WO2013035513A1 - 親水性チオールプローブ - Google Patents

親水性チオールプローブ Download PDF

Info

Publication number
WO2013035513A1
WO2013035513A1 PCT/JP2012/070924 JP2012070924W WO2013035513A1 WO 2013035513 A1 WO2013035513 A1 WO 2013035513A1 JP 2012070924 W JP2012070924 W JP 2012070924W WO 2013035513 A1 WO2013035513 A1 WO 2013035513A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
protein
probe
thiol probe
thiol
Prior art date
Application number
PCT/JP2012/070924
Other languages
English (en)
French (fr)
Inventor
崇史 嶋田
佐藤 孝明
田中 耕一
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to EP12830678.4A priority Critical patent/EP2755024B1/en
Priority to JP2013532520A priority patent/JP6134646B2/ja
Priority to US14/241,728 priority patent/US9448240B2/en
Publication of WO2013035513A1 publication Critical patent/WO2013035513A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/145555Hetero-N
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/145555Hetero-N
    • Y10T436/147777Plural nitrogen in the same ring [e.g., barbituates, creatinine, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/17Nitrogen containing
    • Y10T436/173845Amine and quaternary ammonium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/19Halogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/200833Carbonyl, ether, aldehyde or ketone containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/24Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry

Definitions

  • the present invention belongs to the life science, particularly the proteomics field, and relates to a mass spectrometry technique applicable to clinical diagnosis and the like. Specifically, the present invention relates to a reagent for mass spectrometry useful for LC / MS and MALDI-TOF-MS. More specifically, the present invention relates to a novel hydrophilic thiol probe that improves the mass spectrometry sensitivity of biomolecules.
  • a probe having a thiol group as an addition site is also commercialized as a labeling kit using biotin, a fluorescent indicator, alkaline phosphatase, or the like.
  • Such probes can also be used in protein or peptide biochemical assays (eg Western blot, ELISA, intracellular fluorescent labeling) and HPLC.
  • Non-Patent Document 6 In addition to the above, methods for derivatizing proteins or peptides with various probes in mass spectrometry have been reported (Anal. Chem. 1998, 70, 1544-1554 (Non-Patent Document 6), Rapid Commun. Mass Spectrom 2009; 23: 1483-1492 (Non-patent Document 7), J. Anal.. At. Spectrom., 2008, 23, 1063-1067 (Non-Patent Document 8), Anal. Chem. 1997, 69, 1315-1319 ( Non-Patent Document 9), Anal. Chem. 2004, 76, 728-735 (Non-Patent Document 10).
  • proteomics as a pretreatment method for the efficient digestion of proteins, a method in which protein is denatured and then reduced-alkylated is conventionally used to prevent reoxidation of cysteine residues. .
  • the protein is reduced with dithiothreitol to generate a thiol group of a cysteine residue.
  • the thiol group is alkylated with iodoacetamide, iodoacetic acid, vinylpyridine, acrylamide or the like to block reoxidation of the thiol group. It has been found that derivatizing a cysteine residue by such a method facilitates unwinding of the protein chain, and as a result, the next step, enzymatic digestion, easily proceeds and its efficiency increases.
  • a probe that promotes ionization of the peptide has been used for digested peptides of proteins to be identified.
  • Digested peptides are characteristic in that they always have a basic amino acid such as lysine or arginine at the C-terminus, but it has been empirically found that such a characteristic sequence has a high sensitivity effect in mass spectrometry. Yes.
  • a functional peptide does not necessarily have a characteristic sequence such as an enzyme digested peptide.
  • many functional peptides are difficult to detect even with conventional probes because of their high hydrophobicity or faster turnover. Therefore, even such functional proteins are required to achieve good detection sensitivity and obtain more meaningful mass spectrometry results.
  • an object of the present invention is to provide a probe that further promotes ionization in proteome analysis using mass spectrometry and a highly sensitive mass spectrometry method for proteins using the same.
  • Another object of the present invention is to provide an ionization promoting probe capable of dealing with a protein having a high degree of hydrophobicity and a fast turnover, and a highly sensitive mass spectrometry method for a protein using the same.
  • the present inventors have found that the object of the present invention can be achieved by a probe that is molecularly designed to have a structure that can be introduced into a thiol group and a structure that promotes ionization, and has completed the present invention. It was.
  • the present invention includes the following inventions.
  • protein widely refers to an amino acid polymer and does not depend on the number of amino acids polymerized. Therefore, “protein” is used in the meaning including any of oligopeptide, polypeptide and protein.
  • the protein thiol probe according to (1) wherein the bridging group is a hydrocarbon group having 1 to 3 carbon atoms or an alkylene oxide-containing group having 2 to 6 carbon atoms.
  • the alkylene oxide in the alkylene oxide-containing group is ethylene oxide or propylene oxide.
  • the protein to be reacted with the thiol probe may have a thiol group generated by the reduction treatment.
  • the present invention it is possible to provide a probe that further promotes ionization in mass spectrometry and a high-sensitivity mass spectrometry method for proteins using the probe.
  • the present invention enables an ionization-promoting probe capable of dealing with a protein having a high degree of hydrophobicity and quick turnover, and a highly sensitive mass spectrometry method for proteins using the same.
  • the present invention compared to the case where only the reduction-alkylation step using iodoacetamide, which has been used for preventing oxidation of thiol groups in conventional proteomics, is carried out by about 2 to 200. Double sensitivity can be improved.
  • the probe of the present invention is designed to reduce the hydrophobicity of the whole molecule, so the protein modified by the probe of the present invention is modified. It becomes more hydrophilic than before. For this reason, it can respond to a protein with high hydrophobicity.
  • a thiol group oxidation prevention and ionization promotion treatment can be performed by using a probe designed for the purpose of promoting ionization and improving sensitivity in place of the alkylating agent used in the conventional reduction-alkylation process. Can be performed at the same time without changing the conventional protocol.
  • it can also be applied to low-content peptides and hydrophobic proteins that are quickly turned over.
  • the thiol probe of the present invention has a structure having reactivity to a thiol group, a structure for suppressing the hydrophobicity of the whole molecule, and a structure that is easily protonated, and the probe itself in multi-step MS analysis. It has a feature that it does not have an amide group which is a structure that leads to complication of mass spectrum due to cleavage of.
  • the structure having reactivity to a thiol group is an iodoacetyl group that minimizes side reactions to functional groups (for example, amino groups) other than thiol groups and has high reaction rate selectivity.
  • the structure for suppressing the hydrophobicity of the whole molecule is an oxygen-containing group.
  • a structure that is easily protonated is a nitrogen-containing group. More specifically, the thiol probe of the present invention has the following formula (I): iodoacetamide group (ICH 3 CO—), oxygen-containing group (—OR 1 —), and nitrogen-containing group (—R 2 ). Represented by the structural formula
  • R 1 represents a crosslinking group.
  • the cross-linking group is a divalent linking group, and is usually a divalent organic group.
  • the divalent organic group may be a hydrocarbon group having 1 or 2 carbon atoms. When the above range is exceeded, the hydrophobicity of the whole molecule becomes high, and the ionization promoting effect tends to be hardly obtained.
  • the divalent organic group may be an alkylene oxide-containing group having 2 to 6 carbon atoms.
  • a polyalkylene oxide-containing group is preferable. More specifically, the alkylene oxide in the alkylene oxide-containing group is ethylene oxide or propylene oxide.
  • the group represented by OR 1 is preferably a polyalkylene glycol group.
  • the polyalkylene glycol group may be a group generated by polymerization of an alkylene glycol having 2 to 6 carbon atoms. In the present invention, it can be selected from the group consisting of a polyethylene glycol group (a group generated by polymerization of ethylene glycol) and a polypropylene glycol group (a group generated by polymerization of 1,2-propanediol or 1,3-propanediol).
  • the polymerization degree of glycol in the above polyalkylene glycol group may be 2-6.
  • R 2 represents a nitrogen-containing group.
  • the nitrogen-containing group is a proton-accepting group, and specifically, a substituted ammonium group or a substituted amino group.
  • the substituted ammonium group can be a tertiary ammonium group and a quaternary ammonium group.
  • the substituent in the substituted ammonium group may be an alkyl group having 1 or 2 carbon atoms.
  • the counter anion of the substituted ammonium group may be a monovalent halogen anion. For example, Cl ⁇ , Br ⁇ , I ⁇ and the like can be used.
  • the substituted amino group may be a group represented by —NHR 3 .
  • R 3 may be a hydrocarbon group having 1 or 2 carbon atoms or a nitrogen-containing group.
  • R 3 may be an optionally substituted amidino group or an optionally substituted triazino group.
  • an optionally substituted amidino group that is, the group represented by —NHR 3 is an optionally substituted guanidino group.
  • the substituent in the amidino group which may be substituted may be an alkyl group having 1 or 2 carbon atoms.
  • the substituent in the triazino group which may be substituted may be selected from the group consisting of an amino group and an alkoxy group having 1 or 2 carbon atoms.
  • the probe of the present invention is hydrophilic as a whole and exhibits solubility in water, methanol, and ethanol. Specifically, it is preferably soluble in the solvent at a concentration of 10 to 500 mM, 20 to 500 mM, or 10 to 100 mM under room temperature (for example, 20 ° C. ⁇ 10 ° C.) conditions.
  • probes More specific examples of probes are represented by the following formulas (i), (ii), (iii), (iv), (v), (vii) and (vii).
  • the protein to which the thiol probe is added is not particularly limited.
  • the protein to which the thiol probe is added widely refers to an amino acid polymer and does not depend on the number of polymerized amino acids, so the molecular weight range is not particularly limited.
  • it is preferably a functional protein.
  • the functional protein is a protein having a specific physiological activity, and examples thereof include hormones, amyloid, cytokines and the like.
  • the present invention is also useful when the protein to which the thiol probe is added is not subjected to a fragmentation step such as digestion.
  • a protein having a certain molecular weight or a protein containing more cysteine residues tends to obtain the effect of the present invention.
  • the range of the molecular weight to which the thiol probe is added can be 1 kDa or more, but may be, for example, 1.4 kDa or more, 2 kDa or more, 2.4 kDa or more, or 3 kDa or more.
  • the upper limit of the said range is not specifically limited, For example, it is 150 kDa.
  • the protein to which the thiol probe is to be added naturally has a thiol group.
  • the thiol group in a protein is usually derived from a cysteine residue.
  • the thiol group may be in the form of a sulfino group (—SO 2 H) and a salt thereof, a sulfo group (—SO 3 H) and a salt thereof, and a disulfide group (—SS—) by being oxidized. Therefore, it is usually generated by performing a reduction treatment before the introduction of the thiol probe.
  • a cysteine residue can generate a disulfide group (SS bonding), a SO 2 ⁇ group or a SO 3 ⁇ group, as represented by X in the above formula.
  • Such a cysteine residue is subjected to reduction with a reducing agent such as dithiothreitol to generate a thiol group (—SH group).
  • a reducing agent such as dithiothreitol
  • a thiol group —SH group
  • the thiol probe of the present invention ICH 2 CO 2 By subjecting to the addition of R 1 R 2 ), a protein modified with a probe can be obtained.
  • the specific protocol in the above-described reduction and modification step with a thiol probe can be easily determined by those skilled in the art according to conventional reductive alkylation. That is, the same protocol as the conventional reductive alkylation can be adopted except that the thiol probe of the present invention is used instead of iodoacetamide used in the alkylation step in the conventional method. Specifically, the reaction can be performed at room temperature (for example, 20 ° C. ⁇ 10 ° C.) for 30 to 60 minutes using a 20 to 50 mM concentration probe.
  • the protein modified with the thiol probe of the present invention is subjected to mass spectrometry.
  • mass spectrometry for example, an electrospray ionization method, a matrix-assisted laser desorption ionization method, or the like can be employed as an ion source.
  • an analysis unit a magnetic field deflection type, a quadrupole type, an ion trap type, a time-of-flight type, a Fourier transform ion cyclotron resonance type, and the like can be appropriately combined.
  • ⁇ -cyano-4-hydroxycinnamic acid, sinapinic acid, 2,5-dihydroxybenzoic acid and the like are conventionally used as a matrix.
  • Protein matrices can be used.
  • a tandem mass spectrometer capable of multi-stage MS of MS 2 or higher is preferably used.
  • the thiol probe of the present invention Since the thiol probe of the present invention has an ionization promoting effect, it has excellent quantitativeness. Therefore, as the thiol probe of the present invention, a molecule having a predetermined structure (unlabeled probe) and a molecule having a structure in which some constituent atoms in the molecule are replaced with stable isotopes (stable isotope labeled probes) Can also be used as a quantification reagent in combination. Such a quantification reagent can be used for differential analysis.
  • the protein sample I and the modified protein sample II can be mixed, and (4) the resulting modified protein mixture can be subjected to mass spectrometry without being subjected to a digestion step.
  • Example 1 The following samples (protein or peptide), reagents and equipment were prepared. One protein commonly used as a model for reductive alkylation of proteins; Insulin (Sigma-Aldrich) The alpha chain and the beta chain are linked via the SS bond of cysteine.
  • Protein and peptide samples were processed in the following manner. The amount expressed in% is based on volume.
  • the peptide was dissolved in an aqueous solution containing 0.05% TFA and 50% acetonitrile, and dispensed at 200 pmol (100 pmol / ⁇ L, 2 ⁇ L).
  • 10 ⁇ L of an aqueous solution containing 100 mM NH 4 HCO 3 and 10 mM Dithiothreitol was added to check the pH (about pH 8.3). Incubated for 30 minutes at 56 ° C. 15 ⁇ l of 50 mM probe solution was added and stirred at room temperature for 30 minutes in the dark.
  • the solvent of a probe solution is as follows, respectively.
  • MS analysis was performed under the following conditions. The amount expressed in% is based on volume. Twelve samples were prepared for each probe to be subjected to MS. As an internal standard, 0.3 pmol of P14R was added. As a matrix, 1 ⁇ L of a solution prepared by dissolving 5 mg / ml CHCA in an aqueous solution containing 0.1% TFA and 50% acetonitrile was added per well. As mass spectrometry, automatic measurement was performed by raster scan (300 profile / run). Linear positive was used as the measurement mode.
  • SD value Data variation
  • p-value The analysis results for Insulin alpha chain, Insulin beta chain, NC4 CLAC-P, PSA2, and S26C Amyloid-beta are shown in FIGS. 1 to 5, respectively.
  • a table showing p-values is shown. In each table, a power of 10 is displayed using E, and a negative integer following E represents an exponent of power of 10.
  • SEQ ID NO: 6 is an artificial polypeptide.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

質量分析を用いたプロテオーム解析においてイオン化をより促進するプローブ及びそれを用いたタンパク質の高感度質量分析法を提供する。また、疎水性度が高く且つターンオーバーが早いタンパク質にも対応することができるイオン化促進プローブ及びそれを用いたタンパク質の高感度質量分析法を提供する。下記式(I):(式中、Rは架橋基、Rは置換アンモニウム基又は置換アミノ基を表す)で示される、タンパク質のチオールプローブ。前記チオールプローブを、質量分析すべきタンパク質と反応させることにより、修飾タンパク質を得る工程と、前記修飾タンパク質を質量分析に供する工程とを含む、タンパク質の質量分析法。

Description

親水性チオールプローブ
 本発明は、ライフサイエンス、特にプロテオミクス分野に属するものであり、臨床診断等に適用されうる質量分析技術に関する。具体的には、本発明は、LC/MSやMALDI-TOF MSに有用な質量分析用試薬に関する。より具体的には、本発明は、生体分子の質量分析感度を向上させる新規親水性チオールプローブに関する。
 プロテオミクスにおいて、タンパク質又はペプチドのシステイン残基のチオール基をプローブの付加部位として使う方法論は多数存在する。チオール基を付加部位とするプローブは、例えば、ビオチン、蛍光指示薬、アルカリフォスファターゼなどによる標識キットとして商品化もされている。このようなプローブは、タンパク質又はペプチドの生化学アッセイ(例えばウェスタンブロット、ELISA、細胞内蛍光標識)やHPLCにおいても利用可能である。
 また、プロテオミクスにおいては、タンパク質又はペプチドを、特定のアミノ酸残基のラベル化を可能にするプローブを用いて誘導体化し、高感度で分析する方法論も存在する。特定のアミノ酸残基へのプローブの付加を質量分析技術に応用することは、質量分析におけるイオン化を促進し、確実に解析精度を向上させるための必須の方法論となっている。
 例えば、N末端アミノ基やリジン残基のアミノ基がプローブの付加部位として利用されている。そのようなプローブとして例えばTMPP試薬(Anal. Biochem. 2008, 380(2), 291-296(非特許文献1))やSPITC試薬(RCM. 2004, 18(1), 96-102(非特許文献2))等を用い、ペプチドのMS/MSイオン系列の選択性を持たせる方法論がある。
 また、タンパク質又はペプチドにおけるチオール基へのアルキル基導入時に安定同位体試薬ICAT(Isotope-Coated Affinity Tag)を用いたラベル化を用い、定量的解析を行う画期的な方法が開発され(Anal. Biochem. 2001, 297, 25-31(非特許文献3))、cleavable ICATとして改良もされている(Mol Cell Proteomics. 2003, 2, 1198-1204(非特許文献4))。
 さらに、タンパク質の一斉定量方法もiTRAQ(R)(Isobaric tag for relative and absolute quantitation)として改良され(Mol Cell Proteomics. 2004, 3, 1154-1169(非特許文献5))、質量分析によってタンパク質又はペプチドの発現変動解析が行われている。
 上記の他にも、質量分析において様々なプローブによってタンパク質又はペプチドを誘導体化する手法が報告されている(Anal. Chem. 1998, 70, 1544-1554(非特許文献6)、Rapid Commun. Mass Spectrom. 2009; 23: 1483-1492(非特許文献7)、J. Anal. At.Spectrom., 2008, 23, 1063-1067(非特許文献8)、Anal. Chem. 1997, 69, 1315-1319(非特許文献9)、Anal. Chem. 2004, 76, 728-735(非特許文献10)。
 一方、プロテオミクスにおいては、タンパク質の効率的消化を目的とした前処理法として、タンパク質を変性した後に還元-アルキル化する方法を行い、システイン残基の再酸化の防止が慣用的に行われている。具体的には、例えばタンパク質を電気泳動による分離に供した後、又は変性ウレア溶液による変性に供した後に、ジチオトレイトールにて還元し、システイン残基のチオール基を生成させる。続いて、ヨードアセトアミド、ヨード酢酸、ビニルピリジン、又はアクリルアミド等によってチオール基をアルキル化し、チオール基の再酸化をブロックする。このような方法でシステイン残基を誘導体化することで、タンパク質の鎖がほどけやすくなり、結果として次のステップである酵素消化が容易に進み、その効率が上がることが解っている。
アナリティカル・バイオケミストリ(Analytical Biochemistry)、2008年、第380巻、第2号、p.291-296 ラピッド・コミュニケーションズ・イン・マス・スペクトロメトリ(Rapid Communications in Mass Spectrometry)、2004年、第18巻、第1号、P.96-102 アナリティカル・バイオケミストリ(Analytical Biochemistry)、2001年、第297巻、p.25-31 モレキュラー・アンド・セルラー・プロテオミクス(Molecular & Cellular Proteomics)、2003年、第2巻、p.1198-1204 モレキュラー・アンド・セルラー・プロテオミクス(Molecular & Cellular Proteomics)、2004年、第3巻、p.1154-1169 アナリティカル・ケミストリ(Analytical Chemistry)、1998年、第70巻、p.1544-1554 ラピッド・コミュニケーションズ・イン・マス・スペクトロメトリ(Rapid Communications in Mass Spectrometry)、2009年、第23巻、p.1483-1492 ジャーナル・オブ・アナリティカル・アトミック・スペクトロメトリ(Journal of Analytical Atomic Spectrometry)、2008年、第23巻、p.1063-1067 アナリティカル・ケミストリ(Analytical Chemistry)、1997年、第69巻、p.1315-1319 アナリティカル・ケミストリ(Analytical Chemistry)、2004年、第76巻、p.728-735
 しかし、上記の還元-アルキル化法はもっぱらシステインの再酸化防止という用途で行われてきたものであって、それ以外の用途では利用されてこなかった。
 一方、ペプチドのイオン化を促進するプローブを用いることによって、感度の低いペプチドの検出が可能となるが、従来、イオン化を促進するプローブは、同定すべきタンパク質の消化ペプチドに対して用いられてきた。消化ペプチドは、必ずC末端にリジン又はアルギニンといった塩基性アミノ酸を有する点で特徴的であるが、このような特徴的な配列は、質量分析において高感度効果が得られることが経験的に分かっている。
 しかしながら、生物学的、臨床的に重要なタンパク質やペプチドは、消化ペプチドではなく、ホルモン、アミロイド、サイトカインなどに代表される機能性ペプチドである。機能性ペプチドは、酵素消化ペプチドのような特徴的な配列を有しているとは限らない。さらに、機能性ペプチドには、疎水性度が高い、又はさらにターンオーバーが早いために、従来のプローブを用いても検出が困難なものも多い。従って、このような機能性タンパク質であっても良好な検出感度を達成し、より有意義な質量分析結果を得ることが求められている。
 そこで、本発明の目的は、質量分析を用いたプロテオーム解析においてイオン化をより促進するプローブ及びそれを用いたタンパク質の高感度質量分析法を提供することにある。また、本発明の目的は、疎水性度が高く且つターンオーバーが早いタンパク質にも対応することができるイオン化促進プローブ及びそれを用いたタンパク質の高感度質量分析法を提供することにある。
 本発明者らは、チオール基に導入可能な構造と、イオン化を促進する構造とを有するよう分子設計されたプローブによって上記本発明の目的が達成されることを見出し、本発明を完成するに至った。
 本発明は、以下の発明を含む。
(1)
 下記式(I):
Figure JPOXMLDOC01-appb-C000009
 
(式中、Rは架橋基(すなわち2価の連結基)、Rは置換アンモニウム基又は置換アミノ基を表す)
で示される、タンパク質のチオールプローブ。
 本発明において「タンパク質」は、広くアミノ酸重合体をいい、重合しているアミノ酸の数によらない。従って、「タンパク質」は、オリゴペプチド、ポリペプチド及びタンパク質のいずれをも含む意味で用いる。
(2)
 前記架橋基が、炭素数1~3の炭化水素基又は炭素数2~6のアルキレンオキシド含有基である、(1)に記載のタンパク質のチオールプローブ。
(3)
 前記アルキレンオキシド含有基におけるアルキレンオキシドが、エチレンオキシド又はプロピレンオキシドである、(2)に記載のタンパク質のチオールプローブ。
(4)
 前記置換アミノ基が、-NHR(Rは、炭化水素基又は窒素含有基を表す)で表される基である、(1)~(3)のいずれかに記載のタンパク質のチオールプローブ。
(5)
 前記Rが、置換されていてもよいアミジノ基又は置換されていてもよいトリアジノ基である、(4)に記載のタンパク質のチオールプローブ。
(6)
 前記置換されていてもよいトリアジノ基における置換基が、アミノ基及び炭素数1又は2のアルコキシ基からなる群から選ばれる、(5)に記載のタンパク質のチオールプローブ。
(7)前記置換されていてもよいアミジノ基における置換基が、炭素数1又は2のアルキル基である、(5)に記載のタンパク質のチオールプローブ。
(8)前記置換アンモニウム基が、炭素数1又は2のアルキル基で置換された第三級アンモニウム基又は第四級アンモニウム基である、(1)~(2)のいずれかに記載のタンパク質のチオールプローブ。
(9)
 下記式(i):
Figure JPOXMLDOC01-appb-C000010
 
で表される、(8)に記載のタンパク質のチオールプローブ。
(10)
 下記式(ii):
Figure JPOXMLDOC01-appb-C000011
 
で表される、(8)に記載のタンパク質のチオールプローブ。
(11)
 下記式(iii):
Figure JPOXMLDOC01-appb-C000012
 
で表される、(8)に記載のタンパク質のチオールプローブ。
(12)
 下記式(iv):
Figure JPOXMLDOC01-appb-C000013
 
で表される、(5)に記載のタンパク質のチオールプローブ。
(13)
 下記式(v):
Figure JPOXMLDOC01-appb-C000014
 
で表される、(5)に記載のタンパク質のチオールプローブ。
(14)
 下記式(vi):
Figure JPOXMLDOC01-appb-C000015
 
で表される、(6)に記載のタンパク質のチオールプローブ。
(15)
 下記式(vii):
Figure JPOXMLDOC01-appb-C000016
 
で表される、(6)に記載のタンパク質のチオールプローブ。
(16)
 (1)~(15)のいずれかに記載のチオールプローブをタンパク質と反応させることにより、修飾タンパク質を得る工程と、
 前記修飾タンパク質を質量分析に供する工程とを含む、タンパク質の質量分析法。
 上記(16)においては、チオールプローブと反応すべきタンパク質は、還元処理によって生じたチオール基を有するものでありうる。
 本発明によると、質量分析においてイオン化をより促進するプローブ及びそれを用いたタンパク質の高感度質量分析法を提供することができる。また、本発明によって、疎水性度が高く且つターンオーバーが早いタンパク質にも対応することができるイオン化促進プローブ及びそれを用いたタンパク質の高感度質量分析法が可能になる。
 具体的には、本発明によると、従来のプロテオミクスにおいてチオール基の酸化防止のために用いられていた、ヨードアセトアミドを用いる還元-アルキル化工程のみを行った場合と比較して、約2~200倍感度を向上させることが可能になる。
 また、従来のICAT試薬のような疎水性の高いプローブとは異なり、本発明のプローブは分子全体の疎水性度を下げるよう分子設計されているため、本発明のプローブによって修飾されたタンパク質は修飾前と比べて親水的になる。このため、疎水性度が高いタンパク質に対応することができる。それに加えて、従来の還元-アルキル化工程で用いられていたアルキル化剤の代わりに、イオン化促進と感度向上の観点から分子設計されたプローブを用いることで、チオール基の酸化防止とイオン化促進処理とを同時に行うことができ、従来のプロトコルに変更を加えることはない。さらに、ターンオーバーの早い低含有量ペプチドや疎水性タンパク質についても応用することができる。
本発明のチオールプローブを付加したInsulinの質量分析によって検出されたalpha chainのピークの相対強度を、コントロール(IAA付加ペプチド)と比較して示したグラフ、及びコントロールに対する比(Enhanced ratio)をイオン化促進の程度を統計的に評価したp値(p-value)と共に示した表である。 本発明のチオールプローブを付加したInsulinの質量分析によって検出されたbeta chainのピークの相対強度を、コントロール(IAA付加ペプチド)と比較して示したグラフ、及びコントロールに対する比(Enhanced ratio)をイオン化促進の程度を統計的に評価したp値(p-value)と共に示した表である。 本発明のチオールプローブを付加したNC4 CLAC-Pの質量分析によって検出されたピークの相対強度を、コントロール(IAA付加ペプチド)と比較して示したグラフ、及びコントロールに対する比(Enhanced ratio)をイオン化促進の程度を統計的に評価したp値(p-value)と共に示した表である。 本発明のチオールプローブを付加したPSA2の質量分析によって検出されたピークの相対強度を、コントロール(IAA付加ペプチド)と比較して示したグラフ、及びコントロールに対する比(Enhanced ratio)をイオン化促進の程度を統計的に評価したp値(p-value)と共に示した表である。 本発明のチオールプローブを付加したS26C Amyloid-betaの質量分析によって検出されたピークの相対強度を、コントロール(IAA付加ペプチド)と比較して示したグラフ、及びコントロールに対する比(Enhanced ratio)をイオン化促進の程度を統計的に評価したp値(p-value)と共に示した表である。
 本発明のチオールプローブは、チオール基への反応性を有する構造と、分子全体の疎水性度を抑制するための構造と、プロトン化し易い構造とを有し、且つ、多段階MS解析においてプローブ自身の開裂によるマススペクトルの複雑化を招来する構造であるアミド基を有しないという特徴を有する。
 具体的には、チオール基への反応性を有する構造は、チオール基以外への官能基(例えばアミノ基)への副反応を最小限にし、且つ反応速度選択性の高い、ヨードアセチル基である。
 分子全体の疎水性度を抑制するための構造は、酸素含有基である。
 プロトン化し易い構造は窒素含有基である。
 より具体的には、本発明のチオールプローブは、下記式(I)、すなわちヨードアセトアミド基(ICHCO-)、酸素含有基(-OR-)、及び窒素含有基(-R)を有する構造式で表される。
Figure JPOXMLDOC01-appb-C000017
 
 式(I)中、Rは架橋基を表す。架橋基は、すなわち2価の連結基であり、通常は2価の有機基である。
 2価の有機基は、炭素数1又は2の炭化水素基でありうる。前記範囲を上回ると、分子全体の疎水性度が高くなり、イオン化促進効果が十分に得られにくくなる傾向にある。
 あるいは、2価の有機基は、炭素数2~6のアルキレンオキシド含有基でありうる。好ましくは、ポリアルキレンオキシド含有基である。より具体的には、アルキレンオキシド含有基におけるアルキレンオキシドは、エチレンオキシド又はプロピレンオキシドである。
 例えば、ORで表される基が、ポリアルキレングリコール基であることが好ましい。上記のポリアルキレングリコール基は、炭素数2~6のアルキレングリコールの重合によって生じる基でありうる。本発明においては、ポリエチレングリコール基(エチレングリコールの重合によって生じる基)及びポリプロピレングリコール基(1,2-プロパンジオール又は1,3-プロパンジオールの重合によって生じる基)からなる群から選ばれうる。なお、上記のポリアルキレングリコール基におけるグリコールの重合度は、2~6でありうる。
 式(I)中、Rは窒素含有基を表す。窒素含有基は、プロトン受容性基であって、具体的には、置換アンモニウム基又は置換アミノ基である。
 置換アンモニウム基は、三級アンモニウム基及び四級アンモニウム基でありうる。置換アンモニウム基における置換基は、炭素数1又は2のアルキル基等でありうる。置換アンモニウム基のカウンターアニオンは、1価のハロゲンアニオンであればよい。例えばCl、Br、Iなどでありうる。
 置換アミノ基は、-NHRで表される基でありうる。
 -NHRで表される基において、Rは、炭素数1又は2の炭化水素基又は窒素含有基でありうる。
 好ましくは、Rは、置換されていてもよいアミジノ基又は置換されていてもよいトリアジノ基でありうる。
 置換されていてもよいアミジノ基の場合、すなわち、-NHRで表される基は、置換されていてもよいグアニジノ基である。置換されていてもよいアミジノ基における置換基は、炭素数1又は2のアルキル基等でありうる。
 置換されていてもよいトリアジノ基における置換基は、アミノ基、炭素数1又は2のアルコキシ基からなる群から選ばれうる。
 本発明のプローブは分子全体として親水性であり、水、メタノール、エタノールに対する溶解性を示す。具体的には、室温(例えば20℃±10℃)条件下で上記溶媒に10~500mM、20~500mM、又は10~100mMの濃度で溶解可能であることが好ましい。
 さらに具体的なプローブの例を、下記式(i)、(ii)、(iii)、(iv)、(v)、(vii)及び(vii)で表す。
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
 チオールプローブの付加対象となるタンパク質は特に限定されない。チオールプローブの付加対象となるタンパク質は、広くアミノ酸重合体をいい、重合しているアミノ酸の数によらないため、分子量の範囲は特に限定されるものではない。特に、本発明においては、機能性タンパク質であることが好ましい。機能性タンパク質とは、特定の生理活性を有するタンパク質であり、例えば、ホルモン、アミロイド、サイトカイン等が挙げられる。本発明は、チオールプローブの付加対象となるタンパク質が、消化等の断片化工程を受けていないものである場合にも有用である。また、分子量がある程度大きいものや、システイン残基をより多く含むタンパク質ほど、本発明の効果が得られやすい傾向にある。通常の場合、チオールプローブの付加対象の分子量の範囲は1kDa以上でありうるが、例えば、1.4kDa以上、2kDa以上、2.4kDa以上又は3kDa以上であってもよい。前記範囲の上限値は特に限定されないが、例えば150kDaである。
 チオールプローブの付加対象となるタンパク質は、当然にチオール基を有する。タンパク質におけるチオール基は、通常、システイン残基に由来するものである。チオール基は、酸化を受けることによってスルフィノ基(-SOH)及びその塩、スルホ基(-SOH)及びその塩、及びジスルフィド基(-SS-)等の態様となっている場合が多いため、チオールプローブの導入の前に、還元処理が行われることによって生じさせることが通常である。
 以下に、本発明のチオールプローブを用いてタンパク質を修飾する工程を例示する。
Figure JPOXMLDOC01-appb-C000025
 
 システイン残基(Cystein residue)は、上記式中Xで表されるように、ジスルフィド基(SS bonding)、SO -基又はSO -基を生じうる。このようなシステイン残基を、例えばジチオスレイトール(dithiothreitol)等の還元剤による還元(Reduction)に供してチオール基(-SH基)を生じさせ、さらに、本発明のチオールプローブ(ICHCO)の付加に供することによって、プローブで修飾されたタンパク質を得ることができる。
 上記の還元及びチオールプローブでの修飾工程における具体的プロトコルは、従来の還元アルキル化に準じ、当業者が容易に決定することができるものである。すなわち、従来法におけるアルキル化工程で用いられるヨードアセトアミドの代わりに、本発明のチオールプローブを用いることを除いては、従来の還元アルキル化と同じプロトコルを採用することができる。具体的には、20~50mM濃度プローブを用い、室温(例えば20℃±10℃)で、30~60分反応させることができる。
 本発明のチオールプローブで修飾されたタンパク質は、質量分析に供される。質量分析に用いられる装置としては、例えば、イオン源として、エレクトロスプレーイオン化法、及びマトリックス支援レーザー脱離イオン化法等を採用することができる。分析部としては、磁場偏向型、四重極型、イオントラップ型、飛行時間型、及びフーリエ変換イオンサイクロトロン共鳴型等を適宜組み合わせることができる。
 また、イオン源としてマトリックス支援レーザー脱離イオン化法を採用する場合、マトリックスとしては、α-シアノ-4-ヒドロキシケイ皮酸、シナピン酸、2,5-ジヒドロキシ安息香酸等、従来から用いられているタンパク質用マトリックスを使用することができる。
 さらに、MS2乗以上の多段階MSが可能なタンデム型質量分析装置が好ましく用いられる。
 本発明のチオールプローブは、イオン化促進効果を有するため、定量性に優れる。従って、本発明のチオールプローブとして、所定の構造を有する分子(非標識プローブ)と、前記の分子における一部の構成原子が安定同位体に置き換わった構造を有する分子(安定同位体標識プローブ)とが組み合わされた定量化試薬として使用することもできる。このような定量化試薬は、ディファレンシャル解析に用いることができる。
 具体的には、(1)状態の異なるタンパク質試料、例えば解析すべきタンパク質試料Iとその対照タンパク質試料IIとの2種類の状態のタンパク質試料を用意し、(2)前記タンパク質試料Iを、非標識プローブ及び安定同位体標識プローブのいずれか一方を用いて修飾し、別途、前記タンパク質試料IIを、非標識プローブ及び安定同位体標識プローブのいずれか他方を用いて修飾し、(3) 修飾されたタンパク質試料I及び修飾されたタンパク質試料IIを混合し、(4)得られた修飾タンパク質混合物を消化工程に供することなく質量分析に供することができる。
 以下に実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[実施例1]
1.以下のサンプル(タンパク質又はペプチド)、試薬及び機器を用意した。
タンパク質の還元アルキル化のモデルとして汎用されるタンパク質1種;
   Insulin(Sigma-Aldrich)
      alpha鎖とbeta鎖とが、システインのSS結合を介して結合している。
        alpha鎖:GIVEQC CASVCSLYQL ENYCN(配列番号1))
        beta鎖:FVNQHL CGSHLVEALY LVCGERGFFY TPKA(配列番号2))
システインを一つだけ含むペプチドのモデル3種;
   NC4 CLAC-P (Anaspec)
      LGPDGLPMPG CWQK(配列番号3)
   PSA2 (Anaspec)
      KLQCVDLHV(配列番号4)
   S26C Amyloid-beta (17-40) (Anaspec)
      LVFFAEDVGC NKGAIIGLMV GGVV(配列番号5)
内部標準ペプチド1種;
   P14R (Sigma-Aldrich)
      PPPPPPPPPP PPPPR(配列番号6)
その他汎用試薬;
   重炭酸アンモニウム(Fluka)
   ジチオトレイトール(和光純薬)
   ヨードアセトアミド(和光純薬)
   α-シアノ-4-ヒドロキシケイ皮酸(CHCA)(島津GLC)
   トリフルオロ酢酸(和光純薬)
   アセトニトリル(和光純薬)
   ZipTip C18(Millipore)
使用機器;
   AXIMA(R) Performance(島津製作所)
2.以下のチオールプローブを用意した。用意したチオールプローブの化合物ID(compound id)、プロトン受容性基(group)、分子式(formula)、分子量(MW)、ペプチドへの結合によってシフトする分子量;delta Mass(dM)及び構造(structure)を示す。
Figure JPOXMLDOC01-appb-T000026
2.以下の方法でタンパク質及びペプチドサンプルを処理した。なお、%で表される量は、体積を基準としている。
 ペプチドを0.05% TFAと50%acetonitrileとを含む水溶液に溶解し、200 pmol分注 (100 pmol/μL, 2μL)した。
 100 mM NH4HCO3と10mM Dithiothreitolとを含む水溶液を10μL加え、pHを確認した (約pH 8.3であった)。
 56℃で30分インキュベートした。
 50 mM プローブ溶液を15 μl加え、室温, 30分暗所で撹拌した。なお、プローブ溶液の溶媒はそれぞれ以下の通りである。
   CC-02 HI、CC-02 Q、CC-03 Q、CC-10 HI及びIAAの場合は水
   TOC-06、TOC-07及びTOC-08の場合はメタノール
 10% TFA水溶液を5μL加え、反応停止させた。
 反応溶液2 μLを以下の量の0.1% TFA水溶液で希釈後、ZipTip C18で脱塩精製した。
   CC-02 HI、CC-02 Q、CC-03 Q、CC-10 HI及びIAAの場合は 20 μLのTFA水溶液
   TOC-06、TOC-07及びTOC-08の場合は200 μLのTFA水溶液
3.以下の条件でMS分析を行った。なお、%で表される量は、体積を基準としている。
 MSに供すべきサンプルは、プローブそれぞれについて12個作成した。
 内部標準として、0.3 pmolのP14Rを添加した。
 マトリックスとして、0.1% TFAと50% acetonitrileとを含む水溶液に5 mg/ml CHCAを溶解させた溶液を1ウェルにつき1μL添加した。
 質量分析として、ラスタースキャンで自動測定を行った(300 profile/run)。
 測定モードとして、linear positiveを用いた。
4.以下のように、データ解析を行った。
 プローブの付加により質量数がシフトしたピークを目的ピークとし、目的ピークの強度を、内部標準P14Rのピーク強度に対して補正した。
 上位及び下位からそれぞれ1番目の値及び2番目の値を異常値として排除した(35% trim-mean)。MALDI MS分析において、レーザーを照射する場所により、非常にイオンが発生しやすいホットスポットの存在と、逆にイオンがほとんど発生しない場所とがあることが経験的に知られていることから、MALDI MS分析は、常に異常値が出ることを前提に、その解析方法を考慮する必要があるためである。
 データのばらつき(SD値)及びイオン化促進の程度を統計的に評価した(p-value)。
 Insulinのalpha鎖、Insulinのbeta鎖、NC4 CLAC-P、PSA2、及びS26C Amyloid-betaについての解析結果を、それぞれ図1~5に示す。それぞれの図においては、使用したプローブごとにサンプルの相対ピーク強度のばらつきで表したグラフと、コントロール(IAA)に対するサンプルのピーク強度の比(Enhanced ratio)及びイオン化促進の程度を統計的に評価したp値(p-value)を表した表とを示す。なお、それぞれの表においては、10のべき乗をEを用いて表示しており、Eに引き続く負の整数は10のべき乗の指数を表す。
 配列番号6は、人工ポリペプチドである。

Claims (16)

  1.  下記式(I):
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、Rは架橋基、Rは置換アンモニウム基又は置換アミノ基を表す)
    で示される、タンパク質のチオールプローブ。
  2.  前記架橋基が、炭素数1~3の炭化水素基又は炭素数2~6のアルキレンオキシド含有基である、請求項1に記載のタンパク質のチオールプローブ。
  3.  前記アルキレンオキシド含有基におけるアルキレンオキシドが、エチレンオキシド又はプロピレンオキシドである、請求項2に記載のタンパク質のチオールプローブ。
  4.  前記置換アミノ基が、-NHR(Rは、炭化水素基又は窒素含有基を表す)で表される基である、請求項1~3のいずれか1項に記載のタンパク質のチオールプローブ。
  5.  前記Rが、置換されていてもよいアミジノ基又は置換されていてもよいトリアジノ基である、請求項4に記載のタンパク質のチオールプローブ。
  6.  前記置換されていてもよいトリアジノ基における置換基が、アミノ基及び炭素数1又は2のアルコキシ基からなる群から選ばれる、請求項5に記載のタンパク質のチオールプローブ。
  7.  前記置換されていてもよいアミジノ基における置換基が、炭素数1又は2のアルキル基である、請求項5に記載のタンパク質のチオールプローブ。
  8.  前記置換アンモニウム基が、炭素数1又は2のアルキル基で置換された第三級アンモニウム基又は第四級アンモニウム基である、請求項1~3のいずれか1項に記載のタンパク質のチオールプローブ。
  9.  下記式(i):
    Figure JPOXMLDOC01-appb-C000002
     
    で表される、請求項8に記載のタンパク質のチオールプローブ。
  10.  下記式(ii):
    Figure JPOXMLDOC01-appb-C000003
     
    で表される、請求項8に記載のタンパク質のチオールプローブ。
  11.  下記式(iii):
    Figure JPOXMLDOC01-appb-C000004
     
    で表される、請求項8に記載のタンパク質のチオールプローブ。
  12.  下記式(iv):
    Figure JPOXMLDOC01-appb-C000005
     
    で表される、請求項5に記載のタンパク質のチオールプローブ。
  13.  下記式(v):
    Figure JPOXMLDOC01-appb-C000006
     
    で表される、請求項5に記載のタンパク質のチオールプローブ。
  14.  下記式(vi):
    Figure JPOXMLDOC01-appb-C000007
     
    で表される、請求項6に記載のタンパク質のチオールプローブ。
  15.  下記式(vii):
    Figure JPOXMLDOC01-appb-C000008
     
    で表される、請求項6に記載のタンパク質のチオールプローブ。
  16.  請求項1~15のいずれか1項に記載のチオールプローブをタンパク質と反応させることにより、修飾タンパク質を得る工程と、
     前記修飾タンパク質を質量分析に供する工程とを含む、タンパク質の質量分析法。
PCT/JP2012/070924 2011-09-09 2012-08-17 親水性チオールプローブ WO2013035513A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12830678.4A EP2755024B1 (en) 2011-09-09 2012-08-17 Hydrophilic thiol probe
JP2013532520A JP6134646B2 (ja) 2011-09-09 2012-08-17 親水性チオールプローブ
US14/241,728 US9448240B2 (en) 2011-09-09 2012-08-17 Hydrophilic thiol probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011196958 2011-09-09
JP2011-196958 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013035513A1 true WO2013035513A1 (ja) 2013-03-14

Family

ID=47831963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070924 WO2013035513A1 (ja) 2011-09-09 2012-08-17 親水性チオールプローブ

Country Status (4)

Country Link
US (1) US9448240B2 (ja)
EP (1) EP2755024B1 (ja)
JP (2) JP6134646B2 (ja)
WO (1) WO2013035513A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601679A (zh) * 2013-12-04 2014-02-26 山东大学 一种以吡唑啉为母体的还原型谷胱甘肽荧光探针
JP2015121500A (ja) * 2013-12-25 2015-07-02 株式会社島津製作所 質量分析方法及び質量分析装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268131B1 (en) * 1997-12-15 2001-07-31 Sequenom, Inc. Mass spectrometric methods for sequencing nucleic acids
AU2002241732B2 (en) * 2000-10-23 2007-07-12 Genetics Institute, Llc Isotope-coded ionization-enhancing reagents (ICIER) for high-throughput protein identification and quantitation using matrix-assisted laser desorption ionization mass spectrometry
US20020164649A1 (en) * 2000-10-25 2002-11-07 Rajendra Singh Mass tags for quantitative analysis
US7563891B2 (en) * 2004-05-21 2009-07-21 Becton, Dickinson & Company Long wavelength thiol-reactive fluorophores
US20110039277A1 (en) * 2008-04-18 2011-02-17 Pier Mastroberardino Methods of Labeling Proteins
GB0914110D0 (en) * 2009-08-12 2009-09-16 Medical Res Council Peptide libraries

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DIYA REN ET AL.: "Enrichment of Cysteine- Containing Peptides from Tryptic Digests Using a Quaternary Amine Tag", ANALYTICAL CHEMISTRY, vol. 76, no. 15, 1 August 2004 (2004-08-01), pages 4522 - 4530, XP003018643 *
HIROKI KUYAMA ET AL.: "An approach to quantitative proteome analysis by labeling tryptophan residues", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, vol. 17, no. 14, 28 May 2003 (2003-05-28), pages 1642 - 1650, XP002990925 *
JUNPEI TAKEDA ET AL.: "MALDI-MS ni yoru Hanno Kassei Taishabutsu Screening o Shiko shita Teibunshi Probe no Kento", THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY DAI 59 NENKAI KOEN YOSHISHU, 1 September 2010 (2010-09-01), pages 339, XP008169317 *
See also references of EP2755024A4 *
TAKASHI SHIMADA ET AL.: "Development of iodoacetic acid-based cysteine mass tags: Detection enhancement for cysteine-containing peptide by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry", ANALYTICAL BIOCHEMISTRY, vol. 421, no. 2, 15 February 2012 (2012-02-15), pages 785 - 787, XP055114506 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601679A (zh) * 2013-12-04 2014-02-26 山东大学 一种以吡唑啉为母体的还原型谷胱甘肽荧光探针
CN103601679B (zh) * 2013-12-04 2015-04-22 山东大学 一种以吡唑啉为母体的还原型谷胱甘肽荧光探针
JP2015121500A (ja) * 2013-12-25 2015-07-02 株式会社島津製作所 質量分析方法及び質量分析装置

Also Published As

Publication number Publication date
JP2016212118A (ja) 2016-12-15
EP2755024A4 (en) 2014-12-24
JP6134646B2 (ja) 2017-05-24
JP6135814B2 (ja) 2017-05-31
US9448240B2 (en) 2016-09-20
US20140212980A1 (en) 2014-07-31
EP2755024A1 (en) 2014-07-16
EP2755024B1 (en) 2019-05-01
JPWO2013035513A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
Chen Review of a current role of mass spectrometry for proteome research
Steen et al. A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode
Ashcroft Protein and peptide identification: the role of mass spectrometry in proteomics
US20080242838A1 (en) Labeling reagent and methods of use
Reid et al. Selective identification and quantitative analysis of methionine containing peptides by charge derivatization and tandem mass spectrometry
EP1415161B1 (en) Isotope-coded ionization-enhancing reagents (icier) for high-throughput protein identification and quantification using mass spectrometry
Nardiello et al. Strategies in protein sequencing and characterization: Multi-enzyme digestion coupled with alternate CID/ETD tandem mass spectrometry
JP6135814B2 (ja) 親水性チオールプローブ
Qiao et al. Imidazolium-based iodoacetamide functional tags: design, synthesis, and property study for cysteinyl-peptide analysis by mass spectrometry
US20050224710A1 (en) Method for measuring hydrophobic peptides using maldi mass spectrometer
Zhang et al. Peptide photodissociation with 157 nm light in a commercial tandem time-of-flight mass spectrometer
Nakajima et al. Mass spectrometry-based sequencing of protein C-terminal peptide using α-carboxyl group-specific derivatization and COOH capturing
JP6742235B2 (ja) 質量分析を用いたタンパク質の検出方法
Zhou et al. A binary matrix for improved detection of phosphopeptides in matrix‐assisted laser desorption/ionization mass spectrometry
EP2529233B1 (en) Mass spectrometry-based protein identification
JP7010601B2 (ja) タンパク質の酵素消化方法
JP4595638B2 (ja) 還元性物質を用いるタンパク質又はペプチドのジスルフィドマッピング法
Sun et al. Matrix‐assisted laser desorption/ionization‐MS‐based relative quantification of peptides and proteins using iodoacetamide and N‐methyliodoacetamide as labeling reagents
JP2014215187A (ja) ペプチドの解析法
Steckel et al. Detection of protein posttranslational modifications by mass spectrometry
Arnott et al. Manipulating the mass spectrometric properties of peptides through selective chemical modification
Rathore Integration of tandem mass spectrometry and ion mobility spectrometry for protein characterization and structural analysis
Solis et al. Characterizing the Termini of Recombinant Proteins
JP2014005221A (ja) タンパク質のc末端ペプチドを濃縮する方法及びタンパク質のc末端配列解析法
JP2011242159A (ja) 電気泳動で分離されたタンパク質を膜フィルターに転写し質量分析する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532520

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012830678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14241728

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE