WO2013035865A1 - 風力発電用の増速機 - Google Patents

風力発電用の増速機 Download PDF

Info

Publication number
WO2013035865A1
WO2013035865A1 PCT/JP2012/072981 JP2012072981W WO2013035865A1 WO 2013035865 A1 WO2013035865 A1 WO 2013035865A1 JP 2012072981 W JP2012072981 W JP 2012072981W WO 2013035865 A1 WO2013035865 A1 WO 2013035865A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
gap
planetary gear
bearing
gear
Prior art date
Application number
PCT/JP2012/072981
Other languages
English (en)
French (fr)
Inventor
真司 吉田
義高 五十嵐
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011195407A external-priority patent/JP5738132B2/ja
Priority claimed from JP2011195406A external-priority patent/JP5832206B2/ja
Priority claimed from JP2011209952A external-priority patent/JP5836035B2/ja
Priority claimed from JP2011209953A external-priority patent/JP5836036B2/ja
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201280041988.5A priority Critical patent/CN103765050B/zh
Publication of WO2013035865A1 publication Critical patent/WO2013035865A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0479Gears or bearings on planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • F16C27/045Ball or roller bearings, e.g. with resilient rolling bodies with a fluid film, e.g. squeeze film damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H2057/085Bearings for orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • F16H37/041Combinations of toothed gearings only for conveying rotary motion with constant gear ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a gearbox for wind power generation.
  • Patent Document 1 discloses a gearbox for wind power generation as shown in FIGS.
  • the wind power generation facility 1 is assembled so as to be freely rotatable with respect to the column 2 standing on the foundation 6, the nacelle 3 installed on the upper end of the column 2, and the nacelle 3. And a rotor head 4.
  • a plurality of (three in the illustrated example) wind turbine blades (wind turbine blades) 5 are attached to the rotor head 4.
  • a speed increaser 20 and a generator 11 are connected to the rotor head 4.
  • reference numeral 12 is a transformer
  • 13 is a controller
  • 14 is an inverter
  • 15 is an inverter cooler
  • 16 is a lubricating oil cooler.
  • the speed increaser 20 includes a planetary gear mechanism 22 in the first stage and parallel shaft gear mechanisms 24 and 26 in the middle and rear stages.
  • the rotation of the main shaft (not shown) of the rotor head 4 input from the input shaft 28 is accelerated by a total of three stages of gear mechanisms 22, 24, 26 and output from the output shaft 30.
  • the generator 11 described above is connected to the output shaft 30.
  • the planetary gear mechanism 22 includes a carrier 32 integrated with an input shaft 28, a planetary pin 34 fixed to the carrier 32, a planetary gear 36 rotatably supported by the planetary pin 34, and the planetary gear 36 simultaneously. It is mainly comprised from the internal gear 38 and the sun gear 40 which mesh.
  • the sun gear 40 is integrated with the output shaft 42 of the planetary gear mechanism 22, and the internal gear 38 is integrated with the casing 44.
  • a roller bearing 46 is interposed between the planetary pin 34 and the planetary gear 36 so as to be able to cope with a large torque input from the windmill blade 5 side.
  • Wind power generation equipment is designed so that its useful life is around 20 years. For this reason, it is required that the speed increaser basically has a life of about 20 years.
  • an effective measure for ensuring the reliability of the gearbox is to increase the safety factor (safety factor) of each element when designing, if necessary.
  • safety factor safety factor
  • the speed-up gear as a whole is naturally increased in size and weight, resulting in an increase in manufacturing cost and construction cost.
  • the present invention was made to solve such problems, and by overcoming a newly found intermediate problem (described later), it is small, light, and low in cost, and highly reliable. Providing a gearbox for wind power generation with a long service life is the original challenge.
  • a certain aspect of the present invention relates to a wind speed booster equipped with a planetary gear mechanism.
  • This speed increaser is provided with the gear which comprises one element of a planetary gear mechanism, and the supporting member which supports a gear rotatably via a bearing.
  • a plurality of ring-shaped members are interposed between the gear and the bearing, between the bearing and the support member, or both.
  • a gap into which the lubricant enters is formed in at least one of the inner peripheral side and the outer peripheral side of the plurality of ring-shaped members.
  • the speed increaser includes a planetary gear of a planetary gear mechanism, and a carrier that rotatably supports the planetary gear together with a planetary pin that rotates integrally with the planetary gear via a bearing.
  • a plurality of ring-shaped members are interposed between the carrier and the outer ring of the bearing, between the planetary pin and the inner ring of the bearing, or both.
  • a gap into which the lubricant enters is formed in at least one of the inner peripheral side and the outer peripheral side of the plurality of ring-shaped members.
  • Still another aspect of the present invention also relates to a wind speed booster equipped with a planetary gear mechanism.
  • This speed increaser is provided with the gear which comprises one element of a planetary gear mechanism, and the supporting member which supports a gear rotatably via a bearing.
  • a gap that allows at least two of the gear, the bearing, and the support member to be relatively minutely displaced in the radial direction is formed in any part of the bearing other than the part that rotates relatively. Lubricant enters the gap.
  • a recess was provided on at least one of the two surfaces facing each other through a gap.
  • a “gap” in which the lubricant can enter is formed in any part other than the part where the gear and the support member rotate relative to each other via the bearing.
  • the gap allows at least two of the gear, the bearing, and the support member to be relatively slightly displaced in the radial direction.
  • Still another aspect of the present invention also relates to a wind speed booster equipped with a planetary gear mechanism.
  • This speed increaser includes a gear that constitutes one element of a planetary gear mechanism, and a support member that rotatably supports the gear via a bearing.
  • a gap is formed in the portion so that at least two of the gear, the bearing, and the support member can be slightly displaced relatively in the radial direction, and a seal member that seals liquid in the gap is provided.
  • the “liquid” to be sealed includes a semi-solid material such as grease, and may be the same as or different from the lubricant in the gearbox. Further, the “liquid” to be sealed is not necessarily a so-called “lubricant”.
  • Still another aspect of the present invention also relates to a wind speed booster equipped with a planetary gear mechanism.
  • This speed increaser includes a gear that constitutes one element of the planetary gear mechanism, and a support member that rotatably supports the gear via a bearing, and is any one other than a portion that relatively rotates in the bearing.
  • a gap that allows at least two of the gear, the bearing, and the support member to be relatively finely displaced in the radial direction, and a lubricant can enter the portion.
  • An open lubricating passage is provided.
  • the lubrication passage is opened at any part other than the part where the gear and the support member rotate relative to each other via the bearing, thereby forming a “gap” into which the lubricant can enter.
  • the gap allows at least two of the gear, the bearing, and the support member to be relatively slightly displaced in the radial direction.
  • a lubrication passage through which the lubricant can flow is opened with respect to the “gap”.
  • the lubricant is not necessarily positively supplied to the gap by a pump or the like.
  • the lubricant may be supplied to the gap using, for example, a centrifugal force generated by rotation of a shaft or gear.
  • the wind turbine blades of wind power generation equipment may be momentarily strongly subjected to “wind that changes in wind speed and direction”. For example, when a strong gust is applied to the windmill blade, a strong acceleration torque is momentarily applied to each element of the speed increaser. However, since a generator that rotates at high speed is connected as a load at the tip of the speed increaser, each element of the speed increaser can instantaneously follow this acceleration torque due to inertia and increase the rotation speed. Can not. As a result, when the acceleration torque rises steeply, the acceleration torque rising steeply is applied to each element instantaneously (as if applied to each stationary element).
  • the present invention has not only a large torque continuously applied during strong winds, but rather a problem of wind speed gear speed increasers. It is assumed that a strong load or impact that occurs instantaneously (peak) on the element has a large effect, and mitigating such a strong instantaneous load or impact is regarded as an “intermediate task”. It was conceived with the idea of solving the above-mentioned original problems by overcoming them.
  • a plurality of ring-shaped members are interposed between the gear and the bearing, between the bearing and the support member, or both.
  • a gap into which the lubricant enters is formed in at least one of the inner peripheral side and the outer peripheral side of the plurality of ring-shaped members.
  • a plurality of ring-shaped members are interposed between the carrier and the outer ring of the bearing, or between the planetary pin and the inner ring of the bearing, or both.
  • a gap into which the lubricant enters is formed in at least one of the inner peripheral side and the outer peripheral side of the plurality of ring-shaped members.
  • the gearbox will inherently instantly attempt to automatically form the most stable meshing state at that moment.
  • the gearbox due to the presence of the gap, as a result, at least two of the gear, the bearing, the ring-shaped member, and the support member, or the carrier, the bearing, the ring-shaped member, and the planetary pin. At least two people can relatively slightly displace in the radial direction.
  • the formation mode of the gap changes and the lubricant moves (in and out) within the gap.
  • the lubricant moves (especially, the movement to go out of the gap). Resistance occurs. With this resistance, it is possible to damp loads and impacts (if there is no resistance, it will rise sharply as it is).
  • FIG. 20 is a cross-sectional view showing the overall configuration of the speed increaser in FIG. 19. It is sectional drawing which showed typically the structure of the oil guide body of FIG. It is sectional drawing which shows the principal part of the step-up gear for wind power generation concerning other embodiment of this invention. It is sectional drawing which shows the principal part of the step-up gear for wind power generation concerning further another embodiment of this invention. It is a skeleton figure which shows schematic structure of the planetary gear mechanism of the step-up gearbox for wind power generation concerning further another embodiment of this invention. It is a front view which shows an example of the whole structure of the conventional wind power generation equipment (and this invention). It is a perspective view which shows the internal structure of the nacelle of the wind power generation facility of FIG. It is sectional drawing which shows an example of the conventional gear box for wind power generation installed in the nacelle of the wind power generation equipment of FIG.
  • FIG. 1 is a cross-sectional view showing a main part of a speed increasing gear 50 for wind power generation according to a first embodiment of the present invention
  • FIG. 2 is an overall cross-sectional view thereof.
  • the speed increasing gear 50 for wind power generation includes a planetary gear mechanism 52 in the first stage and first and second parallel shaft gear mechanisms 54 and 56 in the middle stage and the rear stage.
  • the rotation of the main shaft (not shown) input from the input shaft 58 is accelerated by a total of three stages of gear mechanisms 52, 54, 56 and output from the output shaft 60.
  • a generator (similar to the conventional generator 11: see FIG. 26) is connected to the output shaft 60, and predetermined power generation is performed.
  • the planetary gear mechanism 52 includes a carrier 62 that is integrated with the input shaft 58, planetary pins 64 that are supported at both ends by the carrier 62, and three that are rotatably supported by the planetary pins 64 (one in FIG. 2). Only the planetary gear 68, the internal gear 70 in which the planetary gear 68 is internally meshed at the same time, the sun gear 72 in which the planetary gear 68 is simultaneously externally meshed, and the ring-shaped member 88 (described later). It is configured. In this embodiment, the sun gear 72 is directly formed on the output shaft 80 of the planetary gear mechanism 52, and the internal gear 70 is integrated (fixed) with the casing 74. In FIG. 2, the illustration of the boundary between the members of the ring-shaped member 88 is omitted.
  • the carrier 62 is configured such that a pair of disk-shaped carrier flanges 62A and 62B are connected and confronted via a connecting portion 62C, and the planetary gear 68 and internal teeth are interposed between the pair of carrier flanges 62A and 62B.
  • a gear 70 and a sun gear 72 are incorporated.
  • the carrier flanges 62A and 62B are rotatably supported by the casing 74 of the gearbox 50 (with the input shaft 58) by bearings 75 and 78.
  • the planetary pin 64 is press-fitted into the pair of carrier flanges 62A and 62B and is supported at both ends.
  • the planetary gear 68 is rotatably supported by the planetary pin 64 via a roller bearing 76 and a ring-shaped member 88. That is, in this embodiment, the planetary gear 68 corresponds to the “gear” of claim 1, the roller bearing 76 corresponds to the “bearing”, and the planetary pin 64 corresponds to the “support member”.
  • the planetary gear 68 is rotatably supported by the planetary pin 64 (which is a support member) via the roller bearing 76 and the ring-shaped member 88.
  • two roller bearings 76 are arranged side by side in the axial direction.
  • Each roller bearing 76 includes an inner ring 76A, an outer ring 76B, rollers (rolling elements) 76C, and a retainer 76D.
  • the inner ring 76A of the roller bearing 76 is positioned in the axial direction between the carrier flanges 62A and 62B via spacers 82 (82A to 82C).
  • the outer ring 76B of the roller bearing 76 is positioned in the axial direction with respect to the inner ring 76A via the roller 76C, the central spacer 82B, and the retainer 76D.
  • the planetary gear 68 has a center hole 68A.
  • a groove 68B is formed in the center hole 68A, and a retaining ring 84 is engaged with the groove 68B.
  • the members 88A and 88E positioned on the outside in the axial direction, that is, at both ends, respectively, are for restricting the movement of the five ring-shaped members 88A to 88E in the axial direction. Step portions 88AA and 88EA are provided.
  • the step portion 88EA of the ring-shaped member 88E is locked to the retaining ring 84, and the step portion 88AA of the ring-shaped member 88A is locked to the corresponding step portion 68C of the planetary gear 68. Thereby, the ring-shaped member 88 is positioned in the axial direction with respect to the planetary gear 68.
  • Grooves 88AC and 88EC are formed in the inner peripheral surface 88AB of the ring-shaped member 88A and the inner peripheral surface 88EB of the ring-shaped member 88E, respectively, and retaining rings 85A and 85E are engaged with these grooves 88AC and 88EC, respectively.
  • the ring-shaped member 88 is positioned in the axial direction with respect to the end portions 76A1 and 76B1 of the outer ring 76B of the two roller bearings 76.
  • the planetary gear 68 is positioned in the axial direction via the ring-shaped member 88, and the movement of the planetary gear 68 in the axial direction is restricted.
  • the planetary gear 68 is not particularly restricted by minute movements in the radial direction.
  • the circumferential movement is not restricted at all with respect to at least the roller bearing 76 (the outer ring 76B). That is, a small gap S1 is formed on the inner peripheral side of the ring-shaped member 88, and a larger gap S2 is formed on the outer peripheral side.
  • the clearance S1 is formed between the inner peripheral surface of the ring-shaped member 88 and the outer peripheral surface of the outer ring 76B of the bearing 76
  • the clearance S2 is formed between the outer peripheral surface of the ring-shaped member 88 and the planetary gear 68. It is formed between the peripheral surface of the center hole 68A. Accordingly, the existence of the two gaps S1 and S2 allows the planetary gear 68 to be slightly displaced in the radial direction with respect to the planetary pin 64 that is a support member. One of the gaps S1 and S2 may not be provided.
  • the gap S1 is set to have a size of about 0.3% (3/1000) with respect to the outer diameter d1 of the roller bearing 76.
  • the gap S1 and the gap S2 enable the planetary gear 68, and the outer ring 76B of the bearing 76, to be relatively slightly displaced in the radial direction.
  • the roller bearing 76 is incorporated in a state of being integrated with the planetary pin 64 that is a support member, and therefore the planetary gear 68 is configured to be slightly displaced with respect to the roller bearing 76. Yes.
  • the planetary gear 68 can be slightly displaced with respect to the roller bearing 76. As a result, the planetary gear 68 can move with respect to the internal gear 70 and the sun gear 72 in addition to a minute displacement in the circumferential direction due to normal backlash. It means that the gap S1 and the gap S2 can be further finely displaced in the radial direction.
  • the lubricant (lubricating oil) in the gearbox 50 can enter the gap S1 and the gap S2.
  • the function of the lubricant in the gap S1 and the gap S2 will be described in detail later.
  • the rotation of the windmill blade 5 is transmitted to the input shaft 58 of the gear box 50 through the main shaft of the rotor head 4.
  • the rotation of the input shaft 58 is input to the planetary gear mechanism 52 as the revolution of the planetary gear 68 through the carrier 62 (carrier flanges 62A and 62B), and the relative rotation of the three of the planetary gear 68, the internal gear 70 and the sun gear 72 is achieved.
  • the accelerated rotation is output from the sun gear 72 to the output shaft 80 of the planetary gear mechanism 52.
  • the rotation of the output shaft 80 of the planetary gear mechanism 52 is amplified by the first parallel shaft gear mechanism 54 via the coupling 79, further amplified by the second parallel shaft gear mechanism 56, and finally the speed increaser. 50 output shafts 60 are taken out. Since the output shaft 60 of the step-up gear 50 is connected to the generator 11, the generator 11 can be rotated after the rotation of the windmill blade 5 is accelerated, and efficient wind power generation is performed. be able to.
  • the planetary pin 64 revolves around the axis of the planetary gear mechanism 52 as the carrier flanges 62A, 62B rotate.
  • the gear 68 rotates with the sun gear 72 circumscribed and the internal gear 70 inscribed.
  • the relative rotation of the planetary pin 64 and the planetary gear 68 in the circumferential direction is realized by the relative rotation of the inner ring 76A and the outer ring 76B of the roller bearing 76 exclusively through the roller 76C of the roller bearing 76.
  • the resistance to the relative rotation of the planetary pin 64 and the planetary gear 68 in the circumferential direction is much larger in the gap S1 and the gap S2 than in the roller bearing 76.
  • the outer ring 76B of the roller bearing 76, the ring-shaped member 88, and the planetary gear 68 hardly rotate relative to each other (at least during normal operation) (regardless of the presence of the gap S1 and the gap S2).
  • the gap S1 When the gap S1 is narrowed at a certain portion in the circumferential direction due to this minute displacement, the lubricant present in that portion is pushed out of the gap S1 while being crushed. Conversely, on the opposite side in the diameter direction, the gap S1 increases, and the lubricant enters the gap S1. At this time, in particular, when the gap S1 becomes narrower and the lubricant in the gap S1 is pushed out while being crushed, there is a strong compressive stress on the lubricant and a shear stress caused by being forced to move in a narrow space. appear.
  • the ring-shaped member 88 that has been integrally rotated within the range of the shearing stress in the circumferential direction of the lubricant in the gap S1 until then is exceeded between the outer ring 76B of the bearing 76, the shearing stress is exceeded.
  • a load in the circumferential direction is applied, a “slip” occurs between the ring-shaped member 88 and the outer ring 76B of the bearing 76. Therefore, the newly generated slip also exhibits an impact absorbing effect. it is conceivable that.
  • the step-up gearbox 50 for wind power generation there are three planetary gears 68 and there are a total of six meshing points where power is transmitted.
  • the revolution trajectory (the position of the planetary pin 64 with respect to the carrier 62) always varies due to manufacturing errors. Further, the coaxiality of the internal gear 70 and the sun gear 72 is not necessarily ensured accurately.
  • the three planetary gears 68 can be slightly displaced in the radial direction with respect to the internal gear 70 and the sun gear 72 due to the presence of the gap S1 and the gap S2, respectively.
  • the most stable meshing state at that time can be automatically and more easily formed in real time (instantly).
  • the function that can automatically form this stable meshing state is always maintained not only when shocking torque is applied, but also when the wind direction does not change so rapidly, so fluctuation components in the lower frequency range It is thought that it contributes to absorption of water.
  • the total amount of energy from the wind turbine blade 5 to the generator 11 is substantially the same due to the presence of the gap S1, the gap S2 and the lubricant in the gap S1, the gap S2, but in particular, the load applied to each element
  • the peak value can be reduced, and the occurrence of instantaneous overload and impact can be reduced.
  • the torque input from the wind turbine blade 5 can be transmitted more stably, and the life of the gearbox can be greatly extended.
  • the ring-shaped member 88 itself can be slightly displaced in the radial direction with respect to the planetary pin 64 (and the outer ring 76B of the roller bearing 76 integrated therewith), and this ring-shaped member Since the planetary gear 68 can be slightly displaced in the radial direction with respect to the member 88, the frequency region in which the fluctuation component can be satisfactorily absorbed can be further expanded.
  • the lubricant can enter the gap S1 and the gap S2 through the gap between the adjacent ring-shaped members.
  • the lubricant can be easily entered through the gap S1 and the gap S2, and the impact absorption effect can be enhanced.
  • Such an effect is more remarkable when the gap S1 and the gap S2 are relatively narrow or when the gap is relatively long in the axial direction.
  • a clearance S3 (illustrated by an imaginary line in FIG. 1) is additionally formed between the planetary pin 64, which is a support member, and the bearing 76 (the inner ring 76A). It is effective to do.
  • a ring-shaped member 88 is replaced with the planetary gear 68 and the outer ring 76B of the bearing 76, or in addition to the planetary gear 68 and the outer ring 76B of the bearing 76, the roller bearing 76 is provided. It may be arranged between the inner ring 76A and the planetary pin 64.
  • the size of the gap S1 is not limited to 3/1000 of the inner diameter of the gap S1 (in the above embodiment, the outer diameter of the outer ring 76B of the roller bearing 76). Changing the formation position, number, or size (interval) of the gap changes the inertial mass of the member that can be finely displaced and the manner of displacement, so the frequency component of the region that can absorb fluctuation (load fluctuation) well Can be adjusted. For this reason, it is good to set suitably considering the property of the wind actually blown in the area where the wind power generation facility is installed.
  • FIG. 3 is a cross-sectional view showing the main part of a speed increasing gear 91 for wind power generation according to the second embodiment of the present invention.
  • a plurality of, for example, five ring-shaped members 100A to 100E are interposed between the planetary gear 68 and the bearing 76 (the outer ring 76B). Similar to the first embodiment, a small gap S1 is formed on the inner peripheral side of the five ring-shaped members 100A to 100E, and a larger gap S2 is formed on the outer peripheral side. More specifically, the clearance S1 is formed between the inner peripheral surface of the ring-shaped member 100B and the outer peripheral surface of the outer ring 76B of the bearing 76, and the clearance S2 is formed between the outer peripheral surface of the ring-shaped member 100D and the planetary gear 68. It is formed between the peripheral surface of the center hole.
  • ring-shaped members 100A to 100E Of the five ring-shaped members 100A to 100E, three ring-shaped members 100B, 100C, and 100D that are located in the middle in the axial direction are arranged in the radial direction in this order, and the shafts of these members 100B, 100C, and 100D are arranged. Ring-shaped members 100A and 100E are located on the outside in the direction, that is, at both ends. A gap is provided between two of the three ring-shaped members 100B, 100C, and 100D that are adjacent in the radial direction. That is, a gap S4 is provided between the ring-shaped member 100B and the ring-shaped member 100C, and a gap S5 is provided between the ring-shaped member 100C and the ring-shaped member 100D.
  • the lubricant can enter the gap S4 and the gap S5 through gaps between the ring-shaped member 100A and the three ring-shaped members 100B, 100C, and 100D.
  • the gap S4 and the gap S5 function in the same manner as the gap S1 and the gap S2.
  • the ring-shaped members 100A and 100E have the same configuration as that of the ring-shaped members 88A and 88E of the first embodiment with respect to the restraining of the movement of the planetary gear 68 in the axial direction.
  • FIG. 4 is a schematic plan view of the planetary pin 64, the roller bearing 76, the ring-shaped member 100E, the lubricant 104, and the planetary gear 68 as seen from the right side of FIG. In FIG. 4, the display of the gap S1 is omitted.
  • the same effects as the wind power speed increaser 50 according to the first embodiment are achieved. Furthermore, in the speed increasing device 91 for wind power generation according to the present embodiment, three ring-shaped members 100B, 100C, and 100D are arranged in the radial direction, and gaps S4 and S5 are provided therebetween. Thereby, since the role which absorbs an impact exists in series, the impact absorption effect can be enhanced.
  • FIG. 5 is a cross-sectional view showing a main part of a speed increaser 120 for wind power generation according to a third embodiment of the present invention.
  • the planetary gear 83 of the speed increaser 120 for wind power generation includes a planetary gear portion 83A and a planetary pin portion 83C that supports the planetary gear portion 83A.
  • the “gear” may be defined as a member or a group of members that are rotatably supported by a support member via a bearing and have a tooth portion.
  • the planetary gear 83 (including the planetary pin portion 83C) is connected to the roller 84 by a carrier 84 (a pair of carrier flanges 84A and 84B) serving as a support member disposed on both sides, and a plurality of rings. Both ends are supported so as to be rotatable through the shaped members 122A to 122F.
  • the planetary gear 83 is rotatable relative to the carrier flanges 84A and 84B via the roller bearing 86.
  • the roller bearing 86 includes an inner ring 86A, an outer ring 86B, and a roller 86C.
  • a plurality of, for example, three ring-shaped members 122A to 122C are interposed between the carrier flange 84A and the outer ring 86B of the bearing 86.
  • the three ring-shaped members 122A to 122C are arranged in the axial direction.
  • a plurality of, for example, three ring-shaped members 122D to 122F are interposed between the carrier flange 84B and the outer ring 86B of the bearing 86.
  • the three ring-shaped members 122D to 122F are arranged in the axial direction.
  • gaps S6 are formed for the lubricant to enter. Gap between the three ring-shaped members 122A to 122C and the bearing 86 (the outer ring 86B) and between the three ring-shaped members 122D to 122F and the bearing 86 (the outer ring 86B). S7 is formed. That is, gaps S6 and S7 are formed on both the inner and outer peripheral sides of the three ring-shaped members 122A to 122C. The same applies to the three ring-shaped members 122D to 122F.
  • the planetary gear 83 can be slightly displaced in the radial direction with respect to the carrier 84 as a support member, as in the first embodiment.
  • the planetary gear 83 according to this embodiment includes the planetary pin portion 83C integrally, the inertial mass of the member that is slightly displaced is larger than that of the first embodiment. For this reason, depending on the design, there is a possibility that fluctuation absorption in a lower frequency region can be satisfactorily performed.
  • the lubricant can enter the gap S6 and the gap S7 from the gap between the adjacent ring-shaped members, so that the impact absorbing effect can be enhanced. it can.
  • a gap S8 (shown by an imaginary line in FIG. 5) may be formed between the inner ring 86A of the roller bearing 86 and the planetary gear 83.
  • a gap S9 (shown by an imaginary line in FIG. 5) may be provided between the planetary gear portion 83A and the planetary pin portion 83C of the planetary gear 83.
  • a plurality of ring-shaped members may be interposed between the planetary pin portion 83C and the inner ring 86A of the bearing 86.
  • the frequency region that can be absorbed and absorbed is different. This makes it possible to perform more effective fluctuation absorption in consideration of the nature of the.
  • the opposing surface of two adjacent members of a some ring-shaped member demonstrated orthogonally to a rotating shaft, or the case where it became parallel to a rotating shaft
  • the opposing surfaces of two adjacent members among the plurality of ring-shaped members may be inclined with respect to the rotation axis. That is, a plurality of ring-shaped members may be provided in such a manner that one ring-shaped member is obliquely divided with respect to the rotation axis.
  • the ring-shaped member is divided into both the axial direction and the radial direction, but may be divided only in the radial direction.
  • FIG. 6 is a cross-sectional view showing a main part of a speed increasing gear 250 for wind power generation according to a fourth embodiment of the present invention
  • FIG. 7 is an overall cross-sectional view thereof.
  • the speed increasing gear 250 for wind power generation includes a planetary gear mechanism 252 in the first stage and first and second parallel shaft gear mechanisms 254 and 256 in the middle stage and the rear stage.
  • the rotation of the main shaft (not shown) input from the input shaft 258 is increased by a total of three stages of gear mechanisms 252, 254, 256 and output from the output shaft 260.
  • a generator (similar to the conventional generator 11: see FIG. 26) is connected to the output shaft 260, and predetermined power generation is performed.
  • the planetary gear mechanism 252 includes a carrier 262 integrated with the input shaft 258, a planetary pin 264 that is supported at both ends by the carrier 262, and three pieces that are rotatably supported by the planetary pin 264 (one piece in FIG. 7).
  • the planetary gear 268 (only shown), the internal gear 270 in which the planetary gear 268 is simultaneously inscribed and meshed, the sun gear 272 in which the planetary gear 268 is simultaneously inscribed in mesh, and a ring-shaped member 288 described later.
  • the sun gear 272 is directly formed on the output shaft 280 of the planetary gear mechanism 252, and the internal gear 270 is integrated (fixed) with the casing 274.
  • the carrier 262 is configured such that a pair of disk-shaped carrier flanges 262A, 262B are connected to and opposed to each other via a connecting portion 262C, and the planetary gear 268, internal teeth are interposed between the pair of carrier flanges 262A, 262B.
  • a gear 270 and a sun gear 272 are incorporated.
  • the carrier flanges 262A and 262B are rotatably supported by the bearings 275 and 278 on the casing 274 of the gearbox 250 (with the input shaft 258).
  • the planetary pin 264 is press-fitted into the pair of carrier flanges 262A and 262B and is supported at both ends.
  • the planetary gear 268 is rotatably supported by the planetary pin 264 via a roller bearing 276 and a ring-shaped member 288. That is, in this embodiment, the planetary gear 268 corresponds to the “gear” of claim 1, the roller bearing 276 corresponds to the “bearing”, and the planetary pin 264 corresponds to the “support member”.
  • the planetary gear 268 is rotatably supported by the planetary pin 264 (which is a support member) via the roller bearing 276 and the ring-shaped member 288.
  • two roller bearings 276 are arranged side by side in the axial direction.
  • Each roller bearing 276 includes an inner ring 276A, an outer ring 276B, rollers (rolling elements) 276C, and a retainer 276D.
  • the inner ring 276A of the roller bearing 276 is positioned in the axial direction between the carrier flanges 262A and 262B via spacers 282 (282A to 282C).
  • the outer ring 276B of the roller bearing 276 is positioned in the axial direction with respect to the inner ring 276A via the roller 276C, the central spacer 282B, and the retainer 276D.
  • a ring-shaped member 288 is interposed between the planetary gear 268 and the bearing 276 (the outer ring 276B).
  • the outer peripheral surface 288A of the ring-shaped member 288 is provided with a plurality of grooves 288AA extending in the recess, that is, in the circumferential direction.
  • the groove 288AA is connected to the circumference in the circumferential direction.
  • the groove 288AA may be a groove broken at some places in the circumferential direction.
  • the planetary gear 268 has a center hole 268A.
  • a groove 268B is formed in the center hole 268A, and a retaining ring 284 is engaged with the groove 268B.
  • step portions 288B and 288C for restricting the axial movement of the ring-shaped member 288 are provided at both ends in the axial direction of the ring-shaped member 288, respectively.
  • a step 288B at one end in the axial direction of the ring-shaped member 288 is locked to a retaining ring 284, and a step 288C at the other end of the ring-shaped member 288 is locked to a corresponding step 268C of the planetary gear 268. Yes.
  • the ring-shaped member 288 is positioned in the axial direction with respect to the planetary gear 268.
  • Two grooves 288DA and 288DB are formed on the inner peripheral surface 288D of the ring-shaped member 288, and retaining rings 285A and 285B are engaged with these grooves 288DA and 288DB, respectively. Accordingly, the ring-shaped member 288 is positioned in the axial direction with respect to the end portions 276A1 and 276B1 of the outer ring 276B of the two roller bearings 276. Thus, the planetary gear 268 is positioned in the axial direction via the ring-shaped member 288, and the movement of the planetary gear 268 in the axial direction is restricted.
  • the planetary gear 268 is not particularly restricted by minute movements in the radial direction.
  • at least the roller bearing 276 (the outer ring 276B) is not restrained at all. That is, a small gap S201 is formed on the inner peripheral side of the ring-shaped member 288, and a larger gap S202 is formed on the outer peripheral side.
  • the clearance S201 is formed between the inner peripheral surface 288D of the ring-shaped member 288 and the outer peripheral surface of the outer ring 276B of the bearing 276, and the clearance S202 is formed between the outer peripheral surface 288A of the ring-shaped member 288 and the planetary gear. It is formed between the peripheral surface of the center hole 268A of 268. Accordingly, the existence of the two gaps S201 and S202 allows the planetary gear 268 to be slightly displaced in the radial direction with respect to the planetary pin 264 that is a support member. One of the gaps S201 and S202 may not be provided.
  • the gap S201 is set to have a size of about 0.3% (3/1000) with respect to the outer diameter d201 of the roller bearing 276.
  • the gap S201 and the gap S202 allow the planetary gear 268 and the outer ring 276B of the bearing 276 to be relatively slightly displaced in the radial direction.
  • the roller bearing 276 since the roller bearing 276 is incorporated in a state of being integrated with the planetary pin 264 that is a support member, the planetary gear 268 is configured to be slightly displaced with respect to the roller bearing 276. Yes.
  • the planetary gear 268 can be displaced minutely with respect to the roller bearing 276. As a result, the planetary gear 268 can move with respect to the internal gear 270 and the sun gear 272 in addition to the minute displacement in the circumferential direction due to normal backlash. This means that the gap S201 and the gap S202 can be further finely displaced in the radial direction.
  • the planet pin 264 revolves around the axis of the planetary gear mechanism 252 as the carrier flanges 262A, 262B rotate.
  • the gear 268 rotates with the sun gear 272 circumscribed and the internal gear 270 inscribed.
  • the relative rotation of the planetary pin 264 and the planetary gear 268 in the circumferential direction is realized by the relative rotation of the inner ring 276A and the outer ring 276B of the roller bearing 276 exclusively via the roller 276C of the roller bearing 276.
  • the resistance to the relative rotation of the planetary pin 264 and the planetary gear 268 in the circumferential direction is much larger in the gap S201 and the gap S202 than in the roller bearing 276.
  • the outer ring 276B of the roller bearing 276, the ring-shaped member 288, and the planetary gear 268 hardly rotate (at least during normal operation) (regardless of the presence of the clearance S201 and the clearance S202).
  • the rotational torque of the windmill blade 5 fluctuates (or suddenly changes), so that it is applied to the planetary gear 268.
  • the revolution propulsion force from the carrier 262 varies in the same manner.
  • the meshing reaction force received from the internal gear 270 and the sun gear 272 also varies, so that the radial load applied to the gap S201 and the gap S202 varies.
  • the planetary gear 268 is repeatedly slightly displaced in the radial direction with respect to the planetary pin 264 (specifically, the outer ring 276B of the roller bearing 276 integrated therewith).
  • the generation of the compressive stress and shear stress prevents the peak load from being transmitted directly (as it is) from one side to the other side between the two members across the gap S201. That is, if there is no gap S201 between the ring-shaped member 288 and the outer ring 276B of the bearing 276, the transmission of shock torque that suddenly rises sharply and drops sharply is suppressed.
  • the speed increasing device 250 for wind power generation there are three planetary gears 268 and there are a total of six meshing points where power is transmitted.
  • the revolution trajectory (the position of the planetary pin 264 with respect to the carrier 262) always varies due to manufacturing errors. Further, the coaxiality of the internal gear 270 and the sun gear 272 is not necessarily ensured accurately.
  • the three planetary gears 268 can be slightly displaced in the radial direction with respect to the internal gear 270 and the sun gear 272 due to the presence of the clearance S201 and the clearance S202, respectively.
  • the function that can automatically form this stable meshing state is always maintained not only when shocking torque is applied, but also when the wind direction does not change so rapidly, so fluctuation components in the lower frequency range It is thought that it contributes to absorption of water.
  • the total amount of energy from the windmill blade 5 to the generator 211 is substantially the same due to the presence of the gap S201, the gap S202, and the lubricant in the gap S201, the gap S202.
  • the peak value can be reduced, and the occurrence of instantaneous overload and impact can be reduced.
  • the torque input from the wind turbine blade 5 can be transmitted more stably, and the life of the gearbox can be greatly extended.
  • the ring-shaped member 288 itself can be slightly displaced in the radial direction with respect to the planetary pin 264 (and the outer ring 276B of the roller bearing 276 integrated with the planetary pin 264). Since the planetary gear 268 can be slightly displaced in the radial direction with respect to the member 288, the frequency region in which the fluctuation component can be satisfactorily absorbed can be further expanded.
  • the plurality of grooves 288AA are provided on the outer peripheral surface 288A of the ring-shaped member 288 that forms the gap S202, the amount of lubricant that can be accommodated in the gap S202 can be increased. Further, the presence of the groove 288AA increases the wettability of the outer peripheral surface 288A, and the resistance to hinder the movement of the lubricant increases. As a result, the impact absorption effect can be enhanced.
  • a concave portion may be provided on the peripheral surface of the center hole 268A of the planetary gear 268.
  • a clearance S203 (illustrated by an imaginary line in FIG. 6) is additionally formed between the planetary pin 264 as a support member and the bearing 276 (inner ring 276A). It is effective to do.
  • a ring-shaped member 288 is replaced with the planetary gear 268 and the outer ring 276B of the bearing 276, or in addition to the planetary gear 268 and the outer ring 276B of the bearing 276. It may be arranged between the inner ring 276A and the planetary pin 264.
  • the size of the gap S201 is not limited to 3/1000 of the inner diameter of the gap S201 (in the above embodiment, the outer diameter of the outer ring 276B of the roller bearing 276). Changing the formation position, number, or size (interval) of the gap changes the inertial mass of the member that can be finely displaced and the manner of displacement, so the frequency component of the region that can absorb fluctuation (load fluctuation) well Can be adjusted. For this reason, it is good to set suitably considering the property of the wind actually blown in the area where the wind power generation facility is installed.
  • FIG. 8 is a cross-sectional view showing a main part of a speed increasing device 291 for wind power generation according to a fifth embodiment of the present invention.
  • the ring-shaped member 300 is interposed between the planetary gear 268 and the bearing 276 (the outer ring 276B).
  • the inner peripheral surface 300A of the ring-shaped member 300 is provided with a plurality of grooves 300AA extending in the recess, that is, in the circumferential direction.
  • the same effects as the wind power speed increaser 250 according to the first embodiment are achieved.
  • the plurality of grooves 300AA are provided on the inner peripheral surface 300A of the ring-shaped member 300 that forms the gap S201, the amount of lubricant that can be accommodated in the gap S201 can be increased.
  • the presence of the groove 300AA increases the wettability of the inner peripheral surface 300A, and the resistance to prevent the movement of the lubricant increases. As a result, the impact absorption effect can be enhanced.
  • a recess may be provided on the outer peripheral surface of the outer ring 276B of the roller bearing 276.
  • FIG. 9 is a cross-sectional view showing a main part of a speed increasing device 320 for wind power generation according to a sixth embodiment of the present invention.
  • a ring-shaped member 322 is interposed between the planetary gear 268 and the bearing 276 (the outer ring 276B).
  • the inner peripheral surface 322A and the outer peripheral surface 322B of the ring-shaped member 322 are respectively provided with a plurality of grooves 322AA and 322BB extending in the circumferential direction.
  • the groove 322AA on the inner peripheral surface 322A and the groove 322BB on the outer peripheral surface 322B have different axial intervals, that is, widths.
  • a plurality of grooves 322AA are provided on the inner peripheral surface 322A of the ring-shaped member 322 that forms the gap S201, and a plurality of grooves are formed on the outer peripheral surface 322B of the ring-shaped member 322 that forms the gap S202. Since 322BB is provided, the amount of lubricant that can be accommodated in each of the gap S201 and the gap S202 can be increased.
  • the presence of the grooves 322AA and 322BB increases the wettability of the inner peripheral surface 322A and the outer peripheral surface 322B, and the resistance to prevent the movement of the lubricant increases. As a result, the impact absorption effect can be enhanced compared to the case of the first embodiment and the second embodiment.
  • a concave portion may be provided on the outer peripheral surface of the outer ring 276B of the roller bearing 276.
  • a concave portion may be provided on the peripheral surface of the center hole 268A of the planetary gear 268.
  • FIG. 10 is a plan view showing the main part of a gearbox for wind power generation according to the seventh embodiment of the present invention.
  • the configuration of the speed increaser is the same as the configuration of the speed increaser 250 according to the fourth embodiment except for the direction of grooves formed on the outer peripheral surface of the ring-shaped member.
  • FIG. 10 corresponds to a plan view seen from the right side of FIG. In FIG. 10, the display of the gap S201 is omitted.
  • a ring-shaped member 330 is interposed between the planetary gear 268 and the bearing 276 (the outer ring 276B).
  • the outer circumferential surface 330A of the ring-shaped member 330 is provided with a plurality of grooves 330AA extending in the recess, that is, in the axial direction.
  • the lubricant 332 has entered the gap S202.
  • the groove 330AA is provided over the entire axial length of the ring-shaped member 330.
  • a groove may be provided only in a part in the axial direction.
  • the wind power speed increaser according to the present embodiment provides the same effects as the wind power speed increaser 250 according to the fourth embodiment.
  • the resistance when the lubricant 332 in the gap S202 is pushed out in the circumferential direction is larger than in the case where the grooves 330AA extend in the circumferential direction. Therefore, the impact absorption effect can be further enhanced.
  • FIG. 11 is a plan view showing a main part of a speed increasing device for wind power generation according to a modification of the seventh embodiment.
  • a plurality of grooves 334AA extending in the axial direction are provided on the peripheral surface of the center hole 334A of the planetary gear 334.
  • the groove 330AA on the outer peripheral surface 330A of the ring-shaped member 330 may not be provided.
  • FIGS. 12A and 12B are a plan view and a cross-sectional view showing the main part of a gearbox for wind power generation according to the eighth embodiment of the present invention.
  • the configuration of the speed increaser is the same as the configuration of the speed increaser 250 according to the fourth embodiment except for the form of the recess formed on the outer peripheral surface of the ring-shaped member.
  • FIG. 12A corresponds to a plan view seen from the right side of FIG. In FIGS. 12A and 12B, the display of the gap S201 is omitted.
  • a ring-shaped member 340 is interposed between the planetary gear 268 and the bearing 276 (the outer ring 276B).
  • a concave portion, that is, a plurality of dimples 344 is provided on the outer peripheral surface 340 ⁇ / b> A of the ring-shaped member 340.
  • the shape, size, depth, and coverage of the plurality of dimples 344 can be arbitrarily set.
  • a lubricant 342 enters the gap S202.
  • the wind power speed increaser according to the present embodiment provides the same effects as the wind power speed increaser 250 according to the fourth embodiment.
  • a plurality of dimples may be provided on the peripheral surface of the center hole 268A of the planetary gear 268.
  • FIG. 13 is a cross-sectional view showing a main part of a speed increasing device 350 for wind power generation according to a ninth embodiment of the present invention.
  • a ring-shaped member 288 is interposed between the planetary gear 268 and the bearing 276, and a clearance S201 is provided on the inner peripheral side of the ring-shaped member 288, and a clearance S202 is provided on the outer peripheral side.
  • a gap S204 through which the lubricant enters directly is provided between the center hole 268A of the planetary gear 268 and the outer ring 276B of the bearing 276 without providing a ring-shaped member.
  • a concave portion that is, a plurality of grooves 268AA extending in the circumferential direction is provided on the peripheral surface of the center hole 268A of the planetary gear 268 forming the gap S204.
  • the same operational effects as the wind power speed increaser 250 according to the fourth embodiment are exhibited.
  • a concave portion may be provided on the outer peripheral surface of the outer ring 276B of the roller bearing 276.
  • a gap S206 (illustrated by an imaginary line in FIG. 13) is provided between the inner ring 276A of the roller bearing 276 and the planetary pin (support member) 264. Even if it is formed and a concave portion (shown by a broken line in FIG. 13) is provided on at least one of the surfaces opposed via the gap S206, the same effect can be obtained.
  • FIG. 14 is a cross-sectional view showing a main part of a speed increasing gear 360 for wind power generation according to the tenth embodiment of the present invention.
  • the planetary gear 283 includes a planetary gear portion 283A and a planetary pin portion 283C that supports the planetary gear portion 283A.
  • the “gear” in the present invention is defined as a member or member group that is rotatably supported by a support member via a bearing and has a tooth portion. Also good.
  • the planetary gear 283 (including the planetary pin portion 283C) is rotated with respect to the carrier 284 via a roller bearing 286 by a carrier 284 (a pair of carrier flanges 284A and 284B) which is a support member disposed on both sides. Both ends are supported as possible.
  • the planetary gear 283 can rotate relative to the carrier flanges 284A and 284B via the roller bearings 286.
  • the roller bearing 286 includes an inner ring 286A, an outer ring 286B, and a roller 286C.
  • a gap S205 into which the lubricant enters is formed. That is, in this embodiment, the planetary gear 283 (including the planetary pin portion 283C) corresponds to the “gear” of the present invention, and the carrier 284 (the pair of carrier flanges 284A and 284B) This corresponds to a “support member” that is rotatably supported via the bearing 286.
  • Each of the inner peripheral surfaces 284A1 and 284B1 of the carrier flanges 284A and 284B forming the gap S205 is provided with a plurality of grooves 284AA and 284BB extending in the circumferential direction.
  • the planetary gear 283 can be slightly displaced in the radial direction with respect to the carrier 284 as a support member, as in the first embodiment.
  • the planetary gear 283 according to this embodiment integrally includes the planetary pin portion 283C, the inertial mass of the member that is slightly displaced is larger than that of the first embodiment. For this reason, depending on the design, there is a possibility that fluctuation absorption in a lower frequency region can be satisfactorily performed.
  • the plurality of grooves 284AA and 284BB are provided on the inner peripheral surfaces 284A1 and 284B1 of the carrier flanges 284A and 284B that form the gap S205, the amount of lubricant that can be accommodated in the gap S205 is increased. be able to. Further, the presence of the grooves 284AA and 284BB increases the wettability of the inner peripheral surfaces 284A1 and 284B1, and the resistance to hinder the movement of the lubricant increases. As a result, the impact absorption effect can be enhanced.
  • a concave portion may be provided on the outer peripheral surface of the outer ring 286B of the roller bearing 286.
  • a gap S207 (shown by an imaginary line in FIG. 14) is formed between the inner ring 286A of the roller bearing 286 and the planetary gear 283 instead of or in addition to the gap S205.
  • a concave portion (shown by a broken line in FIG. 14) may be provided on at least one of the surfaces opposed via the gap S207.
  • a gap S208 (imaginary line in FIG. 14) is formed between the planetary gear portion 283A and the planetary pin portion 283C of the planetary gear 283.
  • a recess (illustrated by a broken line in FIG.
  • a ring-shaped member (not shown) as described in any of the fourth to eighth embodiments may be disposed between the planetary gear portion 283A and the planetary pin portion 283C.
  • an effective fluctuation absorbing effect is also obtained between the planetary gear portion 283A and the planetary pin portion 283C (depending on the frequency component to be absorbed). It will be obtained.
  • the planetary gear portion 283A and the planetary pin portion 283C may be formed integrally instead of separately.
  • a ring-shaped member (not shown) as described in any of the first to fifth embodiments between the carrier 284 (the pair of carrier flanges 284A and 284B) and the bearing 286 (the outer ring 286B). May be arranged.
  • the frequency region that can be absorbed and absorbed is different. Considering this, it becomes possible to perform more effective fluctuation absorption.
  • the concave portion provided on at least one of the surfaces facing each other through the gap into which the lubricant enters is a groove
  • the impact absorbing effect can be further enhanced when the recesses are provided on both of the surfaces, rather than when the recesses are provided only on one of the surfaces facing each other through the gap.
  • the groove formed on at least one of the faces facing each other through the gap has been described as extending in the circumferential direction or the axial direction. Is not limited to this.
  • the groove may be formed obliquely with respect to the rotation axis, that is, in a spiral shape.
  • the direction in which the grooves formed on one surface extend may be different from the direction in which the grooves formed on the other surface extend.
  • the widths, sizes, and depths of the plurality of grooves and dimples may be different, and when they are formed on two or more surfaces, the number, width, size, depth, and the like may be different depending on the surfaces. .
  • FIG. 15 is a cross-sectional view showing a main part of a speed increasing gear 450 for wind power generation showing an example of still another embodiment of the present invention
  • FIG. 16 is an overall cross-sectional view thereof.
  • the wind power speed increaser 450 includes a planetary gear mechanism 452 in the first stage, and first and second parallel shaft gear mechanisms 454 and 456 in the middle stage and the rear stage.
  • the rotation of the main shaft (not shown) input from the input shaft 458 is accelerated by a total of three stages of gear mechanisms 452, 454, 456 and output from the output shaft 460.
  • a generator (similar to the conventional generator 11: see FIG. 26) is connected to the output shaft 460, and predetermined power generation is performed.
  • the planetary gear mechanism 452 includes a carrier 462 integrated with the input shaft 458, a planetary pin 464 that is supported at both ends by the carrier 462, and three pieces that are rotatably supported by the planetary pin 464 (one piece in FIG. 2). Only the planetary gear 468, the internal gear 470 in which the planetary gear 468 is internally meshed at the same time, and the sun gear 472 in which the planetary gear 468 is externally meshed at the same time. In this embodiment, the sun gear 472 is formed directly on the output shaft 480 of the planetary gear mechanism 452, and the internal gear 470 is integrated (fixed) with the casing 474.
  • the carrier 462 is configured such that a pair of disk-shaped carrier flanges 462A and 462B are connected to and opposed to each other via a connecting portion 462C, and the planetary gear 468, inner space is interposed between the pair of carrier flanges 462A and 462B.
  • a tooth gear 470 and a sun gear 472 are incorporated.
  • the carrier flanges 462A and 462B are rotatably supported by the bearings 475 and 478 on the casing 474 of the gearbox 450 (with the input shaft 458).
  • the planetary pin 464 is press-fitted into the pair of carrier flanges 462A and 462B and is supported at both ends.
  • the planetary gear 468 is rotatably supported by the planetary pin 464 via a roller bearing 476. That is, in this embodiment, the planetary gear 468 corresponds to the “gear” of claim 1, the roller bearing 476 corresponds to the “bearing”, and the planetary pin 464 corresponds to the “support member”.
  • each roller bearing 476 includes an inner ring 476A, an outer ring 476B, rollers (rolling elements) 476C, and a retainer 476D.
  • the inner ring 476A of the roller bearing 476 is positioned in the axial direction by being sandwiched between the protrusion 464P of the planetary pin 464 and the protrusion 462B1 of the carrier flange 462B via a spacer 481.
  • the outer ring 476B of the roller bearing 476 is positioned in the axial direction with respect to the inner ring 476A via the roller 476C, the central spacer 481, and the retainer 476D.
  • the planetary gear 468 is not particularly restricted by minute movements in the radial direction.
  • a ring-shaped member 488 is interposed between the planetary gear 468 and the bearing 476 (the outer ring 476B).
  • a small gap S401 is formed on the inner peripheral side of the ring-shaped member 488, and a larger gap S402 is formed on the outer peripheral side.
  • a gap S401 is formed between the ring-shaped member 488 and the outer ring 476B, and a gap S402 is formed between the ring-shaped member 488 and the center hole 469 of the planetary gear 468. For this reason, the ring-shaped member 488 is not completely restrained in the radial movement.
  • the size of the (larger) gap S402 is not limited to 3/1000 of the outer diameter d401 (that is, the inner diameter of the gap) of the outer ring 476B of the roller bearing 476.
  • Changing the formation position, number, or size (interval) of the gap changes the inertial mass of the member that can be finely displaced and the manner of displacement, so the frequency component of the region that can absorb fluctuation (load fluctuation) well (In this respect, for example, one of the gaps S401 and S402 may be omitted). It should be set considering the nature of the wind actually blown in the area where the wind power generation facilities are installed.
  • the planetary gear 468 can be slightly displaced in the radial direction with respect to the roller bearing 476. As a result, the planetary gear 468 is slightly displaced in the circumferential direction by a normal backlash with respect to the internal gear 470 and the sun gear 472. In addition to the above, it means that the gaps S401 and S402 can be further minutely displaced in the radial direction.
  • a first oil seal 487 is provided between the first inner peripheral portion 469A of the planetary gear 468 and the projection 464P of the planetary pin 464.
  • a second oil seal 489 is provided between the second inner peripheral portion 469B of the planetary gear 468 and the projection 462B1 of the carrier flange 462B (on the side opposite to the input shaft). Since the inner diameter of the first inner peripheral portion 469A is D401 and the inner diameter of the second inner peripheral portion 469B is D402, the diameters of the first oil seal 487 and the second oil seal 489 are also varied accordingly.
  • the first and second oil seals 487, 489 include the planetary pin 464, the carrier flange 462B, and the planetary gear 468, as well as the gaps S401, S402, and a space SP401 in the vicinity of the pair of roller bearings 476 and the ring-shaped member 488. Is sealed.
  • a lubricant is sealed as “liquid”. This lubricant may be the same as or different from the lubricant in the gear box 450. Since the space SP401 is isolated from the space SP402 in the speed increaser 450, a lubricant having a more suitable characteristic (for example, a lubricating oil having a higher viscosity or grease) is used as the lubricant enclosed in the sealed space SP401. A semi-solid lubricant) may be encapsulated.
  • the rotation of the windmill blade 5 is transmitted to the input shaft 458 of the gear box 450 via the main shaft of the rotor head 4.
  • the rotation of the input shaft 458 is input to the planetary gear mechanism 452 as the revolution of the planetary gear 468 through the carrier 462 (a pair of carrier flanges 462A and 462B), and the planetary gear 468, the internal gear 470, and the sun gear 472 Due to the relative rotation, the increased rotation is output from the sun gear 472 to the output shaft 480 of the planetary gear mechanism 452.
  • the rotation of the output shaft 480 of the planetary gear mechanism 452 is amplified by the first parallel shaft gear mechanism 454 via the coupling 479, further amplified by the second parallel shaft gear mechanism 456, and finally the speed increaser.
  • the output shaft 460 of 450 is taken out. Since the output shaft 460 of the speed increaser 450 is connected to the power generator 411, the power generator 411 can be rotated after the rotation of the windmill blade 5 is accelerated, and efficient wind power generation is performed. be able to.
  • the planetary pin 464 revolves around the axis of the planetary gear mechanism 452 as the carrier 462 rotates. It rotates in a state of being circumscribed by the sun gear 472 and inscribed by the internal gear 470.
  • the gaps S401 and S402 tend to be wider and are displaced while drawing in the surrounding lubricant. For this reason, after all, the lubricant in the sealed space SP401 functions as a damper with respect to the displacement of the planetary gear 468. If there is no gap S401, S402, it rises sharply as it is and then drops sharply immediately after. Such a shock torque transmission (between the gears 468, 470, 472) is suppressed.
  • the shearing stress is exceeded between the outer ring 476B of the bearing 476.
  • a “slip” occurs between the planetary gear 468 and the outer ring 476B of the bearing 476. Therefore, it is considered that an impact absorbing effect is exhibited even by this newly generated slip. It is done.
  • the three planetary gears 468 can be slightly displaced in the radial direction with respect to the internal gear 470 and the sun gear 472 due to the presence of the gaps S401 and S402. (Instantly) the most stable meshing state at that time can be automatically and more easily formed.
  • the function that can automatically form this stable meshing state is always maintained not only when shocking torque is applied, but also when the wind direction does not change so rapidly, so fluctuation components in the lower frequency range It is thought that it contributes to absorption of water.
  • the two gaps S401 and S402 are formed by interposing the ring-shaped member 488.
  • the planet as a support member is used. It is effective to form a clearance S403 (illustrated by an imaginary line in FIG. 15) between the pin 464 and the bearing 476 (the inner ring 476A).
  • a gap may be formed directly between the roller bearing 476 (the outer ring 476B) and the planetary gear 468.
  • FIG. 1 An example of this configuration is shown in FIG. 1
  • roller bearings 476 are arranged side by side in the axial direction.
  • Each roller bearing 476 is the same in that it includes an inner ring 476A, an outer ring 476B, a roller (rolling element) 476C, and a retainer 476D.
  • the inner ring 476A of the roller bearing 476 is positioned in the axial direction between the carrier flanges 462A and 462B via the spacers 482 (482A to 482C).
  • the outer ring 476B of the roller bearing 476 is positioned in the axial direction with respect to the inner ring 476A via the roller 476C, the central spacer 482B, and the retainer 476D.
  • a gap S404 is formed between the outer ring 476B and the center hole 468K of the planetary gear 468.
  • the clearance S404 allows the planetary gear 468 and the outer ring 476B of the bearing 476 (or the planetary pin 464, which is a support member integrated in the radial direction with the outer ring 476B), to be relatively slightly displaced in the radial direction. ing.
  • oil is placed between the planetary gear 468 and the planetary pin 464 that is a support member (more specifically, between the planetary gear 468 and the spacers 482A and 482C incorporated in the planetary pin 464). Seals 491A and 491B are provided. Thus, a sealed space SP403 is formed by the planetary gear 468, the planetary pin 464, and the spacers 482A and 482C.
  • the lubricant (liquid) is sealed in the sealed space SP403 as in the previous embodiment.
  • the same type of lubricant as the lubricant in the gear box 450 is sealed in the sealed space SP403.
  • the gap can be formed with a configuration as shown in FIG.
  • the planetary gear 483 includes a planetary gear portion 483A and a planetary pin portion 483C that supports the planetary gear portion 483A.
  • the “gear” in the present invention can be defined as a member or member group that is rotatably supported by a support member via a bearing and has a tooth portion.
  • the planetary gear 483 (including the planetary pin portion 483C) is rotated by a carrier 484 (a pair of carrier flanges 484A and 484B) as support members disposed on both sides via a roller bearing 486. Both ends are supported as possible.
  • the planetary gear 483 is rotatable relative to the carrier flanges 484A and 484B via the roller bearing 486.
  • the roller bearing 486 includes an inner ring 486A, an outer ring 486B, and a roller 486C.
  • oil seals 479A, 479B are provided between the carrier flange 484A and the spacer 473 on the planetary pin portion 483C, and between the carrier flange 484B and the stepped portion on the planetary pin portion 483C.
  • Oil seals 479A, 479B are provided between the carrier flange 484A and the spacer 473 on the planetary pin portion 483C, and between the carrier flange 484B and the stepped portion on the planetary pin portion 483C.
  • a sealed space SP406 including the gap S406 and the roller bearing 486.
  • a lubricant higher viscosity
  • the planetary gear 483 can be slightly displaced in the radial direction with respect to the carrier 484 as the support member, and the damper effect by the sealed lubricant can be obtained, similarly to the embodiment of FIG. 15 described above. Can do.
  • the planetary gear 483 according to this embodiment integrally includes the planetary pin portion 483C, the inertial mass of the member that is slightly displaced is larger than that of the previous embodiment. For this reason, depending on the design, there is a possibility that fluctuation absorption in a lower frequency region can be satisfactorily performed.
  • a gap S407 (illustrated by an imaginary line in FIG. 18) is provided between the inner ring 486A of the roller bearing 486 and the planetary gear 483 instead of or in addition to the gap S406. You may make it form. Further, instead of or in addition to the formation of the gap S406 (or S407) in the carrier 484, a gap S408 is provided between the planetary gear portion 483A and the planetary pin portion 483C of the planetary gear 483 (FIG. 18). In FIG.
  • the arrangement of the ring-shaped member shown in the embodiment of FIG. 15 can also be applied to the embodiment shown in FIG. In the embodiment shown in FIG. 18, in the case where a ring-shaped member is attached, a pair of carrier flanges 484A and 484B, between the outer ring 486B of the bearing 486, or in the planetary gear 483 integrated with the planetary pin portion 483C.
  • the ring-shaped member may be disposed at one or both of the planetary pin portion 483C and the inner ring 486A of the bearing 486.
  • the ring-shaped member may be disposed between the gear and the bearing, or between the bearing and the support member, and further, only one of them may be disposed. It does not have to be arranged.
  • the gap may be provided only on the outer peripheral side of the ring-shaped member, only on the inner peripheral side, or on both the outer peripheral side and the inner peripheral side. Also good.
  • the gap is specifically formed and in what size.
  • at least two of the gear, the bearing, and the support member are relatively placed on any part other than the part that relatively rotates in the bearing (with or without the ring-shaped member). What is necessary is just to be formed so that a minute displacement is possible to radial direction.
  • the frequency range in which fluctuations can be absorbed varies, and therefore more effective fluctuation absorption is possible taking into account the characteristics of the area where the wind power generation equipment is installed. Will be able to do.
  • the liquid in the gap that allows at least two members of the gear, the bearing, and the support member to be relatively displaced in the radial direction relative to each other”, but also the periphery.
  • the liquid in the gap is separated from the space in the speed reducer. As long as the surrounding liquid is not necessarily sealed together.
  • the sealing means is not particularly limited.
  • an O-ring is disposed between the spacer and a member facing the spacer (not the configuration in which the oil seal as employed in the above embodiment is disposed). Such a configuration may be adopted.
  • FIG. 19 is a cross-sectional view showing a main part of a speed increasing device 650 for wind power generation showing an example of still another embodiment of the present invention
  • FIG. 20 is an overall cross-sectional view thereof.
  • the planetary gear mechanism 652 includes a carrier 662 integrated with the input shaft 658, planet pins 664 supported on both ends of the carrier 662, and three pieces (1 piece in FIG. 2) rotatably supported by the planet pin 664. Only the planetary gear 668, the internal gear 670 in which the planetary gear 668 is internally meshed at the same time, and the sun gear 672 in which the planetary gear 668 is externally meshed at the same time. In this embodiment, the sun gear 672 is directly formed on the output shaft 680 of the planetary gear mechanism 652, and the internal gear 670 is integrated (fixed) with the casing 674.
  • the carrier 662 is configured such that a pair of disk-shaped carrier flanges 662A and 662B are connected to and opposed to each other via a connecting portion 662C, and the planetary gear 668, between the pair of carrier flanges 662A and 662B, A tooth gear 670 and a sun gear 672 are incorporated.
  • the carrier flanges 662A and 662B are rotatably supported by the bearings 675 and 678 on the casing 674 of the speed increaser 650 (with the input shaft 658).
  • the planetary pin 664 is press-fitted into the pair of carrier flanges 662A and 662B and is supported at both ends.
  • the planetary gear 668 is rotatably supported by the planetary pin 664 via a roller bearing 676. That is, in this embodiment, the planetary gear 668 corresponds to the “gear” of claim 1, the roller bearing 676 corresponds to the “bearing”, and the planetary pin 664 corresponds to the “support member”.
  • each roller bearing 676 includes an inner ring 676A, an outer ring 676B, rollers (rolling elements) 676C, and a retainer 676D.
  • the inner ring 676A of the roller bearing 676 is positioned in the axial direction by being sandwiched between carrier flanges 662A and 662B by spacers 681A and 681B and an oil guide body 720 described later. Further, the outer ring 676B of the roller bearing 676 is positioned in the axial direction with respect to the inner ring 676A via the roller 676C, the oil guide body 720, and the retainer 676D.
  • the planetary gear 668 is not particularly restricted by minute movements in the radial direction.
  • a ring-shaped member 688 is interposed between the planetary gear 668 and the outer ring 676B of the bearing 676.
  • a small gap S601 is formed on the inner peripheral side of the ring-shaped member 688, and a larger gap S602 is formed on the outer peripheral side.
  • a groove 688S is formed on one end side in the axial direction of the ring-shaped member 688, and a retaining ring 671 is engaged with the end portion 676B1 of the outer ring 676B of the roller bearing 676.
  • a protrusion 688P is formed on the other end side of the ring-shaped member 688, and a retaining ring 685 is engaged with the end 676B2 of the outer ring 676B of the roller bearing 676.
  • the retaining ring 685 is also engaged with the groove 668S of the planetary gear 668.
  • One end of the ring-shaped member 688 is in contact with the step portion 668A of the planetary gear 668, and the other end is in contact with the retaining ring 685, thereby restraining the movement of the planetary gear 668 in the axial direction.
  • a gap S601 is formed between the ring-shaped member 688 and the outer ring 676B, and a gap S602 is formed between the ring-shaped member 688 and the inner periphery of the planetary gear 668. For this reason, the ring-shaped member 688 is not completely restrained in the radial movement.
  • the larger gap S602 is set to be about 0.3% (3/1000) (in the radial direction) with respect to the outer diameter d601 of the outer ring 676B of the roller bearing 676.
  • the planetary gear 668 can be slightly displaced with respect to the roller bearing 676 and, consequently, the planetary pin 664 (which is a support member) by the gaps S601 and S602.
  • the size of the (larger) gap S602 is not limited to 3/1000 of the outer diameter d601 (that is, the inner diameter of the gap) of the outer ring 676B of the roller bearing 676.
  • Changing the formation position, number, or size (interval) of the gap changes the inertial mass of the member that can be finely displaced and the manner of displacement, so the frequency component of the region that can absorb fluctuation (load fluctuation) well (In this respect, for example, one of the gaps S601 and S602 may be omitted). It should be set considering the nature of the wind actually blown in the area where the wind power generation facilities are installed.
  • the planetary gear 668 can be slightly displaced in the radial direction with respect to the roller bearing 676. As a result, the planetary gear 668 is slightly displaced in the circumferential direction by the normal backlash with respect to the internal gear 670 and the sun gear 672. In addition to the above, it means that the gaps S601 and S602 can be further minutely displaced in the radial direction.
  • the lubricant can enter and is provided with a lubrication passage 710 that opens into the gaps S601 and S602.
  • the lubrication passage 710 is formed in the axial direction along the axial center of the planetary pin 664 that is the support member, and is formed in the radial direction from the axial passage 712, and the gap S601. , And a radial passage 714 that opens to S602.
  • the axial passage 712 has an opening 712A on one end side on the end face of the planetary pin 664, and the lubricating oil in the speed increaser 650 can flow into the planetary pin 664 through the opening 712A. is there.
  • the other end side of the axial passage 712 stops at a position slightly beyond the axial center of the planetary pin 664 (does not penetrate the planetary pin 664).
  • the radial passage 714 includes first to third radial passages 714A to 714C.
  • the first radial passage 714A is formed in the planetary pin 664 and has an opening 714A1 communicating with the radial passage 714 at one end and an opening 714A2 opening on the outer periphery of the planetary pin 664 at the other end. ing.
  • the second radial passage 714B is formed in an oil guide 720 disposed between the planetary pin 664 and the ring-shaped member 688, and has an opening 714B1 communicating with the first radial passage 714A at one end. And it has opening part 714B2 opened to said clearance gap S601 from between the two roller bearings 676 arranged in the other end.
  • the third radial passage 714C is formed through the ring-shaped member 688 in the radial direction, and has an opening 714C1 communicating with the gap S601 at one end and an opening 714C2 opening at the gap S602 at the other end. is doing.
  • the oil guide body 720 is provided to smoothly communicate the first to third radial passages 714A to 714C.
  • FIG. 21 shows a cross section thereof (ignoring the dimensions of each part). As shown in the figure, the entire ring has a ring shape surrounding the outer periphery of the planetary pin 664 and is disposed between the two roller bearings 676. Since the planetary pin 664 and the oil guiding body 720 rotate relative to each other, the oil guiding body 720 has an opening 714B1 on one end side of the second radial passage 714B, and the first radial passage 714A in the planetary pin 664.
  • the inner circumferential groove 720A is formed over the entire inner circumference so that the first circumferential passage 714A can communicate with the first radial passage 714A at any position.
  • the oil guiding body 720 and the ring-shaped member 688 also rotate relative to each other, the oil guiding body 720 has an opening 714B2 on the other end side of the second radial passage 714B at any position.
  • An outer peripheral groove 720B is formed over the entire outer periphery so as to communicate with the third radial passage 714C.
  • the lubricant that has flowed into the inner peripheral groove 720A or the outer peripheral groove 720B does not leak to the roller bearings 676 on both sides in the axial direction between the oil guide body 720 and the planetary pin 664.
  • the seal members 722 and 724 are disposed between the seal members 725 and 726 and the oil guide body 720 and the ring-shaped member 688 (see FIG. 19). However, this part is a sliding part, and since a complete seal is not required functionally, the sealing pressure may not be so strong.
  • the axial passage 712 does not penetrate the planetary pin 664, and the sealed oil guide 720 is provided, so that the axial passage is caused by the centrifugal force generated by the rotation of the planetary pin 664.
  • the entire amount of the lubricant drawn into 712 is supplied to the gaps S601 and S602.
  • the rotation of the windmill blade 5 is transmitted to the input shaft 658 of the speed increaser 650 through the main shaft of the rotor head 4.
  • the rotation of the input shaft 658 is input to the planetary gear mechanism 652 as the revolution of the planetary gear 668 through the carrier 662 (a pair of carrier flanges 662A and 662B), and the planetary gear 668, the internal gear 670, and the sun gear 672
  • the increased rotation due to the relative rotation is output from the sun gear 672 to the output shaft 680 of the planetary gear mechanism 652.
  • the rotation of the output shaft 680 of the planetary gear mechanism 652 is amplified by the first parallel shaft gear mechanism 654 via the coupling 679, further amplified by the second parallel shaft gear mechanism 656, and finally the speed increaser. 650 is taken out from the output shaft 660. Since the output shaft 660 of the speed increaser 650 is connected to the power generator 611, the power generator 611 can be rotated after speeding up the rotation of the windmill blade 5, and efficient wind power generation is performed. be able to.
  • the planetary pin 664 revolves around the axis of the planetary gear mechanism 652 as the carrier 662 rotates.
  • the sun gear 672 rotates in a circumscribed state and inscribed in the internal gear 670.
  • the relative rotation of the planetary pin 664 and the planetary gear 668 in the circumferential direction is basically realized by the relative rotation of the inner ring 676A and the outer ring 676B of the roller bearing 676 via the roller 676C of the roller bearing 676. That is, relative rotation hardly occurs between the outer ring 676 B of the roller bearing 676 and the ring-shaped member 688 and between the ring-shaped member 688 and the planetary gear 668.
  • the rotational torque of the windmill blade 5 fluctuates (or changes suddenly).
  • the revolution propulsion force from the applied carrier 662 similarly varies.
  • the meshing reaction force received from the internal gear 670 and the sun gear 672 also varies, so that the radial load applied to the gaps S601 and S602 varies.
  • the planetary gear 668 is displaced by narrowing the interval between certain portions in the circumferential direction of the gaps S601 and S602 (while pushing away the lubricant) due to the variation in the radial load.
  • the gaps S601 and S602 tend to be wider and are displaced while drawing in the surrounding lubricant. Therefore, after all, the lubricant in the gaps S601 and S602 functions as a damper with respect to the displacement of the planetary gear 668, and if there are no gaps S601 and S602, it rises sharply as it is and rises sharply immediately afterwards. Such a shocking torque transmission (between the gears 668, 670, 672) is suppressed.
  • the gaps S601 and S602 are very narrow and the lubricant is difficult to spread.
  • the centrifugal force is applied to the lubricant present in the radial passage 714 by the rotation of the planetary pin 664 or the planetary gear 668. Acts, the lubricant present in the radial passage 714 moves radially outward to reach the gaps S601 and S602, and accordingly, the lubricating oil in the speed increasing device 650 is drawn into the axial passage 712. The phenomenon that comes out occurs.
  • the radial passage 714 communicates with the gaps S601 and S602 from between a plurality (two in this example) of the roller bearings 676 arranged in any rotational state via the oil guide 720. It is open. For this reason, the lubricant can always be smoothly supplied to the gaps S601 and S602 on the radially outer side of the roller bearing 676.
  • the shear stress exceeds the outer ring 676B of the bearing 676.
  • a “slip” occurs between the planetary gear 668 and the outer ring 676B of the bearing 676. Therefore, it is considered that the impact absorption effect is exhibited even by this newly generated slip. It is done.
  • the speed increasing device 650 for wind power generation there are three planetary gears 668 and there are a total of six meshing points where power is transmitted.
  • the revolution trajectory (the position of the planetary pin 664 with respect to the carrier 662) necessarily varies due to manufacturing errors. Further, the coaxiality of the internal gear 670 and the sun gear 672 is not necessarily ensured accurately.
  • the three planetary gears 668 can be slightly displaced in the radial direction with respect to the internal gear 670 and the sun gear 672 due to the presence of the gaps S601 and S602. (Instantly) the most stable meshing state at that time can be automatically and more easily formed.
  • the function that can automatically form this stable meshing state is always maintained not only when shocking torque is applied, but also when the wind direction does not change so rapidly, so fluctuation components in the lower frequency range It is thought that it contributes to absorption of water.
  • the peak value of the load applied to each element can be reduced, and instantaneous overload and impact can be reduced. It becomes like this.
  • the torque input from the wind turbine blade 5 can be transmitted more stably, and the life of the gearbox can be greatly extended.
  • the two gaps S601 and S602 are formed by interposing the ring-shaped member 688.
  • the planet as a support member is used. It is effective to form a clearance S603 (illustrated by an imaginary line in FIG. 19) between the pin 664 and the bearing 676 (the inner ring 676A).
  • a clearance S603 illustrated by an imaginary line in FIG. 19
  • only one of the gaps S601 to S603 may be provided.
  • a gap (one piece) may be formed directly between the roller bearing 676 (the outer ring 676B thereof) and the planetary gear 668.
  • FIG. 1 An example of this configuration is shown in FIG. 1
  • roller bearings 676 are arranged side by side in the axial direction.
  • Each roller bearing 676 is the same in that it includes an inner ring 676A, an outer ring 676B, a roller (rolling element) 676C, and a retainer 676D.
  • the inner ring 676A of the roller bearing 676 is positioned in the axial direction between the carrier flanges 662A and 662B via the spacer 682 (682A to 682C).
  • the outer ring 676B of the roller bearing 676 is positioned in the axial direction with respect to the inner ring 676A via the roller 676C, the central spacer 682B, and the retainer 676D.
  • the planetary gear 668 includes a central hole 668K having a single diameter.
  • a groove 668L is formed in the center hole 668K, and a retaining ring 677 is engaged with the groove 668L.
  • the planetary gear 668 is positioned in the axial direction with respect to the axially outer ends 676A1 and 676B1 of the outer ring 676B of the two roller bearings 676, and the movement of the planetary gear 668 in the axial direction is restricted.
  • a gap S604 is formed between the outer ring 676B and the center hole 668K of the planetary gear 668, and a gap S605 is formed between the inner ring 676A and the planetary pin 664. Due to the gaps S604 and S605, the planetary gear 668 and the outer ring 676B of the bearing 676 (or the planetary pin 664 which is a support member integrated in the radial direction with the outer ring 676B) may be relatively slightly displaced in the radial direction. In addition, the inner ring 676A of the roller bearing 676 and the planetary pin 664 are allowed to slightly displace relatively in the radial direction.
  • an axial passage 712 formed in the axial direction along the axial center of the planetary pin 664 that is a support member as the lubricating passage 710 that allows the lubricant to enter and opens into the gap S605;
  • a plurality (two in this example) of radial passages are formed from the axial passage 712, and radial passages 714 that open to the gap S605 are provided.
  • the specific configuration is the same as the configuration of the first radial passage 714A of the axial passage 712 and the radial passage 714 in the previous embodiment.
  • the gap S604 is configured to be supplied with a lubricant that exists between the roller bearings 676.
  • the lubrication passage it is not necessarily required that the lubrication passage be directly open to all the gaps that are formed.
  • the gap can be formed with a configuration as shown in FIG.
  • the planetary gear 683 includes a planetary gear portion 683A and a planetary pin portion 683C that supports the planetary gear portion 683A.
  • the “gear” in the present invention can be defined as a member or member group that is rotatably supported by a support member via a bearing and has a tooth portion.
  • the planetary gear 683 (including the planetary pin portion 683C) is rotated with respect to the carrier 684 via a roller bearing 686 by a carrier 684 (a pair of carrier flanges 684A and 684B) which is a support member disposed on both sides. Both ends are supported as possible.
  • the planetary gear 683 can rotate relative to the carrier flanges 684A and 684B via the roller bearings 686.
  • the roller bearing 686 includes an inner ring 686A, an outer ring 686B, and a roller 686C.
  • a gap S606 is formed between the carrier 684 (a pair of carrier flanges 684A and 684B) and the outer ring 686B of the bearing 686. That is, in this embodiment, the planetary gear 683 (including the planetary pin portion 683C) corresponds to the “gear” of the present invention, and the carrier 684 (the pair of carrier flanges 684A and 684B) This corresponds to a “support member” that is rotatably supported via the bearing 686.
  • a gap S607 is formed between the carrier 684 (a pair of carrier flanges 684A and 684B) and the inner ring 686A of the bearing 686. Further, a gap S608 is formed between the planetary gear portion 683A and the planetary pin portion 683C of the planetary gear 683.
  • a plurality of (two in this example) radial passages 744A are provided as the radial passages 744 that are formed radially from the passage 742 and open to the gap S607.
  • the axial passage 742 and the radial passage 744 (744A) are the same as the configurations of the first radial passage 714A of the axial passage 712 and the radial passage 714 in the previous embodiment.
  • the axial passage 742 does not stop in the middle of the planetary pin portion 683C, but is a through hole that completely penetrates the planetary pin portion 683C.
  • the space 744B between the planetary pin portion 683C and the closing plate 747 of the bearing housing portion 746 is also separated by the gap S607. And functions as a part of the radial passage 744 of the lubrication passage 740 of the gap S607.
  • a plurality of axial passages 742 and a plurality of axial passages 742 in common with the gap S607 in this example, two axial passages in the circumferential direction, that is, a total of four radial passages 744C and 744D.
  • the planetary pin portion 683C can be slightly displaced in the radial direction with respect to the carrier 684 (684A, 684B) as the support member, and the planetary pin portion 683C can be displaced with respect to the planetary pin portion 683C.
  • the planetary gear portion 683A can be slightly displaced, and a damper effect by the lubricant can be obtained.
  • the planetary gear portion 683A and the planetary pin portion 683C may be formed integrally or may be configured separately.
  • the arrangement of the ring-shaped members shown in the previous embodiment is also applicable to the embodiment shown in FIG.
  • a pair of carrier flanges 684A, 684B and the outer ring 686B of the bearing 686 or a planetary pin portion 683C and an inner ring 686A of the bearing 686 are provided.
  • the ring-shaped member may be disposed on either or both of the above.
  • the ring-shaped member may be disposed between the gear and the bearing, or between the bearing and the support member, and further, only one of them may be disposed. It does not have to be arranged.
  • the gap may be provided only on the outer peripheral side of the ring-shaped member, only on the inner peripheral side, or on both the outer peripheral side and the inner peripheral side. Also good.
  • the gap is specifically formed and in what size.
  • at least two of the gear, the bearing, and the support member are relatively placed on any part other than the part that relatively rotates in the bearing (with or without the ring-shaped member). What is necessary is just to be formed so that a minute displacement is possible to radial direction.
  • the frequency range in which fluctuations can be absorbed varies, and therefore more effective fluctuation absorption is possible taking into account the characteristics of the area where the wind power generation equipment is installed. Will be able to do.
  • the present invention to the support portion of the “planetary gear” of the “simple planetary gear mechanism”. It has a simple structure and is inexpensive, and the planetary gear has a revolution component and a rotation component and rotates while being sandwiched between an internal gear and a sun gear. This is because the effect of being able to make a minute displacement in the radial direction is very prominent.
  • the number of planetary gears is three in the above embodiment, it may be two or four or more, and is not particularly limited.
  • the “gap that enables at least two of the gear, the bearing, and the support member to be relatively displaced in the radial direction relative to each other” is increased.
  • the lubricant was released from the space inside the machine, and the lubricant flowing in from the side of the lubrication passage reached the gap and then returned to the space inside the speed increasing machine.
  • the space in the gap is not communicated with the space in the speed reducer, and the gap or a minute space including the gap is sealed at a portion other than the opening of the lubrication passage to the gap (that is, Alternatively, a space in the reduction gear and a gap or a minute space including the gap may be partitioned.
  • the lubricant in the gap basically does not flow endlessly in the lubrication passage, and when centrifugal force is generated by the rotation of the support member or the gear, more pressure is applied to the lubricant in the gap. It acts in such a manner as to multiply. Even with this configuration, the intended effects of the present invention can be obtained. Rather, as the qualitative tendency, the faster the support member or gear rotates, the higher the pressure of the lubricant in the gap (because the centrifugal force increases). There is a possibility that a more preferable operation effect can be obtained in that a damper effect in which a strong (more sure) repulsive force is generated can be obtained.
  • the lubrication passage is constituted by the axial passage provided in the axial direction of the support member and the radial passage formed in the radial direction from the axial passage and opening in the gap.
  • the form of formation of the externally divided passage is not particularly limited to this example. For example, it may be inclined with respect to the axial direction or the radial direction, or may be formed in a curved shape.
  • the number of lubrication passages is not particularly limited, and any number of lubrication passages may be formed.
  • the circumferential grooves communicating with the radial passages are formed on the inner periphery and the outer periphery of the oil guide body 720, but the outer periphery of the planetary pin and the inner periphery of the ring-shaped member are also provided. You may make it form in. In short, this “circumferential groove communicating with the radial passage” may be formed in at least one of the two members capable of relative rotation.
  • the lubricant just enclosed in the gearbox is supplied to the gap.
  • the lubricant forcedly transferred by the pump is supplied to the gap via the lubrication passage. It goes without saying that may be adopted. According to this method, the lubricant can be supplied into the gap more reliably.
  • a planetary gear mechanism having a simple planetary gear structure is employed as the planetary gear mechanism.
  • the planetary gear mechanism in the present invention is not limited to a planetary gear mechanism having a simple planetary gear structure. Absent.
  • a planetary gear mechanism as shown in FIG. 24 as a skeleton is disclosed in Japanese Patent Laid-Open No. 2003-278849.
  • This planetary gear mechanism 93 has two sun gears 94A and 94B of the same number of teeth integrated with the planetary pin portion 94C, and has a sun gear and is engaged with the planetary gear portions 94A and 94B and is different. Two internal gears 95A and 95B having the number of teeth are provided.
  • This planetary gear mechanism 93 is applied to a wind power speed increaser (not shown), one of the two types of internal gears 95A and 95B is connected to the input shaft 92,
  • the carrier 97 (which may be a pair with the planetary gear 94 interposed therebetween if necessary) is used in such a manner that it is connected to the output shaft 96.
  • This planetary gear mechanism 93 is slightly complicated in structure, but has an advantage that the speed increaser can be designed in various ways. For this reason, it can be effectively used mainly in terms of dimensions and shapes as a speed increaser for wind power generation with large installation space restrictions.
  • the planetary gear mechanism 93 does not have the sun gear as described above, it is easy to form a large hollow portion (not shown) in the central portion. For this reason, when it becomes necessary to arrange some control devices, sensors, pipes and the like around (or inside) the input shaft 92, the hollow portion can be used effectively. Further, the planetary gear mechanism 93 can be easily designed to increase the speed by about 5 to 30 times, so if necessary, it is possible to use a single stage of the rear stage parallel shaft gear mechanism (not shown). In this case, the weight and the axial dimension can be reduced.
  • a “planetary gear 94” in which two planetary gear portions 94A and 94B and a planetary pin portion 94C are integrated is provided.
  • the structure is such that the carrier 97, which is a support member on both sides thereof, is supported at both ends via a bearing (not shown). Therefore, the present invention can be applied with a configuration similar to the configuration shown in FIG.
  • the planetary gear mechanism 93 has a structure in which one of the two internal gears 95A and 95B is rotatably supported by the casing 99 via the bearing 98, depending on the design.
  • a plurality of ring-shaped members and gaps according to the present invention can be formed between the internal gear 95A, the bearing 98, and the casing 99 supporting the internal gear 95A.
  • the “gear” according to the present invention is not limited to the planetary gear, and can be applied to an internal gear or a sun gear depending on the configuration of the planetary gear mechanism.
  • the present invention can be applied to any configuration of the planetary gear mechanism.
  • the number of planetary gears is three in the above embodiment, but may be two or four or more, and is not particularly limited.
  • a roller bearing is used as the bearing.
  • the type of the bearing is not necessarily limited to the roller bearing.
  • a ball bearing or a sliding bearing may be employed.
  • all the bearings have both the inner ring and the outer ring.
  • the bearing in which the inner ring or the outer ring is omitted may be provided on the side where no gap is formed. .
  • a gap according to the present invention in addition to the original relative rotation (between the gear and the support member) as the bearing.
  • a gap according to the present invention is separately present in addition to the portion where the relative rotation is performed in the slide bearing.
  • a gap is unavoidably present in the “part of relative rotation in the bearing”, but the gap of the part of relative rotation in the bearing is not included in the gap of the present invention.
  • the “gap between the relative rotating parts of the bearing” is a gap between the inner ring, the rolling element, and the outer ring, for example, in the case of a bearing having inner and outer rings. That is, the rolling element—the gap between the members constituting the rolling surface of the rolling element.
  • the present invention can be used for a wind speed booster equipped with a planetary gear mechanism.

Abstract

 小型、軽量、低コストでありながら、信頼性の高く、寿命の長い風力発電用の増速機を得る。風力発電用の増速機50は遊星歯車機構52を備える。増速機50は、遊星歯車機構52の一要素を構成する遊星歯車68と、遊星歯車68を、ころ軸受76を介して回転可能に支持する遊星ピン64と、を備える。遊星歯車68ところ軸受76との間、またはころ軸受76と遊星ピン64との間、もしくはその両方に、潤滑剤が進入する隙間S1、S2が形成されている。

Description

風力発電用の増速機
 本発明は、風力発電用の増速機に関する。
 例えば特許文献1に、図25~図27に示されるような風力発電用の増速機が開示されている。
 図25及び図26において、風力発電設備1は、基礎6上に立設される支柱2と、支柱2の上端に設置されるナセル3と、該ナセル3に対して回転自在に組付けられたロータヘッド4とを有している。ロータヘッド4は、複数枚(図示の例では3枚)の風車ブレード(風車翼)5が取り付けられている。ナセル3の内部において、ロータヘッド4には、増速機20及び発電機11が接続されている。
 風車ブレード5に風が当たると、ロータヘッド4が回転し、該ロータヘッド4の回転が増速機20にて増速した状態で発電機11に伝達される。これにより、ロータヘッド4の(トルクはあるが)速度が遅い回転を、100倍程度の速さに増幅することができ、発電機11から効率的に発電出力を得ることができる。なお、図26に示す符号12はトランス、13はコントローラ、14はインバータ、15はインバータクーラ、16は潤滑油クーラである。
 前記増速機20は、図27に示すように、初段に遊星歯車機構22を備えると共に、中段及び後段に平行軸歯車機構24、26を備える。入力軸28から入力されるロータヘッド4の主軸(図示略)の回転は、計3段の歯車機構22、24、26によって増速され、出力軸30から出力される。出力軸30には、前述した発電機11が連結される。
 前記遊星歯車機構22は、入力軸28と一体化されたキャリヤ32、該キャリヤ32に固定された遊星ピン34、該遊星ピン34に回転自在に支持された遊星歯車36、該遊星歯車36が同時に噛合する内歯歯車38及び太陽歯車40から主に構成されている。この例では、太陽歯車40が遊星歯車機構22の出力軸42と一体化されると共に、内歯歯車38がケーシング44と一体化されている。
 なお、前記遊星ピン34と遊星歯車36との間には、ころ軸受46が介在され、風車ブレード5側から入力されてくる大トルクに対応できるように配慮されている。
特開2009-144533号公報(図6~図8)
 風力発電設備は、その耐用期間が20年前後となるように設計される。このため、増速機についても基本的に20年前後の寿命が確保されることが要求される。
 しかしながら、風力発電設備は自然環境下に設置されるので(たとえガイドラインに沿った設計がなされている場合であっても)強風や突風などに起因する増速機に関するトラブルが多いというのが実状である。増速機のトラブルは、一度発生するとその被害は深刻なものとなるため、信頼性の確保が重要視されている。
 一般に、増速機の信頼性を確保するにあたって有効な対策は、要するならば、設計時に各要素の安全率(セーフティファクタ)を大きくとることである。しかし、各要素の安全率を大きくとると、当然に増速機全体が大型化して重量も大きくなり、製造コスト、建設コストの増大を招くという問題が生じる。
 本発明は、このような問題を解消するためになされたものであって、新たに見つけた中間課題(後述)を克服することによって、小型、軽量、低コストでありながら、信頼性が高く、寿命の長い風力発電用の増速機を提供することをその本来の課題としている。
 本発明のある態様は、遊星歯車機構を備えた風力発電用の増速機に関する。この増速機は、遊星歯車機構の一要素を構成する歯車と、歯車を、軸受を介して回転可能に支持する支持部材と、を備える。歯車と軸受との間または軸受と支持部材との間もしくはその両方に、複数のリング状の部材が介在される。複数のリング状の部材の内周側及び外周側の少なくとも一方に、潤滑剤が進入する隙間が形成されている。
 本発明の別の態様もまた、遊星歯車機構を備えた風力発電用の増速機に関する。この増速機は、遊星歯車機構の遊星歯車と、遊星歯車を、遊星歯車と一体的に回転する遊星ピンごと軸受を介して回転可能に支持するキャリヤと、を備える。キャリヤと軸受の外輪との間または遊星ピンと軸受の内輪との間もしくはその両方に、複数のリング状の部材が介在される。複数のリング状の部材の内周側及び外周側の少なくとも一方に、潤滑剤が進入する隙間が形成されている。
 また、本発明の更に別の態様も、遊星歯車機構を備えた風力発電用の増速機に関する。この増速機は、遊星歯車機構の一要素を構成する歯車と、歯車を、軸受を介して回転可能に支持する支持部材と、を備える。軸受における相対回転する部位以外のいずれかの部位に、歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に半径方向に微小変位可能とする隙間を形成する。隙間には潤滑剤が進入する。隙間を介して対向する2つの表面のうちの少なくとも一方に凹部を設けた。
 すなわち、この態様では、歯車と支持部材が軸受を介して相対回転する部位以外のいずれかの部位に、潤滑剤の進入可能な「隙間」を形成するようにしている。この隙間は、歯車、軸受、及び支持部材のうちの少なくとも2者同士が、相対的に半径方向に微小変位することを許容する。
 また、本発明の更に別の態様も、遊星歯車機構を備えた風力発電用の増速機に関する。この増速機は、遊星歯車機構の一要素を構成する歯車と、該歯車を、軸受を介して回転可能に支持する支持部材と、を備え、前記軸受における相対回転する部位以外のいずれかの部位に、前記歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に径方向に微小変位可能とする隙間を形成し、かつ該隙間に液体を密封するシール部材を有する。
 なお、この場合において、密封するのは、「隙間内の液体のみ」である必要はなく、隙間内の液体のほか周辺の一部の液体を(減速機内の空間から隔離された状態で)一緒に密封する構成を含む。また、密封される「液体」には、潤滑油のような液状の素材のほか、グリース等の半固体状の素材を含み、増速機内の潤滑剤と同一でも異なっていてもよい。また、密封される「液体」は、必ずしもいわゆる「潤滑剤」である必要はない。
 また、本発明の更に別の態様も、遊星歯車機構を備えた風力発電用の増速機に関する。この増速機は、前記遊星歯車機構の一要素を構成する歯車と、該歯車を、軸受を介して回転可能に支持する支持部材と、を備え、前記軸受における相対回転する部位以外のいずれかの部位に、前記歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に径方向に微小変位可能とする隙間を形成し、かつ潤滑剤が進入可能であって、該隙間に開口する潤滑通路を備える。
 この様態では、歯車と支持部材が軸受を介して相対回転する部位以外のいずれかの部位に、潤滑通路が開口し、潤滑剤が進入可能な「隙間」を形成するようにしている。この隙間は、歯車、軸受、及び支持部材のうちの少なくとも2者同士が、相対的に径方向に微小変位することを許容する。
 但し、この態様では、本発明においては、「隙間」に対し、潤滑剤の流入可能な潤滑通路が開口しているが、必ずしもポンプ等によって積極的に潤滑剤を隙間に供給する構成とされている必要はなく、例えば軸や歯車の回転による遠心力等を利用して隙間に潤滑剤を供給するものであってもよい。
 本発明の前記中間課題及びその解決原理は、公知のものではないため、ここで、本発明が着目した当該中間課題とその解決原理について、詳細に説明する。
 風力発電設備の風車ブレードには、「風速や風向が変化する風」が瞬間的に強く掛かることがある。例えば、強い突風が風車ブレードに掛かると、増速機の各要素には瞬間的に強い加速トルクが掛かる。しかしながら、増速機の先には高速で回転する発電機が負荷として連結されているため、増速機の各要素は、慣性によりこの加速トルクに瞬時に追随して回転速度を増大させることができない。結果として、加速トルクの立ち上りが急峻の場合は、各要素にこの急峻に立ち上がる加速トルクが、(恰も静止している各要素に対して掛かるように)瞬間的にそっくり掛かってしまうことになる。
 また、例えば風向きが激しく変化するような悪天候の場合、「突然の逆風」等によって風車ブレードの逆側から風が掛かったりすることがある。すると、該風車ブレードの回転速度が瞬間的に大きく落ち込むという現象が発生する。この場合、増速機の各要素には、入力軸側から強い減速トルクが掛かる。しかし、(加速トルクが掛かるときと異なり)強い減速トルクが突然掛かるときは、たとえ風車ブレードの回転方向は逆にはならなくても、それまで各歯車の歯面間に形成されていたバックラッシの形成方向が反転してしまう現象が発生する。これは、入力軸が「駆動力を付与する状態」から、「制動力を付与する状態」に変化するためである。バックラッシが反転するときは、各歯車の歯面同士が直接ぶつかるため、歯面(この場合通常駆動時と逆側の面)に強い衝撃が加わると考えられる。この状態から、当該「突然の逆風」が止んで再加速するときに歯面のバックラッシは再び反転する。このため、結局、天候が荒れていて風が巻いていると、このような状況が発生するごとに、歯面同士の衝突が繰り返され、各歯面には両側から頻繁に衝撃が掛かってしまうことになる。
 本発明は、風力発電用の増速機のトラブルには、強風時に連続的に掛かる大きなトルクだけでなく、むしろ、このような「風速や風向の急変」に起因して、増速機の各要素に瞬間的に(ピーク的に)発生する強い負荷あるいは衝撃が大きく影響していると推察し、こうした強い瞬間的な負荷あるいは衝撃を緩和することを「中間課題」として捉え、この中間課題を克服することによって、上記本来の課題を解決するという発想で創案された。
 本発明のある態様では、歯車と軸受との間または軸受と支持部材との間もしくはその両方に、複数のリング状の部材を介在させる。この複数のリング状の部材の内周側及び外周側の少なくとも一方に、潤滑剤が進入する隙間が形成されている。本発明の別の態様では、キャリヤと軸受の外輪との間または遊星ピンと軸受の内輪との間もしくはその両方に、複数のリング状の部材を介在させる。この複数のリング状の部材の内周側及び外周側の少なくとも一方に、潤滑剤が進入する隙間が形成されている。
 今、「風速や風向の急変」等に起因して、入力軸回転速度が急変すると、増速機は、本来的に瞬時にその時点で最も安定的な噛合状態を自動的に形成しようとする。このとき本発明によれば、上記隙間の存在により、結果として歯車、軸受、リング状の部材及び支持部材のうちの少なくとも2者同士、もしくはキャリヤ、軸受、リング状の部材及び遊星ピンのうちの少なくとも2者同士が、相対的に半径方向に微小変位することができる。この結果、上記隙間の形成態様が変化して隙間内の潤滑剤の移動(出入り)が発生するため、同時に、該潤滑剤の移動(特に隙間から出て行こうとする移動)を妨げようとする抵抗が発生する。この抵抗により、(もし抵抗がなかったならばそのまま急峻に立ち上がってしまう)負荷や衝撃を鈍らせることができる。
 本発明に係る風力発電用の増速機は、強風が吹きやすい地域や、風向きの安定しない地域、すなわち風の乱れが大きい地域に設置される風力発電設備に組み込まれる場合に、特に有効に機能するが、その設置場所は特に限定されない。
 本発明によれば、小型、軽量、低コストでありながら、信頼性の高く、寿命の長い風力発電用の増速機を得ることが可能となる。
本発明の第1実施形態に係る風力発電用の増速機の主要部を示す断面図である。 図1の増速機の全体構成を示す断面図である。 本発明の第2実施形態に係る風力発電用の増速機の主要部を示す断面図である。 遊星ピン、ころ軸受、リング状の部材、潤滑剤、遊星歯車、を図3の右側から見た模式的な平面図である。 本発明の第3実施形態に係る風力発電用の増速機の主要部を示す断面図である。 本発明の第4実施形態に係る風力発電用の増速機の主要部を示す断面図である。 図6の増速機の全体構成を示す断面図である。 本発明の第5実施形態に係る風力発電用の増速機の主要部を示す断面図である。 本発明の第6実施形態に係る風力発電用の増速機の主要部を示す断面図である。 本発明の第7実施形態に係る風力発電用の増速機の主要部を示す平面図である。 第7実施形態の変形例に係る風力発電用の増速機の主要部を示す平面図である。 (a)、(b)は、本発明の第8実施形態に係る風力発電用の増速機の主要部を示す平面図及び断面図である。 本発明の第9実施形態に係る風力発電用の増速機の主要部を示す断面図である。 本発明の第10実施形態に係る風力発電用の増速機の主要部を示す断面図である。 本発明の更に他の実施形態の一例を示す風力発電用の増速機の主要部を示す断面図である。 図15の増速機の全体構成を示す断面図である。 本発明の更に他の実施形態に係る風力発電用の増速機の主要部を示す断面図である。 本発明の更に他の実施形態に係る風力発電用の増速機の主要部を示す断面図である。 本発明の実施形態の更に他の一例を示す風力発電用の増速機の主要部を示す断面図である。 図19の増速機の全体構成を示す断面図である。 図20の導油体の構成を模式的に示した断面図である。 本発明の他の実施形態に係る風力発電用の増速機の主要部を示す断面図である。 本発明の更に他の実施形態に係る風力発電用の増速機の主要部を示す断面図である。 本発明の更に他の実施形態に係る風力発電用の増速機の遊星歯車機構の概略構成を示すスケルトン図である。 従来(及び本発明)の風力発電設備の全体構成の一例を示す正面図である。 図25の風力発電設備のナセルの内部構成を示す斜視図である。 図25の風力発電設備のナセル内に設置された従来の風力発電用の増速機の一例を示す断面図である。
 以下、図面に基づいて本発明の実施形態の一例を詳細に説明する。
 本発明に係る増速機が組み込まれる風力発電設備の概略構成については、既に図26、図27を用いて説明したものと同様であるため、重複説明は省略し、以降、増速機自体の構成について詳細に説明する。
 図1は、本発明の第1実施形態に係る風力発電用の増速機50の主要部を示す断面図、図2は、その全体断面図である。
 先ず、図2を参照して、この風力発電用の増速機50は、初段に遊星歯車機構52を備えると共に、中段及び後段に第1、第2平行軸歯車機構54、56を備える。入力軸58から入力される主軸(図示略)の回転は、計3段の歯車機構52、54、56によって増速され、出力軸60から出力される。出力軸60には、発電機(従来の発電機11と同様:図26参照)が連結され、所定の発電がなされる。
 前記遊星歯車機構52は、入力軸58と一体化されたキャリヤ62、該キャリヤ62に両持ち支持された遊星ピン64、該遊星ピン64に回転自在に支持された3個(図2では1個のみ図示)の遊星歯車68、該遊星歯車68が同時に内接噛合する内歯歯車70、遊星歯車68が同時に外接噛合する太陽歯車72、及び後述の(複数の)リング状の部材88から主に構成されている。この実施形態では、太陽歯車72は遊星歯車機構52の出力軸80に直接形成されており、内歯歯車70はケーシング74と一体化(固定)されている。図2では、(複数の)リング状の部材88の部材間の境界の図示は省略する。
 前記キャリヤ62は、円盤状の一対のキャリヤフランジ62A、62Bが連結部62Cを介して連結・対峙している構成とされ、この一対のキャリヤフランジ62A、62Bの間に前記遊星歯車68、内歯歯車70、太陽歯車72が組み込まれている。キャリヤフランジ62A、62Bは、軸受75、78によって増速機50のケーシング74に(入力軸58ごと)回転自在に支持されている。
 前記遊星ピン64は、この一対のキャリヤフランジ62A、62Bに圧入され、両持ち支持されている。前記遊星歯車68は、該遊星ピン64によってころ軸受76及びリング状の部材88を介して回転可能に支持されている。即ち、この実施形態では、遊星歯車68が請求項1の「歯車」に相当しており、ころ軸受76が「軸受」に、遊星ピン64が「支持部材」にそれぞれ相当している。
 ここで、図1を合わせて参照して、本実施形態における増速機の遊星歯車の付近の構成をより詳細に説明する。
 前述したように、遊星歯車68は、ころ軸受76及びリング状の部材88を介して回転可能に(支持部材である)遊星ピン64に支持されている。この実施形態では2個のころ軸受76が軸方向に並べて配置されている。それぞれのころ軸受76は内輪76A、外輪76B、ころ(転動体)76C、及びリテーナ76Dを備えている。ころ軸受76の内輪76Aは、スペーサ82(82A~82C)を介してキャリヤフランジ62A、62Bの間で軸方向に位置決めされている。また、ころ軸受76の外輪76Bは、ころ76C、中央のスペーサ82B、及びリテーナ76Dを介して内輪76Aに対して軸方向に位置決めされている。
 本実施形態に係る風力発電用の増速機50では、遊星歯車68ところ軸受76(の外輪76B)との間に、複数の、例えば5つのリング状の部材88A~88Eを介在させている。本明細書では、5つのリング状の部材88A~88Eをまとめてリング状の部材88と称することがある。5つのリング状の部材88A~88Eは軸方向に配列されている。
 遊星歯車68は、中心孔68Aを備えている。中心孔68Aには溝68Bが形成されており、この溝68Bに止め輪84が係合している。また、5つのリング状の部材88A~88Eのうち軸方向で外側すなわち両端部に位置する部材88A、88Eにはそれぞれ、5つのリング状の部材88A~88Eの軸方向の移動を規制するための段部88AA、88EAが設けられている。リング状の部材88Eの段部88EAは止め輪84に係止され、リング状の部材88Aの段部88AAは遊星歯車68の対応する段部68Cに係止されている。これにより、遊星歯車68に対してリング状の部材88が軸方向に位置決めされる。
 リング状の部材88Aの内周面88AB及びリング状の部材88Eの内周面88EBにはそれぞれ溝88AC、88ECが形成されており、これらの溝88AC、88ECのそれぞれに止め輪85A、85Eが係合している。これにより、2つのころ軸受76の外輪76Bの端部76A1、76B1に対してリング状の部材88が軸方向に位置決めされる。このように、遊星歯車68はリング状の部材88を介して軸方向に位置決めされ、該遊星歯車68の軸方向の動きが拘束されている。
 しかし、遊星歯車68は、半径方向の微小な動きは特に拘束されていない。円周方向の動きについては、少なくともころ軸受76(の外輪76B)に対しては、全く拘束されていない。即ち、リング状の部材88の内周側には、小さな間隔の隙間S1が形成されており、外周側にはより大きな隙間S2が形成されている。より具体的には、隙間S1はリング状の部材88の内周面ところ軸受76の外輪76Bの外周面との間に形成され、隙間S2はリング状の部材88の外周面と遊星歯車68の中心孔68Aの周面との間に形成されている。従って、この2つの隙間S1及びS2の存在により、遊星歯車68は支持部材である遊星ピン64に対して半径方向に微小変位可能である。なお、上記隙間S1、S2のうちの一方はなくてもよい。
 本実施形態では、隙間S1は、ころ軸受76の外径d1に対して0.3%(3/1000)程度の大きさとなるように設定してある。隙間S1及び隙間S2が、遊星歯車68ところ軸受76の外輪76Bが、相対的に半径方向に微小変位することを可能としている。本実施形態では、ころ軸受76は、支持部材である遊星ピン64と一体化された状態で組み込まれているため、遊星歯車68の方が、ころ軸受76に対して微小変位する構成とされている。
 遊星歯車68がころ軸受76に対して微小変位可能というのは、結果として、遊星歯車68が、内歯歯車70及び太陽歯車72に対して、通常のバックラッシによる円周方向の微小変位のほかに、隙間S1及び隙間S2の分、更に半径方向に微小変位できることを意味する。
 隙間S1及び隙間S2内には、増速機50内の潤滑剤(潤滑油)が進入可能である。隙間S1及び隙間S2内の潤滑剤の機能については、後に詳細に説明する。
 次に、本実施形態に係る風力発電用の増速機50の作用を説明する。
 風車ブレード5の回転は、ロータヘッド4の主軸を介して増速機50の入力軸58に伝達される。入力軸58の回転はキャリヤ62(キャリヤフランジ62A、62B)を介して遊星歯車68の公転として遊星歯車機構52に入力され、遊星歯車68、内歯歯車70、太陽歯車72の3者の相対回転により、増速された回転が太陽歯車72から遊星歯車機構52の出力軸80へと出力される。
 遊星歯車機構52の出力軸80の回転は、カップリング79を介して第1平行軸歯車機構54によって増幅され、第2平行軸歯車機構56によってさらに増幅された後、最終的に当該増速機50の出力軸60から取り出される。増速機50の出力軸60は、発電機11に連結されているため、結局、風車ブレード5の回転を増速した上で発電機11を回転させることができ、効率的な風力発電を行うことができる。
 以下、隙間S1及び隙間S2の機能に着目しながら遊星歯車機構52の作用をより詳細に説明する。
 入力軸58と一体化されたキャリヤ62(キャリヤフランジ62A、62B)が回転すると、このキャリヤフランジ62A、62Bの回転に伴って遊星ピン64が遊星歯車機構52の軸心周りで公転するため、遊星歯車68が太陽歯車72に外接、内歯歯車70に内接した状態で回転する。
 遊星ピン64と遊星歯車68との円周方向の相対回転は、専らころ軸受76のころ76Cを介して該ころ軸受76の内輪76Aと外輪76Bとが相対回転することによって実現される。これは、隙間S1、隙間S2はいずれもその間隔が極めて狭いことから、仮に、ころ軸受76の外輪76Bとリング状の部材88との間またはリング状の部材88と遊星歯車68との間もしくはその両方に円周方向の相対回転が発生しようとすると、隙間S1、隙間S2内に存在する潤滑剤に剪断応力が発生するためである。即ち、この剪断応力の発生と相俟って、遊星ピン64と遊星歯車68の円周方向の相対回転に対する抵抗は、ころ軸受76よりも隙間S1、隙間S2の方が遙かに大きくなるため、結果として、(隙間S1、隙間S2の存在に拘わらず)、ころ軸受76の外輪76Bとリング状の部材88と遊星歯車68とは、(少なくとも通常運転時は)相対回転はほとんどしない。
 一方、荒れた天候のとき、とりわけ、風向きが頻繁に変わるような強い風が吹いているとき等にあっては、風車ブレード5の回転トルクが変動(あるいは急変)するため、遊星歯車68に掛かるキャリヤ62からの公転推進力も同様に変動する。それによって内歯歯車70や太陽歯車72から受ける噛合反力も変動するため、隙間S1や隙間S2の部分にかかるラジアル荷重が変動する。その結果、遊星歯車68が遊星ピン64(具体的にはこれと一体化されているころ軸受76の外輪76B)に対して半径方向に微小変位する状態が繰り返されることになる。
 この微小変位により、円周方向のある部分での隙間S1の間隔が狭くなると、その部分に存在していた潤滑剤が押し潰されながら隙間S1外に押し出される。逆に、直径方向反対側では隙間S1の間隔が拡がり、隙間S1内に潤滑剤が入り込む。このとき、とりわけ隙間S1の間隔がより狭くなって隙間S1内の潤滑剤が押し潰されながら押し出されるとき、潤滑剤に強い圧縮応力と、狭い空間で強制的に移動させられることによる剪断応力が発生する。
 この圧縮応力や剪断応力の発生により、隙間S1を挟んだ2つの部材の間でピーク的な負荷が、一方側から他方側に直に(そのまま)伝達されてしまうのが防止される。即ち、リング状の部材88ところ軸受76の外輪76Bとの間で、もし隙間S1がなかったならば、そのまま急峻に大きく立ち上がって急峻に低下するような衝撃的なトルクの伝達が抑制される。
 隙間S2についても同様であり、遊星歯車68とリング状の部材88との間で、もし隙間S2がなかったならば、そのまま急峻に大きく立ち上がって急峻に低下するような衝撃的なトルクの伝達が抑制される。
 また、仮に、それまで隙間S1内の潤滑剤の円周方向の剪断応力の範囲内で一体的に回転していたリング状の部材88ところ軸受76の外輪76Bの間に、該剪断応力を超える円周方向の負荷がかかると、当該リング状の部材88ところ軸受76の外輪76Bとの間に「滑り」が発生するため、この新たに発生した滑りによっても、衝撃の吸収効果が発揮されると考えられる。
 隙間S2についても同様であり、遊星歯車68とリング状の部材88との間の滑りによっても衝撃の吸収効果が発揮されると考えられる。
 更には、急峻なトルク変動の伝達が抑制されることによって、バックラッシが反転する頻度を低減することができ、仮に反転したとしても、反転時の歯面の衝撃をより低減することもできる。この効果は、風向きの安定しない地域に設置された風力発電設備の場合、現実的には小さくないと考えられる。
 加えて、本実施形態に係る風力発電用の増速機50の場合、遊星歯車68が3個あり、動力伝達がなされる噛合点が計6個所存在するが、各遊星歯車68のピッチ円や公転軌道(キャリヤ62に対する遊星ピン64の位置)は、製造誤差によって必ずばらついている。また、内歯歯車70及び太陽歯車72の同軸性も必ずしも正確に確保されているわけではない。
 このため、従来の(遊星歯車機構を備えた)風力発電用の増速機の場合は、ある「特定の噛合点」にのみ、伝達トルクの負荷が強く掛かり易いという傾向があった。言うまでもなく、伝達トルクの負荷を特定の噛合点でのみ強く受けると、当該特定の噛合点でのダメージはより増強されてしまうが、この影響は、急峻に立ち上がって急峻に低下するような衝撃的なトルクが掛かった場合に一層顕著となる。
 本実施形態に係る増速機50によれば、隙間S1や隙間S2の存在により、3個の遊星歯車68が、それぞれ内歯歯車70及び太陽歯車72に対して半径方向に微小変位できるため、リアルタイムで(瞬時に)その時点で最も安定的な噛合状態を自動的に且つより容易に形成できるようになるという効果も得られる。この安定的な噛合状態を自動的に形成できる機能は、衝撃的なトルクが掛かったときだけでなく、風向きがそれほど急に変化しないときにも常に維持されるため、より低周波数領域の変動成分の吸収にも寄与すると考えられる。
 結果として、隙間S1、隙間S2と該隙間S1、隙間S2内の潤滑剤の存在により、風車ブレード5から発電機11に至るエネルギの総量はほぼ同一でありながら、特に、各要素に加わる負荷のピーク値を低減し、瞬間的な過大負荷や衝撃の発生を低減することができるようになる。この結果、風車ブレード5から入力されてくるトルクを、より安定的に伝達することが可能となり、増速機の寿命を大きく伸ばすことができる。
 さらに、本実施形態では、リング状の部材88自体が、遊星ピン64(及びこれと一体化されたころ軸受76の外輪76B)に対して半径方向に微小変位可能であり、且つ、このリング状の部材88に対して遊星歯車68が半径方向に微小変位可能な構成とされているため、変動成分を良好に吸収可能な周波数領域をより拡大することができる。
 また、本実施形態では、リング状の部材88が、軸方向に分割されているので、潤滑剤は隣り合うリング状の部材間の隙間から隙間S1や隙間S2に入り込むことができる。このように潤滑剤の通路をより多く設けることで、潤滑剤を隙間S1や隙間S2により容易に進入させることができ、衝撃吸収効果を高めることができる。このような作用効果は、隙間S1や隙間S2が比較的狭い場合やそれらの隙間が軸方向に比較的長い場合により顕著である。
 なお、変動吸収を意図する周波数領域によっては、支持部材である遊星ピン64ところ軸受76(の内輪76A)との間に、隙間S3(図1にて想像線にて図示)を追加的に形成するのは有効である。
 さらには、このようなリング状の部材88を、遊星歯車68ところ軸受76の外輪76Bとの間に代えて、あるいは遊星歯車68ところ軸受76の外輪76Bとの間に加えて、ころ軸受76の内輪76Aと遊星ピン64の間に配置するようにしてもよい。
 隙間S1の大きさも隙間S1の内径(上記実施形態ではころ軸受76の外輪76Bの外径)の3/1000に限定されない。隙間の形成位置、形成個数、あるいは大きさ(間隔)を変更すると、微小変位できる部材の慣性質量や変位の態様が異なってくるため、変動(負荷変動)を良好に吸収できる領域の周波数成分を調整することができる。このため、風力発電設備を設置する地域において実際に吹く風の性質を考慮して適宜に設定するとよい。
 図3は、本発明の第2実施形態に係る風力発電用の増速機91の主要部を示す断面図である。
 風力発電用の増速機91では、遊星歯車68ところ軸受76(の外輪76B)との間に、複数の、例えば5つのリング状の部材100A~100Eを介在させている。第1実施形態と同様に、5つのリング状の部材100A~100Eの内周側には、小さな間隔の隙間S1が形成されており、外周側にはより大きな隙間S2が形成されている。より具体的には、隙間S1はリング状の部材100Bの内周面ところ軸受76の外輪76Bの外周面との間に形成され、隙間S2はリング状の部材100Dの外周面と遊星歯車68の中心孔の周面との間に形成されている。
 5つのリング状の部材100A~100Eのうち軸方向で中間に位置する3つのリング状の部材100B、100C、100Dはこの順に半径方向に配列されており、それらの部材100B、100C、100Dの軸方向外側すなわち両端部にはそれぞれリング状の部材100A、100Eが位置する。3つのリング状の部材100B、100C、100Dのうちの半径方向に隣接する2つの間には隙間が設けられる。すなわち、リング状の部材100Bとリング状の部材100Cとの間に隙間S4が設けられ、リング状の部材100Cとリング状の部材100Dとの間に隙間S5が設けられる。隙間S4、隙間S5には、例えばリング状の部材100Aと3つのリング状の部材100B、100C、100Dとの間の隙間から潤滑剤が進入可能である。隙間S4及び隙間S5は、隙間S1や隙間S2と同様に機能する。
 リング状の部材100A、100Eはそれぞれ、遊星歯車68の軸方向の動きの拘束について、第1実施形態のリング状の部材88A、88Eと同様の構成を有する。
 図4は、遊星ピン64、ころ軸受76、リング状の部材100E、潤滑剤104、遊星歯車68、を図3の右側から見た模式的な平面図である。図4では、隙間S1の表示は省略する。
 その他の構成は、第1実施形態と同様であるため、図3、図4の中で第1実施形態と同一または機能的に類似する部分に同一の符号を付すにとどめ、重複説明を省略する。
 本実施形態に係る風力発電用の増速機91によると、第1実施形態に係る風力発電用の増速機50と同様の作用効果が奏される。さらに、本実施形態に係る風力発電用の増速機91では、3つのリング状の部材100B、100C、100Dが半径方向に配置され、それぞれの間に隙間S4、S5が設けられている。これにより、衝撃を吸収する役割が直列的に存在することから、衝撃吸収効果を高めることができる。
 図5は、本発明の第3実施形態に係る風力発電用の増速機120の主要部を示す断面図である。
 風力発電用の増速機120の遊星歯車83は、遊星歯車部83Aと、該遊星歯車部83Aを支持する遊星ピン部83Cとで構成されている。この構成例から明らかなように、「歯車」を、軸受を介して支持部材に回転可能に支持される部材または部材群であって歯部を有する部材または部材群、と定義してもよい。そして、この(遊星ピン部83Cを含む)遊星歯車83が、両サイドに配置された支持部材たるキャリヤ84(一対のキャリヤフランジ84A、84B)によって該キャリヤ84に対してころ軸受86及び複数のリング状の部材122A~122Fを介して回転可能に両持ち支持されている。遊星歯車83は、ころ軸受86を介してキャリヤフランジ84A、84Bと相対回転可能である。ころ軸受86は内輪86A及び外輪86B及びころ86Cを備えている。
 風力発電用の増速機120では、キャリヤフランジ84Aところ軸受86の外輪86Bとの間に、複数の、例えば3つのリング状の部材122A~122Cを介在させている。3つのリング状の部材122A~122Cは軸方向に配列されている。キャリヤフランジ84Bところ軸受86の外輪86Bとの間に、複数の、例えば3つのリング状の部材122D~122Fを介在させている。3つのリング状の部材122D~122Fは軸方向に配列されている。
 キャリヤフランジ84Aと3つのリング状の部材122A~122Cとの間、及びキャリヤフランジ84Bと3つのリング状の部材122D~122Fとの間に、潤滑剤が進入する隙間S6が形成されている。3つのリング状の部材122A~122Cところ軸受86(の外輪86B)との間、及び3つのリング状の部材122D~122Fところ軸受86(の外輪86B)との間に、潤滑剤が進入する隙間S7が形成されている。すなわち、3つのリング状の部材122A~122Cの内周側及び外周側の両方に隙間S6、S7が形成されている。3つのリング状の部材122D~122Fについても同様である。
 その他の構成は、第1実施形態と同様であるため、図5の中で第1実施形態と同一または機能的に類似する部分に同一の符号を付すにとどめ、重複説明を省略する。
 本実施形態に係る構成によっても、第1実施形態と同様に、遊星歯車83が支持部材たるキャリヤ84に対して半径方向に微小変位できる。ただし、この実施形態に係る遊星歯車83は、遊星ピン部83Cを一体に含んでいるため、第1実施形態よりも微小変位する部材の慣性質量が大きい。このため、設計次第で、より低周波数の領域での変動吸収を良好に行うことができる可能性がある。
 また、本実施形態に係る構成では、第1実施形態と同様に、潤滑剤は隣り合うリング状の部材間の隙間から隙間S6や隙間S7に入り込むことができるので、衝撃吸収効果を高めることができる。
 本実施形態に対しても、隙間S6、S7に加えて、ころ軸受86の内輪86Aと遊星歯車83との間に隙間S8(図5において想像線にて図示)を形成するようにしてもよい。また、追加的に、遊星歯車83の遊星歯車部83Aと遊星ピン部83Cとの間に隙間S9(図5において想像線にて図示)を設けてもよい。これにより、キャリヤ84での隙間S6、S7(及びS8)による変動吸収効果のほか、遊星歯車部83Aと遊星ピン部83Cの間においても、(吸収しようとする周波数成分次第では)有効な変動吸収効果が得られるようになる。なお、遊星歯車部83Aと遊星ピン部83Cは、別体ではなく、一体に形成されていてもよい。
 キャリヤ84ところ軸受86の外輪86Bとの間に代えて、またはそれに加えて、複数のリング状の部材を遊星ピン部83Cところ軸受86の内輪86Aとの間に介在させてもよい。
 第1、第2及び第3実施形態について、隙間の形成される位置や大きさ、あるいは位相が異なると、変動吸収可能な周波数領域が異なってくるため、風力発電設備の設置される地域の方の性質を考慮してより効果的な変動吸収を行うことができるようになる。
 第1、第2及び第3実施形態では、複数のリング状の部材のうちの隣り合う2部材の対向面は回転軸に直交するかまたは回転軸と平行となる場合について説明したが、これに限らず、例えば複数のリング状の部材のうちの隣り合う2部材の対向面は回転軸に対して斜めになっていてもよい。すなわち、1つのリング状の部材を回転軸に対して斜めに分割する形で複数のリング状の部材を設けてもよい。
 また、第2実施形態ではリング状の部材を軸方向及び径方向の両方に分割しているが、径方向のみに分割してもよい。
 図6は、本発明の第4実施形態に係る風力発電用の増速機250の主要部を示す断面図、図7は、その全体断面図である。
 先ず、図7を参照して、この風力発電用の増速機250は、初段に遊星歯車機構252を備えると共に、中段及び後段に第1、第2平行軸歯車機構254、256を備える。入力軸258から入力される主軸(図示略)の回転は、計3段の歯車機構252、254、256によって増速され、出力軸260から出力される。出力軸260には、発電機(従来の発電機11と同様:図26参照)が連結され、所定の発電がなされる。
 前記遊星歯車機構252は、入力軸258と一体化されたキャリヤ262、該キャリヤ262に両持ち支持された遊星ピン264、該遊星ピン264に回転自在に支持された3個(図7では1個のみ図示)の遊星歯車268、該遊星歯車268が同時に内接噛合する内歯歯車270、遊星歯車268が同時に外接噛合する太陽歯車272、及び後述のリング状の部材288から主に構成されている。この実施形態では、太陽歯車272は遊星歯車機構252の出力軸280に直接形成されており、内歯歯車270はケーシング274と一体化(固定)されている。
 前記キャリヤ262は、円盤状の一対のキャリヤフランジ262A、262Bが連結部262Cを介して連結・対峙している構成とされ、この一対のキャリヤフランジ262A、262Bの間に前記遊星歯車268、内歯歯車270、太陽歯車272が組み込まれている。キャリヤフランジ262A、262Bは、軸受275、278によって増速機250のケーシング274に(入力軸258ごと)回転自在に支持されている。
 前記遊星ピン264は、この一対のキャリヤフランジ262A、262Bに圧入され、両持ち支持されている。前記遊星歯車268は、該遊星ピン264によってころ軸受276及びリング状の部材288を介して回転可能に支持されている。即ち、この実施形態では、遊星歯車268が請求項1の「歯車」に相当しており、ころ軸受276が「軸受」に、遊星ピン264が「支持部材」にそれぞれ相当している。
 ここで、図6を合わせて参照して、本第4実施形態における増速機250の遊星歯車268の付近の構成をより詳細に説明する。
 前述したように、遊星歯車268は、ころ軸受276及びリング状の部材288を介して回転可能に(支持部材である)遊星ピン264に支持されている。この実施形態では2個のころ軸受276が軸方向に並べて配置されている。それぞれのころ軸受276は内輪276A、外輪276B、ころ(転動体)276C、及びリテーナ276Dを備えている。ころ軸受276の内輪276Aは、スペーサ282(282A~282C)を介してキャリヤフランジ262A、262Bの間で軸方向に位置決めされている。また、ころ軸受276の外輪276Bは、ころ276C、中央のスペーサ282B、及びリテーナ276Dを介して内輪276Aに対して軸方向に位置決めされている。
 本実施形態に係る風力発電用の増速機250では、遊星歯車268ところ軸受276(の外輪276B)との間に、リング状の部材288を介在させている。リング状の部材288の外周面288Aには、凹部すなわち周方向に伸びる複数の溝288AAが設けられる。
 なお、本実施形態では、溝288AAは周方向に一周つながっているが、周方向の何カ所かで途切れた溝であってもよい。
 遊星歯車268は、中心孔268Aを備えている。中心孔268Aには溝268Bが形成されており、この溝268Bに止め輪284が係合している。また、リング状の部材288の軸方向の両端部にはそれぞれ、リング状の部材288の軸方向の移動を規制するための段部288B、288Cが設けられている。リング状の部材288の軸方向の一端の段部288Bは止め輪284に係止され、リング状の部材288の他端の段部288Cは遊星歯車268の対応する段部268Cに係止されている。これにより、遊星歯車268に対してリング状の部材288が軸方向に位置決めされる。
 リング状の部材288の内周面288Dには2つの溝288DA、288DBが形成されており、これらの溝288DA、288DBのそれぞれに止め輪285A、285Bが係合している。これにより、2つのころ軸受276の外輪276Bの端部276A1、276B1に対してリング状の部材288が軸方向に位置決めされる。このように、遊星歯車268はリング状の部材288を介して軸方向に位置決めされ、該遊星歯車268の軸方向の動きが拘束されている。
 しかし、遊星歯車268は、半径方向の微小な動きは特に拘束されていない。円周方向の動きについては、少なくともころ軸受276(の外輪276B)に対しては、全く拘束されていない。即ち、リング状の部材288の内周側には、小さな間隔の隙間S201が形成されており、外周側にはより大きな隙間S202が形成されている。より具体的には、隙間S201はリング状の部材288の内周面288Dところ軸受276の外輪276Bの外周面との間に形成され、隙間S202はリング状の部材288の外周面288Aと遊星歯車268の中心孔268Aの周面との間に形成されている。従って、この2つの隙間S201及びS202の存在により、遊星歯車268は支持部材である遊星ピン264に対して半径方向に微小変位可能である。なお、上記隙間S201、S202のうちの一方はなくてもよい。
 本実施形態では、隙間S201は、ころ軸受276の外径d201に対して0.3%(3/1000)程度の大きさとなるように設定してある。隙間S201及び隙間S202が、遊星歯車268ところ軸受276の外輪276Bが、相対的に半径方向に微小変位することを可能としている。本実施形態では、ころ軸受276は、支持部材である遊星ピン264と一体化された状態で組み込まれているため、遊星歯車268の方が、ころ軸受276に対して微小変位する構成とされている。
 遊星歯車268がころ軸受
276に対して微小変位可能というのは、結果として、遊星歯車268が、内歯歯車270及び太陽歯車272に対して、通常のバックラッシによる円周方向の微小変位のほかに、隙間S201及び隙間S202の分、更に半径方向に微小変位できることを意味する。
 以下、隙間S201及び隙間S202の機能に着目しながら遊星歯車機構252の作用をより詳細に説明する。
 入力軸258と一体化されたキャリヤ262(キャリヤフランジ262A、262B)が回転すると、このキャリヤフランジ262A、262Bの回転に伴って遊星ピン264が遊星歯車機構252の軸心周りで公転するため、遊星歯車268が太陽歯車272に外接、内歯歯車270に内接した状態で回転する。
 遊星ピン264と遊星歯車268との円周方向の相対回転は、専らころ軸受276のころ276Cを介して該ころ軸受276の内輪276Aと外輪276Bとが相対回転することによって実現される。これは、隙間S201、隙間S202はいずれもその間隔が極めて狭いことから、仮に、ころ軸受276の外輪276Bとリング状の部材288との間またはリング状の部材288と遊星歯車268との間もしくはその両方に円周方向の相対回転が発生しようとすると、隙間S201、隙間S202内に存在する潤滑剤に剪断応力が発生するためである。即ち、この剪断応力の発生と相俟って、遊星ピン264と遊星歯車268の円周方向の相対回転に対する抵抗は、ころ軸受276よりも隙間S201、隙間S202の方が遙かに大きくなるため、結果として、(隙間S201、隙間S202の存在に拘わらず)、ころ軸受276の外輪276Bとリング状の部材288と遊星歯車268とは、(少なくとも通常運転時は)相対回転はほとんどしない。
 一方、荒れた天候のとき、とりわけ、風向きが頻繁に変わるような強い風が吹いているとき等にあっては、風車ブレード5の回転トルクが変動(あるいは急変)するため、遊星歯車268に掛かるキャリヤ262からの公転推進力も同様に変動する。それによって内歯歯車270や太陽歯車272から受ける噛合反力も変動するため、隙間S201や隙間S202の部分にかかるラジアル荷重が変動する。その結果、遊星歯車268が遊星ピン264(具体的にはこれと一体化されているころ軸受276の外輪276B)に対して半径方向に微小変位する状態が繰り返されることになる。
 この微小変位により、円周方向のある部分での隙間S201の間隔が狭くなると、その部分に存在していた潤滑剤が押し潰されながら隙間S201外に押し出される。逆に、直径方向反対側では隙間S201の間隔が拡がり、隙間S201内に潤滑剤が入り込む。このとき、とりわけ隙間S201の間隔がより狭くなって隙間S201内の潤滑剤が押し潰されながら押し出されるとき、潤滑剤に強い圧縮応力と、狭い空間で強制的に移動させられることによる剪断応力が発生する。
 この圧縮応力や剪断応力の発生により、隙間S201を挟んだ2つの部材の間でピーク的な負荷が、一方側から他方側に直に(そのまま)伝達されてしまうのが防止される。即ち、リング状の部材288ところ軸受276の外輪276Bとの間で、もし隙間S201がなかったならば、そのまま急峻に大きく立ち上がって急峻に低下するような衝撃的なトルクの伝達が抑制される。
 隙間S202についても同様であり、遊星歯車268とリング状の部材288との間で、もし隙間S202がなかったならば、そのまま急峻に大きく立ち上がって急峻に低下するような衝撃的なトルクの伝達が抑制される。
 また、仮に、それまで隙間S201内の潤滑剤の円周方向の剪断応力の範囲内で一体的に回転していたリング状の部材288ところ軸受276の外輪276Bの間に、該剪断応力を超える円周方向の負荷がかかると、当該リング状の部材288ところ軸受276の外輪276Bとの間に「滑り」が発生するため、この新たに発生した滑りによっても、衝撃の吸収効果が発揮されると考えられる。
 隙間S202についても同様であり、遊星歯車268とリング状の部材288との間の滑りによっても衝撃の吸収効果が発揮されると考えられる。
 更には、急峻なトルク変動の伝達が抑制されることによって、バックラッシが反転する頻度を低減することができ、仮に反転したとしても、反転時の歯面の衝撃をより低減することもできる。この効果は、風向きの安定しない地域に設置された風力発電設備の場合、現実的には小さくないと考えられる。
 加えて、本実施形態に係る風力発電用の増速機250の場合、遊星歯車268が3個あり、動力伝達がなされる噛合点が計6個所存在するが、各遊星歯車268のピッチ円や公転軌道(キャリヤ262に対する遊星ピン264の位置)は、製造誤差によって必ずばらついている。また、内歯歯車270及び太陽歯車272の同軸性も必ずしも正確に確保されているわけではない。
 このため、従来の(遊星歯車機構を備えた)風力発電用の増速機の場合は、ある「特定の噛合点」にのみ、伝達トルクの負荷が強く掛かり易いという傾向があった。言うまでもなく、伝達トルクの負荷を特定の噛合点でのみ強く受けると、当該特定の噛合点でのダメージはより増強されてしまうが、この影響は、急峻に立ち上がって急峻に低下するような衝撃的なトルクが掛かった場合に一層顕著となる。
 本実施形態に係る増速機250によれば、隙間S201や隙間S202の存在により、3個の遊星歯車268が、それぞれ内歯歯車270及び太陽歯車272に対して半径方向に微小変位できるため、リアルタイムで(瞬時に)その時点で最も安定的な噛合状態を自動的に且つより容易に形成できるようになるという効果も得られる。この安定的な噛合状態を自動的に形成できる機能は、衝撃的なトルクが掛かったときだけでなく、風向きがそれほど急に変化しないときにも常に維持されるため、より低周波数領域の変動成分の吸収にも寄与すると考えられる。
 結果として、隙間S201、隙間S202と該隙間S201、隙間S202内の潤滑剤の存在により、風車ブレード5から発電機211に至るエネルギの総量はほぼ同一でありながら、特に、各要素に加わる負荷のピーク値を低減し、瞬間的な過大負荷や衝撃の発生を低減することができるようになる。この結果、風車ブレード5から入力されてくるトルクを、より安定的に伝達することが可能となり、増速機の寿命を大きく伸ばすことができる。
 さらに、本実施形態では、リング状の部材288自体が、遊星ピン264(及びこれと一体化されたころ軸受276の外輪276B)に対して半径方向に微小変位可能であり、且つ、このリング状の部材288に対して遊星歯車268が半径方向に微小変位可能な構成とされているため、変動成分を良好に吸収可能な周波数領域をより拡大することができる。
 また、本実施形態では、隙間S202を形成するリング状の部材288の外周面288Aに複数の溝288AAを設けたので、隙間S202に収容可能な潤滑剤の量を増やすことができる。また、溝288AAの存在により外周面288Aの濡れ性が上がり、潤滑剤の移動を妨げようとする抵抗が大きくなる。その結果、衝撃吸収効果を高めることができる。
 なお、リング状の部材288の外周面288Aに代えて、またはそれに加えて、遊星歯車268の中心孔268Aの周面に凹部を設けてもよい。
 なお、変動吸収を意図する周波数領域によっては、支持部材である遊星ピン264ところ軸受276(の内輪276A)との間に、隙間S203(図6にて想像線にて図示)を追加的に形成するのは有効である。
 さらには、このようなリング状の部材288を、遊星歯車268ところ軸受276の外輪276Bとの間に代えて、あるいは遊星歯車268ところ軸受276の外輪276Bとの間に加えて、ころ軸受276の内輪276Aと遊星ピン264の間に配置するようにしてもよい。
 隙間S201の大きさも隙間S201の内径(上記実施形態ではころ軸受276の外輪276Bの外径)の3/1000に限定されない。隙間の形成位置、形成個数、あるいは大きさ(間隔)を変更すると、微小変位できる部材の慣性質量や変位の態様が異なってくるため、変動(負荷変動)を良好に吸収できる領域の周波数成分を調整することができる。このため、風力発電設備を設置する地域において実際に吹く風の性質を考慮して適宜に設定するとよい。
 図8は、本発明の第5実施形態に係る風力発電用の増速機291の主要部を示す断面図である。
 風力発電用の増速機291では、遊星歯車268ところ軸受276(の外輪276B)との間に、リング状の部材300を介在させている。リング状の部材300の内周面300Aには、凹部すなわち周方向に伸びる複数の溝300AAが設けられる。
 その他の構成は、第4実施形態と同様であるため、図8の中で第4実施形態と同一または機能的に類似する部分に同一の符号を付すにとどめ、重複説明を省略する。
 本実施形態に係る風力発電用の増速機291によると、第1実施形態に係る風力発電用の増速機250と同様の作用効果が奏される。特に、本実施形態では、隙間S201を形成するリング状の部材300の内周面300Aに複数の溝300AAを設けたので、隙間S201に収容可能な潤滑剤の量を増やすことができる。また、溝300AAの存在により内周面300Aの濡れ性が上がり、潤滑剤の移動を妨げようとする抵抗が大きくなる。その結果、衝撃吸収効果を高めることができる。
 なお、リング状の部材300の内周面300Aに代えて、またはそれに加えて、ころ軸受276の外輪276Bの外周面に凹部を設けてもよい。
 図9は、本発明の第6実施形態に係る風力発電用の増速機320の主要部を示す断面図である。
 風力発電用の増速機320では、遊星歯車268ところ軸受276(の外輪276B)との間に、リング状の部材322を介在させている。リング状の部材322の内周面322A及び外周面322Bにはそれぞれ、凹部すなわち周方向に伸びる複数の溝322AA、322BBが設けられる。内周面322Aの溝322AAと外周面322Bの溝322BBとは軸方向の間隔すなわち幅が異なる。
 その他の構成は、第4実施形態と同様であるため、図9の中で第4実施形態と同一または機能的に類似する部分に同一の符号を付すにとどめ、重複説明を省略する。
 本実施形態に係る風力発電用の増速機291によると、第4実施形態に係る風力発電用の増速機250と同様の作用効果が奏される。特に、本実施形態では、隙間S201を形成するリング状の部材322の内周面322Aに複数の溝322AAを設け、かつ、隙間S202を形成するリング状の部材322の外周面322Bに複数の溝322BBを設けたので、隙間S201及び隙間S202のそれぞれに収容可能な潤滑剤の量を増やすことができる。また、隙間S201及び隙間S202のそれぞれについて、溝322AA、322BBの存在により内周面322A、外周面322Bの濡れ性が上がり、潤滑剤の移動を妨げようとする抵抗が大きくなる。その結果、第1実施形態及び第2実施形態の場合よりも衝撃吸収効果を高めることができる。
 なお、リング状の部材322の内周面322Aに代えて、またはそれに加えて、ころ軸受276の外輪276Bの外周面に凹部を設けてもよい。また、リング状の部材322の外周面322Bに代えて、またはそれに加えて、遊星歯車268の中心孔268Aの周面に凹部を設けてもよい。
 図10は、本発明の第7実施形態に係る風力発電用の増速機の主要部を示す平面図である。この増速機の構成は、リング状の部材の外周面に形成される溝の向きを除いて第4実施形態に係る増速機250の構成と同様である。図10は図9の右側から見た平面図に対応する。図10では、隙間S201の表示は省略する。
 本実施形態に係る増速機では、遊星歯車268ところ軸受276(の外輪276B)との間に、リング状の部材330を介在させている。リング状の部材330の外周面330Aには、凹部すなわち軸方向に伸びる複数の溝330AAが設けられる。隙間S202には潤滑剤332が進入している。
 本実施形態では、リング状の部材330の軸方向全長に亘って溝330AAが設けられる。なお、軸方向の一部のみに溝が設けられてもよい。
 本実施形態に係る風力発電用の増速機によると、第4実施形態に係る風力発電用の増速機250と同様の作用効果が奏される。特に、本実施形態では、複数の溝330AAは軸方向に伸びるので、周方向に伸びる場合と比べて、隙間S202内の潤滑剤332が周方向に押し出されるときの抵抗が大きくなる。したがって、衝撃吸収効果をより高めることができる。
 図11は、第7実施形態の変形例に係る風力発電用の増速機の主要部を示す平面図である。本変形例では、リング状の部材330の外周面330Aに加えて、遊星歯車334の中心孔334Aの周面に軸方向に伸びる複数の溝334AAが設けられる。なお、リング状の部材330の外周面330Aの溝330AAはなくてもよい。
 図12(a)、(b)は、本発明の第8実施形態に係る風力発電用の増速機の主要部を示す平面図及び断面図である。この増速機の構成は、リング状の部材の外周面に形成される凹部の形態を除いて第4実施形態に係る増速機250の構成と同様である。図12(a)は図6の右側から見た平面図に対応する。図12(a)、(b)では、隙間S201の表示は省略する。
 本実施形態に係る増速機では、遊星歯車268ところ軸受276(の外輪276B)との間に、リング状の部材340を介在させている。リング状の部材340の外周面340Aには、凹部すなわち複数のディンプル344が設けられる。複数のディンプル344の形状、大きさ、深さ、カバー率は任意に設定できる。隙間S202には潤滑剤342が進入している。
 本実施形態に係る風力発電用の増速機によると、第4実施形態に係る風力発電用の増速機250と同様の作用効果が奏される。
 なお、リング状の部材340の外周面340Aに代えて、またはそれに加えて、遊星歯車268の中心孔268Aの周面に複数のディンプルを設けてもよい。
 図13は、本発明の第9実施形態に係る風力発電用の増速機350の主要部を示す断面図である。
 第4実施形態では遊星歯車268ところ軸受276との間にリング状の部材288を介在させ、そのリング状の部材288の内周側に隙間S201を、外周側に隙間S202を設けたが、本実施形態ではリング状の部材は設けずに遊星歯車268の中心孔268Aところ軸受276の外輪276Bとの間に直接、潤滑剤が進入する隙間S204を設ける。
 隙間S204を形成する遊星歯車268の中心孔268Aの周面には、凹部すなわち周方向に伸びる複数の溝268AAが設けられる。
 その他の構成は、第4実施形態と同様であるため、図13の中で第4実施形態と同一または機能的に類似する部分に同一の符号を付すにとどめ、重複説明を省略する。
 本実施形態に係る風力発電用の増速機350によると、第4実施形態に係る風力発電用の増速機250と同様の作用効果が奏される。
 なお、遊星歯車268の中心孔268Aの周面に代えて、またはそれに加えて、ころ軸受276の外輪276Bの外周面に凹部を設けてもよい。
 また、隙間S204の形成に代えて、あるいは、隙間S204の形成に加えて、ころ軸受276の内輪276Aと遊星ピン(支持部材)264との間に隙間S206(図13において想像線で図示)を形成し、その隙間S206を介して対向する面の少なくとも一方に凹部(図13において破線で図示)を設けても、同様の作用効果が得られる。
 図14は、本発明の第10実施形態に係る風力発電用の増速機360の主要部を示す断面図である。
 この実施形態においては、遊星歯車283が、遊星歯車部283Aと、該遊星歯車部283Aを支持する遊星ピン部283Cとで構成されている。この構成例から明らかなように、本発明における「歯車」は、軸受を介して支持部材に回転可能に支持される部材または部材群であって歯部を有する部材または部材群、と定義されてもよい。そして、この(遊星ピン部283Cを含む)遊星歯車283が、両サイドに配置された支持部材たるキャリヤ284(一対のキャリヤフランジ284A、284B)によって該キャリヤ284に対してころ軸受286を介して回転可能に両持ち支持されている。遊星歯車283は、ころ軸受286を介してキャリヤフランジ284A、284Bと相対回転可能である。ころ軸受286は内輪286A及び外輪286B及びころ286Cを備えている。
 キャリヤ284(一対のキャリヤフランジ284A、284B)ところ軸受286(の外輪286B)との間に、潤滑剤が進入する隙間S205が形成されている。即ち、この実施形態では、(遊星ピン部283Cを含む)遊星歯車283が、本発明の「歯車」に相当し、キャリヤ284(一対のキャリヤフランジ284A、284B)が、該「歯車」を、ころ軸受286を介して回転可能に支持する「支持部材」に相当していることになる。
 隙間S205を形成するキャリヤフランジ284A、284Bの内周面284A1、284B1のそれぞれには、凹部すなわち周方向に伸びる複数の溝284AA、284BBが設けられる。
 この実施形態に係る構成によっても、第1実施形態と同様に、遊星歯車283が支持部材たるキャリヤ284に対して半径方向に微小変位できる。ただし、この実施形態に係る遊星歯車283は、遊星ピン部283Cを一体に含んでいるため、第1実施形態よりも微小変位する部材の慣性質量が大きい。このため、設計次第で、より低周波数の領域での変動吸収を良好に行うことができる可能性がある。
 また、この実施形態でも、隙間S205を形成するキャリヤフランジ284A、284Bの内周面284A1、284B1のそれぞれに複数の溝284AA、284BBを設けたので、隙間S205に収容可能な潤滑剤の量を増やすことができる。また、溝284AA、284BBの存在により内周面284A1、284B1の濡れ性が上がり、潤滑剤の移動を妨げようとする抵抗が大きくなる。その結果、衝撃吸収効果を高めることができる。
 なお、キャリヤフランジ284A、284Bの内周面284A1、284B1に代えて、またはそれに加えて、ころ軸受286の外輪286Bの外周面に凹部を設けてもよい。
 この実施形態に対しても、隙間S205に代えて、あるいは隙間S205に加えて、ころ軸受286の内輪286Aと遊星歯車283との間に隙間S207(図14において想像線にて図示)を形成し、その隙間S207を介して対向する面の少なくとも一方に凹部(図14において破線で図示)を設けてもよい。また、このようなキャリヤ284での隙間S205(或いはS207)の形成に代えて、あるいは加えて、遊星歯車283の遊星歯車部283Aと遊星ピン部283Cとの間に隙間S208(図14において想像線にて図示)を設け、その隙間S208を介して対向する面の少なくとも一方に凹部(図14において破線で図示)を設けてもよい。また、遊星歯車部283Aと遊星ピン部283Cの間に、第4から第8実施形態のいずれかで説明されたようなリング状の部材(図示略)を配置してもよい。これにより、キャリヤ284での隙間S205(或いはS207)による変動吸収効果のほか、遊星歯車部283Aと遊星ピン部283Cの間においても、(吸収しようとする周波数成分次第では)有効な変動吸収効果が得られるようになる。なお、遊星歯車部283Aと遊星ピン部283Cは、別体ではなく、一体に形成されていてもよい。
 あるいはまた、キャリヤ284(一対のキャリヤフランジ284A、284B)ところ軸受286(の外輪286B)との間に第1から第5実施形態のいずれかで説明されたようなリング状の部材(図示略)を配置してもよい。
 その他の構成は、第4実施形態と同様であるため、図14の中で先の実施形態と同一または機能的に類似する部分に同一の符号を付すにとどめ、重複説明を省略する。
 第4から第10実施形態について、隙間の形成される位置や大きさ、あるいは位相が異なると、変動吸収可能な周波数領域が異なってくるため、風力発電設備の設置される地域の方の性質を考慮してより効果的な変動吸収を行うことができるようになる。
 また、第4から第10実施形態について、潤滑剤が進入する隙間を介して対向する面の少なくとも一方に設けられる凹部が溝である場合は溝の数が多いほど、ディンプルである場合はディンプルの数が多いほど、より衝撃吸収効果を高めることができる。また隙間を介して対向する面の一方にのみ凹部が設けられる場合よりも、それらの面の両方に凹部が設けられる場合のほうが、より衝撃吸収効果を高めることができる。
 第4から第7実施形態及び第9、第10実施形態では、隙間を介して対向する面の少なくとも一方に形成される溝は周方向または軸方向に伸びる場合について説明したが、溝の形成位置はこれに限られない。例えば、溝は回転軸に対して斜めにすなわちらせん状に形成されてもよい。あるいはまた、隙間を介して対向する面の両方に溝が形成される場合は、一方の面に形成される溝が伸びる方向を他方の面に形成される溝が伸びる方向と異ならせてもよい。複数の溝やディンプルの幅や大きさ、深さを異ならせてもよいし、2面以上に形成される場合には面によって数、幅、大きさ、深さ等を異ならせてもよい。       
 図15は、本発明の更に他の実施形態の一例を示す風力発電用の増速機450の主要部を示す断面図、図16は、その全体断面図である。
 先ず、図16を参照して、この風力発電用の増速機450は、初段に遊星歯車機構452を備えると共に、中段及び後段に第1、第2平行軸歯車機構454、456を備える。入力軸458から入力される主軸(図示略)の回転は、計3段の歯車機構452、454、456によって増速され、出力軸460から出力される。出力軸460には、発電機(従来の発電機11と同様:図26参照)が連結され、所定の発電がなされる。
 前記遊星歯車機構452は、入力軸458と一体化されたキャリヤ462、該キャリヤ462に両持ち支持された遊星ピン464、該遊星ピン464に回転自在に支持された3個(図2では1個のみ図示)の遊星歯車468、該遊星歯車468が同時に内接噛合する内歯歯車470、及び遊星歯車468が同時に外接噛合する太陽歯車472から主に構成されている。この実施形態では、太陽歯車472は遊星歯車機構452の出力軸480に直接形成されており、内歯歯車470はケーシング474と一体化(固定)されている。
 前記キャリヤ462は、円板状の一対のキャリヤフランジ462A、462Bが連結部462Cを介して連結・対峙している構成とされ、この一対のキャリヤフランジ462A、462Bの間に前記遊星歯車468、内歯歯車470、太陽歯車472が組み込まれている。キャリヤフランジ462A、462Bは、軸受475、478によって増速機450のケーシング474に(入力軸458ごと)回転自在に支持されている。
 前記遊星ピン464は、この一対のキャリヤフランジ462A、462Bに圧入され、両持ち支持されている。前記遊星歯車468は、該遊星ピン464によってころ軸受476を介して回転可能に支持されている。即ち、この実施形態では、遊星歯車468が請求項1の「歯車」に相当しており、ころ軸受476が「軸受」に、遊星ピン464が「支持部材」にそれぞれ相当している。
 ここで、図15を合わせて参照して、本実施形態における増速機450の遊星歯車468の付近の構成をより詳細に説明する。
 前述したように、遊星歯車468は、ころ軸受476を介して回転可能に(支持部材である)遊星ピン464に支持されている。この実施形態では2個のころ軸受476が軸方向に並べて配置されている。それぞれのころ軸受476は内輪476A、外輪476B、ころ(転動体)476C、及びリテーナ476Dを備えている。
 ころ軸受476の内輪476Aは、遊星ピン464の突部464P及びキャリヤフランジ462Bの突部462B1の間にスペーサ481を介して挟まれることで軸方向に位置決めされている。また、ころ軸受476の外輪476Bは、ころ476C、中央のスペーサ481、及びリテーナ476Dを介して内輪476Aに対し軸方向に位置決めされている。
 しかしながら、遊星歯車468は、径方向の微小な動きに対しては特に拘束されていない。
 この実施形態では、遊星歯車468ところ軸受476(の外輪476B)との間に、リング状の部材488を介在させている。このリング状の部材488の内周側には、小さな間隔の隙間S401が形成されており、外周側には、より大きな隙間S402が形成されている。
 具体的には、リング状の部材488の軸方向一端側には、溝488Sが形成されていて、止め輪471が係止されており、ころ軸受476の外輪476Bの端部476B1と当接している。また、リング状の部材488の他端側には、突起488Pが形成されていて、止め輪485が係止されており、ころ軸受476の外輪476Bの端部476B2と当接している。これにより、リング状の部材488は、ころ軸受476の外輪476Bに対して軸方向の移動が拘束されている。
 該遊星歯車468は、中心孔469を備えている。中心孔469は、その軸方向両端の第1、第2内周部469A、469Bの内径D401、D402が異なる。中央部469Cは径の大きい側の第2内周部469Bの内径D2と同一とされている。この結果、遊星歯車468の一端側には段部468Aが形成されている。リング状の部材488は、一端側がこの遊星歯車468の段部468Aに当接するとともに、他端側が遊星歯車468に係合した止め輪490に当接することによって遊星歯車468の軸方向の動きを拘束している。
 前述したように、リング状の部材488と外輪476Bとの間には隙間S401、リング状の部材488と遊星歯車468の中心孔469との間には隙間S402がそれぞれ形成されている。このため、このリング状の部材488は、径方向の動きにおいては完全拘束されていない。
 この実施形態では、大きな方の隙間S402が、ころ軸受476の外輪476Bの外径d401に対して0.3%(3/1000)程度の(径方向の)大きさとなるように設定してあり、結果として、隙間S401、S402により遊星歯車468がころ軸受476、ひいては(支持部材である)遊星ピン464に対して微少変位できる構成とされている。
 なお、この(大きい方の)隙間S402の大きさは、ころ軸受476の外輪476Bの外径d401(すなわち隙間の内径)の3/1000に限定されるものではない。隙間の形成位置、形成個数、あるいは大きさ(間隔)を変更すると、微小変位できる部材の慣性質量や変位の態様が異なってくるため、変動(負荷変動)を良好に吸収できる領域の周波数成分を調整することができる(この観点で、例えば、隙間S401、S402のうちの一方はなくてもよい)。風力発電設備を設置する地域において実際に吹く風の性質を考慮して設定すべきである。
 遊星歯車468がころ軸受476に対して径方向に微小変位可能というのは、結果として、遊星歯車468が、内歯歯車470及び太陽歯車472に対して、通常のバックラッシによる円周方向の微小変位のほかに、この隙間S401、S402の分、更に径方向に微小変位できることを意味する。
 一方、遊星歯車468の第1内周部469Aと遊星ピン464の突部464Pとの間には第1オイルシール487が設けられている。遊星歯車468の第2内周部469Bと(反入力軸側の)キャリヤフランジ462Bの突部462B1との間には第2オイルシール489が設けられている。第1内周部469Aの内径はD401であり、第2内周部469Bの内径はD402であるため、第1オイルシール487及び第2オイルシール489の径も、それに合わせて異ならせてある。
 第1、第2オイルシール487、489は、遊星ピン464、キャリヤフランジ462B、及び遊星歯車468とともに、隙間S401、S402を含んで、一対のころ軸受476及びリング状の部材488の近傍の空間SP401を密封している。
 本実施形態の場合、この密封された空間SP401内には、一対のころ軸受476も含まれるため、「液体」として潤滑剤が封入されている。この潤滑剤は、増速機450内の潤滑剤と同一でもよく、あるいは、異なっていてもよい。空間SP401は、増速機450内の空間SP402とは隔離されているため、この密閉空間SP401に封入される潤滑剤として、より特性の適合した潤滑剤(例えばより粘度の高い潤滑油、あるいはグリースのような半固体状の潤滑剤)を封入するようにしても構わない。
 次に、この実施形態に係る風力発電用の増速機450の作用を説明する。
 風車ブレード5の回転は、ロータヘッド4の主軸を介して増速機450の入力軸458に伝達される。入力軸458の回転はキャリヤ462(一対のキャリヤフランジ462A、462B)を介して遊星歯車468の公転として遊星歯車機構452に入力され、遊星歯車468、内歯歯車470、太陽歯車472の3者の相対回転により、増速された回転が太陽歯車472から遊星歯車機構452の出力軸480へと出力される。
 遊星歯車機構452の出力軸480の回転は、カップリング479を介して第1平行軸歯車機構454によって増幅され、第2平行軸歯車機構456によってさらに増幅された後、最終的に当該増速機450の出力軸460から取り出される。増速機450の出力軸460は、発電機411に連結されているため、結局、風車ブレード5の回転を増速した上で発電機411を回転させることができ、効率的な風力発電を行うことができる。
 以下、隙間S401、S402の機能に着目しながら遊星歯車機構452の作用をより詳細に説明する。
 入力軸458と一体化されたキャリヤ462(キャリヤフランジ462A、462B)が回転すると、このキャリヤ462の回転に伴って遊星ピン464が遊星歯車機構452の軸心周りで公転するため、遊星歯車468が太陽歯車472に外接、内歯歯車470に内接した状態で回転する。
 遊星ピン464と遊星歯車468との円周方向の相対回転は、基本的にころ軸受476のころ476Cを介して該ころ軸受476の内輪476Aと外輪476Bとが相対回転することによって実現される。すなわち、ころ軸受476の外輪476Bとリング状の部材488の間、及び、リング状の部材488と遊星歯車468との間には、殆ど相対回転は発生しない。
 これは、もともと、ころ軸受476のころ476Cの転動抵抗が小さく、一方、隙間S401、S402は、その間隔が極めて狭く、仮に相対回転が発生しようとすると該隙間S401、S402内に密封された潤滑剤に剪断応力が発生することから、該相対回転に対する抵抗が非常に大きくなるためである。
 ここで、荒れた天候のとき、とりわけ、風向きが頻繁に変わるような強い風が吹いているとき等にあっては、風車ブレード5の回転トルクが変動(あるいは急変)するため、遊星歯車468に掛かるキャリヤ462からの公転推進力も同様に変動する。それによって内歯歯車470や太陽歯車472から受ける噛合反力も変動するため、隙間S401、S402の部分に掛かる径方向の荷重が変動する。その結果、この径方向の荷重の変動により遊星歯車468は、隙間S401、S402の円周方向のある部分の間隔を狭めながら(潤滑剤を押し分けながら)変位する。このとき、それぞれの直径方向反対側では、隙間S401、S402の間隔はより広がろうとし、周囲の潤滑剤を引き込みながら変位する。このため、結局、遊星歯車468の変位に対して密閉空間SP401内の潤滑剤がダンパとして機能し、もし、隙間S401、S402がなかったならば、そのまま急峻に大きく立ち上がって直後に急峻に低下するような(各歯車468、470、472間の)衝撃的なトルクの伝達が抑制される。
 また、仮に、それまで隙間S401、S402内の潤滑剤の円周方向の剪断応力の範囲内で一体的に回転していた遊星歯車468ところ軸受476の外輪476Bの間に、該剪断応力を超える円周方向の負荷がかかると、当該遊星歯車468ところ軸受476の外輪476Bとの間に「滑り」が発生するため、この新たに発生した滑りによっても、衝撃の吸収効果が発揮されると考えられる。
 更には、急峻なトルク変動の伝達が抑制されることによって、バックラッシが反転する頻度を低減することができ、仮に反転したとしても、反転時の歯面の衝撃をより低減することもできる。この効果は、風向きの安定しない地域に設置された風力発電設備の場合、現実的には小さくないと考えられる。
 加えて、この実施形態に係る風力発電用の増速機450の場合、遊星歯車468が3個あり、動力伝達がなされる噛合点が計6個所存在するが、各遊星歯車468のピッチ円や公転軌道(キャリヤ462に対する遊星ピン464の位置)は、製造誤差によって必ずばらついている。また、内歯歯車470及び太陽歯車472の同軸性も必ずしも正確に確保されているわけではない。
 このため、従来の(遊星歯車機構を備えた)風力発電用の増速機の場合は、ある「特定の噛合点」にのみ、伝達トルクの負荷が強く掛かり易いという傾向があった。言うまでもなく、伝達トルクの負荷を特定の噛合点でのみ強く受けると、当該特定の噛合点でのダメージはより増強されてしまうが、この影響は、急峻に立ち上がって急峻に低下するような衝撃的なトルクが掛かった場合に一層顕著となる。
 この実施形態に係る増速機450によれば、隙間S401、S402の存在により、3個の遊星歯車468が、それぞれ内歯歯車470及び太陽歯車472に対して径方向に微小変位できるため、リアルタイムで(瞬時に)その時点で最も安定的な噛合状態を自動的に、且つ、より容易に形成できるようになるという効果も得られる。この安定的な噛合状態を自動的に形成できる機能は、衝撃的なトルクが掛かったときだけでなく、風向きがそれほど急に変化しないときにも常に維持されるため、より低周波数領域の変動成分の吸収にも寄与すると考えられる。
 結果として、隙間S401、S402と該隙間S401、S402内に「密封された潤滑剤の存在」により、特に、各要素に加わる負荷のピーク値を低減し、瞬間的な過大負荷や衝撃の発生を低減することができるようになる。この結果、風車ブレード5から入力されてくるトルクを、より安定的に伝達することが可能となり、増速機の寿命を大きく伸ばすことができる。すなわち、隙間S401、S402内の潤滑剤は、密封されているため、隙間S401、S402が狭くなろうとしたときでも軸方向に流出することができない。そのため、この軸方向に移動しようとする潤滑剤の反力により圧力上昇が生じ、それだけ衝撃吸収効果(ダンパ効果)が増大されるものである。
 なお、この実施形態においては、リング状の部材488を介在させることで、2ヶ所の隙間S401、S402を形成するようにしていたが、変動吸収を意図する周波数領域によっては、支持部材である遊星ピン464ところ軸受476(の内輪476A)との間にも、隙間S403(図15にて想像線にて図示)を形成するのは有効である。
 また、リング状の部材488の組み込みを省略するようにしてもよい。例えば、ころ軸受476(の外輪476B)と遊星歯車468との間に直接(1個の)隙間を形成するようにしてもよい。
 この構成例を図17に示す。
 この実施形態でも、2個のころ軸受476が軸方向に並べて配置されている。それぞれのころ軸受476は内輪476A、外輪476B、ころ(転動体)476C、及びリテーナ476Dを備える点も同じである。しかし、ころ軸受476の内輪476Aは、スペーサ482(482A~482C)を介してキャリヤフランジ462A、462Bの間で軸方向に位置決めされている。また、ころ軸受476の外輪476Bは、ころ476C、中央のスペーサ482B、及びリテーナ476Dを介して内輪476Aに対して軸方向に位置決めされている。
 遊星歯車468は、単一径の中心孔468Kを備えている。中心孔468Kには溝468Lが形成されており、この溝468Lに止め輪477が係合している。これにより、2つのころ軸受476の外輪476Bの軸方向外側の端部476A1、476B1に対して遊星歯車468が軸方向に位置決めされ、該遊星歯車468の軸方向の動きが拘束されている。
 この実施形態では、外輪476Bと遊星歯車468の中心孔468Kとの間に、隙間S404が形成されている。この隙間S404により、遊星歯車468ところ軸受476の外輪476B(あるいは外輪476Bと径方向に一体化している支持部材である遊星ピン464)とが、相対的に径方向に微小変位することが許容されている。
 また、この実施形態では、遊星歯車468と支持部材である遊星ピン464との間に(より具体的には遊星歯車468と遊星ピン464に組み込まれたスペーサ482A、482Cとの間)に、オイルシール491A、491Bが設けられている。これにより、遊星歯車468、遊星ピン464、及び該スペーサ482A、482Cとで密閉空間SP403が形成されている。
 なお、この例のように、遊星歯車468と支持部材である遊星ピン464との間に別部材であるスペーサ482A、482C等が介在される場合には、遊星ピン464と該スペーサ482A、482Cとの間にOリング(図示略)等を配置すると、密封性を一層向上させることができる。
 密閉空間SP403には、先の実施形態と同様に潤滑剤(液体)が封入されている。なお、この実施形態では、密閉空間SP403に増速機450内の潤滑剤と同一種類の潤滑剤が封入されている。
 このように密閉空間に、増速機450内の潤滑剤と同一の潤滑剤を密封した場合には、単に潤滑剤の管理が容易なだけでなく、万一、密封空間SP403内の潤滑剤と減速機内の潤滑剤とが漏出により一部混じり合ったとしても、化学変化等が全く生じないというメリットも得られる。
 この実施形態においても、基本的に図15の実施形態と同様の作用効果を得ることができる。この実施形態では、(負荷変動を吸収するべき領域の周波数成分の設定の自由度は若干小さくなるものの)リング状の部材が存在しない分、構造が簡単であり、より低コスト化が可能である。
 その他の構成は、図15の実施形態と同様であるため、図17の中で先の実施形態と同一または機能的に類似する部分に同一の符号を付すにとどめ、重複説明を省略する。
 ところで、負荷変動を吸収するために隙間を設ける構成は、このほかにも、種々の構成を採用することができる。要は、軸受において軸受本来の相対回転する部位以外のいずれかの部位に、歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に径方向に微小変位可能とするような隙間が形成されていればよい。
 したがって、例えば図18に示されるような構成にて隙間を形成することもできる。
 図18の隙間構成例においては、遊星歯車483が、遊星歯車部483Aと、該遊星歯車部483Aを支持する遊星ピン部483Cとで構成されている。この例から明らかなように、本発明における「歯車」は、軸受を介して支持部材に回転可能に支持される部材または部材群であって歯部を有する部材または部材群、と定義できる。そして、この(遊星ピン部483Cを含む)遊星歯車483が、両サイドに配置された支持部材たるキャリヤ484(一対のキャリヤフランジ484A、484B)によって該キャリヤ484に対してころ軸受486を介して回転可能に両持ち支持されている。遊星歯車483は、ころ軸受486を介してキャリヤフランジ484A、484Bと相対回転可能である。ころ軸受486は内輪486A及び外輪486B及びころ486Cを備えている。
 この実施形態においては、本発明に係る隙間S406は、キャリヤ484(一対のキャリヤフランジ484A、484B)ところ軸受486(の外輪486B)との間に形成されている。即ち、この実施形態では、(遊星ピン部483Cを含む)遊星歯車483が、本発明の「歯車」に相当し、キャリヤ484(一対のキャリヤフランジ484A、484B)が、該「歯車」を、ころ軸受486を介して回転可能に支持する「支持部材」に相当していることになる。
 そして、ころ軸受486の軸方向遊星歯車483側において、キャリヤフランジ484Aと遊星ピン部483C上のスペーサ473の間、キャリヤフランジ484Bと遊星ピン部483C上の段部との間にオイルシール479A、479Bがそれぞれ配置され、隙間S406及びころ軸受486を含む密閉空間SP406を形成している。密閉空間SP406には、増速機内とは異なる(より粘度の高い)潤滑剤が封入されている。なお、符号473AはOリングである。
 この実施形態に係る構成によっても、前述した図15の実施形態と同様に、遊星歯車483が支持部材たるキャリヤ484に対して径方向に微小変位でき、密封された潤滑剤によるダンパ効果を得ることができる。
 この実施形態に係る遊星歯車483は、遊星ピン部483Cを一体に含んでいるため、先の実施形態よりも微小変位する部材の慣性質量が大きい。このため、設計次第で、より低周波数の領域での変動吸収を良好に行うことができる可能性がある。
 なお、この実施形態に対しても、隙間S406に代えて、あるいは隙間S406に加えて、ころ軸受486の内輪486Aと遊星歯車483との間に隙間S407(図18において想像線にて図示)を形成するようにしてもよい。また、このようなキャリヤ484での隙間S406(或いはS407)の形成に代えて、あるいは加えて、遊星歯車483の遊星歯車部483Aと遊星ピン部483Cとの間に隙間S408を設けたり(図18において想像線にて図示)してもよい。
 これにより、キャリヤ484での隙間S406(或いはS407)による変動吸収効果のほか、遊星歯車部483Aと遊星ピン部483Cの間においても、(吸収しようとする周波数成分次第では)有効な変動吸収効果が得られるようになる。なお、遊星歯車部483Aと遊星ピン部483Cは、一体に形成されていても、別体で構成されていてもよい。
 なお、図15の実施形態で示したリング状の部材の配置は、この図18に示した実施形態においても適用可能である。図18に示した実施形態においてリング状の部材を付設する場合には、一対のキャリヤフランジ484A、484Bところ軸受486の外輪486Bとの間、あるいは遊星ピン部483Cの一体化された遊星歯車483における該遊星ピン部483Cところ軸受486の内輪486Aとの間のいずれかまたは双方に、当該リング状の部材を配置するとよい。
 要するならば、本発明において、リング状の部材は、歯車と軸受の間、軸受と支持部材の間のいずれに配置してもよく、更には、いずれに複数配置しても1個のみ配置してもよく、また、配置しなくてもよい。リング状の部材を配置する場合に、隙間は、当該リング状の部材の外周側にのみ設けても、また内周側にのみ設けても、さらには外周側及び内周側の双方に設けてもよい。
 このように、本発明においては、隙間を具体的にどの位置にどの大きさで形成するかについては特に限定されない。要は、結果として、(リング状の部材の有無に関わらず)軸受における相対回転する部位以外のいずれかの部位に、歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に径方向に微小変位可能とするように形成されていればよい。
 隙間の形成される位置や大きさ、あるいは位相が異なると、変動吸収可能な周波数領域が異なってくるため、風力発電設備の設置される地域の方の性質を考慮してより効果的な変動吸収を行うことができるようになる。
 その他の構成は、先の実施形態と同様であるため、図18の中で先の実施形態と同一または機能的に類似する部分に同一の符号を付すにとどめ、重複説明を省略する。
 なお、上記図15~図18の実施形態では、「歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に径方向に微小変位可能とする隙間の液体」のみならず、周辺の軸受やリング状の部材等を含めた空間の液体をも一緒に密封するようにしていたが、本発明においては、要は、当該隙間内の液体が、(減速機内の空間から隔離された状態で)密封されていればよく、必ずしも周辺の液体まで一緒に密封される必要はない。
 また、密封の手段についても特に限定されず、例えば(前記実施形態で採用していたようなオイルシールを配置する構成ではなく)スペーサと、該スペーサと対向する部材との間にOリングを配置するような構成であってもよい。
 図19は、本発明の更に他の実施形態の一例を示す風力発電用の増速機650の主要部を示す断面図、図20は、その全体断面図である。
 先ず、図20を参照して、この風力発電用の増速機650は、初段に遊星歯車機構652を備えると共に、中段及び後段に第1、第2平行軸歯車機構654、656を備える。入力軸658から入力される主軸(図示略)の回転は、計3段の歯車機構652、654、656によって増速され、出力軸660から出力される。出力軸660には、発電機(従来の発電機11と同様:図26参照)が連結され、所定の発電がなされる。
 前記遊星歯車機構652は、入力軸658と一体化されたキャリヤ662、該キャリヤ662に両持ち支持された遊星ピン664、該遊星ピン664に回転自在に支持された3個(図2では1個のみ図示)の遊星歯車668、該遊星歯車668が同時に内接噛合する内歯歯車670、及び遊星歯車668が同時に外接噛合する太陽歯車672から主に構成されている。この実施形態では、太陽歯車672は遊星歯車機構652の出力軸680に直接形成されており、内歯歯車670はケーシング674と一体化(固定)されている。
 前記キャリヤ662は、円板状の一対のキャリヤフランジ662A、662Bが連結部662Cを介して連結・対峙している構成とされ、この一対のキャリヤフランジ662A、662Bの間に前記遊星歯車668、内歯歯車670、太陽歯車672が組み込まれている。キャリヤフランジ662A、662Bは、軸受675、678によって増速機650のケーシング674に(入力軸658ごと)回転自在に支持されている。
 前記遊星ピン664は、この一対のキャリヤフランジ662A、662Bに圧入され、両持ち支持されている。前記遊星歯車668は、該遊星ピン664によってころ軸受676を介して回転可能に支持されている。即ち、この実施形態では、遊星歯車668が請求項1の「歯車」に相当しており、ころ軸受676が「軸受」に、遊星ピン664が「支持部材」にそれぞれ相当している。
 ここで、図19を合わせて参照して、本実施形態における増速機650の遊星歯車668の付近の構成をより詳細に説明する。
 前述したように、遊星歯車668は、ころ軸受676を介して回転可能に(支持部材である)遊星ピン664に支持されている。この実施形態では2個のころ軸受676が軸方向に並べて配置されている。それぞれのころ軸受676は内輪676A、外輪676B、ころ(転動体)676C、及びリテーナ676Dを備えている。
 ころ軸受676の内輪676Aは、キャリヤフランジ662A、662Bの間にスペーサ681A、681B、及び後述する導油体720に挟まれることで軸方向に位置決めされている。また、ころ軸受676の外輪676Bは、ころ676C、導油体720、及びリテーナ676Dを介して内輪676Aに対し軸方向に位置決めされている。
 しかしながら、遊星歯車668は、径方向の微小な動きに対しては特に拘束されていない。
 この実施形態では、遊星歯車668ところ軸受676の外輪676Bとの間に、リング状の部材688を介在させている。このリング状の部材688の内周側には、小さな間隔の隙間S601が形成されており、外周側には、より大きな隙間S602が形成されている。
 具体的には、リング状の部材688の軸方向一端側には、溝688Sが形成されていて、止め輪671が係止されており、ころ軸受676の外輪676Bの端部676B1と当接している。また、リング状の部材688の他端側には、突起688Pが形成されていて、止め輪685が係止されており、ころ軸受676の外輪676Bの端部676B2と当接している。これにより、リング状の部材688は、ころ軸受676の外輪676Bに対して軸方向の移動が拘束されている。
 なお、前記止め輪685は、遊星歯車668の溝668Sにも係合している。リング状の部材688は、一端側が遊星歯車668の段部668Aに当接するとともに、他端側がこの止め輪685に当接することによって遊星歯車668の軸方向の動きを拘束している。
 前述したように、リング状の部材688と外輪676Bとの間には隙間S601、リング状の部材688と遊星歯車668の内周との間には隙間S602がそれぞれ形成されている。このため、このリング状の部材688は、径方向の動きにおいては完全拘束されていない。
 この実施形態では、大きな方の隙間S602が、ころ軸受676の外輪676Bの外径d601に対して0.3%(3/1000)程度の(径方向の)大きさとなるように設定してあり、結果として、隙間S601、S602により遊星歯車668がころ軸受676、ひいては(支持部材である)遊星ピン664に対して微少変位できる構成とされている。
 なお、この(大きい方の)隙間S602の大きさは、ころ軸受676の外輪676Bの外径d601(すなわち隙間の内径)の3/1000に限定されるものではない。隙間の形成位置、形成個数、あるいは大きさ(間隔)を変更すると、微小変位できる部材の慣性質量や変位の態様が異なってくるため、変動(負荷変動)を良好に吸収できる領域の周波数成分を調整することができる(この観点で、例えば、隙間S601、S602のうちの一方はなくてもよい)。風力発電設備を設置する地域において実際に吹く風の性質を考慮して設定すべきである。
 遊星歯車668がころ軸受676に対して径方向に微小変位可能というのは、結果として、遊星歯車668が、内歯歯車670及び太陽歯車672に対して、通常のバックラッシによる円周方向の微小変位のほかに、この隙間S601、S602の分、更に径方向に微小変位できることを意味する。
 ここで、この実施形態では、潤滑剤が進入可能であって、隙間S601、S602に開口する潤滑通路710を備えている。具体的には、この潤滑通路710は、支持部材である遊星ピン664の軸心に沿って軸方向に形成された軸方向通路712と、該軸方向通路712から径方向に形成され、隙間S601、S602に開口する径方向通路714と、を備える。
 軸方向通路712は、遊星ピン664の端面に、その一端側の開口部712Aを有しており、該開口部712Aを介して増速機650内の潤滑油が遊星ピン664内に流入可能である。軸方向通路712の他端側は、遊星ピン664の軸方向中央を僅かに超えた付近で止まっている(遊星ピン664を貫通してはいない)。
 径方向通路714は、第1~第3径方向通路714A~714Cを備えている。
 第1径方向通路714Aは、遊星ピン664内に形成され、一端に径方向通路714と連通する開口部714A1を有し、他端に該遊星ピン664の外周に開口する開口部714A2を有している。
 第2径方向通路714Bは、遊星ピン664と、リング状の部材688との間に配置された導油体720内に形成され、一端に第1径方向通路714Aに連通する開口部714B1を有し、他端に2個並んだころ軸受676の間から前記隙間S601に開口する開口部714B2を有している。
 第3径方向通路714Cは、リング状の部材688を径方向に貫通して形成され、一端に隙間S601に連通する開口部714C1を有し、他端に隙間S602に開口する開口部714C2を有している。
 前記導油体720は、第1~第3径方向通路714A~714Cを円滑に連通されるために設けられたもので、図21にその断面を(各部位の寸法を無視して模式的に)示すように、全体が遊星ピン664の外周を取り囲むリング形状とされ、2個のころ軸受676の間に配置されている。遊星ピン664と導油体720は、互いに相対回転するため、導油体720には、該第2径方向通路714Bの一端側の開口部714B1が、遊星ピン664内の第1径方向通路714Aがいかなる位置にあるときでも該第1径方向通路714Aと連通できるように、その内周の全周に亘って内周溝720Aが形成されている。また、導油体720とリング状の部材688も互いに相対回転するため、導油体720には、該第2径方向通路714Bの他端側の開口部714B2が、いかなる位置にあるときにも、第3径方向通路714Cと連通できるように、その外周の全周に亘って外周溝720Bが形成されている。
 導油体720には、内周溝720A、あるいは外周溝720B内に流入してきた潤滑剤が、軸方向両側のころ軸受676側に漏出しないように、該導油体720と遊星ピン664の間にシール部材725、726、及び導油体720とリング状の部材688との間にシール部材722、724が配置されている(図19参照)。但し、この部分は摺動する部分であり、また、機能的には、完全なシールが要求されるわけでもないため、シール圧力はそれほど強くなくてもよい。
 以上の構成の結果、軸方向通路712が、遊星ピン664を貫通していないこと、シールされた導油体720が設けられていることと相まって、遊星ピン664の回転による遠心力によって軸方向通路712内に引き込まれてきた潤滑剤は、その全量が隙間S601及びS602に供給されることになる。
 次に、この実施形態に係る風力発電用の増速機650の作用を説明する。
 風車ブレード5の回転は、ロータヘッド4の主軸を介して増速機650の入力軸658に伝達される。入力軸658の回転はキャリヤ662(一対のキャリヤフランジ662A、662B)を介して遊星歯車668の公転として遊星歯車機構652に入力され、遊星歯車668、内歯歯車670、太陽歯車672の3者の相対回転により、増速された回転が太陽歯車672から遊星歯車機構652の出力軸680へと出力される。
 遊星歯車機構652の出力軸680の回転は、カップリング679を介して第1平行軸歯車機構654によって増幅され、第2平行軸歯車機構656によってさらに増幅された後、最終的に当該増速機650の出力軸660から取り出される。増速機650の出力軸660は、発電機611に連結されているため、結局、風車ブレード5の回転を増速した上で発電機611を回転させることができ、効率的な風力発電を行うことができる。
 以下、隙間S601、S602の機能に着目しながら遊星歯車機構652の作用をより詳細に説明する。
 入力軸658と一体化されたキャリヤ662(キャリヤフランジ662A、662B)が回転すると、このキャリヤ662の回転に伴って遊星ピン664が遊星歯車機構652の軸心周りで公転するため、遊星歯車668が太陽歯車672に外接、内歯歯車670に内接した状態で回転する。
 遊星ピン664と遊星歯車668との円周方向の相対回転は、基本的にころ軸受676のころ676Cを介して該ころ軸受676の内輪676Aと外輪676Bとが相対回転することによって実現される。すなわち、ころ軸受676の外輪676Bとリング状の部材688の間、及び、リング状の部材688と遊星歯車668との間には、殆ど相対回転は発生しない。
 これは、もともと、ころ軸受676のころ676Cの転動抵抗が小さく、一方、隙間S601、S602は、その間隔が極めて狭く、仮に相対回転が発生しようとすると該隙間S601、S602内の潤滑剤に剪断応力が発生することから、該相対回転に対する抵抗が非常に大きくなるためである。
 ここで、荒れた天候のとき、とりわけ、風向きが頻繁に変わるような強い風が吹いているとき等にあっては、風車ブレード5の回転トルクが変動(あるいは急変)するため、遊星歯車668に掛かるキャリヤ662からの公転推進力も同様に変動する。それによって内歯歯車670や太陽歯車672から受ける噛合反力も変動するため、隙間S601、S602の部分に掛かる径方向の荷重が変動する。その結果、この径方向の荷重の変動により遊星歯車668は、隙間S601、S602の円周方向のある部分の間隔を狭めながら(潤滑剤を押し分けながら)変位する。このとき、直径方向反対側では、隙間S601、S602の間隔はより広がろうとし、周囲の潤滑剤を引き込みながら変位する。このため、結局、遊星歯車668の変位に対して隙間S601、S602内の潤滑剤がダンパとして機能し、もし、隙間S601、S602がなかったならば、そのまま急峻に大きく立ち上がって直後に急峻に低下するような(各歯車668、670、672間の)衝撃的なトルクの伝達が抑制される。
 隙間S601、S602は、非常に狭く、潤滑剤が行き渡りにくい状況下にあるが、本実施形態では、遊星ピン664、あるいは遊星歯車668の回転によって径方向通路714内に存在する潤滑剤に遠心力が働くと、該径方向通路714内に存在する潤滑剤が径方向外側に移動して隙間S601、S602に至るとともに、それに伴って軸方向通路712内に増速機650内の潤滑油が引き込まれてくる現象が生ずる。しかも、本実施形態においては、径方向通路714が、導油体720を介していかなる回転状態のときでも複数(この例では2個)並んだころ軸受676の間から隙間S601、S602に連通・開口している。このため、ころ軸受676の径方向外側にある隙間S601、S602に対して常時円滑に潤滑剤を供給することができる。
 この結果、隙間S601、S602内は、常時潤滑剤で満たされた状態が維持されるため、上記ダンパ機能を良好に奏することができる。
 また、仮に、それまで隙間S601、S602内の潤滑剤の円周方向の剪断応力の範囲内で一体的に回転していた遊星歯車668ところ軸受676の外輪676Bの間に、該剪断応力を超える円周方向の負荷がかかると、当該遊星歯車668ところ軸受676の外輪676Bとの間に「滑り」が発生するため、この新たに発生した滑りによっても、衝撃の吸収効果が発揮されると考えられる。
 更には、急峻なトルク変動の伝達が抑制されることによって、バックラッシが反転する頻度を低減することができ、仮に反転したとしても、反転時の歯面の衝撃をより低減することもできる。この効果は、風向きの安定しない地域に設置された風力発電設備の場合、現実的には小さくないと考えられる。
 加えて、この実施形態に係る風力発電用の増速機650の場合、遊星歯車668が3個あり、動力伝達がなされる噛合点が計6個所存在するが、各遊星歯車668のピッチ円や公転軌道(キャリヤ662に対する遊星ピン664の位置)は、製造誤差によって必ずばらついている。また、内歯歯車670及び太陽歯車672の同軸性も必ずしも正確に確保されているわけではない。
 このため、従来の(遊星歯車機構を備えた)風力発電用の増速機の場合は、ある「特定の噛合点」にのみ、伝達トルクの負荷が強く掛かり易いという傾向があった。言うまでもなく、伝達トルクの負荷を特定の噛合点でのみ強く受けると、当該特定の噛合点でのダメージはより増強されてしまうが、この影響は、急峻に立ち上がって急峻に低下するような衝撃的なトルクが掛かった場合に一層顕著となる。
 この実施形態に係る増速機650によれば、隙間S601、S602の存在により、3個の遊星歯車668が、それぞれ内歯歯車670及び太陽歯車672に対して径方向に微小変位できるため、リアルタイムで(瞬時に)その時点で最も安定的な噛合状態を自動的に、且つ、より容易に形成できるようになるという効果も得られる。この安定的な噛合状態を自動的に形成できる機能は、衝撃的なトルクが掛かったときだけでなく、風向きがそれほど急に変化しないときにも常に維持されるため、より低周波数領域の変動成分の吸収にも寄与すると考えられる。
 結果として、隙間S601、S602と該隙間S601、S602内の潤滑剤の存在により、特に、各要素に加わる負荷のピーク値を低減し、瞬間的な過大負荷や衝撃の発生を低減することができるようになる。この結果、風車ブレード5から入力されてくるトルクを、より安定的に伝達することが可能となり、増速機の寿命を大きく伸ばすことができる。
 なお、この実施形態においては、リング状の部材688を介在させることで、2ヶ所の隙間S601、S602を形成するようにしていたが、変動吸収を意図する周波数領域によっては、支持部材である遊星ピン664ところ軸受676(の内輪676A)との間にも、隙間S603(図19にて想像線にて図示)を形成するのは有効である。逆に、隙間S601~S603のうちの、例えばいずれか1個のみとしてもよい。
 また、リング状の部材688の組み込みを省略するようにしてもよい。例えば、ころ軸受676(の外輪676B)と遊星歯車668との間に直接(1個の)隙間を形成するようにしてもよい。
 この構成例を図22に示す。
 この実施形態でも、2個のころ軸受676が軸方向に並べて配置されている。それぞれのころ軸受676は内輪676A、外輪676B、ころ(転動体)676C、及びリテーナ676Dを備える点も同じである。しかし、ころ軸受676の内輪676Aは、スペーサ682(682A~682C)を介してキャリヤフランジ662A、662Bの間で軸方向に位置決めされている。また、ころ軸受676の外輪676Bは、ころ676C、中央のスペーサ682B、及びリテーナ676Dを介して内輪676Aに対して軸方向に位置決めされている。
 遊星歯車668は、単一径の中心孔668Kを備えている。中心孔668Kには溝668Lが形成されており、この溝668Lに止め輪677が係合している。これにより、2つのころ軸受676の外輪676Bの軸方向外側の端部676A1、676B1に対して遊星歯車668が軸方向に位置決めされ、該遊星歯車668の軸方向の動きが拘束されている。
 この実施形態では、外輪676Bと遊星歯車668の中心孔668Kとの間に、隙間S604、内輪676Aと遊星ピン664との間に隙間S605がそれぞれ形成されている。この隙間S604、S605により、遊星歯車668ところ軸受676の外輪676B(あるいは外輪676Bと径方向に一体化している支持部材である遊星ピン664)とが、相対的に径方向に微小変位することが許容され、また、ころ軸受676の内輪676Aと遊星ピン664とが相対的に径方向に微小変位することが許容される。
 この実施形態においても、潤滑剤が進入可能であって、隙間S605に開口する潤滑通路710として、支持部材である遊星ピン664の軸心に沿って軸方向に形成された軸方向通路712と、該軸方向通路712から径方向に複数(この例では2本)形成され、隙間S605に開口する径方向通路714が設けられている。具体的な構成は、先の実施形態における軸方向通路712及び径方向通路714の第1径方向通路714Aの構成と同様である。
 これにより、少なくとも潤滑通路710が直接開口している隙間S605に対し、十分な潤滑剤を供給することができる。なお、この例では隙間S604には、ころ軸受676の間に存在する潤滑剤が供給される構成とされている。このように、本発明においては、必ずしも形成されている隙間の全てに対して潤滑通路が直接開口していることを要求するものではない。
 この実施形態においても、基本的に先の実施形態と同様の作用効果を得ることができる。この実施形態では、(負荷変動を吸収するべき領域の周波数成分の設定の自由度は若干小さくなるものの)リング状の部材が存在せず、また、潤滑通路の構成も簡易であるため、構造が簡単で、より低コスト化が可能である。
 その他の構成は、先の実施形態と同様であるため、図22の中で先の実施形態と同一または機能的に類似する部分に同一の符号を付すにとどめ、重複説明を省略する。
 ところで、負荷変動を吸収するために隙間を設ける構成は、このほかにも、種々の構成を採用することができる。要は、軸受において軸受本来の相対回転する部位以外のいずれかの部位に、歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に径方向に微小変位可能とするような隙間が形成されていればよい。
 したがって、例えば図23に示されるような構成にて隙間を形成することもできる。
 図23の隙間構成例においては、遊星歯車683が、遊星歯車部683Aと、該遊星歯車部683Aを支持する遊星ピン部683Cとで構成されている。この例から明らかなように、本発明における「歯車」は、軸受を介して支持部材に回転可能に支持される部材または部材群であって歯部を有する部材または部材群、と定義できる。そして、この(遊星ピン部683Cを含む)遊星歯車683が、両サイドに配置された支持部材たるキャリヤ684(一対のキャリヤフランジ684A、684B)によって該キャリヤ684に対してころ軸受686を介して回転可能に両持ち支持されている。遊星歯車683は、ころ軸受686を介してキャリヤフランジ684A、684Bと相対回転可能である。ころ軸受686は内輪686A及び外輪686B及びころ686Cを備えている。
 この実施形態においては、隙間S606が、キャリヤ684(一対のキャリヤフランジ684A、684B)ところ軸受686の外輪686Bとの間に形成されている。即ち、この実施形態では、(遊星ピン部683Cを含む)遊星歯車683が、本発明の「歯車」に相当し、キャリヤ684(一対のキャリヤフランジ684A、684B)が、該「歯車」を、ころ軸受686を介して回転可能に支持する「支持部材」に相当していることになる。また、キャリヤ684(一対のキャリヤフランジ684A、684B)ところ軸受686の内輪686Aとの間には、隙間S607が形成されている。更に、遊星歯車683の遊星歯車部683Aと遊星ピン部683Cとの間に隙間S608が形成されている。
 そして、潤滑剤が進入可能であって、隙間S607に開口する潤滑通路740として、遊星歯車683の遊星ピン部683Cの軸心に沿って軸方向に形成された軸方向通路742と、該軸方向通路742から径方向に形成され、隙間S607に開口する径方向通路744として、複数(この例ではそれぞれ2本)の径方向通路744Aが設けられている。
 軸方向通路742と径方向通路744(744A)の具体的な構成は、先の実施形態における軸方向通路712及び径方向通路714の第1径方向通路714Aの構成と同様である。但し、この実施形態では、軸方向通路742が遊星ピン部683Cの途中で止まっておらず、遊星ピン部683Cを完全に貫通する貫通孔とされている。この結果、負荷側(図23の右側)の隙間S607に対しては、径方向通路714Aのほかに、遊星ピン部683Cと軸受収容部746の閉塞プレート747との間の空間744Bも、隙間S607に開口しており、該隙間S607の潤滑通路740の径方向通路744の一部として機能している。
 さらに、隙間S608に対しては、隙間S607と共通の軸方向通路742と複数(この例では軸方向2箇所において周方向に2本、すなわち計4本の径方向通路744C、744Dが形成されている。
 この実施形態に係る構成によっても、前述した実施形態と同様に、遊星ピン部683Cが支持部材たるキャリヤ684(684A、684B)に対して径方向に微小変位でき、また、遊星ピン部683Cに対して遊星歯車部683Aが微小変位でき、潤滑剤によるダンパ効果を得ることができる。
 なお、この実施形態の隙間S606~S608についても、必ずしも全て形成する必要はない。遊星歯車部683Aと遊星ピン部683Cは、一体に形成されていても、別体で構成されていてもよい。
 なお、先の実施形態で示したリング状の部材の配置は、この図23に示した実施形態においても適用可能である。図23に示した実施形態においてリング状の部材を付設する場合には、一対のキャリヤフランジ684A、684Bところ軸受686の外輪686Bとの間、あるいは遊星ピン部683Cところ軸受686の内輪686Aとの間のいずれかまたは双方に、当該リング状の部材を配置するとよい。
 要するならば、本発明において、リング状の部材は、歯車と軸受の間、軸受と支持部材の間のいずれに配置してもよく、更には、いずれに複数配置しても1個のみ配置してもよく、また、配置しなくてもよい。リング状の部材を配置する場合に、隙間は、当該リング状の部材の外周側にのみ設けても、また内周側にのみ設けても、さらには外周側及び内周側の双方に設けてもよい。
 このように、本発明においては、隙間を具体的にどの位置にどの大きさで形成するかについては特に限定されない。要は、結果として、(リング状の部材の有無に関わらず)軸受における相対回転する部位以外のいずれかの部位に、歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に径方向に微小変位可能とするように形成されていればよい。
 隙間の形成される位置や大きさ、あるいは位相が異なると、変動吸収可能な周波数領域が異なってくるため、風力発電設備の設置される地域の方の性質を考慮してより効果的な変動吸収を行うことができるようになる。
 但し、好ましくは、「単純遊星歯車機構」の「遊星歯車」の支持部分に本発明を適用するのがよい。それは、構造が簡単で安価である上に、遊星歯車が公転成分と自転成分を有して内歯歯車と太陽歯車に挟まれた状態で回転する構造であるため、該遊星歯車が隙間の存在によって径方向に微小変位できることによる効果が、非常に顕著に顕れやすいからである。
 なお、遊星歯車の個数は、上記実施形態では3個であったが、2個でもよく、また、4個以上でもよく、特に限定されない。
 その他の構成は、先の実施形態と同様であるため、図23の中で先の実施形態と同一または機能的に類似する部分に同一の符号を付すにとどめ、重複説明を省略する。
 また、上記図1~23の実施形態においては、いずれも、「歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に径方向に微小変位可能とする隙間」を、増速機内の空間に対して解放し、潤滑通路の側から流入してきた潤滑剤が隙間に到達した後、増速機内の空間に還流できるように構成していた。しかしながら、本発明においては、隙間内の空間を減速機内の空間と連通させず、隙間あるいは隙間を含む微小空間が、該隙間への潤滑通路の開口以外の部分で密封されているように(すなわち、減速機内の空間と、隙間あるいは隙間を含む微小空間が区画されているように)構成するようにしてもよい。この場合、隙間内の潤滑剤は、基本的には潤滑通路内をエンドレスには流動せず、支持部材や歯車の回転によって遠心力が発生したときに、隙間内の潤滑剤に対してより圧力を掛けるような態様で作用することになる。このような構成とすることによっても、本発明の意図する作用効果を得ることができる。むしろ、定性的傾向として、支持部材や歯車の回転が速いとき程、(遠心力が大きくなることから)隙間内の潤滑剤の圧力を高めることができるようになるため、隙間が狭められるときにより強い(より確実な)反発力が発生するダンパ効果が得られるようになるという点で、より好ましい作用効果が得られる可能性がある。
 また、潤滑通路についても、上記実施形態では、支持部材の軸方向に設けられた軸方向通路と、該軸方向通路から径方向に形成され隙間に開口する径方向通路とで構成していたが、外注分割通路の形成態様も、特にこの例には限定されず、例えば、軸方向や径方向に対して傾斜していたり、曲線状に形成したものであってもよい。潤滑通路の形成数も特に限定されず、何本形成されていてもよい。
 さらに、径方向通路を連通する周方向の溝についても、上記実施形態では、導油体720の内周及び外周に形成するようにしていたが、遊星ピンの外周やリング状の部材の内周に形成するようにしてもよい。要は、この「径方向通路を連通する周方向の溝」は、相対回転可能な2つの部材の少なくとも一方に形成されていればよい。
 また、上記実施形態では、増速機内に封入しただけの潤滑剤を隙間に供給するようにしていたが、ポンプによって強制的に移送された潤滑剤が潤滑通路を介して隙間に供給される構成を採用しても良いのは言うまでもない。この手法によれば、一層確実に潤滑剤を隙間内に供給することができる。
 なお、上記実施形態においては、遊星歯車機構として、単純遊星歯車構造の遊星歯車機構が採用されていたが、本発明における遊星歯車機構は、単純遊星歯車構造の遊星歯車機構に限定されるものではない。例えば、図24にスケルトン図示するような遊星歯車機構が特開2003-278849号公報に開示されている。
 この遊星歯車機構93は、太陽歯車がなく、遊星ピン部94Cと一体化された同一歯数の遊星歯車部94A、94Bを2個有し、それぞれの遊星歯車部94A、94Bと噛合すると共に異なる歯数を有する2個の内歯歯車95A、95Bを備えている。この遊星歯車機構93を風力発電用の増速機(全体は図示略)に適用する場合、2種類ある内歯歯車95A、95Bのうちの一方の内歯歯車95Aが入力軸92と連結され、キャリヤ97(必要ならば遊星歯車94を挟んで一対としてもよい)が出力軸96と連結される態様で使用することになる。
 この遊星歯車機構93は、構造は若干複雑であるが、その分、様々な態様で増速機を設計できるというメリットがある。このため、設置空間の制約が大きい風力発電用の増速機として、主に寸法的・形状的な面で有効に利用可能である。
 例えば、この遊星歯車機構93は、前述したように太陽歯車を有していないことから、中央部に大きな中空部(図示略)を形成するのが容易である。このため、入力軸92の周り(或いは内側)に何らかの制御機器やセンサ、配管等を配設する必要が生じたとき等において該中空部を有効に利用できる。また、この遊星歯車機構93は、約5倍から30倍の増速を容易に設計できるため、必要ならば、後段の平行軸歯車機構(図示略)を、1段で済ますことも可能であり、この場合、重量や軸方向寸法の縮小が可能である。
 このような構造の遊星歯車機構93を有する風力発電用の増速機の場合、具体的には、2つの遊星歯車部94A、94Bと遊星ピン部94Cが一体化された「遊星歯車94」がその両側に存在する支持部材たるキャリヤ97に図示せぬ軸受を介して両持ち支持される構造となる。このため、本発明を図24に示された構成と類似した構成により適用することができる。
 また、この遊星歯車機構93においては、2つの内歯歯車95A、95Bのうちの一方の内歯歯車95Aが軸受98を介してケーシング99に回転自在に支持される構造であるため、設計によっては、この内歯歯車95Aと軸受98と該内歯歯車95Aを支持しているケーシング99の3者間で、本発明に係る複数のリング状の部材及び隙間を形成することも可能である。
 換言するならば、本発明に係る「歯車」は、遊星歯車に限定されるものではなく、遊星歯車機構の構成によっては内歯歯車、あるいは太陽歯車に対しても適用可能である。
 このように、遊星歯車機構には、さまざまな構成が知られており、いずれの構成の遊星歯車機構にも本発明を適用できる。但し、好ましくは、「単純遊星歯車機構」の「遊星歯車」の支持部分に本発明を適用するのがよい。それは、構造が簡単で安価である上に、遊星歯車が公転成分と自転成分を有して内歯歯車と太陽歯車に挟まれた状態で回転する構造であるため、該遊星歯車が隙間の存在によって半径方向に微小変位できることによる効果が、非常に顕著に顕れやすいからである。なお、遊星歯車の歯車の個数は、上記実施形態では3個であったが、2個でもよく、また、4個以上でもよく、特に限定されない。
 なお、上記実施形態においては、軸受として、いずれもころ軸受が採用されていたが、本発明においては、軸受の種類は必ずしもころ軸受に限定されない。発電容量、あるいは遊星歯車機構の構成によっては、例えば、玉軸受や滑り軸受が採用されてもよい。更には、上記実施形態においては、軸受はすべて内輪及び外輪の双方を有していたが、本発明においては、隙間を形成しない側においては、内輪あるいは外輪が省略された軸受であってもよい。
 いずれの構造の軸受が採用される場合でも、軸受としての本来の(歯車と支持部材との間の)相対回転が行われる部位以外に、本発明に係る隙間が存在することになる。例えば、軸受として、滑り軸受が採用されている場合には、歯車と支持部材との間の通常運転時の相対回転はあくまで当該滑り軸受の部分で行われる。従って、この滑り軸受における相対回転が行われる部位以外に、本発明に係る隙間が別途存在することになる。換言するならば、「軸受における相対回転する部位」には、不可避的に隙間が存在するが、この軸受において相対回転する部位の隙間は、本発明の隙間には含まれない。「軸受における相対回転する部位の隙間」は、例えば内外輪を有する軸受であれば、内輪-転動体-外輪間の隙間であり、内外輪の一方がない場合には、内外輪のある方-転動体-転動体の転走面を構成する部材間の隙間、ということになる。
 本発明は、遊星歯車機構を備えた風力発電用の増速機に利用できる。
 2011年9月7日に出願された日本国出願番号2011-195406、2011年9月7日に出願された日本国出願番号2011-195407、2011年9月26日に出願された日本国出願番号2011-209952、2011年9月26日に出願された日本国出願番号2011-209953の明細書、図面及び特許請求の範囲における開示は、その全体がこの明細書中に参照により援用されている。
 1…風力発電設備
 3…ナセル
 4…ロータヘッド
 5…風車ブレード
 11…発電機
 50…増速機
 52…遊星歯車機構
 58…入力軸
 60…出力軸
 62…キャリヤ
 64…遊星ピン
 68…遊星歯車
 70…内歯歯車
 72…太陽歯車
 74…ケーシング
 76…ころ軸受
 88A~88E…リング状の部材
 S1~S9…隙間

Claims (21)

  1.  遊星歯車機構を備えた風力発電用の増速機において、
     前記遊星歯車機構の一要素を構成する歯車と、
     前記歯車を、軸受を介して回転可能に支持する支持部材と、を備え、
     前記歯車と軸受との間または前記軸受と前記支持部材との間もしくはその両方に、複数のリング状の部材が介在され、
     前記複数のリング状の部材の内周側及び外周側の少なくとも一方に、潤滑剤が進入する隙間が形成されていることを特徴とする風力発電用の増速機。
  2.  遊星歯車機構を備えた風力発電用の増速機において、
     前記遊星歯車機構の遊星歯車と、
     前記遊星歯車を、前記遊星歯車と一体的に回転する遊星ピンごと軸受を介して回転可能に支持するキャリヤと、を備え、
     前記キャリヤと前記軸受の外輪との間または前記遊星ピンと前記軸受の内輪との間もしくはその両方に、複数のリング状の部材が介在され、
     前記複数のリング状の部材の内周側及び外周側の少なくとも一方に、潤滑剤が進入する隙間が形成されていることを特徴とする風力発電用の増速機。
  3.  請求項1または2において、
     前記複数のリング状の部材は軸方向に配列されていることを特徴とする風力発電用の増速機。
  4.  請求項1~3のいずれかにおいて、
     前記複数のリング状の部材は半径方向に配列されていることを特徴とする風力発電用の増速機。
  5.  請求項1~4のいずれかにおいて、
     前記複数のリング状の部材のうち軸方向で外側に位置する部材には、前記複数のリング状の部材の軸方向の移動を規制するための段部が設けられていることを特徴とする風力発電用の増速機。
  6.  遊星歯車機構を備えた風力発電用の増速機において、
     前記遊星歯車機構の一要素を構成する歯車と、
     前記歯車を、軸受を介して回転可能に支持する支持部材と、を備え、
     前記軸受における相対回転する部位以外のいずれかの部位に、前記歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に半径方向に微小変位可能とする隙間を形成し、
     前記隙間には潤滑剤が進入し、
     前記隙間を介して対向する2つの表面のうちの少なくとも一方に凹部を設けたことを特徴とする風力発電用の増速機。
  7.  請求項6において、
     前記凹部は溝であることを特徴とする風力発電用の増速機。
  8.  請求項6または7において、
     前記歯車と軸受との間または前記軸受と前記支持部材との間に、リング状の部材が介在され、
     該リング状の部材の内周側及び外周側の少なくとも一方に、前記隙間が形成されていることを特徴とする風力発電用の増速機。
  9.  請求項8において、
     該リング状の部材の内周側及び外周側の両方に、前記隙間が形成され、
     該リング状の部材の内周面及び外周面の両方に凹部を設けたことを特徴とする風力発電用の増速機。
  10.  遊星歯車機構を備えた風力発電用の増速機において、
     前記遊星歯車機構の一要素を構成する歯車と、
     該歯車を、軸受を介して回転可能に支持する支持部材と、を備え、
     前記軸受における相対回転する部位以外のいずれかの部位に、前記歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に径方向に微小変位可能とする隙間を形成し、かつ
     該隙間に液体を密封するシール部材を有することを特徴とする風力発電用の増速機。
  11.  請求項10において、
     前記歯車の軸方向両端の内周部と前記支持部材との間に、前記シール部材を配置したことを特徴とする風力発電用の増速機。
  12.  請求項10において、
     前記歯車の軸方向両端の内周部の内径が異なり、
     前記シール部材の径もそれぞれ異なっていることを特徴とする風力発電用の増速機。
  13.  遊星歯車機構を備えた風力発電用の増速機において、
     前記遊星歯車機構の一要素を構成する歯車と、
     該歯車を、軸受を介して回転可能に支持する支持部材と、を備え、
     前記軸受における相対回転する部位以外のいずれかの部位に、前記歯車、軸受、及び支持部材のうちの少なくとも2者同士を、相対的に径方向に微小変位可能とする隙間を形成し、かつ
     潤滑剤が進入可能であって、該隙間に開口する潤滑通路を備えることを特徴とする風力発電用の増速機。
  14.  請求項13において、
     前記潤滑通路は、前記支持部材の軸方向に設けられた軸方向通路と、該軸方向通路から径方向に形成され、前記隙間に開口する径方向通路と、を備えることを特徴とする風力発電用の増速機。
  15.  請求項14において、
     前記軸受が軸方向に複数並んで設けられ、前記径方向通路が、該複数並んだ軸受の間から前記隙間に開口している
    ことを特徴とする風力発電用の増速機。
  16.  請求項13~15のいずれかにおいて、
     少なくとも前記隙間を含む微小空間が、該隙間の前記開口以外の部分で密封されている
    ことを特徴とする風力発電設備の増速機。
  17.  請求項14または15において、
     前記径方向通路は、相対回転可能な2つの部材にそれぞれ形成されており、該2つの部材の少なくとも一方に、前記径方向通路に連通する周方向溝が形成されている
    ことを特徴とする風力発電設備の増速機。
  18.  請求項1~17のいずれかにおいて、
     前記遊星歯車機構は単純遊星歯車機構であることを特徴とする風力発電用の増速機。
  19.  請求項6~18のいずれかにおいて、
     前記歯車が、前記遊星歯車機構の遊星歯車であり、
     該遊星歯車が、前記支持部材としての遊星ピンによって該遊星ピンに対して回転可能に支持されると共に、
     前記軸受が内輪または外輪を備えており、
     前記隙間が、前記遊星ピンと該軸受の内輪との間または前記歯車と該軸受の外輪との間に形成されていることを特徴とする風力発電用の増速機。
  20.  請求項6~18のいずれかにおいて、
     前記歯車が、前記遊星歯車機構の遊星歯車であり、
     該遊星歯車が、該歯車と一体的に回転する遊星ピンごと、前記支持部材としての前記遊星歯車機構のキャリヤによって該キャリヤに対して回転可能に支持されると共に、
     前記軸受が内輪または外輪を備えており、
     前記隙間が、前記遊星ピンと該軸受の内輪との間または該キャリヤと該軸受の外輪との間に形成されていることを特徴とする風力発電用の増速機。
  21.  請求項10~20のいずれかにおいて、 前記歯車と軸受との間または前記軸受と前記支持部材との間に、リング状の部材が介在され、
     該リング状の部材の内周側及び外周側の少なくとも一方に、前記隙間が形成されていることを特徴とする風力発電用の増速機。
PCT/JP2012/072981 2011-09-07 2012-09-07 風力発電用の増速機 WO2013035865A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280041988.5A CN103765050B (zh) 2011-09-07 2012-09-07 风力发电用增速器

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011195407A JP5738132B2 (ja) 2011-09-07 2011-09-07 風力発電用の増速機
JP2011-195407 2011-09-07
JP2011-195406 2011-09-07
JP2011195406A JP5832206B2 (ja) 2011-09-07 2011-09-07 風力発電用の増速機
JP2011-209953 2011-09-26
JP2011209952A JP5836035B2 (ja) 2011-09-26 2011-09-26 風力発電用の増速機
JP2011209953A JP5836036B2 (ja) 2011-09-26 2011-09-26 風力発電用の増速機
JP2011-209952 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013035865A1 true WO2013035865A1 (ja) 2013-03-14

Family

ID=47832304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072981 WO2013035865A1 (ja) 2011-09-07 2012-09-07 風力発電用の増速機

Country Status (2)

Country Link
CN (1) CN103765050B (ja)
WO (1) WO2013035865A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133690A (ja) * 2016-01-28 2017-08-03 ゼネラル・エレクトリック・カンパニイ ギアボックス遊星減衰ばねダンパ
WO2018083254A1 (de) * 2016-11-07 2018-05-11 Zf Friedrichshafen Ag Anordnung zur lagerung eines planetenrades
CN111094794A (zh) * 2017-09-12 2020-05-01 赛峰传输系统 滑动轴承的枢轴和齿轮系

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625028B2 (en) * 2014-05-20 2017-04-18 Deere & Company Shaft retention and lubrication system and method
CN107664187A (zh) * 2016-07-27 2018-02-06 陈绍斌 一种传动器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108656U (ja) * 1985-12-27 1987-07-11
JPH02110741U (ja) * 1989-02-22 1990-09-05
JPH0545297U (ja) * 1991-11-22 1993-06-18 株式会社ハーモニツク・ドライブ・システムズ 遊星歯車装置の荷重等配機構
JP2007071355A (ja) * 2005-09-09 2007-03-22 Nissan Motor Co Ltd 遊星歯車のピニオン支持構造
JP2009144533A (ja) * 2007-12-11 2009-07-02 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2011127451A (ja) * 2009-12-15 2011-06-30 Mitsubishi Heavy Ind Ltd 風力発電設備用変速機および風力発電装置
JP2011208610A (ja) * 2010-03-30 2011-10-20 Sumitomo Heavy Ind Ltd 風力発電用の増速機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038108A (ja) * 2004-07-27 2006-02-09 Sumitomo Heavy Ind Ltd 内接噛合遊星歯車減速機及び内接噛合遊星歯車減速装置
JP4870022B2 (ja) * 2007-05-16 2012-02-08 住友重機械工業株式会社 減速機
JP2009041625A (ja) * 2007-08-07 2009-02-26 Sumitomo Heavy Ind Ltd 揺動内接遊星歯車構造
US20110140448A1 (en) * 2009-12-15 2011-06-16 Mitsubishi Heavy Industries, Ltd. Wind-turbine-generator-system transmission and wind turbine generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108656U (ja) * 1985-12-27 1987-07-11
JPH02110741U (ja) * 1989-02-22 1990-09-05
JPH0545297U (ja) * 1991-11-22 1993-06-18 株式会社ハーモニツク・ドライブ・システムズ 遊星歯車装置の荷重等配機構
JP2007071355A (ja) * 2005-09-09 2007-03-22 Nissan Motor Co Ltd 遊星歯車のピニオン支持構造
JP2009144533A (ja) * 2007-12-11 2009-07-02 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2011127451A (ja) * 2009-12-15 2011-06-30 Mitsubishi Heavy Ind Ltd 風力発電設備用変速機および風力発電装置
JP2011208610A (ja) * 2010-03-30 2011-10-20 Sumitomo Heavy Ind Ltd 風力発電用の増速機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133690A (ja) * 2016-01-28 2017-08-03 ゼネラル・エレクトリック・カンパニイ ギアボックス遊星減衰ばねダンパ
WO2018083254A1 (de) * 2016-11-07 2018-05-11 Zf Friedrichshafen Ag Anordnung zur lagerung eines planetenrades
CN111094794A (zh) * 2017-09-12 2020-05-01 赛峰传输系统 滑动轴承的枢轴和齿轮系
CN111094794B (zh) * 2017-09-12 2023-01-03 赛峰传输系统 滑动轴承的枢轴和齿轮系

Also Published As

Publication number Publication date
CN103765050A (zh) 2014-04-30
CN103765050B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2013035865A1 (ja) 風力発電用の増速機
EP2375067B1 (en) Bogie plate for wind turbine
US8701514B2 (en) Speed reducer used for wind power generation facility
JP5221246B2 (ja) 自然エネルギ回収システムの動力伝達装置
JP5352510B2 (ja) 風力発電用の増速機
US20150038284A1 (en) Epicyclic gearing with a gearing housing
JP5579050B2 (ja) 風力発電設備に用いられる減速装置
JP5832206B2 (ja) 風力発電用の増速機
JP2012180809A (ja) 風力発電設備の減速装置及び出力ピニオンを備えた減速装置
EP3208493B1 (en) Drive device for driving power generator device
JP5836036B2 (ja) 風力発電用の増速機
JP2019526012A (ja) 風力タービン用のナセル及びロータ並びに方法
WO2013038495A1 (ja) 風力発電用の増速機
JP5738132B2 (ja) 風力発電用の増速機
JP5836035B2 (ja) 風力発電用の増速機
JP5917070B2 (ja) ロックドトレーン機構を備えた風力発電用の増速機
KR20130106952A (ko) 풍력발전기의 증속기용 기어장치
JP2013148138A (ja) 遊星軸受構造
WO2012084016A1 (en) A sliding yaw bearing with a rotor load dependent rotary stiffness
WO2011089036A1 (en) Planetary gear unit with rotating ring gear
CN214499954U (zh) 一种液压动力增速机
CN111692293B (zh) 减速器及润滑方法
JP5676293B2 (ja) 風力発電用の増速機
JP2015068240A (ja) 風力発電設備のヨー駆動システム
CN103335082B (zh) 用于塔机的无级调速装置和塔机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829961

Country of ref document: EP

Kind code of ref document: A1