WO2013035696A1 - Substrate transfer apparatus and substrate processing apparatus - Google Patents

Substrate transfer apparatus and substrate processing apparatus Download PDF

Info

Publication number
WO2013035696A1
WO2013035696A1 PCT/JP2012/072466 JP2012072466W WO2013035696A1 WO 2013035696 A1 WO2013035696 A1 WO 2013035696A1 JP 2012072466 W JP2012072466 W JP 2012072466W WO 2013035696 A1 WO2013035696 A1 WO 2013035696A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
unit
circuit pattern
detection
Prior art date
Application number
PCT/JP2012/072466
Other languages
French (fr)
Japanese (ja)
Inventor
徹 木内
加藤 正紀
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2013035696A1 publication Critical patent/WO2013035696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels

Definitions

  • the present invention relates to a substrate transfer apparatus and a substrate processing apparatus.
  • This application claims priority based on Japanese Patent Application No. 2011-193244 for which it applied on September 5, 2011, and uses the content here.
  • roller method As display elements constituting display devices such as display devices, for example, liquid crystal display elements, organic electroluminescence (organic EL) elements, electrophoretic elements used in electronic paper, and the like are known. As one of methods for manufacturing these elements, for example, a method called a roll-to-roll method (hereinafter simply referred to as “roll method”) is known (for example, refer to Patent Document 1).
  • a single sheet-like substrate wound around a substrate supply side roller is sent out, the substrate is transported while being wound up by a substrate recovery side roller, and the substrate is sent out after being sent out.
  • a pattern such as a display circuit or a driver circuit is sequentially formed on a substrate until it is formed.
  • processing apparatuses that form highly accurate patterns have been proposed.
  • an object of an aspect of the present invention is to provide a substrate transport apparatus and a substrate processing apparatus that can transport a band-shaped substrate with high accuracy.
  • a transport unit that transports a belt-like substrate on which a circuit pattern including a repetitive pattern unit having a predetermined period is formed, and a transport direction of the substrate while the substrate is transported by the transport unit Information relating to at least one of deformation or misalignment of the substrate based on the position detector that outputs a detection signal corresponding to the repeated pattern portion in the circuit pattern in at least two places in the intersecting direction, and the detection result of the position detector
  • a substrate transport apparatus that includes a calculation device that calculates the above and a correction control system that corrects at least one of deformation or displacement of the substrate based on the result calculated by the calculation device.
  • the substrate transport apparatus according to the first aspect of the present invention and the surface to be processed on which the circuit pattern is formed among the substrates transported by the substrate transport apparatus are processed.
  • the correction control system provided in the substrate transport apparatus includes a processing unit that performs correction, and a substrate processing apparatus that corrects at least one of deformation or displacement of a surface to be processed in a processing region by the processing unit is provided.
  • the belt-like substrate can be conveyed with high accuracy.
  • FIG. 1 is a schematic diagram showing a configuration of a substrate processing apparatus 100 according to the first embodiment.
  • the substrate processing apparatus 100 performs processing on a substrate supply unit 2 that supplies a strip-shaped substrate (for example, a strip-shaped film member) S and a surface (surface to be processed) Sa of the substrate S.
  • the substrate processing unit 3, the substrate recovery unit 4 that recovers the substrate S, and a control unit CONT that controls these units are provided.
  • the substrate processing unit 3 performs a variety of processes on the surface of the substrate S after the substrate S is sent out from the substrate supply unit 2 until the substrate S is recovered by the substrate recovery unit 4. 100.
  • the substrate processing apparatus 100 can be used when a display element (electronic device) such as an organic EL element or a liquid crystal display element is formed on the substrate S.
  • an XYZ coordinate system is set as shown in FIG. 1, and the following description will be given using this XYZ coordinate system as appropriate.
  • the XYZ coordinate system for example, the X axis and the Y axis are set along the horizontal plane, and the Z axis is set upward along the vertical direction.
  • the substrate processing apparatus 100 transports the substrate S from the minus side ( ⁇ side) to the plus side (+ side) along the X axis as a whole. In that case, the width direction (short direction) of the strip
  • the substrate S to be processed in the substrate processing apparatus 100 for example, a foil such as a resin film or stainless steel can be used.
  • the resin film is made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. Can be used.
  • the substrate S can have a low coefficient of thermal expansion so that its dimensions do not substantially change even when it receives heat at a relatively high temperature (for example, about 200 ° C.) (thermal deformation is small).
  • a relatively high temperature for example, about 200 ° C.
  • an inorganic filler can be mixed with a resin film to reduce the thermal expansion coefficient.
  • the inorganic filler include titanium oxide, zinc oxide, alumina, silicon oxide and the like.
  • the dimension in the width direction (short direction) of the substrate S is, for example, about 1 m to 2 m, and the dimension in the length direction (long direction) is, for example, 10 m or more.
  • this dimension is only an example and is not limited thereto.
  • the dimension in the Y direction of the substrate S may be 1 m or less, 50 cm or less, or 2 m or more.
  • substrate S may be 10 m or less.
  • the substrate S is formed to have flexibility.
  • flexibility refers to the property that the substrate can be bent without being broken or broken even if a force of its own weight is applied to the substrate.
  • flexibility includes a property of bending by a force of about its own weight. The flexibility varies depending on the material, size, thickness, or environment such as temperature of the substrate.
  • a single strip-shaped substrate may be used, but a configuration in which a plurality of unit substrates are connected and formed in a strip shape may be used.
  • the substrate supply unit 2 supplies and supplies the substrate S wound in a roll shape to the substrate processing unit 3, for example.
  • the substrate supply unit 2 is provided with a shaft around which the substrate S is wound, a rotation drive device that rotates the shaft, and the like.
  • a configuration in which a cover portion that covers the substrate S wound in a roll shape or the like may be provided.
  • substrate supply part 2 is not limited to the mechanism which sends out the board
  • the substrate collection unit 4 collects the substrate S that has passed through the substrate processing apparatus 100 included in the substrate processing unit 3 in a roll shape, for example. Similar to the substrate supply unit 2, the substrate recovery unit 4 is provided with a shaft for winding the substrate S, a rotational drive source for rotating the shaft, a cover for covering the recovered substrate S, and the like. Alternatively and / or additionally, when the substrate S is cut into a panel shape in the substrate processing unit 3, the substrate recovery unit 4 is wound in a roll shape, for example, the substrate S is recovered in a stacked state. The substrate S may be collected in a state different from the state.
  • the substrate processing unit 3 transports the substrate S supplied from the substrate supply unit 2 to the substrate recovery unit 4 and processes the surface Sa of the substrate S during the transport process.
  • the substrate processing unit 3 includes a processing apparatus 10 and a transfer apparatus 20.
  • FIG. 2 is a diagram illustrating the configuration of the processing device 10 and the transport device 20.
  • the processing apparatus 10 has an exposure apparatus EX.
  • the processing apparatus 10 may have a configuration in which various apparatuses for forming, for example, an organic EL element on the surface Sa of the substrate S are provided.
  • Examples of such an apparatus include a partition forming apparatus for forming a partition on the surface Sa to be processed, an electrode forming apparatus for forming an electrode, and a light emitting layer forming apparatus for forming a light emitting layer. More specifically, a droplet coating apparatus (for example, an ink jet type coating apparatus), a film forming apparatus (for example, a plating apparatus, a vapor deposition apparatus, a sputtering apparatus), a developing apparatus, a surface modification apparatus, a cleaning apparatus, a pattern correction apparatus, etc. Can be mentioned. Each of these apparatuses is appropriately provided along the transport path of the substrate S.
  • a droplet coating apparatus for example, an ink jet type coating apparatus
  • a film forming apparatus for example, a plating apparatus, a vapor deposition apparatus, a sputtering apparatus
  • a developing apparatus for example, a surface modification apparatus, a cleaning apparatus, a pattern correction apparatus, etc.
  • Each of these apparatuses is appropriately provided along the transport path of the substrate
  • the exposure apparatus EX includes an illumination apparatus IL, a mask stage MST, a projection optical system PL, and a substrate stage SST.
  • the illumination device IL illuminates the exposure light ELI on the mask M held on the mask stage MST.
  • Mask stage MST is provided so as to be movable while holding mask M on which a pattern (not shown) is formed.
  • the projection optical system PL projects an image of the exposure light ELI through the pattern formed on the mask M onto the projection area PA.
  • the substrate stage SST guides the substrate S so that the substrate S passes through the projection area PA.
  • the substrate stage SST has a support surface 15 that supports the back surface Sb of the substrate S opposite to the processing surface Sa.
  • the support surface 15 is formed flat so as to be parallel to the XY plane.
  • the exposure apparatus EX has a correction mechanism 50 that adjusts the shape of the image projected on the projection area PA and the position in the X and Y directions.
  • the correction mechanism 50 includes a drive device 50a that moves (finely moves) some of the plurality of optical elements constituting the projection optical system PL, such as a refractive element (lens, parallel plate, etc.) and a reflective element.
  • the drive device 50a can adjust the shape and position of the image projected on the projection area PA by moving or tilting the refractive element or the reflective element under the control of the control unit CONT.
  • the driving device 50a may deform the reflective surface of the reflective element in order to adjust the shape of the image projected on the projection area PA.
  • the exposure apparatus EX is provided with an alignment sensor (including a microscope objective lens, an image sensor, etc.) 29 for detecting alignment marks and the like formed on both sides in the width direction (Y direction) of the substrate S. .
  • an alignment sensor including a microscope objective lens, an image sensor, etc.
  • FIG. 3 is a diagram illustrating a configuration when the surface to be processed Sa of the substrate S is viewed.
  • the exposure apparatus EX has four projection optical systems PL in the Y direction, and four projection areas PA are formed in the Y direction.
  • the correction mechanism 50 is provided for each projection optical system PL. Therefore, the position and shape of the image projected in each projection area PA in the X direction and the Y direction can be adjusted independently for each projection area PA.
  • the conveyance device 20 includes a conveyance unit 21, a position detection unit 22, a calculation unit 23, and a correction mechanism 60.
  • the transport unit 21 transports the substrate S so that the substrate S moves on the substrate stage SST.
  • the transport unit 21 includes an upstream roller 24, a downstream roller 25, an upstream air pad 26, and a downstream air pad 27.
  • the transport unit 21 transports the substrate S while applying tension to the substrate S using the upstream roller 24 and the downstream roller 25.
  • the controller CONT can adjust the transport speed of the substrate S by the upstream roller 24 and the downstream roller 25.
  • the upstream roller 24 is disposed on the upstream side in the transport direction of the substrate S with respect to the processing apparatus 10.
  • the upstream roller 24 includes nip rollers 24A and 24B that sandwich the substrate S in the Z direction.
  • the downstream roller 25 is disposed on the downstream side in the transport direction of the substrate S with respect to the processing apparatus 10.
  • the downstream roller 25 has nip rollers 25A and 25B that sandwich the substrate S in the Z direction.
  • the upstream air pad 26 is disposed on the upstream side in the transport direction of the substrate S with respect to the processing apparatus 10.
  • the upstream air pad 26 is disposed at the ⁇ X side end of the substrate stage SST.
  • the upstream air pad 26 includes a first pad 26A and a second pad 26B.
  • the first pad 26 ⁇ / b> A is disposed on the + Z side of the substrate S, and forms a gas layer between the substrate S and the surface Sa to be processed.
  • the second pad 26B is disposed on the ⁇ Z side of the substrate S, and forms a gas layer with the back surface Sb of the substrate S.
  • the downstream air pad 27 is disposed downstream of the processing apparatus 10 in the transport direction of the substrate S.
  • the downstream air pad 27 is disposed at the + X side end of the substrate stage SST.
  • the downstream air pad 27 has a first pad 27A and a second pad 27B.
  • the first pad 27A is disposed on the + Z side of the substrate S, and forms a gas layer between the substrate S and the surface Sa to be processed.
  • the second pad 27B is disposed on the ⁇ Z side of the substrate S, and forms a gas layer with the back surface Sb of the substrate S.
  • the transport unit 21 applies the tension to the substrate S by the upstream roller 24 and the downstream roller 25, and the processed surface Sa and the back surface Sb of the substrate S with the upstream air pad 26 and the downstream air pad 27. Support in a non-contact state. For this reason, the substrate S is supported on the support surface 15 in a non-contact state on the support surface 15 of the substrate stage SST.
  • the position detection unit 22 detects position information including the deformation amount and displacement amount of the substrate S.
  • the position detection unit 22 includes an illumination system 31 including a light source, a light transmission reflection member 32, a light reflection member 33, a prism 34, a prism 35, a light guide member 36, and a light detection unit 37.
  • the light from the illumination system 31 including a light source that emits a coherent beam such as a laser and a beam shaping optical element is shaped into a slit-like light (slit light L) extending in the Y direction, and then in the + X direction. It is injected.
  • the light transmitting and reflecting member 32 reflects a part (first slit light L1) of the slit light L emitted from the illumination system 31 toward the substrate S ( ⁇ Z direction) and a part (second slit). Transmits light L2).
  • the light reflecting member 33 reflects the second slit light L2 transmitted through the light transmitting and reflecting member 32 toward the substrate S ( ⁇ Z direction).
  • the prism 34 tilts the traveling direction of the first slit light L1 reflected by the light transmitting / reflecting member 32 to the + X side.
  • the prism 35 tilts the traveling direction of the second slit light L2 reflected by the light reflecting member 33 to the ⁇ X side.
  • the first slit light L1 and the second slit light L2 having different optical path lengths intersect each other at a predetermined angle with respect to the X direction, and therefore, a one-dimensional interference fringe having a pitch in the X direction (hereinafter, L3) is formed.
  • the light guide member 36 guides the light component L4 reflected in the + Z direction out of the interference light L3 formed in the irradiation area LA as it is in the + Z direction.
  • the light detection unit 37 detects the light component L4 guided by the light guide member 36.
  • the calculation unit 23 calculates the position information of the substrate S based on the detection result in the light detection unit 37. The calculation result in the calculation unit 23 is transmitted to the control unit CONT.
  • the position detection part 22 is provided in two places of the direction (Y direction) which cross
  • the irradiation area LA is formed at two places in the Y direction of the substrate S, and the position information of the substrate S can be detected in these two irradiation areas LA.
  • the irradiation region LA is set at one location on each of the + Y side end portion and the ⁇ Y side end portion of the pattern formation region PT in which a circuit pattern such as a wiring is formed in the substrate S.
  • the correction control system 60 corrects at least one of deformation and displacement of the substrate S estimated based on the detection result of the position detection unit 22 via the control unit CONT.
  • the correction control system 60 corrects the two-dimensional distortion of the pattern formation region on the substrate S by individually adjusting the position, posture, conveyance speed, and the like of the upstream roller 24 and the downstream roller 25.
  • the substrate processing apparatus 100 configured as described above manufactures display elements (electronic devices) such as an organic EL element and a liquid crystal display element by a roll method under the control of the control unit CONT.
  • display elements electronic devices
  • CONT control unit
  • a belt-like substrate S wound around a roller (not shown) is attached to the substrate supply unit 2.
  • the control unit CONT rotates a roller (not shown) so that the substrate S is sent out from the substrate supply unit 2.
  • substrate process part 3 is wound up with the roller not shown provided in the board
  • FIG. By controlling the substrate supply unit 2 and the substrate recovery unit 4, the surface Sa to be processed of the substrate S can be continuously transferred to the substrate processing unit 3.
  • the control unit CONT appropriately transfers the substrate S in the substrate processing unit 3 by the transfer device 20 of the substrate processing unit 3 after the substrate S is sent out from the substrate supply unit 2 and taken up by the substrate recovery unit 4.
  • Constituent elements including circuit patterns for display elements are sequentially formed on the substrate S by the processing apparatus 10 while being conveyed. In this process, when processing is performed by the exposure apparatus EX, the exposure pattern may be superimposed on the circuit pattern formed on the substrate S.
  • position information such as the deformation amount and displacement amount of the substrate S is calculated based on the state of the circuit pattern already formed on the substrate S, and the calculation result is determined according to the calculation result.
  • a circuit pattern 30 for a display portion of an AMOLED display is formed on the surface Sa of the substrate S in the previous process by the above processing, for example.
  • the circuit pattern 30 includes, for example, a fine pattern portion 30b for TFT together with the wiring portion 30a.
  • a plurality of wiring portions 30a are formed in a line along a direction (Y direction) intersecting the transport direction (X direction) of the substrate S.
  • a plurality of rows of the wiring portions 30a are formed at equal intervals in the transport direction (X direction) of the substrate S.
  • the fine structure pattern portion 30b for TFT is a portion where several TFT patterns are densely arranged for each pixel of the display, and usually a plurality of patterns having a line width of about several ⁇ m to several tens of ⁇ m in the XY direction. Are lined up.
  • the wiring portion 30a and the fine structure pattern portion 30b are also formed at a constant pitch in the X and Y directions.
  • the irradiation area LA is irradiated with interference light (interference fringes) L3.
  • the pitch of the interference fringes in the X direction is, for example, that of the fine structure pattern portion 30b. It is determined according to the line width and pattern pitch.
  • the configuration of the circuit pattern 30 constituting each pixel (the shape in the XY plane and the concavo-convex structure in the Z direction) is basically the same everywhere, but when viewed in the circuit pattern 30, the shape in the XY plane There is a specific distribution in the fineness and the fineness of the concavo-convex structure. Therefore, at least two detection points located at appropriate intervals among the plurality of pixel configuration patterns (circuit patterns 30) formed in a matrix on the processing surface Sa, the fineness in the circuit pattern 30 is determined.
  • the distribution density
  • two-dimensional distortion pixel array distortion
  • the interference light L3 irradiated to the two irradiation regions LA is transmitted or diffracted according to the shape of the circuit pattern 30 in the pixel of the substrate S (step difference structure, refractive index difference of the pattern material, etc.) Scatter or reflect.
  • the light component L4 scattered or reflected to the + Z side is guided to the light detection unit 37 by the light guide member.
  • the light detection unit 37 detects the intensity of the light component L4.
  • the detection result in the light detection unit 37 is, for example, two graphs shown in FIG. These two graphs are graphs showing detection results in each irradiation region LA.
  • the vertical axis of the graph indicates the light intensity of the light component L4
  • the horizontal axis of the graph indicates the relative X direction position of the interference light L3 and the substrate S.
  • the two graphs for example, in the region PT1 in which the patterns are formed relatively densely, the light intensity of the light component L4 increases. Further, in the region PT2 where the pattern is formed relatively sparsely, the light intensity of the light component L4 becomes small.
  • pixel circuit patterns 30 are repeatedly formed in the transport direction (X direction) and are arranged in a line in the Y direction. For this reason, when the substrate S is not deformed or displaced (inclination in the XY plane, etc.), as a detection result in the two position detection units 22, repetition of the same waveform is detected in the same phase. Will be.
  • the calculation unit 23 calculates the deformation amount and the positional deviation amount of the substrate S based on the detection results of the two position detection units 22.
  • the calculation result in the calculation unit 23 is transmitted to the control unit CONT.
  • the control unit CONT adjusts the deformation and displacement of the substrate S using the correction control system 60 based on the calculation result of the calculation unit 23. Further, the control unit CONT changes the posture of the correction mechanism 50 and the position in the X direction and the Y direction based on the calculation result of the calculation unit 23, and the shape of the image projected on the projection area PA, the X direction, and the Y direction. Adjust the position.
  • the control unit CONT causes such position information to be detected a plurality of times at regular intervals in the transport direction (X direction) of the substrate S.
  • the control unit CONT uses the correction control system 60 or the correction mechanism 50 in the exposure apparatus EX to determine the shape and position of the substrate S. Then, the shape and position of the image projected on the projection area PA are corrected.
  • the transport device 20 includes the transport device 20 that transports the belt-shaped substrate S on which the circuit pattern 30 is formed, and the transport direction (X direction) of the substrate S among the circuit patterns 30. ) And a position detection unit 22 that detects at least two irradiation areas LA in a direction (Y direction) intersecting the transport direction a plurality of times, and the detection result of the position detection unit 22 on the substrate S in the transport direction. Since the calculation unit 23 that calculates information related to deformation or displacement and the correction control system 60 that corrects deformation or displacement of the substrate S based on the result calculated by the calculation unit 23 are provided, the substrate S is deformed. Even when a positional deviation occurs, the belt-like substrate S can be transported with high accuracy.
  • the substrate processing unit 3 performs processing on the processing surface Sa on which the circuit pattern 30 is formed among the transport device 20 and the substrate S transported by the transport device 20.
  • the correction control system 60 included in the transfer apparatus 20 includes the processing apparatus 10 that performs the correction, and corrects at least one of deformation or displacement of the processing surface Sa with respect to the processing apparatus 10. The overlay accuracy of the circuit pattern 30 to be formed can be increased.
  • the circuit pattern 30 is obtained by dividing the slit light L emitted from the illumination system 31 of the position detection unit 22 into two interferences and irradiating the irradiation area LA with interference light (interference fringes) L3.
  • the position detectors 22 irradiation areas LA
  • the position detection units 22 irradiation areas LA
  • the position detection units 22 may be arranged at a plurality of positions in the X direction that is the feeding direction of the substrate S.
  • the deformation state of the surface Sa can be sequentially measured in real time while the substrate S is being sent in the X direction.
  • the width in the X direction (width at which interference fringes are formed) of the irradiation area LA of the interference light L3 in the above embodiment is about the pitch in the X direction of pixels formed on the processing surface Sa (for example, around 300 ⁇ m).
  • the pitch of the interference fringes is set to about several ⁇ m.
  • the present invention is not limited to this, and a single slit light having a width in the X direction of several ⁇ m and a length in the Y direction of about several mm is covered.
  • a detection method may be used.
  • the position detection part 22 was set as the structure which detects the light component L4 of the scattered light which advanced to the + Z direction among the interference light L3 irradiated to the irradiation area
  • diffracted light (or scattered light) that is diffracted in the irradiation region LA and travels in a direction other than the + Z direction may be detected.
  • the support surface 15 of the substrate stage SST is a flat surface.
  • the substrate stage SST is constituted by a rotating drum, and the substrate S is wound around the rotating drum and conveyed.
  • the first embodiment can be similarly applied to the form in which the deformation of the substrate Sa (device forming region) is measured and exposed while being wound around the rotating drum.
  • the exposure apparatus EX using the projection optical system PL as an exposure apparatus has been described as an example.
  • the present invention is not limited to this.
  • a proximity type exposure apparatus, a contact type exposure apparatus, or the like An exposure apparatus may be used.
  • the configuration using the flat mask M as an example of the mask of the exposure apparatus has been described as an example.
  • the present invention is not limited to this, and a drum mask formed in a cylindrical shape is used. Also good.
  • FIG. 5A a plurality of interference fringes projected on the substrate S at predetermined intervals in the Y direction (width direction of the substrate) (the pitch direction of the fringes is the X direction).
  • a calibration mechanism is provided for accurately grasping the relative positional relationship between LA1, LA2, and LA3 in advance.
  • FIG. 5A shows an apparatus configuration viewed in the XY plane
  • FIG. 5B shows an apparatus configuration viewed in the XZ plane.
  • a plurality of pattern regions PT for a display panel of an organic EL display are formed on the substrate S in the transport direction (X direction) of the substrate S with a certain margin region TA interposed therebetween.
  • the base material of the substrate S is a transparent resin film, an ultrathin glass sheet, or the like, and no light-shielding pattern is formed in the blank area TA.
  • FIG. 5A as in FIG. 2, the substrate S is transported horizontally with a predetermined tension in the X direction by the set of nip rollers 24a and 24b and the set of nip rollers 25a and 25b.
  • a plurality of trapezoidal projection areas PA by the multi-lens projection optical system PL are staggered.
  • a planar stage SST that supports the substrate S flatly is disposed.
  • FIG. 5 shows a multi-lens method in which four projection optical systems PL are arranged in the Y direction.
  • an optical element G2 (hereinafter referred to as an image shifter G2) that finely moves the position of the pattern image of the mask projected in the projection area PA in a range of about ⁇ several ⁇ m in the XY direction.
  • an optical element G1 (hereinafter referred to as a magnification corrector G1) for adjusting the projection magnification of the pattern image of the mask projected in the projection area PA in a range of about ⁇ several tens of ppm.
  • Three measurement devices FD1 to FD3 that project interference fringes LA1, LA2, and LA3 are provided at three locations separated in the Y direction in front of the exposure region, and the measurement regions by the measurement devices FD1 to FD3 on the substrate S are provided.
  • a flat top plate TP elongated in the Y direction pedestals ST1 and ST2 supporting the top plate TP, a linear motor pedestal ST3 with guide extending in the Y direction, and the linear motor pedestal ST3 And a measurement stage MH that linearly moves in the Y direction.
  • the measurement stage MH is normally retracted to the extreme end position in the Y direction, but during the calibration operation (calibration), each of the interference fringes LA1, LA2, and LA3 that passes through the blank area TA of the substrate S. Is moved in the Y direction by the linear motor in the lower space of the substrate S so that the light is received by the sensor unit.
  • FIGS. 6A and 6B show detailed configurations of the linear motor pedestal ST3 with guide and the measurement stage MH.
  • the pedestal ST3 is provided with a linear motor LMG having a lateral guide surface (parallel to the YZ plane) extending linearly in the Y direction.
  • Measurement stage MH is supported by roller bearings or air bearings along the upper surface and lateral guide surface of pedestal ST3, and moves in the Y direction by the thrust of linear motor LMG.
  • the sensor units SU1 and SU2 have the same configuration, and are arranged at an interval in the Y direction such that the sensor units SU1 and SU2 are within the irradiation region of one interference fringe LA1 (or LA2 and LA3).
  • the sensor units SU1 and SU2 are composed of a glass plate on which a transmission type grating corresponding to the pitch direction of the projected interference fringes LA1 (or LA2 and LA3) is formed, and a photoelectric element embedded below the glass plate. Is done.
  • the sensor units SU1 and SU2 may be CCD elements that simply image a part of the interference fringes LA1 (or LA2 and LA3).
  • the third sensor unit SU3 is formed continuously on the outer side of the pattern region PT on the substrate S in the Y direction, etc., at alignment intervals formed at regular intervals in the X direction, or continuously in a thin line shape in the X direction.
  • a line pattern or the like is photoelectrically detected.
  • the alignment mark and line pattern are formed on the upper surface (surface to be processed) or the lower surface of the substrate S in the initial stage of the manufacturing process.
  • the light receiving surfaces of the sensor units SU1 and SU2 are separated in the Y direction, they are located within the irradiation area of one interference fringe LA1 (or LA2 and LA3), so that each signal of the sensor units SU1 and SU2 is received.
  • the residual rotation error component in the XY plane of one interference fringe LA1 (or LA2, LA3) can be found. That is, it can be seen how much the pitch direction of the interference fringes LA1 (or LA2, LA3) is inclined from the X direction.
  • the residual rotation error in the XY plane of the interference fringes LA1 may be corrected by slightly rotating the entire measuring device FD1 (or FD2, FD3) in the XY plane, or the measuring device FD1. (Or FD2, FD3) A specific optical element inside may be slightly rotated to correct it.
  • a cable bundle WH bundled together is provided.
  • the linearity of the movement of the measurement stage MH in the Y direction depends on the machining accuracy of the lateral guide surface (parallel to the YZ surface) of the linear motor LMG, but considering the occurrence of yawing and the like, the position of the measurement stage MH in the Y direction Are measured by two laser measurement interferometers RV1 and RV2. Therefore, corner cubes CB1 and CB2 that receive the beam from the laser measurement interferometer are fixedly provided at the end of the measurement stage MH in the Y direction. Since the laser length measurement interferometers RV1 and RV2 may measure only in the Y direction, the two corner cubes CB1 and CB2 may be simple plane mirrors.
  • the average value of the measurement positions of the two laser measurement interferometers RV1 and RV2 is used as the current position of the measurement stage MH, and the thrust of the linear motor LMG is feedback-controlled, thereby precisely moving the measurement stage MH in the Y direction. Or can be positioned at a target position.
  • the height position Fp in the Z direction of the light receiving surface of each sensor unit SU1, SU2, SU3 is set to be the same as the top surface of the top plate TP shown in FIG.
  • the plate TP is formed with slot-shaped openings corresponding to the movement trajectories of the sensor units SU1, SU2, and SU3.
  • an infinite number of fine gas ejection holes and suction holes are formed on the upper surface of the top plate TP, and the substrate S thereon is supported by a fluid bearing.
  • the blank area TA of the substrate S when the blank area TA of the substrate S is located in the movement locus in the Y direction of the measurement stage MH (sensor units SU1 to SU3), that is, the blank area TA has three interferences.
  • the measurement stage MH sensor units SU1 to SU3 sequentially moves under the projection positions of the three interference fringes LA1 to LA3, and each interference fringe LA1.
  • the residual rotation error of LA3 is measured, and the relative position error in the X direction (pitch direction) of the three interference fringes LA1 to LA3 is measured.
  • the measurement stage MH When measuring the relative position error of the interference fringes, the measurement stage MH temporarily stops at the projection position of each of the interference fringes LA1 to LA3, but errors due to the yawing component ⁇ z of the measurement stage MH occurring at the stationary position occur. Correction is performed based on the measurement results of the laser measurement interferometers RV1 and RV2.
  • the time for measuring the position of each interference fringe by positioning the measurement stage MH at the projection positions of the three interference fringes LA1 to LA3 is extremely short.
  • Such a calibration operation by measuring the relative position error of the interference fringes need not be performed in all the blank areas TA on the substrate S. For example, it is performed once every time five or ten pattern areas TP pass. You may make it do. Therefore, as an example, the width of the blank area TP to be calibrated may be 16 cm or more, and the width of the other blank area TP may be about 5 cm, for example.
  • the measuring devices FD1 to FD3 that have been calibrated to obtain the relative positional error of the three interference fringes LA1 to LA3, as described above with reference to FIGS.
  • the distortion (deformation) in the XY plane of the periodic fine pattern structure formed in the pattern region TP is required.
  • a pattern image to be superimposed is projected onto the pattern region TP on the substrate S via the projection optical system PL and scanning exposure is performed, local distortion in the pattern region TP measured by the measuring devices FD1 to FD3. Accordingly, by driving the magnification corrector G1 and the image shifter G2 in the projection optical system PL in synchronization with the movement of the substrate S in the Y direction, the overlay accuracy can be greatly improved.
  • FIG. 7A, 7B, and 8 show the structures of the measuring apparatuses FD1 to FD3 shown in FIG. 5, and here, the configuration of the measuring apparatus FD1 is shown as a representative.
  • 7A is an arrangement viewed in the XZ plane
  • FIG. 7B is an arrangement viewed in the YZ plane
  • FIG. 8 is an arrangement viewed in the XY plane from the laser light source 100 until splitting into two beam beams. is there.
  • the laser light source 100 shown in FIG. 8 is composed of, for example, a highly coherent He—Ne laser source having a wavelength of 633 nm, a beam expander optical system, a beam cross-sectional shaping optical system, etc., and a laser beam having a rectangular cross section. Is split by the beam splitter 102, and one transmitted light is incident on the apex angle of the right-angle prism mirror 104.
  • One of the beams divided into two at the apex angle of the right-angle prism mirror 104 is reflected by the mirror 103a as the beam L1, and is reflected in the Z-axis direction by the reflecting surface of the mirror 106 having the opening 106a formed at the center.
  • the other of the beams divided at the apex angle of the right-angle prism mirror 104 is reflected by the mirror 103b as a beam L2, and reflected by the reflecting surface of the mirror 106 in the Z-axis direction.
  • the beams L1 and L2 reflected by the mirror 106 each have a negative power in the YZ plane and are incident on cylindrical lenses 108a and 108b which are parallel plates in the XZ plane.
  • the widths of the beams L1 and L2 diverge and expand only in the YZ plane.
  • the beams L1 and L2 have positive power in the YZ plane, pass through cylindrical lenses 110a and 110b, which are parallel flat plates in the XZ plane, and become parallel light with a constant width in the YZ plane.
  • the beams L1 and L2 have negative power in the XZ plane, and the beam width is diffused in the XZ plane by the cylindrical lenses 112a and 112b which are parallel flat plates in the YZ plane, and positive power is generated in the XZ plane. And enters the cylindrical lens 114 which is a parallel plate in the YZ plane.
  • the beams L1 and L2 emitted from the cylindrical lens 114 toward the substrate S are projected on the substrate S obliquely as parallel light beams inclined at a symmetric angle with respect to the normal of the surface of the substrate S.
  • periodic interference fringes LA1 (pitch Pf) in the X direction are generated on the substrate S.
  • the irradiation area of the interference fringe LA1 on the substrate S is set to 20 mm in the Y direction and about 150 ⁇ m in the X direction, but the width in the X direction may be smaller than this, and the length in the Y direction is May be longer.
  • the width of the interference fringe LA1 in the X direction is determined according to the pattern structure (pixel pitch, etc.) on the substrate S as shown in FIG. 4, but the level of the detected photoelectric signal is accompanied by a predetermined strength.
  • the waveform is set to change.
  • one pixel is 300 to 450 ⁇ m square, and the subpixel for each RGB color has a short side of 100 to 150 ⁇ m and a long side of 300 to 450 ⁇ m.
  • the TFT portion (30b, PT1) for each subpixel is 300 in the X direction. They are arranged at a pitch of ⁇ 450 ⁇ m. Although it depends on the structure of the display, the area occupied by the TFT portion (30b, PT1) is smaller than the area for one pixel, for example, 1/3 or less in the X direction as in the case of FIG.
  • a TFT portion (30b, PT1) having a dense structure with a line width of 10 ⁇ m or less has a width of about 100 ⁇ m in the X direction and sandwiches a sub-pixel portion (30a, PT2) of 200 to 350 ⁇ m in the X direction. It will be distributed repeatedly.
  • the X-direction dimension of the irradiation area of the interference fringes LA (LA1 to LA3) can be about 50 to 150 ⁇ m, and the pitch Pf of the interference fringes LA (LA1 to LA3) is several It can be set to ⁇ m or less.
  • the pitch Pf of the interference fringes LA (LA1 to LA3) is uniquely determined by the crossing angle and wavelength of the beams L1 and L2 crossing on the substrate S.
  • the pitch Pf of the interference fringes LA (LA1 to LA3) is ⁇ as the wavelength of the beams L1 and L2. It is represented by the following formula (1).
  • Pf ⁇ / 2sin ( ⁇ f) (1)
  • the wavelength ⁇ is 633 nm
  • the incident angle ⁇ f is about 6 degrees.
  • the interference fringes LA (LA1 to LA3) are arranged with a plurality of slit lights having a width in the X direction of 1 to several ⁇ m and a length in the Y direction of several tens of millimeters at a pitch Pf in the X direction.
  • the slit light has a very narrow width in the X direction, a large amount of diffracted / scattered light can be generated from the TFT portion (30b, PT1) having a dense microstructure.
  • the slit light By arranging the slit light, more diffracted / scattered light can be generated, and the S / N at the time of signal detection can be improved.
  • one slit light may be used.
  • the diffracted / scattered light L3 generated in the normal direction (Z direction) is the cylindrical lens 114, the cylindrical lens 112c, and the cylindrical lens.
  • 110c passes through the cylindrical lens 108c, passes through the opening 106a of the mirror 106, and reaches the photoelectric sensor 120.
  • the cylindrical lenses 112c, 110c, and 108c are substantially the same as the cylindrical lenses 112a (112b), 110a (110b), and 108a (108b) for transmitting the beam L1 (L2).
  • the photoelectric sensor 120 collects the entire diffracted / scattered light L3 generated in the Z direction from within the irradiation region of the interference fringes LA (LA1 to LA3), and outputs a signal having a level corresponding to the total light amount.
  • the photoelectric sensor 120 detects the relative position of the irradiation area as shown in FIG. A signal whose intensity changes according to the change is obtained.
  • each photoelectric element in the sensor units SU1 and SU2 is located. Since the sensor can measure the displacement of the interference fringes in the pitch direction (X direction) at two locations in the Y direction within the interference fringes LA (LA1 to LA3), the interference fringes LA (LA1 to LA3) in the XY plane can be measured. Residual rotation error (minor tilt) can be known.
  • FIG. 9A and 9B show another configuration example of the measuring device FD1, and instead of forming the interference fringes LA (LA1 to LA3) on the substrate S, one slit light SB extending elongated in the Y direction is shown.
  • the scattered light generated from the substrate S (or the grating on the sensor units SU1 and SU2) by irradiation with the slit light SB is photoelectrically detected by the photoelectric sensors 121 and 122 disposed in the immediate vicinity of the irradiation region. Show.
  • the width Sf of the slit light SB in the Y direction can be several ⁇ m or less.
  • the photoelectric sensors 121 and 122 are disposed on both sides in the X direction below the cylindrical lens 114 and receive scattered light and diffracted light generated from the irradiation region of the slit light SB on the substrate S.
  • the light receiving surfaces of the photoelectric sensors 121 and 122 may be elongated in the Y direction in accordance with the longitudinal dimension of the slit light SB. Further, as shown in FIG. 9B, the photoelectric sensor 122 may be separated in the Y direction to form three photoelectric sensors 122a, 122b, and 122c.
  • Sensor units SU1 and SU2 that receive the interference fringes LA1, LA2, and LA3 projected from the measuring devices FD1 to FD3 are provided on the measurement stage MH shown in FIGS. 6A and 6B, and photoelectric detection is performed. Occurs when only the reflection type diffraction grating (phase grating) is arranged at the position of the upper surface (light receiving surface) of the sensor units SU1 and SU2, and the interference fringes LA1, LA2, and LA3 are projected onto the reflection type diffraction grating.
  • the diffracted / scattered light L3 to be detected may be detected by the photoelectric sensor 120 (FIGS. 7A, 7B, and 8) in the measuring devices FD1 to FD3.
  • the grating periodic direction of such a reflective diffraction grating is arranged so as to coincide with the periodic direction of the interference fringes LA1, LA2, and LA3.
  • the relationship between the pitch Pf of the interference fringe and the grating pitch of the reflective diffraction grating is 1 : 1 or 2: 1 etc.
  • the flat plate member on which the grating is formed is microvibrated (frequency fd) with an amplitude of about 1 ⁇ 2 of the pitch in the grating period direction by a piezoelectric actuator or the like.
  • a piezoelectric actuator or the like By detecting the output signal from the modulated photoelectric sensor 120 (120A to 120C) by a synchronous detection circuit or the like, each interference fringe LA1 with reference to the vibration center in the pitch direction of the flat plate member (reflection diffraction grating), The positions in the pitch direction of LA2 and LA3 can be determined accurately.
  • S ... Substrate CONT ... Control part Sa ... Processed surface EX ... Exposure apparatus L ... Slit light LA ... Irradiation area L1 ... First slit light L2 ... Second slit light L3 ... Interference light L4 ... Light component 2 ... Substrate supply part 3 ... substrate processing unit 4 ... substrate recovery unit 10 ... processing device 20 ... transfer device 21 ... transfer unit 22 ... position detection unit 23 ... calculation unit 30 ... circuit pattern 30a ... wiring unit 50, 60 ... correction control system 100 ... substrate Processing equipment.

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

This substrate transfer apparatus is provided with: a transfer unit, which transfers a strip-shaped substrate having a circuit pattern formed thereon, said circuit pattern including repeated pattern portions at a predetermined cycle; a position detector which outputs, during a time when the substrate is being transferred by means of the transfer unit, detection signals at least at two areas in the direction that intersects the transfer direction of the substrate, said detection signals corresponding to the repeated pattern portions in the circuit pattern; a calculating apparatus, which calculates, on the basis of detection results obtained from the position detector, information relating to deformation and/or positional shift of the substrate; and a control system for correction, which corrects the deformation and/or positional shift of the substrate on the basis of results calculated by means of the calculating apparatus.

Description

基板搬送装置及び基板処理装置Substrate transport apparatus and substrate processing apparatus
 本発明は、基板搬送装置及び基板処理装置に関する。
 本願は、2011年9月5日に出願された特願2011-193244号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a substrate transfer apparatus and a substrate processing apparatus.
This application claims priority based on Japanese Patent Application No. 2011-193244 for which it applied on September 5, 2011, and uses the content here.
 ディスプレイ装置などの表示装置を構成する表示素子として、例えば液晶表示素子、有機エレクトロルミネッセンス(有機EL)素子、電子ペーパに用いられる電気泳動素子などが知られている。これらの素子を作製する手法の1つとして、例えばロール・トゥ・ロール方式(以下、単に「ロール方式」と表記する)と呼ばれる手法が知られている(例えば、特許文献1参照)。 As display elements constituting display devices such as display devices, for example, liquid crystal display elements, organic electroluminescence (organic EL) elements, electrophoretic elements used in electronic paper, and the like are known. As one of methods for manufacturing these elements, for example, a method called a roll-to-roll method (hereinafter simply referred to as “roll method”) is known (for example, refer to Patent Document 1).
 ロール方式は、基板供給側のローラーに巻かれた1枚のシート状の基板を送り出すと共に送り出された基板を基板回収側のローラーで巻き取りながら基板を搬送し、基板が送り出されてから巻き取られるまでの間に、表示回路やドライバ回路などのパターンを基板上に順次形成する手法である。近年では、高精度のパターンを形成する処理装置が提案されている。 In the roll method, a single sheet-like substrate wound around a substrate supply side roller is sent out, the substrate is transported while being wound up by a substrate recovery side roller, and the substrate is sent out after being sent out. In this manner, a pattern such as a display circuit or a driver circuit is sequentially formed on a substrate until it is formed. In recent years, processing apparatuses that form highly accurate patterns have been proposed.
国際公開2008/129819号International Publication No. 2008/129819
 ところで、上記のようなロール方式においては、帯状の基板に表示素子を高精度に製造可能とする技術が要望されており、例えば帯状の基板を高精度に搬送する技術が求められている。 By the way, in the roll method as described above, there is a demand for a technology that enables a display element to be manufactured with high accuracy on a belt-like substrate. For example, a technology for transporting a belt-like substrate with high accuracy is required.
 そこで、本発明の態様は、帯状の基板を高精度に搬送することができる基板搬送装置及び基板処理装置を提供することを目的とする。 Therefore, an object of an aspect of the present invention is to provide a substrate transport apparatus and a substrate processing apparatus that can transport a band-shaped substrate with high accuracy.
 本発明の第一の態様に従えば、所定周期の繰返しパターン部を含む回路用パターンが形成された帯状の基板を搬送する搬送部と、搬送部によって基板を搬送する間、基板の搬送方向と交差する方向における少なくとも2箇所において、回路パターン内の繰返しパターン部に対応する検出信号を出力する位置検出器と、位置検出器の検出結果に基づいて、基板の変形又は位置ずれの少なくとも一方に関する情報を算出する算出装置と、算出装置で算出された結果に基づいて、基板の変形又は位置ずれの少なくとも一方を補正する補正用制御系とを備える基板搬送装置が提供される。 According to the first aspect of the present invention, a transport unit that transports a belt-like substrate on which a circuit pattern including a repetitive pattern unit having a predetermined period is formed, and a transport direction of the substrate while the substrate is transported by the transport unit Information relating to at least one of deformation or misalignment of the substrate based on the position detector that outputs a detection signal corresponding to the repeated pattern portion in the circuit pattern in at least two places in the intersecting direction, and the detection result of the position detector There is provided a substrate transport apparatus that includes a calculation device that calculates the above and a correction control system that corrects at least one of deformation or displacement of the substrate based on the result calculated by the calculation device.
 本発明の第二の態様に従えば、本発明の第一の態様に従う基板搬送装置と、基板搬送装置によって搬送される基板のうち、回路用パターンが形成された被処理面に対して処理を行う処理部とを備え、基板搬送装置が備える補正用制御系は、処理部による処理領域において、被処理面の変形又は位置ずれの少なくとも一方を補正する基板処理装置が提供される。 According to the second aspect of the present invention, the substrate transport apparatus according to the first aspect of the present invention and the surface to be processed on which the circuit pattern is formed among the substrates transported by the substrate transport apparatus are processed. The correction control system provided in the substrate transport apparatus includes a processing unit that performs correction, and a substrate processing apparatus that corrects at least one of deformation or displacement of a surface to be processed in a processing region by the processing unit is provided.
 本発明の態様によれば、帯状の基板を高精度に搬送することができる。 According to the aspect of the present invention, the belt-like substrate can be conveyed with high accuracy.
本発明の実施の形態に係る基板処理装置の構成を示す図である。It is a figure which shows the structure of the substrate processing apparatus which concerns on embodiment of this invention. 本実施形態に係る搬送装置及び露光装置の構成を示す図である。It is a figure which shows the structure of the conveying apparatus and exposure apparatus which concern on this embodiment. 本実施形態に係る搬送装置及び露光装置の一部の構成を示す図である。It is a figure which shows the structure of a part of conveyance apparatus and exposure apparatus which concern on this embodiment. 本実施形態に係る基板の被処理面の構成を示す図である。It is a figure which shows the structure of the to-be-processed surface of the board | substrate which concerns on this embodiment. 本発明の別の実施の形態に係る搬送装置及び露光装置の一部の構成を示す図である。It is a figure which shows the structure of a part of conveyance apparatus and exposure apparatus which concern on another embodiment of this invention. 本実施形態に係る搬送装置及び露光装置の一部の詳細な構成を示す図である。It is a figure which shows the detailed structure of some conveyance apparatuses and exposure apparatuses which concern on this embodiment. 本実施形態に係る搬送装置及び露光装置の一部の詳細な構成を示す図である。It is a figure which shows the detailed structure of some conveyance apparatuses and exposure apparatuses which concern on this embodiment. 本実施形態に係る計測装置の構成を示す図である。It is a figure which shows the structure of the measuring device which concerns on this embodiment. 本実施形態に係る計測装置の構成を示す図である。It is a figure which shows the structure of the measuring device which concerns on this embodiment. 本実施形態に係る計測装置の構成を示す図である。It is a figure which shows the structure of the measuring device which concerns on this embodiment. 本実施形態に係る計測装置の他の構成を示す図である。It is a figure which shows the other structure of the measuring device which concerns on this embodiment. 本実施形態に係る計測装置の他の構成を示す図である。It is a figure which shows the other structure of the measuring device which concerns on this embodiment.
 以下、図面を参照して、本実施の形態を説明する。 
 [第一実施形態] 
 図1は、第一実施形態に係る基板処理装置100の構成を示す模式図である。 
 図1に示すように、基板処理装置100は、帯状の基板(例えば、帯状のフィルム部材)Sを供給する基板供給部2と、基板Sの表面(被処理面)Saに対して処理を行う基板処理部3と、基板Sを回収する基板回収部4と、これらの各部を制御する制御部CONTと、を有している。
Hereinafter, the present embodiment will be described with reference to the drawings.
[First embodiment]
FIG. 1 is a schematic diagram showing a configuration of a substrate processing apparatus 100 according to the first embodiment.
As shown in FIG. 1, the substrate processing apparatus 100 performs processing on a substrate supply unit 2 that supplies a strip-shaped substrate (for example, a strip-shaped film member) S and a surface (surface to be processed) Sa of the substrate S. The substrate processing unit 3, the substrate recovery unit 4 that recovers the substrate S, and a control unit CONT that controls these units are provided.
 基板処理部3は、基板供給部2から基板Sが送り出されてから、基板回収部4によって基板Sが回収されるまでの間に、基板Sの表面に各種処理を実行するための基板処理装置100を備える。この基板処理装置100は、基板S上に例えば有機EL素子、液晶表示素子等の表示素子(電子デバイス)を形成する場合に用いることができる。 The substrate processing unit 3 performs a variety of processes on the surface of the substrate S after the substrate S is sent out from the substrate supply unit 2 until the substrate S is recovered by the substrate recovery unit 4. 100. The substrate processing apparatus 100 can be used when a display element (electronic device) such as an organic EL element or a liquid crystal display element is formed on the substrate S.
 なお、本実施形態では、図1に示すようにXYZ座標系を設定し、以下では適宜このXYZ座標系を用いて説明を行う。XYZ座標系は、例えば、水平面に沿ってX軸及びY軸が設定され、鉛直方向に沿って上向きにZ軸が設定される。また、基板処理装置100は、全体としてX軸に沿って、そのマイナス側(-側)からプラス側(+側)へ基板Sを搬送する。その際、帯状の基板Sの幅方向(短尺方向)は、Y軸方向に設定される。 In this embodiment, an XYZ coordinate system is set as shown in FIG. 1, and the following description will be given using this XYZ coordinate system as appropriate. In the XYZ coordinate system, for example, the X axis and the Y axis are set along the horizontal plane, and the Z axis is set upward along the vertical direction. Also, the substrate processing apparatus 100 transports the substrate S from the minus side (− side) to the plus side (+ side) along the X axis as a whole. In that case, the width direction (short direction) of the strip | belt-shaped board | substrate S is set to the Y-axis direction.
 基板処理装置100において処理対象となる基板Sとしては、例えば樹脂フィルムやステンレス鋼などの箔(フォイル)を用いることができる。例えば、樹脂フィルムは、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂、などの材料を用いることができる。 As the substrate S to be processed in the substrate processing apparatus 100, for example, a foil such as a resin film or stainless steel can be used. For example, the resin film is made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. Can be used.
 基板Sは、比較的高温(例えば200℃程度)の熱を受けても寸法が実質的に変わらない(熱変形が小さい)ように熱膨張係数を小さくすることができる。例えば、無機フィラーを樹脂フィルムに混合して熱膨張係数を小さくすることができる。無機フィラーの例としては、酸化チタン、酸化亜鉛、アルミナ、酸化ケイ素などが挙げられる。 The substrate S can have a low coefficient of thermal expansion so that its dimensions do not substantially change even when it receives heat at a relatively high temperature (for example, about 200 ° C.) (thermal deformation is small). For example, an inorganic filler can be mixed with a resin film to reduce the thermal expansion coefficient. Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, silicon oxide and the like.
 基板Sの幅方向(短尺方向)の寸法は例えば1m~2m程度に形成されており、長さ方向(長尺方向)の寸法は例えば10m以上に形成されている。勿論、この寸法は一例に過ぎず、これに限られることは無い。例えば基板SのY方向の寸法が1m以下、又は50cm以下であっても構わないし、2m以上であっても構わない。また、基板SのX方向の寸法が10m以下であっても構わない。 The dimension in the width direction (short direction) of the substrate S is, for example, about 1 m to 2 m, and the dimension in the length direction (long direction) is, for example, 10 m or more. Of course, this dimension is only an example and is not limited thereto. For example, the dimension in the Y direction of the substrate S may be 1 m or less, 50 cm or less, or 2 m or more. Moreover, the dimension of the X direction of the board | substrate S may be 10 m or less.
 基板Sは、可撓性を有するように形成されている。ここで可撓性とは、基板に自重程度の力を加えても線断したり破断したりすることはなく、その基板を撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。また、上記可撓性は、その基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。なお、基板Sとしては、1枚の帯状の基板を用いても構わないが、複数の単位基板を接続して帯状に形成される構成としても構わない。 The substrate S is formed to have flexibility. Here, the term “flexibility” refers to the property that the substrate can be bent without being broken or broken even if a force of its own weight is applied to the substrate. In addition, flexibility includes a property of bending by a force of about its own weight. The flexibility varies depending on the material, size, thickness, or environment such as temperature of the substrate. As the substrate S, a single strip-shaped substrate may be used, but a configuration in which a plurality of unit substrates are connected and formed in a strip shape may be used.
 基板供給部2は、例えばロール状に巻かれた基板Sを基板処理部3へ送り出して供給する。この場合、基板供給部2には、基板Sを巻きつける軸部やその軸部を回転させる回転駆動装置などが設けられる。この他、例えばロール状に巻かれた状態の基板Sを覆うカバー部などが設けられた構成であっても構わない。なお、基板供給部2は、ロール状に巻かれた基板Sを送り出す機構に限定されず、帯状の基板Sをその長さ方向に順次送り出す機構を含むものであればよい。 The substrate supply unit 2 supplies and supplies the substrate S wound in a roll shape to the substrate processing unit 3, for example. In this case, the substrate supply unit 2 is provided with a shaft around which the substrate S is wound, a rotation drive device that rotates the shaft, and the like. In addition, for example, a configuration in which a cover portion that covers the substrate S wound in a roll shape or the like may be provided. In addition, the board | substrate supply part 2 is not limited to the mechanism which sends out the board | substrate S wound by roll shape, What is necessary is just to include the mechanism which sends out the strip | belt-shaped board | substrate S sequentially in the length direction.
 基板回収部4は、基板処理部3が備える基板処理装置100を通過した基板Sを例えばロール状に巻きとって回収する。基板回収部4には、基板供給部2と同様に、基板Sを巻きつけるための軸部やその軸部を回転させる回転駆動源、回収した基板Sを覆うカバー部などが設けられている。代替的及び/又は追加的に、基板処理部3において基板Sがパネル状に切断される場合などには例えば基板Sを重ねた状態に回収するなど、基板回収部4は、ロール状に巻いた状態とは異なる状態で基板Sを回収する構成であっても構わない。 The substrate collection unit 4 collects the substrate S that has passed through the substrate processing apparatus 100 included in the substrate processing unit 3 in a roll shape, for example. Similar to the substrate supply unit 2, the substrate recovery unit 4 is provided with a shaft for winding the substrate S, a rotational drive source for rotating the shaft, a cover for covering the recovered substrate S, and the like. Alternatively and / or additionally, when the substrate S is cut into a panel shape in the substrate processing unit 3, the substrate recovery unit 4 is wound in a roll shape, for example, the substrate S is recovered in a stacked state. The substrate S may be collected in a state different from the state.
 基板処理部3は、基板供給部2から供給される基板Sを基板回収部4へ搬送すると共に、搬送の過程で基板Sの被処理面Saに対して処理を行う。基板処理部3は、処理装置10及び搬送装置20を有している。 The substrate processing unit 3 transports the substrate S supplied from the substrate supply unit 2 to the substrate recovery unit 4 and processes the surface Sa of the substrate S during the transport process. The substrate processing unit 3 includes a processing apparatus 10 and a transfer apparatus 20.
 図2は、処理装置10及び搬送装置20の構成を示す図である。 
 図2に示すように、処理装置10は、露光装置EXを有している。 
 なお、処理装置10としては、露光装置EXの他に、基板Sの被処理面Saに対して例えば有機EL素子を形成するための各種装置が設けられた構成であっても構わない。
FIG. 2 is a diagram illustrating the configuration of the processing device 10 and the transport device 20.
As shown in FIG. 2, the processing apparatus 10 has an exposure apparatus EX.
In addition to the exposure apparatus EX, the processing apparatus 10 may have a configuration in which various apparatuses for forming, for example, an organic EL element on the surface Sa of the substrate S are provided.
 このような装置としては、例えば被処理面Sa上に隔壁を形成するための隔壁形成装置、電極を形成するための電極形成装置、発光層を形成するための発光層形成装置などが挙げられる。より具体的には、液滴塗布装置(例えばインクジェット型塗布装置など)、成膜装置(例えば鍍金装置、蒸着装置、スパッタリング装置)、現像装置、表面改質装置、洗浄装置、パターン修正装置などが挙げられる。これらの各装置は、基板Sの搬送経路に沿って適宜設けられる。 Examples of such an apparatus include a partition forming apparatus for forming a partition on the surface Sa to be processed, an electrode forming apparatus for forming an electrode, and a light emitting layer forming apparatus for forming a light emitting layer. More specifically, a droplet coating apparatus (for example, an ink jet type coating apparatus), a film forming apparatus (for example, a plating apparatus, a vapor deposition apparatus, a sputtering apparatus), a developing apparatus, a surface modification apparatus, a cleaning apparatus, a pattern correction apparatus, etc. Can be mentioned. Each of these apparatuses is appropriately provided along the transport path of the substrate S.
 露光装置EXは、照明装置IL、マスクステージMST、投影光学系PL及び基板ステージSSTを有している。照明装置ILは、マスクステージMSTに保持されたマスクMに対して露光光ELIを照明する。マスクステージMSTは、不図示のパターンが形成されたマスクMを保持して移動可能に設けられている。 The exposure apparatus EX includes an illumination apparatus IL, a mask stage MST, a projection optical system PL, and a substrate stage SST. The illumination device IL illuminates the exposure light ELI on the mask M held on the mask stage MST. Mask stage MST is provided so as to be movable while holding mask M on which a pattern (not shown) is formed.
 投影光学系PLは、マスクMに形成されるパターンを介した露光光ELIの像を投影領域PAに投影する。基板ステージSSTは、基板Sが投影領域PAを通過するように、この基板Sを案内する。基板ステージSSTは、基板Sのうち被処理面Saの反対側の裏面Sbを支持する支持面15を有している。支持面15は、XY平面に平行となるように平坦に形成されている。 The projection optical system PL projects an image of the exposure light ELI through the pattern formed on the mask M onto the projection area PA. The substrate stage SST guides the substrate S so that the substrate S passes through the projection area PA. The substrate stage SST has a support surface 15 that supports the back surface Sb of the substrate S opposite to the processing surface Sa. The support surface 15 is formed flat so as to be parallel to the XY plane.
 露光装置EXは、投影領域PAに投影される像の形状やX方向及びY方向の位置を調整する補正機構50を有している。補正機構50は、投影光学系PLを構成する複数の光学素子のうち一部の光学素子、例えば、屈折素子(レンズ、平行平板等)や反射素子を移動(微動)させる駆動装置50aを備える。 The exposure apparatus EX has a correction mechanism 50 that adjusts the shape of the image projected on the projection area PA and the position in the X and Y directions. The correction mechanism 50 includes a drive device 50a that moves (finely moves) some of the plurality of optical elements constituting the projection optical system PL, such as a refractive element (lens, parallel plate, etc.) and a reflective element.
 例えば、駆動装置50aは、制御部CONTの制御によって、屈折素子又は反射素子を移動又は傾斜させることによって、投影領域PAに投影される像の形状や位置を調整することができる。 For example, the drive device 50a can adjust the shape and position of the image projected on the projection area PA by moving or tilting the refractive element or the reflective element under the control of the control unit CONT.
 また、投影光学系PLが反射素子を備える場合、駆動装置50aは、投影領域PAに投影される像の形状を調整するために、反射素子の反射面を変形させてもよい。 In the case where the projection optical system PL includes a reflective element, the driving device 50a may deform the reflective surface of the reflective element in order to adjust the shape of the image projected on the projection area PA.
 さらに、露光装置EXには、基板Sの幅方向(Y方向)の両側に形成されたアライメントマーク等を検出する為のアライメントセンサー(顕微鏡対物レンズ、撮像素子等を含む)29が設けられている。 Further, the exposure apparatus EX is provided with an alignment sensor (including a microscope objective lens, an image sensor, etc.) 29 for detecting alignment marks and the like formed on both sides in the width direction (Y direction) of the substrate S. .
 図3は、基板Sの被処理面Saを見たときの構成を示す図である。 
 図3に示すように、露光装置EXは、Y方向に4つの投影光学系PLを有しており、投影領域PAはY方向に4つ形成される。上記の補正機構50は、各投影光学系PLについて設けられている。したがって、各投影領域PAにおいて投影される像のX方向及びY方向の位置や形状が、これらの投影領域PAごとに独立して調整可能である。
FIG. 3 is a diagram illustrating a configuration when the surface to be processed Sa of the substrate S is viewed.
As shown in FIG. 3, the exposure apparatus EX has four projection optical systems PL in the Y direction, and four projection areas PA are formed in the Y direction. The correction mechanism 50 is provided for each projection optical system PL. Therefore, the position and shape of the image projected in each projection area PA in the X direction and the Y direction can be adjusted independently for each projection area PA.
 図2に戻って、搬送装置20は、搬送部21、位置検出部22、算出部23及び補正機構60を有している。 
 搬送部21は、基板Sが基板ステージSST上を移動するように基板Sを搬送する。搬送部21は、上流側ローラー24、下流側ローラー25、上流側エアパッド26及び下流側エアパッド27を有している。
Returning to FIG. 2, the conveyance device 20 includes a conveyance unit 21, a position detection unit 22, a calculation unit 23, and a correction mechanism 60.
The transport unit 21 transports the substrate S so that the substrate S moves on the substrate stage SST. The transport unit 21 includes an upstream roller 24, a downstream roller 25, an upstream air pad 26, and a downstream air pad 27.
 搬送部21は、上流側ローラー24及び下流側ローラー25を用いて基板Sにテンションを加えつつ、この基板Sを搬送する。制御部CONTは、上流側ローラー24及び下流側ローラー25による基板Sの搬送速度を調整可能である。 The transport unit 21 transports the substrate S while applying tension to the substrate S using the upstream roller 24 and the downstream roller 25. The controller CONT can adjust the transport speed of the substrate S by the upstream roller 24 and the downstream roller 25.
 上流側ローラー24は、処理装置10に対して基板Sの搬送方向の上流側に配置されている。上流側ローラー24は、基板SをZ方向に挟むニップローラー24A及び24Bを有している。下流側ローラー25は、処理装置10に対して基板Sの搬送方向の下流側に配置されている。下流側ローラー25は、基板SをZ方向に挟むニップローラー25A及び25Bを有している。 The upstream roller 24 is disposed on the upstream side in the transport direction of the substrate S with respect to the processing apparatus 10. The upstream roller 24 includes nip rollers 24A and 24B that sandwich the substrate S in the Z direction. The downstream roller 25 is disposed on the downstream side in the transport direction of the substrate S with respect to the processing apparatus 10. The downstream roller 25 has nip rollers 25A and 25B that sandwich the substrate S in the Z direction.
 上流側エアパッド26は、処理装置10に対して基板Sの搬送方向の上流側に配置されている。上流側エアパッド26は、基板ステージSSTの-X側端部に配置されている。
上流側エアパッド26は、第一パッド26A及び第二パッド26Bを有している。第一パッド26Aは、基板Sの+Z側に配置されており、基板Sの被処理面Saとの間に気体層を形成する。第二パッド26Bは、基板Sの-Z側に配置されており、基板Sの裏面Sbとの間に気体層を形成する。
The upstream air pad 26 is disposed on the upstream side in the transport direction of the substrate S with respect to the processing apparatus 10. The upstream air pad 26 is disposed at the −X side end of the substrate stage SST.
The upstream air pad 26 includes a first pad 26A and a second pad 26B. The first pad 26 </ b> A is disposed on the + Z side of the substrate S, and forms a gas layer between the substrate S and the surface Sa to be processed. The second pad 26B is disposed on the −Z side of the substrate S, and forms a gas layer with the back surface Sb of the substrate S.
 下流側エアパッド27は、処理装置10に対して基板Sの搬送方向の下流側に配置されている。下流側エアパッド27は、基板ステージSSTの+X側端部に配置されている。
下流側エアパッド27は、第一パッド27A及び第二パッド27Bを有している。第一パッド27Aは、基板Sの+Z側に配置されており、基板Sの被処理面Saとの間に気体層を形成する。第二パッド27Bは、基板Sの-Z側に配置されており、基板Sの裏面Sbとの間に気体層を形成する。
The downstream air pad 27 is disposed downstream of the processing apparatus 10 in the transport direction of the substrate S. The downstream air pad 27 is disposed at the + X side end of the substrate stage SST.
The downstream air pad 27 has a first pad 27A and a second pad 27B. The first pad 27A is disposed on the + Z side of the substrate S, and forms a gas layer between the substrate S and the surface Sa to be processed. The second pad 27B is disposed on the −Z side of the substrate S, and forms a gas layer with the back surface Sb of the substrate S.
 このように、搬送部21は、上流側ローラー24及び下流側ローラー25によって基板Sにテンションを加えつつ、上流側エアパッド26と下流側エアパッド27とで、基板Sの被処理面Sa及び裏面Sbを非接触状態で支持する。このため、基板Sは、基板ステージSSTの支持面15において、非接触状態で、この支持面15に支持されるようになっている。 As described above, the transport unit 21 applies the tension to the substrate S by the upstream roller 24 and the downstream roller 25, and the processed surface Sa and the back surface Sb of the substrate S with the upstream air pad 26 and the downstream air pad 27. Support in a non-contact state. For this reason, the substrate S is supported on the support surface 15 in a non-contact state on the support surface 15 of the substrate stage SST.
 位置検出部22は、基板Sの変形量や位置ずれ量を含む位置情報を検出する。位置検出部22は、光源を備えた照明系31、光透過反射部材32、光反射部材33、プリズム34、プリズム35、導光部材36、光検出部37を有している。 The position detection unit 22 detects position information including the deformation amount and displacement amount of the substrate S. The position detection unit 22 includes an illumination system 31 including a light source, a light transmission reflection member 32, a light reflection member 33, a prism 34, a prism 35, a light guide member 36, and a light detection unit 37.
 レーザ等の可干渉性のビームを放射する光源とビーム整形光学素子等を含む照明系31からの光は、Y方向に伸びたスリット状の光(スリット光L)に成形されて、+X方向に射出される。光透過反射部材32は、照明系31から射出されたスリット光Lのうち一部(第一スリット光L1)を基板Sに向けて(-Z方向)に反射すると共に、一部(第二スリット光L2)を透過する。光反射部材33は、光透過反射部材32を透過した第二スリット光L2を基板Sに向けて(-Z方向)に反射する。 The light from the illumination system 31 including a light source that emits a coherent beam such as a laser and a beam shaping optical element is shaped into a slit-like light (slit light L) extending in the Y direction, and then in the + X direction. It is injected. The light transmitting and reflecting member 32 reflects a part (first slit light L1) of the slit light L emitted from the illumination system 31 toward the substrate S (−Z direction) and a part (second slit). Transmits light L2). The light reflecting member 33 reflects the second slit light L2 transmitted through the light transmitting and reflecting member 32 toward the substrate S (−Z direction).
 プリズム34は、光透過反射部材32で反射された第一スリット光L1の進行方向を+X側に傾ける。プリズム35は、光反射部材33で反射された第二スリット光L2の進行方向を-X側に傾ける。プリズム34及びプリズム35により、第一スリット光L1及び第二スリット光L2は、同一の照射領域LA(Y方向にスリット状に伸びた領域)に照射される。この照射領域LAにおいては、互いに光路長の異なる第一スリット光L1及び第二スリット光L2がX方向に関して所定角度で交差しているため、X方向にピッチを持つ1次元の干渉縞(以下、干渉光とする)L3が形成される。 The prism 34 tilts the traveling direction of the first slit light L1 reflected by the light transmitting / reflecting member 32 to the + X side. The prism 35 tilts the traveling direction of the second slit light L2 reflected by the light reflecting member 33 to the −X side. By the prism 34 and the prism 35, the first slit light L1 and the second slit light L2 are irradiated to the same irradiation area LA (area extending in a slit shape in the Y direction). In the irradiation region LA, the first slit light L1 and the second slit light L2 having different optical path lengths intersect each other at a predetermined angle with respect to the X direction, and therefore, a one-dimensional interference fringe having a pitch in the X direction (hereinafter, L3) is formed.
 なお、このように、二光束干渉方式で被照射面に干渉縞を形成して位置計測する装置は、例えば、米国特許第4710026号に開示されている。 Note that an apparatus for measuring the position by forming interference fringes on the irradiated surface by the two-beam interference method is disclosed in, for example, US Pat. No. 4,701,0026.
 導光部材36は、照射領域LAにおいて形成された干渉光L3のうち+Z方向に反射した光成分L4をそのまま+Z方向へ導光する。光検出部37は、導光部材36によって導光された光成分L4を検出する。算出部23は、光検出部37における検出結果に基づいて、基板Sの位置情報を算出する。算出部23における算出結果は、制御部CONTへ送信されるようになっている。 The light guide member 36 guides the light component L4 reflected in the + Z direction out of the interference light L3 formed in the irradiation area LA as it is in the + Z direction. The light detection unit 37 detects the light component L4 guided by the light guide member 36. The calculation unit 23 calculates the position information of the substrate S based on the detection result in the light detection unit 37. The calculation result in the calculation unit 23 is transmitted to the control unit CONT.
 なお、図3に示すように、位置検出部22は、基板Sの搬送方向(X方向)に交差する方向(Y方向)の2箇所に設けられている。したがって、照射領域LAは、基板SのうちY方向の2箇所に形成されるようになっており、これらの2箇所の照射領域LAにおいて基板Sの位置情報を検出可能になっている。なお、照射領域LAは、一例として、基板Sのうち配線等の回路用パターンが形成されるパターン形成領域PTの+Y側端部及び-Y側端部に1箇所ずつ設定されている。 In addition, as shown in FIG. 3, the position detection part 22 is provided in two places of the direction (Y direction) which cross | intersects the conveyance direction (X direction) of the board | substrate S. As shown in FIG. Therefore, the irradiation area LA is formed at two places in the Y direction of the substrate S, and the position information of the substrate S can be detected in these two irradiation areas LA. Note that, as an example, the irradiation region LA is set at one location on each of the + Y side end portion and the −Y side end portion of the pattern formation region PT in which a circuit pattern such as a wiring is formed in the substrate S.
 補正用制御系60は、位置検出部22の検出結果に基づいて推定される基板Sの変形や位置ずれのうち少なくとも一方を、制御部CONTを介して補正する。補正用制御系60は、上流側ローラー24や下流側ローラー25などの位置や姿勢、搬送速度などを個別に調整することで、基板S上のパターン形成領域の2次元的な歪みを補正する。 The correction control system 60 corrects at least one of deformation and displacement of the substrate S estimated based on the detection result of the position detection unit 22 via the control unit CONT. The correction control system 60 corrects the two-dimensional distortion of the pattern formation region on the substrate S by individually adjusting the position, posture, conveyance speed, and the like of the upstream roller 24 and the downstream roller 25.
 上記のように構成された基板処理装置100は、制御部CONTの制御により、ロール方式によって有機EL素子、液晶表示素子などの表示素子(電子デバイス)を製造する。
 以下、上記構成の基板処理装置100を用いて表示素子を製造する工程を説明する(図1参照)。
The substrate processing apparatus 100 configured as described above manufactures display elements (electronic devices) such as an organic EL element and a liquid crystal display element by a roll method under the control of the control unit CONT.
Hereinafter, a process of manufacturing a display element using the substrate processing apparatus 100 having the above configuration will be described (see FIG. 1).
 まず、不図示のローラーに巻き付けられた帯状の基板Sを基板供給部2に取り付ける。
 制御部CONTは、基板供給部2からこの基板Sが送り出されるように、不図示のローラーを回転させる。そして、基板処理部3を通過したこの基板Sを基板回収部4に設けられた不図示のローラーで巻き取らせる。この基板供給部2及び基板回収部4を制御することによって、基板Sの被処理面Saを基板処理部3に対して連続的に搬送することができる。
First, a belt-like substrate S wound around a roller (not shown) is attached to the substrate supply unit 2.
The control unit CONT rotates a roller (not shown) so that the substrate S is sent out from the substrate supply unit 2. And this board | substrate S which passed the board | substrate process part 3 is wound up with the roller not shown provided in the board | substrate collection | recovery part 4. FIG. By controlling the substrate supply unit 2 and the substrate recovery unit 4, the surface Sa to be processed of the substrate S can be continuously transferred to the substrate processing unit 3.
 制御部CONTは、基板Sが基板供給部2から送り出されてから基板回収部4で巻き取られるまでの間に、基板処理部3の搬送装置20によって基板Sをこの基板処理部3内で適宜搬送させつつ、処理装置10によって表示素子の回路用パターンを含む構成要素を基板S上に順次形成させる。この工程の中で、露光装置EXによって処理を行う際、基板S上に形成される回路用パターンに露光パターンを重ね合わせて形成する場合がある。 The control unit CONT appropriately transfers the substrate S in the substrate processing unit 3 by the transfer device 20 of the substrate processing unit 3 after the substrate S is sent out from the substrate supply unit 2 and taken up by the substrate recovery unit 4. Constituent elements including circuit patterns for display elements are sequentially formed on the substrate S by the processing apparatus 10 while being conveyed. In this process, when processing is performed by the exposure apparatus EX, the exposure pattern may be superimposed on the circuit pattern formed on the substrate S.
 本実施形態によれば、露光処理に先立ち、既に基板Sに形成された回路用パターンの状態に基づいて基板Sの変形量や位置ずれ量などの位置情報を算出し、この算出結果に応じて基板Sの変形及び位置ずれや露光光ELIの投影領域PAの形状や位置などを調整することにより、露光処理の精度(重ね合わせ精度等)を向上させることができる。 According to the present embodiment, prior to the exposure processing, position information such as the deformation amount and displacement amount of the substrate S is calculated based on the state of the circuit pattern already formed on the substrate S, and the calculation result is determined according to the calculation result. By adjusting the deformation and misalignment of the substrate S and the shape and position of the projection area PA of the exposure light ELI, the accuracy of exposure processing (such as overlay accuracy) can be improved.
 図4を参照して、基板Sの位置情報の検出について説明する。 
 図4に示すように、基板Sのうち被処理面Saには、例えば上記の処理による前工程で、例えばAMOLEDディスプレーの表示部の回路用パターン30が形成されている。回路用パターン30は、例えば配線部30aと共にTFT用の微細構造パターン部30bを有している。配線部30aは、基板Sの搬送方向(X方向)に交差する方向(Y方向)に沿って一列に複数形成されている。また、この配線部30aの列は、基板Sの搬送方向(X方向)に等間隔に複数形成されている。
With reference to FIG. 4, the detection of the positional information on the substrate S will be described.
As shown in FIG. 4, for example, a circuit pattern 30 for a display portion of an AMOLED display is formed on the surface Sa of the substrate S in the previous process by the above processing, for example. The circuit pattern 30 includes, for example, a fine pattern portion 30b for TFT together with the wiring portion 30a. A plurality of wiring portions 30a are formed in a line along a direction (Y direction) intersecting the transport direction (X direction) of the substrate S. A plurality of rows of the wiring portions 30a are formed at equal intervals in the transport direction (X direction) of the substrate S.
 また、TFT用の微細構造パターン部30bは、ディスプレーの各画素毎に数個のTFT用パターンが密集した部分であり、通常はXY方向に数μm~数十μm程度の線幅のパターンが複数並んでいる。 The fine structure pattern portion 30b for TFT is a portion where several TFT patterns are densely arranged for each pixel of the display, and usually a plurality of patterns having a line width of about several μm to several tens of μm in the XY direction. Are lined up.
 このように、ディスプレーの表示部における画素はX方向、Y方向に一定のピッチで配列されるため、配線部30aや微細構造パターン部30bもX,Y方向に一定ピッチで形成されている。 Thus, since the pixels in the display portion of the display are arranged at a constant pitch in the X direction and the Y direction, the wiring portion 30a and the fine structure pattern portion 30b are also formed at a constant pitch in the X and Y directions.
 図2、図3にて説明したように、照射領域LAには干渉光(干渉縞)L3が照射されているが、その干渉縞のX方向のピッチは、一例として、微細構造パターン部30bの線幅やパターンピッチに対応して決められる。 As described with reference to FIGS. 2 and 3, the irradiation area LA is irradiated with interference light (interference fringes) L3. The pitch of the interference fringes in the X direction is, for example, that of the fine structure pattern portion 30b. It is determined according to the line width and pattern pitch.
 即ち、図4中の被処理面Sa上のX方向において、微細構造パターン部30bが形成された領域PT1と、それ以外の疎なパターン構成となる配線部30aが形成された領域PT2とに分けてみると、干渉光(干渉縞)L3が領域PT1に照射されている間は光検出部37に向けて比較的強い散乱光或いは回折光が発生し、領域PT2に照射されている間は相対的に弱い散乱、回折光のみが発生するようにすることができる。 That is, in the X direction on the surface Sa to be processed in FIG. 4, it is divided into a region PT1 in which the fine structure pattern portion 30b is formed and a region PT2 in which the wiring portion 30a having other sparse pattern configuration is formed. As a result, relatively strong scattered light or diffracted light is generated toward the light detection unit 37 while the interference light (interference fringe) L3 is irradiated on the region PT1, and relative light is emitted while the region PT2 is irradiated. Only weakly scattered and diffracted light can be generated.
 各画素を構成する回路パターン30の構成(XY面内の形状やZ方向の凹凸構造)は基本的にどこでも同一であるが、回路パターン30内でみると、それらのXY面内での形状の微細度や凹凸構造の微細度には特定の分布がある。そこで、被処理面Sa上にマトリックス状に形成される複数の画素構成パターン(回路パターン30)のうち、適当な間隔で位置する少なくとも2ヶ所の検出ポイントで、回路パターン30内での微細度の分布(密集度)を検出すれば、被処理面SaのX方向(又はY方向)の位置ずれ、XY面内での傾き、X方向の伸縮等が計測できる。さらに、検出ポイントを3つ以上にすることにより、被処理面Saの検出ポイントで囲まれた領域におけるXY面内での2次元的な歪み(画素配列の歪み)も計測可能となる。 The configuration of the circuit pattern 30 constituting each pixel (the shape in the XY plane and the concavo-convex structure in the Z direction) is basically the same everywhere, but when viewed in the circuit pattern 30, the shape in the XY plane There is a specific distribution in the fineness and the fineness of the concavo-convex structure. Therefore, at least two detection points located at appropriate intervals among the plurality of pixel configuration patterns (circuit patterns 30) formed in a matrix on the processing surface Sa, the fineness in the circuit pattern 30 is determined. If the distribution (density) is detected, it is possible to measure the positional deviation of the processing surface Sa in the X direction (or Y direction), the inclination in the XY plane, the expansion and contraction in the X direction, and the like. Furthermore, by using three or more detection points, two-dimensional distortion (pixel array distortion) in the XY plane in the region surrounded by the detection points of the processing surface Sa can be measured.
 2箇所の照射領域LAに照射された干渉光L3は、基板Sの画素内の回路用パターン30の形状(段差構造やパターン材料の屈折率差等)に応じて透過したり、回折したり、散乱若しくは反射したりする。このうち、+Z側に散乱若しくは反射した光成分L4は、導光部材36によって光検出部37へと導光される。光検出部37は、光成分L4の強度を検出する。 The interference light L3 irradiated to the two irradiation regions LA is transmitted or diffracted according to the shape of the circuit pattern 30 in the pixel of the substrate S (step difference structure, refractive index difference of the pattern material, etc.) Scatter or reflect. Among these, the light component L4 scattered or reflected to the + Z side is guided to the light detection unit 37 by the light guide member. The light detection unit 37 detects the intensity of the light component L4.
 光検出部37における検出結果は、例えば図4に示す2つのグラフのようになる。これらの2つのグラフは、各照射領域LAにおける検出結果を示すグラフである。グラフの縦軸は光成分L4の光強度を示しており、グラフの横軸は干渉光L3と基板Sの相対的なX方向位置を示している。2つのグラフに示すように、例えばパターンが比較的密に形成された領域PT1においては、光成分L4の光強度が大きくなる。また、パターンが比較的疎に形成された領域PT2においては、光成分L4の光強度が小さくなる。 The detection result in the light detection unit 37 is, for example, two graphs shown in FIG. These two graphs are graphs showing detection results in each irradiation region LA. The vertical axis of the graph indicates the light intensity of the light component L4, and the horizontal axis of the graph indicates the relative X direction position of the interference light L3 and the substrate S. As shown in the two graphs, for example, in the region PT1 in which the patterns are formed relatively densely, the light intensity of the light component L4 increases. Further, in the region PT2 where the pattern is formed relatively sparsely, the light intensity of the light component L4 becomes small.
 基板Sには画素の回路用パターン30が搬送方向(X方向)に繰り返して形成されていると共に、Y方向に一列に並んで形成されている。このため、基板Sに変形や位置ずれ(XY面内での傾き等)が生じていない場合には、2つの位置検出部22における検出結果としては、同一の波形の繰り返しが同位相で検出されることになる。 On the substrate S, pixel circuit patterns 30 are repeatedly formed in the transport direction (X direction) and are arranged in a line in the Y direction. For this reason, when the substrate S is not deformed or displaced (inclination in the XY plane, etc.), as a detection result in the two position detection units 22, repetition of the same waveform is detected in the same phase. Will be.
 これに対して、例えば基板Sに変形や位置ずれが生じている場合、その基板Sの変形や位置ずれに応じて画素の回路用パターン30の配列や位置にも変化(歪み)が生じる。例えば、基板Sに非等方的な伸縮が生じている場合、X方向の位置が一致している2つの照射領域LAに対して、画素の回路用パターン30の位置が異なり、2つの位置検出部22の間で検出される波形のピーク位置等に位相差が生じることになる。また、極端な場合、基板Sの一部に発生した局所的なシワにより、その領域に含まれる画素の回路用パターン30が微少に変形したりする場合もある。そのような場合も、2つの位置検出部22の各々で検出される波形の違いや周期性の相違(乱れ等)を計測することで、そのような状況を推定することも可能である。 On the other hand, for example, when the substrate S is deformed or displaced, changes (distortions) occur in the arrangement and position of the circuit pattern 30 of the pixel in accordance with the deformation or misalignment of the substrate S. For example, when an anisotropic expansion / contraction occurs in the substrate S, the position of the pixel circuit pattern 30 is different with respect to two irradiation areas LA whose positions in the X direction coincide with each other, and two position detections are performed. A phase difference occurs at the peak position of the waveform detected between the portions 22. In an extreme case, the circuit pattern 30 of the pixel included in the region may be slightly deformed due to local wrinkles generated in a part of the substrate S. In such a case, it is also possible to estimate such a situation by measuring the difference in waveform detected by each of the two position detection units 22 and the difference in periodicity (disturbance, etc.).
 算出部23では、2つの位置検出部22における検出結果に基づいて、基板Sの変形量及び位置ずれ量が算出される。算出部23での算出結果は、制御部CONTに送信される。制御部CONTは、算出部23の算出結果に基づき、補正用制御系60を用いて基板Sの変形及び位置ずれを調整させる。また、制御部CONTは、算出部23の算出結果に基づき、補正機構50の姿勢や、X方向及びY方向の位置を変化させ、投影領域PAに投影される像の形状、X方向及びY方向の位置を調整する。 The calculation unit 23 calculates the deformation amount and the positional deviation amount of the substrate S based on the detection results of the two position detection units 22. The calculation result in the calculation unit 23 is transmitted to the control unit CONT. The control unit CONT adjusts the deformation and displacement of the substrate S using the correction control system 60 based on the calculation result of the calculation unit 23. Further, the control unit CONT changes the posture of the correction mechanism 50 and the position in the X direction and the Y direction based on the calculation result of the calculation unit 23, and the shape of the image projected on the projection area PA, the X direction, and the Y direction. Adjust the position.
 制御部CONTは、このような位置情報の検出を基板Sの搬送方向(X方向)について等間隔おきに複数回行わせる。制御部CONTは、この複数回の検出において基板Sの変形や位置ずれが検出された場合には、補正用制御系60や露光装置EX内の補正機構50を用いて基板Sの形状及び位置や、投影領域PAに投影される像の形状及び位置を補正させる。 The control unit CONT causes such position information to be detected a plurality of times at regular intervals in the transport direction (X direction) of the substrate S. When the deformation or misalignment of the substrate S is detected in the plurality of detections, the control unit CONT uses the correction control system 60 or the correction mechanism 50 in the exposure apparatus EX to determine the shape and position of the substrate S. Then, the shape and position of the image projected on the projection area PA are corrected.
 以上のように、本実施形態に係る搬送装置20は、回路用パターン30が形成された帯状の基板Sを搬送する搬送装置20と、回路用パターン30のうち、基板Sの搬送方向(X方向)と交差する方向(Y方向)における少なくとも2箇所の照射領域LAを、搬送方向に関して複数回検出する位置検出部22と、前記位置検出部22の検出結果に基づいて、搬送方向における基板Sの変形又は位置ずれに関する情報を算出する算出部23と、算出部23で算出された結果に基づいて、基板Sの変形又は位置ずれを補正する補正用制御系60とを備えるので、基板Sに変形や位置ずれが生じる場合であっても、帯状の基板Sを高精度に搬送することができる。 As described above, the transport device 20 according to the present embodiment includes the transport device 20 that transports the belt-shaped substrate S on which the circuit pattern 30 is formed, and the transport direction (X direction) of the substrate S among the circuit patterns 30. ) And a position detection unit 22 that detects at least two irradiation areas LA in a direction (Y direction) intersecting the transport direction a plurality of times, and the detection result of the position detection unit 22 on the substrate S in the transport direction. Since the calculation unit 23 that calculates information related to deformation or displacement and the correction control system 60 that corrects deformation or displacement of the substrate S based on the result calculated by the calculation unit 23 are provided, the substrate S is deformed. Even when a positional deviation occurs, the belt-like substrate S can be transported with high accuracy.
 また、本実施形態に係る基板処理部3は、上記の搬送装置20と、前記搬送装置20によって搬送される基板Sのうち、回路用パターン30が形成された被処理面Saに対して処理を行う処理装置10とを備え、搬送装置20が備える補正用制御系60は、処理装置10に対して、被処理面Saの変形又は位置ずれの少なくとも一方を補正することとしたので、基板Sに形成される回路用パターン30の重ね合わせの精度を高めることができる。 Further, the substrate processing unit 3 according to the present embodiment performs processing on the processing surface Sa on which the circuit pattern 30 is formed among the transport device 20 and the substrate S transported by the transport device 20. The correction control system 60 included in the transfer apparatus 20 includes the processing apparatus 10 that performs the correction, and corrects at least one of deformation or displacement of the processing surface Sa with respect to the processing apparatus 10. The overlay accuracy of the circuit pattern 30 to be formed can be increased.
 本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。 
 例えば、上記実施形態では、位置検出部22の照明系31から射出されたスリット光Lを2つに分けて干渉させ干渉光(干渉縞)L3を照射領域LAに照射することで回路用パターン30を検出する構成としたので、画素のような繰り返しパターン構造であれば、被処理面Sa上のどの部分であっても、位置検出部22からの干渉光L3を照射して同様の計測が可能である。したがって、Y方向の3ヶ所以上に位置検出部22(照射領域LA)を並べてもよい。或いは、基板Sの送り方向であるX方向の複数位置に位置検出部22(照射領域LA)を並べてもよい。
The technical scope of the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the circuit pattern 30 is obtained by dividing the slit light L emitted from the illumination system 31 of the position detection unit 22 into two interferences and irradiating the irradiation area LA with interference light (interference fringes) L3. As long as it is a repetitive pattern structure like a pixel, the same measurement is possible by irradiating the interference light L3 from the position detection unit 22 at any part on the surface Sa to be processed. It is. Therefore, the position detectors 22 (irradiation areas LA) may be arranged at three or more locations in the Y direction. Alternatively, the position detection units 22 (irradiation areas LA) may be arranged at a plurality of positions in the X direction that is the feeding direction of the substrate S.
 位置検出部22(照射領域LA)をXY方向の各々に複数個配置すれば、被処理面Saの変形状態が、基板SをX方向に送りつつリアルタイムに逐次計測可能である。 If a plurality of position detectors 22 (irradiation areas LA) are arranged in each of the XY directions, the deformation state of the surface Sa can be sequentially measured in real time while the substrate S is being sent in the X direction.
 また、上記実施形態における干渉光L3の照射領域LAのX方向の幅(干渉縞が形成される幅)は、被処理面Sa上に形成される画素のX方向のピッチ程度(例えば300μm前後)に設定され、干渉縞のピッチは数μm程度に設定されるが、これに限られることなく、X方向の幅が数μmでY方向の長さが数mm程度の単一のスリット光を被処理面Saに照射する方式、或いはそのようなスリット光を画素ピッチの間隔でX方向に複数本並べて照射し、各スリット光の照射により回路用パターン30から発生する散乱光や回折光を共に光電検出する方式、でも良い。 Further, the width in the X direction (width at which interference fringes are formed) of the irradiation area LA of the interference light L3 in the above embodiment is about the pitch in the X direction of pixels formed on the processing surface Sa (for example, around 300 μm). The pitch of the interference fringes is set to about several μm. However, the present invention is not limited to this, and a single slit light having a width in the X direction of several μm and a length in the Y direction of about several mm is covered. A method of irradiating the processing surface Sa, or irradiating a plurality of such slit lights in the X direction at intervals of the pixel pitch, and photoelectrically scattering light and diffracted light generated from the circuit pattern 30 by irradiation of each slit light. A detection method may be used.
 また、上記実施形態では、位置検出部22が照射領域LAに照射された干渉光L3のうち+Z方向に進行した散乱光の光成分L4を検出する構成としたが、これに限られることは無く、例えば照射領域LAにおいて回折されて、+Z方向以外の方向に進む回折光(又は散乱光)を検出する構成としても構わない。 Moreover, in the said embodiment, although the position detection part 22 was set as the structure which detects the light component L4 of the scattered light which advanced to the + Z direction among the interference light L3 irradiated to the irradiation area | region LA, it is not restricted to this. For example, diffracted light (or scattered light) that is diffracted in the irradiation region LA and travels in a direction other than the + Z direction may be detected.
 また、図2では、基板ステージSSTの支持面15を平面としたが、露光装置EXの形態によっては、基板ステージSSTを回転ドラムで構成し、その回転ドラムに基板Sを巻き付けて搬送しつつ、回転ドラムに巻き付いた状態で基板Sa(デバイス形成領域)の変形を計測して露光する形態においても、同様に第一の実施形態を適用することが可能である。 In FIG. 2, the support surface 15 of the substrate stage SST is a flat surface. However, depending on the form of the exposure apparatus EX, the substrate stage SST is constituted by a rotating drum, and the substrate S is wound around the rotating drum and conveyed. The first embodiment can be similarly applied to the form in which the deformation of the substrate Sa (device forming region) is measured and exposed while being wound around the rotating drum.
 また、上記実施形態において、露光装置として投影光学系PLを用いた露光装置EXを例に挙げて説明したが、これに限られることは無く、例えば、プロキシミティ方式の露光装置や、コンタクト方式の露光装置であっても良い。 In the above-described embodiment, the exposure apparatus EX using the projection optical system PL as an exposure apparatus has been described as an example. However, the present invention is not limited to this. For example, a proximity type exposure apparatus, a contact type exposure apparatus, or the like An exposure apparatus may be used.
 また、上記実施形態において、露光装置のマスクとして、平板型のマスクMを用いた構成を例に挙げて説明したが、これに限られることは無く、円筒状に形成されたドラムマスクを用いても良い。 In the above embodiment, the configuration using the flat mask M as an example of the mask of the exposure apparatus has been described as an example. However, the present invention is not limited to this, and a drum mask formed in a cylindrical shape is used. Also good.
 〔第二実施形態〕
 次に、図5~図7Bを参照して、第2の実施形態の構成と動作を説明する。第2の実施形態では、図5(a)に示すように、基板S上にY方向(基板の幅方向)に所定間隔をあけて投射される複数の干渉縞(縞のピッチ方向がX方向)LA1,LA2,LA3の各々の相対位置関係を、予め精密に把握する為の較正機構を設ける。
[Second Embodiment]
Next, the configuration and operation of the second embodiment will be described with reference to FIGS. 5 to 7B. In the second embodiment, as shown in FIG. 5A, a plurality of interference fringes projected on the substrate S at predetermined intervals in the Y direction (width direction of the substrate) (the pitch direction of the fringes is the X direction). ) A calibration mechanism is provided for accurately grasping the relative positional relationship between LA1, LA2, and LA3 in advance.
 図5(a)はXY面内で見た装置構成で、図5(b)はXZ面内で見た装置構成である。本実施例では、基板S上に有機ELディスプレーの表示パネル用のパターン領域PTが、基板Sの搬送方向(X方向)に、一定の余白領域TAを挟んで複数形成されている。また、本実施例では、基板Sの母材を透過性の樹脂フィルム、極薄ガラスシート等とし、余白領域TAには遮光性のパターンが形成されていないものとする。 FIG. 5A shows an apparatus configuration viewed in the XY plane, and FIG. 5B shows an apparatus configuration viewed in the XZ plane. In this embodiment, a plurality of pattern regions PT for a display panel of an organic EL display are formed on the substrate S in the transport direction (X direction) of the substrate S with a certain margin region TA interposed therebetween. In this embodiment, it is assumed that the base material of the substrate S is a transparent resin film, an ultrathin glass sheet, or the like, and no light-shielding pattern is formed in the blank area TA.
 図5(a)において、先の図2と同様、基板Sはニップローラ24a,24bの組とニップローラ25a,25bの組とによって、X方向に所定のテンションで水平に搬送される。基板S上に設定される露光領域Exa内には、マルチレンズ方式の投影光学系PLによる台形状の投影領域PAの複数が千鳥配置される。基板Sの露光領域Exaの下側には、基板Sを平坦に支持する平面ステージSSTが配置される。図5では、4個の投影光学系PLをY方向に並べたマルチレンズ方式が示されている。
 各投影光学系PL内には、投影領域PA内に投影されるマスクのパターン像の位置を、XY方向に±数μm程度の範囲で微動させる光学素子G2(以下、像シフターG2とする)と、投影領域PA内に投影されるマスクのパターン像の投影倍率を±数十ppm程度の範囲で調整する光学素子G1(以下、倍率補正器G1とする)とが設けられている。
In FIG. 5A, as in FIG. 2, the substrate S is transported horizontally with a predetermined tension in the X direction by the set of nip rollers 24a and 24b and the set of nip rollers 25a and 25b. In the exposure area Exa set on the substrate S, a plurality of trapezoidal projection areas PA by the multi-lens projection optical system PL are staggered. Under the exposure area Exa of the substrate S, a planar stage SST that supports the substrate S flatly is disposed. FIG. 5 shows a multi-lens method in which four projection optical systems PL are arranged in the Y direction.
In each projection optical system PL, an optical element G2 (hereinafter referred to as an image shifter G2) that finely moves the position of the pattern image of the mask projected in the projection area PA in a range of about ± several μm in the XY direction. There is provided an optical element G1 (hereinafter referred to as a magnification corrector G1) for adjusting the projection magnification of the pattern image of the mask projected in the projection area PA in a range of about ± several tens of ppm.
 露光領域の手前には、Y方向に離間した3ヶ所に、干渉縞LA1、LA2、LA3を投射する3つの計測装置FD1~FD3が設けられ、基板S上の計測装置FD1~FD3による計測領域の下側には、図5(b)に示すように、Y方向に細長い平坦なトッププレートTP、それを支える台座ST1、ST2、Y方向に延びたガイド付リニアモータ台座ST3、そのリニアモータ台座ST3の上でY方向に直線移動する計測ステージMH、とが設けられている。 Three measurement devices FD1 to FD3 that project interference fringes LA1, LA2, and LA3 are provided at three locations separated in the Y direction in front of the exposure region, and the measurement regions by the measurement devices FD1 to FD3 on the substrate S are provided. On the lower side, as shown in FIG. 5 (b), a flat top plate TP elongated in the Y direction, pedestals ST1 and ST2 supporting the top plate TP, a linear motor pedestal ST3 with guide extending in the Y direction, and the linear motor pedestal ST3 And a measurement stage MH that linearly moves in the Y direction.
 計測ステージMHは、通常は、Y方向の最も端の位置に退避しているが、較正動作(キャリブレーション)時には、基板Sの余白領域TAを透過してくる干渉縞LA1、LA2、LA3の各々をセンサー部で受光するように、基板Sの下側の空間をリニアモータによりY方向に移動する。 The measurement stage MH is normally retracted to the extreme end position in the Y direction, but during the calibration operation (calibration), each of the interference fringes LA1, LA2, and LA3 that passes through the blank area TA of the substrate S. Is moved in the Y direction by the linear motor in the lower space of the substrate S so that the light is received by the sensor unit.
 図6A、6Bは、ガイド付リニアモータ台座ST3と計測ステージMHの詳細な構成を示している。台座ST3には、Y方向に直線的に延びた横ガイド面(YZ面と平行)を備えたリニアモータLMGが設けられている。計測ステージMHは、台座ST3の上面と横ガイド面に沿ってコロベアリングやエアベアリングで支持されて、リニアモータLMGの推力によりY方向に移動する。 6A and 6B show detailed configurations of the linear motor pedestal ST3 with guide and the measurement stage MH. The pedestal ST3 is provided with a linear motor LMG having a lateral guide surface (parallel to the YZ plane) extending linearly in the Y direction. Measurement stage MH is supported by roller bearings or air bearings along the upper surface and lateral guide surface of pedestal ST3, and moves in the Y direction by the thrust of linear motor LMG.
 計測ステージMHの上面には、3つのセンサー部SU1、SU2、SU3が設けられている。センサー部SU1、SU2は同じ構成のもので、1ヶ所の干渉縞LA1(又はLA2、LA3)の照射領域内に、センサー部SU1、SU2が共に入るようなY方向間隔で配置される。センサー部SU1、SU2は、一例として、投射される干渉縞LA1(又はLA2、LA3)のピッチ方向に対応した透過型格子が形成されたガラス板と、その下に埋設された光電素子とで構成される。その他、センサー部SU1、SU2としては、単に干渉縞LA1(又はLA2、LA3)の一部を撮像するCCD素子であっても良い。
3つ目のセンサー部SU3は、基板S上のパターン領域PTのY方向の外側等に、X方向に一定の間隔で形成されるアライメントマーク、或いはX方向に細線状に連続的に形成されたラインパターン等を光電検出するものである。アライメントマークやラインパターンは、製造プロセスの初期段階で、基板Sの上面(被加工面)或いは下面に形成される。
Three sensor units SU1, SU2, and SU3 are provided on the upper surface of the measurement stage MH. The sensor units SU1 and SU2 have the same configuration, and are arranged at an interval in the Y direction such that the sensor units SU1 and SU2 are within the irradiation region of one interference fringe LA1 (or LA2 and LA3). As an example, the sensor units SU1 and SU2 are composed of a glass plate on which a transmission type grating corresponding to the pitch direction of the projected interference fringes LA1 (or LA2 and LA3) is formed, and a photoelectric element embedded below the glass plate. Is done. In addition, the sensor units SU1 and SU2 may be CCD elements that simply image a part of the interference fringes LA1 (or LA2 and LA3).
The third sensor unit SU3 is formed continuously on the outer side of the pattern region PT on the substrate S in the Y direction, etc., at alignment intervals formed at regular intervals in the X direction, or continuously in a thin line shape in the X direction. A line pattern or the like is photoelectrically detected. The alignment mark and line pattern are formed on the upper surface (surface to be processed) or the lower surface of the substrate S in the initial stage of the manufacturing process.
 センサー部SU1、SU2の各受光面は、Y方向に離れているが、1ヶ所の干渉縞LA1(又はLA2、LA3)の照射領域内には位置するので、センサー部SU1、SU2の各信号を解析することで、1ヶ所の干渉縞LA1(又はLA2、LA3)のXY面内での残留回転誤差成分がわかる。すなわち、干渉縞LA1(又はLA2、LA3)のピッチ方向がX方向からどの程度傾いているかが判る。 Although the light receiving surfaces of the sensor units SU1 and SU2 are separated in the Y direction, they are located within the irradiation area of one interference fringe LA1 (or LA2 and LA3), so that each signal of the sensor units SU1 and SU2 is received. By analyzing, the residual rotation error component in the XY plane of one interference fringe LA1 (or LA2, LA3) can be found. That is, it can be seen how much the pitch direction of the interference fringes LA1 (or LA2, LA3) is inclined from the X direction.
 干渉縞LA1(又はLA2、LA3)のXY面内での残留回転誤差は、計測装置FD1(又はFD2、FD3)全体を、XY面内で微小回転させて修正しても良いし、計測装置FD1(又はFD2、FD3)内部の特定の光学素子を微小回転させて修正しても良い。 The residual rotation error in the XY plane of the interference fringes LA1 (or LA2, LA3) may be corrected by slightly rotating the entire measuring device FD1 (or FD2, FD3) in the XY plane, or the measuring device FD1. (Or FD2, FD3) A specific optical element inside may be slightly rotated to correct it.
 計測ステージMHのX方向の側部には、各センサー部SU1、SU2、SU3への給電、検出信号の取出し等の為の電線、或いはエアベアリングの為のエア供給用のチューブ等を、リボン状に束ねたケーブル束WHが設けられる。 On the side in the X direction of the measurement stage MH, a ribbon-like wire for supplying power to each sensor unit SU1, SU2, SU3, taking out detection signals, or an air supply tube for an air bearing, etc. A cable bundle WH bundled together is provided.
 計測ステージMHのY方向移動の直線性は、リニアモータLMGの横ガイド面(YZ面と平行)の機械加工精度に依存するが、ヨーイング等の発生を考慮して、計測ステージMHのY方向位置を、2つのレーザ測長干渉計RV1、RV2で計測する。そのため、計測ステージMHのY方向の端部には、レーザ測長干渉計からのビームを受けるコーナーキューブCB1、CB2が固設される。レーザ測長干渉計RV1、RV2は、Y方向だけしか計測しない場合があるので、2つのコーナーキューブCB1、CB2は、単なる平面鏡であっても良い。
 2つのレーザ測長干渉計RV1、RV2は、いずれも、計測ステージMHのY方向の位置を計測するが、コーナーキューブCB1、CB2がX方向にΔXcbだけ離れていることから、その計測位置(測長量)に差分ΔLyが生じれば、それがヨーイング成分(計測ステージMHのXY面内での回転誤差)Δθzとして計測される。即ち、sin(Δθz)=ΔLy/ΔXcbの関係から、ヨーイング誤差が演算できる。
The linearity of the movement of the measurement stage MH in the Y direction depends on the machining accuracy of the lateral guide surface (parallel to the YZ surface) of the linear motor LMG, but considering the occurrence of yawing and the like, the position of the measurement stage MH in the Y direction Are measured by two laser measurement interferometers RV1 and RV2. Therefore, corner cubes CB1 and CB2 that receive the beam from the laser measurement interferometer are fixedly provided at the end of the measurement stage MH in the Y direction. Since the laser length measurement interferometers RV1 and RV2 may measure only in the Y direction, the two corner cubes CB1 and CB2 may be simple plane mirrors.
The two laser measurement interferometers RV1 and RV2 both measure the position of the measurement stage MH in the Y direction. However, since the corner cubes CB1 and CB2 are separated from each other by ΔXcb in the X direction, If a difference ΔLy occurs in (long amount), it is measured as a yawing component (rotation error in the XY plane of the measurement stage MH) Δθz. That is, the yawing error can be calculated from the relationship sin (Δθz) = ΔLy / ΔXcb.
 また、2つのレーザ測長干渉計RV1、RV2の計測位置の平均値を計測ステージMHの現在位置として、リニアモータLMGの推力をフィードバック制御することにより、計測ステージMHをY方向に精密に移動させたり、目標位置に位置決めしたりすることができる。 Further, the average value of the measurement positions of the two laser measurement interferometers RV1 and RV2 is used as the current position of the measurement stage MH, and the thrust of the linear motor LMG is feedback-controlled, thereby precisely moving the measurement stage MH in the Y direction. Or can be positioned at a target position.
 尚、図6Bに示すように、各センサー部SU1、SU2、SU3の受光面のZ方向の高さ位置Fpは、図5(b)に示したトッププレートTPの上面と同一に設定され、トッププレートTPには、センサー部SU1、SU2、SU3の移動軌跡に対応したスロット状の開口が形成されている。また、トッププレートTPの上面には、微細な気体噴出孔と吸引孔が無数に形成され、その上の基板Sを流体ベアリングで支持する構成を備えている。 As shown in FIG. 6B, the height position Fp in the Z direction of the light receiving surface of each sensor unit SU1, SU2, SU3 is set to be the same as the top surface of the top plate TP shown in FIG. The plate TP is formed with slot-shaped openings corresponding to the movement trajectories of the sensor units SU1, SU2, and SU3. In addition, an infinite number of fine gas ejection holes and suction holes are formed on the upper surface of the top plate TP, and the substrate S thereon is supported by a fluid bearing.
 図6A、6Bに示すような計測ステージMH(センサー部SU1~SU3)のY方向の移動軌跡内に、基板Sの余白領域TAが位置した状態のとき、即ち、余白領域TAが3ヶ所の干渉縞LA1~LA3の投射位置にもたらされたとき、計測ステージMH(センサー部SU1~SU3)は、3ヶ所の干渉縞LA1~LA3の各投射位置の下に順次移動して、各干渉縞LA1~LA3の残留回転誤差を計測すると共に、3ヶ所の干渉縞LA1~LA3のX方向(ピッチ方向)の相対位置誤差を計測する。
 干渉縞の相対位置誤差の計測の際、計測ステージMHは、一時的に各干渉縞LA1~LA3の投射位置で静止するが、その静止位置で生じる計測ステージMHのヨーイング成分Δθzに起因した誤差が、レーザ測長干渉計RV1、RV2の計測結果に基づいて補正される。
6A and 6B, when the blank area TA of the substrate S is located in the movement locus in the Y direction of the measurement stage MH (sensor units SU1 to SU3), that is, the blank area TA has three interferences. When brought to the projection positions of the fringes LA1 to LA3, the measurement stage MH (sensor units SU1 to SU3) sequentially moves under the projection positions of the three interference fringes LA1 to LA3, and each interference fringe LA1. The residual rotation error of LA3 is measured, and the relative position error in the X direction (pitch direction) of the three interference fringes LA1 to LA3 is measured.
When measuring the relative position error of the interference fringes, the measurement stage MH temporarily stops at the projection position of each of the interference fringes LA1 to LA3, but errors due to the yawing component Δθz of the measurement stage MH occurring at the stationary position occur. Correction is performed based on the measurement results of the laser measurement interferometers RV1 and RV2.
 3ヶ所の干渉縞LA1~LA3の投射位置に計測ステージMHを位置決めして、各干渉縞の位置を計測する時間は、極めて短時間に行なわれる。一例として、1ヶ所の干渉縞LAの計測時間が0.5秒、計測ステージMHが隣りの干渉縞まで移動する時間が0.8秒だとすると、トータルの計測時間は、0.5秒×3+0.8秒×2=3.1秒となる。従って、基板Sの搬送速度を5cm/秒とすると、余白領域TAのY方向の幅は、余裕を持たせて16cmあれば良いことになる。 The time for measuring the position of each interference fringe by positioning the measurement stage MH at the projection positions of the three interference fringes LA1 to LA3 is extremely short. As an example, if the measurement time of one interference fringe LA is 0.5 seconds and the time for the measurement stage MH to move to the adjacent interference fringes is 0.8 seconds, the total measurement time is 0.5 seconds × 3 + 0. 8 seconds × 2 = 3.1 seconds. Therefore, if the transport speed of the substrate S is 5 cm / second, the width of the blank area TA in the Y direction may be 16 cm with a margin.
 このような干渉縞の相対位置誤差の計測によるキャリブレーション動作は、基板S上の全ての余白領域TAで行なう必要はなく、例えば、5個又は10個のパターン領域TPが通過する毎に1回行なうようにしても良い。従って、キャリブレーション動作を行なうべき余白領域TPでは、一例としてその幅を16cm以上にし、その他の余白領域TPの幅は、例えば5cm程度にしても良い。 Such a calibration operation by measuring the relative position error of the interference fringes need not be performed in all the blank areas TA on the substrate S. For example, it is performed once every time five or ten pattern areas TP pass. You may make it do. Therefore, as an example, the width of the blank area TP to be calibrated may be 16 cm or more, and the width of the other blank area TP may be about 5 cm, for example.
 以上のようにして、3ヶ所の干渉縞LA1~LA3の相対位置関係の誤差を求めるキャリブレーションが行なわれた計測装置FD1~FD3を使って、先の図2~図4の説明と同様に、パターン領域TP内に形成された周期的な微細パターン構造のXY面内での歪み(変形)が求められる。
 基板S上のパターン領域TPに、投影光学系PLを介して重ね合せすべきパターン像を投影して走査露光する際は、計測装置FD1~FD3で計測されたパターン領域TP内の局所的な歪みに応じて、投影光学系PL内の倍率補正器G1や像シフターG2を基板SのY方向への移動に同期させて駆動することで、重ね合せ精度を大きく向上させることが可能となる。
As described above, using the measuring devices FD1 to FD3 that have been calibrated to obtain the relative positional error of the three interference fringes LA1 to LA3, as described above with reference to FIGS. The distortion (deformation) in the XY plane of the periodic fine pattern structure formed in the pattern region TP is required.
When a pattern image to be superimposed is projected onto the pattern region TP on the substrate S via the projection optical system PL and scanning exposure is performed, local distortion in the pattern region TP measured by the measuring devices FD1 to FD3. Accordingly, by driving the magnification corrector G1 and the image shifter G2 in the projection optical system PL in synchronization with the movement of the substrate S in the Y direction, the overlay accuracy can be greatly improved.
 図7A、7B、図8は、図5に示した計測装置FD1~FD3の構造を示したもので、ここでは代表して、計測装置FD1の構成を示す。
 図7Aは、XZ面内で見た配置、図7BはYZ面内で見た配置であり、図8はレーザ光源100から2光束ビームに分割するまでの系をXY面内で見た配置である。
7A, 7B, and 8 show the structures of the measuring apparatuses FD1 to FD3 shown in FIG. 5, and here, the configuration of the measuring apparatus FD1 is shown as a representative.
7A is an arrangement viewed in the XZ plane, FIG. 7B is an arrangement viewed in the YZ plane, and FIG. 8 is an arrangement viewed in the XY plane from the laser light source 100 until splitting into two beam beams. is there.
 図8のレーザ光源100は、例えば、可干渉性の高い波長633nmのHe-Neレーザ源、ビームエクスパンダー光学系、ビーム断面形状の成形光学系等で構成され、断面を長方形にされたレーザビームはビームスプリッタ102で分割され、その一方の透過光は、直角プリズムミラー104の頂角に入射する。 The laser light source 100 shown in FIG. 8 is composed of, for example, a highly coherent He—Ne laser source having a wavelength of 633 nm, a beam expander optical system, a beam cross-sectional shaping optical system, etc., and a laser beam having a rectangular cross section. Is split by the beam splitter 102, and one transmitted light is incident on the apex angle of the right-angle prism mirror 104.
 直角プリズムミラー104の頂角で2つに分割されたビームの一方は、ビームL1としてミラー103aで反射されて、中央に開口部106aが形成されたミラー106の反射面でZ軸方向に反射される。直角プリズムミラー104の頂角で分割されたビームの他方は、ビームL2としてミラー103bで反射されて、ミラー106の反射面でZ軸方向に反射される。 One of the beams divided into two at the apex angle of the right-angle prism mirror 104 is reflected by the mirror 103a as the beam L1, and is reflected in the Z-axis direction by the reflecting surface of the mirror 106 having the opening 106a formed at the center. The The other of the beams divided at the apex angle of the right-angle prism mirror 104 is reflected by the mirror 103b as a beam L2, and reflected by the reflecting surface of the mirror 106 in the Z-axis direction.
 図7A、7Bに示すように、ミラー106で反射されたビームL1、L2は、各々、YZ面内で負のパワーを持ち、XZ面内では平行平板であるシリンドリカルレンズ108a、108bに入射し、ここで、YZ面内でのみビームL1、L2の幅が発散して広げられる。ビームL1、L2は、YZ面内で正のパワーを持ち、XZ面内では平行平板であるシリンドリカルレンズ110a、110bを通って、YZ面内では一定幅の平行光となる。その後、ビームL1、L2は、XZ面内で負のパワーを持ち、YZ面内では平行平板であるシリンドリカルレンズ112a、112bによってXZ面内でビーム幅を拡散され、XZ面内で正のパワーを持ち、YZ面内では平行平板であるシリンドリカルレンズ114に入射する。 As shown in FIGS. 7A and 7B, the beams L1 and L2 reflected by the mirror 106 each have a negative power in the YZ plane and are incident on cylindrical lenses 108a and 108b which are parallel plates in the XZ plane. Here, the widths of the beams L1 and L2 diverge and expand only in the YZ plane. The beams L1 and L2 have positive power in the YZ plane, pass through cylindrical lenses 110a and 110b, which are parallel flat plates in the XZ plane, and become parallel light with a constant width in the YZ plane. Thereafter, the beams L1 and L2 have negative power in the XZ plane, and the beam width is diffused in the XZ plane by the cylindrical lenses 112a and 112b which are parallel flat plates in the YZ plane, and positive power is generated in the XZ plane. And enters the cylindrical lens 114 which is a parallel plate in the YZ plane.
 シリンドリカルレンズ114から基板Sに向けて射出されるビームL1、L2は、基板Sの表面の法線に対して対称的な角度に傾いた平行光束となって基板S上に斜めに投射される。これによって、基板S上には、X方向に周期的な干渉縞LA1(ピッチPf)が生成される。干渉縞LA1の基板S上の照射領域は、一例として、Y方向に20mm、X方向に150μm程度に設定されるが、X方向の幅はこれより小さくても良く、Y方向の長さはそれよりも長くても良い。 The beams L1 and L2 emitted from the cylindrical lens 114 toward the substrate S are projected on the substrate S obliquely as parallel light beams inclined at a symmetric angle with respect to the normal of the surface of the substrate S. As a result, periodic interference fringes LA1 (pitch Pf) in the X direction are generated on the substrate S. As an example, the irradiation area of the interference fringe LA1 on the substrate S is set to 20 mm in the Y direction and about 150 μm in the X direction, but the width in the X direction may be smaller than this, and the length in the Y direction is May be longer.
 干渉縞LA1のX方向の幅は、先の図4に示したような基板S上のパターン構造(画素ピッチ等)に応じて決められるが、検出される光電信号のレベルが所定の強弱を伴って変化する波形となるように設定される。一般に、大画面のディスプレー(50インチクラス)では、1画素は300~450μm角となり、RGBの色毎のサブピクセルは、短辺100~150μm、長辺300~450μmといった寸法となる。 The width of the interference fringe LA1 in the X direction is determined according to the pattern structure (pixel pitch, etc.) on the substrate S as shown in FIG. 4, but the level of the detected photoelectric signal is accompanied by a predetermined strength. The waveform is set to change. In general, in a large screen display (50 inch class), one pixel is 300 to 450 μm square, and the subpixel for each RGB color has a short side of 100 to 150 μm and a long side of 300 to 450 μm.
 図4に示した基板S上の画素領域では、Y方向にRGBのサブピクセル(30a、PT2)が並ぶようにしたので、各サブピクセル毎のTFT部分(30b、PT1)は、X方向に300~450μmのピッチで配列することになる。ディスプレーの構造によっても異なるが、TFT部分(30b、PT1)が占める領域は1画素分の領域に比べて小さく、例えば、図4の場合のように、X方向では1/3以下となる。従って、例えば、線幅10μm以下の微細構造が密集したTFT部分(30b、PT1)はX方向に100μm程度の幅で、200~350μmのサブピクセル部(30a、PT2)を挟んで、X方向に繰り返し分布することになる。 In the pixel region on the substrate S shown in FIG. 4, since the RGB subpixels (30a, PT2) are arranged in the Y direction, the TFT portion (30b, PT1) for each subpixel is 300 in the X direction. They are arranged at a pitch of ˜450 μm. Although it depends on the structure of the display, the area occupied by the TFT portion (30b, PT1) is smaller than the area for one pixel, for example, 1/3 or less in the X direction as in the case of FIG. Therefore, for example, a TFT portion (30b, PT1) having a dense structure with a line width of 10 μm or less has a width of about 100 μm in the X direction and sandwiches a sub-pixel portion (30a, PT2) of 200 to 350 μm in the X direction. It will be distributed repeatedly.
 このようなディスプレー構造の場合、干渉縞LA(LA1~LA3)の照射領域のX方向の寸法は、50~150μm程度とすることができ、干渉縞LA(LA1~LA3)のピッチPfは、数μm以下とすることができる。干渉縞LA(LA1~LA3)のピッチPfは、基板S上で交差するビームL1、L2の交差角と波長によって一義的に決まる。
 基板Sの表面と垂直な法線に対するビームL1、L2の傾き角(入射角)を±θfとすると、干渉縞LA(LA1~LA3)のピッチPfは、ビームL1、L2の波長をλとして、以下の式(1)で表される。
  Pf=λ/2sin(θf)    ・・・ (1)
 一例として、波長λが633nmの場合、干渉縞Pfのピッチを3μmにするには、sin(θf)≒0.106とすれば良く、入射角θfは約6度となる。
In the case of such a display structure, the X-direction dimension of the irradiation area of the interference fringes LA (LA1 to LA3) can be about 50 to 150 μm, and the pitch Pf of the interference fringes LA (LA1 to LA3) is several It can be set to μm or less. The pitch Pf of the interference fringes LA (LA1 to LA3) is uniquely determined by the crossing angle and wavelength of the beams L1 and L2 crossing on the substrate S.
When the inclination angle (incident angle) of the beams L1 and L2 with respect to the normal line perpendicular to the surface of the substrate S is ± θf, the pitch Pf of the interference fringes LA (LA1 to LA3) is λ as the wavelength of the beams L1 and L2. It is represented by the following formula (1).
Pf = λ / 2sin (θf) (1)
As an example, when the wavelength λ is 633 nm, in order to set the pitch of the interference fringes Pf to 3 μm, it is sufficient to set sin (θf) ≈0.106, and the incident angle θf is about 6 degrees.
 干渉縞LA(LA1~LA3)は、本実施形態では、X方向の幅が1~数μmで、Y方向の長さが数十mmのスリット光を、X方向にピッチPfで複数本並べたものと同様に機能する。即ち、X方向の幅が極めて狭いスリット光であれば、微細構造が密集したTFT部分(30b、PT1)から、回折・散乱光が多く発生し得るが、1本のスリット光よりも複数本のスリット光を並べることで、より多くの回折・散乱光を発生させることができ、信号検出時のS/Nを向上させることができる。勿論、原理的には1本のスリット光であっても良い。 In the present embodiment, the interference fringes LA (LA1 to LA3) are arranged with a plurality of slit lights having a width in the X direction of 1 to several μm and a length in the Y direction of several tens of millimeters at a pitch Pf in the X direction. Works like a thing. That is, if the slit light has a very narrow width in the X direction, a large amount of diffracted / scattered light can be generated from the TFT portion (30b, PT1) having a dense microstructure. By arranging the slit light, more diffracted / scattered light can be generated, and the S / N at the time of signal detection can be improved. Of course, in principle, one slit light may be used.
 干渉縞LA(LA1~LA3)の照射によって基板Sから発生する回折・散乱光のうち、法線方向(Z方向)に発生する回折・散乱光L3は、シリンドリカルレンズ114、シリンドリカルレンズ112c、シリンドリカルレンズ110c、シリンドリカルレンズ108cを通り、ミラー106の開口部106aを透過して光電センサー120に達する。シリンドリカルレンズ112c、110c、108cは、ビームL1(L2)の送光用のシリンドリカルレンズ112a(112b)、110a(110b)、108a(108b)と実質的に同じものである。 Of the diffracted / scattered light generated from the substrate S by the irradiation of the interference fringes LA (LA1 to LA3), the diffracted / scattered light L3 generated in the normal direction (Z direction) is the cylindrical lens 114, the cylindrical lens 112c, and the cylindrical lens. 110c passes through the cylindrical lens 108c, passes through the opening 106a of the mirror 106, and reaches the photoelectric sensor 120. The cylindrical lenses 112c, 110c, and 108c are substantially the same as the cylindrical lenses 112a (112b), 110a (110b), and 108a (108b) for transmitting the beam L1 (L2).
 光電センサー120は、干渉縞LA(LA1~LA3)の照射領域内からZ方向に発生する回折・散乱光L3の全体を集光し、その総光量に対応したレベルの信号を出力する。
 基板Sが干渉縞LA(LA1~LA3)の照射領域に対して、一定の速度でX方向に移動することにより、光電センサー120からは、図4に示したのと同様に、その相対位置の変化に応じて強度変化する信号が得られる。
The photoelectric sensor 120 collects the entire diffracted / scattered light L3 generated in the Z direction from within the irradiation region of the interference fringes LA (LA1 to LA3), and outputs a signal having a level corresponding to the total light amount.
As the substrate S moves in the X direction at a constant speed with respect to the irradiation area of the interference fringes LA (LA1 to LA3), the photoelectric sensor 120 detects the relative position of the irradiation area as shown in FIG. A signal whose intensity changes according to the change is obtained.
 また、図7A、7Bのように、基板Sに下で干渉縞LA(LA1~LA3)の照射領域内にセンサー部SU1、SU2が位置している状態では、センサー部SU1、SU2内の各光電センサーが干渉縞LA(LA1~LA3)内のY方向に離れた2ヶ所で干渉縞のピッチ方向(X方向)のずれを計測できるので、干渉縞LA(LA1~LA3)のXY面内での残留回転誤差(微小な傾き)を知ることができる。 Further, as shown in FIGS. 7A and 7B, when the sensor units SU1 and SU2 are located in the irradiation region of the interference fringes LA (LA1 to LA3) below the substrate S, each photoelectric element in the sensor units SU1 and SU2 is located. Since the sensor can measure the displacement of the interference fringes in the pitch direction (X direction) at two locations in the Y direction within the interference fringes LA (LA1 to LA3), the interference fringes LA (LA1 to LA3) in the XY plane can be measured. Residual rotation error (minor tilt) can be known.
 〔第三実施形態〕
 図9A、図9Bは、計測装置FD1の他の構成例を示すもので、基板S上に干渉縞LA(LA1~LA3)を形成する代わりに、Y方向に細長く延びた1本のスリット光SBを形成し、そのスリット光SBの照射により基板S(又はセンサー部SU1、SU2上の格子)から発生する散乱光を、照射領域の直近に配置された光電センサー121、122によって光電検出する構成を示す。
[Third embodiment]
9A and 9B show another configuration example of the measuring device FD1, and instead of forming the interference fringes LA (LA1 to LA3) on the substrate S, one slit light SB extending elongated in the Y direction is shown. The scattered light generated from the substrate S (or the grating on the sensor units SU1 and SU2) by irradiation with the slit light SB is photoelectrically detected by the photoelectric sensors 121 and 122 disposed in the immediate vicinity of the irradiation region. Show.
 ここでは、レーザ光源からのビームL0が、複数のシリンドリカルレンズ108d、110d、112d、114を介して、断面寸法を一次元にエキスパンドされ、短手方向(Y方向)に集光されたスリット光SBとなって、基板S上に投射される。スリット光SBのY方向の幅Sfは、数μm以下とすることができる。
 光電センサー121、122は、シリンドリカルレンズ114の下側でX方向の両側に配置され、基板S上のスリット光SBの照射領域から発生する散乱光や回折光を受光する。光電センサー121、122の受光面は、スリット光SBの長手方向の寸法に合わせて、Y方向に細長くても良い。また、光電センサー122は、図9Bに示すように、Y方向に分離させて、3個の光電センサー122a、122b、122cにしても良い。
Here, the slit light SB in which the beam L0 from the laser light source is expanded one-dimensionally in cross-sectional dimensions via a plurality of cylindrical lenses 108d, 110d, 112d, and 114 and is condensed in the short direction (Y direction). And projected onto the substrate S. The width Sf of the slit light SB in the Y direction can be several μm or less.
The photoelectric sensors 121 and 122 are disposed on both sides in the X direction below the cylindrical lens 114 and receive scattered light and diffracted light generated from the irradiation region of the slit light SB on the substrate S. The light receiving surfaces of the photoelectric sensors 121 and 122 may be elongated in the Y direction in accordance with the longitudinal dimension of the slit light SB. Further, as shown in FIG. 9B, the photoelectric sensor 122 may be separated in the Y direction to form three photoelectric sensors 122a, 122b, and 122c.
 [その他の変形例]
 図6A、6Bに示した計測ステージMH上には、計測装置FD1~FD3から投射される干渉縞LA1、LA2、LA3の各々を受光するセンサー部SU1、SU2を設けて、光電検出するものとしたが、センサー部SU1、SU2の上面(受光面)の位置に反射型の回折格子(位相格子)のみを配置し、この反射型回折格子に干渉縞LA1、LA2、LA3が投射されたときに発生する回折・散乱光L3を、計測装置FD1~FD3内の光電センサー120(図7A、7B、図8)で検出するようにしても良い。
 そのような反射型回折格子の格子周期方向は干渉縞LA1、LA2、LA3の周期方向と一致するように配置され、干渉縞のピッチPfと、その反射型回折格子の格子ピッチの関係は、1:1或いは2:1等に設定される。
 このように、2光束干渉による干渉縞を反射型回折格子に照射して、位置計測を行なう例は、例えば、特許第2691298号公報に開示されている。
[Other variations]
Sensor units SU1 and SU2 that receive the interference fringes LA1, LA2, and LA3 projected from the measuring devices FD1 to FD3 are provided on the measurement stage MH shown in FIGS. 6A and 6B, and photoelectric detection is performed. Occurs when only the reflection type diffraction grating (phase grating) is arranged at the position of the upper surface (light receiving surface) of the sensor units SU1 and SU2, and the interference fringes LA1, LA2, and LA3 are projected onto the reflection type diffraction grating. The diffracted / scattered light L3 to be detected may be detected by the photoelectric sensor 120 (FIGS. 7A, 7B, and 8) in the measuring devices FD1 to FD3.
The grating periodic direction of such a reflective diffraction grating is arranged so as to coincide with the periodic direction of the interference fringes LA1, LA2, and LA3. The relationship between the pitch Pf of the interference fringe and the grating pitch of the reflective diffraction grating is 1 : 1 or 2: 1 etc.
An example in which position measurement is performed by irradiating a reflection diffraction grating with interference fringes due to two-beam interference in this way is disclosed in, for example, Japanese Patent No. 2691298.
 また、反射型回折格子を設ける場合、その格子が形成されている平板部材を、ピエゾアクチュエータ等で、格子周期方向にピッチの1/2程度の振幅で微小振動(周波数fd)させ、周波数fdの変調を受けた光電センサー120(120A~120C)からの出力信号を同期検波回路等によって検波することにより、平板部材(反射型回折格子)のピッチ方向の振動中心を基準とした各干渉縞LA1、LA2、LA3のピッチ方向の位置を精密に求めることができる。 Further, when a reflection type diffraction grating is provided, the flat plate member on which the grating is formed is microvibrated (frequency fd) with an amplitude of about ½ of the pitch in the grating period direction by a piezoelectric actuator or the like. By detecting the output signal from the modulated photoelectric sensor 120 (120A to 120C) by a synchronous detection circuit or the like, each interference fringe LA1 with reference to the vibration center in the pitch direction of the flat plate member (reflection diffraction grating), The positions in the pitch direction of LA2 and LA3 can be determined accurately.
 S…基板 CONT…制御部 Sa…被処理面 EX…露光装置 L…スリット光 LA…照射領域 L1…第一スリット光 L2…第二スリット光 L3…干渉光 L4…光成分 2…基板供給部 3…基板処理部 4…基板回収部 10…処理装置 20…搬送装置 21…搬送部 22…位置検出部 23…算出部 30…回路用パターン 30a…配線部 50、60…補正用制御系 100…基板処理装置。 S ... Substrate CONT ... Control part Sa ... Processed surface EX ... Exposure apparatus L ... Slit light LA ... Irradiation area L1 ... First slit light L2 ... Second slit light L3 ... Interference light L4 ... Light component 2 ... Substrate supply part 3 ... substrate processing unit 4 ... substrate recovery unit 10 ... processing device 20 ... transfer device 21 ... transfer unit 22 ... position detection unit 23 ... calculation unit 30 ... circuit pattern 30a ... wiring unit 50, 60 ... correction control system 100 ... substrate Processing equipment.

Claims (10)

  1.  所定周期の繰返しパターン部を含む回路用パターンが形成された帯状の基板を搬送する搬送部と、
     前記搬送部によって前記基板を搬送する間、前記基板の搬送方向と交差する方向における少なくとも2箇所の位置において、前記回路用パターン内の前記繰返しパターン部に対応する検出信号を出力する位置検出器と、
     前記位置検出器の検出結果に基づいて、前記基板の変形又は位置ずれの少なくとも一方に関する情報を算出する算出装置と、
     前記算出装置で算出された結果に基づいて、前記基板の変形又は前記位置ずれの少なくとも一方を補正する補正用制御系と
     を備える基板搬送装置。
    A transport unit that transports a belt-like substrate on which a circuit pattern including a repetitive pattern unit having a predetermined period is formed;
    A position detector that outputs a detection signal corresponding to the repetitive pattern portion in the circuit pattern at at least two positions in a direction intersecting the transport direction of the substrate while the substrate is transported by the transport portion; ,
    A calculation device that calculates information on at least one of deformation or displacement of the substrate based on a detection result of the position detector;
    A substrate transfer apparatus comprising: a correction control system that corrects at least one of deformation or displacement of the substrate based on a result calculated by the calculation device.
  2.  前記位置検出器は、
     前記回路用パターンのうち、前記少なくとも2箇所の位置に対して検出光を照射する光照射部と、
     前記検出光の照射により、前記少なくとも2箇所の位置で発生する散乱光及び回折光のうち少なくとも一方を検出する光検出部とを有し、
     前記算出装置は、前記光検出部の検出結果に基づいて前記情報を算出する
     請求項1に記載の基板搬送装置。
    The position detector is
    A light irradiating unit for irradiating detection light to the at least two positions of the circuit pattern;
    A light detection unit that detects at least one of scattered light and diffracted light generated at the at least two positions by irradiation of the detection light;
    The substrate transfer device according to claim 1, wherein the calculation device calculates the information based on a detection result of the light detection unit.
  3.  前記検出光は、前記搬送方向と交差する方向に延び、かつ前記回路用パターンのうち前記少なくとも2箇所の位置を含む一以上のスリット光を含む
     請求項2に記載の基板搬送装置。
    The substrate transport apparatus according to claim 2, wherein the detection light includes at least one slit light that extends in a direction intersecting the transport direction and includes at least two positions of the circuit pattern.
  4.  前記光照射部は、前記搬送方向に所定ピッチで生成される干渉縞を前記検出光として投射する可干渉性の光源を含む
     請求項2又は請求項3に記載の基板搬送装置。
    The substrate transport apparatus according to claim 2, wherein the light irradiation unit includes a coherent light source that projects interference fringes generated at a predetermined pitch in the transport direction as the detection light.
  5.  請求項1から請求項4のいずれか一項に記載の基板搬送装置と、
     前記基板搬送装置によって搬送される前記基板のうち、前記回路用パターンが形成された被処理面に対して処理を行う処理部とを備え、
     前記基板搬送装置が備える前記補正用制御系は、前記処理部による処理領域において、前記被処理面の変形又は位置ずれの少なくとも一方を補正する
     基板処理装置。
    The substrate transfer apparatus according to any one of claims 1 to 4,
    A processing unit that performs processing on a processing surface on which the circuit pattern is formed, of the substrate transported by the substrate transporting device;
    The said control system with which the said board | substrate conveyance apparatus is provided correct | amends at least one of the deformation | transformation or position shift of the said to-be-processed surface in the process area | region by the said process part.
  6.  前記位置検出器は、前記基板の搬送方向に関して前記処理部よりも上流側で、かつ前記回路用パターンのうち前記少なくとも2箇所の位置を検出する
     請求項5に記載の基板処理装置。
    The substrate processing apparatus according to claim 5, wherein the position detector detects the positions of the at least two positions in the circuit pattern on the upstream side of the processing unit with respect to the substrate transport direction.
  7.  前記処理部は、前記被処理面に対して露光処理を行う
     請求項5又は請求項6に記載の基板処理装置。
    The substrate processing apparatus according to claim 5, wherein the processing unit performs an exposure process on the processing target surface.
  8.  前記処理部は、前記基板の被処理面の局所領域にパターン化された複数の位置に露光光を照射する光学系を有すると共に、前記算出装置で算出された結果に基づいて、前記パターン化された露光光の照射状態を補正する補正機構を備える
     請求項7に記載の基板処理装置。
    The processing unit includes an optical system that irradiates exposure light to a plurality of positions patterned in a local region of the processing surface of the substrate, and is patterned based on a result calculated by the calculation device. The substrate processing apparatus according to claim 7, further comprising a correction mechanism that corrects an irradiation state of the exposure light.
  9.  前記処理部は、前記基板の被処理面の裏面を支持する基板支持部を更に備える
     請求項5から請求項8のうちいずれか一項に記載の基板処理装置。
    The substrate processing apparatus according to claim 5, wherein the processing unit further includes a substrate support unit that supports a back surface of a surface to be processed of the substrate.
  10.  前記基板支持部は、平坦に形成された支持面を有する
     請求項9に記載の基板処理装置。
    The substrate processing apparatus according to claim 9, wherein the substrate support unit has a flat support surface.
PCT/JP2012/072466 2011-09-05 2012-09-04 Substrate transfer apparatus and substrate processing apparatus WO2013035696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-193244 2011-09-05
JP2011193244 2011-09-05

Publications (1)

Publication Number Publication Date
WO2013035696A1 true WO2013035696A1 (en) 2013-03-14

Family

ID=47832141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072466 WO2013035696A1 (en) 2011-09-05 2012-09-04 Substrate transfer apparatus and substrate processing apparatus

Country Status (2)

Country Link
JP (1) JPWO2013035696A1 (en)
WO (1) WO2013035696A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222370A (en) * 2014-05-23 2015-12-10 株式会社オーク製作所 Exposure apparatus
KR20150143741A (en) * 2013-04-18 2015-12-23 가부시키가이샤 니콘 Substrate processing apparatus, device manufacturing method, scanning exposure method, exposure apparatus, device manufacturing system, and device manufacturing method
WO2016035842A1 (en) * 2014-09-04 2016-03-10 株式会社ニコン Processing system and device manufacturing method
US10612128B2 (en) 2014-10-09 2020-04-07 Jx Nippon Mining & Metals Corporation Sputtering target comprising Al—Te—Cu—Zr-based alloy and method of manufacturing same
WO2020203104A1 (en) * 2019-03-29 2020-10-08 キヤノン株式会社 Measurement device, patterning device, and method for producing article
CN112882350A (en) * 2021-01-14 2021-06-01 广东华恒智能科技有限公司 Vertical exposure and detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178463A (en) * 2004-12-22 2006-07-06 Asml Netherlands Bv Lithographic apparatus, method of manufacturing device, and device manufactured thereby
JP2006292919A (en) * 2005-04-08 2006-10-26 Integrated Solutions:Kk Exposure method and exposing device
JP2009237321A (en) * 2008-03-27 2009-10-15 Fujifilm Corp Image exposure device
JP2010014939A (en) * 2008-07-03 2010-01-21 Nikon Corp Manufacturing apparatus and manufacturing method for circuit element
JP2010271603A (en) * 2009-05-25 2010-12-02 Nikon Corp Apparatus for detecting surface position, apparatus for forming pattern, method for detecting surface position, method for forming pattern, and device manufacturing method
JP2011070868A (en) * 2009-09-25 2011-04-07 Nikon Corp Substrate cartridge, substrate processing apparatus, substrate processing system, control apparatus, and method of manufacturing display element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178463A (en) * 2004-12-22 2006-07-06 Asml Netherlands Bv Lithographic apparatus, method of manufacturing device, and device manufactured thereby
JP2006292919A (en) * 2005-04-08 2006-10-26 Integrated Solutions:Kk Exposure method and exposing device
JP2009237321A (en) * 2008-03-27 2009-10-15 Fujifilm Corp Image exposure device
JP2010014939A (en) * 2008-07-03 2010-01-21 Nikon Corp Manufacturing apparatus and manufacturing method for circuit element
JP2010271603A (en) * 2009-05-25 2010-12-02 Nikon Corp Apparatus for detecting surface position, apparatus for forming pattern, method for detecting surface position, method for forming pattern, and device manufacturing method
JP2011070868A (en) * 2009-09-25 2011-04-07 Nikon Corp Substrate cartridge, substrate processing apparatus, substrate processing system, control apparatus, and method of manufacturing display element

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101956973B1 (en) 2013-04-18 2019-06-24 가부시키가이샤 니콘 Substrate processing apparatus, device manufacturing method, scanning exposure method
KR20150143741A (en) * 2013-04-18 2015-12-23 가부시키가이샤 니콘 Substrate processing apparatus, device manufacturing method, scanning exposure method, exposure apparatus, device manufacturing system, and device manufacturing method
KR102204689B1 (en) 2013-04-18 2021-01-19 가부시키가이샤 니콘 Scanning exposure device
KR20200078679A (en) * 2013-04-18 2020-07-01 가부시키가이샤 니콘 Scanning exposure device
KR102126981B1 (en) 2013-04-18 2020-06-25 가부시키가이샤 니콘 Pattern exposure method and device manufacturing method
JP2017102489A (en) * 2013-04-18 2017-06-08 株式会社ニコン Exposure apparatus, device manufacturing system, and device manufacturing method
KR102062509B1 (en) 2013-04-18 2020-01-03 가부시키가이샤 니콘 Scanning exposure apparatus
KR20190133074A (en) * 2013-04-18 2019-11-29 가부시키가이샤 니콘 Pattern exposure method and device manufacturing method
KR20190089237A (en) * 2013-04-18 2019-07-30 가부시키가이샤 니콘 Scanning exposure apparatus
KR20190021483A (en) * 2013-04-18 2019-03-05 가부시키가이샤 니콘 Exposure apparatus, device manufacturing system, and device manufacturing method
KR102005701B1 (en) 2013-04-18 2019-07-30 가부시키가이샤 니콘 Exposure apparatus, device manufacturing system, and device manufacturing method
JP2015222370A (en) * 2014-05-23 2015-12-10 株式会社オーク製作所 Exposure apparatus
TWI636344B (en) * 2014-09-04 2018-09-21 日商尼康股份有限公司 Processing system and component manufacturing method
KR102086463B1 (en) 2014-09-04 2020-03-09 가부시키가이샤 니콘 Processing system and device manufacturing method
CN108762010A (en) * 2014-09-04 2018-11-06 株式会社尼康 Processing system
CN108762010B (en) * 2014-09-04 2019-09-17 株式会社尼康 Processing system
CN108663913B (en) * 2014-09-04 2019-09-24 株式会社尼康 Manufacturing method
CN110451316A (en) * 2014-09-04 2019-11-15 株式会社尼康 Substrate board treatment
CN108663913A (en) * 2014-09-04 2018-10-16 株式会社尼康 Manufacturing method
KR20190141272A (en) * 2014-09-04 2019-12-23 가부시키가이샤 니콘 Processing system and device manufacturing method
JPWO2016035842A1 (en) * 2014-09-04 2017-08-17 株式会社ニコン Processing system and device manufacturing method
US10246287B2 (en) 2014-09-04 2019-04-02 Nikon Corporation Processing system and device manufacturing method
KR102092155B1 (en) 2014-09-04 2020-03-23 가부시키가이샤 니콘 Processing system and device manufacturing method
CN110297403B (en) * 2014-09-04 2023-07-28 株式会社尼康 Processing system
US10683185B2 (en) 2014-09-04 2020-06-16 Nikon Corporation Processing system and device manufacturing method
CN106687867A (en) * 2014-09-04 2017-05-17 株式会社尼康 Processing system and device manufacturing method
KR20170048391A (en) * 2014-09-04 2017-05-08 가부시키가이샤 니콘 Processing system and device manufacturing method
WO2016035842A1 (en) * 2014-09-04 2016-03-10 株式会社ニコン Processing system and device manufacturing method
US10612128B2 (en) 2014-10-09 2020-04-07 Jx Nippon Mining & Metals Corporation Sputtering target comprising Al—Te—Cu—Zr-based alloy and method of manufacturing same
WO2020203104A1 (en) * 2019-03-29 2020-10-08 キヤノン株式会社 Measurement device, patterning device, and method for producing article
CN112882350A (en) * 2021-01-14 2021-06-01 广东华恒智能科技有限公司 Vertical exposure and detection device

Also Published As

Publication number Publication date
JPWO2013035696A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
US10691027B2 (en) Substrate processing apparatus, processing apparatus, and method for manufacturing device
WO2013035696A1 (en) Substrate transfer apparatus and substrate processing apparatus
TWI677766B (en) Method for adjusting substrate processing device
TWI658535B (en) Pattern forming device
US9465304B2 (en) Roll-to-roll digital photolithography
TWI684836B (en) Pattern drawing device
WO2013065429A1 (en) Substrate processing apparatus and substrate processing method
KR20190141793A (en) Substrate processing apparatus, device manufacturing system, device manufacturing method, and pattern formation apparatus
JP5534549B2 (en) Transfer apparatus, transfer method, and device manufacturing method
JP5564861B2 (en) Elasticity measuring method and elasticity measuring device
WO2013065451A1 (en) Substrate processing unit and method for processing substrate
JP2010217207A5 (en)
TWI735672B (en) Beam scanning device, pattern drawing device, and accuracy inspection method of pattern drawing device
EP2691811B1 (en) Measurement of the position of a radiation beam spot in lithography
WO2013179977A1 (en) Illumination device, processing device, and device manufacturing method
JP2015018006A (en) Substrate treatment apparatus, device production system, and device production method
JP6733778B2 (en) Substrate processing apparatus and device manufacturing method
KR101602140B1 (en) Method and apparatus for precision control and measurement of lateral web position using optical sensor, and method and apparatus for printing using the same
JP2002139303A (en) Edge-detecting device for transparent body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830123

Country of ref document: EP

Kind code of ref document: A1