding material.
  • a planarization film 104 is formed on the transparent protective substrate 102 on which the frame portion 103 has been formed as described above.
  • the planarizing film 104 planarizes the frame portion 103 and the display area, and improves the electrical insulation of the frame portion 103 where the wiring portion 109 is formed.
  • the planarization film 104 has a role of sealing out-gassing from the colored resin layer of the frame portion 103 in the sensor layer forming process described later.
  • the flattened film 104 has, for example, smoothness and toughness, transparency, high heat resistance and light resistance, no deterioration such as yellowing and whitening over a long period of time, water resistance, solvent resistance It is required to have excellent properties, acid resistance and alkali resistance.
  • the material of the planarizing film 104 include thermosetting or radiation curable acrylate resins, methacrylate resins, epoxy resins, urethane resins, and polyimide resins. These resin compositions are applied on the transparent protective substrate 102 on which the frame portion 103 has been formed to a thickness of 2 to 20 ⁇ m, preferably 5 to 10 ⁇ m, and then cured by baking or ultraviolet irradiation. A planarizing film 104 is formed.
  • a capacitive touch panel sensor layer is formed on the transparent protective substrate 102.
  • the basic configuration of the sensor layer may be a sensor electrode (for example, the first translucent electrode 105 and the second translucent electrode 106) + insulating film 108 + jumper 107 + protective film 111 from the transparent protective substrate 102 side ( 8A and B), or jumper portion 107 + insulating film 108 + sensor electrode (for example, first light transmitting electrode 105 and second light transmitting electrode 106) + protective film 111 (see FIGS. 9A and 9B).
  • the sensor layer according to the third embodiment can be applied to any of the configurations described above.
  • the jumper portion 107 and the wiring portion 109 will be described with a processing method in which the same photosensitive resin composition containing metal particles is used to form the jumper portion 107 and the wiring portion 109 in the known photolithography method.
  • the jumper portion 107 that electrically connects the transparent conductive film patterns of the sensor layer is formed, and the wiring is led from the end portion of the sensor electrode to the frame portion 103 to be a terminal.
  • the formation of the conductive film of the wiring part 109 reaching the part means that a photosensitive resin composition containing metal particles is applied to the entire surface of the frame part 103 and the display area, and then the jumper part 107 and the wiring part are used as openings. It is performed at the same stage as patterning and forming the jumper portion 107 and the wiring portion 109 at a predetermined position by exposing with ultraviolet rays through a mask and then developing.
  • the jumper units 107 are arranged in a matrix in the X-axis direction and the Y-axis direction in the display area.
  • Each of the jumper portions 107 is for connecting the first translucent electrodes 105 aligned in the X-axis direction in the X-axis direction, and a pair of second transparent electrodes whose both ends are adjacent in the X-axis direction. It is formed at a predetermined position with a position and size so as to overlap each of the photoelectrodes 106.
  • the position of the jumper unit 107 is often designed to overlap with the BM (black matrix) of the liquid crystal display panel to be finally integrated.
  • the wiring part 109 is arranged and formed at a position on the frame part 103 that is not visually recognized.
  • the photosensitive resin composition containing metal particles is prepared by dispersing metal particles in a resin binder and adding, for example, a monomer, a photopolymerization initiator, a sensitizer, and a solvent to the dispersion.
  • the metal particles used are selected from, for example, gold (Au), silver (Ag), platinum (Pt), iridium (Ir), rhodium (Rh), copper (Cu), nickel (Ni), aluminum (Al), and carbon. It is preferable that the particle size is 1 ⁇ m or more and 4 ⁇ m or less. In consideration of resolvable patterning accuracy using a photosensitive resin composition containing metal particles, the minimum line width of metal wiring used in a normal mobile display device or the like is about 15 ⁇ m.
  • the particle size of the metal particles it is preferable that it is 4 micrometers or less.
  • the resolution of patterning is improved by making the particle size of the metal particles fine, but if the particle size is too fine, physical contact between the metal particles becomes difficult and the conductivity decreases, so the particle size of the metal particles must be 1 ⁇ m or more. It is.
  • the reflectivity of the conductive film formed using the photosensitive resin composition containing metal particles as the jumper part 107 and the wiring part 109 is preferably 20% or less, and the photosensitive resin containing metal particles
  • the conductive film formed using the composition preferably has a surface resistance value of 1 ⁇ / ⁇ or less.
  • the content of the metal particles in the photosensitive resin composition is preferably 20 to 60% by mass, and the film thickness of the cured conductive film is preferably in the range of 3 to 5 ⁇ m.
  • the photosensitive resin composition containing metal particles a commercially available product can be used.
  • a photosensitive resin suitable for use in forming the insulating film 108 is a transparent resin having a transmittance of preferably 80% or more, more preferably 95% or more in the entire wavelength region of 400 to 700 nm in the visible light region.
  • This transparent resin includes a thermoplastic resin, a thermosetting resin, and a photosensitive resin. If necessary, the transparent resin can be used alone or in admixture of two or more monomers or oligomers that are precursors thereof that are cured by irradiation with radiation to produce a transparent resin.
  • the photosensitive resin composition for forming the insulating film 108 a commercially available product can be used, and a preferable film thickness range is 1.3 to 2.0 ⁇ m.
  • the insulating film 108 is formed by laminating a light-transmitting insulating material so as to cover the jumper portion 107 formed on the planarizing film 104 and the wiring portion 109 on the frame.
  • first translucent electrode 105 and the second translucent electrode 106 are collectively formed, only the first translucent electrode 105 is jumpered through a through hole or the like provided in the insulating film 108.
  • the second translucent electrode 106 is patterned so as not to come into contact with the jumper portion 107 with the insulating film 108 interposed therebetween. Further, patterning is performed so that the first light-transmissive electrode 105 and the second light-transmissive electrode 106 are in contact with the previously formed wiring portion 109 even in a portion where the wiring is drawn from the sensor layer at the panel end.
  • the capacitive touch panel includes a plurality of first translucent electrodes 105 arranged intermittently in the same layer in the X-axis direction and the Y-axis direction orthogonal thereto, and the X-axis direction and the Y-axis direction. And a plurality of second translucent electrodes 106 arranged between the rows and the columns of the first translucent electrodes 105.
  • a transparent conductive film is formed on the entire upper surface of the transparent protective substrate 102 formed up to the insulating film 108. Thereafter, the transparent conductive film is patterned by a known method to form a first translucent electrode 105 and a second translucent electrode 106 having a predetermined shape. At this time, as described above, the panel end portions of the first light-transmissive electrode 105 and the second light-transmissive electrode 106 are connected to the detector for detecting the electrical signal that has been previously created. It will be in contact with the connected wiring.
  • the surface of the sensor layer produced as described above is provided with a protective film 111 formed of a photosensitive resin.
  • the protective film 111 the same material as that of the insulating film 108 described above can be used.
  • a slit and spin method or the like is usually used, but it is uniform on the transparent protective substrate 102 on which the sensor layer is formed. The method is not limited to these as long as it is a method capable of coating with a small film thickness. Exposure is performed on the substrate on which the photosensitive composition is applied to form a transparent resin layer. A normal high-pressure mercury lamp or the like may be used as the light source. Moreover, you may post-bake as needed.
  • the decorative transparent protective substrate integrated touch panel 100 As described above, the decorative transparent protective substrate integrated touch panel 100 according to the third embodiment shown in FIGS. 9A and 9B is obtained.
  • the first light-transmitting electrode 105 and the second light-transmitting electrode 106 can be formed first, and the step of forming the jumper portion 107 and the wiring portion 109 can be performed later.
  • the frame portion 103 the planarization film 104 if necessary
  • the first light-transmissive electrode 105 and the second light-transmissive electrode 106 are formed.
  • an insulating film 108 is formed.
  • the jumper portion 107 and the wiring portion 109 can be formed.
  • the decorative transparent protective substrate integrated touch panel shown in FIGS. 8A and 8B can be obtained.
  • the jumper portion 107 and the wiring portion 109 can be manufactured using the same material and in the same process step, not a vacuum process, the jumper portion 107 and the wiring portion 109 can be manufactured in a short process with an inexpensive manufacturing facility. There is a configuration that leads to reduction of defects in the process and enables cost reduction.
  • the decorative transparent protective substrate integrated touch panel 100 is arranged on the viewing side of the flat display device, and is on one surface side of the transparent protective substrate (front plate) 102 facing the flat display device. It is applied with a sensor electrode.
  • a color liquid crystal display device can be cited, and the counter substrate is uniform with a plurality of colored pixels such as red (R), green (G), and blue (B) defined by a black matrix.
  • a display panel is assembled by sandwiching the liquid crystal between the color filter substrate on which a transparent electrode is formed and the necessary alignment treatment is performed and the array substrate on which the TFT is formed, and a polarizing plate, a drive electrode, and a backlight Combine with etc.
  • An array substrate of a liquid crystal display device which is a flat display device provided with a decorative transparent protective substrate integrated touch panel 100, has a gate line and a gate electrode made of metal such as molybdenum, tungsten, or an alloy thereof on a transparent substrate.
  • a gate insulating film made of silicon oxide, silicon nitride or the like is disposed so as to cover them.
  • a semiconductor layer such as amorphous silicon is disposed on the gate insulating film, and further, a source line, a source electrode, and a drain electrode made of molybdenum or aluminum are disposed to form a switching element.
  • a protective layer made of silicon oxide, silicon nitride, or the like is disposed on the switching element. The switching element is wired so that it can be driven by an operation of the decorative transparent protective substrate integrated touch panel 100 disposed on the front surface side (viewing side).
  • a display panel that has a pixel area in which a plurality of pixels are arranged in a matrix and forms an image in the above-described pixel area based on an input signal, and is attached so as to cover the pixel area
  • a flat display device including the decorative transparent protective substrate integrated touch panel 100 is obtained.

Abstract

Provided is a production method whereby a touch panel sensor substrate of excellent display quality can be produced less expensively than with past production methods, and without diminished viewability despite the use of metal materials in connecting parts. The method is a method for producing a capacitive touch panel sensor substrate of a transparent substrate (10) onto which are formed a first transparent electrode (1), a second transparent electrode (2), a first connecting part (3), a second connecting part (4), an insulating layer (5), and takeoff wiring (20); characterized by including a step for forming the first connecting part (3), a step for forming the insulating layer (5), and a step for forming the second connecting part (4), the step for forming the insulating layer (5) being performed subsequent to either the step for forming the first connecting part (3) or the step for forming the second connecting part (4), the remaining step among the step for forming the first connecting part (3) and the step for forming the second connecting part (4) being performed subsequent to the step for forming the insulating layer (5), and the reflectivity of the second connecting part (4) and the takeoff wiring (20) being in a range of 0-30% inclusive.

Description

静電容量式タッチパネルセンサー基板の製造方法、静電容量式タッチパネルセンサー基板および表示装置Capacitive touch panel sensor substrate manufacturing method, capacitive touch panel sensor substrate, and display device
 本発明は、静電容量式タッチパネルセンサー基板の製造方法、静電容量式タッチパネルセンサー基板および表示装置に関するものである。 The present invention relates to a method for manufacturing a capacitive touch panel sensor substrate, a capacitive touch panel sensor substrate, and a display device.
 タッチパネルは、表示画面上の透明な面を操作者が指等でタッチし、このタッチされた位置を検出することによりデータ入力できるものである。このタッチパネルは、キー入力より直接的、かつ直感的な入力を可能とすることから、近年、多用されるようになってきた。特にこのタッチパネルを液晶等の表示パネルと組み合わせて、情報の入出力を一体で行うことが多い。 The touch panel is a touch panel that allows the operator to input data by touching a transparent surface on the display screen with a finger or the like and detecting the touched position. This touch panel has been used frequently in recent years because it enables direct and intuitive input rather than key input. In particular, this touch panel is often combined with a display panel such as a liquid crystal to input and output information in an integrated manner.
 タッチパネルの検出方式には、例えば、抵抗膜式、静電容量式、超音波式、光学式等があり、これまでは、製造コストの点で比較的優れていた抵抗膜式が主流であった。しかし、2枚の透明導電膜の間に空気層を設ける構造を有する抵抗膜式タッチパネルは、光学特性(例えば、透過率)が低く、耐久性や動作温度特性においても充分とは言えないため、改良が求められてきた。 The touch panel detection method includes, for example, a resistance film type, a capacitance type, an ultrasonic type, and an optical type, and until now, the resistance film type, which was relatively superior in terms of manufacturing cost, has been the mainstream. . However, a resistive touch panel having a structure in which an air layer is provided between two transparent conductive films has low optical characteristics (for example, transmittance), and it cannot be said that durability and operating temperature characteristics are sufficient. Improvements have been sought.
 一方、可動部分を有しない静電容量式タッチパネルは、光学特性が高く、耐久性や動作温度特性においても抵抗膜式より優れているため、特に車載用等の高信頼性用途に向けて開発が進んでいる(例えば、特許文献1、2を参照)。
 この種の静電容量式タッチパネルは、表面型(surface capacitive type)と投影型(projected capacitive type)に大別でき、10型(25.4cmサイズ)以上の大型品には表面型が、携帯機器向けの6型以下の小型品には投影型が使われる場合が多い。電極板の構造が単純な表面型は、大型化し易いが、2点以上の接触点を同時に検知することは困難である。一方、電極板の構造が複雑な投影型は、大型化には不利であるが、2点以上の接触点を同時に検知することが可能である。
On the other hand, capacitive touch panels that do not have moving parts have high optical characteristics and are superior to resistance film types in terms of durability and operating temperature characteristics, so they are especially developed for high-reliability applications such as in-vehicle use. (For example, see Patent Documents 1 and 2).
This type of capacitive touch panel can be broadly classified into a surface type and a projected type, and a surface type is used for a large product of 10 type (25.4 cm size) or more. In many cases, the projection type is used for small products of size 6 or less. A surface type with a simple electrode plate structure is likely to be large, but it is difficult to detect two or more contact points simultaneously. On the other hand, a projection type with a complicated electrode plate structure is disadvantageous for an increase in size, but two or more contact points can be detected simultaneously.
 投影型静電容量式タッチパネル用のセンサー基板は、一般的に、透明基材上に、x方向に配列された第一の透明電極と、y方向に配列された第二の透明電極と、第一の透明電極同士を結合する第一の接続部と、第二の透明電極同士を結合する第二の接続部と、第一の接続部と第二の接続部が交差する部位に、第一の接続部と第二の接続部を電気的に絶縁するための絶縁層と、を備えている。また、透明基材上には、これらの透明電極と制御回路とを繋ぐ取出配線が形成される。透明電極、接続部および取出配線を腐食や接触による傷から守るために、制御回路と繋がる取出配線の接続部位以外のほぼ全面を覆うように、透明基材上に、保護層が形成されて用いられることが多くなっている(例えば、特許文献3を参照)。 A sensor substrate for a projected capacitive touch panel generally includes a first transparent electrode arranged in the x direction, a second transparent electrode arranged in the y direction, and a first transparent electrode on a transparent substrate. The first connection part that connects the first transparent electrodes, the second connection part that connects the second transparent electrodes, and the part where the first connection part and the second connection part intersect, And an insulating layer for electrically insulating the second connecting portion. Further, on the transparent base material, an extraction wiring connecting these transparent electrodes and the control circuit is formed. In order to protect the transparent electrode, connection part, and lead-out wiring from corrosion and contact scratches, a protective layer is formed on the transparent base so that it covers almost the entire surface except the connection part of the lead-out wiring connected to the control circuit. (See, for example, Patent Document 3).
 この投影型静電容量式タッチパネルには、透明基材用の材料として、ポリエチレンテレフタレート(PET)等の樹脂製のフィルムを用いるフィルム式と、無アルカリガラスやソーダライムガラスを用いるガラス式がある。フィルム式は製造コストが安く割れにくい利点があるが、透明性が劣ることや、フィルム上の透明電極の抵抗値が高いために電極部を小さくできないこと等から、ガラス式が、携帯端末等の小型品に多く使用されている。 The projected capacitive touch panel includes a film type using a resin film such as polyethylene terephthalate (PET) and a glass type using non-alkali glass or soda lime glass as materials for the transparent substrate. The film type has the advantage that the manufacturing cost is low and it is difficult to break, but because the transparency is inferior and the resistance value of the transparent electrode on the film is high, the electrode part cannot be made small. It is often used for small products.
 前述の透明電極、接続部、絶縁層、および取出配線や保護層の形成には、成膜およびパターニング工程が複数回必要であり、多くの製造コストを要することが問題となっている。特に、取出配線の製造工程には、導電性が高く、微細加工が容易な点から、モリブデン(Mo)/アルミニウム(Al)/モリブデン膜をスパッタ法で成膜して、ポジレジストによるフォトリソグラフィ(以下、「フォトリソ」ともいう。)工程を経た後、エッチング・レジスト剥離を行う方法が広く用いられている。また、透明電極には、透明性が高く、抵抗値に優れる酸化インジウム錫(ITO)が一般的に用いられるが、取出配線と同様、真空容器内に投入した基材に金属膜をスパッタ成膜した後、保護膜形成・エッチング・保護膜剥離を行う必要があり、工程が多いだけでなく、設備費用が高いことが課題であった。 The formation of the above-mentioned transparent electrode, connecting portion, insulating layer, lead-out wiring and protective layer requires a plurality of film forming and patterning steps, which requires a lot of manufacturing costs. In particular, in the manufacturing process of the lead-out wiring, molybdenum (Mo) / aluminum (Al) / molybdenum film is formed by a sputtering method from the viewpoint of high conductivity and easy microfabrication, and photolithography using a positive resist ( Hereinafter, a method of performing etching / resist peeling after the step is also widely used. In addition, indium tin oxide (ITO), which has high transparency and excellent resistance, is generally used for the transparent electrode, but as with the lead-out wiring, a metal film is formed by sputtering on the substrate placed in the vacuum vessel. After that, it is necessary to perform protective film formation, etching, and protective film peeling, and not only there are many processes, but also the equipment cost is high.
 これに対して、取出配線と、第一、または第二の接続部のいずれか一方を同時に形成することで、かかる製造コストを低減する方法が開示されている(例えば、特許文献4を参照)。
 しかしながらこの方法では、製造工程を短縮して低コストでタッチパネルセンサー基板を製造できるものの、金属材料を用いて形成された、表示エリアにある接続部が、通常使用条件下において目視で視認できてしまうために、表示品位を低下させる問題があった。
 また、取出配線を安価に製造する別の方法として、銀等の導電性粉末を有機バインダーに分散させ、感光性を持たせた導電ペーストを用いたフォトリソ法が知られている(例えば、特許文献5、6を参照)。
On the other hand, a method of reducing the manufacturing cost by simultaneously forming one of the extraction wiring and the first or second connection portion is disclosed (see, for example, Patent Document 4). .
However, with this method, although the manufacturing process can be shortened and the touch panel sensor substrate can be manufactured at low cost, the connection portion in the display area formed using a metal material can be visually recognized under normal use conditions. For this reason, there is a problem of degrading display quality.
Further, as another method for manufacturing the lead-out wiring at a low cost, a photolithography method using a conductive paste in which conductive powder such as silver is dispersed in an organic binder and made photosensitive is known (for example, patent document). 5 and 6).
 このフォトリソ法は、基材上に感光性導電ペーストを塗布後、所望する取出配線に対応するフォトマスクを介して、基材上に紫外光を照射することにより塗膜の露光部分を光架橋により硬化し、現像液を用いて基材から塗膜の未露光部分を除去した後に焼成することにより取出配線部を形成する方法である。このフォトリソ法を用いることにより、蒸着法に比べて安価で、かつ、スクリーン印刷や、グラビアオフセット印刷で形成する印刷法に比べて高精細な導電部を得ることが可能である。しかしながらこれらに開示されている技術だけでは、取出配線を安価に製造する着想を与えることはできても、金属材料を用いて、表示エリアにある接続部を同時に形成した場合に生じる問題、すなわち、解像度が十分でないために、通常使用条件下において形成した接続部が目視で視認できてしまう問題を解決できなかった。 In this photolithography method, after applying a photosensitive conductive paste on a substrate, the exposed portion of the coating film is photocrosslinked by irradiating the substrate with ultraviolet light through a photomask corresponding to the desired extraction wiring. It is a method of forming a lead-out wiring part by curing after removing the unexposed portion of the coating film from the substrate using a developing solution. By using this photolithography method, it is possible to obtain a conductive portion that is less expensive than the vapor deposition method and has a higher definition than the printing method formed by screen printing or gravure offset printing. However, even with the techniques disclosed in these publications, the idea of manufacturing the extraction wiring at a low cost can be given, but the problem that occurs when the connection portion in the display area is simultaneously formed using a metal material, that is, Since the resolution is not sufficient, the problem that the connection part formed under normal use conditions can be visually recognized cannot be solved.
特開昭63-174120号公報JP 63-174120 A 特開2006-23904号公報JP 2006-23904 A 特開2007-279819号公報JP 2007-279819 A 特開2011-86122号公報JP 2011-86122 A 特許第4374653号公報Japanese Patent No. 4374653 特許第3239723号公報Japanese Patent No. 3329723
 本発明の目的は、静電容量式タッチパネルセンサー基板を製造する際に、従来の、透明電極、接続部、絶縁層、取出配線および保護層を、それぞれ単独に成膜およびパターニングする製造方法よりも安価に製造でき、かつ、接続部に金属材料を用いても視認性を損なうことのない、表示品位に優れたタッチパネルセンサー基板の製造方法を提供することである。 The object of the present invention is to produce a capacitive touch panel sensor substrate, rather than a conventional manufacturing method in which a transparent electrode, a connecting portion, an insulating layer, a lead-out wiring, and a protective layer are individually formed and patterned. It is an object of the present invention to provide a method for manufacturing a touch panel sensor substrate excellent in display quality, which can be manufactured at a low cost and does not impair visibility even when a metal material is used for a connection portion.
 またその製造方法を用いて安価に製造され且つ表示品位に優れたタッチパネルセンサー基板を提供することである。
 さらには、透明基材にカバーガラスを用いることで、部品点数を減らしてさらに安価に製造できる、カバーガラス一体型のタッチパネルセンサー基板を提供することである。
 また、上述の静電容量式タッチパネルセンサー基板を有する表示装置を提供することである。
Another object of the present invention is to provide a touch panel sensor substrate that is inexpensively manufactured using the manufacturing method and has excellent display quality.
Furthermore, it is to provide a cover glass-integrated touch panel sensor substrate that can be manufactured at a lower cost by reducing the number of components by using a cover glass for the transparent base material.
Moreover, it is providing the display apparatus which has the above-mentioned electrostatic capacitance type touch panel sensor board | substrate.
 本発明の一態様によれば、(A)第一の透明電極と、(B)第二の透明電極と、(C)前記(A)第一の透明電極同士を接続する第一の接続部と、(D)前記(B)第二の透明電極同士を接続する第二の接続部と、(E)前記(C)第一の接続部と前記(D)第二の接続部との交差する部位に形成される絶縁層と、(F)前記(A)第一の透明電極および前記(B)第二の透明電極に接続される取出配線と、を備えて構成される、透明基材上に形成される静電容量式タッチパネルセンサー基板の製造方法であって、前記(C)第一の接続部を、前記(A)第一の透明電極および前記(B)第二の透明電極の材料と同一の透明導電材料を用いて、前記(A)第一の透明電極および前記(B)第二の透明電極と同時に形成する工程と、前記(E)絶縁層を形成する工程と、前記(D)第二の接続部を、導電材料を用いて前記(F)取出配線と同時に形成する工程と、を含み、前記(C)第一の接続部を形成する工程または前記(D)第二の接続部を形成する工程の一方の工程を実施した後に前記(E)絶縁層を形成する工程を実施し、前記(E)絶縁層を形成する工程を実施した後に前記(C)第一の接続部を形成する工程または前記(D)第二の接続部を形成する工程の他方の工程を実施し、前記(D)第二の接続部および前記(F)取出配線の反射率は、0%以上30%以下の範囲内であることを特徴とする静電容量式タッチパネルセンサー基板の製造方法が提供される。 According to one aspect of the present invention, (A) the first transparent electrode, (B) the second transparent electrode, and (C) the first connection portion that connects the (A) first transparent electrodes to each other. And (D) the second connection part that connects the (B) second transparent electrodes, and (E) the intersection of the (C) first connection part and the (D) second connection part. A transparent base material comprising: an insulating layer formed on a portion to be removed; and (F) an extraction wiring connected to the (A) first transparent electrode and the (B) second transparent electrode. It is a manufacturing method of the electrostatic capacitance type touch panel sensor substrate formed on, Comprising: Said (C) 1st connection part of said (A) 1st transparent electrode and said (B) 2nd transparent electrode Using the same transparent conductive material as the material, (A) the step of forming the first transparent electrode and the (B) second transparent electrode at the same time, and (E Forming the insulating layer; and (D) forming the second connection portion simultaneously with the (F) lead-out wiring using a conductive material, and (C) the first connection portion. The step of forming the (E) insulating layer after performing one step of the step of forming or the step of forming the (D) second connecting portion, and the step of forming the (E) insulating layer. After performing, the other step of the step (C) forming the first connection portion or the step (D) forming the second connection portion is performed, and the (D) second connection portion and the (( F) A method for manufacturing a capacitive touch panel sensor substrate is provided, wherein the reflectance of the lead-out wiring is in the range of 0% to 30%.
 前記(D)第二の接続部の導体幅は、3μm以上20μm以下の範囲内であってよい。
 前記導電材料は、感光性導電材料であってよい。
 前記感光性導電材料は、(G)黒色材料、(H)金属粒子、(I)光重合開始剤、(J)重合性多官能モノマー、(K)樹脂を含有してよい。
 前記(G)黒色材料は、黒色顔料、2種以上の顔料の疑似黒色混合物、黒色染料、金属化合物のいずれかであってよい。
 前記黒色材料は、平均粒子径が10nm以上500nm以下の範囲内であるカーボンブラックであってよい。
The conductor width of the (D) second connection portion may be in the range of 3 μm to 20 μm.
The conductive material may be a photosensitive conductive material.
The photosensitive conductive material may contain (G) a black material, (H) metal particles, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, and (K) a resin.
The (G) black material may be any one of a black pigment, a pseudo black mixture of two or more pigments, a black dye, and a metal compound.
The black material may be carbon black having an average particle diameter in the range of 10 nm to 500 nm.
 前記(H)金属粒子は、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、アルミニウム(Al)から選ばれる1種以上の金属を含有してよい。
 前記(H)金属粒子の粒子径は、0.1μm以上4μm以下の範囲内であってよい。
 前記(I)光重合開始剤は、O-アシルオキシム系化合物を1種以上含有してよい。
 前記カーボンブラックの含有量は、前記(H)金属粒子の重量に対して1重量%以上100重量%以下の範囲内であってよい。
 前記(D)第二の接続部および前記(F)取出配線の導電材料は、印刷法により成膜され、フォトリソ法によって微細パターン化されてよい。
The (H) metal particles are selected from gold (Au), silver (Ag), platinum (Pt), copper (Cu), palladium (Pd), iridium (Ir), rhodium (Rh), and aluminum (Al). One or more metals may be included.
The particle diameter of the (H) metal particles may be in the range of 0.1 μm to 4 μm.
The (I) photopolymerization initiator may contain one or more O-acyloxime compounds.
The carbon black content may be in the range of 1 wt% to 100 wt% with respect to the weight of the (H) metal particles.
The conductive material for the (D) second connection portion and the (F) extraction wiring may be formed by a printing method and finely patterned by a photolithography method.
 本発明の他の態様によれば、上記記載の静電容量式タッチパネルセンサー基板の製造方法で製造されたことを特徴とする静電容量式タッチパネルセンサー基板が提供される。
 本発明のさらに他の態様によれば、(A)第一の透明電極と、(B)第二の透明電極と、(C)前記(A)第一の透明電極同士を接続する第一の接続部と、(D)前記(B)第二の透明電極同士を接続する第二の接続部と、(E)前記(C)第一の接続部と前記(D)第二の接続部との交差する部位に形成される絶縁層と、(F)前記(A)第一の透明電極および前記(B)第二の透明電極に接続される取出配線と、を備えて構成される、透明基材上に形成される静電容量式タッチパネルセンサー基板であって、前記(C)第一の接続部は、前記(A)第一の透明電極および前記(B)第二の透明電極の材料と同一の透明導電材料を用いて形成され、前記(D)第二の接続部は、導電材料を用いて前記(F)取出配線と同一の材料で形成され、前記(D)第二の接続部および前記(F)取出配線の反射率は、0%以上30%以下の範囲内であることを特徴とする静電容量式タッチパネルセンサー基板が提供される。
According to another aspect of the present invention, there is provided a capacitive touch panel sensor substrate manufactured by the above-described method for manufacturing a capacitive touch panel sensor substrate.
According to still another aspect of the present invention, (A) a first transparent electrode, (B) a second transparent electrode, and (C) the first (A) first transparent electrode connected to each other. A connection part, (D) the (B) second connection part for connecting the second transparent electrodes, (E) the (C) first connection part, and (D) the second connection part, A transparent layer comprising: an insulating layer formed at an intersecting portion of the substrate; and (F) an extraction wiring connected to the (A) first transparent electrode and the (B) second transparent electrode. A capacitive touch panel sensor substrate formed on a substrate, wherein the (C) first connection portion is made of the material of the (A) first transparent electrode and the (B) second transparent electrode. The (D) second connection portion is formed of the same material as the (F) lead-out wiring using a conductive material. Wherein (D) the reflectivity of the second connecting portion and the (F) extracting wiring capacitive touch panel sensor substrate, characterized in that in the range of 30% or more 0% is provided.
 前記(D)第二の接続部の導体幅は、3μm以上20μm以下の範囲内であってよい。
 前記導電材料は、感光性導電材料であってよい。
 前記感光性導電材料は、(G)黒色材料、(H)金属粒子、(I)光重合開始剤、(J)重合性多官能モノマー、(K)樹脂を含有してよい。
 前記(G)黒色材料は、黒色顔料、2種以上の顔料の疑似黒色混合物、黒色染料、金属化合物のいずれかであってよい。
The conductor width of the (D) second connection portion may be in the range of 3 μm to 20 μm.
The conductive material may be a photosensitive conductive material.
The photosensitive conductive material may contain (G) a black material, (H) metal particles, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, and (K) a resin.
The (G) black material may be any one of a black pigment, a pseudo black mixture of two or more pigments, a black dye, and a metal compound.
 前記(G)黒色材料は、平均粒子径が10nm以上500nm以下の範囲内であるカーボンブラックであってよい。
 前記(H)金属粒子は、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、アルミニウム(Al)から選ばれる1種以上の金属を含有してよい。
The (G) black material may be carbon black having an average particle diameter in the range of 10 nm to 500 nm.
The (H) metal particles are selected from gold (Au), silver (Ag), platinum (Pt), copper (Cu), palladium (Pd), iridium (Ir), rhodium (Rh), and aluminum (Al). One or more metals may be included.
 前記(H)金属粒子の粒子径は、0.1μm以上4μm以下の範囲内であってよい。
 前記(I)光重合開始剤は、O-アシルオキシム系化合物を1種以上含有してよい。
 前記カーボンブラックの含有量は、前記(H)金属粒子の重量に対して1重量%以上100重量%以下の範囲内であってよい。
 前記透明基材はカバーガラスと同一であってよい。
 本発明のさらに他の態様によれば、上記記載の静電容量式タッチパネルセンサー基板を備える表示装置が提供される。
The particle diameter of the (H) metal particles may be in the range of 0.1 μm to 4 μm.
The (I) photopolymerization initiator may contain one or more O-acyloxime compounds.
The carbon black content may be in the range of 1 wt% to 100 wt% with respect to the weight of the (H) metal particles.
The transparent substrate may be the same as the cover glass.
According to still another aspect of the present invention, a display device including the above-described capacitive touch panel sensor substrate is provided.
 本発明によれば、静電容量式タッチパネルセンサー基板を製造する際に、従来の、透明電極、接続部、絶縁層、取出配線および保護層を、それぞれ単独に成膜およびパターニングする製造方法よりも安価に製造でき、かつ、接続部に金属材料を用いても視認性を損なうことのない、表示品位に優れたタッチパネルセンサー基板の製造方法を提供可能にする。 According to the present invention, when a capacitive touch panel sensor substrate is manufactured, the conventional transparent electrode, connecting portion, insulating layer, lead-out wiring, and protective layer are each formed more independently than a manufacturing method for patterning. It is possible to provide a method for manufacturing a touch panel sensor substrate excellent in display quality that can be manufactured at low cost and does not impair visibility even when a metal material is used for a connection portion.
 またその製造方法を用いて安価に製造され且つ表示品位に優れたタッチパネルセンサー基板を提供可能にする。
 さらには、透明基材にカバーガラスを用いることで、部品点数を減らしてさらに安価に製造できる、カバーガラス一体型のタッチパネルセンサー基板を提供可能にする。
 また、上述の静電容量式タッチパネルセンサー基板を有する表示装置を提供可能にする。
In addition, it is possible to provide a touch panel sensor substrate that is inexpensively manufactured using the manufacturing method and has excellent display quality.
Furthermore, by using a cover glass for the transparent base material, it is possible to provide a cover glass integrated touch panel sensor substrate that can be manufactured at a lower cost by reducing the number of components.
In addition, it is possible to provide a display device having the above-described capacitive touch panel sensor substrate.
本発明の第一の実施形態に係る、第一の透明電極、第二の透明電極、および第一の透明電極を結ぶ第一の接続部が形成された後、絶縁層を介して第二の接続部と取出配線が同時に形成された、静電容量式タッチパネルセンサー基板の一例を示す平面模式図。According to the first embodiment of the present invention, after the first transparent electrode, the second transparent electrode, and the first connection portion connecting the first transparent electrode are formed, the second transparent electrode is interposed through the insulating layer. The plane schematic diagram which shows an example of a capacitive touch panel sensor board | substrate with which the connection part and the extraction wiring were formed simultaneously. 本発明の第一の実施形態に係る、第二の接続部と取出配線が同時に形成された後、第一の透明電極、第二の透明電極、および絶縁層を介して第一の透明電極を結ぶ第一の接続部が形成された、静電容量式タッチパネルセンサー基板の一例を示す平面模式図。According to the first embodiment of the present invention, after the second connection portion and the lead-out wiring are formed at the same time, the first transparent electrode is inserted through the first transparent electrode, the second transparent electrode, and the insulating layer. The plane schematic diagram which shows an example of the capacitive touch panel sensor board | substrate with which the 1st connection part to connect was formed. 本発明の第一の実施形態に係る静電容量式タッチパネルの一例を示す投影模式図。The projection schematic diagram which shows an example of the electrostatic capacitance type touch panel which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係るカバーガラス一体型静電容量式タッチパネルセンサー基板の一例を示す投影模式図。The projection schematic diagram which shows an example of the cover glass integrated capacitance type touch panel sensor board | substrate which concerns on 1st embodiment of this invention. 図1のA-A′線における断面図。FIG. 2 is a cross-sectional view taken along line AA ′ in FIG. 1. 図2のB-B′線における断面図。Sectional drawing in the BB 'line of FIG. 静電容量式タッチパネルセンサー基板における反射率と導体幅の関係を示す図。The figure which shows the relationship between the reflectance in a capacitive touch panel sensor board | substrate, and a conductor width. 従来例におけるタッチパネル機能を有する電子入力装置を備えた平面型表示装置を断面で示す模式図。The schematic diagram which shows the flat type display apparatus provided with the electronic input device which has a touch-panel function in a prior art example in a cross section. 本発明の第三の実施形態に係るタッチパネル機能を有する電子入力装置を断面で示す模式図。The schematic diagram which shows the electronic input device which has a touch-panel function which concerns on 3rd embodiment of this invention in a cross section. 本発明の第三の実施形態に係る加飾透明保護基板一体型タッチパネルを平面で示す模式図。The schematic diagram which shows the decorating transparent protection board integrated touch panel which concerns on 3rd embodiment of this invention with a plane. 図7に示す加飾透明保護基板一体型タッチパネルにおけるC-C′線での断面を示す模式図。The schematic diagram which shows the cross section in the CC 'line | wire in the decorative transparent protective substrate integrated touch panel shown in FIG. 図7に示す加飾透明保護基板一体型タッチパネルの別の構成例におけるC-C′線での断面を示す模式図。The schematic diagram which shows the cross section in CC 'line in another structural example of the decorative transparent protective substrate integrated touch panel shown in FIG. 本発明の第三の実施形態に係る加飾透明保護基板一体型タッチパネルの別の構成例におけるC-C′線での断面を示す模式図。The schematic diagram which shows the cross section in CC 'line in another structural example of the decorative transparent protective substrate integrated touch panel which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る加飾透明保護基板一体型タッチパネルの別の構成例におけるC-C′線での断面を示す模式図。The schematic diagram which shows the cross section in CC 'line in another structural example of the decorative transparent protective substrate integrated touch panel which concerns on 3rd embodiment of this invention.
 本発明における投影型静電容量式タッチパネルセンサー基板の製造方法およびそれを用いて製造される投影型静電容量式タッチパネルセンサー基板について、その実施の形態に基づいて詳細に説明する。なお、本発明のタッチパネルセンサー基板はその要旨を超えない限り、以下の構成に限定されるものではない。 DETAILED DESCRIPTION OF THE INVENTION A method for manufacturing a projected capacitive touch panel sensor substrate according to the present invention and a projected capacitive touch panel sensor substrate manufactured using the same will be described in detail based on the embodiments thereof. In addition, the touch panel sensor board | substrate of this invention is not limited to the following structures, unless the summary is exceeded.
≪第一の実施形態≫
<投影型静電容量式タッチパネルセンサー基板>
 図1および図2は、保護膜6を介して透視される、本発明の第一の実施形態に係るタッチパネルセンサー基板平面図を示す。ここで、図1および図2は、第一の接続部3、第二の接続部4、および絶縁層5の位置関係が異なる例である。また、図4Aは図1のA-A′線における断面図を示し、図4Bは図2のB-B′線における断面図を示す。
≪First embodiment≫
<Projection capacitive touch panel sensor substrate>
1 and 2 are plan views of the touch panel sensor substrate according to the first embodiment of the present invention, seen through the protective film 6. Here, FIG. 1 and FIG. 2 are examples in which the positional relationship among the first connection portion 3, the second connection portion 4, and the insulating layer 5 is different. 4A shows a cross-sectional view taken along line AA ′ in FIG. 1, and FIG. 4B shows a cross-sectional view taken along line BB ′ in FIG.
 第一の実施形態に係る投影型静電容量式タッチパネルセンサー基板は、図1に示すように、透明基材10上に第一の透明電極1、第二の透明電極2、第一の接続部3、第二の接続部4、絶縁層5および取出配線20を有する。絶縁層5は、第一の接続部3と直交する第二の接続部4の導通を防止し、絶縁するために配設されている。また、第一の実施形態に係る投影型静電容量式タッチパネルセンサー基板は、さらに、保護膜6を有することもできる。 As shown in FIG. 1, the projected capacitive touch panel sensor substrate according to the first embodiment includes a first transparent electrode 1, a second transparent electrode 2, and a first connection portion on a transparent substrate 10. 3, the second connection portion 4, the insulating layer 5, and the extraction wiring 20. The insulating layer 5 is disposed in order to prevent and insulate the second connecting portion 4 orthogonal to the first connecting portion 3. Further, the projected capacitive touch panel sensor substrate according to the first embodiment can further include a protective film 6.
 図1は、第一の接続部3が最下層に形成され、その上に絶縁層5を備え、第二の接続部4が絶縁層5の上に形成される構造を示す。図2のように、第二の接続部4が最下層に形成され、その上に絶縁層5を備え、第一の接続部3が絶縁層5の上に形成される構造であってもよい。また、第一の接続部3と第二の接続部4は、透明基材10に対して、x方向、y方向のいずれの向きであってもよい。 FIG. 1 shows a structure in which a first connection portion 3 is formed in the lowermost layer, an insulating layer 5 is provided thereon, and a second connection portion 4 is formed on the insulating layer 5. As shown in FIG. 2, the second connection portion 4 may be formed in the lowermost layer, the insulating layer 5 may be provided on the second connection portion 4, and the first connection portion 3 may be formed on the insulating layer 5. . In addition, the first connection portion 3 and the second connection portion 4 may be in either the x direction or the y direction with respect to the transparent substrate 10.
 透明基材10としては、特に限定されるものではないが、例えば、ソーダ石灰ガラス、低アルカリ硼珪酸ガラス、無アルカリアルミノ硼珪酸ガラス等のガラス板、あるいはポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)等からなるプラスチック板、プラスチックフィルムが用いられてよい。 Although it does not specifically limit as the transparent base material 10, For example, glass plates, such as a soda lime glass, a low alkali borosilicate glass, an alkali free alumino borosilicate glass, or a polyethylene terephthalate (PET), a triacetyl cellulose ( A plastic plate or plastic film made of TAC), polymethyl methacrylate (PMMA), polycarbonate (PC), or the like may be used.
 図3Aは、透明基材10上に形成した、第一の実施形態に係るタッチパネルセンサー基板と、カバーガラス30とから成るタッチパネルの投影図である。なお、カバーガラス30のタッチパネルセンサー基板側の面(つまり、カバーガラス30の、透明基材10に対向する面)には、矩形枠状に額縁層(ベゼル)が形成されている(図示せず)。この額縁層は、透明基材10上に形成した、第一の実施形態に係るタッチパネルセンサー基板と、カバーガラス30とを重ねた場合に、例えば取出配線20と重なるように形成されている。 FIG. 3A is a projected view of a touch panel formed on the transparent base material 10 and including the touch panel sensor substrate according to the first embodiment and the cover glass 30. Note that a frame layer (bezel) is formed in a rectangular frame shape on the surface of the cover glass 30 on the touch panel sensor substrate side (that is, the surface of the cover glass 30 facing the transparent base material 10) (not shown). ). This frame layer is formed so as to overlap, for example, the extraction wiring 20 when the touch panel sensor substrate according to the first embodiment formed on the transparent base material 10 and the cover glass 30 are overlapped.
 図3Bは、透明基材10にカバーガラスを用いた、カバーガラス一体型投影型静電容量式タッチパネルセンサー基板の構造を示す図であり、透明基材10には、例えば、アルミノ珪酸ガラス(例えば、商品名「Gollira(コーニング社製)」、「IOX-FS(コーニング社製)」、「Dragontrail(旭硝子社製)」)や化学的に強化されたソーダライムガラス等の特殊ガラス板を用いることができる。透明基材10にカバーガラスを用いる場合、一枚の母体となる大型ガラス基板上に、不図示の額縁層(ベゼル)と、タッチパネルセンサー40の両方を設けるために、透明基材一枚の部品点数を減らすことができ、低コストでタッチパネルが製造可能になる。通常のカバーガラスは、大型ガラス基板を個々のピースに分断した後に化学的に強化されているので十分な強度が得られやすい。これに対し、透明基材10にカバーガラスを用いる場合には、一枚の母体となる大型ガラス基板上に、額縁層(ベゼル)とタッチパネルセンサー40との両方を複数個分まとめて形成した後、化学エッチング法や機械切削法などの方法により、個々のピースに強化ガラスを分断する工程が必要であり、このため強化後の大型基板を個々のピースに分断することで強度が弱くなる課題があった。近年、これらの問題を解決する手段も開示されつつあるため、透明基材10にカバーガラスなどの強化ガラスを採用することが多くなっている。 FIG. 3B is a diagram showing the structure of a cover glass integrated projection type capacitive touch panel sensor substrate using a cover glass for the transparent base material 10. The transparent base material 10 includes, for example, an aluminosilicate glass (for example, , "Gollila (Corning)", "IOX-FS (Corning)", "Dragonrail (Asahi Glass)") or chemically strengthened special glass plates such as soda lime glass Can do. When a cover glass is used for the transparent base material 10, a single transparent base material component is provided to provide both a frame layer (bezel) (not shown) and the touch panel sensor 40 on a large glass substrate that is a base material. The number of points can be reduced, and a touch panel can be manufactured at low cost. Since a normal cover glass is chemically strengthened after dividing a large glass substrate into individual pieces, sufficient strength is easily obtained. On the other hand, when a cover glass is used for the transparent substrate 10, after a plurality of frame layers (bezels) and the touch panel sensor 40 are collectively formed on a single large glass substrate. The process of dividing the tempered glass into individual pieces by a method such as chemical etching or mechanical cutting is necessary, and there is a problem that the strength is weakened by dividing the reinforced large substrate into individual pieces. there were. In recent years, since means for solving these problems are being disclosed, tempered glass such as cover glass is often used for the transparent substrate 10.
 第一の透明電極1および第二の透明電極2としては、透明基材10表面に配設することができるものであれば特に限定されるものではないが、例えば、ITO、酸化亜鉛(ZnO)等の無機導電材料、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)、ポリアニリン、ポリピロール等の有機導電材料を用いることができる。これら材料は1種のみで用いてもよく、2種以上を併用してもよい。中でも、透明性と抵抗値の点でITOを用いることが好ましい。 The first transparent electrode 1 and the second transparent electrode 2 are not particularly limited as long as the first transparent electrode 1 and the second transparent electrode 2 can be disposed on the surface of the transparent substrate 10. For example, ITO, zinc oxide (ZnO) Inorganic conductive materials such as polyethylene dioxythiophene / polystyrene sulfonic acid (PEDOT / PSS), polyaniline, polypyrrole, and other organic conductive materials can be used. These materials may be used alone or in combination of two or more. Among these, it is preferable to use ITO in terms of transparency and resistance value.
 図1に示す構造の場合、すなわち、透明基材10に対してx方向に配列された、隣接する第一の透明電極1を接続するための接続部である場合には、第一の接続部3は、第一の透明電極1の材料と同一の透明導電材料を用いて第一の透明電極1と同時に形成される。言い換えれば、第一の透明電極1を形成する際に、第一の接続部3も同時に形成するので、x方向には途切れることなく連なった透明電極パターンが形成されることを意味する。 In the case of the structure shown in FIG. 1, that is, in the case of a connection part for connecting adjacent first transparent electrodes 1 arranged in the x direction with respect to the transparent substrate 10, the first connection part 3 is formed simultaneously with the first transparent electrode 1 using the same transparent conductive material as the material of the first transparent electrode 1. In other words, when the first transparent electrode 1 is formed, the first connection portion 3 is also formed at the same time, which means that a continuous transparent electrode pattern is formed without interruption in the x direction.
 さらに、透明基材10に対してy方向に配列された第二の透明電極2も、第一の透明電極1、および第一の接続部3と同時に形成される。しかしながら、第二の透明電極2は、第二の接続部4と同時に形成されないので、この時点ではまだy方向には接続されていない状態となる。 Furthermore, the second transparent electrode 2 arranged in the y direction with respect to the transparent substrate 10 is also formed simultaneously with the first transparent electrode 1 and the first connection portion 3. However, since the second transparent electrode 2 is not formed at the same time as the second connection portion 4, the second transparent electrode 2 is not yet connected in the y direction at this point.
 第二の接続部4は、絶縁層5を介して、取出配線20の材料と同一の導電材料を用いて、取出配線20と同時に形成される。また、図1および図2に示す例では、透明基材10に対してx方向の接続部を第一の接続部3、y方向の接続部を第二の接続部4としているが、前述したとおり、x方向とy方向が逆であってもよい。すなわち、x方向の接続部を第二の接続部3として、取出配線20の材料と同一の導電材料を用いて、取出配線20と同時に形成する構造であってもよい。 The second connection portion 4 is formed simultaneously with the extraction wiring 20 using the same conductive material as that of the extraction wiring 20 through the insulating layer 5. Moreover, in the example shown in FIG. 1 and FIG. 2, the connection part of the x direction with respect to the transparent base material 10 is the first connection part 3, and the connection part of the y direction is the second connection part 4. As described above, the x direction and the y direction may be reversed. That is, a structure in which the connection portion in the x direction is used as the second connection portion 3 and formed simultaneously with the extraction wiring 20 using the same conductive material as the material of the extraction wiring 20 may be used.
 第二の接続部4および取出配線20の導電材料には、例えば、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、アルミニウム(Al)等の導電性粉末を有機バインダーに分散させ、感光性を持たせた導電ペースト等の感光性導電材料を好ましく用いることができる。金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、アルミニウム(Al)等の導電性粉末の粒子径を適宜選択することができ、スパッタ法で得られるMo、Al、Ag、Cu、Pd等の金属膜より光を吸収、散乱、回折させることで、第二の接続部4および取出配線20の反射率を容易に0%以上30%以下の範囲内に制御可能である。これにより、パターン見えの問題を回避しやすく、また製造コストを抑えることができるためにこれらの導電材料が好適に用いられる。さらに、反射率を低減させる、他の公知の技術を適用してもよい。反射率が30%を超えると、通常使用条件下の外光を反射する程度が大きくなるために、目視でパターンが見えて表示品位を低下させてしまう。 Examples of the conductive material of the second connection portion 4 and the extraction wiring 20 include gold (Au), silver (Ag), platinum (Pt), copper (Cu), palladium (Pd), iridium (Ir), rhodium ( A photosensitive conductive material such as a conductive paste in which conductive powders such as Rh) and aluminum (Al) are dispersed in an organic binder to impart photosensitivity can be preferably used. Select the particle size of conductive powder such as gold (Au), silver (Ag), platinum (Pt), copper (Cu), palladium (Pd), iridium (Ir), rhodium (Rh), aluminum (Al) as appropriate The reflectance of the second connection part 4 and the extraction wiring 20 can be easily achieved by absorbing, scattering, and diffracting light from a metal film such as Mo, Al, Ag, Cu, Pd obtained by sputtering. And can be controlled within a range of 0% to 30%. Thereby, since the problem of pattern appearance can be easily avoided and the manufacturing cost can be suppressed, these conductive materials are preferably used. Furthermore, other known techniques for reducing the reflectance may be applied. If the reflectivity exceeds 30%, the degree of reflection of external light under normal use conditions increases, so that the pattern can be seen with the naked eye and display quality is degraded.
 なお、第一の実施形態における「反射率」とは、紫外可視分光光度計を用いてガラス基板面側の測定を行った際の550nmでの反射率を指すものとする。ここで「反射率」とは、第二の接続部4自身および取出配線20自身が有する実質的な反射率を指すものである。つまり、「反射率が0%」とは、入射された光が第二の接続部4自身および取出配線20自身によっては反射されない状態を意味するものである。なお、本実施形態では、反射率を、後述するように鏡面反射を含む値として測定している。ガラス基板自身による光の反射(いわゆる、鏡面反射)の値は、およそ4%である。 The “reflectance” in the first embodiment refers to the reflectance at 550 nm when the glass substrate surface side is measured using an ultraviolet-visible spectrophotometer. Here, “reflectance” refers to the substantial reflectance of the second connecting portion 4 itself and the extraction wiring 20 itself. That is, “reflectance is 0%” means a state in which incident light is not reflected by the second connection portion 4 itself and the extraction wiring 20 itself. In the present embodiment, the reflectance is measured as a value including specular reflection as described later. The value of light reflection (so-called specular reflection) by the glass substrate itself is about 4%.
 従来は、Mo/Al/Moの3層構造(以下、「MAM」ともいう。)でそれぞれ350Å/2000Å/350Å程度の厚さでスパッタ法により成膜して、ポジレジストによるフォトリソ工程を経た後、エッチング・レジスト剥離を行う方法が多用されてきた。しかしながら、この金属材料では反射率が高いために、表示エリアにある第二の接続部4を、導体幅8μm×導体長さ200μm程度に微細に形成しても、通常使用条件下において目視で視認できてしまうために、表示品位を低下させる問題があった。第二の接続部4の反射率が低ければ、表示エリアにある第二の接続部4の反射光が目に届かなくなるため、該接続部を目視しにくくなる。つまり、第二の接続部4および取出配線20の黒色化は、第二の接続部4を目立ちにくくする働きをする。 Conventionally, a Mo / Al / Mo three-layer structure (hereinafter also referred to as “MAM”) is formed by sputtering at a thickness of about 350 mm / 2000 mm / 350 mm, respectively, and after a photolithography process using a positive resist. Etching / resist stripping methods have been frequently used. However, since this metal material has a high reflectance, even if the second connection portion 4 in the display area is finely formed to have a conductor width of 8 μm × conductor length of about 200 μm, it is visually visible under normal use conditions. As a result, there is a problem of degrading display quality. If the reflectance of the second connection portion 4 is low, the reflected light of the second connection portion 4 in the display area will not reach the eyes, and it will be difficult to see the connection portion. That is, the blackening of the second connection portion 4 and the extraction wiring 20 serves to make the second connection portion 4 inconspicuous.
 第二の接続部4の導体幅としては、3μm以上20μm以下の範囲内が好ましい。第二の接続部4の導体幅が3μm未満になると静電気などの過渡電圧が生じた際に断線してしまう不具合(以下、「静電破壊」ともいう。)が発生しやすくなる。一方、第二の接続部4の導体幅が20μmよりも広いと目視でパターンが見えやすくなるだけでなく、表示領域の透過率が低下するといった問題が発生する。 The conductor width of the second connection portion 4 is preferably in the range of 3 μm to 20 μm. If the conductor width of the second connection portion 4 is less than 3 μm, a malfunction (hereinafter also referred to as “electrostatic breakdown”) is likely to occur when a transient voltage such as static electricity is generated. On the other hand, when the conductor width of the second connection portion 4 is larger than 20 μm, not only the pattern is easily seen with the naked eye, but also the problem that the transmittance of the display area is lowered occurs.
 また、第二の接続部4の導体厚としては、1μm以上5μm以下の範囲内が好ましい。第二の接続部4の導体厚が1μm未満であると十分な導電性を得ることが出来ず、導通不良が発生する可能性がある。一方、第二の接続部4の導体厚が5μmよりも厚いとフォトリソ工程の露光時に紫外光が底部まで届かず、パターン形成が困難となる。
 なお、「導体幅」とは第二の接続部4の線幅のことであり、「導体厚」とは第二の接続部4の膜厚のことである。
The conductor thickness of the second connection portion 4 is preferably in the range of 1 μm or more and 5 μm or less. If the conductor thickness of the second connection portion 4 is less than 1 μm, sufficient conductivity cannot be obtained, and conduction failure may occur. On the other hand, if the conductor thickness of the second connection portion 4 is thicker than 5 μm, ultraviolet light does not reach the bottom during exposure in the photolithography process, and pattern formation becomes difficult.
The “conductor width” is the line width of the second connection portion 4, and the “conductor thickness” is the film thickness of the second connection portion 4.
 絶縁層5および保護膜6は、従来絶縁層や保護膜に用いられていた公知の材料を用いて形成でき、例えば、SiO、SiN等の無機系膜や透明樹脂等の有機系材料が挙げられる。無機系膜は、SiOやSiNをCVD法やスパッタリング法等により形成するために、エネルギー消費量が増加したり、工程数が増加したりする等、製造コストが高くなる課題があることから、好適には有機系材料が用いられてよい。有機系材料としては、例えば、重合性基含有オリゴマー、モノマー、光重合開始剤およびその他添加剤を含有するUV硬化型コーティング組成物を用いることができる。 The insulating layer 5 and the protective film 6 can be formed using known materials conventionally used for insulating layers and protective films. For example, inorganic films such as SiO 2 and SiN x and organic materials such as transparent resins are used. Can be mentioned. Since inorganic films are formed of SiO 2 or SiN x by a CVD method, a sputtering method, or the like, there is a problem that the manufacturing cost becomes high, such as an increase in energy consumption and the number of processes. Preferably, an organic material may be used. As the organic material, for example, a UV curable coating composition containing a polymerizable group-containing oligomer, monomer, photopolymerization initiator and other additives can be used.
<静電容量型タッチパネルセンサー基板の製造方法>
 第一の透明電極1、第二の透明電極2、および第一の接続部3としては、一般的に多く使用されるITOが好適であるが限定されない。静電容量式タッチパネル機能の具体的な仕様により、ITOの特性、また、透明電極パターンとしての特性が選択されてよい。例えば、ITO膜として、膜厚30nmでシート抵抗値100Ω/□程度の膜をスパッタリング装置の薄膜形成手段により成膜する。次いで、耐エッチング性の感光性樹脂を用いて、レジスト塗布、露光、現像の一連の工程を含むフォトリソ法によりレジストパターンを形成する。その後、ITOエッチング、レジスト剥離工程を経て、パターン形成される。例えば、第一の接続部3として、導体幅50μmから100μmで導体長さ200μmから500μmのパターンを多数形成する。
<Method for manufacturing capacitive touch panel sensor substrate>
As the first transparent electrode 1, the second transparent electrode 2, and the first connection part 3, ITO that is generally used in many cases is suitable, but is not limited. Depending on the specific specifications of the capacitive touch panel function, the characteristics of ITO or the characteristics as a transparent electrode pattern may be selected. For example, as an ITO film, a film having a film thickness of 30 nm and a sheet resistance value of about 100Ω / □ is formed by a thin film forming unit of a sputtering apparatus. Next, a resist pattern is formed by a photolithographic method including a series of steps of resist coating, exposure, and development using an etching-resistant photosensitive resin. Thereafter, a pattern is formed through ITO etching and a resist peeling process. For example, as the first connection portion 3, a large number of patterns having a conductor width of 50 μm to 100 μm and a conductor length of 200 μm to 500 μm are formed.
 第二の接続部4および取出配線20は、反射率を0%以上30%以下の範囲内に制御した導電ペースト等の感光性導電材料を、スクリーン印刷等の印刷法により成膜し、フォトリソ法によって微細パターン化することで得られる。フォトリソ法は、基材上に感光性導電材料を塗布後、所望する取出配線に対応するフォトマスクを介して、紫外光を基材上に照射することにより塗膜の露光部分を光架橋により硬化し、現像液を用いて塗膜の未露光部分を基材から除去した後に焼成することにより取出配線パターンを形成する方法である。このフォトリソ法を用いることにより、蒸着法に比べてより安価で、かつ、スクリーン印刷や、グラビアオフセット印刷で形成する印刷法に比べてより高精細な導電パターンを得ることが可能である。 For the second connection portion 4 and the lead-out wiring 20, a photosensitive conductive material such as a conductive paste whose reflectance is controlled within a range of 0% to 30% is formed by a printing method such as screen printing, and a photolithographic method. Can be obtained by fine patterning. In the photolithographic method, after applying a photosensitive conductive material on a substrate, the exposed portion of the coating is cured by photocrosslinking by irradiating the substrate with ultraviolet light through a photomask corresponding to the desired extraction wiring. In this method, the unexposed portion of the coating film is removed from the base material using a developer and then baked to form a lead-out wiring pattern. By using this photolithographic method, it is possible to obtain a conductive pattern that is cheaper than the vapor deposition method and more precise than the printing method formed by screen printing or gravure offset printing.
 第二の接続部4および取出配線20を、透明基材10上に早い段階でパターン形成する場合は、透過光に対する充分な遮光性を有するので、光学的にパターンを検出し認識することは容易である。従って、金属電極パターン自身を以後のパターン形成される層に対する位置合わせの指標とすることができる。また、第二の接続部4および取出配線20と同一層内に電極パターン以外に位置合わせマークを独立に設けることもできる。独立に位置合わせのためのマークを設ける方が、一般に、パターンの認識から位置補正量を決めて、位置補正させる動きを出力する位置合わせのための工程では、高い精度を得ることができる。 When the second connecting portion 4 and the lead-out wiring 20 are patterned on the transparent substrate 10 at an early stage, it has a sufficient light shielding property against transmitted light, so that it is easy to optically detect and recognize the pattern. It is. Therefore, the metal electrode pattern itself can be used as an index of alignment with respect to a layer on which a subsequent pattern is formed. In addition to the electrode pattern, an alignment mark can be provided independently in the same layer as the second connection portion 4 and the extraction wiring 20. Independently providing a mark for alignment can generally achieve higher accuracy in the alignment process in which a position correction amount is determined from pattern recognition and a movement for position correction is output.
 絶縁層5は、第一の接続部3または第二の接続部4の有効領域を含む範囲に被せて形成される。絶縁層5の製造方法としては、SiO膜を厚さ100nm以上形成して絶縁機能を得ることはできる。これに替えてさらに容易な製造方法として、有機絶縁膜をフォトリソ法で形成することもできる。例えば、屈折率1.53、体積固有抵抗値2×1015Ω・cmの感光性有機絶縁膜材料を、スプレーコートやスピンコート、スリットダイコート、ロールコート、バーコート等の塗布方法により、乾燥膜厚が0.2~10μm、より好ましくは0.5~5μmとなるように塗布する。必要により乾燥された膜に対して、必要に応じてこの膜と接触あるいは非接触状態で設けられた所定のパターンを有するマスクを通して露光が行われる。露光時の光線の種類は特に限定されるものではなく、例えば、可視光線、紫外線、遠赤外線、電子線、X線等が挙げられ、中でも紫外線が好ましい。光線の照度は特に限定されるものではないが、365nmにおいて5~150mW/cmであることが好ましく、15~35mW/cmであることが特に好ましい。 The insulating layer 5 is formed so as to cover a range including the effective area of the first connection portion 3 or the second connection portion 4. As a method for manufacturing the insulating layer 5, an insulating function can be obtained by forming a SiO 2 film with a thickness of 100 nm or more. Alternatively, as an easier manufacturing method, the organic insulating film can be formed by a photolithography method. For example, a photosensitive organic insulating film material having a refractive index of 1.53 and a volume resistivity of 2 × 10 15 Ω · cm is applied to a dry film by a coating method such as spray coating, spin coating, slit die coating, roll coating, or bar coating. The coating is applied so that the thickness is 0.2 to 10 μm, more preferably 0.5 to 5 μm. If necessary, the dried film is exposed through a mask having a predetermined pattern provided in contact or non-contact with the film. The kind of light beam at the time of exposure is not particularly limited, and examples thereof include visible light, ultraviolet rays, far infrared rays, electron beams, X-rays, etc. Among them, ultraviolet rays are preferable. The illuminance of the light beam is not particularly limited, but is preferably 5 to 150 mW / cm 2 at 365 nm, and particularly preferably 15 to 35 mW / cm 2 .
 その後、必要に応じて炭酸ナトリウムや水酸化ナトリウム等の水性アルカリ現像液に基材を浸漬するか、もしくはスプレー等により基材に現像液を噴霧して未硬化部を除去し所望のパターンを形成する。さらに、感光性組成物の重合を促進して硬膜するため、それぞれ必要に応じて加熱(所謂ポストベーキング)を施す。これらの工程を経てパターン形成することで、透過率97%を超えるパターン状の絶縁層5とすることができる。 Then, if necessary, immerse the substrate in an aqueous alkaline developer such as sodium carbonate or sodium hydroxide, or spray the developer onto the substrate by spraying etc. to remove the uncured part and form the desired pattern To do. Furthermore, in order to accelerate the polymerization of the photosensitive composition to form a film, heating (so-called post-baking) is performed as necessary. By forming a pattern through these steps, a patterned insulating layer 5 having a transmittance exceeding 97% can be obtained.
 また、必要に応じて保護膜6を第一の透明電極1、第二の透明電極2、第一の接続部3、第二の接続部4、絶縁層5、および取出配線20の有効領域を含む範囲に被せて形成する。保護膜6としては、絶縁層5の説明で述べた材料および方法を用いて乾燥膜厚が0.5~20μm、より好ましくは1.0~10μmとなるように形成することができる。なお、保護膜6は、静電容量式タッチパネルセンサー基板の最外層を形成するので、平坦化層を兼ねて、できるだけ広く配置することが望ましい。また、保護膜6は、形成された端子電極となる金属層6bの一部に重なる構造であってもよい。 If necessary, the protective film 6 is provided with an effective area of the first transparent electrode 1, the second transparent electrode 2, the first connection part 3, the second connection part 4, the insulating layer 5, and the extraction wiring 20. It is formed over the range to include. The protective film 6 can be formed using the materials and methods described in the description of the insulating layer 5 so that the dry film thickness is 0.5 to 20 μm, more preferably 1.0 to 10 μm. In addition, since the protective film 6 forms the outermost layer of the capacitive touch panel sensor substrate, it is desirable that the protective film 6 be disposed as widely as possible to serve as a planarization layer. Further, the protective film 6 may have a structure overlapping with a part of the metal layer 6b to be the formed terminal electrode.
<感光性導電材料>
 第一の実施形態に用いられる感光性導電材料に、反射率を0%以上30%以下の範囲内に制御するために、少なくとも(G)黒色材料、(H)金属粒子、(I)光重合開始剤、(J)重合性多官能モノマー、(K)樹脂を含有する感光性導電材料を使用することができる。
<Photosensitive conductive material>
The photosensitive conductive material used in the first embodiment has at least (G) black material, (H) metal particles, and (I) photopolymerization in order to control the reflectance within the range of 0% to 30%. A photosensitive conductive material containing an initiator, (J) a polymerizable polyfunctional monomer, and (K) resin can be used.
 (G)黒色材料として、(L)1種類以上の黒色顔料、(M)2種類以上の顔料の擬似黒色混合物、(N)1種類以上の黒色染料、(O)金属酸化物の群から選ばれる少なくとも1種類以上の黒色化成分を必須成分として用いることができる。また、感光性導電材料に(P)溶剤を含有することもでき、必要に応じてその他の添加剤を含むことができる。
 第一の実施形態に係る静電容量式タッチパネルセンサー基板を構成する第二の接続部4および引出配線20は、上記感光性導電材料を透明基板10上に塗布後、露光、現像、熱硬化という所謂フォトリソ工程を経ることによって形成されてよい。
(G) The black material is selected from the group consisting of (L) one or more black pigments, (M) a pseudo black mixture of two or more pigments, (N) one or more black dyes, and (O) a metal oxide. At least one or more types of blackening components can be used as essential components. Moreover, the (P) solvent can also be contained in the photosensitive electrically-conductive material, and another additive can be included as needed.
The second connection part 4 and the lead-out wiring 20 constituting the capacitive touch panel sensor substrate according to the first embodiment are referred to as exposure, development, and thermosetting after the photosensitive conductive material is applied on the transparent substrate 10. It may be formed through a so-called photolithography process.
 (L)黒色顔料としては、例えば、アニリンブラック、ペリレン系黒色顔料が使用でき、具体的にはC.I.Pigment Black 1、6、7、12、20、31、32等の黒色顔料を用いることができる。黒色顔料の平均粒径は、10nm以上500nm以下の範囲内であることが好ましく、より好ましくは10nm以上300nm以下の範囲内である。 (L) As the black pigment, for example, aniline black or perylene black pigment can be used. I. Black pigments such as Pigment Black 1, 6, 7, 12, 20, 31, 32 can be used. The average particle size of the black pigment is preferably in the range of 10 nm to 500 nm, more preferably in the range of 10 nm to 300 nm.
 (M)擬似黒色混合物としては、例えばカラーフィルタの着色透明層を形成する際に用いられる顔料で、C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、14、41、48:1、48:2、48:3、48:4、57:1、81、81:1、81:2、81:3、81:4、97、122、123、146、149、166、168、169、176、177、178、179、180、184、185、187、192、200、202、208、210、215、216、217、220、223、224、226、227、228、240、242、246、254、255、264、270、272、273、274、276、277、278、279、280、281、282、283、284、285、286、287などに代表される赤色(RED)系顔料と、C.I.ピグメントブルー15、15:1、15:2、15:3、15:4、15:6、16、22、60、64、80などに代表される青色(BLUE)系顔料とを少なくとも混合することにより、擬似的に黒色としたものが挙げられる。 (M) The pseudo black mixture is, for example, a pigment used when forming a colored transparent layer of a color filter. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 41, 48: 1, 48: 2, 48: 3, 48: 4, 57: 1, 81, 81: 1, 81: 2, 81: 3, 81: 4, 97, 122, 123, 146, 149, 166, 168, 169, 176, 177, 178, 179, 180, 184, 185, 187, 192,200,202,208,210,215,216,217,220,223,224,226,227,228,240,242,246,254,255,264,270,272,273,274,276, Red (RED) pigments typified by 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, and the like; I. At least a blue (BLUE) pigment typified by CI Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64, 80, etc. Therefore, a pseudo black color can be used.
 また、第一の実施形態に用いられる顔料の疑似黒色混合物としては、赤色系顔料と青色系顔料とに加え、さらに黄色(YELLOW)系顔料を加えてもよい。黄色系顔料は可視光の低波長領域、すなわち波長500nm以下の光を吸収することが知られている(例えば、塩治孜著(昭和40年)「印刷インキ教室」(日本印刷新聞社)P170~173)。赤色系顔料と青色系顔料とに黄色系顔料を加えることにより、黄色系顔料が低波長可視光を吸収し、より黒色に近くすることができる。 Further, as a pseudo black mixture of pigments used in the first embodiment, a yellow (YELLOW) pigment may be added in addition to a red pigment and a blue pigment. It is known that yellow pigments absorb light in the low wavelength region of visible light, that is, light having a wavelength of 500 nm or less (for example, “Shoji Shiji (1965)“ Printing Ink Class ”(Nihon Printing Shimbun) P170. 173). By adding a yellow pigment to a red pigment and a blue pigment, the yellow pigment absorbs low-wavelength visible light and can be made closer to black.
 黄色(YELLOW)系顔料の例としては、例えばC.I.ピグメントイエロー1、2、3、4、5、6、10、12、13、14、15、16、17、18、20、24、31、32、34、35、35:1、36、36:1、37、37:1、40、42、43、53、55、60、61、62、63、65、73、74、77、81、83、86、93、94、95、97、98、100、101、104、106、108、109、110、113、114、115、116、117、118、119、120、123、125、126、127、128、129、137、138、139、144、146、147、148、150、151、152、153、154、155、156、161、162、164、166、167、168、169、170、171、172、173、174、175、176、177、179、180、181、182、185、187、188、193、194、198、199、213、214、218、219、220、221が挙げられる。 Examples of yellow (YELLOW) pigments include C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 144, 146, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, 173, 17 , It includes the 175,176,177,179,180,181,182,185,187,188,193,194,198,199,213,214,218,219,220,221.
 第一の実施形態に用いられる顔料の疑似黒色混合物では、さらに紫色(Violet)系顔料を加えてもよい。
 紫色(Violet)系顔料の例としては、例えばC.I.ピグメントバイオレット1、19、23、27、29、30、32、37、40、42、50が挙げられる。
 さらに橙色(Orange)系顔料や緑色(Green)系顔料等の顔料を加えてもよい。橙色顔料としては、例えばC.I.ピグメントオレンジ36、43、51、55、59、61、71、73等が挙げられる。緑色顔料としては、例えばC.I.ピグメントグリーン7、10、36、37、58等の緑色顔料が挙げられる。
 さらに第一の実施形態に用いられる顔料の擬似黒色混合物では反射率低減の補助剤として有機黒色顔料を用いることができ、例えばC.I.PBK 1、30、31などが挙がられる。
In the pseudo black mixture of pigments used in the first embodiment, a violet pigment may be further added.
Examples of violet pigments include C.I. I. Pigment violet 1, 19, 23, 27, 29, 30, 32, 37, 40, 42, 50.
Further, a pigment such as an orange pigment or a green pigment may be added. Examples of the orange pigment include C.I. I. Pigment orange 36, 43, 51, 55, 59, 61, 71, 73, and the like. Examples of the green pigment include C.I. I. And green pigments such as CI Pigment Green 7, 10, 36, 37, and 58.
Further, in the pseudo black mixture of pigments used in the first embodiment, an organic black pigment can be used as an auxiliary agent for reducing the reflectance. I. PBK 1, 30, 31, etc. are listed.
 (N)黒色染料の化学構造としては、例えばトリフェニルメタン系、アントラキノン系、ベンジリデン系、オキソノール系、シアニン系、フェノチアジン系、ピロロピラゾールアゾメチン系、キサンテン系、フタロシアニン系、ベンゾピラン系、インジゴ系等が挙げられる。これらのうち、ピラゾールアゾ系、アニリノアゾ系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、アントラキノン系、アンスラピリドン系の染料が好ましい。 Examples of the chemical structure of the (N) black dye include triphenylmethane, anthraquinone, benzylidene, oxonol, cyanine, phenothiazine, pyrrolopyrazole azomethine, xanthene, phthalocyanine, benzopyran, and indigo. Can be mentioned. Of these, pyrazole azo dyes, anilinoazo dyes, pyrazolotriazole azo dyes, pyridone azo dyes, anthraquinone dyes, and anthrapyridone dyes are preferable.
 着色剤としては有機溶媒に可溶である限り公知の染料を使用でき、例えば油溶性染料、アシッド染料又はその誘導体、ダイレクト染料、モーダント染料等が挙げられる。
 黒色染料に用いられる色素としては、例えばC.I.Acid Black1、24、26、31、48、50、52、52:1、58、60、63:2、64、107、109、110、112、113、118、140、155、170、172、177、187、188、194、207、222、C.I.Direct Black17、19、22、51、62、91、112、117、118、122、132、146、154、159、169、173、C.I.Solvent Black 3、4、5、27、28、29、34、45が挙げられる。
As the colorant, known dyes can be used as long as they are soluble in an organic solvent. Examples thereof include oil-soluble dyes, acid dyes or derivatives thereof, direct dyes, and modern dyes.
Examples of the pigment used for the black dye include C.I. I. Acid Black 1, 24, 26, 31, 48, 50, 52, 52: 1, 58, 60, 63: 2, 64, 107, 109, 110, 112, 113, 118, 140, 155, 170, 172, 177 187, 188, 194, 207, 222, C.I. I. Direct Black 17, 19, 22, 51, 62, 91, 112, 117, 118, 122, 132, 146, 154, 159, 169, 173, C.I. I. Solvent Black 3, 4, 5, 27, 28, 29, 34, 45.
 第一の実施形態に用いられる黒色染料としては2種以上の染料の疑似黒色混合物であってもよく、遮光性を有する擬似黒色混合物であってもよい。例えばC.I.Acid Red1、6、9、14、18、35、37、42、50、52、57、73、87、88、89、92、97、106、111、114、118、128、134、138、143、143:1、145、158、183、186、211、214、215、217、219、225、226、249、254、256、257、259、260、261、263、266、274、276、278、289、299、301、303、307、315、316、317、336、337、341、355、357、359、362、366、383、399、405、407、414、416、426、C.I.Direct Red2、23、24、31、39、54、79、83:1、89、224、225、226、227、242、243、C.I.Reactive Red5、8、43、などに代表される赤色(RED)系色素からなる染料と、C.I.Acid Blue 7、9、15、22、23、25、40、45、47、59、61:1、62、78、80、83、90、104、109、112、127、127:1、129、138、140、203、204、207、227、228、232、247、260、264、277、278、280、283、290、333、343、Direct Blue 106、108などに代表される青色(BLUE)系色素からなる染料を少なくとも混合することにより、擬似的に黒色としたものが挙げられる。 The black dye used in the first embodiment may be a pseudo black mixture of two or more dyes, or a pseudo black mixture having a light shielding property. For example, C.I. I. Acid Red1, 6, 9, 14, 18, 35, 37, 42, 50, 52, 57, 73, 87, 88, 89, 92, 97, 106, 111, 114, 118, 128, 134, 138, 143 143: 1,145,158,183,186,211,214,215,217,219,225,226,249,254,256,257,259,260,261,263,266,274,276,278 289, 299, 301, 303, 307, 315, 316, 317, 336, 337, 341, 355, 357, 359, 362, 366, 383, 399, 405, 407, 414, 416, 426, C.I. I. Direct Red2, 23, 24, 31, 39, 54, 79, 83: 1, 89, 224, 225, 226, 227, 242, 243, C.I. I. A dye composed of a red (RED) pigment represented by Reactive Red 5, 8, 43, and the like; I. Acid Blue 7, 9, 15, 22, 23, 25, 40, 45, 47, 59, 61: 1, 62, 78, 80, 83, 90, 104, 109, 112, 127, 127: 1, 129, Blue (BLUE) typified by 138, 140, 203, 204, 207, 227, 228, 232, 247, 260, 264, 277, 278, 280, 283, 290, 333, 343, Direct Blue 106, 108, etc. A pseudo black color is obtained by mixing at least a dye composed of a system pigment.
 黄色(YELLOW)系の染料に用いられる色素の例としては、例えばI.Acid Yellow 3、17、38、40:1、42、44:1、49、61、65、67、72、79、110、114、116、117、119、121、127、129、135、141、143、155、158、161、194、204、207、220、232、235、241、C.I.Direct Yellow 12、86、87、130、142、C.I.Reactive Yellow 84、102等が挙げられる。 Examples of pigments used for yellow (YELLOW) dyes include I.I. Acid Yellow 3, 17, 38, 40: 1, 42, 44: 1, 49, 61, 65, 67, 72, 79, 110, 114, 116, 117, 119, 121, 127, 129, 135, 141, 143, 155, 158, 161, 194, 204, 207, 220, 232, 235, 241, C.I. I. Direct Yellow 12, 86, 87, 130, 142, C.I. I. Reactive Yellow 84, 102 and the like.
 第一の実施形態に用いられる染料の疑似黒色混合物では、さらに紫色(Violet)系染料を加えてもよい。
 紫色(Violet)系染料に用いられる色素の例としては、例えばC.I.Acid Violet 21、42、43、47、48、49、54、97、102等が挙げられる。
In the pseudo black mixture of dyes used in the first embodiment, a violet dye may be further added.
Examples of pigments used in violet dyes include C.I. I. Acid Violet 21, 42, 43, 47, 48, 49, 54, 97, 102 etc. are mentioned.
 上述の染料の他、さらに橙色(Orange)系染料や緑色(Green)系染料等の染料を加えてもよい。橙色系染料に用いられる色素としては、例えばC.I.Orange10、19、33、50、56、67、80、108、122、142、166、130、C.I.Direct Orange 26、39、C.I.Reactive Orange 1、4等が挙げられる。緑色染料とし用いられる色素としては、例えばC.I.Acid Green3、5、22、25、27、28、41等が挙げられる。 In addition to the above-mentioned dyes, dyes such as orange dyes and green dyes may be added. Examples of the pigment used for the orange dye include C.I. I. Orange 10, 19, 33, 50, 56, 67, 80, 108, 122, 142, 166, 130, C.I. I. Direct Orange 26, 39, C.I. I. Reactive Orange 1, 4 etc. are mentioned. Examples of the pigment used as the green dye include C.I. I. Acid Green3, 5, 22, 25, 27, 28, 41 etc. are mentioned.
 (O)金属化合物としては、例えば酸化銀、酸化鉄、酸化亜鉛、四酸化三鉄、酸化コバルト、酸化チタン、酸化スズ、酸化インジウム、酸化マグネシウム、亜クロム酸銅、クロム酸銅、コバルト-鉄複合酸化物、コバルト-鉄-クロム複合酸化物、ニッケル-鉄-クロム複合酸化物、銅-鉄-マンガン複合酸化物、コバルト-ニッケル複合酸化物、チタン-バナジウム-アンチモン複合酸化物、錫-アンチモン複合酸化物二硫化モリブデンの様な金属酸化物を使用することができる。また、例えば硫化銅、硫化鉄、硫化パラジウム、二硫化モリブデンや硫化亜鉛の様な金属硫化物、さらに、窒化チタン、窒化銅、窒化リチウムなどの金属窒化物を使用することができる。なお、感光性導電材料に含まれる金属粒子を、例えば亜塩素酸ナトリウム、次亜塩素酸ナトリウム、亜硝酸ナトリウム等の酸化剤と水酸化ナトリウム、燐酸ナトリウムのアルカリ水溶液を用いてパターン形成後に金属酸化物として形成してもよい。なお、(O)金属化合物の粒子径は、0.1μm以上4μm以下の範囲内であることが好ましい。 Examples of (O) metal compounds include silver oxide, iron oxide, zinc oxide, triiron tetroxide, cobalt oxide, titanium oxide, tin oxide, indium oxide, magnesium oxide, copper chromite, copper chromate, and cobalt-iron. Composite oxide, cobalt-iron-chromium composite oxide, nickel-iron-chromium composite oxide, copper-iron-manganese composite oxide, cobalt-nickel composite oxide, titanium-vanadium-antimony composite oxide, tin-antimony Metal oxides such as composite oxide molybdenum disulfide can be used. Further, for example, metal sulfides such as copper sulfide, iron sulfide, palladium sulfide, molybdenum disulfide and zinc sulfide, and metal nitrides such as titanium nitride, copper nitride and lithium nitride can be used. The metal particles contained in the photosensitive conductive material are oxidized after pattern formation using an oxidizing agent such as sodium chlorite, sodium hypochlorite, and sodium nitrite and an alkaline aqueous solution of sodium hydroxide and sodium phosphate. You may form as a thing. In addition, it is preferable that the particle diameter of (O) metal compound exists in the range of 0.1 micrometer or more and 4 micrometers or less.
 この他、金属テルルや二酸化テルルと塩酸を用いることで塩化テルルを析出させて黒色化層を形成してもよい。
 なお、上述の黒色化成分(以下、単に「黒色材料」ともいう。)の含有量は、(H)金属粒子の固形分を基準として1重量%以上100重量%以下の範囲内であることが好ましく、より好ましくは1重量%以上70重量%以下の範囲内である。黒色材料の含有量が1重量%未満の場合は反射率が高くなるので、細い配線を形成しなければならない。また、100重量%を超えると感度が低下し、細い配線が得られにくくなる。
 また、第一の実施形態に用いられる感光性導電材料に、反射率を0%以上30%以下の範囲内に制御するために、黒色材料として、カーボンブラックを用いることもできる。
In addition, the blackened layer may be formed by depositing tellurium chloride by using metallic tellurium, tellurium dioxide and hydrochloric acid.
The content of the above blackening component (hereinafter also simply referred to as “black material”) is within the range of 1 wt% or more and 100 wt% or less based on the solid content of (H) metal particles. Preferably, it is in the range of 1 wt% or more and 70 wt% or less. When the content of the black material is less than 1% by weight, the reflectance is high, so that a thin wiring must be formed. On the other hand, when it exceeds 100% by weight, the sensitivity is lowered and it is difficult to obtain a thin wiring.
In addition, carbon black can also be used as the black material in the photosensitive conductive material used in the first embodiment in order to control the reflectance within a range of 0% to 30%.
 カーボンブラックは、遮光性を有する黒色顔料を使用してもよい。使用可能な市販のカーボンブラックとしては、例えば#260、#25、#30、#32、#33、#40、#44、#45、#45L、#47、#50、#52、MA7、MA8、MA11、MA100、MA100R、MA100S、MA230(以上、三菱化学社製)、Printex L、Printex P、Printex 30、Printex 35、Printex 40、Printex 45、Printex 55、Printex 60、Printex 300、Printex 350、Special Black 4、Special Black 350、Special Black 550(以上、DEGUSSA社製)等のカーボンブラック単体の他、MHIブラック#201、#220、#273(以上、御国色素社製)といったカーボンブラック分散体を用いることができる。カーボンブラックは、1種を単独で使用しても、2種以上を混合して使用してもよい。第一の実施形態に用いられる感光性導電材料のカーボンブラックの平均一次粒子径は10nm以上500nm以下の範囲内が好ましく、より好ましくは100nm以上500nm以下の範囲内であり、さらに好ましくは100nm以上300nm以下の範囲内である。 Carbon black may be a black pigment having a light shielding property. Examples of commercially available carbon black that can be used include # 260, # 25, # 30, # 32, # 33, # 40, # 44, # 45, # 45L, # 47, # 50, # 52, MA7, MA8. MA11, MA100, MA100R, MA100S, MA230 (Mitsubishi Chemical Corporation), Printex L, Printex P, Printex 30, Printex 35, Printex 40, Printex 45, Printex 55, Printex 60, 350 PrintP, 300 In addition to carbon black alone such as Black 4, Special Black 350, Special Black 550 (and above, manufactured by DEGUSSA), MHI Black # 201, # 220, # 2 3 (or more, Mikuni Color Ltd.) can be used carbon black dispersion such. Carbon black may be used individually by 1 type, or 2 or more types may be mixed and used for it. The average primary particle diameter of carbon black of the photosensitive conductive material used in the first embodiment is preferably in the range of 10 nm to 500 nm, more preferably in the range of 100 nm to 500 nm, and still more preferably in the range of 100 nm to 300 nm. Within the following range.
 カーボンブラックの平均一次粒子径が10nmより小さいと、高濃度で分散させることが困難であるために経時安定性の良好な感光性黒色組成物が得られ難い。他方、この平均一次粒子径が500nmより大きいカーボンブラックを用いると、黒度が落ちるために、十分な黒度を持たせるためには感光性導電材料中のカーボンブラック比率を多くしなければならず、パターン加工性に悪影響を及ぼす。カーボンブラックの平均一次粒子径が100nm以上であるとより良好な分散性を得ることができる。感光性導電材料のカーボンブラックの含有量は、金属粒子の固形分を基準として1重量%以上100重量%以下の範囲内であることが好ましく、より好ましくは1重量%以上3重量%以下の範囲内である。カーボンブラックの含有量が1重量%未満の場合は充分な反射率の低減効果が得られず、100重量%より多い場合は導電性が得られ難く、第二の接続部4や取出配線20の形成が困難になる可能性がある。 When the average primary particle diameter of carbon black is smaller than 10 nm, it is difficult to disperse at a high concentration, and it is difficult to obtain a photosensitive black composition having good temporal stability. On the other hand, when carbon black having an average primary particle size larger than 500 nm is used, the blackness is lowered. Therefore, in order to provide sufficient blackness, the ratio of carbon black in the photosensitive conductive material must be increased. Adversely affects pattern processability. When the average primary particle size of carbon black is 100 nm or more, better dispersibility can be obtained. The content of carbon black in the photosensitive conductive material is preferably in the range of 1 to 100% by weight, more preferably in the range of 1 to 3% by weight, based on the solid content of the metal particles. Is within. When the content of carbon black is less than 1% by weight, a sufficient reflectance reduction effect cannot be obtained, and when it is more than 100% by weight, it is difficult to obtain conductivity, and the second connecting portion 4 and the extraction wiring 20 Formation can be difficult.
 第一の実施形態に用いられる感光性導電材料の(H)金属粒子の平均粒子径は、0.1μm以上4μm以下の範囲内であることが好ましい。
 平均粒子径が0.1μmよりも小さい場合、隠蔽性が高くなるために露光時に紫外光が底部まで届かず、パターン形成が困難となる。一方、平均粒子径が4μmよりも大きいと微細パターンにおける直線性や解像性が低下するため好ましくない。なお、最も好ましくは、(H)金属粒子がAg粒子である場合、その平均粒子径が0.5μm以上4μm以下の範囲内である。
The average particle diameter of the (H) metal particles of the photosensitive conductive material used in the first embodiment is preferably in the range of 0.1 μm to 4 μm.
When the average particle diameter is smaller than 0.1 μm, the concealing property becomes high, so that ultraviolet light does not reach the bottom during exposure, and pattern formation becomes difficult. On the other hand, when the average particle diameter is larger than 4 μm, the linearity and resolution in the fine pattern are not preferable. Most preferably, when the (H) metal particles are Ag particles, the average particle diameter is in the range of 0.5 μm to 4 μm.
 また、(H)金属粒子の形状に関して、例えばフレーク状、針状、球状等があるが、スクリーン印刷性や露光時の光散乱の観点から球状の銀粉が望ましい。(H)金属粒子の使用量として、感光性導電材料の全固形分量を基準として、40重量%以上90重量%以下の範囲内が好ましく、より好ましくは50重量%以上90重量%以下の範囲内であり、さらに好ましくは65重量%以上90重量%以下の範囲内である。(H)金属粒子の添加量が40重量%未満であると配線として十分な抵抗率が得られず、90重量%よりも多いと露光時に紫外光が底部まで届かずにパターン形成が困難となる。 Further, regarding the shape of (H) metal particles, for example, there are flakes, needles, spheres, etc., but spherical silver powder is desirable from the viewpoint of screen printability and light scattering during exposure. (H) The amount of metal particles used is preferably in the range of 40% by weight to 90% by weight, more preferably in the range of 50% by weight to 90% by weight, based on the total solid content of the photosensitive conductive material. More preferably, it is in the range of 65 wt% or more and 90 wt% or less. (H) If the added amount of metal particles is less than 40% by weight, sufficient resistivity cannot be obtained as a wiring, and if it exceeds 90% by weight, ultraviolet light does not reach the bottom during exposure, making pattern formation difficult. .
 第一の実施形態に用いられる感光性導電材料の(I)光重合開始剤としては、例えば1,2-オクタンジオン,1-〔4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)〕、O-(アセチル)-N-(1-フェニル-2-オキソ-2-(4’-メトキシ-ナフチル)エチリデン)ヒドロキシルアミン等のO-アシルオキシム系化合物を少なくとも1種用いる必要がある。O-アシルオキシム系化合物は、移動度の高いメチルラジカルやフェニルラジカルを高効率で生成するために隠蔽性の高い感光性導電材料においても優れた硬化特性を有している。これらの光重合開始剤は1種または2種以上混合して用いることができる。O-アシルオキシム系化合物と混合して用いことができる光重合開始剤として、例えば4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン等のアセトフェノン系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール等のベンゾイン系化合物、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等のベンゾフェノン系化合物、チオキサントン、2-クロルチオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系化合物、2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペロニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシ-ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル-(ピペロニル)-6-トリアジン、2,4-トリクロロメチル(4’-メトキシスチリル)-6-トリアジン等のトリアジン系化合物、1,2-オクタンジオン,1-〔4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)〕、O-(アセチル)-N-(1-フェニル-2-オキソ-2-(4’-メトキシ-ナフチル)エチリデン)ヒドロキシルアミン等のオキシムエステル系化合物、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のホスフィン系化合物、9,10-フェナンスレンキノン、カンファーキノン、エチルアントラキノン等のキノン系化合物、ボレート系化合物、カルバゾール系化合物、イミダゾール系化合物、チタノセン系化合物等が用いられる。(I)光重合開始剤の使用量は、感光性導電材料の全固形分量を基準として0.1重量%以上50重量%以下の範囲内が好ましく、より好ましくは0.2重量%以上20重量%以下の範囲内である。 Examples of the (I) photopolymerization initiator of the photosensitive conductive material used in the first embodiment include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)]. It is necessary to use at least one O-acyloxime compound such as O- (acetyl) -N- (1-phenyl-2-oxo-2- (4′-methoxy-naphthyl) ethylidene) hydroxylamine. The O-acyloxime compound has excellent curing characteristics even in a highly concealable photosensitive conductive material because it generates methyl radicals and phenyl radicals with high mobility with high efficiency. These photopolymerization initiators can be used alone or in combination. Examples of the photopolymerization initiator that can be used by mixing with an O-acyloxime compound include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2 Acetophenone compounds such as -hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, benzoin Benzoin compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxyben Benzophenone compounds such as phenone, acrylated benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, thioxanthone, 2-chlorothioxanthone, Thioxanthone compounds such as 2-methylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, 2,4-diethylthioxanthone, 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis (trichloro Methyl) -s-triazine, 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-tolyl) -4,6-bis (trichloromethyl) -s- Triazine, 2-piphenyl-4,6-bis ( Lichloromethyl) -s-triazine, 2-piperonyl-4,6-bis (trichloromethyl) -s-triazine, 2,4-bis (trichloromethyl) -6-styryl-s-triazine, 2- (naphth-1- Yl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -s-triazine, 2,4-trichloro Triazine compounds such as methyl- (piperonyl) -6-triazine, 2,4-trichloromethyl (4′-methoxystyryl) -6-triazine, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], O- (acetyl) -N- (1-phenyl-2-oxo-2- (4′-methoxy-naphthyl) ethylidene) hydro Oxime ester compounds such as xylamine, phosphine compounds such as bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 9,10-phenanthrenequinone, camphor Quinone compounds such as quinone and ethyl anthraquinone, borate compounds, carbazole compounds, imidazole compounds, titanocene compounds and the like are used. (I) The amount of photopolymerization initiator used is preferably in the range of 0.1 wt% to 50 wt%, more preferably 0.2 wt% to 20 wt%, based on the total solid content of the photosensitive conductive material. % Or less.
 さらに、(I)光重合開始剤に対する増感剤として、例えばα-アシロキシエステル、アシルフォスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル、9,10-フェナンスレンキノン、カンファーキノン、エチルアンスラキノン、4,4’-ジエチルイソフタロフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等の化合物、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、安息香酸2-ジメチルアミノエチル、4-ジメチルアミノ安息香酸2-エチルヘキシル、N,N-ジメチルパラトルイジン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(エチルメチルアミノ)ベンゾフェノン等のアミン系化合物を併用することもできる。これらの増感剤は1種または2種以上混合して用いることができる。増感剤の使用量は、光重合開始剤と増感剤の合計量を基準として0.5重量%以上50重量%以下の範囲内が好ましく、より好ましくは1重量%以上30重量%以下の範囲内である。 Further, (I) As a sensitizer for a photopolymerization initiator, for example, α-acyloxy ester, acylphosphine oxide, methylphenylglyoxylate, benzyl, 9,10-phenanthrenequinone, camphorquinone, ethylanthraquinone , 4,4'-diethylisophthalophenone, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, triethanolamine, methyldiethanolamine, triisopropanolamine, 4-dimethylamino Methyl benzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, 2-ethylhexyl 4-dimethylaminobenzoate, N, N-dimethylparatoluidine, 4,4 ′ -Bis (dimethyl Mino) benzophenone, 4,4'-bis (diethylamino) benzophenone, can be used in combination of 4,4'-bis (ethylmethylamino) amine compounds such as benzophenone. These sensitizers can be used alone or in combination. The amount of the sensitizer used is preferably in the range of 0.5% by weight to 50% by weight, more preferably 1% by weight to 30% by weight, based on the total amount of the photopolymerization initiator and the sensitizer. Within range.
 第一の実施形態に用いられる感光性導電材料の(J)重合性多官能モノマーおよびオリゴマーとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、1,6-ヘキサンジオールジグリシジルエーテルジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオペンチルグリコールジグリシジルエーテルジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、エステルアクリレート、メラミン(メタ)アクリレート等の各種アクリル酸エステルおよびメタクリル酸エステル、メチロール化メラミンの(メタ)アクリル酸エステル、エポキシ(メタ)アクリレート、ウレタンアクリレート等の各種アクリル酸エステルおよびメタクリル酸エステル、(メタ)アクリル酸、スチレン、酢酸ビニル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ビニルホルムアミド、アクリロニトリル等が挙げられる。また、水酸基を有する(メタ)アクリレートに多官能イソシアネートを反応させて得られる(メタ)アクリロイル基を有する多官能ウレタンアクリレートを用いることが好ましい。なお、水酸基を有する(メタ)アクリレートと多官能イソシアネートとの組み合わせは任意であり、特に限定されるものではない。また、1種の多官能ウレタンアクリレートを単独で用いても良いし、2種以上を組み合わせて用いることもできる。これらは、単独でまたは2種類以上混合して用いることができる。 Examples of the (J) polymerizable polyfunctional monomer and oligomer of the photosensitive conductive material used in the first embodiment include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- Hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, β-carboxyethyl (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, Tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, polyethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, 1,6-hexanedi Diglycidyl ether di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol diglycidyl ether di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tricyclodecanyl (meth) acrylate , Various acrylates and methacrylates such as ester acrylate and melamine (meth) acrylate, (meth) acrylates of methylolated melamine, various acrylates and methacrylates such as epoxy (meth) acrylate and urethane acrylate, (Meth) acrylic acid, styrene, vinyl acetate, hydroxyethyl vinyl ether, ethylene glycol divinyl ether, pentaerythritol trivinyl ether Ter, (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N-vinylformamide, acrylonitrile and the like. Moreover, it is preferable to use the polyfunctional urethane acrylate which has the (meth) acryloyl group obtained by making polyfunctional isocyanate react with the (meth) acrylate which has a hydroxyl group. The combination of the (meth) acrylate having a hydroxyl group and the polyfunctional isocyanate is arbitrary and is not particularly limited. Moreover, one type of polyfunctional urethane acrylate may be used alone, or two or more types may be used in combination. These can be used alone or in admixture of two or more.
 第一の実施形態に用いられる感光性導電材料の(K)樹脂とは、カルボキシル基を有する線状高分子であり、例えば、(メタ)アクリル共重合樹脂やエポキシ樹脂と(メタ)アクリル酸またはその無水物の反応物にさらに多塩基性カルボン酸またはその無水物とを反応させて得られたエポキシ変性アクリレート樹脂等が挙げられる。 The (K) resin of the photosensitive conductive material used in the first embodiment is a linear polymer having a carboxyl group. For example, a (meth) acrylic copolymer resin or an epoxy resin and (meth) acrylic acid or Examples thereof include an epoxy-modified acrylate resin obtained by further reacting the anhydride reaction product with a polybasic carboxylic acid or an anhydride thereof.
 ここで、上述の(K)樹脂は、アルカリ可溶型であることが好ましい。これは、感光性導電材料をフォトリソ工程でパターン化するためには、樹脂にアルカリ可溶性を付与し、アルカリ水溶液で現像可能とすることが一般的だからである。なお、アルカリ可溶型の樹脂を使用しなくてもアルカリ水溶液で現像をすることができるが、導体幅20μm以下、特に10μm以下のパターンを得るには細部の未露光部分が現像によって除去される必要がある。また、良好な直線性を有するパターンを得るためには、未露光部分と露光部分のアルカリ可溶性のコントラストを高くする必要もある。これらの目的のために、樹脂にアルカリ可能性を持たせて現像性を高めることが好ましい。 Here, the above-mentioned (K) resin is preferably an alkali-soluble type. This is because, in order to pattern the photosensitive conductive material in the photolithography process, it is common to impart alkali solubility to the resin and enable development with an aqueous alkali solution. Although development can be performed with an alkaline aqueous solution without using an alkali-soluble resin, unexposed portions of details are removed by development in order to obtain a conductor width of 20 μm or less, particularly 10 μm or less. There is a need. In order to obtain a pattern having good linearity, it is necessary to increase the alkali-soluble contrast between the unexposed portion and the exposed portion. For these purposes, it is preferable to increase developability by giving the resin alkalinity.
 第一の実施形態に用いられる感光性導電材料の(メタ)アクリル共重合樹脂としては、その構成成分に少なくとも(メタ)アクリルモノマーを含有する共重合樹脂であり、例えば、(メタ)アクリルモノマーとしては、(メタ)アクリル酸、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、アリルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、グリシジルアクリレート、アミノエチルアクリレート、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、アリルメタクリレート、ベンジルメタクリレート、シクロヘキシルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンテニルアクリレート、グリシジルメタクリレート、アミノエチルメタクリレート等が挙げられる。(メタ)アクリルモノマー以外の構成成分として、スチレンやシクロヘキシルマレイミド等の不飽和結合を有する化合物を用いることも可能である。 The (meth) acrylic copolymer resin of the photosensitive conductive material used in the first embodiment is a copolymer resin containing at least a (meth) acrylic monomer in its constituent components, for example, as a (meth) acrylic monomer (Meth) acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, allyl acrylate, benzyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, glycidyl acrylate, aminoethyl Acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, Butyl methacrylate, allyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, dicyclopentanyl methacrylate, dicyclopentenyl acrylate, glycidyl methacrylate, aminoethyl methacrylate, and the like. As a constituent component other than the (meth) acrylic monomer, a compound having an unsaturated bond such as styrene or cyclohexylmaleimide can be used.
 エポキシ変性アクリレート樹脂に用いられるエポキシ樹脂としては、例えばフェノールノボラックやクレゾールノボラック、ビスフェノールAやビスフェノールF骨格を持つもの等が用いられる。
 第一の実施形態に用いられる感光性導電材料の(P)有機溶剤としては、例えばシクロヘキサノン、エチルセロソルブアセテート、ブチルセロソルブアセテート、エチルカルビトールアセテート、1-メトキシ-2-プロピルアセテート、ジエチレングリコールジメチルエーテル、エチルベンゼン、エチレングリコールジエチルエーテル、キシレン、エチルセロソルブ、メチル-nアミルケトン、プロピレングリコールモノメチルエーテル、石油系溶剤等が挙げられ、これらを単独でもしくは混合して用いることができる。(P)有機溶剤の添加量として、感光性導電材料全量を基準として、5重量%以上20重量%以下の範囲内で添加することが好ましい。
Examples of the epoxy resin used for the epoxy-modified acrylate resin include phenol novolac, cresol novolac, and those having a bisphenol A or bisphenol F skeleton.
Examples of the (P) organic solvent of the photosensitive conductive material used in the first embodiment include cyclohexanone, ethyl cellosolve acetate, butyl cellosolve acetate, ethyl carbitol acetate, 1-methoxy-2-propyl acetate, diethylene glycol dimethyl ether, ethylbenzene, Examples include ethylene glycol diethyl ether, xylene, ethyl cellosolve, methyl-n amyl ketone, propylene glycol monomethyl ether, petroleum solvent, and the like. These can be used alone or in combination. (P) The addition amount of the organic solvent is preferably within a range of 5% by weight or more and 20% by weight or less based on the total amount of the photosensitive conductive material.
 上述の成分の他、第一の実施形態に用いられる感光性導電材料としてラジカル捕捉剤を含んでもよい。ラジカル補足剤は活性ラジカルを失活させる作用をもつものであり、感光性導電材料に添加することにより(H)金属粒子による光散乱によって発生する未露光部分での硬化反応を抑えることが可能となり、導体パターンの寸法精度の向上が可能となる。ラジカル捕捉剤の種類としては、例えばハイドロキノン、メチルハイドロキノン、メトキノン、キノパワーMNT(川崎化成社製)、ノンフレックスアルバ、ノンフレックスCBP、ノンフレックスEBP(以上、精工化学社製)等のハイドロキノン誘導体や1,4-ベンゾキノン、2,6-ジクロロキノン、p-キシロキノン、ナフトキノン等のキノン誘導体、Irganox245、Irganox259、Irganox1010、Irganox1035、Irganox1076、Irganox1098(以上、BASF社製)、アデカスタブAO-30、アデカスタブAO-330(以上、ADEKA社製)等のヒンダードフェノール類、TINUVIN123、TINUVIN144、TINUVIN152、TINUVIN765、TINUVIN770DF(以上、BASF社製)、アデカスタブLA-77、アデカスタブLA-57、アデカスタブLA-67、アデカスタブLA-87(以上、ADEKA社製)等のヒンダードアミン類等があり、これらを単独もしくは2種類以上用いることができる。ラジカル捕捉剤の添加量としては、感光性導電材料の全固形分量を基準として0.01重量%以上0.1重量%以下の範囲内で添加することができる。ラジカル捕捉剤の添加量が0.01重量%未満であると導体パターンの寸法精度向上効果が得られず、0.1重量%よりも多いと架橋密度不足によるパターンハガレや熱硬化時の変色が発生する。 In addition to the components described above, a radical scavenger may be included as the photosensitive conductive material used in the first embodiment. The radical scavenger has a function of deactivating active radicals, and by adding it to the photosensitive conductive material, it becomes possible to suppress the curing reaction in the unexposed part caused by light scattering by (H) metal particles. The dimensional accuracy of the conductor pattern can be improved. Examples of the radical scavenger include hydroquinone derivatives such as hydroquinone, methylhydroquinone, methoquinone, kinopower MNT (manufactured by Kawasaki Kasei Co., Ltd.), non-flex alba, non-flex CBP, non-flex EBP (above, manufactured by Seiko Chemical Co., Ltd.) and the like. , 4-benzoquinone, 2,6-dichloroquinone, p-xyloquinone, quinone derivatives such as naphthoquinone, Irganox 245, Irganox 259, Irganox 1010, Irganox 1035, Irganox 1076, Irganox 1098 (manufactured by BASF), Adeka Stab AO30-A tab 30 (Holded phenols such as ADEKA), TINUVIN123, TINUVIN144, TINUVIN152, TINUVI 765, TINUVIN770DF (above, manufactured by BASF), hindered amines such as ADK STAB LA-77, ADK STAB LA-57, ADK STAB LA-67, ADK STAB LA-87 (above, manufactured by ADEKA), etc. More than one type can be used. As the addition amount of the radical scavenger, it can be added within a range of 0.01 wt% or more and 0.1 wt% or less based on the total solid content of the photosensitive conductive material. If the added amount of the radical scavenger is less than 0.01% by weight, the effect of improving the dimensional accuracy of the conductor pattern cannot be obtained. appear.
 第一の実施形態に用いられる感光性導電材料の経時粘度を安定化させるために、貯蔵安定剤を含有させることができる。貯蔵安定剤としては、例えばベンジルトリメチルクロライド、ジエチルヒドロキシアミン等の4級アンモニウムクロライド、乳酸、シュウ酸等の有機酸およびそのメチルエーテル、t-ブチルピロカテコール、トリエチルホスフィン、トリフェニルフォスフィン等の有機ホスフィン、亜リン酸塩等が挙げられる。貯蔵安定剤は、感光性導電材料全量を基準として、0.1重量%以上10重量%以下の範囲内の量で含有させることができる。 In order to stabilize the time-dependent viscosity of the photosensitive conductive material used in the first embodiment, a storage stabilizer can be contained. Examples of the storage stabilizer include quaternary ammonium chlorides such as benzyltrimethyl chloride and diethylhydroxyamine, organic acids such as lactic acid and oxalic acid, and organic acids such as methyl ether, t-butylpyrocatechol, triethylphosphine, and triphenylphosphine. Examples thereof include phosphine and phosphite. The storage stabilizer can be contained in an amount in the range of 0.1 wt% to 10 wt% based on the total amount of the photosensitive conductive material.
 また、第一の実施形態に用いられる感光性導電材料には、界面活性剤を含むことができる。界面活性剤として、例えばポリオキシエチレンアルキルエーテル硫酸塩、ドデシルベンゼンスルホン酸ナトリウム、スチレン-アクリル酸共重合体のアルカリ塩、アルキルナフタリンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ラウリル硫酸モノエタノールアミン、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ステアリン酸モノエタノールアミン、ステアリン酸ナトリウム、ラウリル硫酸ナトリウム、スチレン-アクリル酸共重合体のモノエタノールアミン、ポリオキシエチレンアルキルエーテルリン酸エステル等のアニオン性界面活性剤;ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンソルビタンモノステアレート、ポリエチレングリコールモノラウレート等のノニオン性界面活性剤;アルキル4級アンモニウム塩やそれらのエチレンオキサイド付加物等のカオチン性界面活性剤;アルキルジメチルアミノ酢酸ベタイン等のアルキルベタイン、アルキルイミダゾリン等の両性界面活性剤が挙げられ、これらは単独でまたは2種以上を混合して用いることができる。 Further, the photosensitive conductive material used in the first embodiment can contain a surfactant. Examples of surfactants include polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, alkali salt of styrene-acrylic acid copolymer, sodium alkylnaphthalenesulfonate, sodium alkyldiphenyletherdisulfonate, lauryl sulfate monoethanolamine, lauryl Anionic surfactants such as triethanolamine sulfate, ammonium lauryl sulfate, monoethanolamine stearate, sodium stearate, sodium lauryl sulfate, monoethanolamine of styrene-acrylic acid copolymer, polyoxyethylene alkyl ether phosphate ester; Polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Nonionic surfactants such as alkyl ether phosphates, polyoxyethylene sorbitan monostearate and polyethylene glycol monolaurate; chaotic surfactants such as alkyl quaternary ammonium salts and their ethylene oxide adducts; Examples include amphoteric surfactants such as alkylbetaines such as aminoacetic acid betaine and alkylimidazolines, and these can be used alone or in admixture of two or more.
 第一の実施形態に用いられる感光性導電材料に基材との密着性向上のために、シランカップリング剤を含むことができる。シランカップリング剤として、例えばKBM-303、KBM-402、KBM-403、KBE-402、KBE-403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-802、KBM-803、KBE-9007(以上、信越シリコーン社製)、Z-6011、Z-6020、Z-6030、Z-6040、Z-6043、Z-6094、Z-6519(以上、東レダウコーニング社製)等が挙げられる。シランカップリング剤は、感光性導電材料全量を基準として、0.1重量%以上1重量%以下の範囲内の量で含有させることができる。 A silane coupling agent can be included in the photosensitive conductive material used in the first embodiment in order to improve adhesion to the substrate. Examples of silane coupling agents include KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-802. , KBM-803, KBE-9007 (above, manufactured by Shin-Etsu Silicone), Z-6011, Z-6020, Z-6030, Z-6040, Z-6043, Z-6094, Z-6519 (above, Toray Dow Corning) Etc.). The silane coupling agent can be contained in an amount in the range of 0.1 wt% or more and 1 wt% or less based on the total amount of the photosensitive conductive material.
 第一の実施形態に用いられる感光性導電材料は、上述の(L)少なくとも1種類以上の黒色顔料、(M)少なくとも2種類以上の顔料による擬似黒色顔料混合物、(N)少なくとも1種類以上の黒色染料、(O)金属化合物の群から選ばれる少なくとも1種類以上の黒色化成分と、を必須成分として、(H)金属粒子、(I)光重合開始剤、(J)重合性多官能モノマー、(K)樹脂、(P)溶剤および界面活性剤等の成分を所定の組成で配合して攪拌機にて攪拌後、3本ロールミルにより混練することにより得ることができる。 The photosensitive conductive material used in the first embodiment includes (L) at least one black pigment, (M) a pseudo black pigment mixture of at least two pigments, and (N) at least one black pigment. (H) metal particles, (I) photopolymerization initiator, (J) polymerizable polyfunctional monomer, comprising as essential components at least one blackening component selected from the group consisting of black dyes and (O) metal compounds , (K) resin, (P) solvent, surfactant and the like are blended in a predetermined composition, stirred with a stirrer, and then kneaded with a three-roll mill.
 また、第一の実施形態に用いられる別の感光性導電材料は、カーボンブラック、(H)金属粒子、(I)光重合開始剤、(J)重合性多官能モノマー、(K)アルカリ可溶性樹脂、(P)溶剤および界面活性剤等の成分を所定の組成で配合して攪拌機にて攪拌後、3本ロールミルにより混練することにより得ることができる。 Further, another photosensitive conductive material used in the first embodiment is carbon black, (H) metal particles, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, and (K) an alkali-soluble resin. (P) It can obtain by mix | blending components, such as a solvent and surfactant, with a predetermined composition, kneading with a stirrer, and knead | mixing with a 3 roll mill.
<感光性導電材料を用いた第二の接続部4および取出配線20の製造方法>
 第一の実施形態における感光性導電材料を用いた第二の接続部4および取出配線20の製造方法について、以下に説明をする。
 感光性導電材料の透明基材10への塗布方法としては、例えばスクリーン印刷、グラビアオフセット印刷、反転オフセット印刷、レリーフ印刷、ダイコート、バーコート等が挙げられるが、一般的にスクリーン印刷が用いられる。透明基材10への塗布後、有機溶剤を蒸発させるために必要に応じてプリベークを実施する。プリベークには、例えば熱風循環式オーブンやホットプレート、IRオーブンを用いることができる。
<The manufacturing method of the 2nd connection part 4 and the extraction wiring 20 using a photosensitive electrically-conductive material>
The manufacturing method of the 2nd connection part 4 and the extraction wiring 20 using the photosensitive electrically-conductive material in 1st embodiment is demonstrated below.
Examples of the method for applying the photosensitive conductive material to the transparent substrate 10 include screen printing, gravure offset printing, reverse offset printing, relief printing, die coating, and bar coating, and screen printing is generally used. After application to the transparent substrate 10, pre-baking is performed as necessary to evaporate the organic solvent. For example, a hot air circulation oven, a hot plate, or an IR oven can be used for pre-baking.
 感光性導電材料を透明基材10に塗布後、所望する第二の接続部4および取出配線20に対応するフォトマスクを介して、パターン露光を行う。露光光源として、通常の高圧水銀灯を用いればよい。露光量としてはタクトタイムの観点から、10~200mJ/cm程度が好ましい。
 露光に続いて現像を行う。現像液にはアルカリ性水溶液を用いる。アルカリ性水溶液の例としては、水酸化テトラメチルアンモニウム水溶液、もしくは水酸化カリウム水溶液が好んで用いられるが、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液、または両者の混合水溶液、もしくはそれらに適当な界面活性剤等を加えたものを用いても良い。
After applying the photosensitive conductive material to the transparent base material 10, pattern exposure is performed through a photomask corresponding to the desired second connection portion 4 and extraction wiring 20. A normal high-pressure mercury lamp may be used as the exposure light source. The exposure amount is preferably about 10 to 200 mJ / cm 2 from the viewpoint of tact time.
Development is performed following exposure. An alkaline aqueous solution is used as the developer. As an example of the alkaline aqueous solution, a tetramethylammonium hydroxide aqueous solution or a potassium hydroxide aqueous solution is preferably used, but a sodium carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a mixed aqueous solution of both, or a surfactant suitable for them. You may use what added.
 現像後、加熱処理を行うことにより任意の取出配線20が得られる。加熱処理は、熱乾燥オーブンを用いて130~250℃にて10~60分行う。加熱処理による樹脂の硬化収縮により、取出配線パターンの銀粉同士が接触して十分な導電性を有するとともに薬品等に対する耐性も向上する。
 なお、第一の実施形態では、第一の透明電極1、第二の透明電極2、および第一の接続部3を形成した後に第二の接続部4および取出配線20を形成する場合について説明したが、これに限定されるものではない。例えば、第二の接続部4および取出配線20を形成した後に第一の透明電極1、第二の透明電極2、および第一の接続部3を形成してもよい。
After the development, an arbitrary extraction wiring 20 is obtained by performing a heat treatment. The heat treatment is performed at 130 to 250 ° C. for 10 to 60 minutes using a heat drying oven. Due to the curing shrinkage of the resin due to the heat treatment, the silver powder of the extracted wiring pattern comes into contact with each other and has sufficient conductivity and also improves the resistance to chemicals and the like.
In addition, in 1st embodiment, after forming the 1st transparent electrode 1, the 2nd transparent electrode 2, and the 1st connection part 3, the case where the 2nd connection part 4 and the extraction wiring 20 are formed is demonstrated. However, the present invention is not limited to this. For example, after forming the 2nd connection part 4 and the extraction wiring 20, you may form the 1st transparent electrode 1, the 2nd transparent electrode 2, and the 1st connection part 3. FIG.
<表示装置>
 第一の実施形態に係る表示装置は、上述の投影型静電容量式タッチパネルセンサー基板を有する表示装置である。この表示装置であれば、上述の投影型静電容量式タッチパネルセンサー基板を有しているので、安価に製造可能で表示品位に優れた表示装置を提供することができる。
<Display device>
A display device according to the first embodiment is a display device having the above-described projected capacitive touch panel sensor substrate. Since this display device has the above-described projected capacitive touch panel sensor substrate, it is possible to provide a display device that can be manufactured at low cost and has excellent display quality.
≪第1.1実施例≫
 以下、実施例により第一の実施形態を具体的に説明するが、本発明の趣旨を逸脱しない範囲においてこれに限定されるものではない。
 なお、上記第1.1実施例の「1.1」なる表記については、「第1の実施形態における第1実施例」を意味するものとする。
<< Example 1.1 >>
Hereinafter, the first embodiment will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the gist of the present invention.
In addition, the notation “1.1” in the 1.1st example means “the 1st example in the first embodiment”.
[アルカリ可溶性樹脂Aの合成]
 反応容器に1-メトキシ-2-プロピルアセテート800部を入れ、容器に窒素ガスを注入しながら加熱して、下記モノマーおよび熱重合開始剤の混合物を滴下して重合反応を行った。
スチレン                     40部
メタクリル酸                   60部
メチルメタクリレート               55部
ベンジルメタクリレート              45部
アゾビスイソブチロニトリル            10部
1,4-ジメチルメルカプトベンゼン         3部
[Synthesis of alkali-soluble resin A]
A reaction vessel was charged with 800 parts of 1-methoxy-2-propyl acetate, heated while injecting nitrogen gas into the vessel, and a mixture of the following monomer and thermal polymerization initiator was added dropwise to carry out a polymerization reaction.
Styrene 40 parts Methacrylic acid 60 parts Methyl methacrylate 55 parts Benzyl methacrylate 45 parts Azobisisobutyronitrile 10 parts 1,4-dimethylmercaptobenzene 3 parts
 滴下後十分に加熱した後、アゾビスイソブチロニトリル2部を1-メトキシ-2-プロピルアセテート50部で溶解させたものを添加し、さらに反応を続けてアクリル樹脂の溶液を得た。
 この樹脂溶液に固形分が30重量%になるように1-メトキシ-2-プロピルアセテートを添加してアクリル樹脂溶液を調製し、アルカリ可溶性樹脂Aとした。
アルカリ可溶性樹脂Aの重量平均分子量は、約20000であった。
After dripping, the mixture was heated sufficiently, and then 2 parts of azobisisobutyronitrile dissolved in 50 parts of 1-methoxy-2-propylacetate was added, and the reaction was continued to obtain an acrylic resin solution.
An acrylic resin solution was prepared by adding 1-methoxy-2-propylacetate to the resin solution so that the solid content was 30% by weight.
The weight average molecular weight of the alkali-soluble resin A was about 20,000.
[擬似黒色顔料混合物Bの調製]
 擬似黒色顔料混合物Bは、溶媒に溶解させたアルカリ可溶性樹脂中に赤色系顔料と青色系顔料を分散させたものである。赤色系顔料と青色系顔料としては、C.I.ピグメントレッド254とC.I.ピグメントブルー15:3とを1:1の比率で混合したものを用いた。
赤色顔料:C.I.ピグメントレッド254
  (BASF社製「イルガーフォーレッド B-CF」)    30部
青色顔料:C.I.ピグメントブルー15:3
  (BASF社製、IRGALITE Blue GBP)   30部
[Preparation of pseudo black pigment mixture B]
The pseudo black pigment mixture B is obtained by dispersing a red pigment and a blue pigment in an alkali-soluble resin dissolved in a solvent. Examples of red pigments and blue pigments include C.I. I. Pigment red 254 and C.I. I. A mixture of CI Pigment Blue 15: 3 at a ratio of 1: 1 was used.
Red pigment: C.I. I. Pigment Red 254
("ILGER FOR RED B-CF" manufactured by BASF) 30 parts Blue pigment: C.I. I. Pigment Blue 15: 3
(BASF, IRGALITE Blue GBP) 30 parts
[感光性導電材料1.1.1の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料1.1.1を調整した。なお、以降に示す「感光性導電材料1.1.○」なる表記は、「第1の実施形態の第1実施例における感光性導電材料○」を意味するものとする。つまり、「感光性導電材料1.1.1」とは、「第1の実施形態の第1実施例における感光性導電材料1」を意味するものである。
C.I.Pigment Black 32          7.2部
銀粉(平均粒子径d50 1.5μm)             65部
光重合開始剤 イルガキュアOXE02(BASF社製)    0.2部
重合性多官能モノマー R-684(日本化薬社製)        6部
アルカリ可溶性樹脂A                  17.28部
ラジカル捕捉剤 メチルハイドロキノン           0.02部
有機溶剤 1-メトキシ-2-プロピルアセテート         4部
界面活性剤 アデカネートB-940(ADEKA社製)    0.1部
シランカップリング剤 KBM-502(信越シリコーン社製) 0.2部
[Preparation of photosensitive conductive material 1.1.1]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and filtered through a 5 μm filter to prepare photosensitive conductive material 1.1.1. In addition, the notation “photosensitive conductive material 1.1. ◯” described below means “photosensitive conductive material ○ in the first example of the first embodiment”. That is, “photosensitive conductive material 1.1.1” means “photosensitive conductive material 1 in the first example of the first embodiment”.
C. I. Pigment Black 32 7.2 parts silver powder (average particle size d50 1.5 μm) 65 parts photopolymerization initiator Irgacure OXE02 (manufactured by BASF) 0.2 parts polymerizable polyfunctional monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 6 Part alkali-soluble resin A 17.28 parts radical scavenger methyl hydroquinone 0.02 part organic solvent 1-methoxy-2-propyl acetate 4 parts surfactant Adecanate B-940 (manufactured by ADEKA) 0.1 part silane coupling agent KBM-502 (manufactured by Shin-Etsu Silicone) 0.2 parts
[感光性導電材料1.1.2~1.1.9の調製]
 組成を表1に記載の材料に変更した以外は、感光性導電材料1.1.1と同様にして、感光性導電材料1.1.2~1.1.9を得た。
[Preparation of photosensitive conductive material 1.1.2 to 1.1.9]
Photosensitive conductive materials 1.1.2 to 1.1.9 were obtained in the same manner as photosensitive conductive material 1.1.1 except that the composition was changed to the materials shown in Table 1.
[感光性導電材料1.1.10の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料1.1.10を調整した。
擬似黒色顔料混合物B                    7.2部
銀粉(平均粒子径d50 1.5μm)             65部
光重合開始剤 イルガキュアOXE02(BASF社製)    0.2部
重合性多官能モノマー R-684(日本化薬社製)        6部
アルカリ可溶性樹脂A                  17.28部
ラジカル捕捉剤 メチルハイドロキノン           0.02部
有機溶剤 1-メトキシ-2-プロピルアセテート         4部
界面活性剤 アデカネートB-940(ADEKA社製)    0.1部
シランカップリング剤 KBM-502(信越シリコーン社製) 0.2部
[Preparation of photosensitive conductive material 1.1.10.]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 μm filter to prepare photosensitive conductive material 1.1.10.
Pseudo black pigment mixture B 7.2 parts silver powder (average particle size d50 1.5 μm) 65 parts photopolymerization initiator Irgacure OXE02 (manufactured by BASF) 0.2 parts polymerizable polyfunctional monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) ) 6 parts alkali-soluble resin A 17.28 parts radical scavenger methyl hydroquinone 0.02 parts organic solvent 1-methoxy-2-propyl acetate 4 parts surfactant Adecanate B-940 (manufactured by ADEKA) 0.1 part silane cup Ring agent KBM-502 (manufactured by Shin-Etsu Silicone) 0.2 parts
[感光性導電材料1.1.11~1.1.17の調製]
 組成を表1に記載の材料に変更した以外は、感光性導電材料1.1.10と同様にして、感光性導電材料1.1.11~1.1.17を得た。
[Preparation of photosensitive conductive material 1.1.11 to 1.1.17]
Photosensitive conductive materials 1.1.1.11 to 1.1.17 were obtained in the same manner as photosensitive conductive material 1.1.10, except that the composition was changed to the materials shown in Table 1.
[感光性導電材料1.1.18の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料1.1.18を調整した。
黒色染料:C.I.アシッドブラック24           7.2部
銀粉(平均粒子径d50 1.5μm)             65部
光重合開始剤 イルガキュアOXE02(BASF社製)    0.2部
重合性多官能モノマー R-684(日本化薬社製)        6部
アルカリ可溶性樹脂A                  17.28部
ラジカル捕捉剤 メチルハイドロキノン           0.02部
有機溶剤 1-メトキシ-2-プロピルアセテート         4部
界面活性剤 アデカネートB-940(ADEKA社製)    0.1部
シランカップリング剤 KBM-502(信越シリコーン社製) 0.2部
[Preparation of photosensitive conductive material 1.1.18]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 μm filter to prepare photosensitive conductive material 1.1.18.
Black dye: C.I. I. Acid Black 24 7.2 parts silver powder (average particle diameter d50 1.5 μm) 65 parts photopolymerization initiator Irgacure OXE02 (manufactured by BASF) 0.2 parts polymerizable polyfunctional monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 6 Part alkali-soluble resin A 17.28 parts radical scavenger methyl hydroquinone 0.02 part organic solvent 1-methoxy-2-propyl acetate 4 parts surfactant Adecanate B-940 (manufactured by ADEKA) 0.1 part silane coupling agent KBM-502 (manufactured by Shin-Etsu Silicone) 0.2 parts
[感光性導電材料1.1.19~1.1.25の調製]
 組成を表1に記載の材料に変更した以外は、感光性導電材料1.1.18と同様にして、感光性導電材料1.1.19~1.1.25を得た。
[Preparation of photosensitive conductive material 1.1.19 to 1.1.25]
Photosensitive conductive materials 1.1.19 to 1.1.25 were obtained in the same manner as photosensitive conductive material 1.1.18, except that the composition was changed to the materials shown in Table 1.
[感光性導電材料1.1.26の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料1.1.26を調整した。
黒色金属酸化物:四酸化三鉄 (平均粒子径d50 1.0μm)7.2部
銀粉(平均粒子径d50 2.0μm)             65部
光重合開始剤 イルガキュアOXE02(BASF社製)    0.2部
重合性多官能モノマー R-684(日本化薬社製)        6部
アルカリ可溶性樹脂A                  17.28部
ラジカル捕捉剤 メチルハイドロキノン           0.02部
有機溶剤 1-メトキシ-2-プロピルアセテート         4部
界面活性剤 アデカネートB-940(ADEKA社製)    0.1部
シランカップリング剤 KBM-502(信越シリコーン社製) 0.2部
[Preparation of photosensitive conductive material 1.1.26]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and filtered through a 5 μm filter to prepare photosensitive conductive material 1.1.26.
Black metal oxide: triiron tetroxide (average particle diameter d50 1.0 μm) 7.2 parts silver powder (average particle diameter d50 2.0 μm) 65 parts photopolymerization initiator Irgacure OXE02 (manufactured by BASF) 0.2 parts polymerization Polyfunctional monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 6 parts alkali-soluble resin A 17.28 parts radical scavenger methyl hydroquinone 0.02 parts organic solvent 1-methoxy-2-propyl acetate 4 parts surfactant Adecanate B -940 (manufactured by ADEKA) 0.1 part silane coupling agent KBM-502 (manufactured by Shin-Etsu Silicone) 0.2 part
[感光性導電材料1.1.27~1.1.33の調製]
 組成を表1に記載の材料に変更した以外は、感光性導電材料1.1.26と同様にして、感光性導電材料1.1.27~1.1.33を得た。
[Preparation of photosensitive conductive material 1.1.27 to 1.1.33]
Photosensitive conductive materials 1.1.27 to 1.1.33 were obtained in the same manner as photosensitive conductive material 1.1.26, except that the composition was changed to the materials shown in Table 1.
[感光性導電材料1.1.34の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料1.1.34を調整した。
黒色金属酸化物:四酸化三鉄 (平均粒子径d50 5.0μm)7.2部
銀粉(平均粒子径d50 2.0μm)             65部
光重合開始剤 イルガキュアOXE02(BASF社製)    0.2部
重合性多官能モノマー R-684(日本化薬社製)        6部
アルカリ可溶性樹脂A                  17.28部
ラジカル捕捉剤 メチルハイドロキノン           0.02部
有機溶剤 1-メトキシ-2-プロピルアセテート         4部
界面活性剤 アデカネートB-940(ADEKA社製)    0.1部
シランカップリング剤 KBM-502(信越シリコーン社製) 0.2部
[Preparation of photosensitive conductive material 1.1.34]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 μm filter to prepare photosensitive conductive material 1.1.34.
Black metal oxide: triiron tetroxide (average particle diameter d50 5.0 μm) 7.2 parts silver powder (average particle diameter d50 2.0 μm) 65 parts photopolymerization initiator Irgacure OXE02 (manufactured by BASF) 0.2 parts polymerization Polyfunctional monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 6 parts alkali-soluble resin A 17.28 parts radical scavenger methyl hydroquinone 0.02 parts organic solvent 1-methoxy-2-propyl acetate 4 parts surfactant Adecanate B -940 (manufactured by ADEKA) 0.1 part silane coupling agent KBM-502 (manufactured by Shin-Etsu Silicone) 0.2 part
(実施例1.1.1)
 なお、以降に示す「実施例1.1.○」なる表記は、「第1の実施形態の第1実施例における実施例○」を意味するものとする。また、「比較例1.1.○」なる表記は、「第1の実施形態の第1実施例における比較例○」を意味するものとする。つまり、「実施例1.1.1」とは、「第1の実施形態の第1実施例における実施例1」を意味するものである。同様に、「比較例1.1.1」とは、「第1の実施形態の第1実施例における比較例1」を意味するものである。
(Example 1.1.1)
In addition, the notation “Example 1.1. ○” described below means “Example ○ in the first example of the first embodiment”. Further, the notation “Comparative Example 1.1. ◯” means “Comparative Example ○ in the first example of the first embodiment”. That is, “Example 1.1.1” means “Example 1 in the first example of the first embodiment”. Similarly, “comparative example 1.1.1” means “comparative example 1 in the first example of the first embodiment”.
<静電容量式タッチパネルセンサー基板の作製>
 アルミノ珪酸ガラス上に、感光性導電材料1.1.1をメッシュ500のスクリーン印刷版(材質:ステンレス、東京プロセスサービス社製)を用いてスクリーン印刷にて塗布を行い、ホットプレートにて90℃で5分間乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて50~200mJ/cmで所望する開口部を有するフォトマスクを介して露光を実施した後、0.2重量%の炭酸水素ナトリウム水溶液にて、30~60秒間シャワー現像を実施した。水洗後、熱風循環式オーブンにて230℃で30分間加熱処理を実施して第二の接続部4および取出配線20を作製した。フォトマスクの開口部、露光量および現像時間を変更することにより、導体幅6~20μm×導体長200μmの大きさの第二の接続部4を得た。感光性導電材料層のシート抵抗は0.2Ω/□であり、導体厚は3.0μmであった。
<Production of capacitive touch panel sensor substrate>
On the aluminosilicate glass, the photosensitive conductive material 1.1.1 was applied by screen printing using a screen printing plate (material: stainless steel, manufactured by Tokyo Process Service Co., Ltd.) of mesh 500, and 90 ° C. on a hot plate. The film was dried for 5 minutes to dry the coating film. Thereafter, exposure is performed through a photomask having a desired opening at 50 to 200 mJ / cm 2 using a high-pressure mercury lamp as a light source, and then for 30 to 60 seconds with a 0.2 wt% aqueous sodium bicarbonate solution. Shower development was performed. After washing with water, heat treatment was performed at 230 ° C. for 30 minutes in a hot-air circulating oven to produce the second connection portion 4 and the extraction wiring 20. By changing the opening of the photomask, the exposure amount, and the development time, the second connecting portion 4 having a conductor width of 6 to 20 μm × conductor length of 200 μm was obtained. The sheet resistance of the photosensitive conductive material layer was 0.2Ω / □, and the conductor thickness was 3.0 μm.
 次に、アクリル系ネガレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、炭酸水素ナトリウム水溶液にて、現像を実施した。水洗後、オーブンにて加熱処理を実施して絶縁層5を形成した。絶縁層5は、第二の接続部4の有効部分のみを覆うように、幅60μm×長さ120μmの大きさとした。 Next, an acrylic negative resist was spin-coated and dried on a hot plate to dry the coating film. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the insulating layer 5. The insulating layer 5 has a width of 60 μm × length of 120 μm so as to cover only the effective portion of the second connection portion 4.
 続いて、スパッタリング装置により膜厚30nmでITO膜を成膜し、ノボラック系ポジレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、テトラメチルアンモニウムハイドロオキサイド水溶液にて、現像を実施した。水洗後、シュウ酸を主成分とするエッチング液を用いてウェットエッチングを行い、水酸化カリウムのレジスト剥離液を用いてレジスト除去した後、オーブンにて加熱処理を実施して第一の透明電極1、第二の透明電極2、および第一の接続部3を形成した。ITO膜のシート抵抗は100Ω/□であった。 Subsequently, an ITO film having a film thickness of 30 nm was formed by a sputtering apparatus, a novolac positive resist was spin-coated, dried on a hot plate, and the coating film was dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the tetramethylammonium hydroxide aqueous solution. After washing with water, wet etching is performed using an etching solution containing oxalic acid as a main component, and the resist is removed using a potassium hydroxide resist stripping solution. Then, the first transparent electrode 1 is subjected to heat treatment in an oven. The 2nd transparent electrode 2 and the 1st connection part 3 were formed. The sheet resistance of the ITO film was 100Ω / □.
 さらに、アクリル系ネガレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、炭酸水素ナトリウム水溶液にて、現像を実施した。水洗後、オーブンにて加熱処理を実施して保護層6を形成して、静電容量式タッチパネルセンサー基板を得た。保護層6は、タッチパネルセンサー基板の取出配線20と制御回路と繋がる接続部位を除く領域全面を覆うように形成した。 Furthermore, an acrylic negative resist was applied by spin coating and dried on a hot plate to dry the coating film. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the protective layer 6 to obtain a capacitive touch panel sensor substrate. The protective layer 6 was formed so as to cover the entire region excluding the connection portion connected to the extraction wiring 20 and the control circuit of the touch panel sensor substrate.
(実施例1.1.2~1.1.29、比較例1.1.1~1.1.5)
<静電容量式タッチパネルセンサー基板の作製>
 感光性導電材料1.1.1に変えて感光性導電材料1.1.2~1.1.34を用いた以外は、実施例1.1.1と同様にして行った。
(Examples 1.1.2 to 1.1.29, Comparative Examples 1.1.1 to 1.1.5)
<Production of capacitive touch panel sensor substrate>
The same procedure as in Example 1.1.1 was performed except that the photosensitive conductive material 1.1.2 to 1.1.34 was used instead of the photosensitive conductive material 1.1.1.
(実施例1.1.30)
<静電容量式タッチパネルセンサー基板の作製>
 比較例1.1.1と同様にして第二の接続部4および取出配線20を作製し、硫酸(10重量%)/過硫酸ナトリウム(0.5重量%)の混合液中にて40℃で2分間基板を浸漬した。次に酸化処理として水酸化ナトリウム(6重量%)/亜塩素酸ナトリウム(10重量%)/次亜塩素酸ナトリウム(10重量%)/亜硝酸ナトリウム(10重量%)の混合液中にて50℃で2分間基板を浸漬し、銀粉の酸化を行った。その後比較例1.1.1と同様にしてタッチパネルセンサー基板を作製した。
(Example 1.1.30)
<Production of capacitive touch panel sensor substrate>
In the same manner as in Comparative Example 1.1.1, the second connection portion 4 and the lead-out wiring 20 were prepared, and the mixture was 40 ° C. in a sulfuric acid (10 wt%) / sodium persulfate (0.5 wt%) mixture. The substrate was immersed for 2 minutes. Next, as an oxidation treatment, sodium hydroxide (6% by weight) / sodium chlorite (10% by weight) / sodium hypochlorite (10% by weight) / sodium nitrite (10% by weight) in a mixed solution of 50 The substrate was immersed for 2 minutes at 0 ° C. to oxidize the silver powder. Thereafter, a touch panel sensor substrate was produced in the same manner as in Comparative Example 1.1.1.
(比較例1.1.6)
<静電容量式タッチパネルセンサー基板の作製>
 アルミノ珪酸ガラス上に、Mo、Al、Moの順にそれぞれ350Å/2000Å/350Åの厚さでスパッタ法により成膜し、ノボラック系ポジレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、テトラメチルアンモニウムハイドロオキサイド水溶液にて、現像を実施した。水洗後、リン酸、硝酸、酢酸を主成分とするエッチング液を用いてウェットエッチングを行い、水酸化カリウムのレジスト剥離液を用いてレジスト除去した後、オーブンにて加熱処理を実施して第二の接続部4および取出配線20を作製した。フォトマスクの開口部、露光量および現像時間を変更することにより、導体幅6~20μm×導体長200μmの大きさの第二の接続部4を得た。Mo/Al/Mo膜のシート抵抗は0.2Ω/□であった。それ以外は、実施例1.1.1と同様にして、静電容量式タッチパネルセンサー基板を得た。
(Comparative Example 1.1.6)
<Production of capacitive touch panel sensor substrate>
On the aluminosilicate glass, films of Mo, Al, and Mo are formed in a thickness of 350 mm / 2000 mm / 350 mm by sputtering, a novolac positive resist is spin-coated, dried on a hot plate, and a coating film is formed. Dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the tetramethylammonium hydroxide aqueous solution. After washing with water, wet etching is performed using an etching solution mainly composed of phosphoric acid, nitric acid, and acetic acid. After removing the resist using a potassium hydroxide resist stripping solution, heat treatment is performed in an oven. The connection part 4 and the lead-out wiring 20 were prepared. By changing the opening of the photomask, the exposure amount, and the development time, the second connecting portion 4 having a conductor width of 6 to 20 μm × conductor length of 200 μm was obtained. The sheet resistance of the Mo / Al / Mo film was 0.2Ω / □. Other than that was carried out similarly to Example 1.1.1, and obtained the capacitive touch-panel sensor board | substrate.
[接続部の評価方法]
<反射率の測定>
 無アルカリガラス基板上に、Mo、Al、Moの順にそれぞれ350Å/2000Å/350Åの厚さでスパッタ法により成膜し、熱風循環式オーブンにて230℃で30分間加熱処理を実施して評価基板を作製した。また、無アルカリガラス基板上に、メッシュ500のスクリーン印刷版(材質:ステンレス、東京プロセスサービス社製)を用いて感光性導電材料をスクリーン印刷にて塗布を行い、ホットプレートにて100℃で5分間乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて100mJ/cmで全面露光を実施した後、0.2重量%の炭酸水素ナトリウム水溶液にて、30秒間シャワー現像を実施した。水洗後、熱風循環式オーブンにて230℃で30分間加熱処理を実施して評価基板を作製した。反射率の測定には紫外可視分光光度計(日立ハイテク社製U-4100)を使用し、積分球を用いて無水アルカリガラス基板面より、鏡面反射を含む拡散反射光測定を実施した。
[Evaluation method of connection part]
<Measurement of reflectance>
On an alkali-free glass substrate, Mo, Al, and Mo were formed in the order of 350 Å / 2000 Å / 350 そ れ ぞ れ respectively by sputtering, and subjected to heat treatment at 230 ° C. for 30 minutes in a hot air circulating oven for evaluation substrate Was made. In addition, a photosensitive conductive material is applied on a non-alkali glass substrate by screen printing using a screen printing plate of mesh 500 (material: stainless steel, manufactured by Tokyo Process Service Co., Ltd.), and 5 ° C. at 100 ° C. on a hot plate. Drying was performed for a minute, and the coating film was dried. Thereafter, the entire surface was exposed at 100 mJ / cm 2 using a high-pressure mercury lamp as a light source, and then shower development was performed with a 0.2 wt% sodium hydrogen carbonate aqueous solution for 30 seconds. After washing with water, heat treatment was performed at 230 ° C. for 30 minutes in a hot air circulation oven to prepare an evaluation substrate. The reflectance was measured using an ultraviolet-visible spectrophotometer (U-4100, manufactured by Hitachi High-Tech), and diffuse reflection measurement including specular reflection was performed from the surface of an anhydrous alkali glass substrate using an integrating sphere.
<接続部パターン見え評価>
 実施例1.1.1~1.1.30および比較例1.1.1~1.1.6で得られた静電容量式タッチパネルセンサー基板を、蛍光灯ライトボックスの上および外光が遮光された黒板上に置き、外光としての蛍光灯下で角度を変えて反射させて見たときに、それぞれ目視で第二の接続部4が観察できるかを評価した。評価基準を以下に示す。
 ○ …蛍光灯ライトボックス上および黒板上のいずれでも第二の接続部4は見えない
 △ …蛍光灯ライトボックス上および黒板上のいずれかで第二の接続部4がわずか見える
 × …蛍光灯ライトボックス上および黒板上のいずれかで第二の接続部4がはっきり見える
 - …パターン剥れもしくは解像不可でパターン形成できないもの
 なお、○と△が使用可能レベルである。
<Evaluation of connection pattern appearance>
The electrostatic capacitance type touch panel sensor substrate obtained in Examples 1.1.1 to 1.1.30 and Comparative Examples 1.1.1 to 1.1.6 was used so that the light from above and outside the fluorescent light box When placed on a light-shielded blackboard and reflected by changing the angle under a fluorescent lamp as external light, it was evaluated whether the second connecting portion 4 could be visually observed. The evaluation criteria are shown below.
○… The second connection 4 is not visible either on the fluorescent light box or on the blackboard △… The second connection 4 is slightly visible on either the fluorescent light box or on the blackboard ×… Fluorescent light The second connecting part 4 is clearly visible either on the box or on the blackboard-... the pattern cannot be formed because the pattern is not peeled off or cannot be resolved Note that ◯ and Δ are usable levels.
<感度評価>
 アルミノ珪酸ガラス基板上に、感光性導電材料をメッシュ500のスクリーン印刷版(材質:ステンレス、東京プロセスサービス社製)を用いてスクリーン印刷にて塗布を行い、ホットプレートにて90℃で5分間乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて50~200mJ/cmで所望する開口部を有するフォトマスクを介して露光を実施した後、0.2重量%の炭酸水素ナトリウム水溶液にて、60秒間シャワー現像を実施した。感度の判定基準として、導体幅10μm×導体長200μmの大きさの第二の接続部4を形成する際に必要な露光量として、150mJ/cm未満を感度良好として○、150mJ/cm以上200mJ/cm未満を使用可能として△、200mJ/cm以上を感度不足として×とした。
<Sensitivity evaluation>
On the aluminosilicate glass substrate, a photosensitive conductive material is applied by screen printing using a screen printing plate of mesh 500 (material: stainless steel, manufactured by Tokyo Process Service Co., Ltd.) and dried on a hot plate at 90 ° C. for 5 minutes. And the coating film was dried. Thereafter, exposure is performed through a photomask having a desired opening at 50 to 200 mJ / cm 2 using a high-pressure mercury lamp as a light source, and then shower development is performed with a 0.2 wt% sodium bicarbonate aqueous solution for 60 seconds. Carried out. As a criterion for sensitivity, as an exposure amount necessary for forming the second connection portion 4 having a conductor width of 10 μm × conductor length of 200 μm, a sensitivity of less than 150 mJ / cm 2 is good, 150 mJ / cm 2 or more A value of less than 200 mJ / cm 2 can be used, and a value of 200 mJ / cm 2 or more is marked as x because of insufficient sensitivity.
<静電破壊評価>
 実施例1.1.1~1.1.30および比較例1.1.1~1.1.6で得られた静電容量式タッチパネルセンサー基板を、静電気放電シミュレータ(菊水電子工業社製KES4021)を用いて静電破壊評価を実施した。評価基準として、10kVの印加電圧において断線が発生しないものを○、断線が発生したものを×とした。
 感光性導電材料の組成を表1に、評価結果を表2に示す。
<Electrostatic breakdown evaluation>
The electrostatic capacity type touch panel sensor substrate obtained in Examples 1.1.1 to 1.1.30 and Comparative Examples 1.1.1 to 1.1.6 was used as an electrostatic discharge simulator (KES4021 manufactured by Kikusui Electronics Corporation). ) Was used to evaluate electrostatic breakdown. As evaluation criteria, a case where no disconnection occurred at an applied voltage of 10 kV was indicated as “◯”, and a case where a disconnection occurred was indicated as “x”.
The composition of the photosensitive conductive material is shown in Table 1, and the evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記実施例1.1.1~1.1.30と比較例1.1.1~1.1.6との比較より、反射率が0%以上30%以下の範囲内であれば第二の接続部4がパターン見えすることなく、表示品位に優れた静電容量式タッチパネルセンサーを製造することが可能であることがわかる。
 感度やプロセスマージンを考慮すると、(H)金属粒子の平均粒子径は0.1μm以上4μm以下の範囲内がより良好であり、黒色材料の含有量が1重量%以上100重量%以下の範囲内にあることが良好である。
From the comparison between the above Examples 1.1.1 to 1.1.30 and Comparative Examples 1.1.1 to 1.1.6, the second is obtained when the reflectance is in the range of 0% to 30%. It can be seen that it is possible to manufacture a capacitive touch panel sensor with excellent display quality without the pattern of the connecting portion 4 being visible.
Considering sensitivity and process margin, the average particle size of (H) metal particles is better within the range of 0.1 μm to 4 μm, and the black material content is within the range of 1 wt% to 100 wt%. It is good to be in.
≪第1.2実施例≫
 以下、実施例により第一の実施形態を具体的に説明するが、本発明の趣旨を逸脱しない範囲においてこれに限定されるものではない。なお、第1.2実施例は、黒色材料としてカーボンブラックを用いた場合の実施例である。また、上記第1.2実施例の「1.2」なる表記については、「第1の実施形態における第2実施例」を意味するものとする。
<< Example 1.2 >>
Hereinafter, the first embodiment will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the gist of the present invention. The 1.2th example is an example when carbon black is used as the black material. In addition, the notation “1.2” in the above 1.2 example means “the 2nd example in the first embodiment”.
[アルカリ可溶性樹脂Aの合成]
 第1.2実施例におけるアルカリ可溶性樹脂Aの合成方法は、上述の第1.1実施例で説明した[アルカリ可溶性樹脂Aの合成]の方法と同じである。よって、ここではその説明を省略する。
[Synthesis of alkali-soluble resin A]
The method for synthesizing the alkali-soluble resin A in Example 1.2 is the same as the method for [Synthesis of alkali-soluble resin A] described in Example 1.1 above. Therefore, the description is omitted here.
[感光性導電材料1.2.1の調整]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料1.2.1を調整した。なお、以降に示す「感光性導電材料1.2.○」なる表記は、「第1の実施形態の第2実施例における感光性導電材料○」を意味するものとする。つまり、「感光性導電材料1.2.1」とは、「第1の実施形態の第2実施例における感光性導電材料1」を意味するものである。
[Adjustment of photosensitive conductive material 1.2.1]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and filtered through a 5 μm filter to prepare photosensitive conductive material 1.2.1. Note that the notation “photosensitive conductive material 1.2. ◯” shown below means “photosensitive conductive material ○ in the second example of the first embodiment”. That is, “photosensitive conductive material 1.2.1” means “photosensitive conductive material 1 in the second example of the first embodiment”.
カーボンブラック MHIブラック#220 (御国色素社製) 3.6部
 カーボンブラック含有量33%、固形分40%、平均粒子径 125nm
銀粉(平均粒子径d50 1.5μm)             65部
光重合開始剤 イルガキュアOXE02(BASF社製)    0.2部
重合性多官能モノマー R-684(日本化薬社製)        6部
アルカリ可溶性樹脂A                  20.88部
ラジカル捕捉剤 メチルハイドロキノン           0.02部
有機溶剤 1-メトキシ-2-プロピルアセテート         4部
シランカップリング剤 KBM-502(信越シリコーン社製) 0.2部
界面活性剤 アデカネートB-940(ADEKA社製)    0.1部
Carbon Black MHI Black # 220 (manufactured by Mikuni Dye Co., Ltd.) 3.6 parts Carbon black content 33%, solid content 40%, average particle size 125 nm
Silver powder (average particle size d50 1.5 μm) 65 parts photopolymerization initiator Irgacure OXE02 (manufactured by BASF) 0.2 parts polymerizable polyfunctional monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 6 parts alkali-soluble resin A 20. 88 parts radical scavenger methylhydroquinone 0.02 parts organic solvent 1-methoxy-2-propyl acetate 4 parts silane coupling agent KBM-502 (manufactured by Shin-Etsu Silicone) 0.2 parts surfactant Adecanate B-940 (ADEKA) 0.1 parts)
[感光性導電材料1.2.2~1.2.14の調整]
 組成を後に説明する表3に記載の材料の混合物に変更した以外は、感光性導電材料1.2.1と同様にして、感光性導電材料1.2.2~1.2.14を得た。
[Adjustment of photosensitive conductive material 1.2.2 to 1.2.14]
Photosensitive conductive materials 1.2.2 to 1.2.14 were obtained in the same manner as photosensitive conductive material 1.2.1 except that the composition was changed to a mixture of materials described in Table 3 described later. It was.
(実施例1.2.1)
 なお、以降に示す「実施例1.2.○」なる表記は、「第1の実施形態の第2実施例における実施例○」を意味するものとする。また、「比較例1.2.○」なる表記は、「第1の実施形態の第2実施例における比較例○」を意味するものとする。つまり、「実施例1.2.1」とは、「第1の実施形態の第2実施例における実施例1」を意味するものである。同様に、「比較例1.2.1」とは、「第1の実施形態の第2実施例における比較例1」を意味するものである。
(Example 1.2.1)
Note that the notation “Example 1.2. ◯” shown below means “Example ○ in the second example of the first embodiment”. In addition, the notation “Comparative Example 1.2. ◯” means “Comparative Example ○ in the second example of the first embodiment”. That is, “Example 1.2.1” means “Example 1 in the second example of the first embodiment”. Similarly, “Comparative example 1.2.1” means “Comparative example 1 in the second example of the first embodiment”.
<静電容量式タッチパネルセンサー基板の作製>
 アルミノ珪酸ガラス上に、感光性導電材料1.2.1をメッシュ500のスクリーン印刷版(材質:ステンレス、東京プロセスサービス社製)を用いてスクリーン印刷にて塗布を行い、ホットプレートにて90℃で5分間乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて50~200mJ/cmで所望する開口部を有するフォトマスクを介して露光を実施した後、0.2重量%の炭酸水素ナトリウム水溶液にて、30~60秒間シャワー現像を実施した。水洗後、熱風循環式オーブンにて230℃で30分間加熱処理を実施して第二の接続部4および取出配線20を作製した。フォトマスクの開口部、露光量および現像時間を変更することにより、導体幅6~22μm×導体長200μmの大きさの第二の接続部4を得た。感光性導電材料層のシート抵抗は0.2Ω/□であり、導体厚は3.0μmであった。
<Production of capacitive touch panel sensor substrate>
On the aluminosilicate glass, the photosensitive conductive material 1.2.1 is applied by screen printing using a screen printing plate (material: stainless steel, manufactured by Tokyo Process Service Co., Ltd.) of mesh 500, and is heated at 90 ° C. on a hot plate. The film was dried for 5 minutes to dry the coating film. Thereafter, exposure is performed through a photomask having a desired opening at 50 to 200 mJ / cm 2 using a high-pressure mercury lamp as a light source, and then for 30 to 60 seconds with a 0.2 wt% aqueous sodium bicarbonate solution. Shower development was performed. After washing with water, heat treatment was performed at 230 ° C. for 30 minutes in a hot-air circulating oven to produce the second connection portion 4 and the extraction wiring 20. By changing the opening of the photomask, the exposure amount, and the development time, a second connection portion 4 having a conductor width of 6 to 22 μm × conductor length of 200 μm was obtained. The sheet resistance of the photosensitive conductive material layer was 0.2Ω / □, and the conductor thickness was 3.0 μm.
 次に、アクリル系ネガレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、炭酸水素ナトリウム水溶液にて、現像を実施した。水洗後、オーブンにて加熱処理を実施して絶縁層5を形成した。絶縁層5は、第二の接続部4の有効部分のみを覆うように、幅60μm×長さ120μmの大きさとした。 Next, an acrylic negative resist was spin-coated and dried on a hot plate to dry the coating film. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the insulating layer 5. The insulating layer 5 has a width of 60 μm × length of 120 μm so as to cover only the effective portion of the second connection portion 4.
 続いて、スパッタリング装置により膜厚30nmでITO膜を成膜し、ノボラック系ポジレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、テトラメチルアンモニウムハイドロオキサイド水溶液にて、現像を実施した。水洗後、シュウ酸を主成分とするエッチング液を用いてウェットエッチングを行い、水酸化カリウムのレジスト剥離液を用いてレジスト除去した後、オーブンにて加熱処理を実施して第一の透明電極1、第二の透明電極2、および第一の接続部3を形成した。ITO膜のシート抵抗は100Ω/□であった。 Subsequently, an ITO film having a film thickness of 30 nm was formed by a sputtering apparatus, a novolac positive resist was spin-coated, dried on a hot plate, and the coating film was dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the tetramethylammonium hydroxide aqueous solution. After washing with water, wet etching is performed using an etching solution containing oxalic acid as a main component, and the resist is removed using a potassium hydroxide resist stripping solution. Then, the first transparent electrode 1 is subjected to heat treatment in an oven. The 2nd transparent electrode 2 and the 1st connection part 3 were formed. The sheet resistance of the ITO film was 100Ω / □.
 さらに、アクリル系ネガレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、炭酸水素ナトリウム水溶液にて、現像を実施した。水洗後、オーブンにて加熱処理を実施して保護層6を形成して、静電容量式タッチパネルセンサー基板を得た。保護層6は、タッチパネルセンサー基板の取出配線20と制御回路と繋がる接続部位を除く領域全面を覆うように形成した。 Furthermore, an acrylic negative resist was applied by spin coating and dried on a hot plate to dry the coating film. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the protective layer 6 to obtain a capacitive touch panel sensor substrate. The protective layer 6 was formed so as to cover the entire region excluding the connection portion connected to the extraction wiring 20 and the control circuit of the touch panel sensor substrate.
(実施例1.2.2~1.2.12、比較例1.2.1、1.2.2)
<静電容量式タッチパネルセンサー基板の作製>
 感光性導電材料1.2.1に変えて感光性導電材料1.2.2~1.2.14を用いた以外は、実施例1.2.1と同様にして行った。
(Examples 1.2.2 to 1.2.12, Comparative Examples 1.2.1 and 1.2.2)
<Production of capacitive touch panel sensor substrate>
The same procedure as in Example 1.2.1 was performed, except that the photosensitive conductive material 1.2.2 to 1.2.14 was used instead of the photosensitive conductive material 1.2.1.
(比較例1.2.3)
<静電容量式タッチパネルセンサー基板の作製>
 アルミノ珪酸ガラス上に、Mo、Al、Moの順にそれぞれ350Å/2000Å/350Åの厚さでスパッタ法により成膜し、ノボラック系ポジレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、テトラメチルアンモニウムハイドロオキサイド水溶液にて、現像を実施した。水洗後、リン酸、硝酸、酢酸を主成分とするエッチング液を用いてウェットエッチングを行い、水酸化カリウムのレジスト剥離液を用いてレジスト除去した後、オーブンにて加熱処理を実施して第二の接続部4および取出配線20を作製した。フォトマスクの開口部、露光量および現像時間を変更することにより、導体幅6~22μm×導体長200μmの大きさの第二の接続部4を得た。Mo/Al/Mo膜のシート抵抗は0.2Ω/□であった。それ以外は、実施例1.2.1と同様にして、静電容量式タッチパネルセンサー基板を得た。
(Comparative Example 1.2.3)
<Production of capacitive touch panel sensor substrate>
On the aluminosilicate glass, films of Mo, Al, and Mo are formed in a thickness of 350 mm / 2000 mm / 350 mm by sputtering, a novolac positive resist is spin-coated, dried on a hot plate, and a coating film is formed. Dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the tetramethylammonium hydroxide aqueous solution. After washing with water, wet etching is performed using an etching solution mainly composed of phosphoric acid, nitric acid, and acetic acid. After removing the resist using a potassium hydroxide resist stripping solution, heat treatment is performed in an oven. The connection part 4 and the lead-out wiring 20 were prepared. By changing the opening of the photomask, the exposure amount, and the development time, a second connection portion 4 having a conductor width of 6 to 22 μm × conductor length of 200 μm was obtained. The sheet resistance of the Mo / Al / Mo film was 0.2Ω / □. Other than that was carried out similarly to Example 1.2.1, and obtained the capacitive touch-panel sensor board | substrate.
[接続部の評価方法]
<反射率の測定>
 実施例1.2.1~1.2.12および比較例1.2.1~1.2.3で得られた静電容量式タッチパネルセンサー基板を、上述の第1.1実施例で説明した測定方法と同一の方法を用いて測定した。よって、ここではその説明を省略する。
[Evaluation method of connection part]
<Measurement of reflectance>
Capacitive touch panel sensor substrates obtained in Examples 1.2.1 to 1.2.12 and Comparative Examples 1.2.1 to 1.2.3 are described in Example 1.1 above. The measurement was performed using the same method as described above. Therefore, the description is omitted here.
<接続部パターン見え評価>
 実施例1.2.1~1.2.12および比較例1.2.1~1.2.3で得られた静電容量式タッチパネルセンサー基板を、上述の第1.1実施例で説明した評価方法と同一の方法を用いて評価した。また、評価基準も上述の第1.1実施例で説明した評価基準と同一である。よって、ここではその説明を省略する。
<Evaluation of connection pattern appearance>
Capacitive touch panel sensor substrates obtained in Examples 1.2.1 to 1.2.12 and Comparative Examples 1.2.1 to 1.2.3 are described in Example 1.1 above. Evaluation was performed using the same method. The evaluation criteria are also the same as the evaluation criteria described in the above-mentioned first embodiment. Therefore, the description is omitted here.
<感度評価>
 実施例1.2.1~1.2.12および比較例1.2.1~1.2.3で得られた静電容量式タッチパネルセンサー基板を、上述の第1.1実施例で説明した評価方法と同一の方法を用いて評価した。また、評価基準も上述の第1.1実施例で説明した評価基準と同一である。よって、ここではその説明を省略する。
<Sensitivity evaluation>
Capacitive touch panel sensor substrates obtained in Examples 1.2.1 to 1.2.12 and Comparative Examples 1.2.1 to 1.2.3 are described in Example 1.1 above. Evaluation was performed using the same method. The evaluation criteria are also the same as the evaluation criteria described in the above-mentioned first embodiment. Therefore, the description is omitted here.
<静電破壊評価>
 実施例1.2.1~1.2.12および比較例1.2.1~1.2.3で得られた静電容量式タッチパネルセンサー基板を、上述の第1.1実施例で説明した評価方法と同一の方法を用いて評価した。また、評価基準も上述の第1.1実施例で説明した評価基準と同一である。よって、ここではその説明を省略する。
 感光性導電材料の組成を表3に、評価結果を表4に示す。
<Electrostatic breakdown evaluation>
Capacitive touch panel sensor substrates obtained in Examples 1.2.1 to 1.2.12 and Comparative Examples 1.2.1 to 1.2.3 are described in Example 1.1 above. Evaluation was performed using the same method. The evaluation criteria are also the same as the evaluation criteria described in the above-mentioned first embodiment. Therefore, the description is omitted here.
Table 3 shows the composition of the photosensitive conductive material, and Table 4 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記実施例1.2.1~1.2.12と比較例1.2.1~1.2.3との比較より、反射率が0%以上30%以下の範囲内であれば第二の接続部4がパターン見えすることなく、表示品位に優れた静電容量式タッチパネルセンサーを製造することが可能であることがわかる。
 感度やプロセスマージンを考慮すると、(H)金属粒子の平均粒子径は0.1μm以上4μm以下の範囲内がより良好であり、平均粒径が10nm以上500nm以下の範囲内であるカーボンブラックの含有量が1重量%以上100重量%以下の範囲内にあることがより良好である。なお、上記数値範囲から外れる実施例1.2.9((H)金属粒子の平均粒子径は4.2μmである。)については、感度やプロセスマージンは良好であるが、直線性がやや良好ではなかった。
From the comparison between the above Examples 1.2.1 to 1.2.12 and Comparative Examples 1.2.1 to 1.2.3, the second is obtained when the reflectance is in the range of 0% to 30%. It can be seen that it is possible to manufacture a capacitive touch panel sensor with excellent display quality without the pattern of the connecting portion 4 being visible.
In consideration of sensitivity and process margin, (H) the average particle diameter of metal particles is better within the range of 0.1 μm to 4 μm, and the inclusion of carbon black whose average particle diameter is within the range of 10 nm to 500 nm More preferably, the amount is in the range of 1% to 100% by weight. In addition, in Example 1.2.9 (the average particle diameter of (H) metal particles is 4.2 μm) that is out of the above numerical range, the sensitivity and the process margin are good, but the linearity is slightly good. It wasn't.
 ここで、第1.1実施例および第1.2実施例の各実施例のうち、感度評価および静電破壊評価において「○」と評価された実施例について、パターン見え評価が「○」または「△」とされた最も広い導体幅と、反射率との関係を図5に示す。
 図5に示されたデータには、反射率と導体幅との間に一定の相関関係があることが分かる。具体的には、以下に示す関係式(1)が成り立つ。
 「導体幅」=-0.5167×「反射率」+22.115  …(式1)
 なお、この関係式(1)は、図5に示した各点を用いて、最小二乗法により算出した関係式である。
 つまり、反射率が低い程導体幅が大きくてもパターン見えは良好であり、反射率が高いとパターン見えを良好にするためには導体幅を小さくする必要がある。
Here, among the examples of the 1.1th example and the 1.2th example, the pattern appearance evaluation is “O” or “O” in the examples evaluated in the sensitivity evaluation and the electrostatic breakdown evaluation. FIG. 5 shows the relationship between the widest conductor width marked “Δ” and the reflectance.
It can be seen from the data shown in FIG. 5 that there is a certain correlation between reflectivity and conductor width. Specifically, the following relational expression (1) is established.
“Conductor width” = − 0.5167 × “reflectance” +22.115 (Expression 1)
This relational expression (1) is a relational expression calculated by the least square method using the points shown in FIG.
In other words, the lower the reflectivity, the better the pattern appearance even when the conductor width is larger. When the reflectivity is higher, the conductor width needs to be reduced in order to improve the pattern appearance.
≪第二の実施形態≫
<投影型静電容量式タッチパネルセンサー基板>
 第二の実施形態に係る投影型静電容量式タッチパネルセンサー基板の構造は、上述の第一の実施形態で説明した投影型静電容量式タッチパネルセンサー基板の構造と概ね同じである。つまり、第二の実施形態に係る投影型静電容量式タッチパネルセンサー基板は、透明基材10上に第一の透明電極1、第二の透明電極2、第一の接続部3、第二の接続部4、絶縁層5および取出配線20を有する。絶縁層5は第一の接続部3と直交する第二の接続部4の導通を防止し、絶縁するために配設されている。また、第二の実施形態に係る投影型静電容量式タッチパネルセンサー基板はさらに、保護膜6を有することもできる。そこで、以下、第二の実施形態に係る投影型静電容量式タッチパネルセンサー基板について、図1および図2を参照しつつ説明する。
<< Second Embodiment >>
<Projection capacitive touch panel sensor substrate>
The structure of the projected capacitive touch panel sensor substrate according to the second embodiment is substantially the same as the structure of the projected capacitive touch panel sensor substrate described in the first embodiment. That is, the projected capacitive touch panel sensor substrate according to the second embodiment includes the first transparent electrode 1, the second transparent electrode 2, the first connection portion 3, and the second connection on the transparent base material 10. It has the connection part 4, the insulating layer 5, and the extraction wiring 20. The insulating layer 5 is disposed in order to prevent and insulate the second connecting portion 4 orthogonal to the first connecting portion 3. Further, the projected capacitive touch panel sensor substrate according to the second embodiment can further have a protective film 6. Thus, hereinafter, a projected capacitive touch panel sensor substrate according to a second embodiment will be described with reference to FIGS. 1 and 2.
 第二の実施形態に係る投影型静電容量式タッチパネルセンサー基板と、第一の実施形態に係る投影型静電容量式タッチパネルセンサー基板とでは、第二の接続部4および取出配線20が異なっており、他の部分(すなわち、第一の透明電極1、第二の透明電極2、第一の接続部3、絶縁層5、保護膜6)は同一である。よって、ここではこの異なる部分についてのみ説明し、他の部分については説明を省略する。 In the projected capacitive touch panel sensor substrate according to the second embodiment and the projected capacitive touch panel sensor substrate according to the first embodiment, the second connection portion 4 and the extraction wiring 20 are different. The other parts (that is, the first transparent electrode 1, the second transparent electrode 2, the first connection part 3, the insulating layer 5, and the protective film 6) are the same. Therefore, only this different part is demonstrated here and description is abbreviate | omitted about another part.
 第二の実施形態に係る投影型静電容量式タッチパネルセンサー基板において、第二の接続部4および取出配線20は、反射率が0%以上10%以下の範囲内にある金属材料を用いることができ、Mo(モリブデン)、Al(アルミニウム)、Ag(銀)、Cu(銅)、Pd(パラジウム)等の金属が好ましく用いられ、導電性と反射率を両立させるために、例えば、酸化MoとAlを併用することがさらに好ましい。 In the projected capacitive touch panel sensor substrate according to the second embodiment, the second connection portion 4 and the extraction wiring 20 are made of a metal material having a reflectance in the range of 0% to 10%. Metals such as Mo (molybdenum), Al (aluminum), Ag (silver), Cu (copper), Pd (palladium) are preferably used, and in order to achieve both conductivity and reflectivity, for example, with Mo oxide It is more preferable to use Al together.
 従来は、Mo/Al/Moの3層構造(以下、「MAM」ともいう。)でそれぞれ350Å/2000Å/350Å程度の厚さでスパッタ法により成膜して、ポジレジストによるフォトリソ工程を経た後、エッチング・レジスト剥離を行う方法が多用されてきた。しかしながら、この金属材料では反射率が高いために、表示エリアにある第二の接続部4を、幅8μm×長さ200μm程度に微細に形成しても、通常使用条件下において目視で視認できてしまうために、表示品位を低下させる問題があった。第二の接続部4の反射率が低ければ、表示エリアにある第二の接続部4の反射光が目に届かなくなるため、該接続部を目視しにくくなる。つまり、第二の接続部4および取出配線20の黒色化は、第二の接続部4を目立ちにくくする働きをする。 Conventionally, a Mo / Al / Mo three-layer structure (hereinafter also referred to as “MAM”) is formed by sputtering at a thickness of about 350 mm / 2000 mm / 350 mm, respectively, and after a photolithography process using a positive resist. Etching / resist stripping methods have been frequently used. However, since this metal material has a high reflectivity, even if the second connection portion 4 in the display area is finely formed to have a width of about 8 μm and a length of about 200 μm, it can be visually recognized under normal use conditions. For this reason, there is a problem of degrading display quality. If the reflectance of the second connection portion 4 is low, the reflected light of the second connection portion 4 in the display area will not reach the eyes, and it will be difficult to see the connection portion. That is, the blackening of the second connection portion 4 and the extraction wiring 20 serves to make the second connection portion 4 inconspicuous.
 この問題に対して本発明者らは鋭意検討の結果、金属材料の反射率を0%以上10%以下の範囲内とすることで目視でのパターン見えを低減することができ、表示品位を改善できることを見出した。反射率としては8%以下が好ましく、5%以下がさらに好ましい。 As a result of intensive investigations, the present inventors have made it possible to reduce the visual appearance of the pattern by improving the reflectivity of the metal material within the range of 0% to 10%, thereby improving the display quality. I found out that I can do it. The reflectance is preferably 8% or less, and more preferably 5% or less.
 具体的には、透明基材10上に、MAMと同様に、フォトリソ工程、エッチング・レジスト剥離工程を経て、それぞれ350Å/2000Å/350Å程度の厚さの酸化Mo/Al/Moの3層構造のパターンを、下層から酸化Mo/Al/Moの順に形成する。これにより、透明基材の裏面から見た時に、反射率が10%以下である酸化Mo面が最前面にくることができ、結果として、反射率が低く、通常使用条件下での目視でのパターン見えの問題を解決できる。 Specifically, a three-layer structure of oxidized Mo / Al / Mo having a thickness of about 350 mm / 2000 mm / 350 mm is formed on the transparent base material 10 through the photolithography process and the etching / resist stripping process in the same manner as MAM. A pattern is formed in the order of oxidized Mo / Al / Mo from the lower layer. Thereby, when viewed from the back surface of the transparent substrate, the oxidized Mo surface having a reflectance of 10% or less can come to the forefront. As a result, the reflectance is low, and the visual observation under normal use conditions is possible. The problem of pattern appearance can be solved.
<静電容量型タッチパネルセンサー基板の製造方法>
 第二の実施形態に係る投影型静電容量式タッチパネルセンサー基板の製造方法は、上述の第一の実施形態で説明した投影型静電容量式タッチパネルセンサー基板の製造方法と概ね同じであるが、第二の接続部4および取出配線20の製造工程が異なっている。このため、第二の実施形態では、上述の第一の実施形態と異なる製造工程についてのみ説明し、それ以外の製造工程(つまり、第一の透明電極1、第二の透明電極2、第一の接続部3、絶縁層5、保護膜6の製造工程)についての説明は省略する。
<Method for manufacturing capacitive touch panel sensor substrate>
The method for manufacturing the projected capacitive touch panel sensor substrate according to the second embodiment is substantially the same as the method for manufacturing the projected capacitive touch panel sensor substrate described in the first embodiment. The manufacturing processes of the second connection portion 4 and the extraction wiring 20 are different. For this reason, in the second embodiment, only the manufacturing process different from the above-described first embodiment will be described, and the other manufacturing processes (that is, the first transparent electrode 1, the second transparent electrode 2, the first The description of the manufacturing process of the connecting portion 3, the insulating layer 5, and the protective film 6) is omitted.
 第二の接続部4および取出配線20としては、前述の酸化Mo/Al/Moの3層構造積層膜をスパッタ装置等の薄膜形成手段により成膜し、上述のフォトリソ法によりレジストパターンを形成する。その後、金属エッチング、レジスト剥離工程を経て、パターン形成される。各層の厚さは、例えば下層から順に350Å/2000Å/350Åとすることができ、それらの層のパターンエッチングには、リン酸、硝酸、酢酸を含むエッチング液を用いてウェットエッチングすることができる。 As the second connection portion 4 and the lead-out wiring 20, the above-described three-layered laminated film of oxidized Mo / Al / Mo is formed by a thin film forming means such as a sputtering apparatus, and a resist pattern is formed by the above-described photolithography method. . Thereafter, a pattern is formed through a metal etching and resist stripping process. The thickness of each layer can be, for example, 350 mm / 2000 mm / 350 mm in order from the lower layer, and pattern etching of these layers can be performed by wet etching using an etching solution containing phosphoric acid, nitric acid, and acetic acid.
 第二の接続部4および取出配線20は、上記以外のAl系、Ag系等の金属薄膜をフォトリソ・エッチング工程により、パターン形成しても良いが、導電性インキを用いて印刷形成する等、電極板のパターン精度や導電性やサイズ等により、適宜選ぶことができる。 The second connection portion 4 and the lead-out wiring 20 may be formed by patterning a metal thin film other than the above, such as Al-based, Ag-based, etc., by a photolithography / etching process, etc. It can be appropriately selected depending on the pattern accuracy, conductivity, size, etc. of the electrode plate.
 具体的には、第二の接続部4および取出配線20の導電材料には、例えば銀、銅、カーボン等の導電性粉末を有機バインダーに分散させ、感光性を持たせた導電ペースト等の感光性導電材料を好ましく用いることができる。第二の接続部4および取出配線20の導電材料が感光性導電材料である場合には、第二の接続部4および取出配線20の反射率を10%以下に制御しやすいため、パターン見えの問題を回避しやすく、また製造コストを抑えることができるために好適に用いられる。銀、銅、カーボン等の導電性粉末の粒子径を適宜選択することで、スパッタ法で得られるMo、Al、Ag、Cu、Pd等の金属膜より光を吸収、散乱、回折しやすいために、反射率を10%以下に制御することが容易である。さらに、反射率を低減させる、他の公知の技術を適用してもよい。 Specifically, for the conductive material of the second connection portion 4 and the lead-out wiring 20, for example, a conductive powder such as a conductive paste in which conductive powder such as silver, copper, or carbon is dispersed in an organic binder to provide photosensitivity. A conductive conductive material can be preferably used. When the conductive material of the second connection portion 4 and the lead-out wiring 20 is a photosensitive conductive material, the reflectance of the second connection portion 4 and the lead-out wiring 20 can be easily controlled to 10% or less. It is preferably used because the problem can be easily avoided and the manufacturing cost can be suppressed. Because it is easier to absorb, scatter, and diffract light than metal films such as Mo, Al, Ag, Cu, and Pd obtained by sputtering by appropriately selecting the particle size of conductive powder such as silver, copper, and carbon. It is easy to control the reflectance to 10% or less. Furthermore, other known techniques for reducing the reflectance may be applied.
 反射率を10%以下に制御した導電ペースト等の感光性導電材料を、スクリーン印刷等の印刷法により成膜し、フォトリソ法によって微細パターン化することで、従来問題であった、表示エリアにある接続部を同時に形成した場合に、通常使用条件下において形成した接続部が目視で視認できてしまう問題を解決できる。フォトリソ法は、基材上に感光性導電材料を塗布後、所望する取出配線に対応するフォトマスクを介して、紫外光を照射することにより塗膜の露光部分を光架橋により硬化し、現像液を用いて塗膜の未露光部分を除去した後に焼成することにより取出配線パターンを形成する方法である。このフォトリソ法を用いることにより、蒸着法に比べて安価で、かつ、スクリーン印刷や、グラビアオフセット印刷で形成する印刷法に比べてより高精細な導電パターンを得ることが可能である。 A photosensitive conductive material such as a conductive paste whose reflectance is controlled to 10% or less is formed by a printing method such as screen printing, and is finely patterned by a photolithographic method. When a connection part is formed simultaneously, the problem that the connection part formed under normal use conditions can be visually recognized can be solved. In the photolithographic method, after applying a photosensitive conductive material on a substrate, the exposed portion of the coating film is cured by photocrosslinking by irradiating ultraviolet light through a photomask corresponding to a desired extraction wiring, and a developer solution. This is a method for forming a lead-out wiring pattern by baking after removing the unexposed portion of the coating film. By using this photolithography method, it is possible to obtain a conductive pattern that is less expensive than the vapor deposition method and has a higher definition than the printing method formed by screen printing or gravure offset printing.
 第二の接続部4および取出配線20を、透明基材10上に早い段階でパターン形成する場合は、透過光に対する充分な遮光性を有するので、光学的にパターンを検出し認識することは容易である。従って、金属電極パターン自身を以後のパターン形成される層に対する位置合わせの指標とすることができる。また、第二の接続部4および取出配線20と同一層内に電極パターン以外に位置合わせマークを独立に設けることもできる。独立に位置合わせのためのマークを設ける方が、一般に、パターンの認識から位置補正量を決めて、位置補正させる動きを出力する位置合わせのための工程では、より高い精度を得ることができる。 When the second connecting portion 4 and the lead-out wiring 20 are patterned on the transparent substrate 10 at an early stage, it has a sufficient light shielding property against transmitted light, so that it is easy to optically detect and recognize the pattern. It is. Therefore, the metal electrode pattern itself can be used as an index of alignment with respect to a layer on which a subsequent pattern is formed. In addition to the electrode pattern, an alignment mark can be provided independently in the same layer as the second connection portion 4 and the extraction wiring 20. Independently providing a mark for alignment can generally obtain higher accuracy in the alignment process of determining a position correction amount from pattern recognition and outputting a movement for position correction.
<感光性導電材料>
 第二の実施形態に用いられる感光性導電材料は、引出配線20および接続部3、4を形成できるものであれば公知のものを使用でき、特に限定されない。例えば、上述の感光性導電材料として、(R)銀粉と、(I)光重合開始剤と、(J)重合性多官能モノマーと、(K)アルカリ可溶性樹脂と、(Q)ラジカル捕捉剤と、(P)溶剤を含有する感光性導電材料を使用することができ、必要に応じてその他の添加剤を含むことができる。
<Photosensitive conductive material>
As the photosensitive conductive material used in the second embodiment, a known material can be used as long as it can form the lead wiring 20 and the connection portions 3 and 4, and is not particularly limited. For example, as the photosensitive conductive material described above, (R) silver powder, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, (K) an alkali-soluble resin, and (Q) a radical scavenger (P) A photosensitive conductive material containing a solvent can be used, and other additives can be included as necessary.
 第二の実施形態に係る静電容量式タッチパネルセンサー基板を構成する引出配線20は、上述の感光性導電材料を透明基板10上に塗布後、露光、現像、熱硬化という所謂フォトリソ工程を経ることによって形成される。
 第二の実施形態に用いられる感光性導電材料の(R)銀粉の平均粒子径は3μm以下であることが好ましい。また、(R)銀粉の形状に関して、例えばフレーク状、針状、球状等があるが、スクリーン印刷性や露光時の光散乱の観点から球状の銀粉が望ましい。(R)銀粉の使用量として、感光性導電材料の全固形分量を基準として、65~85重量%が好ましく、より好ましくは70~80重量%である。
The lead-out wiring 20 constituting the capacitive touch panel sensor substrate according to the second embodiment is subjected to a so-called photolithography process of exposure, development, and thermosetting after applying the photosensitive conductive material described above onto the transparent substrate 10. Formed by.
The average particle size of the (R) silver powder of the photosensitive conductive material used in the second embodiment is preferably 3 μm or less. Further, regarding the shape of (R) silver powder, there are, for example, flakes, needles, and spheres, but spherical silver powder is desirable from the viewpoint of screen printability and light scattering during exposure. The amount of (R) silver powder used is preferably 65 to 85% by weight, more preferably 70 to 80% by weight, based on the total solid content of the photosensitive conductive material.
 第二の実施形態に用いられる感光性導電材料の(I)光重合開始剤としては、例えば4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン等のアセトフェノン系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール等のベンゾイン系化合物、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等のベンゾフェノン系化合物、チオキサントン、2-クロルチオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系化合物、2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペロニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシ-ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル-(ピペロニル)-6-トリアジン、2,4-トリクロロメチル(4’-メトキシスチリル)-6-トリアジン等のトリアジン系化合物、1,2-オクタンジオン,1-〔4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)〕、O-(アセチル)-N-(1-フェニル-2-オキソ-2-(4’-メトキシ-ナフチル)エチリデン)ヒドロキシルアミン等のオキシムエステル系化合物、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のホスフィン系化合物、9,10-フェナンスレンキノン、カンファーキノン、エチルアントラキノン等のキノン系化合物、ボレート系化合物、カルバゾール系化合物、イミダゾール系化合物、チタノセン系化合物等が用いられる。これらの光重合開始剤は1種または2種以上混合して用いることができる。(I)光重合開始剤の使用量は、感光性導電材料の全固形分量を基準として0.5~50重量%が好ましく、より好ましくは1~20重量%である。 Examples of the (I) photopolymerization initiator of the photosensitive conductive material used in the second embodiment include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl). ) Acetophenones such as 2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one Compounds, benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxyben Benzophenone compounds such as phenone, acrylated benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, thioxanthone, 2-chlorothioxanthone, Thioxanthone compounds such as 2-methylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, 2,4-diethylthioxanthone, 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis (trichloro Methyl) -s-triazine, 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-tolyl) -4,6-bis (trichloromethyl) -s- Triazine, 2-piphenyl-4,6-bis ( Lichloromethyl) -s-triazine, 2-piperonyl-4,6-bis (trichloromethyl) -s-triazine, 2,4-bis (trichloromethyl) -6-styryl-s-triazine, 2- (naphth-1- Yl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -s-triazine, 2,4-trichloro Triazine compounds such as methyl- (piperonyl) -6-triazine, 2,4-trichloromethyl (4′-methoxystyryl) -6-triazine, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], O- (acetyl) -N- (1-phenyl-2-oxo-2- (4′-methoxy-naphthyl) ethylidene) hydro Oxime ester compounds such as xylamine, phosphine compounds such as bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 9,10-phenanthrenequinone, camphor Quinone compounds such as quinone and ethyl anthraquinone, borate compounds, carbazole compounds, imidazole compounds, titanocene compounds and the like are used. These photopolymerization initiators can be used alone or in combination. (I) The amount of the photopolymerization initiator used is preferably 0.5 to 50% by weight, more preferably 1 to 20% by weight, based on the total solid content of the photosensitive conductive material.
 さらに、(I)光重合開始剤に対する増感剤として、上述の第一の実施形態で説明した増感剤を用いることができる。よって、ここではその説明を省略する。
 第二の実施形態に用いられる感光性導電材料の(J)重合性多官能モノマーおよびオリゴマーとしては、上述の第一の実施形態で説明した(J)重合性多官能モノマーおよびオリゴマーを用いることができる。よって、ここではその説明を省略する。
Furthermore, as the sensitizer for (I) the photopolymerization initiator, the sensitizer described in the first embodiment can be used. Therefore, the description is omitted here.
As the (J) polymerizable polyfunctional monomer and oligomer of the photosensitive conductive material used in the second embodiment, it is possible to use the (J) polymerizable polyfunctional monomer and oligomer described in the first embodiment. it can. Therefore, the description is omitted here.
 第二の実施形態に用いられる感光性導電材料の(K)アルカリ可溶性樹脂とは、上述の第一の実施形態で説明した(K)アルカリ可溶性樹脂である。よって、ここではその説明を省略する。
 第二の実施形態に用いられる感光性導電材料の(メタ)アクリル共重合樹脂としては、上述の第一の実施形態で説明した(メタ)アクリル共重合樹脂を用いることができる。よって、ここではその説明を省略する。また、上述の第一の実施形態の場合と同様に、(メタ)アクリルモノマー以外の構成成分として、例えばスチレンやシクロヘキシルマレイミド等の不飽和結合を有する化合物を用いることも可能である。
The (K) alkali-soluble resin of the photosensitive conductive material used in the second embodiment is the (K) alkali-soluble resin described in the first embodiment. Therefore, the description is omitted here.
As the (meth) acrylic copolymer resin of the photosensitive conductive material used in the second embodiment, the (meth) acrylic copolymer resin described in the first embodiment can be used. Therefore, the description is omitted here. As in the case of the first embodiment described above, compounds having an unsaturated bond such as styrene or cyclohexylmaleimide can be used as components other than the (meth) acrylic monomer.
 エポキシ変性アクリレート樹脂に用いられるエポキシ樹脂としては、上述の第一の実施形態の場合と同様に、例えばフェノールノボラックやクレゾールノボラック、ビスフェノールAやビスフェノールF骨格を持つもの等が用いられる。
 第二の実施形態に用いられる感光性導電材料の(Q)ラジカル捕捉剤とは、活性ラジカルを失活させる作用をもつものであり、感光性導電材料に添加することにより(R)銀粉による光散乱によって発生する未露光部分での硬化反応を抑えることが可能となり、導体パターンの寸法精度の向上が可能となる。(Q)ラジカル捕捉剤の種類としては、上述の第一の実施形態で説明した(Q)ラジカル捕捉剤を用いることができる。よって、ここではその説明を省略する。
As the epoxy resin used for the epoxy-modified acrylate resin, for example, a phenol novolak, a cresol novolak, or a resin having a bisphenol A or bisphenol F skeleton is used as in the case of the first embodiment.
The (Q) radical scavenger of the photosensitive conductive material used in the second embodiment has a function of deactivating active radicals. By adding to the photosensitive conductive material, (R) light from silver powder It becomes possible to suppress the curing reaction in the unexposed part caused by scattering, and the dimensional accuracy of the conductor pattern can be improved. (Q) As a kind of radical scavenger, (Q) radical scavenger demonstrated by the above-mentioned 1st embodiment can be used. Therefore, the description is omitted here.
 第二の実施形態に用いられる感光性導電材料の(L)溶剤としては、上述の第一の実施形態で説明した(L)溶剤を用いることができる。よって、ここではその説明を省略する。
 第二の実施形態に用いられる感光性導電材料に、反射率を0%以上10%以下に制御するためにカーボンブラックを含有してもよい。
As the (L) solvent of the photosensitive conductive material used in the second embodiment, the (L) solvent described in the first embodiment can be used. Therefore, the description is omitted here.
The photosensitive conductive material used in the second embodiment may contain carbon black in order to control the reflectance to 0% or more and 10% or less.
 カーボンブラックは、遮光性を有する黒色顔料を使用してもよい。使用可能な市販のカーボンブラックとしては、例えば、三菱化学(株)製#260、#25、#30、#32、#33、#40、#44、#45、#45L、#47、#50、#52、MA7、MA8、MA11、MA100、MA100R、MA100S、MA230、DEGUSSA社製 Printex L、Printex P、Printex 30、Printex 35、Printex 40、Printex 45、Printex 55、Printex 60、Printex 300、Printex 350、Special Black 4、Special Black 350、Special Black 550等が挙げられる。カーボンブラックは、1種を単独で使用しても、2種以上を混合して使用してもよい。 Carbon black may be a black pigment having a light shielding property. Examples of commercially available carbon black that can be used include # 260, # 25, # 30, # 32, # 33, # 40, # 44, # 45, # 45L, # 47, # 50 manufactured by Mitsubishi Chemical Corporation. , # 52, MA7, MA8, MA11, MA100, MA100R, MA100S, MA230, manufactured by DEGUSSA Printex L, Printex P, Printex 30, Printex 35, Printex 40, Printex 45, Printex 55, Printex 350, PrintPr , Special Black 4, Special Black 350, Special Black 550, and the like. Carbon black may be used individually by 1 type, or 2 or more types may be mixed and used for it.
 カーボンブラックとしては、パターン形状の観点から、比表面積が50~200m/gであるカーボンブラックであるものを用いる。比表面積が50m/g未満のカーボンブラックを用いる場合には、パターン形状の劣化を引き起こし、200m/gより大きいカーボンブラックを用いる場合には、カーボンブラックと併用される分散剤が過度に吸着してしまい、諸物性を発現させるためには多量の分散剤を配合する必要が生じるためである。 Carbon black having a specific surface area of 50 to 200 m 2 / g is used from the viewpoint of pattern shape. When carbon black with a specific surface area of less than 50 m 2 / g is used, the pattern shape is deteriorated. When carbon black with a specific surface area of more than 200 m 2 / g is used, the dispersant used in combination with carbon black is excessively adsorbed. Therefore, in order to express various physical properties, it is necessary to add a large amount of dispersant.
 また、カーボンブラックとしては、感度の点から、フタル酸ジブチル(以下、「DBP」という。)の吸油量が120cc/100g以下のものが好ましく、少なければ少ないものほどより好ましい。
 更に、カーボンブラックの平均1次粒子径は、20~50nmであることが好ましい。感光性導電材料のカーボンブラックの含有量は、導電性粉末の固形分を基準として3~100重量%であることが好ましく、5~50重量%であることがより好ましい。カーボンブラックの含有量が100重量%より多い場合は導電性が得られ難く、接続部や取出配線の形成が困難になる可能性がある。
Carbon black preferably has a dibutyl phthalate (hereinafter referred to as “DBP”) oil absorption of 120 cc / 100 g or less from the viewpoint of sensitivity.
Further, the average primary particle diameter of carbon black is preferably 20 to 50 nm. The content of carbon black in the photosensitive conductive material is preferably 3 to 100% by weight, more preferably 5 to 50% by weight, based on the solid content of the conductive powder. When the content of carbon black is more than 100% by weight, it is difficult to obtain conductivity, and it may be difficult to form a connection part and a lead-out wiring.
 上述の成分の他、第二の実施形態に用いられる感光性導電材料の経時粘度を安定化させるために貯蔵安定剤を含有させることができる。貯蔵安定剤としては、上述の第一の実施形態で説明した貯蔵安定剤を用いることができる。よって、ここではその説明を省略する。
 また、第二の実施形態に用いられる感光性導電材料には、界面活性剤を含むことができる。界面活性剤として、上述の第一の実施形態で説明した界面活性剤を用いることができる。よって、ここではその説明を省略する。
In addition to the above-described components, a storage stabilizer can be contained in order to stabilize the viscosity with time of the photosensitive conductive material used in the second embodiment. As the storage stabilizer, the storage stabilizer described in the first embodiment can be used. Therefore, the description is omitted here.
The photosensitive conductive material used in the second embodiment can contain a surfactant. As the surfactant, the surfactant described in the first embodiment can be used. Therefore, the description is omitted here.
 第二の実施形態に用いられる感光性導電材料は、(R)銀粉と、(I)光重合開始剤と、(J)重合性多官能モノマーと、(K)アルカリ可溶性樹脂と、(Q)ラジカル捕捉剤と、(P)溶剤および界面活性剤等の成分を所定の組成で配合して攪拌機にて攪拌後、3本ロールミルにより混練することにより得ることができる。 The photosensitive conductive material used in the second embodiment includes (R) silver powder, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, (K) an alkali-soluble resin, and (Q). It can be obtained by blending a radical scavenger, (P) a solvent, a surfactant and the like with a predetermined composition, stirring with a stirrer, and kneading with a three-roll mill.
<感光性導電材料を用いた第二の接続部4および取出配線20の製造方法>
 第二の実施形態における感光性導電材料を用いた第二の接続部4および取出配線20の製造方法は、上述の第一の実施形態で説明した製造方法と同一である。よって、ここではその説明を省略する。
<The manufacturing method of the 2nd connection part 4 and the extraction wiring 20 using a photosensitive electrically-conductive material>
The manufacturing method of the 2nd connection part 4 and the extraction wiring 20 using the photosensitive electrically-conductive material in 2nd embodiment is the same as the manufacturing method demonstrated in the above-mentioned 1st embodiment. Therefore, the description is omitted here.
<表示装置>
 第二の実施形態に係る表示装置は、上述の投影型静電容量式タッチパネルセンサー基板を有する表示装置である(図示せず)。この表示装置であれば、上述の投影型静電容量式タッチパネルセンサー基板を有しているので、安価に製造可能で表示品位に優れた表示装置を提供することができる。
<Display device>
A display device according to the second embodiment is a display device having the above-described projected capacitive touch panel sensor substrate (not shown). Since this display device has the above-described projected capacitive touch panel sensor substrate, it is possible to provide a display device that can be manufactured at low cost and has excellent display quality.
≪第2.1実施例≫
 以下、実施例により第二の実施形態を具体的に説明するが、本発明の趣旨を逸脱しない範囲においてこれに限定されるものではない。
 なお、上記第2.1実施例の「2.1」なる表記については、「第2の実施形態における第1実施例」を意味するものとする。
<< Example 2.1 >>
Hereinafter, the second embodiment will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the spirit of the present invention.
Note that the notation “2.1” in the 2.1 example above means “the 1st example in the second embodiment”.
[アルカリ可溶性樹脂の合成]
 第二の実施形態におけるアルカリ可溶性樹脂の合成方法は、上述の第一の実施形態で説明した[アルカリ可溶性樹脂Aの合成]の方法と同一の方法である。よって、ここではその説明を省略する。
[Synthesis of alkali-soluble resin]
The method for synthesizing the alkali-soluble resin in the second embodiment is the same as the method of [Synthesis of alkali-soluble resin A] described in the first embodiment. Therefore, the description is omitted here.
[カーボンブラック分散体の調製]
 カーボンブラック(三菱化学(株)製#260、平均粒径は40nm)10部および下式1の色素誘導体0.5部を、上記アクリル樹脂溶液24部、シクロヘキサノン40部と均一に混合し、直径1mmのガラスビーズを用いてサンドミルにて5時間分散することによりカーボンブラックの分散体を調製した。得られたカーボンブラック分散体のDBP吸油量は74cc/100g、比表面積は79m/gであった。
[Preparation of carbon black dispersion]
Carbon black (Mitsubishi Chemical Co., Ltd. # 260, average particle size is 40 nm) and 0.5 part of the pigment derivative of the following formula 1 are uniformly mixed with 24 parts of the acrylic resin solution and 40 parts of cyclohexanone to obtain a diameter. A carbon black dispersion was prepared by dispersing for 5 hours in a sand mill using 1 mm glass beads. The carbon black dispersion obtained had a DBP oil absorption of 74 cc / 100 g and a specific surface area of 79 m 2 / g.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[感光性導電材料2.1.1の調整]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料2.1.1を調整した。なお、以降に示す「感光性導電材料2.1.○」なる表記は、「第2の実施形態の第1実施例における感光性導電材料○」を意味するものとする。つまり、「感光性導電材料2.1.1」とは、「第2の実施形態の第1実施例における感光性導電材料1」を意味するものである。
[Adjustment of photosensitive conductive material 2.1.1]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and filtered through a 5 μm filter to prepare photosensitive conductive material 2.1.1. Note that the notation “photosensitive conductive material 2.1. ◯” described below means “photosensitive conductive material ○ in the first example of the second embodiment”. That is, “photosensitive conductive material 2.1.1” means “photosensitive conductive material 1 in the first example of the second embodiment”.
銀粉(平均粒径D50 1.5μm)            130部
カーボンブラック分散体                   20部
光重合開始剤 イルガキュア379(BASF社製)       3部
増感剤 DETX-S(日本化薬社製)             2部
重合性多官能モノマー R-684(日本化薬社製)      16部
アルカリ可溶性樹脂                  38.78部
ラジカル捕捉剤 メチルハイドロキノン          0.02部
有機溶剤 1-メトキシ-2-プロピルアセテート        8部
界面活性剤 アデカネートB-940(ADEKA社製)   0.2部
 この時、銀粉の全固形分量に対する割合は77.6重量%、ラジカル捕捉剤の全固形分量に対する割合は0.012重量%であった。
Silver powder (average particle size D50 1.5 μm) 130 parts carbon black dispersion 20 parts photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts alkali-soluble resin 38.78 parts radical scavenger methyl hydroquinone 0.02 parts organic solvent 1-methoxy-2-propyl acetate 8 parts surfactant Adecanate B-940 (ADEKA) 0.2 parts At this time, the ratio of the silver powder to the total solid content was 77.6% by weight, and the ratio of the radical scavenger to the total solid content was 0.012% by weight.
[感光性導電材料2.1.2の調整]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料2.1.2を調整した。
銀粉(平均粒径D50 1.5μm)            130部
カーボンブラック分散体                   75部
光重合開始剤 イルガキュア379(BASF社製)       3部
増感剤 DETX-S(日本化薬社製)             2部
重合性多官能モノマー R-684(日本化薬社製)      16部
アルカリ可溶性樹脂                  38.78部
ラジカル捕捉剤 TINUVIN123(BASF社製)  0.02部
有機溶剤 1-メトキシ-2-プロピルアセテート        8部
界面活性剤 アデカネートB-940(ADEKA社製)   0.2部
 この時、銀粉の全固形分量に対する割合は72.0重量%、ラジカル捕捉剤の全固形分量に対する割合は0.011重量%であった。
[Adjustment of photosensitive conductive material 2.1.2]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and filtered through a 5 μm filter to prepare photosensitive conductive material 2.1.2.
Silver powder (average particle size D50 1.5 μm) 130 parts carbon black dispersion 75 parts photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts alkali-soluble resin 38.78 parts radical scavenger TINUVIN 123 (manufactured by BASF) 0.02 parts organic solvent 1-methoxy-2-propyl acetate 8 parts surfactant Adecanate B -940 (manufactured by ADEKA) 0.2 parts At this time, the ratio of the silver powder to the total solid content was 72.0% by weight, and the ratio of the radical scavenger to the total solid content was 0.011% by weight.
[感光性導電材料2.1.3の調整]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料2.1.3を調整した。
銀粉(平均粒径D50 1.5μm)            130部
光重合開始剤 イルガキュア379(BASF社製)       3部
増感剤 DETX-S(日本化薬社製)             2部
重合性多官能モノマー R-684(日本化薬社製)      16部
アルカリ可溶性樹脂(D-1)              38.8部
有機溶剤 1-メトキシ-2-プロピルアセテート        8部
界面活性剤 アデカネートB-940(ADEKA社製)   0.2部
 この時、銀粉の全固形分量に対する割合は79.8重量%であった。
[Adjustment of photosensitive conductive material 2.1.3]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 μm filter to prepare photosensitive conductive material 2.1.3.
Silver powder (average particle size D50 1.5 μm) 130 parts photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts polymerizable polyfunctional monomer R-684 (Japan) 16 parts alkali-soluble resin (D-1) 38.8 parts organic solvent 1-methoxy-2-propyl acetate 8 parts Surfactant Adecanate B-940 (manufactured by ADEKA) 0.2 part At this time The ratio of the silver powder to the total solid content was 79.8% by weight.
<静電容量式タッチパネルセンサー基板の作製>
(実施例2.1.1)
 なお、以降に示す「実施例2.1.○」なる表記は、「第2の実施形態の第1実施例における実施例○」を意味するものとする。また、「比較例2.1.○」なる表記は、「第2の実施形態の第1実施例における比較例○」を意味するものとする。つまり、「実施例2.1.1」とは、「第2の実施形態の第1実施例における実施例1」を意味するものである。同様に、「比較例2.1.1」とは、「第2の実施形態の第1実施例における比較例1」を意味するものである。
<Production of capacitive touch panel sensor substrate>
(Example 2.1.1)
In addition, the notation “Example 2.1. ○” described below means “Example ○ in the first example of the second embodiment”. In addition, the notation “Comparative Example 2.1. ◯” means “Comparative Example ○ in the first example of the second embodiment”. That is, “Example 2.1.1” means “Example 1 in the first example of the second embodiment”. Similarly, “comparative example 2.1.1” means “comparative example 1 in the first example of the second embodiment”.
 アルミノ珪酸ガラス上に、酸化Mo、Al、Moの順にそれぞれ350Å/2000Å/350Åの厚さでスパッタ法により成膜し、ノボラック系ポジレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、テトラメチルアンモニウムハイドロオキサイド水溶液にて、現像を実施した。水洗後、リン酸、硝酸、酢酸を主成分とするエッチング液を用いてウェットエッチングを行い、水酸化カリウムのレジスト剥離液を用いてレジスト除去した後、オーブンにて加熱処理を実施して第二の接続部4および取出配線20を作製した。得られた第二の接続部4は、幅8μm×長さ200μmの大きさであった。酸化Mo/Al/Mo膜のシート抵抗は0.2Ω/□であった。 On the aluminosilicate glass, a film of Mo, Al, and Mo was formed by sputtering at a thickness of 350 mm / 2000 mm / 350 mm respectively, a novolac positive resist was spin-coated, dried on a hot plate, and coated Was dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the tetramethylammonium hydroxide aqueous solution. After washing with water, wet etching is performed using an etching solution mainly composed of phosphoric acid, nitric acid, and acetic acid. After removing the resist using a potassium hydroxide resist stripping solution, heat treatment is performed in an oven. The connection part 4 and the lead-out wiring 20 were prepared. The obtained second connection portion 4 was 8 μm wide × 200 μm long. The sheet resistance of the oxidized Mo / Al / Mo film was 0.2Ω / □.
 次に、アクリル系ネガレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、炭酸水素ナトリウム水溶液にて、現像を実施した。水洗後、オーブンにて加熱処理を実施して絶縁層5を形成した。絶縁層5は、第二の接続部4の有効部分のみを覆うように、幅60μm×長さ120μmの大きさとした。 Next, an acrylic negative resist was spin-coated and dried on a hot plate to dry the coating film. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the insulating layer 5. The insulating layer 5 has a width of 60 μm × length of 120 μm so as to cover only the effective portion of the second connection portion 4.
 続いて、スパッタリング装置により膜厚30nmでITO膜を成膜し、ノボラック系ポジレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、テトラメチルアンモニウムハイドロオキサイド水溶液にて、現像を実施した。水洗後、シュウ酸を主成分とするエッチング液を用いてウェットエッチングを行い、水酸化カリウムのレジスト剥離液を用いてレジスト除去した後、オーブンにて加熱処理を実施して第一の透明電極1、第二の透明電極2、および第一の接続部3を形成した。ITO膜のシート抵抗は100Ω/□であった。 Subsequently, an ITO film having a film thickness of 30 nm was formed by a sputtering apparatus, a novolac positive resist was spin-coated, dried on a hot plate, and the coating film was dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the tetramethylammonium hydroxide aqueous solution. After washing with water, wet etching is performed using an etching solution containing oxalic acid as a main component, and the resist is removed using a potassium hydroxide resist stripping solution. Then, the first transparent electrode 1 is subjected to heat treatment in an oven. The 2nd transparent electrode 2 and the 1st connection part 3 were formed. The sheet resistance of the ITO film was 100Ω / □.
 さらに、アクリル系ネガレジストをスピン塗布し、ホットプレートにて乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて所望する開口部を有するフォトマスクを介して露光を実施した後、炭酸水素ナトリウム水溶液にて、現像を実施した。水洗後、オーブンにて加熱処理を実施して保護層6を形成して、静電容量式タッチパネルセンサー基板を得た。保護層6は、タッチパネルセンサー基板の取出配線20と制御回路と繋がる接続部位を除く領域全面を覆うように形成した。 Further, an acrylic negative resist was applied by spin coating, dried on a hot plate, and the coating film was dried. Then, after exposing through the photomask which has a desired opening using a high pressure mercury lamp as a light source, it developed with the sodium hydrogencarbonate aqueous solution. After washing with water, heat treatment was performed in an oven to form the protective layer 6 to obtain a capacitive touch panel sensor substrate. The protective layer 6 was formed so as to cover the entire region excluding the connection portion connected to the extraction wiring 20 and the control circuit of the touch panel sensor substrate.
(実施例2.1.2)
 第二の接続部4の大きさを、幅10μm×長さ200μmとした以外は、実施例2.1.1と同様にして、静電容量式タッチパネルセンサー基板を得た。
(実施例2.1.3)
 第二の接続部4の大きさを、幅15μm×長さ200μmとした以外は、実施例2.1.1と同様にして、静電容量式タッチパネルセンサー基板を得た。
(Example 2.1.2)
A capacitive touch panel sensor substrate was obtained in the same manner as in Example 2.1.1 except that the size of the second connection portion 4 was changed to 10 μm wide × 200 μm long.
(Example 2.1.3)
A capacitive touch panel sensor substrate was obtained in the same manner as in Example 2.1.1 except that the size of the second connection portion 4 was set to 15 μm wide × 200 μm long.
(実施例2.1.4)
 アルミノ珪酸ガラス上に、感光性導電材料2.1.1をメッシュ500のスクリーン印刷版(材質:ステンレス、東京プロセスサービス社製)を用いてスクリーン印刷にて塗布を行い、ホットプレートにて100℃で5分間乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀灯を用いて100mJ/cmで所望する開口部を有するフォトマスクを介して露光を実施した後、0.2重量%の炭酸水素ナトリウム水溶液にて、30秒間シャワー現像を実施した。水洗後、熱風循環式オーブンにて230℃で30分間加熱処理を実施して第二の接続部4および取出配線20を作製した。得られた第二の接続部4は、幅8μm×長さ200μmの大きさであった。それ以外は実施例2.1.1と同様にして、静電容量式タッチパネルセンサー基板を得た。感光性導電材料層のシート抵抗は0.2Ω/□であった。
(Example 2.1.4)
On the aluminosilicate glass, the photosensitive conductive material 2.1.1 was applied by screen printing using a screen printing plate (material: stainless steel, manufactured by Tokyo Process Service Co., Ltd.) of mesh 500, and 100 ° C. on a hot plate. The film was dried for 5 minutes to dry the coating film. After that, exposure was performed through a photomask having a desired opening at 100 mJ / cm 2 using a high-pressure mercury lamp as a light source, and then shower development was performed for 30 seconds with a 0.2 wt% aqueous sodium bicarbonate solution. did. After washing with water, heat treatment was performed at 230 ° C. for 30 minutes in a hot-air circulating oven to produce the second connection portion 4 and the extraction wiring 20. The obtained second connection portion 4 was 8 μm wide × 200 μm long. Other than that was carried out similarly to Example 2.1.1, and obtained the capacitive touch-panel sensor board | substrate. The sheet resistance of the photosensitive conductive material layer was 0.2Ω / □.
(実施例2.1.5)
 第二の接続部4の大きさを、幅15μm×長さ200μmとした以外は、実施例2.1.4と同様にして、静電容量式タッチパネルセンサー基板を得た。
(実施例2.1.6)
 感光性導電材料2.1.1の代わりに感光性導電材料2.1.2を用い、第二の接続部4の大きさを、幅15μm×長さ200μmとした以外は、実施例2.1.4と同様にして、静電容量式タッチパネルセンサー基板を得た。
(比較例2.1.1)
 酸化Moの代わりにMoを用いた以外は、実施例2.1.4と同様にして、静電容量式タッチパネルセンサー基板を得た。
(Example 2.1.5)
A capacitive touch panel sensor substrate was obtained in the same manner as in Example 2.1.4 except that the size of the second connection portion 4 was set to 15 μm wide × 200 μm long.
(Example 2.1.6)
Example 2 except that photosensitive conductive material 2.1.2 was used instead of photosensitive conductive material 2.1.1, and the size of the second connecting portion 4 was 15 μm wide × 200 μm long. In the same manner as in 1.4, a capacitive touch panel sensor substrate was obtained.
(Comparative Example 2.1.1)
A capacitive touch panel sensor substrate was obtained in the same manner as in Example 2.1.4 except that Mo was used instead of oxidized Mo.
[接続部の評価方法]
<反射率の測定>
 実施例2.1.1~2.1.6および比較例2.1.1で得られた静電容量式タッチパネルセンサー基板を、上述の第一の実施形態で説明した測定方法と同一の方法を用いて評価した。よって、ここではその説明を省略する。なお、反射率の測定には紫外可視分光光度計(日立ハイテク社製U-4100)を使用し、積分球を用いて無水アルカリガラス基板面より、鏡面反射を含む拡散反射光測定を実施した。
[Evaluation method of connection part]
<Measurement of reflectance>
The capacitive touch panel sensor substrate obtained in Examples 2.1.1 to 2.1.6 and Comparative Example 2.1.1 is the same method as the measurement method described in the first embodiment. Was used to evaluate. Therefore, the description is omitted here. The reflectance was measured using an ultraviolet-visible spectrophotometer (U-4100 manufactured by Hitachi High-Tech), and diffuse reflection measurement including specular reflection was performed from the surface of an anhydrous alkali glass substrate using an integrating sphere.
<接続部パターン見え評価>
 実施例2.1.1~2.1.6および比較例2.1.1で得られた静電容量式タッチパネルセンサー基板を、上述の第一の実施形態で説明した評価方法と同一の方法を用いて評価した。また、評価基準も上述の第一の実施形態で説明した評価基準と同一である。よって、ここではその説明を省略する。
<Evaluation of connection pattern appearance>
The capacitive touch panel sensor substrate obtained in Examples 2.1.1 to 2.1.6 and Comparative Example 2.1.1 is the same method as the evaluation method described in the first embodiment. Was used to evaluate. Also, the evaluation criteria are the same as the evaluation criteria described in the first embodiment. Therefore, the description is omitted here.
<感度評価>
 実施例2.1.1~2.1.6および比較例2.1.1で得られた静電容量式タッチパネルセンサー基板を、上述の第一の実施形態で説明した評価方法と同一の方法を用いて評価した。また、評価基準も上述の第一の実施形態で説明した評価基準と同一である。よって、ここではその説明を省略する。
 感光性導電材料の組成を表5に、評価結果を表6に示す。
<Sensitivity evaluation>
The capacitive touch panel sensor substrate obtained in Examples 2.1.1 to 2.1.6 and Comparative Example 2.1.1 is the same method as the evaluation method described in the first embodiment. Was used to evaluate. Also, the evaluation criteria are the same as the evaluation criteria described in the first embodiment. Therefore, the description is omitted here.
Table 5 shows the composition of the photosensitive conductive material, and Table 6 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上述の実施例2.1.1、2.1.2および2.1.3と、比較例2.1.1との比較より、反射率が10%以下の静電容量式タッチパネルにおいてパターン見えが良好であることが分かる。
 また、上述の実施例2.1.4、2.1.5および2.1.6は使用可能な感度を有するが、その感度は、上述の第一の実施形態と比較して同等もしくはそれ以下である。これは、第二の実施形態におけるカーボンブラックの含有量が、第一の実施形態におけるカーボンブラックの含有量に比べて多いため、感度が低下したものと考えられる。
From the comparison between the above-described Examples 2.1.1, 2.1.2, and 2.1.3 and Comparative Example 2.1.1, the pattern appears on the capacitive touch panel having a reflectance of 10% or less. Is found to be good.
Moreover, although the above-mentioned Examples 2.1.4, 2.1.5, and 2.1.6 have usable sensitivity, the sensitivity is equal to or higher than that of the first embodiment. It is as follows. This is considered that the sensitivity was lowered because the carbon black content in the second embodiment was larger than the carbon black content in the first embodiment.
≪第三の実施形態≫
 第三の実施形態に係る静電容量式タッチパネルセンサー基板は、上述の第一の実施形態および第二の実施形態で説明した静電容量式タッチパネルセンサー基板のうちの、透明基板10に透明保護基板としてカバーガラスを用いた透明保護基板一体型静電容量式タッチパネルセンサー基板である。この透明保護基板一体型静電容量式タッチパネルセンサー基板は、透明保護基板上に、加飾のための額縁層と、タッチパネルセンサーの両方が形成された構造である。
<< Third embodiment >>
The capacitive touch panel sensor substrate according to the third embodiment includes a transparent protective substrate and a transparent protective substrate among the capacitive touch panel sensor substrates described in the first embodiment and the second embodiment. A transparent protective substrate integrated capacitive touch panel sensor substrate using a cover glass. This transparent protective substrate integrated capacitive touch panel sensor substrate has a structure in which both a frame layer for decoration and a touch panel sensor are formed on a transparent protective substrate.
 第三の実施形態に係る加飾透明保護基板一体型タッチパネルセンサー基板(つまり、上述の透明保護基板一体型静電容量式タッチパネルセンサー基板)を、一実施形態に基いて以下に詳細に説明する。
 図6A、Bは、タッチパネル機能を有する電子入力装置を備えた平面型表示装置の構成を断面で示す模式図で、図6Aは、透明保護基板とタッチパネルが別々に形成されて、後工程で組み合わされた従来例を、図6Bは、第三の実施形態に係る加飾透明保護基板一体型タッチパネルの一実施形態として、透明保護基板にタッチパネルのセンサ層が直接形成された例を示す。
The decorative transparent protective substrate integrated touch panel sensor substrate according to the third embodiment (that is, the above-mentioned transparent protective substrate integrated electrostatic capacitance type touch panel sensor substrate) will be described in detail below based on one embodiment.
6A and 6B are schematic views showing a cross-sectional structure of a flat display device provided with an electronic input device having a touch panel function, and FIG. 6A is a combination of a transparent protective substrate and a touch panel formed separately in a later process. FIG. 6B shows an example in which the sensor layer of the touch panel is directly formed on the transparent protective substrate as an embodiment of the decorative transparent protective substrate integrated touch panel according to the third embodiment.
 一般に、タッチパネル式平面型表示装置は、表示パネル、パネル駆動部、タッチ位置検出部等から構成され、図6A、Bには、表示パネルとして、アクティブマトリックス方式のカラー液晶表示装置の例を示す。ガラス基板上に各画素ごとにアクティブ素子(薄膜トランジスタ、TFT)を形成したアレイ基板130と、対向基板としてガラス基板上にカラーフィルタと一様な透明電極を形成したカラーフィルタ基板120とが、間に液晶150を挟んで対向して配置されている。第三の実施形態に係る加飾透明保護基板一体型タッチパネルは、図6Bに示すように、平面型表示装置の視認側に配置される透明保護基板と一体化して構成され、透明保護基板の平面型表示装置に相対する一方の面側に、複数の画素部とタッチ位置を感知するための信号ラインとが形成されたセンサ層を備える。 Generally, a touch panel type flat display device includes a display panel, a panel driving unit, a touch position detection unit, and the like. FIGS. 6A and 6B show examples of an active matrix type color liquid crystal display device as a display panel. An array substrate 130 in which active elements (thin film transistors, TFTs) are formed for each pixel on a glass substrate, and a color filter substrate 120 in which a color filter and a uniform transparent electrode are formed on a glass substrate as a counter substrate, The liquid crystal 150 is disposed so as to face each other. The decorative transparent protective substrate integrated touch panel according to the third embodiment is configured integrally with a transparent protective substrate arranged on the viewing side of the flat display device as shown in FIG. A sensor layer having a plurality of pixel portions and a signal line for sensing a touch position is provided on one surface facing the type display device.
 図7は、第三の実施形態に係る加飾透明保護基板一体型タッチパネルの、一実施形態例を平面で示す模式図である。また、図8Aおよび図8Bは、図7に示す加飾透明保護基板一体型タッチパネルの、一実施形態例および別の実施形態例の構成を断面で示す模式図である。 FIG. 7 is a schematic view showing an embodiment of the decorative transparent protective substrate integrated touch panel according to the third embodiment in plan view. 8A and 8B are schematic views showing in cross section the configuration of one embodiment and another embodiment of the decorative transparent protective substrate integrated touch panel shown in FIG.
 第三の実施形態に係る加飾透明保護基板一体型タッチパネル100は、透明保護基板102の一方の面側に、所定の形状の表示領域を区画する額縁部103を備える。必要に応じて、額縁部103の形成を行った透明保護基板102上に平坦化膜104を備える。表示領域内には、X軸方向およびこれと直交するY軸方向に間欠的に配列される複数の第1の透光性電極105と、X軸方向およびY軸方向に配列されると共に各々が第1の透光性電極105の行間および列間に配置される複数の第2の透光性電極106として2次元配置した複数の透明導電膜パターンを備える。さらに、センサ層の透明導電膜パターン間を電気的に接続するジャンパ部107と、ジャンパ部107での透明導電膜パターン層間の電気的短絡を防ぐ絶縁膜108とを備える。ここで、X軸方向に整列する第1の透光性電極105の各々は第1の透光性電極105と第2の透光性電極106との交点の絶縁膜108の図示しないスルーホールを通じてX軸方向およびY軸方向に配列される導電膜からなる複数のジャンパ部107によって相互に電気的に接続される。また、センサ層の端部から額縁部103上に配線を導いて端子部110に至る配線部109とを備え、この配線部109は端子部110を介して電気信号を検出するための図示しない検出器に接続されている、さらに、その上全面に、額縁部103および表示領域を覆う保護膜111を備えた構成となっている。特に、ジャンパ部107と配線部109とは、同一の、金属粒子を含有する感光性樹脂組成物を用いて形成された導電膜から成る。 The decorative transparent protective substrate integrated touch panel 100 according to the third embodiment includes a frame portion 103 that divides a display area of a predetermined shape on one surface side of the transparent protective substrate 102. If necessary, a planarizing film 104 is provided on the transparent protective substrate 102 on which the frame portion 103 is formed. In the display area, a plurality of first translucent electrodes 105 arranged intermittently in the X-axis direction and the Y-axis direction orthogonal to the X-axis direction and the X-axis direction and the Y-axis direction, respectively, A plurality of transparent conductive film patterns arranged two-dimensionally are provided as a plurality of second light transmissive electrodes 106 disposed between rows and columns of the first light transmissive electrodes 105. Further, a jumper portion 107 for electrically connecting the transparent conductive film patterns of the sensor layer and an insulating film 108 for preventing an electrical short circuit between the transparent conductive film pattern layers in the jumper portion 107 are provided. Here, each of the first translucent electrodes 105 aligned in the X-axis direction passes through a through hole (not shown) of the insulating film 108 at the intersection of the first translucent electrode 105 and the second translucent electrode 106. The plurality of jumpers 107 made of conductive films arranged in the X-axis direction and the Y-axis direction are electrically connected to each other. In addition, a wiring portion 109 that leads the wiring from the end portion of the sensor layer onto the frame portion 103 and reaches the terminal portion 110 is provided. The wiring portion 109 detects an electric signal through the terminal portion 110 to detect an electric signal. Further, a protective film 111 that covers the frame portion 103 and the display area is provided on the entire upper surface of the display device. In particular, the jumper part 107 and the wiring part 109 are made of the same conductive film formed using a photosensitive resin composition containing metal particles.
 なお、第三の実施形態の透明保護基板102は、上述した第一、第二の実施形態の透明基材10において、カバーガラスを用いた場合に相当するものである。また、第1の透光性電極105は、上述した第一、第二の実施形態の第一の透明電極1に相当するものである。また、第2の透光性電極106は、上述した第一、第二の実施形態の第二の透明電極2に相当するものである。また、ジャンパ部107は、上述した第一、第二の実施形態の第二の接続部4に相当するものである。また、絶縁膜108は、上述した第一、第二の実施形態の絶縁層5に相当するものである。また、配線部109は、上述した第一、第二の実施形態の取出配線20に相当するものである。 In addition, the transparent protective substrate 102 of 3rd embodiment is corresponded when the cover glass is used in the transparent base material 10 of 1st, 2nd embodiment mentioned above. The first translucent electrode 105 corresponds to the first transparent electrode 1 of the first and second embodiments described above. The second translucent electrode 106 corresponds to the second transparent electrode 2 of the first and second embodiments described above. Further, the jumper portion 107 corresponds to the second connection portion 4 of the first and second embodiments described above. The insulating film 108 corresponds to the insulating layer 5 of the first and second embodiments described above. The wiring portion 109 corresponds to the extraction wiring 20 of the first and second embodiments described above.
 上記したセンサ層の透明導電膜パターン間を電気的に接続するジャンパ部107の形成と、センサ層の端部から額縁部103上に配線を導いて端子部110に至る配線部109の形成とは、金属粒子を含有する感光性樹脂組成物を額縁部と表示領域の全面に塗布した後、ジャンパ部107および配線部分を開口部としたフォトマスクを介して紫外線で露光し、その後現像処理することで、ジャンパ部107と配線部分とを一括して所定の位置にパターニング形成する同一段階で行われる。 The formation of the jumper portion 107 that electrically connects the transparent conductive film patterns of the sensor layer described above, and the formation of the wiring portion 109 that leads the wiring from the end portion of the sensor layer onto the frame portion 103 and reaches the terminal portion 110. The photosensitive resin composition containing metal particles is applied to the entire surface of the frame portion and the display area, and then exposed to ultraviolet rays through a photomask having the jumper portion 107 and the wiring portion as openings, and then developed. Thus, the jumper portion 107 and the wiring portion are collectively formed at a predetermined position at the same stage.
 以下に、第三の実施形態に係る加飾透明保護基板一体型タッチパネル100を、その一実施形態での製造工程にそってさらに詳細に説明する。
 まず、透明保護基板102となるカバーガラスの一方の面側に、所定の形状の表示領域を区画する額縁部103を形成する。
 透明保護基板102は、タッチパネルセンサーの最表面となる透明な前面板であり、使用者によってタッチされる部材である。透明保護基板102としては、可視光に対して80%以上の透過率を有するものを用いることができ、好ましくは95%以上の透過率を有するものを用いることができる。透明保護基板102は、一般に液晶表示装置に用いられているものでよく、例えばガラス等の無機透明基板、またはポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、環状オレフィンコポリマー等の透明樹脂基板が使用可能である。第三の実施形態に係る加飾透明保護基板一体型タッチパネル100のタッチパネル機能には、静電容量型が推奨される。従来のタッチスクリーン方式のように外力による歪みのおそれは無く、適用する表示パネルの仕様によって、透明保護基板102の材質および厚みは適宜選択できるが、工程での耐熱性を考慮するとガラス基板が最適である。なお、カバーガラスは通常ソーダライムガラスを強化して作製されるが、その強化深度として、10μm~50μm、好ましくは20μm~30μmの強化深度が形成されているガラスを使用することが推奨される。
Below, the decorative transparent protection board integrated touch panel 100 which concerns on 3rd embodiment is demonstrated in detail along the manufacturing process in the one embodiment.
First, a frame portion 103 that divides a display area having a predetermined shape is formed on one surface side of a cover glass to be a transparent protective substrate 102.
The transparent protective substrate 102 is a transparent front plate that is the outermost surface of the touch panel sensor, and is a member that is touched by the user. As the transparent protective substrate 102, a substrate having a transmittance of 80% or more with respect to visible light can be used, and a substrate having a transmittance of 95% or more can be preferably used. The transparent protective substrate 102 may be generally used for a liquid crystal display device. For example, an inorganic transparent substrate such as glass or a transparent resin substrate such as polycarbonate, polymethyl methacrylate, polyethylene terephthalate, and cyclic olefin copolymer can be used. . A capacitive type is recommended for the touch panel function of the decorative transparent protective substrate integrated touch panel 100 according to the third embodiment. There is no risk of distortion due to external force unlike the conventional touch screen system, and the material and thickness of the transparent protective substrate 102 can be appropriately selected according to the specifications of the display panel to be applied. However, considering the heat resistance in the process, the glass substrate is optimal. It is. The cover glass is usually produced by strengthening soda lime glass, and it is recommended to use glass having a strengthening depth of 10 μm to 50 μm, preferably 20 μm to 30 μm.
 額縁部103は、遮光材料を用いてカバーガラスの一方の面側の周縁部に形成される矩形環状の遮光層であり、中央の窓部分に、矩形等の所定の形状の表示領域を区画し、かつ、タッチパネルセンサーの周縁部に設けられる配線部109を隠す役割を果たす。額縁部103は、ネガ型感光性着色樹脂組成物またはインキを用いて形成され、黒色であることが一般的である。 The frame portion 103 is a rectangular annular light-shielding layer formed on the peripheral edge on one surface side of the cover glass using a light-shielding material, and partitions a display area of a predetermined shape such as a rectangle in the central window portion. And it plays the role which hides the wiring part 109 provided in the peripheral part of a touch panel sensor. The frame portion 103 is formed using a negative photosensitive colored resin composition or ink and is generally black.
 額縁部103に適用する感光性着色樹脂組成物は、例えば、樹脂バインダに着色剤を、分散剤を用いて分散させ、この分散液にモノマー、光重合開始剤、増感剤、溶剤などを添加して調製される。着色剤は、額縁部103を所望の色に着色するものである。顔料や染料を利用することができるが、耐久性に優れている点で、顔料を使用することが望ましい。顔料としては、有機顔料と無機顔料のいずれであっても良く、また、その配合量は特に限定されるものではない。公知のフォトリソ方式により、感光性着色樹脂組成物を用いて、所定のパターンで感光性着色樹脂組成物の硬化物で額縁部103の形成を行うことができる。まず、例えば、透明保護基板102の上に、コーターを用いて感光性着色樹脂組成物を塗布・乾燥し、プリベークを行って感光性着色樹脂層を形成する。次に、所定のパターンを有するマスクを用いて、感光性着色樹脂層を超高圧水銀光灯ランプ等を用いてプロキシミティー露光してマスクパターンを転写する。次に、炭酸ナトリウム水溶液等の現像液で現像し、現像後よく水洗し、さらに乾燥後、加熱処理して硬化させることで額縁部103が形成されてよい。遮光性材料としてインキを用いて、スクリーン印刷によって透明保護基板102の上に額縁部103を形成してもかまわない。 The photosensitive colored resin composition applied to the frame portion 103 is, for example, a colorant is dispersed in a resin binder using a dispersant, and a monomer, a photopolymerization initiator, a sensitizer, a solvent, or the like is added to the dispersion. Prepared. The colorant is for coloring the frame portion 103 into a desired color. Although pigments and dyes can be used, it is desirable to use pigments because of their excellent durability. The pigment may be either an organic pigment or an inorganic pigment, and the amount of the pigment is not particularly limited. The frame portion 103 can be formed from a cured product of the photosensitive colored resin composition in a predetermined pattern using a photosensitive colored resin composition by a known photolithography method. First, for example, a photosensitive colored resin composition is applied and dried on a transparent protective substrate 102 using a coater, and pre-baked to form a photosensitive colored resin layer. Next, using a mask having a predetermined pattern, the photosensitive colored resin layer is subjected to proximity exposure using an ultra-high pressure mercury lamp lamp or the like to transfer the mask pattern. Next, the frame portion 103 may be formed by developing with a developing solution such as an aqueous sodium carbonate solution, thoroughly washing with water after development, and further drying and heating to cure. The frame portion 103 may be formed on the transparent protective substrate 102 by screen printing using ink as a light shielding material.
 次に、必要に応じて、上記で額縁部103の形成を行った透明保護基板102上に、平坦化膜104が形成される。この平坦化膜104は、額縁部103と表示領域とを平坦化させ、且つ、配線部109が形成される額縁部103の電気絶縁性を向上させる。特に、額縁部103がインキによって印刷された場合、額縁部103の表面凹凸による配線の損傷を防止する効果がある。さらに、平坦化膜104は、後述するセンサ層の形成工程での額縁部103の着色樹脂層からの脱ガスを封止する役割を持っている。 Next, if necessary, a planarization film 104 is formed on the transparent protective substrate 102 on which the frame portion 103 has been formed as described above. The planarizing film 104 planarizes the frame portion 103 and the display area, and improves the electrical insulation of the frame portion 103 where the wiring portion 109 is formed. In particular, when the frame portion 103 is printed with ink, there is an effect of preventing the wiring from being damaged by the surface unevenness of the frame portion 103. Further, the planarization film 104 has a role of sealing out-gassing from the colored resin layer of the frame portion 103 in the sensor layer forming process described later.
 この平坦化膜104には、例えば平滑で強靭であること、透明性を有すること、耐熱性および耐光性が高く、長期間にわたって黄変、白化等の変質を起こさないこと、耐水性、耐溶剤性、耐酸性および耐アルカリ性に優れていることが求められる。平坦化膜104の材料としては、例えば熱硬化性または放射線硬化性のアクリレート系樹脂、メタクリレート系樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂などが挙がられる。これらの樹脂組成物を、額縁部103の形成を行った透明保護基板102上に、膜厚2~20μm、好ましくは5~10μmとなるように塗布した後、焼成または紫外線照射により硬化させることにより、平坦化膜104が形成される。 The flattened film 104 has, for example, smoothness and toughness, transparency, high heat resistance and light resistance, no deterioration such as yellowing and whitening over a long period of time, water resistance, solvent resistance It is required to have excellent properties, acid resistance and alkali resistance. Examples of the material of the planarizing film 104 include thermosetting or radiation curable acrylate resins, methacrylate resins, epoxy resins, urethane resins, and polyimide resins. These resin compositions are applied on the transparent protective substrate 102 on which the frame portion 103 has been formed to a thickness of 2 to 20 μm, preferably 5 to 10 μm, and then cured by baking or ultraviolet irradiation. A planarizing film 104 is formed.
 以下、透明保護基板102に額縁部103及び平坦化膜104が形成された場合について説明する。
 透明保護基板102の上に額縁部103、平坦化膜104が形成された後、透明保護基板102の上に、静電容量式のタッチパネルのセンサ層が形成される。センサ層の基本構成は、透明保護基板102側から、センサ電極(例えば第1の透光性電極105および第2の透光性電極106)+絶縁膜108+ジャンパ部107+保護膜111とするか(図8A、Bを参照)、又は、ジャンパ部107+絶縁膜108+センサ電極(例えば第1の透光性電極105および第2の透光性電極106)+保護膜111であり(図9A、Bを参照)、第三の実施形態に係るセンサ層は、上記したいずれの構成であっても適用可能である。ここでは、ジャンパ部107と配線部109とを、同一の、金属粒子を含有する感光性樹脂組成物を用いて、公知のフォトリソ方式により、先に形成する加工方法で説明する。
Hereinafter, a case where the frame portion 103 and the planarizing film 104 are formed on the transparent protective substrate 102 will be described.
After the frame portion 103 and the planarization film 104 are formed on the transparent protective substrate 102, a capacitive touch panel sensor layer is formed on the transparent protective substrate 102. The basic configuration of the sensor layer may be a sensor electrode (for example, the first translucent electrode 105 and the second translucent electrode 106) + insulating film 108 + jumper 107 + protective film 111 from the transparent protective substrate 102 side ( 8A and B), or jumper portion 107 + insulating film 108 + sensor electrode (for example, first light transmitting electrode 105 and second light transmitting electrode 106) + protective film 111 (see FIGS. 9A and 9B). The sensor layer according to the third embodiment can be applied to any of the configurations described above. Here, the jumper portion 107 and the wiring portion 109 will be described with a processing method in which the same photosensitive resin composition containing metal particles is used to form the jumper portion 107 and the wiring portion 109 in the known photolithography method.
 前述したように、第三の実施形態においては、センサ層の透明導電膜パターン間を電気的に接続するジャンパ部107の形成と、センサ電極の端部から額縁部103上に配線を導いて端子部に至る配線部109の導電膜の形成とは、金属粒子を含有する感光性樹脂組成物を額縁部103と表示領域の全面に塗布した後、ジャンパ部107および配線部分を開口部としたフォトマスクを介して紫外線で露光し、その後現像処理することで、ジャンパ部107と配線部109とを一括して所定の位置にパターニング形成することと同一段階で行われる。 As described above, in the third embodiment, the jumper portion 107 that electrically connects the transparent conductive film patterns of the sensor layer is formed, and the wiring is led from the end portion of the sensor electrode to the frame portion 103 to be a terminal. The formation of the conductive film of the wiring part 109 reaching the part means that a photosensitive resin composition containing metal particles is applied to the entire surface of the frame part 103 and the display area, and then the jumper part 107 and the wiring part are used as openings. It is performed at the same stage as patterning and forming the jumper portion 107 and the wiring portion 109 at a predetermined position by exposing with ultraviolet rays through a mask and then developing.
 ここで、ジャンパ部107は、表示領域に、X軸方向およびY軸方向に行列状に配列される。ジャンパ部107の各々は、X軸方向に整列する第1の透光性電極105をX軸方向に接続するためのものであり、両端部がX軸方向に隣接する1対の第2の透光性電極106の各々と重なり合うような位置および寸法で所定の位置に形成される。通常ジャンパ部107の位置は、最終的に一体化される液晶表示パネルのBM(ブラックマトリックス)と重なる位置に設計されることが多い。また、配線部109は額縁部103上の視認されない位置に配置形成される。 Here, the jumper units 107 are arranged in a matrix in the X-axis direction and the Y-axis direction in the display area. Each of the jumper portions 107 is for connecting the first translucent electrodes 105 aligned in the X-axis direction in the X-axis direction, and a pair of second transparent electrodes whose both ends are adjacent in the X-axis direction. It is formed at a predetermined position with a position and size so as to overlap each of the photoelectrodes 106. Usually, the position of the jumper unit 107 is often designed to overlap with the BM (black matrix) of the liquid crystal display panel to be finally integrated. Further, the wiring part 109 is arranged and formed at a position on the frame part 103 that is not visually recognized.
 金属粒子を含有する感光性樹脂組成物は、樹脂バインダに金属粒子を分散させ、この分散液に例えばモノマー、光重合開始剤、増感剤、溶剤などを添加して調製される。用いられる金属粒子は、例えば金(Au)、銀(Ag)、白金(Pt)、イリジウム(Ir)、ロジウム(Rh)、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)、カーボンから選ばれる1種以上の金属粒子であり、その粒径が1μm以上4μm以下であることが好ましい。通常のモバイル表示装置等で用いられる金属配線の最小線幅は15μm程度であり、金属粒子を含有する感光性樹脂組成物を用いた解像可能なパターニング精度を考慮すると、金属粒子の粒径は4μm以下であることが好ましい。また、金属粒子の粒径を細かくすることでパターニングの解像度は向上するが、細かくしすぎると金属粒子同士の物理的接触が困難となり導電性が低下するため、金属粒子の粒径は1μm以上必要である。 The photosensitive resin composition containing metal particles is prepared by dispersing metal particles in a resin binder and adding, for example, a monomer, a photopolymerization initiator, a sensitizer, and a solvent to the dispersion. The metal particles used are selected from, for example, gold (Au), silver (Ag), platinum (Pt), iridium (Ir), rhodium (Rh), copper (Cu), nickel (Ni), aluminum (Al), and carbon. It is preferable that the particle size is 1 μm or more and 4 μm or less. In consideration of resolvable patterning accuracy using a photosensitive resin composition containing metal particles, the minimum line width of metal wiring used in a normal mobile display device or the like is about 15 μm. It is preferable that it is 4 micrometers or less. In addition, the resolution of patterning is improved by making the particle size of the metal particles fine, but if the particle size is too fine, physical contact between the metal particles becomes difficult and the conductivity decreases, so the particle size of the metal particles must be 1 μm or more. It is.
 ジャンパ部107および配線部109として、金属粒子を含有する感光性樹脂組成物を用いて形成された導電膜の反射率は20%以下であることが好ましく、また、金属粒子を含有する感光性樹脂組成物を用いて形成された導電性膜の表面抵抗値は1Ω/□以下であることが好ましい。上記した特性を実現するために、感光性樹脂組成物中の金属粒子の含有量は、20~60質量%が好ましく、硬化した導電膜の膜厚は3~5μmの範囲が好ましい。金属粒子を含有する感光性樹脂組成物としては市販のものを使用することが可能である。 The reflectivity of the conductive film formed using the photosensitive resin composition containing metal particles as the jumper part 107 and the wiring part 109 is preferably 20% or less, and the photosensitive resin containing metal particles The conductive film formed using the composition preferably has a surface resistance value of 1Ω / □ or less. In order to realize the above characteristics, the content of the metal particles in the photosensitive resin composition is preferably 20 to 60% by mass, and the film thickness of the cured conductive film is preferably in the range of 3 to 5 μm. As the photosensitive resin composition containing metal particles, a commercially available product can be used.
 次いで、公知のフォトリソ法により、ジャンパ部107上および配線部109上に絶縁膜108を所定のパターンとなる様、パターニング形成が行われてよい。絶縁膜108の形成に用いて好適な感光性樹脂は、可視光領域の400~700nmの全波長領域において透過率が好ましくは80%以上、より好ましくは95%以上である透明樹脂である。この透明樹脂には、熱可塑性樹脂、熱硬化性樹脂、および感光性樹脂が含まれる。透明樹脂には、必要に応じて、その前駆体である、放射線照射により硬化して透明樹脂を生成するモノマーもしくはオリゴマーを単独で、または2種以上混合して用いることができる。また、絶縁膜108を形成する感光性樹脂組成物としては市販のものを使用することが可能であり、好ましい膜厚範囲としては1.3~2.0μmである。 Next, patterning may be performed by a known photolithography method so that the insulating film 108 has a predetermined pattern on the jumper portion 107 and the wiring portion 109. A photosensitive resin suitable for use in forming the insulating film 108 is a transparent resin having a transmittance of preferably 80% or more, more preferably 95% or more in the entire wavelength region of 400 to 700 nm in the visible light region. This transparent resin includes a thermoplastic resin, a thermosetting resin, and a photosensitive resin. If necessary, the transparent resin can be used alone or in admixture of two or more monomers or oligomers that are precursors thereof that are cured by irradiation with radiation to produce a transparent resin. As the photosensitive resin composition for forming the insulating film 108, a commercially available product can be used, and a preferable film thickness range is 1.3 to 2.0 μm.
 絶縁膜108は、透光性の絶縁材料を平坦化膜104上に形成したジャンパ部107と額縁上の配線部109を覆うように積層することにより形成される。この上に、第1の透光性電極105と第2の透光性電極106を一括で形成した場合に、第1の透光性電極105だけが絶縁膜108に設けたスルーホール等を通じてジャンパ部107と一部接触し、第2の透光性電極106は、絶縁膜108の介在でジャンパ部107とは接触しないようにパターニング形成する。また、パネル端部のセンサ層から配線を引き出す部分でも第1の透光性電極105と第2の透光性電極106が、予め形成してある配線部109と接触するようにパターニング形成する。 The insulating film 108 is formed by laminating a light-transmitting insulating material so as to cover the jumper portion 107 formed on the planarizing film 104 and the wiring portion 109 on the frame. In addition, when the first translucent electrode 105 and the second translucent electrode 106 are collectively formed, only the first translucent electrode 105 is jumpered through a through hole or the like provided in the insulating film 108. The second translucent electrode 106 is patterned so as not to come into contact with the jumper portion 107 with the insulating film 108 interposed therebetween. Further, patterning is performed so that the first light-transmissive electrode 105 and the second light-transmissive electrode 106 are in contact with the previously formed wiring portion 109 even in a portion where the wiring is drawn from the sensor layer at the panel end.
 静電容量式のタッチパネルは、同一レイヤー内に、X軸方向およびこれと直交するY軸方向に間欠的に配列される複数の第1の透光性電極105と、X軸方向およびY軸方向に配列されると共に各々が第1の透光性電極105の行間および列間に配置される複数の第2の透光性電極106とを備える。まず、例えばITO等インジウム、スズ、ガリウム、亜鉛などの金属酸化物の複合酸化物の透光性導電材料を用いて、蒸着、イオンプレーティング、スパッタリング等の真空成膜手法を用いた同一工程で絶縁膜108まで形成された透明保護基板102の上全面に透明導電膜を形成する。その後、この透明導電膜を公知の手法でパターニングして、所定形状の第1の透光性電極105と第2の透光性電極106を形成する。このとき、前述したように第1の透光性電極105と第2の透光性電極106とのそれぞれのパネル端部は、先に作成されている電気信号を検出するための検出器に接続されている配線と接触・接続することになる。 The capacitive touch panel includes a plurality of first translucent electrodes 105 arranged intermittently in the same layer in the X-axis direction and the Y-axis direction orthogonal thereto, and the X-axis direction and the Y-axis direction. And a plurality of second translucent electrodes 106 arranged between the rows and the columns of the first translucent electrodes 105. First, using a light-transmitting conductive material of a composite oxide of metal oxides such as indium, tin, gallium, and zinc such as ITO, in the same process using a vacuum film formation method such as vapor deposition, ion plating, and sputtering. A transparent conductive film is formed on the entire upper surface of the transparent protective substrate 102 formed up to the insulating film 108. Thereafter, the transparent conductive film is patterned by a known method to form a first translucent electrode 105 and a second translucent electrode 106 having a predetermined shape. At this time, as described above, the panel end portions of the first light-transmissive electrode 105 and the second light-transmissive electrode 106 are connected to the detector for detecting the electrical signal that has been previously created. It will be in contact with the connected wiring.
 以上のようにして作製されたセンサ層の表面には、感光性樹脂で形成される保護膜111を備える。この保護膜111としては、前述した絶縁膜108と同じ材料を使用することができる。タッチパネルのセンサ層表面に、上記した感光性樹脂で形成される保護膜111を形成する方法としては、スリットアンドスピン法などが通常用いられるが、センサ層が形成された透明保護基板102上に均一な膜厚で塗布可能な方法ならばこれらに限定されるものではない。感光性組成物を塗布し透明樹脂層を形成した基板に露光を行う。光源には通常の高圧水銀灯などを用いればよい。また、必要に応じて、ポストベークを行ってもよい。 The surface of the sensor layer produced as described above is provided with a protective film 111 formed of a photosensitive resin. As the protective film 111, the same material as that of the insulating film 108 described above can be used. As a method for forming the protective film 111 formed of the above-described photosensitive resin on the surface of the sensor layer of the touch panel, a slit and spin method or the like is usually used, but it is uniform on the transparent protective substrate 102 on which the sensor layer is formed. The method is not limited to these as long as it is a method capable of coating with a small film thickness. Exposure is performed on the substrate on which the photosensitive composition is applied to form a transparent resin layer. A normal high-pressure mercury lamp or the like may be used as the light source. Moreover, you may post-bake as needed.
 以上、説明したようにして、図9A、Bに示した第三の実施形態に係る加飾透明保護基板一体型タッチパネル100を得る。なお、変形例として、第1の透光性電極105および第2の透光性電極106の形成を初めに行い、ジャンパ部107および配線部109を形成する工程を後にすることも可能である。換言すると、透明保護基板102の上に額縁部103(必要に応じて平坦化膜104)を形成した後、まず、第1の透光性電極105および第2の透光性電極106を形成する。その後、絶縁膜108を形成する。そして、この絶縁膜108を形成した後、ジャンパ部107および配線部109の形成することも可能である。この変形例であれば、図8A、Bに示した加飾透明保護基板一体型タッチパネルを得ることができる。いずれも、ジャンパ部107と配線部109とを、同一の材料を用いて、且つ、真空プロセスではない、同じ工程段階で作製することが出来るため、安価な製造設備で、短い工程で作製可能であり、工程内不良軽減につながりコストダウンが可能となる構成である。 As described above, the decorative transparent protective substrate integrated touch panel 100 according to the third embodiment shown in FIGS. 9A and 9B is obtained. As a modification, the first light-transmitting electrode 105 and the second light-transmitting electrode 106 can be formed first, and the step of forming the jumper portion 107 and the wiring portion 109 can be performed later. In other words, after forming the frame portion 103 (the planarization film 104 if necessary) on the transparent protective substrate 102, first, the first light-transmissive electrode 105 and the second light-transmissive electrode 106 are formed. . Thereafter, an insulating film 108 is formed. Then, after the insulating film 108 is formed, the jumper portion 107 and the wiring portion 109 can be formed. If it is this modification, the decorative transparent protective substrate integrated touch panel shown in FIGS. 8A and 8B can be obtained. In any case, since the jumper portion 107 and the wiring portion 109 can be manufactured using the same material and in the same process step, not a vacuum process, the jumper portion 107 and the wiring portion 109 can be manufactured in a short process with an inexpensive manufacturing facility. There is a configuration that leads to reduction of defects in the process and enables cost reduction.
 第三の実施形態に係る加飾透明保護基板一体型タッチパネル100は、平面型表示装置の視認側に配置され、透明保護基板(前面板)102の平面型表示装置に相対する一方の面側にセンサ電極を備える形で適用される。平面型表示装置としては、例えば、カラー液晶表示装置が挙げられ、対向基板として、ブラックマトリックスで画定された赤(R)、緑(G)、青(B)等複数色の着色画素と一様な透明電極が形成され、必要な配向処理をおこなったカラーフィルタ基板と、TFTが形成されたアレイ基板との中間に液晶を挟持することで表示パネルとして組み立て、偏光板や、駆動電極、バックライト等と組み合わせる。 The decorative transparent protective substrate integrated touch panel 100 according to the third embodiment is arranged on the viewing side of the flat display device, and is on one surface side of the transparent protective substrate (front plate) 102 facing the flat display device. It is applied with a sensor electrode. As the flat display device, for example, a color liquid crystal display device can be cited, and the counter substrate is uniform with a plurality of colored pixels such as red (R), green (G), and blue (B) defined by a black matrix. As a display panel is assembled by sandwiching the liquid crystal between the color filter substrate on which a transparent electrode is formed and the necessary alignment treatment is performed and the array substrate on which the TFT is formed, and a polarizing plate, a drive electrode, and a backlight Combine with etc.
 加飾透明保護基板一体型タッチパネル100を備えた平面型表示装置である液晶表示装置のアレイ基板は、透明基板上に、モリブデンやタングステンもしくはその合金等の金属からなるゲート線およびゲート電極を配置し、これらを覆うように酸化ケイ素・窒化ケイ素等からなるゲート絶縁膜が配置されている。また、ゲート絶縁膜上にはアモルファス・シリコンなどの半導体層が配置され、更にモリブデンやアルミニウムからなるソース線、ソース電極、ドレイン電極が配置されスイッチング素子を形成している。スイッチング素子の上には、酸化ケイ素・窒化ケイ素等からなる保護層が配置される。スイッチング素子は、表面側(視認側)に配置された加飾透明保護基板一体型タッチパネル100の操作によって駆動可能に配線される。 An array substrate of a liquid crystal display device, which is a flat display device provided with a decorative transparent protective substrate integrated touch panel 100, has a gate line and a gate electrode made of metal such as molybdenum, tungsten, or an alloy thereof on a transparent substrate. A gate insulating film made of silicon oxide, silicon nitride or the like is disposed so as to cover them. A semiconductor layer such as amorphous silicon is disposed on the gate insulating film, and further, a source line, a source electrode, and a drain electrode made of molybdenum or aluminum are disposed to form a switching element. A protective layer made of silicon oxide, silicon nitride, or the like is disposed on the switching element. The switching element is wired so that it can be driven by an operation of the decorative transparent protective substrate integrated touch panel 100 disposed on the front surface side (viewing side).
 以上のようにして、複数の画素が行列状に配列された画素領域を有し、入力信号に基づいて上述の画素領域に画像を構成する表示パネルと、この画素領域を覆うように取り付けられた加飾透明保護基板一体型タッチパネル100を備えた平面型表示装置が得られる。 As described above, a display panel that has a pixel area in which a plurality of pixels are arranged in a matrix and forms an image in the above-described pixel area based on an input signal, and is attached so as to cover the pixel area A flat display device including the decorative transparent protective substrate integrated touch panel 100 is obtained.
1 …第一の透明電極
2 …第二の透明電極
3 …第一の接続部
4 …第二の接続部
5 …絶縁層
6 …保護膜
10…透明基材
20…取出配線
30…カバーガラス
40…タッチパネルセンサー
100…加飾透明保護基板一体型タッチパネル
102…透明保護基板
103…額縁部
104…平坦化膜
105…第1の透光性電極
106…第2の透光性電極
107…ジャンパ部
108…絶縁膜
109…配線部
110…端子部
111…保護膜
112…カバーガラス(前面板)
120…カラーフィルタ基板
130…アレイ基板
140…偏光板
150…液晶
DESCRIPTION OF SYMBOLS 1 ... 1st transparent electrode 2 ... 2nd transparent electrode 3 ... 1st connection part 4 ... 2nd connection part 5 ... Insulating layer 6 ... Protective film 10 ... Transparent base material 20 ... Extraction wiring 30 ... Cover glass 40 ... Touch panel sensor 100 ... Decorative transparent protective substrate integrated touch panel 102 ... Transparent protective substrate 103 ... Frame portion 104 ... Flattening film 105 ... First translucent electrode 106 ... Second translucent electrode 107 ... Jumper portion 108 ... Insulating film 109 ... Wiring part 110 ... Terminal part 111 ... Protective film 112 ... Cover glass (front plate)
120 ... Color filter substrate 130 ... Array substrate 140 ... Polarizing plate 150 ... Liquid crystal

Claims (24)

  1.  (A)第一の透明電極と、(B)第二の透明電極と、(C)前記(A)第一の透明電極同士を接続する第一の接続部と、(D)前記(B)第二の透明電極同士を接続する第二の接続部と、(E)前記(C)第一の接続部と前記(D)第二の接続部との交差する部位に形成される絶縁層と、(F)前記(A)第一の透明電極および前記(B)第二の透明電極に接続される取出配線と、を備えて構成される、透明基材上に形成される静電容量式タッチパネルセンサー基板の製造方法であって、
     前記(C)第一の接続部を、前記(A)第一の透明電極および前記(B)第二の透明電極の材料と同一の透明導電材料を用いて、前記(A)第一の透明電極および前記(B)第二の透明電極と同時に形成する工程と、
     前記(E)絶縁層を形成する工程と、
     前記(D)第二の接続部を、導電材料を用いて前記(F)取出配線と同時に形成する工程と、を含み、
     前記(C)第一の接続部を形成する工程または前記(D)第二の接続部を形成する工程の一方の工程を実施した後に前記(E)絶縁層を形成する工程を実施し、
     前記(E)絶縁層を形成する工程を実施した後に前記(C)第一の接続部を形成する工程または前記(D)第二の接続部を形成する工程の他方の工程を実施し、
     前記(D)第二の接続部および前記(F)取出配線の反射率は、0%以上30%以下の範囲内であることを特徴とする静電容量式タッチパネルセンサー基板の製造方法。
    (A) 1st transparent electrode, (B) 2nd transparent electrode, (C) 1st connection part which connects said (A) 1st transparent electrodes, (D) Said (B) A second connecting portion for connecting the second transparent electrodes; and (E) an insulating layer formed at a portion where the (C) first connecting portion and the (D) second connecting portion intersect. (F) Capacitance type formed on a transparent substrate comprising (A) the first transparent electrode and (B) a lead-out wiring connected to the second transparent electrode. A method of manufacturing a touch panel sensor substrate,
    The (C) first connection portion is formed by using the same transparent conductive material as that of the (A) first transparent electrode and the (B) second transparent electrode, Forming the electrode and the (B) second transparent electrode at the same time;
    (E) forming an insulating layer;
    (D) forming the second connection part simultaneously with the (F) extraction wiring using a conductive material,
    After performing one step of the step of forming the (C) first connection portion or the step of forming the (D) second connection portion, the step of forming the (E) insulating layer is performed,
    After the step of forming the (E) insulating layer, the other step of the step of forming the (C) first connection portion or the step of forming the (D) second connection portion is performed,
    The method of manufacturing a capacitive touch panel sensor substrate, wherein the reflectance of the (D) second connection portion and the (F) extraction wiring is in the range of 0% to 30%.
  2.  前記(D)第二の接続部の導体幅は、3μm以上20μm以下の範囲内であることを特徴とする請求項1に記載の静電容量式タッチパネルセンサー基板の製造方法。 2. The method of manufacturing a capacitive touch panel sensor substrate according to claim 1, wherein the conductor width of the (D) second connection portion is in a range of 3 μm to 20 μm.
  3.  前記導電材料は、感光性導電材料であることを特徴とする請求項1または請求項2に記載の静電容量式タッチパネルセンサー基板の製造方法。 3. The method of manufacturing a capacitive touch panel sensor substrate according to claim 1, wherein the conductive material is a photosensitive conductive material.
  4.  前記感光性導電材料は、(G)黒色材料、(H)金属粒子、(I)光重合開始剤、(J)重合性多官能モノマー、(K)樹脂を含有することを特徴とする請求項3に記載の静電容量式タッチパネルセンサー基板の製造方法。 The photosensitive conductive material contains (G) a black material, (H) metal particles, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, and (K) a resin. 4. A method for producing a capacitive touch panel sensor substrate according to 3.
  5.  前記(G)黒色材料は、黒色顔料、2種以上の顔料の疑似黒色混合物、黒色染料、金属化合物のいずれかであることを特徴とする請求項4に記載の静電容量式タッチパネルセンサー基板の製造方法。 5. The capacitive touch panel sensor substrate according to claim 4, wherein the (G) black material is any one of a black pigment, a pseudo black mixture of two or more pigments, a black dye, and a metal compound. Production method.
  6.  前記(G)黒色材料は、平均粒子径が10nm以上500nm以下の範囲内であるカーボンブラックであることを特徴とする請求項4に記載の静電容量式タッチパネルセンサー基板の製造方法。 The method for manufacturing a capacitive touch panel sensor substrate according to claim 4, wherein the (G) black material is carbon black having an average particle diameter in a range of 10 nm to 500 nm.
  7.  前記(H)金属粒子は、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、アルミニウム(Al)から選ばれる1種以上の金属を含有することを特徴とする請求項4から請求項6のいずれか一項に記載の静電容量式タッチパネルセンサー基板の製造方法。 The (H) metal particles are selected from gold (Au), silver (Ag), platinum (Pt), copper (Cu), palladium (Pd), iridium (Ir), rhodium (Rh), and aluminum (Al). One or more types of metals are contained, The manufacturing method of the capacitive touch-panel sensor board | substrate as described in any one of Claims 4-6 characterized by the above-mentioned.
  8.  前記(H)金属粒子の粒子径は、0.1μm以上4μm以下の範囲内であることを特徴とする請求項4から請求項7のいずれか一項に記載の静電容量式タッチパネルセンサー基板の製造方法。 8. The capacitance type touch panel sensor substrate according to claim 4, wherein a particle diameter of the (H) metal particles is in a range of 0.1 μm to 4 μm. 9. Production method.
  9.  前記(I)光重合開始剤は、O-アシルオキシム系化合物を1種以上含有することを特徴とする請求項4から請求項8のいずれか一項に記載の静電容量式タッチパネルセンサー基板の製造方法。 The capacitive touch panel sensor substrate according to any one of claims 4 to 8, wherein the (I) photopolymerization initiator contains one or more O-acyloxime compounds. Production method.
  10.  前記カーボンブラックの含有量は、前記(H)金属粒子の重量に対して1重量%以上100重量%以下の範囲内であることを特徴とする請求項6に記載の静電容量式タッチパネルセンサー基板の製造方法。 7. The capacitive touch panel sensor substrate according to claim 6, wherein a content of the carbon black is in a range of 1 wt% to 100 wt% with respect to a weight of the (H) metal particles. Manufacturing method.
  11.  前記(D)第二の接続部および前記(F)取出配線の前記導電材料は、印刷法により成膜され、フォトリソ法によって微細パターン化されたことを特徴とする請求項1から請求項10のいずれか一項に記載の静電容量式タッチパネルセンサー基板の製造方法。 11. The conductive material of the (D) second connection portion and the (F) lead-out wiring is formed by a printing method and finely patterned by a photolithographic method. The manufacturing method of the capacitive touch-panel sensor board | substrate as described in any one.
  12.  請求項1から請求項11のいずれか一項に記載の静電容量式タッチパネルセンサー基板の製造方法で製造されたことを特徴とする静電容量式タッチパネルセンサー基板。 A capacitive touch panel sensor substrate manufactured by the method for manufacturing a capacitive touch panel sensor substrate according to any one of claims 1 to 11.
  13.  (A)第一の透明電極と、(B)第二の透明電極と、(C)前記(A)第一の透明電極同士を接続する第一の接続部と、(D)前記(B)第二の透明電極同士を接続する第二の接続部と、(E)前記(C)第一の接続部と前記(D)第二の接続部との交差する部位に形成される絶縁層と、(F)前記(A)第一の透明電極および前記(B)第二の透明電極に接続される取出配線と、を備えて構成される、透明基材上に形成される静電容量式タッチパネルセンサー基板であって、
     前記(C)第一の接続部は、前記(A)第一の透明電極および前記(B)第二の透明電極の材料と同一の透明導電材料を用いて形成され、
     前記(D)第二の接続部は、導電材料を用いて前記(F)取出配線と同一の材料で形成され、
     前記(D)第二の接続部および前記(F)取出配線の反射率は、0%以上30%以下の範囲内であることを特徴とする静電容量式タッチパネルセンサー基板。
    (A) 1st transparent electrode, (B) 2nd transparent electrode, (C) 1st connection part which connects said (A) 1st transparent electrodes, (D) Said (B) A second connecting portion for connecting the second transparent electrodes; and (E) an insulating layer formed at a portion where the (C) first connecting portion and the (D) second connecting portion intersect. (F) Capacitance type formed on a transparent substrate comprising (A) the first transparent electrode and (B) a lead-out wiring connected to the second transparent electrode. A touch panel sensor substrate,
    The (C) first connection part is formed using the same transparent conductive material as the material of the (A) first transparent electrode and the (B) second transparent electrode,
    The (D) second connection portion is formed of the same material as the extraction wiring (F) using a conductive material,
    The capacitance type touch panel sensor substrate, wherein the reflectance of the (D) second connection portion and the (F) extraction wiring is in the range of 0% to 30%.
  14.  前記(D)第二の接続部の導体幅は、3μm以上20μm以下の範囲内であることを特徴とする請求項13に記載の静電容量式タッチパネルセンサー基板。 14. The capacitive touch panel sensor substrate according to claim 13, wherein the conductor width of the (D) second connection portion is in a range of 3 μm to 20 μm.
  15.  前記導電材料は、感光性導電材料であることを特徴とする請求項13または請求項14に記載の静電容量式タッチパネルセンサー基板。 The capacitive touch panel sensor substrate according to claim 13 or 14, wherein the conductive material is a photosensitive conductive material.
  16.  前記感光性導電材料は、(G)黒色材料、(H)金属粒子、(I)光重合開始剤、(J)重合性多官能モノマー、(K)樹脂を含有することを特徴とする請求項15に記載の静電容量式タッチパネルセンサー基板。 The photosensitive conductive material contains (G) black material, (H) metal particles, (I) a photopolymerization initiator, (J) a polymerizable polyfunctional monomer, and (K) a resin. 15. The capacitive touch panel sensor substrate according to 15.
  17.  前記(G)黒色材料は、黒色顔料、2種以上の顔料の疑似黒色混合物、黒色染料、金属化合物のいずれかであることを特徴とする請求項16に記載の静電容量式タッチパネルセンサー基板。 The capacitive touch panel sensor substrate according to claim 16, wherein the (G) black material is one of a black pigment, a pseudo black mixture of two or more pigments, a black dye, and a metal compound.
  18.  前記(G)黒色材料は、平均粒子径が10nm以上500nm以下の範囲内であるカーボンブラックであることを特徴とする請求項16に記載の静電容量式タッチパネルセンサー基板。 The capacitive touch panel sensor substrate according to claim 16, wherein the (G) black material is carbon black having an average particle diameter in a range of 10 nm to 500 nm.
  19.  前記(H)金属粒子は、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、アルミニウム(Al)から選ばれる1種以上の金属を含有することを特徴とする請求項16から請求項18のいずれか一項に記載の静電容量式タッチパネルセンサー基板。 The (H) metal particles are selected from gold (Au), silver (Ag), platinum (Pt), copper (Cu), palladium (Pd), iridium (Ir), rhodium (Rh), and aluminum (Al). The capacitive touch panel sensor substrate according to any one of claims 16 to 18, comprising at least one metal.
  20.  前記(H)金属粒子の粒子径は、0.1μm以上4μm以下の範囲内であることを特徴とする請求項16から請求項19のいずれか一項に記載の静電容量式タッチパネルセンサー基板。 The capacitance type touch panel sensor substrate according to any one of claims 16 to 19, wherein a particle diameter of the (H) metal particles is in a range of 0.1 µm to 4 µm.
  21.  前記(I)光重合開始剤は、O-アシルオキシム系化合物を1種以上含有することを特徴とする請求項16から請求項20のいずれか一項に記載の静電容量式タッチパネルセンサー基板。 21. The capacitive touch panel sensor substrate according to any one of claims 16 to 20, wherein the (I) photopolymerization initiator contains one or more O-acyloxime compounds.
  22.  前記カーボンブラックの含有量は、前記(H)金属粒子の重量に対して1重量%以上100重量%以下の範囲内であることを特徴とする請求項18に記載の静電容量式タッチパネルセンサー基板。 19. The capacitive touch panel sensor substrate according to claim 18, wherein a content of the carbon black is in a range of 1 wt% to 100 wt% with respect to a weight of the (H) metal particles. .
  23.  前記透明基材がカバーガラスと同一であることを特徴とする請求項12から請求項22のいずれか一項に記載の静電容量式タッチパネルセンサー基板。 The capacitive touch panel sensor substrate according to any one of claims 12 to 22, wherein the transparent substrate is the same as a cover glass.
  24.  請求項12から請求項23のいずれか一項に記載の静電容量式タッチパネルセンサー基板を備えることを特徴とする表示装置。 A display device comprising the capacitive touch panel sensor substrate according to any one of claims 12 to 23.
PCT/JP2012/005649 2011-09-13 2012-09-06 Method for producing capacitive touch panel sensor substrate, capacitive touch panel sensor substrate, and display device WO2013038624A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101133494A TW201333792A (en) 2011-09-13 2012-09-13 Method for producing capacitive touch panel sensor substrate, capacitive touch panel sensor substrate, and display device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-199188 2011-09-13
JP2011199188 2011-09-13
JP2012006299 2012-01-16
JP2012-006299 2012-01-16
JP2012119466 2012-05-25
JP2012-119466 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013038624A1 true WO2013038624A1 (en) 2013-03-21

Family

ID=47882877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005649 WO2013038624A1 (en) 2011-09-13 2012-09-06 Method for producing capacitive touch panel sensor substrate, capacitive touch panel sensor substrate, and display device

Country Status (3)

Country Link
JP (1) JPWO2013038624A1 (en)
TW (1) TW201333792A (en)
WO (1) WO2013038624A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180831A1 (en) * 2013-05-06 2014-11-13 Polyic Gmbh & Co. Kg Layer electrode for touchscreen
JP2015088085A (en) * 2013-11-01 2015-05-07 シャープ株式会社 Display device and display method
JP2016157451A (en) * 2016-03-24 2016-09-01 日立化成株式会社 Production method of touch panel substrate with cured film, photosensitive resin composition used for the method, photosensitive element, and touch panel
KR20170007733A (en) * 2014-05-13 2017-01-20 도레이 카부시키가이샤 Conductive paste, touch panel, and method for producing conductive pattern
US9835769B2 (en) 2015-05-04 2017-12-05 Microsoft Technology Licensing Llc Optical effect coating
US9921698B2 (en) 2013-05-06 2018-03-20 Polyic Gmbh & Co. Kg Layer electrode for touchscreens
US10040967B2 (en) 2015-11-06 2018-08-07 Hitachi Chemical Company, Ltd. Photosensitive film, photosensitive element, cured product and touch panel
JP7451967B2 (en) 2019-11-28 2024-03-19 株式会社リコー Active energy ray rapid curing composition, modeling method, and modeling device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504697B (en) * 2013-10-07 2015-10-21 J Touch Corp Blackening coating and electrode structure using the same
TWI599679B (en) * 2014-04-22 2017-09-21 達興材料股份有限公司 Method of forming metal line
TW201543977A (en) * 2014-05-07 2015-11-16 Daxin Materials Corp Method of forming silver-containing conductive pattern
TWI744760B (en) * 2019-12-30 2021-11-01 財團法人工業技術研究院 Electrostatic sensing system and electrostatic sensing assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048434A1 (en) * 2002-11-28 2004-06-10 Taiyo Ink Manufacturing Co., Ltd. Photo- and thermo-setting resin composition and printed wiring boards made by using the same
JP2007123260A (en) * 2005-09-30 2007-05-17 Tdk Corp Method of manufacturing transparent conductor
JP2010061502A (en) * 2008-09-05 2010-03-18 Mitsubishi Electric Corp Touch screen, touch panel, and display device
WO2011013279A1 (en) * 2009-07-31 2011-02-03 シャープ株式会社 Electrode substrate, method for manufacturing electrode substrate, and image display device
JP2011096225A (en) * 2009-09-30 2011-05-12 Dainippon Printing Co Ltd Electrode film for touch panel and touch panel
JP2011170311A (en) * 2010-02-22 2011-09-01 Samsung Mobile Display Co Ltd Touch screen panel and fabricating method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048434A1 (en) * 2002-11-28 2004-06-10 Taiyo Ink Manufacturing Co., Ltd. Photo- and thermo-setting resin composition and printed wiring boards made by using the same
JP2007123260A (en) * 2005-09-30 2007-05-17 Tdk Corp Method of manufacturing transparent conductor
JP2010061502A (en) * 2008-09-05 2010-03-18 Mitsubishi Electric Corp Touch screen, touch panel, and display device
WO2011013279A1 (en) * 2009-07-31 2011-02-03 シャープ株式会社 Electrode substrate, method for manufacturing electrode substrate, and image display device
JP2011096225A (en) * 2009-09-30 2011-05-12 Dainippon Printing Co Ltd Electrode film for touch panel and touch panel
JP2011170311A (en) * 2010-02-22 2011-09-01 Samsung Mobile Display Co Ltd Touch screen panel and fabricating method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180831A1 (en) * 2013-05-06 2014-11-13 Polyic Gmbh & Co. Kg Layer electrode for touchscreen
US9921698B2 (en) 2013-05-06 2018-03-20 Polyic Gmbh & Co. Kg Layer electrode for touchscreens
JP2015088085A (en) * 2013-11-01 2015-05-07 シャープ株式会社 Display device and display method
KR20170007733A (en) * 2014-05-13 2017-01-20 도레이 카부시키가이샤 Conductive paste, touch panel, and method for producing conductive pattern
KR102208100B1 (en) 2014-05-13 2021-01-28 도레이 카부시키가이샤 Conductive paste, touch panel, and method for producing conductive pattern
US9835769B2 (en) 2015-05-04 2017-12-05 Microsoft Technology Licensing Llc Optical effect coating
US10040967B2 (en) 2015-11-06 2018-08-07 Hitachi Chemical Company, Ltd. Photosensitive film, photosensitive element, cured product and touch panel
US10717893B2 (en) 2015-11-06 2020-07-21 Hitachi Chemical Company, Ltd. Photosensitive film, photosensitive element, cured product and touch panel
JP2016157451A (en) * 2016-03-24 2016-09-01 日立化成株式会社 Production method of touch panel substrate with cured film, photosensitive resin composition used for the method, photosensitive element, and touch panel
JP7451967B2 (en) 2019-11-28 2024-03-19 株式会社リコー Active energy ray rapid curing composition, modeling method, and modeling device

Also Published As

Publication number Publication date
JPWO2013038624A1 (en) 2015-03-23
TW201333792A (en) 2013-08-16

Similar Documents

Publication Publication Date Title
WO2013038624A1 (en) Method for producing capacitive touch panel sensor substrate, capacitive touch panel sensor substrate, and display device
JP2014085771A (en) Capacitance type touch panel sensor substrate and method for manufacturing the same and display device
CN107850842B (en) Transfer film, electrode protection film for capacitive input device, laminate, method for manufacturing laminate, and capacitive input device
CN105938295B (en) Black resin composition for light-shielding film, substrate with light-shielding film, color filter and touch panel
JP2014099159A (en) Front plate for touch panel, display device including the plate, and integrated sensor substrate comprising front plate for touch panel and touch panel sensor
CN104076608A (en) Photosensitive resin composition, white matrix, filter and display module
TWI597530B (en) Resin black matrix substrate and touch panel
KR20140066417A (en) Touch screen module and method of manufacturing the same
JP6750305B2 (en) Color filter substrate and display device using the same
JP2014044501A (en) Manufacturing method of on-cell capacitive touch panel substrate, on-cell capacitive touch panel substrate, and display device
JP2012203184A (en) Color filter substrate and liquid crystal display device having the same
KR101391225B1 (en) Photo-sensitive resin composition for forming non-diplay part light-shielding pattern
TWI640578B (en) Colored composition, colored cured film and display element
JP2017090812A (en) Electrostatic capacitance type touch panel integrated liquid crystal display panel, color filter substrate, and method for manufacturing the electrostatic capacitance type touch panel integrated liquid crystal display panel
JP2013101861A (en) Photosensitive conductive paste, conductive circuit pattern, touch panel sensor, and display device
JP2014197324A (en) Touch panel sensor substrate with integrated cover glass, and display device
JP2014130417A (en) Front plate for touch panel, integrated-type sensor substrate equipped with the same and display device
KR20150027910A (en) Window plate and touch screen panel comprising the same
KR20150027498A (en) Window plate and touch screen panel comprising the same
JP2016061878A (en) Liquid crystal display panel
JP5478157B2 (en) Substrate for liquid crystal display device and liquid crystal display device
WO2013136719A1 (en) Touch panel sensor of electrostatic capacitance type and method for producing same, and display device
JP2015099313A (en) Black photosensitive resin composition, black matrix, color filter, liquid crystal display device, and electroluminescence display device
JP2013214271A (en) Capacitance type touch panel substrate, method for manufacturing the same, and display device
JP2014174607A (en) Manufacturing method of capacitance type touch panel sensor substrate, capacitance type touch panel sensor substrate and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832315

Country of ref document: EP

Kind code of ref document: A1