WO2013035763A2 - 電力供給制御装置 - Google Patents

電力供給制御装置 Download PDF

Info

Publication number
WO2013035763A2
WO2013035763A2 PCT/JP2012/072669 JP2012072669W WO2013035763A2 WO 2013035763 A2 WO2013035763 A2 WO 2013035763A2 JP 2012072669 W JP2012072669 W JP 2012072669W WO 2013035763 A2 WO2013035763 A2 WO 2013035763A2
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
vehicle
power supply
engine
Prior art date
Application number
PCT/JP2012/072669
Other languages
English (en)
French (fr)
Other versions
WO2013035763A3 (ja
Inventor
井本 政善
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112012003761.8T priority Critical patent/DE112012003761T8/de
Priority to US14/237,215 priority patent/US9450485B2/en
Priority to CN201280043205.7A priority patent/CN103781668B/zh
Publication of WO2013035763A2 publication Critical patent/WO2013035763A2/ja
Publication of WO2013035763A3 publication Critical patent/WO2013035763A3/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac

Definitions

  • the present invention relates to a power supply control device that controls power supplied to various electric devices provided in a vehicle.
  • Patent Document 2 describes an automobile fuel pump motor control circuit that improves fuel efficiency by finely PWM controlling a voltage applied to a fuel pump motor.
  • JP 2004-92564 A Japanese Patent Laid-Open No. 10-266920
  • This invention is made in view of such a situation, and it aims at providing the electric power supply apparatus which can reduce the number of voltage conversion means with which a vehicle is equipped, and can reduce component cost.
  • a power supply control device includes a voltage detection unit that detects an output voltage of a battery or an alternator included in a vehicle, a state acquisition unit that acquires a state of an engine included in the vehicle, and a voltage conversion that boosts and decreases the output voltage. Means, switching means for switching power supply to each of the plurality of in-vehicle devices provided in the vehicle to either the output voltage or the voltage converted by the voltage conversion means, and the voltage detection means detects In the power supply control device including a control unit that outputs an instruction to switch the switching unit based on the output voltage value obtained and the engine state acquired by the state acquisition unit, the switching unit sets the power supply destination from V1.
  • the control means An instruction to step down or an instruction to step up is output to the conversion means, and a switching instruction between the first in-vehicle device group and the second in-vehicle device group is output to the switching means.
  • the control means obtains that the engine is rotating, the state obtaining means obtains, and the output voltage detected by the voltage detecting means is higher than V2 (> V1).
  • V2 higher than V1
  • an instruction to step down the output voltage to V2 is output to the voltage conversion means, and the power supply to the second in-vehicle device group is switched to the voltage converted by the voltage conversion means to the switching means. It is configured to output an instruction.
  • the voltage conversion means for boosting the output voltage realizes that the output voltage, which is increased when the alternator generates power during engine rotation, is reduced to V2 to reduce power consumption.
  • the part cost can be reduced.
  • the control means acquires that the engine is being started from an idle stop, and the output voltage detected by the voltage detection means is V3 (V2 > V3> V1) When lower than V1), an instruction to boost the output voltage to V4 (V4 ⁇ V3) is output to the voltage conversion unit, and the power to the first vehicle-mounted device group is output to the switching unit. An instruction for switching the supply to the voltage converted by the voltage conversion means is output.
  • the function of one voltage conversion means is switched to step-down during engine rotation and to step-up during idling stop, so that the number of voltage conversion means provided in the vehicle can be reduced and the parts cost can be reduced.
  • FIG. 1 is a schematic diagram schematically showing a schematic configuration of a vehicle power supply system including an embodiment of a power supply control device according to the present invention. It is a block diagram which shows the structural example of the voltage conversion distribution box 1 shown in FIG. It is a flowchart which shows the example of operation
  • Control part control means, state acquisition means, voltage detection means) 20 Voltage converter (voltage converter) 30 switching circuit (switching means) 31, 32, 33 Switch 41, 42 Fuse 51 Power saving load group (second in-vehicle device group) 51a, 51b Headlamp 51c Motor 52 Stable voltage load group (first in-vehicle device group) 52a, 52b, 52c ECU 61 Engine ECU 62 Idle stop ECU
  • FIG. 1 is a schematic diagram schematically showing a schematic configuration of a vehicle power supply system including an embodiment of a power supply control device according to the present invention.
  • the vehicle power supply system shown in FIG. 1 includes a voltage conversion distribution box 1, a battery 9, an alternator 7, a headlamp 51a, a headlamp 51b, a fuel pump motor 51c, and a plurality of electronic control units (hereinafter referred to as “ECU”). 52a, 52b, 52c,... (Hereinafter, one ECU 52a will be described).
  • the output voltage from the battery 9 and the alternator 7 is applied to the voltage conversion distribution box 1.
  • the voltage applied by the voltage conversion distribution box 1 is transformed or applied as it is to the ECU 52a, the headlamps 51a and 51b, and the motor 51c. Details of the voltage conversion distribution box 1 will be described later.
  • the alternator 7 generates electricity by driving an engine (not shown).
  • the battery 9 stores the electric power generated by the alternator 7 and supplies the stored electric power to the voltage conversion distribution box 1.
  • the headlamps 51a and 51b illuminate the front of the vehicle.
  • the motor 51c drives a fuel pump that supplies fuel to an engine (not shown).
  • These electrical devices need a voltage equal to or higher than a predetermined voltage value in order to perform a predetermined function, but once the voltage application is interrupted, once a voltage higher than the predetermined value is applied again, Realize the function before interruption. For example, when the applied voltage of the headlamp 51a is lower than the voltage value V2, the headlamp 51a is dimmed or turned off. However, if the voltage value V2 or higher is applied again, the light is turned on with the original brightness. Further, the headlamp 51a can sufficiently function at a voltage value V2 lower than the output voltage of the alternator 7.
  • in-vehicle devices such as the headlamp 51a can step down the applied voltage to V2 according to the vehicle state.
  • these in-vehicle devices are referred to as “power saving load” (second in-vehicle device group).
  • the ECU 52a is provided for each in-vehicle device and controls the in-vehicle device.
  • the in-vehicle devices are, for example, a car navigation system, a meter (display device) indicating a speed, a meter (display device) indicating a remaining amount of fuel, and the like.
  • the ECU 52a is provided in an electric device such as a car navigation system and requires a voltage equal to or higher than a predetermined voltage value V1 in order to hold information stored in the memory.
  • a device that needs to supply power of a predetermined voltage value V1 or more is referred to as a “stable voltage load” (first in-vehicle device group).
  • FIG. 2 is a block diagram showing a configuration example of the voltage conversion distribution box 1 shown in FIG.
  • the voltage conversion distribution box 1 shown in FIG. 1 includes an alternator 7, a battery 9, a headlamp 51a, a headlamp 51b, a fuel pump motor 51c (hereinafter referred to as a “power saving load group” 51), and a plurality.
  • ECU 52a, 52b, 52c,... (Hereinafter referred to as “stable voltage load group” 52), in addition to engine ECU 61 and idle stop ECU 62.
  • FIG. 2 further shows the engine 6 and the starter 8.
  • the engine 6 is connected so as to be interlocked with the alternator 7, and is connected to the starter 8 by a clutch (not shown).
  • the starter 8 is applied with the output voltage of the battery 9 and starts the engine 6.
  • the voltage conversion distribution box 1 includes a control unit 10, a voltage conversion unit 20, a switching circuit 30, a fuse 41, and a fuse 42.
  • the positive electrode of the battery 9 is connected to the input terminal of the voltage converter 20 and the input terminal of the switching circuit 30 through the fuse 41.
  • the output terminal of the alternator 7 is connected to the input terminal of the voltage converter 20 and the input terminal of the switching circuit 30 through the fuse 42.
  • the output terminal of the voltage converter 20 is connected to the power saving load group 51 and the stable voltage load group 52 through the switching circuit 30.
  • the switching circuit 30 includes a switch 31, a switch 32, and a switch 33.
  • the switch 31, the switch 32, and the switch 33 are all c-contact switches.
  • the switch 31 has a COM terminal, a terminal 31a, and a terminal 31b.
  • the switch 32 has a COM terminal, a terminal 32a, and a terminal 32b.
  • the switch 33 has a COM terminal, a terminal 331, and a terminal 332.
  • the output terminal of the voltage conversion unit 20 is connected to the COM terminal of the switch 33.
  • a terminal 331 of the switch 33 is connected to a terminal 31 a of the switch 31.
  • the terminal 31 b of the switch 31 is connected to the positive electrode of the battery 9 through the fuse 41 and is connected to the output terminal of the alternator 7 through the fuse 42.
  • the COM terminal of the switch 31 is connected to the positive electrode of the power saving load group 51.
  • the terminal 332 of the switch 33 is connected to the terminal 32a of the switch 32.
  • the terminal 32 b of the switch 32 is connected to the positive electrode of the battery 9 through the fuse 41 and is connected to the output terminal of the alternator 7 through the fuse 42.
  • the COM terminal of the switch 32 is connected to the positive electrode of the stable voltage load group 52.
  • the control unit 10 is connected to the in-vehicle LAN.
  • the control unit 10 acquires an engine state signal including the engine speed transmitted from the engine ECU 61 via the in-vehicle LAN.
  • the control unit 10 acquires information related to the idle stop output from the idle stop ECU 62 via the in-vehicle LAN.
  • the control unit 10 acquires the voltage value VA of the common connection node A between the positive terminal of the battery 9 through the fuse 41 and the output terminal of the alternator 7 through the fuse 42.
  • the engine ECU 61 controls the drive of the engine 6.
  • the engine ECU 61 transmits a signal indicating the state of the engine 6 including the rotational speed of the engine 6 to the control unit 10 via the in-vehicle LAN.
  • the idle stop ECU 62 controls the permission of the idle stop and the start of the engine 6 from the idle stop.
  • the idle stop ECU 62 outputs a signal for starting the engine 6 from the idle stop to the control unit 10 and the engine ECU 61 via the in-vehicle LAN.
  • the switch 31, the switch 32, and the switch 33 are connected to the terminal 31b, the terminal 32b, and the terminal 331 side, respectively.
  • control part 10 acquires a vehicle state (step S10).
  • the control unit 10 determines and acquires the vehicle state based on the vehicle speed signal, the brake signal, the idle stop permission signal, the engine speed signal, and the signal for starting the engine from the idle stop received via the in-vehicle LAN. .
  • step S11 When the control unit 10 receives a signal for starting the engine from the idle stop (step S11: YES), the control unit 10 acquires the voltage value VA of the node A (step S12). Subsequently, it is determined whether or not the acquired voltage value VA is less than V3 (step S13). V3 is set higher than V1 by a margin based on the minimum voltage V1 necessary for realizing the predetermined function of the stable voltage load group 52.
  • step S13 NO
  • the process returns to step S12 and is repeated.
  • step S13 when the voltage value VA is less than V3 (step S13: YES), the switches 31, 32, and 33 are switched to the terminal 31b, the terminal 32a, and the terminal 332, respectively, and the output voltage (VA) of the battery 9 is changed.
  • the power is boosted to V4 and supplied (step S14).
  • V4 is a predetermined value equal to or greater than V3. That is, the control unit 10 outputs an instruction to boost the output voltage (VA) of the battery 9 to V4 to the voltage conversion unit 20, and switches the switches 31, 32, and 33 of the switching circuit 30. As a result, the voltage boosted to V4 by the voltage converter 20 is applied to the stable voltage load group 52.
  • the control unit 10 subsequently acquires again the voltage value VA of the node A (step S15), and determines whether or not the acquired voltage value VA is equal to or higher than V3 (step S16). If the voltage value VA is not equal to or greater than V3 (step S16: NO), the process returns to step S14 and the process is repeated. On the other hand, if the voltage value VA is equal to or greater than V3, the process returns to step S10 and is repeated.
  • the control part 10 determines whether the vehicle is drive
  • V ⁇ b> 2 is a drive voltage value determined to suppress power consumption of the power saving load group 51.
  • step S23 When the voltage value VA exceeds V2 (step S23: YES), the switches 31, 32, and 33 are switched to the terminal 31a, the terminal 32b, and the terminal 331, respectively, and the output voltage value of the alternator 9 is changed.
  • (VA) is stepped down to V2 and applied to the power saving load group 51 (step S24). That is, the control unit 10 outputs an instruction to step down the output voltage value (VA) of the alternator 9 to V2 to the voltage conversion unit 20, and switches the switches 31, 32, and 33 of the switching circuit 30.
  • the voltage conversion unit 20 converts the output voltage value (VA) of the alternator 9 into V2.
  • control unit 10 returns to step S10 and repeats the process when the voltage value VA does not exceed V2 in step S23 (step S23: NO) or after the process of step S24.
  • step S21 If the vehicle is not running at step S21 (step S21: NO), the controller 10 switches the switch 31 and the switch 32 to the terminal 31b and the terminal 32b, respectively (step S31), and then Return to step 10 and repeat the process. That is, the control unit 10 switches the switch 31 and the switch 32 of the switching circuit 30. Thereby, the output voltage value (VA) from the battery 9 and / or the alternator 7 is applied to the power saving load group 51 and the stable voltage load group 52.
  • VA the output voltage value
  • FIG. 4 is a timing chart showing an example of power supply controlled by the power supply control device.
  • the ignition key is turned on and the engine is started.
  • the voltage of the battery 9 is applied to the power saving load group 51 and the stable voltage load group 52 under the control of the control unit 10. That is, the process of step S31 of FIG. 3 is performed.
  • period TB the engine rotates and the vehicle is running.
  • the alternator 7 is generating power. Therefore, when the voltage value VA of the node A exceeds V2, the output voltage (VA) of the alternator 7 is stepped down to V2 and applied to the power saving load group 51. That is, the processing from step S21 to step S24 in FIG. 3 is performed.
  • the idle stop is started, and after the idle stop is performed, the engine is started from the idle stop in the period TC.
  • the output voltage from the battery 9 is applied to the node A. That is, the process of step S31 in FIG. 3 is performed.
  • the voltage conversion unit 20 performs step-down while the vehicle is running and performs step-up when starting the engine from the idle stop. Since the voltage conversion unit 20 switches the function between step-up and step-down and switches the power supply destination at different times, the number of components can be reduced.
  • the present invention can be applied to a power supply control device that controls power supplied to various electric devices provided in a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Eletrric Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

 車両が備える電圧変換手段の個数を減らして部品コストを削減できる電力供給制御装置を提供する。 バッテリ9又はオルタネータ7の出力電圧を検出する電圧検出手段(制御部10)、エンジン6の状態を取得する状態取得手段(制御部10)、出力電圧を昇圧及び降圧する電圧変換手段20、複数の車載機器への電力供給を、出力電圧と電圧変換手段20により変換された電圧との何れかに切り替える切替手段30、出力電圧値とエンジン6の状態とに基づいて、切替手段30を切り替える指示を出力する制御手段(制御部10)を備える電力供給制御装置。切替手段30は、電力供給先をV1より高い電圧が与えられるべき第1車載機器群と、その他の第2車載機器群とに切り替え、制御手段は、電圧変換手段20に対し降圧指示又は昇圧指示を出力し、切替手段30に対し第1車載機器群及び第2車載機器群の切り替え指示を出力するように構成してある。

Description

電力供給制御装置
 本発明は、車両が備える各種の電気機器に供給する電力を制御する電力供給制御装置に関する。
 従来、車両が備える各種の電気機器には、バッテリ及びオルタネータを電源として電力が供給される。車両がアイドルストップから始動するときは、電気機器への電力はバッテリが供給する。この時、クランキングによりバッテリの出力電圧が、電気機器の駆動電圧を下回ると、ナビゲーションシステムのメモリが消える等の不具合が発生する。そこで、アイドルストップから始動するときは、ナビゲーションシステム等の常時所定電圧以上の電力の供給が必要な電気機器に対して、バッテリの出力電圧を昇圧して供給する(例えば、特許文献1参照)。
 一方、エンジンが駆動しているときは、オルタネータの出力電圧が、電気機器の駆動電圧を上回るため、オルタネータの出力電圧を降圧して電気機器に電力を供給することにより、電力の消費を低減する。例えば、特許文献2には、燃料ポンプのモータへ印加する電圧を細かくPWM制御することにより、燃費を向上させる自動車用燃料ポンプモータ制御回路が記載されている。
特開2004-92564号公報 特開平10-266920号公報
 しかしながら、特許文献1及び2に記載されたようなバッテリ又はオルタネータの出力電圧の変換は、昇圧用及び降圧用の何れも電圧変換手段を用いながら、その対象となる電気機器が異なるため、それぞれ別個に電圧変換手段を設ける必要があるという問題がある。
 本発明は斯かる事情に鑑みてなされたものであり、車両が備える電圧変換手段の個数を減らして部品コストを削減できる電力供給装置を提供することを目的とする。
 本発明に係る電力供給制御装置は、車両が備えるバッテリ又はオルタネータの出力電圧を検出する電圧検出手段、前記車両が備えるエンジンの状態を取得する状態取得手段、前記出力電圧を昇圧及び降圧する電圧変換手段、前記車両に備えられる複数の車載機器のそれぞれへの電力供給を、前記出力電圧、及び、前記電圧変換手段により変換された電圧の何れかに切り替える切替手段、並びに、前記電圧検出手段が検出した出力電圧値と前記状態取得手段が取得したエンジンの状態とに基づいて、前記切替手段を切り替える指示を出力する制御手段を備える電力供給制御装置において、前記切替手段は、電力供給先をV1より高い電圧が与えられるべき第1車載機器群と、その他の第2車載機器群とに切り替え、前記制御手段は、前記電圧変換手段に対し、降圧する指示又は昇圧する指示を出力し、前記切替手段に対し、第1車載機器群及び第2車載機器群の切り替え指示を出力するように構成してあることを特徴とする。
 これにより、一つの電圧変換手段が昇圧に加えて降圧を実行するため、車両が備える電圧変換手段の個数を減らして部品コストを削減することができる。
 本発明に係る電力供給制御装置は、前記制御手段は、前記エンジンが回転中であることを前記状態取得手段が取得し、前記電圧検出手段が検出した出力電圧が、V2(>V1)より高い場合に、前記電圧変換手段に対し、前記出力電圧をV2に降圧する指示を出力し、前記切替手段に対し、前記第2車載機器群への電力供給を前記電圧変換手段が変換した電圧に切り替える指示を出力するように構成してあることを特徴とする。
 これにより、エンジンの回転中にオルタネータが発電することにより高くなる出力電圧をV2に降圧し電力の消費を低減することを、出力電圧の昇圧を行う電圧変換手段により実現するので、車両が備える電圧変換手段の個数を減らして部品コストを削減することができる。
 本発明に係る電力供給制御装置は、前記制御手段は、前記エンジンがアイドルストップからの始動中であることを前記状態取得手段が取得し、前記電圧検出手段が検出した出力電圧が、V3(V2>V3>V1)より低い場合に、前記電圧変換手段に対し、前記出力電圧をV4(V4≧V3)に昇圧する指示を出力し、前記切替手段に対し、前記第1車載機器群への電力供給を前記電圧変換手段により変換された電圧に切り替える指示を出力するように構成してあることを特徴とする。
 これにより、一つの電圧変換手段の機能をエンジンの回転中は降圧に切り替え、アイドルストップ中は昇圧に切り替えるので、車両が備える電圧変換手段の個数を減らして部品コストを削減することができる。
 本発明によれば、車両が備える電圧変換手段の個数を減らして部品コストを削減できる電力供給装置を提供することができる。
本発明に係る電力供給制御装置の実施の形態を備える車両の電力供給システムの概略構成を模式的に示す模式図である。 図1に示す電圧変換分配ボックス1の構成例を示すブロック図である。 本発明に係る電力供給制御装置の動作の例を示すフローチャートである。 本発明に係る電力供給制御装置の動作の例を示すタイミングチャートである。
 1 電圧変換分配ボックス
 7 オルタネータ
 8 スタータ
 9 バッテリ
 10 制御部(制御手段、状態取得手段、電圧検出手段)
 20 電圧変換部(電圧変換手段)
 30 切替回路(切替手段)
 31、32、33 スイッチ
 41、42 ヒューズ
 51 省電力負荷群(第2車載機器群)
 51a、51b ヘッドランプ
 51c モータ
 52 安定電圧負荷群(第1車載機器群)
 52a、52b、52c ECU
 61 エンジンECU
 62 アイドルストップECU
 以下、本発明に係る電力供給制御装置の実施の形態を図面に基づいて詳述する。
 図1は、本発明に係る電力供給制御装置の実施の形態を備える車両の電力供給システムの概略構成を模式的に示す模式図である。図1に示す車両の電力供給システムは、電圧変換分配ボックス1、バッテリ9、オルタネータ7、ヘッドランプ51a、ヘッドランプ51b、燃料ポンプのモータ51c、及び、複数の電子制御装置(以下、「ECU」という。)52a,52b,52c,・・・(以下、一つのECU52aについて説明する)、を備える。
 電圧変換分配ボックス1へは、バッテリ9及びオルタネータ7からの出力電圧が印加される。電圧変換分配ボックス1により印加された電圧は変圧され、又は、そのまま、ECU52a、ヘッドランプ51a,51b、及び、モータ51cに印加される。電圧変換分配ボックス1の詳細は、後に説明する。
 オルタネータ7は、図示しないエンジンの駆動により発電する。バッテリ9は、オルタネータ7により発電された電力を蓄電し、蓄電した電力を電圧変換分配ボックス1に供給する。
 ヘッドランプ51a及び51bは、車両の前方を照射する。モータ51cは、燃料を図示しないエンジンに供給する燃料ポンプを駆動する。これらの電気機器は、所定の機能を実行するために所定電圧値以上の電圧が必要であるが、一旦電圧の印加が中断されたとしても、再び所定値以上の電圧を印加すれば、再度、中断前の機能を実現する。例えば、ヘッドランプ51aの印加電圧が、電圧値V2より低くなると、ヘッドランプ51aが減光、又は、消灯する。しかし再び電圧値V2以上を印加すれば、元の明るさで点灯する。また、ヘッドランプ51aは、オルタネータ7の出力電圧より低い電圧値V2で、十分機能を果たすことができる。
 そこで、ヘッドランプ51aのような車載機器は、車両状態に応じて、印加する電圧をV2に降圧することができる。以下、これらの車載機器を「省電力負荷」(第2車載機器群)という。
 ECU52aは、車載機器毎に設けられ車載機器を制御する。この車載機器は、例えば、カーナビゲーションシステム、速度を示すメータ(表示器)及び燃料の残量を示すメータ(表示器)等である。ECU52aは、カーナビゲーションシステム等の電気機器に設けられ、メモリに記憶されている情報を保持するために、所定電圧値V1以上の電圧を必要とする。以下、所定電圧値V1以上の電力供給が必要な装置を「安定電圧負荷」(第1車載機器群)という。
 図2は、図1に示す電圧変換分配ボックス1の構成例を示すブロック図である。図1に示した電圧変換分配ボックス1は、オルタネータ7、バッテリ9、及び、ヘッドランプ51a、ヘッドランプ51b、燃料ポンプのモータ51c(以下、「省電力負荷群」51という。)、及び、複数のECU52a,52b,52c,・・・(以下、「安定電圧負荷群」52という。)、に加えて、エンジンECU61、及び、アイドルストップECU62に接続されている。
 図2には、さらに、エンジン6、及び、スタータ8を示している。エンジン6は、オルタネータ7と連動するように連結され、スタータ8と図示しないクラッチにより連結されている。スタータ8は、バッテリ9の出力電圧を印加され、エンジン6を始動する。
 電圧変換分配ボックス1は、制御部10、電圧変換部20、切替回路30、ヒューズ41、及び、ヒューズ42を備える。バッテリ9の正極は、ヒューズ41を通じて、電圧変換部20の入力端子及び切替回路30の入力端子に接続されている。オルタネータ7の出力端子は、ヒューズ42を通じて電圧変換部20の入力端子及び切替回路30の入力端子に接続されている。
 電圧変換部20の出力端子は、切替回路30を通じて、省電力負荷群51、及び、安定電圧負荷群52に接続されている。
 切替回路30は、スイッチ31、スイッチ32、及び、スイッチ33を備える。スイッチ31、スイッチ32、及び、スイッチ33は、何れもc接点スイッチである。スイッチ31は、COM端子、端子31a、及び、端子31bを有し、スイッチ32は、COM端子、端子32a、及び、端子32bを有し、スイッチ33は、COM端子、端子331、及び、端子332を有する。
 電圧変換部20の出力端子は、スイッチ33のCOM端子に接続されている。スイッチ33の端子331は、スイッチ31の端子31aに接続されている。スイッチ31の端子31bは、ヒューズ41を通じてバッテリ9の正極に接続され、ヒューズ42を通じてオルタネータ7の出力端子に接続されている。スイッチ31のCOM端子は、省電力負荷群51の正極に接続されている。
 スイッチ33の端子332は、スイッチ32の端子32aに接続されている。スイッチ32の端子32bは、ヒューズ41を通じてバッテリ9の正極に接続され、ヒューズ42を通じてオルタネータ7の出力端子に接続されている。スイッチ32のCOM端子は、安定電圧負荷群52の正極に接続されている。
 制御部10は、車載LANに接続されている。制御部10は、エンジンECU61から送信されるエンジン回転数を含むエンジンの状態の信号を車載LANを介して取得する。制御部10は、アイドルストップECU62から出力されるアイドルストップに係る情報を車載LANを介して取得する。制御部10は、ヒューズ41を介したバッテリ9の正極端子と、ヒューズ42を介したオルタネータ7の出力端子との共通接続部節点Aの電圧値VAを取得する。
 エンジンECU61は、エンジン6を駆動制御する。エンジンECU61は、エンジン6の回転数を含むエンジン6の状態の信号を、車載LANを介して制御部10に送信する。アイドルストップECU62は、アイドルストップの許可、及び、アイドルストップからのエンジン6の始動を制御する。アイドルストップECU62は、アイドルストップからエンジン6を始動するための信号を車載LANを介して制御部10及びエンジンECU61に出力する。
 以下に、このような構成の電力供給制御装置の動作を、図3のフローチャートを参照しながら説明する。スイッチ31、スイッチ32、及び、スイッチ33は、それぞれ、端子31b、端子32b、及び、端子331側に接続してある。
 先ず、制御部10が、車両状態を取得する(ステップS10)。制御部10は、車載LANを介して受信した車速信号、ブレーキ信号、アイドルストップ許可信号、エンジン回転数の信号、及び、アイドルストップからエンジンを始動する信号に基づいて、車両状態を判定し取得する。
 制御部10は、アイドルストップからエンジンを始動する信号を受信した場合(ステップS11:YES)には、節点Aの電圧値VAを取得する(ステップS12)。続いて、取得した電圧値VAが、V3未満か否かを判定する(ステップS13)。V3は、安定電圧負荷群52の所定機能を実現するのに必要な最低電圧V1に基づき、V1より余裕分高く設定されている。
 電圧値VAがV3未満ではない場合(ステップS13:NO)は、ステップS12に戻って処理を繰り返す。
 一方、電圧値VAがV3未満の場合(ステップS13:YES)は、スイッチ31,32,33を、それぞれ、端子31b、端子32a、及び、端子332に切り替え、バッテリ9の出力電圧(VA)をV4に昇圧して電力供給する(ステップS14)。V4は、V3以上の所定値である。すなわち、制御部10は、電圧変換部20に対し、バッテリ9の出力電圧(VA)をV4に昇圧する指示を出力し、切替回路30のスイッチ31,32,33を切り替える。これにより、電圧変換部20によりV4に昇圧された電圧が安定電圧負荷群52に印加される。
 制御部10は、続いて、再び、節点Aの電圧値VAを取得し(ステップS15)、取得した電圧値VAが、V3以上か否かを判定する(ステップS16)。電圧値VAがV3以上ではない場合(ステップS16:NO)は、ステップS14に戻って処理を繰り返す。一方、電圧値VAがV3以上の場合は、ステップS10に戻って処理を繰り返す。
 制御部10は、ステップS11で、アイドルストップからの始動開始状態ではない場合(ステップS11:NO)は、車両が走行中か否かを判定する(ステップS21)。車両が走行中か否かの判定は、車載LANを介して受信した車速信号、及び、エンジン回転数を示す信号等に基づいて行う。制御部10は、車両が走行中の場合(ステップS21:YES)は、節点Aの電圧値VAを取得する(ステップS22)。
 制御部10は、続いて、取得した電圧値VAがV2(>V1)を超えているか否かを判定する(ステップS23)。V2は、省電力負荷群51の消費電力を抑制するために定められた駆動電圧値である。
 電圧値VAがV2を超えている場合(ステップS23:YES)には、スイッチ31,32,及び、33を、それぞれ、端子31a、端子32b、及び、端子331に切り替え、オルタネータ9の出力電圧値(VA)をV2に降圧して省電力負荷群51に印加する(ステップS24)。すなわち、制御部10は、電圧変換部20に対し、オルタネータ9の出力電圧値(VA)をV2に降圧する指示を出力し、切替回路30の、スイッチ31,32,及び,33を切り替える。制御部10の指示により、電圧変換部20は、オルタネータ9の出力電圧値(VA)をV2に変換する。
 制御部10は、ステップS23で、電圧値VAがV2を超えていない場合(ステップS23:NO)、又は、ステップS24の処理の後、ステップS10に戻って処理を繰り返す。
 制御部10は、また、ステップS21で、車両が走行中ではない場合(ステップS21:NO)は、スイッチ31及びスイッチ32を、それぞれ、端子31b、及び、端子32bに切り替え(ステップS31)、その後、ステップ10に戻って処理を繰り返す。すなわち、制御部10は、切替回路30の、スイッチ31及びスイッチ32を切り替える。これにより、省電力負荷群51及び安定電圧負荷群52に対し、バッテリ9及び/又はオルタネータ7からの出力電圧値(VA)が印加される。
 図4は、この電力供給制御装置により制御される電力供給の例を示すタイミングチャートである。期間TAでは、イグニッションキーがオンになり、エンジンが始動する。期間TAでは、制御部10の制御により、省電力負荷群51及び安定電圧負荷群52に対し、バッテリ9の電圧が印加される。すなわち、図3のステップS31の処理が行われる。
 期間TBでは、エンジンが回転し、車両が走行中である。期間TBでは、オルタネータ7が発電している。そこで、節点Aの電圧値VAがV2を超えた場合に、オルタネータ7の出力電圧(VA)をV2に降圧して、省電力負荷群51に印加する。すなわち、図3のステップS21からステップS24の処理が行われる。
 期間TBで車両が停止すると、アイドルストップが開始され、アイドルストップが行われた後、期間TCで、アイドルストップからのエンジンの始動が行われる。期間TBのうち、アイドルストップ中は、節点Aには、バッテリ9からの出力電圧が印加されている。すなわち、図3のステップS31の処理が行われている。
 期間TCにおいて、アイドルストップからのエンジン9の始動が開始されると、クランキングにより節点Aの電圧値VAがV3を下回るため、安定電圧負荷群52に対し、バッテリ9の出力電圧(VA)をV4に昇圧した電圧を印加する。すなわち、図3のステップS11からステップS16の処理が実行される。
 期間TCに続く期間TB2では、アイドルストップからのエンジンの始動が終了し、再び車両が走行中になる。すなわち、図3のステップS21からステップS24の処理が繰り返される。
 以上の処理により、電圧変換部20は、車両の走行中には降圧を行い、アイドルストップからのエンジンの始動の際には、昇圧を行う。電圧変換部20が、異なる時間において、昇圧と降圧とに機能を切り替え、電力供給先を切り替えるため、部品点数を削減することができる。
 以上、発明を実施するための形態について説明を行ったが、本発明は、この発明を実施するための形態で述べた実施形態に限定されるものではない。本発明の主旨をそこなわない範囲で変更することが可能である。
 本発明は、車両が備える各種の電気機器に供給する電力を制御する電力供給制御装置に適用できる。

Claims (3)

  1.  車両が備えるバッテリ又はオルタネータの出力電圧を検出する電圧検出手段、前記車両が備えるエンジンの状態を取得する状態取得手段、前記出力電圧を昇圧及び降圧する電圧変換手段、前記車両に備えられる複数の車載機器のそれぞれへの電力供給を、前記出力電圧、及び、前記電圧変換手段により変換された電圧の何れかに切り替える切替手段、並びに、前記電圧検出手段が検出した出力電圧値と前記状態取得手段が取得したエンジンの状態とに基づいて、前記切替手段を切り替える指示を出力する制御手段を備える電力供給制御装置において、
     前記切替手段は、電力供給先をV1より高い電圧が与えられるべき第1車載機器群と、その他の第2車載機器群とに切り替え、
     前記制御手段は、前記電圧変換手段に対し、降圧する指示又は昇圧する指示を出力し、前記切替手段に対し、第1車載機器群及び第2車載機器群の切り替え指示を出力するように構成してあることを特徴とする電力供給制御装置。
  2.  前記制御手段は、前記エンジンが回転中であることを前記状態取得手段が取得し、前記電圧検出手段が検出した出力電圧が、V2(>V1)より高い場合に、前記電圧変換手段に対し、前記出力電圧をV2に降圧する指示を出力し、前記切替手段に対し、前記第2車載機器群への電力供給を前記電圧変換手段が変換した電圧に切り替える指示を出力するように構成してあることを特徴とする請求項1に記載の電力供給制御装置。
  3.  前記制御手段は、前記エンジンがアイドルストップからの始動中であることを前記状態取得手段が取得し、前記電圧検出手段が検出した出力電圧が、V3(V2>V3>V1)より低い場合に、前記電圧変換手段に対し、前記出力電圧をV4(V4≧V3)に昇圧する指示を出力し、前記切替手段に対し、前記第1車載機器群への電力供給を前記電圧変換手段により変換された電圧に切り替える指示を出力するように構成してあることを特徴とする請求項2に記載の電力供給制御装置。
PCT/JP2012/072669 2011-09-08 2012-09-06 電力供給制御装置 WO2013035763A2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012003761.8T DE112012003761T8 (de) 2011-09-08 2012-09-06 Energieversorgungssteuervorrichtung
US14/237,215 US9450485B2 (en) 2011-09-08 2012-09-06 Power supply control apparatus
CN201280043205.7A CN103781668B (zh) 2011-09-08 2012-09-06 电力供给控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-196250 2011-09-08
JP2011196250A JP5644723B2 (ja) 2011-09-08 2011-09-08 電力供給制御装置

Publications (2)

Publication Number Publication Date
WO2013035763A2 true WO2013035763A2 (ja) 2013-03-14
WO2013035763A3 WO2013035763A3 (ja) 2013-05-02

Family

ID=47832679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072669 WO2013035763A2 (ja) 2011-09-08 2012-09-06 電力供給制御装置

Country Status (5)

Country Link
US (1) US9450485B2 (ja)
JP (1) JP5644723B2 (ja)
CN (1) CN103781668B (ja)
DE (1) DE112012003761T8 (ja)
WO (1) WO2013035763A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705367A (zh) * 2013-11-05 2016-06-22 丰田自动车株式会社 混合动力车辆、用于混合动力车辆的控制方法及用于混合动力车辆的控制器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3435515B1 (en) * 2016-03-22 2022-09-28 Nissan Motor Co., Ltd. Power supply system and method for controlling same
JP7003855B2 (ja) * 2018-07-05 2022-01-21 株式会社オートネットワーク技術研究所 電源システム
US11670952B2 (en) * 2019-10-18 2023-06-06 Fca Us Llc Voltage estimation for automotive battery charging system control
JP7028907B2 (ja) * 2020-04-08 2022-03-02 本田技研工業株式会社 バッテリモジュールの終端装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266920A (ja) * 1997-03-21 1998-10-06 Harness Sogo Gijutsu Kenkyusho:Kk 自動車用燃料ポンプモータ制御回路
JP2000312444A (ja) * 1999-04-26 2000-11-07 Toyota Motor Corp 車両用電源供給制御装置
JP2004092564A (ja) * 2002-09-02 2004-03-25 Toyota Motor Corp 駆動電圧供給装置、駆動電圧供給方法、駆動電圧の供給をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2010074913A (ja) * 2008-09-17 2010-04-02 Toyota Motor Corp 電源システムおよびそれを搭載した車両

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670656B2 (ja) * 2006-01-24 2011-04-13 株式会社デンソー 車両の電力供給装置
JP4305462B2 (ja) * 2006-03-09 2009-07-29 トヨタ自動車株式会社 車両駆動用電源システム
JP4279854B2 (ja) * 2006-06-28 2009-06-17 トヨタ自動車株式会社 車両用電源制御装置
WO2012011184A1 (ja) * 2010-07-22 2012-01-26 トヨタ自動車株式会社 車両制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266920A (ja) * 1997-03-21 1998-10-06 Harness Sogo Gijutsu Kenkyusho:Kk 自動車用燃料ポンプモータ制御回路
JP2000312444A (ja) * 1999-04-26 2000-11-07 Toyota Motor Corp 車両用電源供給制御装置
JP2004092564A (ja) * 2002-09-02 2004-03-25 Toyota Motor Corp 駆動電圧供給装置、駆動電圧供給方法、駆動電圧の供給をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2010074913A (ja) * 2008-09-17 2010-04-02 Toyota Motor Corp 電源システムおよびそれを搭載した車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705367A (zh) * 2013-11-05 2016-06-22 丰田自动车株式会社 混合动力车辆、用于混合动力车辆的控制方法及用于混合动力车辆的控制器

Also Published As

Publication number Publication date
JP2013056625A (ja) 2013-03-28
DE112012003761T5 (de) 2014-09-25
CN103781668B (zh) 2016-06-01
CN103781668A (zh) 2014-05-07
DE112012003761T8 (de) 2014-12-24
US9450485B2 (en) 2016-09-20
JP5644723B2 (ja) 2014-12-24
US20140191571A1 (en) 2014-07-10
WO2013035763A3 (ja) 2013-05-02

Similar Documents

Publication Publication Date Title
JP4356685B2 (ja) 発電制御装置および発電システム
US20150336523A1 (en) Vehicle power supply apparatus and vehicle power regeneration system
US20120074775A1 (en) On-board electrical system for a motor vehicle and method for operating an electrical load
WO2013035763A2 (ja) 電力供給制御装置
WO2008007540A1 (fr) Dispositif d'alimentation
WO2016125852A1 (ja) 自動車用電源装置及び自動車用電源装置の制御方法
JP2009173147A (ja) 車両電気系システム制御装置および制御方法
JP2006304390A (ja) ハイブリッド車両用電源装置
KR20070047516A (ko) 차량의 아이들링 정지 시스템
US11155221B2 (en) Power supply device for vehicle
JP4645518B2 (ja) 車両用マルチ電圧対応電源システム
JP2005160247A (ja) モータ駆動4wd車両の制御装置及び制御方法
US8275504B2 (en) Stabilization apparatus and method for stabling load voltage of vehicle
US20140292077A1 (en) Method for operating an energy supply unit for a motor vehicle electrical system
JP2010093979A (ja) 車両の電源装置
JP2016137803A (ja) 自動車用電源装置及び自動車用電源装置の制御方法
JP6160285B2 (ja) 給電制御装置
JP2013224070A (ja) 車両のバッテリ上がり防止装置
KR20170017106A (ko) 하이브리드 자동차의 시동장치 및 시동방법
JP2012046127A (ja) 車両電源装置
CN112334374B (zh) 驱动控制装置及铁路车辆用驱动装置
JP2013133062A (ja) ハイブリッド車
KR101854017B1 (ko) 마일드 하이브리드 차량의 모터 발전기 전원 공급 장치 및 이의 제어 방법
KR20170012794A (ko) 직류 링크 커패시터의 초기 충전을 위한 컨버터 제어 시스템
JP2006230071A (ja) 車両用電力供給装置及び車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830193

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14237215

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120037618

Country of ref document: DE

Ref document number: 112012003761

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830193

Country of ref document: EP

Kind code of ref document: A2