WO2013035678A1 - 変異型エンドグルカナーゼ - Google Patents

変異型エンドグルカナーゼ Download PDF

Info

Publication number
WO2013035678A1
WO2013035678A1 PCT/JP2012/072401 JP2012072401W WO2013035678A1 WO 2013035678 A1 WO2013035678 A1 WO 2013035678A1 JP 2012072401 W JP2012072401 W JP 2012072401W WO 2013035678 A1 WO2013035678 A1 WO 2013035678A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
endoglucanase
mutant
acid sequence
seq
Prior art date
Application number
PCT/JP2012/072401
Other languages
English (en)
French (fr)
Inventor
栗原 宏征
剛士 塚田
山田 勝成
由美子 三島
友香 前野
石川 一彦
Original Assignee
東レ株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社, 独立行政法人産業技術総合研究所 filed Critical 東レ株式会社
Priority to CA2847623A priority Critical patent/CA2847623A1/en
Priority to CN201280042920.9A priority patent/CN103797116A/zh
Priority to AU2012305442A priority patent/AU2012305442A1/en
Priority to JP2013532590A priority patent/JP5971811B2/ja
Priority to IN2455CHN2014 priority patent/IN2014CN02455A/en
Priority to EP12830699.0A priority patent/EP2754712B1/en
Publication of WO2013035678A1 publication Critical patent/WO2013035678A1/ja
Priority to US14/195,923 priority patent/US9193963B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials

Definitions

  • the present invention relates to a novel mutant endoglucanase.
  • Cellulose is abundant in herbaceous plants and woody plants, and these plants are collectively referred to as cellulosic biomass.
  • Cell wall of cellulosic biomass is mainly composed of cellulose, hemicellulose, and lignin.
  • Cellulose is a linear polysaccharide with ⁇ -1,4-linked glucose molecules
  • hemicellulose is a polysaccharide such as xyloglucan, xylan, and mannan
  • lignin is an aromatic polymer compound with a complex structure. It is intertwined with hemicellulose to form a three-dimensional network structure.
  • saccharification In order to produce ethanol and chemical raw materials from cellulosic biomass, a process called “saccharification” is required in which microorganisms decompose into fermentable monosaccharides.
  • Typical saccharification methods include acid treatment methods and enzyme treatment methods, but since acid treatment methods involve a large amount of waste liquid and have a high environmental impact, enzymes that perform reactions under mild conditions using cellulase are now available. Treatment methods have become the mainstream of development.
  • Cellulase is a general term for cellulose hydrolase and is classified into three types, cellobiohydrolase, endoglucanase, and ⁇ -glucosidase, based on differences in substrate specificity. It is thought that hydrolysis of cellulose proceeds when these act in concert.
  • Non-Patent Documents 1 to 3 the inhibition mechanism is still unclear.
  • thermophilic bacterium or a hyperthermophilic bacterium has high stability and can maintain activity for a long period of time even under high temperature conditions. Therefore, application as an industrial enzyme is being studied. So far, cellulase produced by cellulolytic thermophilic bacteria or hyperthermophilic bacteria has been studied, and it has been clarified that most of the cellulase genes possessed by them encode endoglucanase.
  • the activity of cellulases such as endoglucanase is inhibited by aromatic compounds derived from lignin.
  • the present invention provides a mutant endoglucanase in which the activity inhibition by the lignin-derived aromatic compound is greatly reduced.
  • this invention provides the manufacturing method using an enzyme composition with high decomposition
  • the present inventors introduced an amino acid mutation at a specific position of a thermophilic bacterium-derived endoglucanase, and succeeded in obtaining a mutant endoglucanase having improved properties.
  • the inventors focused on the three-dimensional structure of the wild-type parent endoglucanase and identified amino acids involved in the complex structure formation of the parent endoglucanase and lignin-derived aromatic compound by protein crystal structure analysis.
  • the amino acid we succeeded in obtaining endoglucanase in which the activity inhibition by the lignin-derived aromatic compound was significantly reduced.
  • the present invention has the following configuration.
  • an amino acid sequence of an endoglucanase derived from a thermophilic bacterium an amino acid sequence in which the amino acid residue corresponding to the 273th tryptophan of the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid selected from other than an aromatic amino acid A mutant endoglucanase comprising.
  • the amino acid sequence of an endoglucanase derived from a thermophilic bacterium is as follows: (A) an amino acid sequence represented by SEQ ID NO: 1, 7, 13, 19, 25, 31 or 37, which encodes a protein having endoglucanase activity; (B) an amino acid sequence in which one to several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1, 7, 13, 19, 25, 31 or 37, and the endoglucanase activity Or (c) an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 1, 7, 13, 19, 25, 31 or 37, An amino acid sequence encoding a protein having glucanase activity; The mutant endoglucanase according to [1], comprising any amino acid sequence of [1].
  • [4] The mutant endoglucanase according to any one of [1] to [3], which comprises the amino acid sequence represented by SEQ ID NO: 2, 8, 14, 20, 26, 32 or 38.
  • [7] An expression vector comprising the DNA of [5] or [6].
  • [8] A transformed cell produced by transformation using the expression vector of [7].
  • a method for producing a mutant endoglucanase comprising the steps of (1) culturing the transformed cell of [8]; and (2) purifying the mutant endoglucanase produced by the transformed cell.
  • a composition for degrading biomass comprising a mutant endoglucanase according to any one of [1] to [4] and / or a processed product of transformed cells according to [8].
  • a method for producing a sugar liquid from cellulose-derived biomass which comprises adding the composition for biomass decomposition of [10] to a cellulose-containing biomass suspension and hydrolyzing the suspension.
  • the activity inhibition by the lignin-derived aromatic compound is greatly reduced. Therefore, when hydrolyzing cellulose, especially cellulosic biomass containing lignin to produce a sugar solution, lignocellulose can be decomposed with high efficiency. Can be manufactured.
  • Example 1 it is a figure which shows the alignment of the Pyrococcus holicosi origin endoglucanase (EGPh) of a sequence number 1, and a thermophilic bacterium-derived endoglucanase.
  • EGPh Pyrococcus holicosi origin endoglucanase
  • the tryptophan at position 273 in SEQ ID NO: 1 is underlined.
  • the present invention relates to a mutant endoglucanase in which the activity inhibition by the lignin-derived aromatic compound is greatly reduced as compared with the parent endoglucanase.
  • the lignin-derived aromatic compound is obtained by decomposing an aromatic compound generally referred to as monolignol as a lignin precursor, an aromatic compound present in the biosynthetic pathway, and cellulosic biomass.
  • an aromatic compound generally referred to as monolignol as a lignin precursor
  • an aromatic compound present in the biosynthetic pathway an aromatic compound present in the biosynthetic pathway
  • cellulosic biomass As long as it is a thing, it will not specifically limit, One or more types of mixtures may be sufficient.
  • Examples of the aromatic compound referred to as monolignol and the aromatic compound present in the biosynthetic pathway include coniferyl alcohol, sinapil alcohol, p-coumaryl alcohol, phenylalanine, cinnamic acid, p-coumaric acid, Caffeic acid, 5-hydroxyferulic acid, synaptic acid, p-coumaroylcoenzyme, caffeoylcoenzyme, feruloylcoenzyme, 5-hydroxyferuloylcoenzyme, sinapoylcoenzyme, p-coumarylaldehyde, cafe Illaldehyde, 5-hydroxyconiferyl aldehyde, sinapyraldehyde, caffeyl alcohol, 5-hydroxyconiferyl alcohol, 5-dehydroshikimic acid, shikimic acid, shikimic acid-5-phosphate, 3-enolpyruvylshikimi 5-phosphate, chorismate, Purifen acid, phenylpyru
  • Examples of those obtained by decomposing cellulosic biomass include syringaldehyde, p-hydroxybenzaldehyde, 5-formylvanillin, vanillic acid, syringic acid, 5-formylvanillic acid, 5-carboxyvanillin, acetoguaiacon, Guaiacol, vanillyl alcohol, dihydroconiferyl alcohol, syringaldehyde, 5-hydroxylmethylvanillin, 1-guayacyl-1-buten-3-one, p-methoxyazobenzene, benzoic acid, p-hydroxybenzoic acid, o-phthal Acid, terephthalic acid, isophthalic acid, trimethyl gallic acid, vanilloyl formic acid, hemimellitic acid, trimellitic acid, isohemipic acid, trimeditic acid, plenitic acid, pyromellitic acid, merophanic acid, benzenepentacarboxylic acid, Zenhex
  • “endoglucanase” is an enzyme that hydrolyzes ⁇ -1,4-glycosyl bonds such as cellulose to produce glucose, cellobiose, cellooligosaccharide, and the like.
  • the enzyme group attributed to endoglucanase is described as EC number: EC 3.2.1.4, in the present invention, the protein having the endoglucanase activity is also endotoxin although it is not attributed to endoglucanase in the EC number. It is assumed that it is contained in glucanase.
  • xylanase, xyloglucanase, mannanase, chitinase, chitosanase, galactanase, etc. are mentioned.
  • parent endoglucanase is an endoglucanase having an amino acid sequence before introducing a mutation, and exhibits the endoglucanase activity.
  • parent endoglucanase may be described as “wild type”. In this case, the descriptions “parent endoglucanase” and “wild type” are used interchangeably.
  • the “parent endoglucanase” is preferably derived from a thermophilic bacterium.
  • thermophilic bacterium is a general term for a group of microorganisms that can grow at 50 ° C. or higher, and the hyperthermophilic bacterium particularly refers to a group of microorganisms that can grow at 80 ° C. or higher.
  • thermophilic bacterium include Pyrococcus, Ignisphaera, Staphylothermus, Acidthermus, Spirochaeta, Sulfomoplasma, and Sulfolobus plasma (Thermoplasma), Caldivira (Caldivirga), Thermosphaera (Thermophaera), Picophyllus (Picophilus), Ferbidobacterium (Ferbidobacterium), etc. can be illustrated.
  • Thermophilic bacterium-derived endoglucanases are known, for example, registered as AAQ31833 in GenBank and the like, and in the present invention, these can be used as “parent endoglucanases”.
  • the parent endoglucanase comprises the amino acid sequence shown in SEQ ID NO: 1, 7, 13, 19, 25, 31 or 37.
  • the parent endoglucanase has a deletion, substitution, addition or insertion of one or more or one or several amino acids in the amino acid sequence represented by SEQ ID NO: 1, 7, 13, 19, 25, 31 or 37.
  • a protein having endoglucanase activity is not particularly limited, but is, for example, within 10 pieces, more preferably within 5 pieces, particularly preferably within 4 pieces, or 1 piece or 2 pieces.
  • the parent endoglucanase includes an amino acid sequence represented by SEQ ID NO: 1, 7, 13, 19, 25, 31 or 37 and BLAST (Basic Local Alignment Search the National Center for Biologics Information) (USA) National Biological Information Center Basic Local Alignment Search Tool)) etc. (eg default or default parameters) amino acids having 90%, 95%, 99% or more identity
  • BLAST Basic Local Alignment Search the National Center for Biologics Information
  • a protein comprising a sequence, preferably consisting of the amino acid sequence and having endoglucanase activity is also included.
  • identity refers to identical amino acids and similarities to all overlapping amino acid residues in an optimal alignment when two amino acid sequences are aligned with or without introducing a gap. It means the percentage of amino acid residues.
  • the identity can be determined using methods well known to those skilled in the art, sequence analysis software, and the like (for example, known algorithms such as BLAST and FASTA).
  • Endoglucanase activity is as defined above, and the activity is measured by adding an enzyme solution to a substrate solution of phosphate-swelled cellulose dissolved in, for example, 50 mM diacetate-sodium acetate buffer (pH 5.2). After the reaction at 30 to 85 ° C. for 1 hour, the reaction is stopped by changing the pH if necessary, and then the glucose concentration in the reaction solution is quantified using a glucose quantification kit.
  • the “mutant endoglucanase” in the present invention is a substitution of an amino acid residue corresponding to the 273th tryptophan of the amino acid sequence of SEQ ID NO: 1 with an amino acid selected from other than an aromatic amino acid in the amino acid sequence of the parent endoglucanase. And a protein having endoglucanase activity.
  • the present inventors have analyzed the amino acid sequence of the parent endoglucanase, that is, the amino acid sequence represented by SEQ ID NO: 1 (19 amino acid sequences represented by SEQ ID NO: 1).
  • the 273th tryptophan located near the active site is hydrophobic with coniferyl aldehyde, which comprises a total of 73 aromatic amino acid residues, including 20 tryptophans, 20 phenylalanines, 11 histidines, 23 tylosins) It was clarified that an interaction was formed.
  • this amino acid forms a hydrophobic interaction with the lignin-derived aromatic compound in the vicinity of the active site, and is found to be strongly involved in inhibiting the hydrolysis reaction of cellulose, which is a substrate for endoglucanase. It was.
  • the purpose of introducing mutations into endoglucanase in the present invention is to destroy this hydrophobic interaction involved in activity inhibition, and as a result, uptake of lignin-derived aromatic compounds in the vicinity of the active site is suppressed. is there.
  • amino acid corresponding to the 273th tryptophan of the amino acid sequence of SEQ ID NO: 1 is derived from the thermophilic bacterium when the three-dimensional structure of the amino acid sequence of the parent endoglucanase and the amino acid sequence of SEQ ID NO: 1 is compared.
  • amino acid sequence of endoglucanase it means an amino acid that is present at the same position as the 273th tryptophan in the amino acid sequence of SEQ ID NO: 1 and is involved in the formation of a hydrophobic interaction with the lignin-derived aromatic compound.
  • the amino acid species of “amino acid corresponding to the 273th tryptophan of the amino acid sequence of SEQ ID NO: 1” is preferably tryptophan.
  • the method for determining “the amino acid corresponding to the 273th tryptophan of the amino acid sequence of SEQ ID NO: 1” can be carried out by the following procedures 1) to 3).
  • the starting methionine is defined as position 1 in the amino acid sequence of Pyrococcus horikoshii-derived endoglucanase (hereinafter referred to as “EGPh”) described in SEQ ID NO: 1.
  • EGPh Pyrococcus horikoshii-derived endoglucanase
  • positions 2, 3, 4. . . The tryptophan corresponding to the 273th is defined as the 273th tryptophan in SEQ ID NO: 1.
  • Procedure 2 Next, the amino acid corresponding to the 273th tryptophan of the amino acid sequence represented by SEQ ID NO: 1 in the amino acid sequence of the parent endoglucanase is determined.
  • the position of the corresponding amino acid can be determined by aligning the amino acid sequence of the parent endoglucanase, particularly the amino acid sequence near the active site, with the amino acid sequence of SEQ ID NO: 1. Such an operation is called amino acid sequence alignment.
  • the alignment tool many well-known software such as ClustalW is used, and default parameters are used.
  • a person skilled in the art can determine the position of the amino acid corresponding to the 273th tryptophan of the amino acid sequence represented by SEQ ID NO: 1 in the parent endoglucanase by alignment between amino acid sequences of different lengths.
  • the parent endoglucanase is accompanied by mutation such as amino acid deletion, addition, or insertion at a position other than the above-mentioned “amino acid corresponding to the 273th tryptophan of the amino acid sequence represented by SEQ ID NO: 1,” from the N-terminus
  • the counted position of “amino acid corresponding to the 273th tryptophan of the amino acid sequence represented by SEQ ID NO: 1” may not be the 273rd position. Even in such a case, the “amino acid corresponding to the 273th tryptophan of the amino acid sequence represented by SEQ ID NO: 1” determined by the above method is substituted with an amino acid other than the aromatic amino acid, and the mutant according to the present invention is used. Endoglucanase.
  • amino acid residues such as tryptophan, tylosin, phenylalanine and histidine
  • amino acid residues that can be substituted include lysine (Lys), arginine (Arg), histidine (His), glutamic acid (Glu), aspartic acid (Asp), valine (Val), isoleucine (Ile), threonine. (Thr), serine (Ser), cysteine (Cys), methionine (Met), glutamine (Gln), asparagine (Asn), glycine (Gly), leucine (Leu), preferably alanine (Ala).
  • amino acid corresponding to the 273th tryptophan of the amino acid sequence represented by SEQ ID NO: 1 as a result, it can be produced as a protein having endoglucanase activity.
  • the amino acid corresponding to the 273th tryptophan of the amino acid sequence represented may be artificially deleted.
  • the mutant ⁇ -glucosidase of the present invention comprises the amino acid sequence represented by SEQ ID NO: 2, 8, 14, 20, 26, 32, or 38.
  • the mutant ⁇ -glucosidase of the present invention can be produced using techniques known to those skilled in the art. For example, by producing a mutant gene encoding a mutant endoglucanase by introducing a mutation into the gene encoding the amino acid sequence of the parent endoglucanase and expressing the mutant gene using an appropriate host. Can do.
  • “gene” includes nucleic acids including DNA, RNA, and DNA / RNA hybrids.
  • a mutant gene encoding a mutant endoglucanase can be prepared by using a mutagenesis method known to those skilled in the art.
  • EGPh a mutant endoglucanase is produced using EGPh as a parent endoglucanase
  • the gene encoding EGPh is Pyrococcus horikoshi (Pyrococcus horikoshii, registration number JCM9974, JCM microbial strain catalog 7th edition, published in January 1999) ) Cells.
  • the parent endoglucanase gene is a microorganism that produces the endoglucanase protein (for example, Ignisphaela). ⁇ From Aggrephas aggregans, Staphylothermus hellenicus, Pyrococcus abyssi, etc. can do.
  • the gene encoding the parent endoglucanase can be obtained by isolating DNA from a microorganism having these endoglucanases according to a known method and amplifying the DNA by a technique such as PCR. For example, after Pyrococcus horikoshi culture, using BLAST search method, a gene that is similar to the endoglucanase sequence of Pyrococcus horikoshi from the gene sequence and shows this enzyme activity (for example, SEQ ID NO: 1) is subjected to PCR. Amplified and extracted by reaction.
  • a parental endoglucanase gene obtained from the above endoglucanase-producing bacterium is artificially mutated at a predetermined site to prepare a mutant endoglucanase gene.
  • the parent endoglucanase is substituted so that the amino acid corresponding to the 273th tryptophan of the amino acid sequence represented by SEQ ID NO: 1 is substituted. Artificially cause mutations.
  • a site-specific mutagenesis method for causing mutation at a target site of a gene it can be carried out by a conventional and commonly used PCR method.
  • a gene encoding the mutant endoglucanase prepared as described above is ligated downstream of a promoter in an appropriate expression vector using a restriction enzyme and DNA ligase, thereby producing an expression vector containing the gene.
  • expression vectors include bacterial plasmids, yeast plasmids, phage DNA (such as lambda phage), retrovirus, baculovirus, vaccinia virus, adenovirus and other viral DNA, SV40 derivatives, and other Agrobacterium as a vector for plant cells. Any other vector can be used as long as it can replicate and survive in the host cell. For example, when the host is E.
  • coli, pUC, pET, pBAD and the like can be exemplified.
  • the host is yeast
  • pPink-HC, pPink-LC, pPink ⁇ -HC, pPicZ, pPic ⁇ , pPic6, pPic6 ⁇ , pFLD1, pFLD1 ⁇ , pGAPZ, pGAPZ ⁇ , pPic9K, pPic9 and the like can be mentioned.
  • the promoter may be any promoter as long as it is appropriate for the host used for gene expression.
  • lac promoter Trp promoter, PL promoter, PR promoter and the like can be used.
  • Trp promoter Trp promoter
  • PL promoter PL promoter
  • PR promoter PR promoter
  • yeast AOX1 promoter, TEF1 promoter, ADE2 promoter, CYC1 promoter, GAL-L1 promoter and the like can be mentioned.
  • the host cells used in the present invention are preferably Escherichia coli, bacterial cells, yeast cells, fungal cells, insect cells, plant cells, animal cells and the like.
  • yeast cells include the genus Pichia, the genus Saccharomyces, and the genus Schizosaccharomyces.
  • fungal cells include Aspergillus and Trichoderma.
  • Insect cells include Sf9, plant cells include dicotyledonous plants, and animal cells include CHO, HeLa, HEK293, and the like.
  • Transformation or transfection can be performed by a known method such as a calcium phosphate method or an electroporation method.
  • the mutant endoglucanase of the present invention can be obtained by expressing the product in a host cell transformed or transfected as described above under the control of a promoter and recovering the product.
  • transformed or transfected host cells are propagated or grown to an appropriate cell density and then chemically induced means such as temperature shift or addition of isopropyl-1-thio- ⁇ -D-galactoside (IPTG)
  • IPTG isopropyl-1-thio- ⁇ -D-galactoside
  • mutant endoglucanase When the mutant endoglucanase is excreted extracellularly, it is directly from the medium, and when it is present extracellularly, physical means such as ultrasonic disruption or mechanical disruption, or chemicals such as cytolytic agents are used.
  • the mutant endoglucanase is purified after disrupting the cells.
  • Mutant endoglucanase can be obtained from recombinant cell culture medium by ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, reverse phase high performance liquid chromatography, affinity chromatography, gel filtration chromatography, electrophoresis, etc. The techniques can be combined and partially or fully purified.
  • the mutant endoglucanase of the present invention can significantly reduce the inhibition of activity by the lignin-derived aromatic compound as compared with the parent endoglucanase. Therefore, the mutant endoglucanase of the present invention is approximately 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold compared to the parent endoglucanase in the presence of the lignin-derived aromatic compound. Has an endoglucanase activity that is fold, 9, 10, 11, 12, 13, 14, 15, or more times.
  • the mutant endoglucanase of the present invention may be either purified or roughly purified.
  • the mutant endoglucanase of the present invention may be immobilized on a solid phase.
  • the solid phase include, but are not limited to, polyacrylamide gel, polystyrene resin, porous glass, and metal oxide.
  • a processed product of a cell transformed with a gene encoding the mutant endoglucanase can also be used as a roughly purified mutant endoglucanase.
  • the “processed product of transformed cells” includes transformed cells immobilized on a solid phase, killed and disrupted transformed cells, and those obtained by immobilizing them on a solid phase.
  • the mutant endoglucanase of the present invention can be used for hydrolysis of cellulose-containing biomass as an enzyme composition for biomass degradation by mixing with cellulase.
  • Cellulase as used herein is not particularly limited as long as it has an activity of decomposing cellulose, and may be one or more kinds of mixtures.
  • examples of such enzymes include cellulase, hemicellulase, cellobiohydrase, endoglucanase, exoglucanase, ⁇ -glucosidase, xylanase, mannanase, xyloglucanase, chitinase, chitosanase, galactanase and the like.
  • the cellulase is a filamentous fungus-derived cellulase.
  • Microorganisms that produce filamentous fungal cellulases include Trichoderma, Aspergillus, Cellulomonas, Clostridium, Streptomyces, Humikola, and Humikola. (Acremonium), Irpex genus (Irpex), Mucor genus (Mucor), Talaromyces genus (Talaromyces), and the like. In order to produce cellulase in the culture solution, these microorganisms may be used as they are as an unpurified filamentous fungus cellulase, or the culture solution is purified and formulated into a filamentous fungus cellulase mixture.
  • a cellulase preparation containing a substance other than an enzyme such as a protease inhibitor, a dispersant, a dissolution accelerator, and a stabilizer, is added. May be used as
  • the filamentous fungus-derived cellulase used in the present invention is preferably a Trichoderma-derived cellulase.
  • the Trichoderma-derived cellulase is not particularly limited as long as it has an activity of degrading cellulose, and may be a mixture of one or more kinds.
  • Examples of such enzymes include cellulase, hemicellulase, cellobiohydrase, endoglucanase, exoglucanase, ⁇ -glucosidase, xylanase, mannanase, xyloglucanase, chitinase, chitosanase, galactanase and the like.
  • Trichoderma reesei ATCC66589 Trichoderma reesei ATCC68589)
  • Trichoderma reesei QM9414 Trichoderma reesei QM9414
  • Trichoderma reesei QM9123 Trichoderma reesei QM9123 (Trichoderma reesei QM9414)
  • Trichoderma reesei QM9123 Trichoderma reesei QM9123
  • Trichoderma reesei QM9123 Trichoderma reesei QM9414
  • Trichoderma reesei PC3-7 Trichoderma reesei PC3-7
  • Trichoderma reesei CL-847 Trichoderma reesei CL-847
  • Trichoderma reesei MCG77 Trichoderma re sei MCG77
  • Trichoderma reesei MCG80 Trichoderma reesei M
  • the mutant endoglucanase obtained as described above can be used alone or in combination with cellulase for the treatment of foods, feeds, detergents, cellulose-containing fabrics, and the production of sugar liquid from cellulosic biomass.
  • the food and feed contain at least the mutant endoglucanase of the present invention and, if necessary, further contain other components.
  • the content of the mutant endoglucanase of the present invention in the food and feed is not particularly limited and can be appropriately selected depending on the purpose.
  • the said foodstuff and feed contain the variant endoglucanase of this invention, the cellulose etc. which are contained in foodstuff and feed can be decomposed
  • disassembled and digestion can be made efficient, for example.
  • the content of mutant endoglucanase in the detergent is not particularly limited and can be appropriately selected depending on the purpose. Moreover, there is no restriction
  • the method for treating a cellulose-containing fabric includes treating the cellulose-containing fabric with the mutant endoglucanase of the present invention (treatment step), and further includes other steps as necessary.
  • treatment step There is no restriction
  • variant endoglucanase of this invention in the said process process have no restriction
  • by treating the jeans with the method for treating a cellulose-containing fabric of the present invention for example, stone washing can be performed.
  • the cellulose-containing biomass in the present invention is not limited as long as it contains at least cellulose. Specifically, bagasse, corn stover, corn cob, switch glass, rice straw, wheat straw, tree, wood, waste building materials, newspaper, waste paper, pulp, and the like. These cellulose-containing biomass contains impurities such as polymer aromatic compounds lignin and hemicellulose, but as a pretreatment, lignin and hemicellulose were partially decomposed using acid, alkali, pressurized hot water, etc. Cellulose-containing biomass may be used as cellulose.
  • the cellulose-containing biomass suspension in the present invention contains the above-described cellulose-containing biomass at a solid content concentration of 0.1 to 30%.
  • a solvent used for suspension According to the objective, it can select suitably.
  • “addition” means adding a mutant endoglucanase, a processed product of transformed cells, cellulase, or the like to the cellulose-containing biomass suspension.
  • the addition amount is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.001 mg to 100 mg, more preferably 0.01 to 10 mg, and more preferably 0 to 1 g of the cellulose-containing biomass. .1 to 1 mg is particularly preferred.
  • the temperature in the enzyme treatment of the cellulose-containing biomass suspension in the production of sugar liquid is not particularly limited, and the reaction temperature is preferably 30 to 100 ° C, more preferably 40 to 90 ° C, and particularly preferably 50 to 80 ° C.
  • the treatment pH is not particularly limited and is preferably pH 2 to 8, more preferably pH 3 to 7, and particularly preferably pH 4 to 6.
  • the cellulose-containing biomass solid content concentration is preferably 0.1 to 30%.
  • This enzyme treatment may be performed batchwise or continuously. Since the hydrolyzate obtained by such an enzyme treatment contains monosaccharide components such as glucose and xylose, it can be used as a raw sugar such as ethanol and lactic acid.
  • thermophilic bacterium-derived endoglucanase Determination of the 273rd amino acid residue in thermophilic bacterium-derived endoglucanase
  • a BLAST search was performed.
  • Protein BLAST was used with SEQ ID NO: 1 as a query.
  • SEQ ID NO: 1 As a result, as an endoglucanase derived from a thermophilic bacterium having 75% or more identity with EGPh, Ignisphaera aggregans endoglucanase 1 (EGIa1) described in SEQ ID NO: 7 and Ignisphafa described in SEQ ID NO: 13 Endoglucanase 2 (EGIa2) derived from Ignisphaera aggregans, Staphylothermus helenicus described in SEQ ID NO: 19, Endoglucanase (EGSh) derived from Staphyloceramus pycoccy P.
  • EGIa1 Ignisphaera aggregans endoglucanase 1
  • Ignisphafa described in SEQ ID NO: 13
  • Endoglucanase 2 derived from Ignisphaera aggregans
  • Endoglucanase (EGPa), Acidthermus cellulolytics described in SEQ ID NO: 31 (Acidth) RMUs cellulolyticus) derived endoglucanase (EGAc), spirochete thermophila SEQ ID NO: 37, wherein (Spirochaeta thermophila) derived endoglucanase (EGST) was confirmed to be applicable.
  • the prepared vectors pET-EGPh, EGIa1, EGIa2, EGSh, EGPa, EGAc, and EGSt were isolated using a miniprep kit (Qiagen) and subjected to nucleotide sequence analysis.
  • pET-EGPh, EGIa1, EGIa2, EGSh, EGPa, EGAc, and EGSt were transformed into the E. coli BL21 (DE3) pLysS strain for expression to produce a BL21-PfuBGL strain.
  • BL21-PfuBGL strain was inoculated into 10 mL of ampicillin-containing LB medium, and cultured with shaking (preculture) at 37 ° C. overnight.
  • the obtained cell-free extract was incubated at 85 ° C. for 15 minutes to aggregate and precipitate proteins derived from E. coli other than the endoglucanase.
  • the precipitate was removed by centrifugation, and the supernatant was dialyzed against 50 mM acetate buffer (pH 5.0) using a regenerated cellulose dialysis membrane (Spectrum Laboratories) having a fractional molecular weight of 10,000.
  • the obtained protein solution was used as wild type EGPh, EGIa1, EGIa2, EGSh, EGPa, EGAc, EGSt.
  • Example 2 Preparation of mutant endoglucanase
  • the mutant endoglucanase of the present invention was prepared by the following method using the primer pairs shown in Table 1.
  • a mutant EGPh (SEQ ID NO: 2) is prepared by site mutation using the oligonucleotides shown in the nucleotide sequences of SEQ ID NOs: 5 and 6 did.
  • Example 3 Phosphate-swelling cellulose-decomposing activity of mutants
  • the phosphate-swelling cellulose-degrading activities of the mutant obtained in Example 2 and the parent endoglucanase prepared in Reference Example 1 were compared in the following experiment.
  • the enzymes prepared in Reference Example 1 and Example 2 were added at a final concentration of 0.5 ⁇ M, respectively, and the enzyme reaction was performed at 50 ° C. for 1 hour. I did it.
  • the glucose concentration (g / L) produced by the parent endoglucanase under the above reaction conditions is defined as 100%, and the phosphate-swelling cellulose degradation activity in each mutant is shown in Table 2 as relative values.
  • Example 4 Inhibition experiment 1 with lignin-derived aromatic compound 1
  • the degradation activity of phosphate-swollen cellulose of wild type and mutant endoglucanase in the presence of coniferyl aldehyde was measured.
  • coniferyl aldehyde Sigma Aldrich
  • Reference Example 1 After the enzyme prepared in Example 2 was added at a final concentration of 0.5 ⁇ M, an enzyme reaction was performed at 50 ° C. for 1 hour.
  • the glucose concentration (g / L) produced by the parent endoglucanase at an added concentration of 0 mM is defined as 100%, and the phosphate-swelling cellulolytic activity in each mutant is shown in Table 3 as relative values.
  • Example 5 Inhibition experiment 2 with aromatic compound derived from lignin
  • vanillin the degradation activity of phosphate-swollen cellulose of wild type and mutant endoglucanase was measured.
  • vanillin Sigma Aldrich
  • Reference Example 1 and Example respectively After the enzyme prepared in 2 was added at a final concentration of 0.5 ⁇ M, the enzyme reaction was performed at 50 ° C. for 1 hour.
  • the glucose concentration (g / L) produced by the parent endoglucanase at an added concentration of 0 mM is defined as 100%, and the phosphate-swelling cellulolytic activity in each mutant is shown in Table 4 as relative values.
  • lignocellulose 1 (ammonia treatment) Rice straw was used as the cellulose. The cellulose was charged into a small reactor (TVS-N2 30 ml, pressure-resistant glass industry) and cooled with liquid nitrogen. Ammonia gas was flowed into the reactor, and the sample was completely immersed in liquid ammonia. The reactor lid was closed and left at room temperature for about 15 minutes. Subsequently, it processed in the 150 degreeC oil bath for 1 hour. After the treatment, the reactor was taken out from the oil bath, and immediately after ammonia gas leaked in the fume hood, the reactor was further evacuated to 10 Pa and dried. This was used as lignocellulose 1 in the following examples.
  • lignocellulose 2 (dilute sulfuric acid treatment) Rice straw was used as the cellulose. Cellulose was immersed in a 1% sulfuric acid aqueous solution and autoclaved (manufactured by Nitto Koatsu) at 150 ° C. for 30 minutes. After the treatment, solid-liquid separation was performed to separate into a sulfuric acid aqueous solution (hereinafter, dilute sulfuric acid treatment liquid) and sulfuric acid-treated cellulose. Next, the mixture was stirred and mixed with sulfuric acid-treated cellulose and a dilute sulfuric acid treatment solution so that the solid content concentration was 10% by weight, and then the pH was adjusted to around 5 with sodium hydroxide. This was used as lignocellulose 2 in the following examples.
  • lignocellulose 3 (hydrothermal treatment) Rice straw was used as the cellulose. The cellulose was immersed in water and autoclaved (manufactured by Nitto Koatsu Co., Ltd.) at 180 ° C. for 20 minutes while stirring. The pressure at that time was 10 MPa. After the treatment, the solution component (hereinafter, hydrothermal treatment liquid) and the treated biomass component were subjected to solid-liquid separation using centrifugation (3000 G). This treated biomass component was used as lignocellulose 3 in the following examples.
  • Example 6 Saccharification of lignocellulose using an enzyme composition comprising a cellulase mixture derived from a filamentous fungus and a mutant endoglucanase 1 The change in the amount of glucose produced when the enzyme composition was allowed to act on a lignocellulose substrate was compared.
  • Trichoderma reesei-derived cellulase (cell crust, Sigma) was used as the filamentous fungus-derived cellulase mixture.
  • the mutant endoglucanase prepared in Example 2 and the wild type endoglucanase prepared in Reference Example 1 were used. Enzyme addition amounts are cellulase 1.0 mg / mL, endoglucanase 0.1 mg / mL (1/10 amount of cellulase).
  • Tables 6, 7 and 8 compare the glucose concentration (g / L) produced from lignocellulose 1, 2, 3 24 hours after the reaction, respectively.
  • Trichoderma-derived cellulase was prepared by the following method.
  • Trichoderma reesei ATCC 66589 spores were inoculated into this preculture medium so as to be 1 ⁇ 10 7 cells / ml medium, and cultured with shaking at 28 ° C. for 72 hours at 180 rpm. (Shaking device: BIO-SHAKER BR-40LF manufactured by TAITEC).
  • Trichoderma reesei ATCC 66589 Tricoderderma reesei pre-cultured in a liquid medium by the aforementioned method in advance. 250 ml of ATCC 66589) was inoculated. Thereafter, the cells were cultured at 28 ° C. for 96 hours at 300 rpm and an aeration rate of 1 vvm.
  • Example 7 Saccharification of lignocellulose using an enzyme composition comprising a cellulase mixture derived from a filamentous fungus and a mutant endoglucanase 2 Using the lignocellulose 1 to 3 prepared in Reference Example 3 as a substrate, the Trichoderma reesei culture solution prepared in Reference Example 4 was used as a cellulase-derived cellulase mixture, the enzyme addition amount was 1.0 mg / mL cellulase, ⁇ -glucosidase Lignocellulose 1-3 in the same manner as in Example 6 except that 0.1 mg / mL (1/10 amount of cellulase) and ⁇ -glucosidase (Novozyme 188) 0.01 mg / mL (1/100 amount of cellulase) were used. The hydrolysis of was carried out.
  • Tables 9, 10 and 11 compare the glucose concentrations (g / L) produced from lignocellulose 1, 2 and 3 after 24 hours of reaction, respectively.
  • Comparative Example 1 Production of Mutant Endoglucanase As a comparative example, a mutant in which the 273th tryptophan was substituted with another aromatic amino acid was produced using the primers shown in Table 12.
  • EGPh (W273Y) (273th tryptophan was converted to tyrosine using site mutation method using oligonucleotides shown in the nucleotide sequences of SEQ ID NOs: 43 and 44) To: SEQ ID NO: 49).
  • EGPh (W273F) (substituting tryptophan at position 73 with phenylalanine: SEQ ID NO: 50) and the oligonucleotides shown in SEQ ID NOs: 47 and 48 were used.
  • EGPh (W273H) 73th tryptophan was replaced with histidine: SEQ ID NO: 51) was prepared.
  • Comparative Example 2 Phosphate-swelling cellulose-degrading activity of mutant The activity of the mutant obtained in Comparative Example 1 was compared in the same manner as in Example 3. The glucose concentration (g / L) produced by the parent endoglucanase under the above reaction conditions is taken as 100%, and the phosphate-swelling cellulose degradation activity in each mutant is shown in Table 13 as relative values.
  • the mutant endoglucanase in the present invention can be used for the production of a sugar solution by dropping lignocellulose. Since the enzyme cost can be significantly reduced by the effect of improving the lignocellulose decomposition efficiency, it is very useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 リグニン由来の芳香族化合物による活性阻害が低減されたエンドグルカナーゼを提供する。 野生型の好熱性菌由来エンドグルカナーゼのアミノ酸配列における位置273のトリプトファンが、芳香族アミノ酸以外のアミノ酸に置換されたエンドグルカナーゼ。

Description

変異型エンドグルカナーゼ
 本発明は、新規な変異型エンドグルカナーゼに関する。
 近年、化石資源枯渇や地球温暖化といった問題を受け、再生可能且つカーボンニュートラルな資源であるセルロースからエタノールや化成品原料を製造することが強く望まれている。
 セルロースは、草本系植物、木本系植物中に多く含まれ、これら植物を総称してセルロース系バイオマスと呼ぶ。セルロース系バイオマスの細胞壁は主に、セルロース、ヘミセルロース、リグニンから構成されている。セルロースはグルコース分子がβ-1,4結合した直鎖状多糖、ヘミセルロースはキシログルカン、キシラン、マンナンなどの多糖、リグニンは複雑な構造を持つ芳香族系の高分子化合物で、細胞壁中でセルロース、ヘミセルロースと絡み合って三次元網目構造を形成している。
 セルロース系バイオマスからエタノールや化成品原料を製造するには、微生物が発酵可能な単糖まで分解する「糖化」と呼ばれる工程が必要となる。代表的な糖化法として、酸処理法、酵素処理法が挙げられるが、酸処理法は大量の廃液を伴い環境負荷が高いことから、現在ではセルラーゼを利用して温和な条件で反応を行う酵素処理法が開発の主流となっている。
 セルラーゼはセルロース加水分解酵素の総称であり、基質特異性の違いからセロビオヒドロラーゼ、エンドグルカナーゼ、β―グルコシダーゼの3種に分類される。これらが協奏的に作用することでセルロースの加水分解は進行すると考えられている。
 セルラーゼを用いてセルロース系バイオマスを糖化する場合、基質阻害、生成物阻害、非特異的吸着など様々な要因により活性が阻害される。加えて、リグニン由来の芳香族化合物によりエンドグルカナーゼなどのセルラーゼは活性が阻害されてしまうことが知られている(非特許文献1~3)。しかしながらその阻害機構に関しては未だ不明である。
 好熱性菌、又は超好熱性菌が生産する酵素は、安定性が高く、高温条件においても長期間活性を保持することができるため、産業用酵素としての適用が検討されている。これまでにセルロース分解性好熱性菌、又は超好熱性菌が生産するセルラーゼに関しても研究が為されており、それらが有するセルラーゼ遺伝子の多くはエンドグルカナーゼをコードすることが明らかとなっている。
Vohra, R.Mら、Biotechnol. Bioeng., 22, 1497-1500(1980) Paul, S.Sら、Lett. Appl. Microbiol., 36, 377-381(2003) Ximenes, Eら、Enzym Microb Tech., 46,170-176(2010)
 これまで、セルラーゼを用いてセルロース系バイオマスを糖化する場合、リグニン由来の芳香族化合物によりエンドグルカナーゼなどのセルラーゼは活性が阻害されてしまうことが知られていた。本発明は、リグニン由来の芳香族化合物による活性阻害が大幅に低減された変異型エンドグルカナーゼを提供するものである。また、本発明は、セルロース、特にリグニンを含有したセルロース系バイオマスを加水分解して糖液を製造する方法において、分解効率の高い酵素組成物を用いる製造方法を提供するものである。
 本発明者らは、上記の目的を達成すべく、好熱性菌由来エンドグルカナーゼの特定箇所にアミノ酸変異を導入し、その機能が改良された性質を有する変異型エンドグルカナーゼの取得に成功した。詳細には、発明者らは、野生型である親エンドグルカナーゼの三次元構造に着目し、タンパク質結晶構造解析により、親エンドグルカナーゼとリグニン由来芳香族化合物の複合体構造形成に関わるアミノ酸を特定し、当該アミノ酸に対して選択的に変異を加えることにより、リグニン由来の芳香族化合物による活性阻害が大幅に低減されたエンドグルカナーゼの取得に成功した。
 すなわち、本発明は以下の構成からなる。
[1] 好熱性菌由来のエンドグルカナーゼのアミノ酸配列において、配列番号1のアミノ酸配列の273番目のトリプトファンに相当するアミノ酸残基が、芳香族アミノ酸以外から選ばれるアミノ酸に置換されているアミノ酸配列を含む、変異型エンドグルカナーゼ。
[2] 好熱性菌由来のエンドグルカナーゼのアミノ酸配列が、以下:
 (a)配列番号1、7、13、19、25、31または37で示されるアミノ酸配列であって、エンドグルカナーゼ活性を有するタンパク質をコードするアミノ酸配列; 
 (b)配列番号1、7、13、19、25、31または37で示されるアミノ酸配列において、1から数個のアミノ酸が欠失、置換、または付加されたアミノ酸配列であって、エンドグルカナーゼ活性を有するタンパク質をコードするアミノ酸配列;あるいは
 (c)配列番号1、7、13、19、25、31または37で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列であって、エンドグルカナーゼ活性を有するタンパク質をコードするアミノ酸配列、
のいずれかのアミノ酸配列を含む、[1]の変異型エンドグルカナーゼ。
[3] 配列番号1のアミノ酸配列の273番目のトリプトファンに相当するアミノ酸残基がアラニンに置換されている、[1]または[2]の変異型エンドグルカナーゼ。
[4] 配列番号2、8、14、20、26、32または38で示されるアミノ酸配列を含む、[1]~[3]のいずれかの変異型エンドグルカナーゼ。
[5] [1]~[4]のいずれかの変異型エンドグルカナーゼをコードするDNA。
[6] 配列番号4、10、16、22、28、34または40で示される塩基配列を含む、[5]のDNA。
[7] [5]または[6]のDNAを含む、発現ベクター。
[8] [7]の発現ベクターを用いた形質転換により作製された、形質転換細胞。
[9] (1)[8]の形質転換細胞を培養する工程;および
 (2)該形質転換細胞により生産された変異型エンドグルカナーゼを精製する工程を含む、変異型エンドグルカナーゼの製造方法。
[10] [1]~[4]のいずれかの変異型エンドグルカナーゼおよび/または[8]の形質転換細胞の処理物を含む、バイオマス分解用組成物。
[11] セルロース含有バイオマス懸濁液に、[10]のバイオマス分解用組成物を添加して加水分解することを含む、セルロース由来バイオマスより糖液を製造する方法。
[12] さらに、糸状菌由来セルラーゼを添加することを含む、[11]の方法。
 本明細書は本願の優先権の基礎である日本国特許出願2011-193279号の明細書および/または図面に記載される内容を包含する。
 本発明の変異型エンドグルカナーゼは、リグニン由来の芳香族化合物による活性阻害が大幅に低減されている。そのため、セルロース、特にリグニンを含有したセルロース系バイオマスを加水分解して糖液を製造するにあたり、リグノセルロースを高効率で分解することが可能なため、酵素組成物として用いることにより効率よく糖液を製造することができる。
実施例1における、配列番号1のパイロコッカス・ホリコシ由来エンドグルカナーゼ(EGPh)と好熱性菌由来エンドグルカナーゼのアラインメントを示す図である。配列番号1における位置273のトリプトファンを下線で示した。 図1-1の続き 図1-2の続き 図1-3の続き
 以下に、本発明を詳細に説明する。
 本発明は、リグニン由来の芳香族化合物による活性阻害が、親エンドグルカナーゼと比較して、大幅に低減されている変異型エンドグルカナーゼに関する。
 本明細書においてリグニン由来の芳香族化合物とは、リグニンの前駆物質で一般にモノリグノールと称される芳香族化合物、およびその生合成経路に存在する芳香族化合物、およびセルロース系バイオマスを分解して得られるものであれば特に限定されず、一種類以上の混合物であってもよい。モノリグノールと称される芳香族化合物、およびその生合成経路に存在する芳香族化合物としては、例えば、コニフェリルアルコール、シナピルアルコール、p-クマリルアルコール、フェニルアラニン、ケイ皮酸、p-クマル酸、カフェー酸、5-ヒドロキシフェルラ酸、シナップ酸、p-クマロイルコエンザイムエー、カフェオイルコエンザイムエー、フェルロイルコエンザイムエー、5-ヒドロキシフェルロイルコエンザイムエー、シナポイルコエンザイムエー、p-クマリルアルデヒド、カフェイルアルデヒド、5-ヒドロキシコニフェリルアルデヒド、シナピルアルデヒド、カフェイルアルコール、5-ヒドロキシコニフェリルアルコール、5-デヒドロシキミ酸、シキミ酸、シキミ酸-5-リン酸、3-エノールピルビルシキミ酸-5-リン酸、コリスミン酸、プリフェン酸、フェニルピルビン酸、p-ヒドロキシフェニルピルビン酸、チロシン、シナップアルデヒド、などが挙げられる。セルロース系バイオマスを分解して得られるものとしては、例えば、シリンガアルデヒド、p-ヒドロキシベンズアルデヒド、5-ホルミルバニリン、バニリン酸、シリンガ酸、5-ホルミルバニリン酸、5-カルボキシバニリン、アセトグアイアコン、グアイアコール、バニリルアルコール、ジヒドロコニフェリルアルコール、シリンガアルデヒド、5-ヒドロキシルメチルバニリン、1-グアイアシル-1-ブテン-3-オン、p-メトキシアゾベンゼン、安息香酸、p-ヒドロキシ安息香酸、o-フタール酸、テレフタール酸、イソフタール酸、トリメチルガルス酸、バニロイルギ酸、ヘミメリット酸、トリメリット酸、イソヘミピン酸、トリメジチン酸、プレニット酸、ピロメリット酸、メロファン酸、ベンゼンペンタカルボン酸、ベンゼンヘキサカルボン酸、デヒドロジバニリン酸、4,4´-ジヒドロキシ-3,3´-ジメトキシカルコン、4,4´-ジヒドロキシ-3,3´-ジメトキシベンジル、ジグアイアシルグリコール酸、4,4´-ジヒドロキシ-3,3´-ジメトキシベンゾフェノン、ジホルミルジヒドロキシ-ジメトキシ-ジエチルスチルベン、ベラトルム酸、イソヘミピン酸、メタヘミピン酸、ヘミピン酸、ベンゼンポリカルボン酸、シナピン酸、フルフラール、ヒドロキシメチルフルフラール、フェルラアミド、クマルアミド、などが挙げられ、好ましくはフェルラ酸、バニリン、コニフェリルアルデヒドが挙げられる。
 本明細書において、「エンドグルカナーゼ」は、セルロースなどのβ-1,4-グリコシル結合を加水分解して、グルコース、セロビオース、セロオリゴ糖などを生成する酵素である。EC番号:EC 3.2.1.4として、エンドグルカナーゼに帰属される酵素群が記載されているが、本発明ではEC番号においてエンドグルカナーゼに帰属されないものの、上記エンドグルカナーゼ活性を有するタンパク質もエンドグルカナーゼに含まれるとする。例えば、キシラナーゼ、キシログルカナーゼ、マンナナーゼ、キチナーゼ、キトサナーゼ、ガラクタナーゼ、などが挙げられる。
 本明細書において、親エンドグルカナーゼとは、変異を導入する前のアミノ酸配列を有するエンドグルカナーゼであり、上記エンドグルカナーゼ活性を示すものである。本明細書において、「親エンドグルカナーゼ」を「野生型」と記載する場合がある。この場合、「親エンドグルカナーゼ」および「野生型」なる記載は互換的に使用される。本発明において、「親エンドグルカナーゼ」は好熱性菌由来であることが好ましい。
 本明細書における好熱性菌とは、50℃以上で生育可能な微生物群の総称であり、また特に超好熱性菌とは80℃以上で生育可能な微生物群のことを指す。該好熱性菌としてはパイロコッカス属(Pyrococcus)、イグニスファエラ属(Ignisphaera)、スタフィロサーマス属(Staphylothermus)、アシドサーマス属(Acidthermus)、スピロヘータ属(Spirochaeta)、スルホロバス属(Sulfolobus)、サーモプラズマ属(Thermoplasma)、カルディバーガ属(Caldivirga)、サーモスファエラ属(Thermosphaera)、ピクロフィラス(Picrophilus)属、フェルビドバクテリウム属(Fervidobacterium)、などを例示することができる。
 好熱性菌由来エンドグルカナーゼは公知であり、例えばGenBankなどにAAQ31833などとして登録されており、本発明においてはこれらを、「親エンドグルカナーゼ」として利用することができる。本発明において好ましくは、親エンドグルカナーゼは配列番号1、7、13、19、25、31または37で示されるアミノ酸配列を含む。当該親エンドグルカナーゼには、配列番号1、7、13、19、25、31または37で示されるアミノ酸配列において1もしくは複数個または1もしくは数個のアミノ酸の欠失、置換、付加又は挿入を有し、かつエンドグルカナーゼ活性を有するタンパク質も含まれる。ここで「1もしくは数個」の範囲は特には限定されないが、例えば、10個以内、さらに好ましくは5個以内、特に好ましくは4個以内、あるいは1個又は2個である。
 また、本発明において、親エンドグルカナーゼには、配列番号1、7、13、19、25、31または37で示されるアミノ酸配列とBLAST(Basic Local Alignment Search Tool at the National Center for Biological Information)(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、90%、95%、99%、またはそれ以上の同一性を有するアミノ酸配列を含み、好ましくは当該アミノ酸列からなり、かつエンドグルカナーゼ活性を有するタンパク質も含まれる。
 ここで、「同一性」とは、2つのアミノ酸配列にギャップを導入して、またはギャップを導入しないで整列させた場合の、最適なアライメントにおいて、オーバーラップする全アミノ酸残基に対する同一アミノ酸および類似アミノ酸残基の割合(パーセンテージ)を意味する。同一性は、当業者に周知の方法、配列解析ソフトウェア等(例えばBLAST、FASTAなどの公知のアルゴリズム)を使用して求めることができる。「エンドグルカナーゼ活性」とは上に定義したとおりであり、当該活性の測定は、例えば50mM 酢酸-酢酸ナトリウム緩衝液(pH5.2)に溶解したリン酸膨潤セルロースの基質溶液に酵素液を添加し、30~85℃で1時間反応後、必要によりpHを変化させるなどして反応を停止させた後、グルコース定量キットを用いて、反応液中のグルコース濃度を定量することによって行うことができる。
 本発明における「変異型エンドグルカナーゼ」とは、上記親エンドグルカナーゼのアミノ酸配列において、配列番号1のアミノ酸配列の273番目のトリプトファンに相当するアミノ酸残基が、芳香族アミノ酸以外から選ばれるアミノ酸に置換されており、かつエンドグルカナーゼ活性を有するタンパク質を意味する。
 下記実施例にて詳述するとおり、本発明者らは結晶構造解析により、親エンドグルカナーゼのアミノ酸配列、すなわち配列番号1で示されるアミノ酸配列において(配列番号1で示されるアミノ酸配列は、19個のトリプトファン、20個のフェニルアラニン、11個のヒスチジン、23個のタイロシン、という計73個の芳香族アミノ酸残を含んで成る)、活性部位近傍に位置する273番目のトリプトファンがコニフェリルアルデヒドと疎水性相互作用を形成していることを明らかにした。すなわち、このアミノ酸は活性部位近傍においてリグニン由来芳香族化合物と疎水性相互作用を形成しており、エンドグルカナーゼの基質であるセルロースの加水分解反応の阻害に強く関与しているアミノ酸であることがわかった。本発明におけるエンドグルカナーゼへの変異導入の目的は、活性阻害に関与するこの疎水性相互作用を破壊することにあり、その結果、活性部位近傍においてリグニン由来芳香族化合物の取り込みが抑制されることにある。
 ここで「配列番号1のアミノ酸配列の273番目のトリプトファンに相当するアミノ酸」とは、上記親エンドグルカナーゼのアミノ酸配列と配列番号1のアミノ酸配列の立体構造を比較した場合に、前記好熱性菌由来エンドグルカナーゼのアミノ酸配列において、配列番号1のアミノ酸配列における273番目のトリプトファンと同様の位置に存在し、リグニン由来芳香族化合物との疎水性相互作用の形成に関与しているアミノ酸を意味する。「配列番号1のアミノ酸配列の273番目のトリプトファンに相当するアミノ酸」のアミノ酸種は、トリプトファンであることが好ましい。
 「配列番号1のアミノ酸配列の273番目のトリプトファンに相当するアミノ酸」の決定方法としては、以下の手順1)~3)で実施することができる。
 手順1)配列番号1記載のPyrococcus horikoshii由来エンドグルカナーゼ(以下、「EGPh」と記載する)のアミノ酸配列において、開始メチオニンを位置1と定義する。以降のアミノ酸配列については、位置2、3、4...と順次番号付けをし、273番目に該当するトリプトファンを配列番号1における273番目のトリプトファンと定義する。
 手順2)次に、親エンドグルカナーゼのアミノ酸配列において配列番号1で表されるアミノ酸配列の273番目のトリプトファンに相当するアミノ酸を決定する。当該相当するアミノ酸の位置は、親エンドグルカナーゼのアミノ酸配列、特に活性部位近傍のアミノ酸配列を配列番号1のアミノ酸配列と整列させることによって明らかにすることができる。このような操作はアミノ酸配列のアラインメントと呼ばれる。アライメントツールとしては、ClustalWなどの多数の良く知られたソフトウェアを用い、デフォルトのパラメータを用いておこなう。当業者は異なる長さのアミノ酸配列の間で、アラインメントにより、親エンドグルカナーゼにおける配列番号1で表されるアミノ酸配列の273番目のトリプトファンに相当するアミノ酸の位置を明らかにすることができる。
 手順3)上記アライメント解析で、配列番号1で表されるアミノ酸の273番目のトリプトファンに相当する箇所に位置するアミノ酸を、上記親エンドグルカナーゼにおける上記「配列番号1で表されるアミノ酸配列の273番目のトリプトファンに相当するアミノ酸」とする。
 上記親エンドグルカナーゼにおいて、上記「配列番号1で表されるアミノ酸配列の273番目のトリプトファンに相当するアミノ酸」以外の位置にアミノ酸の欠失、付加、あるいは挿入などの変異を伴うときには、N末端からカウントした「配列番号1で表されるアミノ酸配列の273番目のトリプトファンに相当するアミノ酸」の位置が273番目ではない場合がある。このような場合においても、上記方法により決定された「配列番号1で表されるアミノ酸配列の273番目のトリプトファンに相当するアミノ酸」を芳香族アミノ酸以外のアミノ酸に置換して、本発明による変異型エンドグルカナーゼとする。
 本発明における、芳香族アミノ酸以外から選ばれるアミノ酸としては、トリプトファン、タイロシン、フェニルアラニン、ヒスチジンといった芳香族アミノ酸残基を除く任意のアミノ酸であればいずれも用いることができる。置換することができるアミノ酸残基としては、例えば、リジン(Lys)、アルギニン(Arg)、ヒスチジン(His)、グルタミン酸(Glu)、アスパラギン酸(Asp)、バリン(Val)、イソロイシン(Ile)、スレオニン(Thr)、セリン(Ser)、システイン(Cys)、メチオニン(Met)、グルタミン(Gln)、アスパラギン(Asn)、グリシン(Gly)、ロイシン(Leu)、好ましくはアラニン(Ala)が挙げられる。また、上記配列番号1で表されるアミノ酸配列の273番目のトリプトファンに相当するアミノ酸を人為的に欠失させた結果、エンドグルカナーゼ活性を保持したタンパク質として製造することができれば、当該配列番号1で表されるアミノ酸配列の273番目のトリプトファンに相当するアミノ酸を人為的に欠失させてもよいものとする。
 特に好ましくは、本発明の変異型βグルコシダーゼは、配列番号2、8、14、20、26、32、または38で示されるアミノ酸配列を含む。
 本発明の変異型βグルコシダーゼは当業者に公知である手法を用いて製造することができる。例えば、親エンドグルカナーゼのアミノ酸配列をコードする遺伝子に変異を導入することによって、変異型エンドグルカナーゼをコードする変異遺伝子を作製し、当該変異遺伝子を適当な宿主を用いて発現させることによって製造することができる。ここで「遺伝子」にはDNA、RNA、DNA/RNAハイブリッドを含む核酸が含まれる。
 変異型エンドグルカナーゼをコードする変異遺伝子は、当業者に公知である変異導入法を用いて作製することができる。
 親エンドグルカナーゼとして例えば、EGPhを用いて変異型エンドグルカナーゼを作製する場合、EGPhをコードする遺伝子はパイロコッカス・ホリコシ(Pyrococcus horikoshii、登録番号JCM9974、JCM微生物株カタログ第7版、1999年1月発行)の細胞からクローニングすることができる。
 またEGPhと立体構造が類似している他のエンドグルカナーゼを親エンドグルカナーゼとして、変異型エンドグルカナーゼを作製する場合、当該親エンドグルカナーゼ遺伝子は当該エンドグルカナーゼタンパク質を生産する微生物等(例えば、イグニスファエラ・アグレガンス(Ignisphaera aggregans)、スタフィロサーマス・ヘレニカス(Staphylothermus hellenicus)、パイロコッカス・アビシ(Pyrococcus abyssi)、アシドサーマス・セルロリティクス(Acidthermus cellulolyticus)、スピロヘータ・サーモフィラ(Spirochaeta thermophila)など)の細胞からクローニングすることができる。
 親エンドグルカナーゼをコードする遺伝子は、これらエンドグルカナーゼを保有する微生物より公知の方法に準じてDNAを単離し、PCR等の手法によってDNA増幅させることで取得することができる。例えば、パイロコッカス・ホリコシ培養後、BLAST探索法を使用して、遺伝子配列からパイロコッカス・ホリコシのエンドグルカナーゼ配列に類似し、本酵素活性を示すと思われる遺伝子(例えば配列番号1)を、PCR反応で増幅し抽出して得られる。
 上記のエンドグルカナーゼ産生菌から得られる親エンドグルカナーゼ遺伝子に対し、所定の部位に人為的に変異を起こさせ、変異型エンドグルカナーゼ遺伝子を調製する。リグニン由来の芳香族化合物による活性阻害が低減された変異型エンドグルカナーゼ遺伝子を調製する場合、上記配列番号1で表されるアミノ酸配列の273番目のトリプトファンに相当するアミノ酸を置換するように親エンドグルカナーゼに対して人為的に変異を起こさせる。
 遺伝子の目的部位に変異を起こす部位特異的変異導入法としては、従来の慣用的に用いられているPCR法によりおこなうことができる。
 上記のようにして調製した変異型エンドグルカナーゼをコードする遺伝子を、制限酵素およびDNAリガーゼを用いて、適当な発現ベクター中のプロモーター下流に連結することにより、該遺伝子を含む発現ベクターを製造することができる。発現ベクターとしては、細菌プラスミド、酵母プラスミド、ファージDNA(ラムダファージなど)、レトロウイルス、バキュロウイルス、ワクシニアウイルス、アデノウイルス等のウイルスDNA、SV40の誘導体など、植物細胞用のベクターとしてのアグロバクテリウムなどが挙げられるが、宿主細胞において複製および生存可能である限り他のいかなるベクターも用いることができる。例えば、宿主が大腸菌である場合、pUC、pET、pBADなどを例示することができる。また、宿主が酵母である場合、pPink-HC、pPink-LC、pPinkα-HC、pPicZ、pPicα、pPic6、pPic6α、pFLD1、pFLD1α、pGAPZ、pGAPZα、pPic9K、pPic9などが挙げられる。
 プロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。例えば、宿主が大腸菌である場合、lacプロモーター、Trpプロモーター、PLプロモーター、PRプロモーター等が、酵母である場合、AOX1プロモーター、TEF1プロモーター、ADE2プロモーター、CYC1プロモーター、GAL-L1プロモーターなどが挙げられる。
 本発明において用いる宿主細胞としては、大腸菌、バクテリア細胞、酵母細胞、真菌細胞、昆虫細胞、植物細胞、動物細胞などが好ましい。酵母細胞としては、例えば、ピキア属(Pichia)、サッカロマイセス属(Saccharomyces)、シゾサッカロマイセス属(Schizosaccharomyces)などが挙げられる。真菌細胞としては、アスペルギルス属(Aspergillus)、トリコデルマ属(Trichoderma)などが挙げられる。昆虫細胞としてはSf9など、植物細胞としては双子葉植物など、動物細胞としては、CHO、HeLa、HEK293などが挙げられる。
 形質転換または、トランスフェクションは、リン酸カルシウム法、電気穿孔法などの公知の方法で行うことができる。本発明の変異型エンドグルカナーゼは、上記のように形質転換またはトランスフェクトされた宿主細胞においてプロモーターの制御下にて発現させ、産生物を回収して得ることができる。発現に際しては、形質転換またはトランスフェクトされた宿主細胞を適切な細胞密度まで増殖または成長させた後、温度シフトまたはイソプロピル-1-チオ-β-D-ガラクトシド(IPTG)添加などの化学的誘発手段によってプロモーターを誘発させ、細胞をさらに一定期間培養する。
 変異型エンドグルカナーゼが細胞外に排出される場合には、培地から直接に、また細胞外に存在する場合には、超音波破砕や機械的破砕などの物理的手段もしくは細胞溶解剤などの化学的手段によって、細胞を破壊した後に変異型エンドグルカナーゼを精製する。変異型エンドグルカナーゼは、組換え細胞の培地から、硫酸アンモニウムもしくはエタノール沈殿、酸抽出、陰イオンもしくは陽イオン交換クロマトグラフィー、逆相高速液体クロマトグラフィー、アフィニティークロマトグラフィー、ゲルろ過クロマトグラフィー、電気泳動などの技術を組み合わせて、部分的にまたは完全に精製することができる。
 本発明の変異型エンドグルカナーゼは、親エンドグルカナーゼと比較して、リグニン由来の芳香族化合物による活性阻害を大幅に低減させることができる。したがって、本発明の変異型エンドグルカナーゼはリグニン由来の芳香族化合物の存在下にて、親エンドグルカナーゼと比較して、およそ2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、11倍、12倍、13倍、14倍、15倍またはそれ以上のエンドグルカナーゼ活性を有する。
 本発明の変異型エンドグルカナーゼは、精製されたものであっても、粗精製されたものであっても良い。
 また、本発明の変異型エンドグルカナーゼは、固相に固定化されていても良い。固相としては例えば、ポリアクリルアミドゲル、ポリスチレン樹脂、多孔性ガラス、金属酸化物などが挙げられる(特にこれらに限定されない)。本発明の変異型エンドグルカナーゼを固相に固定することによって、連続反復使用が可能となる点において有利である。
 さらに、上記変異型エンドグルカナーゼをコードする遺伝子を用いて形質転換した細胞の処理物も、粗精製された変異型エンドグルカナーゼとして利用することができる。当該「形質転換した細胞の処理物」には、固相に固定化した形質転換細胞、ならびに形質転換細胞の死菌、破砕物、およびそれらを固相に固定化したものなどが含まれる。
 本発明の変異型エンドグルカナーゼは、セルラーゼと混合することで、バイオマス分解用酵素組成物としてセルロース含有バイオマスの加水分解に使用することができる。ここでいうセルラーゼとは、セルロースを分解する活性を有する酵素であれば特に限定されず、一種類以上の混合物であってもよい。このような酵素としては、例えばセルラーゼ、ヘミセルラーゼ、セロビオハイドラーゼ、エンドグルカナーゼ、エキソグルカナーゼ、β―グルコシダーゼ、キシラナーゼ、マンナナーゼ、キシログルカナーゼ、キチナーゼ、キトサナーゼ、ガラクタナーゼなどが挙げられる。好ましくは、セルラーゼは糸状菌由来セルラーゼである。
 糸状菌セルラーゼを生産する微生物として、トリコデルマ属(Trichoderma)、アスペルギルス属(Aspergillus)、セルロモナス属(Cellulomonas)、クロストリジウム属(Clostridium)、ストレプトマイセス属(Streptomyces)、フミコラ属(Humicola)、アクレモニウム属(Acremonium)、イルペックス属(Irpex)、ムコール属(Mucor)、タラロマイセス属(Talaromyces)、などの微生物を挙げることができる。これら微生物は、培養液中にセルラーゼを産生するために、その培養液を未精製の糸状菌セルラーゼとしてそのまま使用してもよいし、また培養液を精製し、製剤化したものを糸状菌セルラーゼ混合物として使用してもよい。前記培養液より、糸状菌セルラーゼ混合物を精製し、製剤化したものとして使用する場合、プロテアーゼ阻害剤、分散剤、溶解促進剤、安定化剤など、酵素以外の物質を添加したものを、セルラーゼ製剤として使用してもよい。
 本発明で使用する糸状菌由来セルラーゼは、トリコデルマ属由来セルラーゼであることが好ましい。トリコデルマ属由来セルラーゼは、セルロースを分解する活性を有する酵素であれば特に限定されず、一種類以上の混合物であってもよい。このような酵素としては、例えばセルラーゼ、ヘミセルラーゼ、セロビオハイドラーゼ、エンドグルカナーゼ、エキソグルカナーゼ、β―グルコシダーゼ、キシラナーゼ、マンナナーゼ、キシログルカナーゼ、キチナーゼ、キトサナーゼ、ガラクタナーゼなどが挙げられる。こうしたトリコデルマ属のうち、より好ましくは、トリコデルマ・リーセイ(Trichoderma reesei)由来のセルラーゼ混合物である。トリコデルマ・リーセイ由来のセルラーゼ混合物としては、トリコデルマ・リーセイATCC66589(Trichoderma reesei ATCC68589)、トリコデルマ・リーセイQM9414(Trichoderma reesei QM9414)、トリコデルマ・リーセイQM9123(Trichoderma reesei QM9123)、トリコデルマ・リーセイRutC-30(Trichoderma reesei RutC-30)、トリコデルマ・リーセイPC3-7(Trichoderma reesei PC3-7)、トリコデルマ・リーセイCL-847(Trichoderma reesei CL-847)、トリコデルマ・リーセイMCG77(Trichoderma reesei MCG77)、トリコデルマ・リーセイMCG80(Trichoderma reesei MCG80)、トリコデルマ・ビリデQM9123(Trichoderma viride QM9123)に由来するセルラーゼ混合物が挙げられる。また、前記トリコデルマ属に由来し、変異剤あるいは紫外線照射などで変異処理を施し、セルラーゼ生産性が向上した変異株であってもよい。
 上記のようにして取得された変異型エンドグルカナーゼは、単独またはセルラーゼと組み合わせることで、食品、飼料、洗剤、セルロース含有織物の処理、セルロース系バイオマスからの糖液の製造、に用いることができる。
 前記食品、及び飼料は、本発明の変異型エンドグルカナーゼを少なくとも含み、必要に応じて更にその他の成分を含んでなる。前記食品、及び飼料における、本発明の変異型エンドグルカナーゼの含有量としては、特に制限はなく、目的に応じて適宜選択することができる。また、前記食品、及び飼料の製造方法としては、特に制限はなく、目的に応じて適宜選択することができる。また、前記食品、及び飼料は、本発明の変異型エンドグルカナーゼを含むため、例えば、食品、及び飼料に含まれるセルロースなどを分解することができ、消化を効率よくすることができる。
 前記洗剤における、変異型エンドグルカナーゼの含有量としては、特に制限はなく、目的に応じて適宜選択することができる。また、前記洗剤の製造方法としては、特に制限はなく、目的に応じて適宜選択することができる。前記洗剤は、本発明の変異型エンドグルカナーゼを含むため、例えば、洗浄対象物のセルロース繊維に詰まった汚れを効率よく取り除くことができる。
 前記セルロース含有織物の処理方法は、本発明の変異型エンドグルカナーゼを用いて、セルロース含有織物を処理すること(処理工程)を含み、必要に応じて更にその他の工程を含む。前記セルロース含有織物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジーンズが挙げられる。また、前記処理工程における、本発明の変異型エンドグルカナーゼの使用量、温度、時間などは、特に制限はなく、目的に応じて適宜選択することができる。例えば、本発明のセルロース含有織物の処理方法で、前記ジーンズを処理することで、例えば、ストーンウォッシング加工などを行うことができる。
 本発明におけるセルロース含有バイオマスとは、少なくともセルロースを含むものであれば限定されない。具体的には、バガス、コーンストーバー、コーンコブ、スイッチグラス、稲藁、麦藁、樹木、木材、廃建材、新聞紙、古紙、パルプなどである。これらセルロース含有バイオマスは、高分子芳香族化合物リグニンやヘミセルロースなどの不純物が含まれているが、前処理として、酸、アルカリ、加圧熱水などを用いて、リグニンやヘミセルロースを部分的に分解したセルロース含有バイオマスを、セルロースとして利用してもよい。
 本発明におけるセルロース含有バイオマス懸濁液とは、上述したセルロース含有バイオマスを固形分濃度0.1~30%で含むものである。懸濁に使用する溶媒としては特に制限はなく、目的に応じて適宜選択することができる。
 本発明でいう「添加」とは、変異型エンドグルカナーゼ、形質転換した細胞の処理物、セルラーゼなどを該セルロース含有バイオマス懸濁液に加えることを意味する。添加量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば前記セルロース含有バイオマス1gに対して、0.001mg~100mgが好ましく、0.01~10mgがより好ましく、0.1~1mgが特に好ましい。
 糖液の製造におけるセルロース含有バイオマス懸濁液の酵素処理における温度としては、特に制限はなく、反応温度30~100℃が好ましく、40~90℃がより好ましく、50~80℃が特に好ましい。処理pHとしては、特に制限はなく、pH2~8が好ましく、pH3~7がより好ましく、pH4~6が特に好ましい。セルロース含有バイオマス固形分濃度は、固形分濃度0.1~30%が好ましい。
 該範囲に設定することにより、本発明のバイオマス分解用酵素組成物の分解効率を最大限発揮することができる。この酵素処理は、バッチ式で行っても、連続式で行ってもよい。こうした酵素処理によって得られた加水分解物は、グルコース、キシロースなどの単糖成分を含むため、エタノール、乳酸などの原料糖として使用することが可能である。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
(実施例1)好熱性菌由来エンドグルカナーゼにおける273番目のアミノ酸残基の決定
 EGPhのアミノ酸配列と同一性の高い好熱性菌由来エンドグルカナーゼを探索するため、BLAST検索をおこなった。
 BLAST検索をおこなうため、配列番号1をクエリーとしてProtein BLASTを利用した。その結果、EGPhと75%以上の同一性を示す好熱性菌由来エンドグルカナーゼとして、配列番号7記載のイグニスファエラ・アグレガンス(Ignisphaera aggregans)由来エンドグルカナーゼ1(EGIa1)、配列番号13記載のイグニスファエラ・アグレガンス(Ignisphaera aggregans)由来エンドグルカナーゼ2(EGIa2)、配列番号19記載のスタフィロサーマス・ヘレニカス(Staphylothermus hellenicus)由来エンドグルカナーゼ(EGSh)、配列番号25記載のパイロコッカス・アビシ(Pyrococcus abyssi)由来エンドグルカナーゼ(EGPa)、配列番号31記載のアシドサーマス・セルロリティクス(Acidthermus cellulolyticus)由来エンドグルカナーゼ(EGAc)、配列番号37記載のスピロヘータ・サーモフィラ(Spirochaeta thermophila)由来エンドグルカナーゼ(EGSt)が該当することを確認した。
 EGPhと配列番号7、13、19、25、31、37記載の好熱性菌由来エンドグルカナーゼのアラインメントをおこなうため、当該業者によく知られたソフトウェアである、ClustalWを用いてアラインメントを実施した。その結果、配列番号1で表されるアミノ酸の位置273のトリプトファンと相同な箇所に位置するアミノ酸を、配列番号7、13、19、25、31、37記載の好熱性菌由来エンドグルカナーゼにおける位置273と決定し、図1-1~1-4に下線で示した。
(参考例1)親エンドグルカナーゼの調製
 EGPh、EGIa1、EGIa2、EGSh、EGPa、EGAc、EGSt遺伝子は、それぞれ配列番号1、7、13、19、25、31、37記載の遺伝子を全合成し、pET11dのNcoIおよびBamHIにDNA Ligation Kit<Mighty Mix>(タカラバイオ)を使用して連結し、JM109(タカラバイオ)に形質転換した。スクリーニングはアンピシリンを抗生物質として含むLB寒天培地を用いて行った。形質転換されたJM109株より、作製したベクターpET-EGPh、EGIa1、EGIa2、EGSh、EGPa、EGAc、EGStをミニプレップキット(キアゲン)により単離し、塩基配列解析を行った。pET-EGPh、EGIa1、EGIa2、EGSh、EGPa、EGAc、EGStは、発現用大腸菌BL21(DE3)pLysS株に形質転換し、BL21-PfuBGL株を作製した。BL21-PfuBGL株を、アンピシリン含有LB培地10mLに植菌し、37℃で一晩振とう培養(前培養)を行った。本培養として、アンピシリン含有LB培地1Lに、前培養で得られた菌体を植菌し、波長600 nmでの吸光度OD600が0.6となるまで振とう培養を行った。その後、最終濃度が0.5mMになるようにイソプロピル-1-チオ-β-D-ガラクトシド(IPTG)を加え、さらに25℃で一晩培養した。培養後、菌体を遠心分離により回収し、 50mM リン酸カリウム緩衝液(pH7.0)に再懸濁した。この溶液を氷冷しながら、超音波破砕を行い、その上清を無細胞抽出液として遠心分離により回収した。得られた無細胞抽出液を、85℃で15分保温し、該エンドグルカナーゼ以外の大腸菌に由来するタンパク質を凝集沈殿した。遠心分離により沈殿物を除去し、上清を分画分子量10000の再生セルロース製透析膜(スペクトラム・ラボラトリーズ製)を使用して、50mM 酢酸緩衝液(pH5.0)に透析した。得られたタンパク質溶液を、野生型のEGPh、EGIa1、EGIa2、EGSh、EGPa、EGAc、EGStとして使用した。
(実施例2)変異型エンドグルカナーゼの調製
 本発明の変異型エンドグルカナーゼは、表1に示すプライマー対を使用し、以下の手法で作製した。
Figure JPOXMLDOC01-appb-T000001
 配列番号1で示されるアミノ酸配列をコードする遺伝子に対して、配列番号5および6の塩基配列で示されるオリゴヌクレオチドを使用して部位突然変異法を用いて変異型EGPh(配列番号2)を作製した。また同様に、配列番号7で示されるアミノ酸配列をコードする遺伝子に対して、配列番号11および12の塩基配列で示されるオリゴヌクレオチドを使用して変異型EgIa1(配列番号8)、配列番号13で示されるアミノ酸配列をコードする遺伝子に対して、配列番号17および18を使用して変異型EgIa2(配列番号14)、配列番号19で示されるアミノ酸配列をコードする遺伝子に対して、配列番号23および24を使用して変異型EGSh(配列番号20)、配列番号25で示されるアミノ酸配列をコードする遺伝子に対して、配列番号29および30を使用して変異型EGPa(配列番号26)、配列番号31で示されるアミノ酸配列をコードする遺伝子に対して、配列番号35および36を使用して変異型EGAc(配列番号32)、配列番号37で示されるアミノ酸配列をコードする遺伝子に対して、配列番号41および42を使用して変異型EGSt(配列番号38)を作製した。得られた遺伝子のシークエンスを確認後、参考例1記載の手順で大腸菌にて発現を実施した。EGPh変異体、EGIa1変異体、EGIa2変異体、EGSh変異体、EGPa変異体、EGAc変異体、EGSt変異体は、大腸菌において全て異種タンパク質として発現可能であることが確認できた。
(参考例2)リン酸膨潤セルロースの調製
 エンドグルカナーゼの加水分解活性を測定する際に基質として使用するリン酸膨潤セルロースは、Walseth (1971) Tappi 35:228(1971)及びWood Biochem J.121:353(1971)に記載の方法に従って、アビセル(Avicel)から調製した。この物質を緩衝液及び水を用いて希釈して2重量%混合物を得て、酢酸ナトリウムの最終濃度が50mM、pH5.2 になるようにした。これをリン酸膨潤セルロースとして、以下の実施例に使用した。
(実施例3)変異体のリン酸膨潤セルロース分解活性
 実施例2で得られた変異体と、参考例1で調製した親エンドグルカナーゼのリン酸膨潤セルロース分解活性を以下実験にて比較した。基質に1%リン酸膨潤セルロース/50mM酢酸緩衝液(pH5.2)を用い、それぞれ参考例1、実施例2で調製した酵素を終濃度0.5μMで添加し、50℃で1時間酵素反応をおこなった。上記反応条件下における親エンドグルカナーゼにより生成されたグルコース濃度(g/L)を100%として、各変異体におけるリン酸膨潤セルロース分解活性を相対値で表2に示す。
Figure JPOXMLDOC01-appb-T000002
 50℃においては、親エンドグルカナーゼ及び各変異体で活性に差が無いことを確認した。
(実施例4)リグニン由来の芳香族化合物による阻害実験1
 コニフェリルアルデヒド存在下における、野生型及び変異型エンドグルカナーゼのリン酸膨潤セルロースの分解活性を測定した。基質に1%リン酸膨潤セルロース/50mM酢酸緩衝液(pH5.2)を用い、コニフェリルアルデヒド(シグマアルドリッチ)を終濃度0、5、10、15mMになるように添加し、それぞれ参考例1、実施例2で調製した酵素を終濃度0.5μMで添加後、50℃で1時間酵素反応をおこなった。添加濃度0mMにおいて親エンドグルカナーゼにより生成されたグルコース濃度(g/L)を100%として、それぞれの変異体におけるリン酸膨潤セルロース分解活性を相対値で表3に示す。
Figure JPOXMLDOC01-appb-T000003
 各変異体において活性阻害が大幅に低減されていることを確認した。
(実施例5)リグニン由来の芳香族化合物による阻害実験2
 バニリン存在下における、野生型及び変異型エンドグルカナーゼのリン酸膨潤セルロースの分解活性を測定した。基質に1%リン酸膨潤セルロース/50mM酢酸緩衝液(pH5.2)を用い、バニリン(シグマアルドリッチ)を終濃度0、5、10、15mMになるように添加し、それぞれ参考例1、実施例2で調製した酵素を終濃度0.5μMで添加後、50℃で1時間酵素反応をおこなった。添加濃度0mMにおいて親エンドグルカナーゼにより生成されたグルコース濃度(g/L)を100%として、それぞれの変異体におけるリン酸膨潤セルロース分解活性を相対値で表4に示す。
Figure JPOXMLDOC01-appb-T000004
 各変異体において活性阻害が大幅に低減されていることを確認した。
(実施例5)リグニン由来の芳香族化合物による阻害実験3
 フェルラ酸存在下における、野生型及び変異型エンドグルカナーゼのリン酸膨潤セルロースの分解活性を測定した。基質に1%リン酸膨潤セルロース/50mM酢酸緩衝液(pH5.2)を用い、フェルラ酸(シグマアルドリッチ)を終濃度0、5、10、15mMになるように添加し、それぞれ参考例1、実施例2で調製した酵素を終濃度0.5μMで添加後、50℃で1時間酵素反応をおこなった。添加濃度0mMにおいて親エンドグルカナーゼにより生成されたグルコース濃度(g/L)を100%として、それぞれの変異体におけるリン酸膨潤セルロース分解活性を相対値で表5に示す。
Figure JPOXMLDOC01-appb-T000005
 各変異体において活性阻害が大幅に低減されていることを確認した。
(参考例3)リグノセルロースの調製
 エンドグルカナーゼの加水分解活性を測定する際に基質として使用するリン酸膨潤セルロース1~3を以下のように調製した。
 1.リグノセルロース1の調製(アンモニア処理)
 セルロースとして、稲藁を使用した。前記セルロースを小型反応器(耐圧硝子工業製、TVS-N2 30ml)に投入し、液体窒素で冷却した。この反応器にアンモニアガスを流入し、試料を完全に液体アンモニアに浸漬させた。リアクターの蓋を閉め、室温で15分ほど放置した。次いで、150℃のオイルバス中にて1時間処理した。処理後、反応器をオイルバスから取り出し、ドラフト中で直ちにアンモニアガスをリーク後、さらに真空ポンプで反応器内を10Paまで真空引きし乾燥させた。これをリグノセルロース1として以下の実施例に使用した。
 2.リグノセルロース2の調製(希硫酸処理)
 セルロースとして、稲藁を使用した。セルロースを硫酸1%水溶液に浸し、150℃で30分オートクレーブ処理(日東高圧製)した。処理後、固液分離を行い、硫酸水溶液(以下、希硫酸処理液)と硫酸処理セルロースに分離した。次に硫酸処理セルロースと固形分濃度が10重量%となるように希硫酸処理液と攪拌混合した後、水酸化ナトリウムによって、pHを5付近に調製した。これをリグノセルロース2として以下の実施例に使用した。
 3.リグノセルロース3の調製(水熱処理)
 セルロースとして、稲藁を使用した。前記セルロースを水に浸し、撹拌しながら180℃で20分間オートクレーブ処理(日東高圧株式会社製)した。その際の圧力は10MPaであった。処理後は溶液成分(以下、水熱処理液)と処理バイオマス成分に遠心分離(3000G)を用いて固液分離した。この処理バイオマス成分をリグノセルロース3として以下の実施例に使用した。
(実施例6)糸状菌由来セルラーゼ混合物と変異型エンドグルカナーゼからなる酵素組成物を用いたリグノセルロースの糖化1
 リグノセルロース基質に該酵素組成物を作用させた場合のグルコース生成量の変化を比較した。50mM酢酸緩衝液(pH5.2)に5重量%のリグノセルロース1~3(参考例3で調製)を懸濁したものを基質とした。反応は50℃において24時間まで行い、適宜サンプリングして生成したグルコース濃度の測定を行った。糸状菌由来セルラーゼ混合物としては、市販のトリコデルマ・リーセイ由来セルラーゼ(セルクラスト、シグマ)を用いた。エンドグルカナーゼとしては、実施例2で調製した変異型エンドグルカナーゼと参考例1で調製した野生型エンドグルカナーゼをそれぞれ用いた。酵素添加量は、セルラーゼ1.0mg/mL、エンドグルカナーゼ0.1mg/mL(セルラーゼの1/10量)である。表6、7、8にそれぞれリグノセルロース1、2、3から反応24時間後に生成したグルコース濃度(g/L)を比較した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 野生型エンドグルカナーゼと変異型エンドグルカナーゼを用いた場合を比較すると、リグノセルロース1~3いずれにおいても、反応24時間後におけるグルコース生成量は、変異型エンドグルカナーゼは野生型エンドグルカナーゼの約1.4倍と大幅に上昇した。
(参考例4)トリコデルマ属由来セルラーゼの調製
 トリコデルマ属由来セルラーゼを以下の方法で調製した。
 1.前培養
 コーンスティップリカー2.5%(w/vol)、グルコース2%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14%(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物 0.0008%(w/vol)、ホウ酸0.0006%(w/vol)、七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)となるよう蒸留水に添加し、100mLを500mLバッフル付き三角フラスコに張り込み、121℃で15分間オートクレーブ滅菌した。放冷後、これとは別にそれぞれ121℃で15分間オートクレーブ滅菌したPE-MとTween80をそれぞれ0.1%添加した。この前培養培地にトリコデルマ・リーセイATCC66589(Tricoderma reesei ATCC66589)の胞子を、1×10個/ml培地になるように植菌し、28℃、72時間、180rpmで振とう培養し、前培養とした(振とう装置:TAITEC社製 BIO-SHAKER BR-40LF)。
 2.本培養
 コーンスティップリカー2.5%(w/vol)、グルコース2%(w/vol)、セルロース(アビセル)10%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14%(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)、七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)となるよう蒸留水に添加し、2.5Lを5L容撹拌ジャー(ABLE社製 DPC-2A)容器に張り込み、121℃で15分間オートクレーブ滅菌した。放冷後、これとは別にそれぞれ121℃で15分間オートクレーブ滅菌したPE-MとTween80をそれぞれ0.1%添加し、あらかじめ前記の方法にて液体培地で前培養したトリコデルマ・リーセイATCC66589(Tricoderma reesei ATCC66589)を250mL接種した。その後、28℃、96時間、300rpm、通気量1vvmにて培養を行い、遠心分離後、上清を膜濾過(ミリポア社製 ステリカップ-GV 材質:PVDF)した。
(実施例7)糸状菌由来セルラーゼ混合物と変異型エンドグルカナーゼからなる酵素組成物を用いたリグノセルロースの糖化2
 参考例3で調製したリグノセルロース1~3を基質とし、参考例4で調製したトリコデルマ・リーセイ培養液を糸状菌由来セルラーゼ混合物として使用し、酵素添加量をセルラーゼ1.0mg/mL、β―グルコシダーゼ0.1mg/mL(セルラーゼの1/10量)、β―グルコシダーゼ(Novozyme188)0.01mg/mL(セルラーゼの1/100量)とした以外は、実施例6と同様にしてリグノセルロース1~3の加水分解を実施した。
 表9、10、11にそれぞれリグノセルロース1、2、3から反応24時間後に生成したグルコース濃度(g/L)を比較した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 野生型エンドグルカナーゼと変異型エンドグルカナーゼを用いた場合を比較すると、リグノセルロース1~3いずれにおいても、反応24時間後におけるグルコース生成量は、変異型エンドグルカナーゼは野生型エンドグルカナーゼの約1.4倍と大幅に上昇した。実施例6のような市販のセルラーゼだけでなく、トリコデルマ・リーセイ培養液を用いても変異導入における効果があることが判明した。
(比較例1)変異型エンドグルカナーゼの作製
 比較例として、273番目のトリプトファンを別の芳香族アミノ酸へ置換した変異体の作製を表12のプライマーを使用して行った。
Figure JPOXMLDOC01-appb-T000012
 配列番号1で示されるアミノ酸配列をコードする遺伝子に対して、配列番号43および44の塩基配列で示されるオリゴヌクレオチドを使用して部位突然変異法を用いてEGPh(W273Y)(273番目トリプトファンをチロシンに置換:配列番号49)を作製した。また同様に、配列番号45および46で示されるオリゴヌクレオチドを使用して、EGPh(W273F)(73番目トリプトファンをフェニルアラニンに置換:配列番号50)、配列番号47および48で示されるオリゴヌクレオチドを使用して、EGPh(W273H)(73番目トリプトファンをヒスチジンに置換:配列番号51)、をそれぞれ作製した。これらの変異体は、大腸菌において全て異種タンパク質として発現可能であることが確認できた。
(比較例2)変異体のリン酸膨潤セルロース分解活性
 比較例1で得られた変異体を実施例3と同様の手法で活性を比較した。上記反応条件下における親エンドグルカナーゼにより生成されたグルコース濃度(g/L)を100%として、各変異体におけるリン酸膨潤セルロース分解活性を相対値で表13に示す。
Figure JPOXMLDOC01-appb-T000013
 50℃においては、親エンドグルカナーゼ及び各変異体で活性に差が無いことを確認した。
(比較例3)リグニン由来の芳香族化合物による阻害実験
 コニフェリルアルデヒド存在下における、野生型及び比較例1の変異型エンドグルカナーゼのリン酸膨潤セルロースの分解活性を測定した。実験は実施例4と同じ手順で行い、それぞれの変異体におけるリン酸膨潤セルロース分解活性を相対値で表14に示す。
Figure JPOXMLDOC01-appb-T000014
 トリプトファンと同じ芳香族アミノ酸への置換を行った比較例1の変異体では、野生型に対して活性阻害が改善されていないことを確認した。すなわち、273番目のトリプトファンは、芳香族アミノ酸以外のアミノ酸への置換が必要であることが判明した。
 本発明における変異型エンドグルカナーゼは、リグノセルロースを投下することによる糖液の製造に使用できる。リグノセルロース分解効率を向上させる効果により、酵素コストを大幅に削減することが可能であるため、産業上非常に有益である。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (12)

  1.  好熱性菌由来のエンドグルカナーゼのアミノ酸配列において、配列番号1のアミノ酸配列の273番目のトリプトファンに相当するアミノ酸残基が、芳香族アミノ酸以外から選ばれるアミノ酸に置換されているアミノ酸配列を含む、変異型エンドグルカナーゼ。
  2.  好熱性菌由来のエンドグルカナーゼのアミノ酸配列が、以下:
     (a)配列番号1、7、13、19,25、31または37で示されるアミノ酸配列であって、エンドグルカナーゼ活性を有するタンパク質をコードするアミノ酸配列; 
     (b)配列番号1、7、13、19,25、31または37で示されるアミノ酸配列において、1から数個のアミノ酸が欠失、置換、または付加されたアミノ酸配列であって、エンドグルカナーゼ活性を有するタンパク質をコードするアミノ酸配列;あるいは
     (c)配列番号1、7、13、19,25、31または37で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列であって、エンドグルカナーゼ活性を有するタンパク質をコードするアミノ酸配列、
    のいずれかのアミノ酸配列を含む、請求項1に記載の変異型エンドグルカナーゼ。
  3.  配列番号1のアミノ酸配列の273番目のトリプトファンに相当するアミノ酸残基がアラニンに置換されている、請求項1または2に記載の変異型エンドグルカナーゼ。
  4.  配列番号2、8、14、20、26、32または38で示されるアミノ酸配列を含む、請求項1~3のいずれか1項に記載の変異型エンドグルカナーゼ。
  5.  請求項1~4のいずれか1項に記載の変異型エンドグルカナーゼをコードするDNA。
  6.  配列番号4、10、16、22、28、34または40で示される塩基配列を含む、請求項5に記載のDNA。
  7.  請求項5または6に記載のDNAを含む、発現ベクター。
  8.  請求項7に記載の発現ベクターを用いた形質転換により作製された、形質転換細胞。
  9.  (1)請求項8に記載の形質転換細胞を培養する工程;および
     (2)該形質転換細胞により生産された変異型エンドグルカナーゼを精製する工程を含む、変異型エンドグルカナーゼの製造方法。
  10.  請求項1~4のいずれか1項に記載の変異型エンドグルカナーゼおよび/または請求項8に記載の形質転換細胞の処理物を含む、バイオマス分解用組成物。
  11.  セルロース含有バイオマス懸濁液に、請求項10に記載のバイオマス分解用組成物を添加して加水分解することを含む、セルロース由来バイオマスより糖液を製造する方法。
  12.  さらに、糸状菌由来セルラーゼを添加することを含む、請求項11に記載の方法。
PCT/JP2012/072401 2011-09-05 2012-09-04 変異型エンドグルカナーゼ WO2013035678A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2847623A CA2847623A1 (en) 2011-09-05 2012-09-04 Mutant endoglucanase
CN201280042920.9A CN103797116A (zh) 2011-09-05 2012-09-04 突变型内切葡聚糖酶
AU2012305442A AU2012305442A1 (en) 2011-09-05 2012-09-04 Mutant endoglucanase
JP2013532590A JP5971811B2 (ja) 2011-09-05 2012-09-04 変異型エンドグルカナーゼ
IN2455CHN2014 IN2014CN02455A (ja) 2011-09-05 2012-09-04
EP12830699.0A EP2754712B1 (en) 2011-09-05 2012-09-04 Mutant endoglucanase
US14/195,923 US9193963B2 (en) 2011-09-05 2014-03-04 Mutant endoglucanase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011193279 2011-09-05
JP2011-193279 2011-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/195,923 Continuation US9193963B2 (en) 2011-09-05 2014-03-04 Mutant endoglucanase

Publications (1)

Publication Number Publication Date
WO2013035678A1 true WO2013035678A1 (ja) 2013-03-14

Family

ID=47832123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072401 WO2013035678A1 (ja) 2011-09-05 2012-09-04 変異型エンドグルカナーゼ

Country Status (8)

Country Link
US (1) US9193963B2 (ja)
EP (1) EP2754712B1 (ja)
JP (1) JP5971811B2 (ja)
CN (1) CN103797116A (ja)
AU (1) AU2012305442A1 (ja)
CA (1) CA2847623A1 (ja)
IN (1) IN2014CN02455A (ja)
WO (1) WO2013035678A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193963B2 (en) 2011-09-05 2015-11-24 Toray Industries, Inc. Mutant endoglucanase
CN112746064A (zh) * 2020-12-28 2021-05-04 苏州科宁多元醇有限公司 一种来源于梭菌属的壳聚糖酶基因及其重组菌和在生产壳寡糖上的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438263A4 (en) * 2016-03-31 2019-09-11 Toray Industries, Inc. TRICKODERMAPILT WITH MUTANT BXL1 GENE AND PROCESS FOR PREPARING XYLOOLIGOSACCHARIDE AND GLUCOSE THEREWITH
CN116042554A (zh) * 2023-01-31 2023-05-02 中国科学院青岛生物能源与过程研究所 具有高酶活性与高热稳定性的葡聚糖单加氧酶及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193279A (ja) 2010-03-15 2011-09-29 Canon Inc 画像処理装置、画像処理方法、及びプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2750920A1 (en) * 2009-02-27 2010-09-02 Iogen Energy Corporation Novel lignin-resistant cellulase enzymes
AU2012305442A1 (en) 2011-09-05 2014-04-24 Toray Industries, Inc. Mutant endoglucanase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193279A (ja) 2010-03-15 2011-09-29 Canon Inc 画像処理装置、画像処理方法、及びプログラム

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Japan Collection of Microorganisms", January 1999
HEE-JIN, K. ET AL.: "Analysis of active center in hyperthermophilic cellulase from Pyrococcus horikoshii", J. MICROBIOL. BIOTECHNOL., vol. 17, no. 8, 2007, pages 1249 - 1253, XP055147493 *
KASHIMA, Y. ET AL.: "Analysis of the function of a hyperthermophilic endoglucanase from Pyrococcus horikoshii that hydrolyzes crystalline cellulose", EXTREMOPHILES, vol. 9, no. 1, 2005, pages 37 - 43, XP019374073 *
KIM, H. W. ET AL.: "Analysis of the putative substrate binding region of hyperthermophilic endoglucanase from Pyrococcus horikoshii", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 71, no. 10, 2007, pages 2585 - 2587, XP055147492 *
KIM, H. W. ET AL.: "Functional analysis of hyperthermophilic endocellulase from Pyrococcus horikoshii by crystallographic snapshots", BIOCHEM. J., vol. 437, May 2011 (2011-05-01), pages 223 - 230, XP055147490 *
KIM, H. W. ET AL.: "Structure of hyperthermophilic endocellulase from Pyrococcus horikoshii", PROTEINS, vol. 78, no. 2, 2010, pages 496 - 500, XP055147491 *
PAUL, S. S ET AL., LETT. APPL. MICROBIOL., vol. 36, 2003, pages 377 - 381
VOHRA, R. M ET AL., BIOTECHNOL. BIOENG, vol. 22, 1980, pages 1497 - 1500
WALSETH, TAPPI, vol. 35, 1971, pages 228
WOOD, BIOCHEM J., vol. 121, 1971, pages 353
XIMENES, E ET AL., ENZYM MICROB TECH., vol. 46, 2010, pages 170 - 176
XIMENES, E. ET AL.: "Inhibition of cellulases by phenols", ENZYME AND MICROBIAL TECHNOLOGY, vol. 46, no. 3-4, 2010, pages 170 - 176, XP026862189 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193963B2 (en) 2011-09-05 2015-11-24 Toray Industries, Inc. Mutant endoglucanase
CN112746064A (zh) * 2020-12-28 2021-05-04 苏州科宁多元醇有限公司 一种来源于梭菌属的壳聚糖酶基因及其重组菌和在生产壳寡糖上的应用

Also Published As

Publication number Publication date
US9193963B2 (en) 2015-11-24
IN2014CN02455A (ja) 2015-08-07
CN103797116A (zh) 2014-05-14
CA2847623A1 (en) 2013-03-14
EP2754712A1 (en) 2014-07-16
EP2754712B1 (en) 2017-10-04
JP5971811B2 (ja) 2016-08-17
US20140178947A1 (en) 2014-06-26
AU2012305442A1 (en) 2014-04-24
EP2754712A4 (en) 2015-03-25
JPWO2013035678A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
JP6148183B2 (ja) セルラーゼ組成物並びにこれを用いリグノセルロース系バイオマスの発酵性糖質への変換を向上させる方法
KR20120106774A (ko) 동시 당화 발효 반응의 효율을 향상시키는 방법
JP5881234B2 (ja) 変異型βグルコシダーゼ、バイオマス分解用酵素組成物および糖液の製造方法
JP2015533293A (ja) 組成物及び使用方法
JP2015533294A (ja) ニューロスポラ・クラッサ(Neurosporacrassa)由来のβ−グルコシダーゼ
JP5971811B2 (ja) 変異型エンドグルカナーゼ
US10435728B2 (en) Endoxylanase mutant, enzyme composition for biomass decomposition, and method of producing sugar solution
Li et al. Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina
JP5614673B2 (ja) 糖液の製造方法
JP7046370B2 (ja) キシラナーゼ変異体、及びバイオマス分解用酵素組成物
JP7250282B2 (ja) 新規β-グルコシダーゼ、これを含む酵素組成物およびこれらを用いた糖液の製造方法
US20220356499A1 (en) Endoglucanase, and use thereof
WO2012165577A1 (ja) サーモスポロスリックス・ハザケンシスに由来する新規セルラーゼ
WO2016054168A1 (en) Compositions comprising beta mannanase and methods of use
JP2014100073A (ja) バイオマス分解用組成物およびそれを用いた糖液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532590

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2847623

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012830699

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012830699

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012305442

Country of ref document: AU

Date of ref document: 20120904

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014004397

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112014004397

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112014004397

Country of ref document: BR