WO2013034739A1 - Amplitudenauswertung mittels goertzel-algorithmus in einem differenztrafo-wegsensor - Google Patents

Amplitudenauswertung mittels goertzel-algorithmus in einem differenztrafo-wegsensor Download PDF

Info

Publication number
WO2013034739A1
WO2013034739A1 PCT/EP2012/067575 EP2012067575W WO2013034739A1 WO 2013034739 A1 WO2013034739 A1 WO 2013034739A1 EP 2012067575 W EP2012067575 W EP 2012067575W WO 2013034739 A1 WO2013034739 A1 WO 2013034739A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
sensor arrangement
signal
signal processing
arrangement according
Prior art date
Application number
PCT/EP2012/067575
Other languages
English (en)
French (fr)
Inventor
Frank Grunwald
Sören Lehmann
Original Assignee
Continental Teves Ag & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves Ag & Co. Ohg filed Critical Continental Teves Ag & Co. Ohg
Priority to EP12756205.6A priority Critical patent/EP2753899B1/de
Priority to KR1020147009333A priority patent/KR101958504B1/ko
Priority to CN201280043693.1A priority patent/CN103782134B/zh
Priority to US14/342,850 priority patent/US9243933B2/en
Publication of WO2013034739A1 publication Critical patent/WO2013034739A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • G01D5/2258Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable ferromagnetic element, e.g. core
    • G01D5/2266Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable ferromagnetic element, e.g. core specially adapted circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements

Definitions

  • the invention relates to a Wegsensoran extract according to Oberbe ⁇ handle of claim 1 and the use of the displacement sensor assembly in motor vehicles.
  • Magnetic position sensor arrangement with a primary coil and two secondary coils which is associated with a soft magnetic coupling ⁇ element which is enced by the magnetic field of a position transducer magnet for displacement measurement locally so affect that the relative position between Positionsge ⁇ bermagnet and coupling element can be determined in the Publications EP 0 693 673 A2, EP 0 238 922 A1 and DE 2 325 752.
  • Differenztrafo- displacement sensors are known. These are for example designed as LVDT "Linear Variable Differenti ⁇ al Transformer", wherein a soft magnetic core of the primary and secondary side coils is moved and the motion deflection of this soft magnetic core is detected.
  • the invention has the object has risen to propose a displacement sensor ⁇ arrangement that performs a digital evaluation of at least one electrical variable of the two secondary coils and thereby the position and / or deflection or the to be detected way in dependence of the electrical excitation of the primary coil in a relatively simple and / or cost-effective manner determined.
  • the electrical variable at the two secondary coils is preferably understood as meaning in each case the electrical voltage at the first and second secondary coils.
  • the displacement sensor arrangement has at least one first displacement element, comprising at least one first position sensor magnet, wherein the first Verschiebeele ⁇ ment along a measuring direction relative to the soft magnetic coupling element is slidably disposed and the primary coil and the secondary coils are magnetically coupled to the soft magnetic coupling element and wherein the magnetic field generated by the first position sensor magnet, the coupling element at least locally influenced so that the relative position between the first displacement element and the soft magnetic coupling element or the deflection or the displacement of the displacement element is detected directly or indirectly by at least one of the secondary coils.
  • a permanent magnet is preferred understood and alternatively, preferably a Elect ⁇ romagnet.
  • the path sensor arrangement as
  • Differential transformer displacement sensor is formed, in particular as LVDT "Linear Variable Differential Transformer" is formed, wherein the soft magnetic coupling element is movable out ⁇ forms and the position and / or deflection of this Kopp ⁇ ment element is detected.
  • LVDT Linear Variable Differential Transformer
  • the travel sensor arrangement is designed as follows: displacement sensor assembly comprising at least egg ⁇ ne primary coil, at least two secondary coils, at least a soft magnetic coupling element and at least one first sliding element comprising at least a first position transducer magnet, wherein the first slide member ent ⁇ long a measurement direction is arranged displaceably relative to the soft magnetic coupling element and the primary ⁇ coil and the secondary coils are magnetically coupled to the soft magnetic coupling element and wherein the magnetic field generated by the first magnetic encoder, the coupling element at least locally so influenced that the relative position between the first displacement element and the soft magnetic coupling element is detected directly or indirectly by at least one of the secondary coils, wherein the Wegsensoranssen comprises a signal processing unit, which is designed so that they performs a digital signal processing at least one electrical variable of the two secondary coils and the relative position between the first displacement element and the soft magnetic see coupling element determined, wherein the Signalverarbei ⁇ processing unit comprises at least one Goertzelfilter.
  • the signal processing unit is designed such that with the at least one Goertzelfilter the at least one electrical variable of the two secondary ⁇ coil in dependence of the electrical excitation signal to the primary coil evaluated and / or analyzed, in particular ⁇ sondere the center frequency of at least one
  • Goertzelfilters essentially the frequency of
  • Excitation voltage and / or the exciting current to / through the primary coil corresponds.
  • the signal processing unit for evaluation and / or analysis per ⁇ wells having the at least one electrical variable of the first and the second secondary coil, at least one Goertzelfilter.
  • the signal processing unit preferably comprises at least one analog / digital converter, with which are digitized at least one electrical variable of the two secondary coils as a first digital secondary coil signal and a second digital secondary coil signal, wherein the signal ⁇ processing unit having a window function, in particular ⁇ sondere a Hanning Window function with which a windowing of the first and the second digital secondary coil signal is carried out in each case.
  • the signal processing unit is particularly preferably designed in such a way that, after the first and second digital secondary coil signals have been windowed, at least these two signals are each filtered by a Goertzelfilter, after which a summation and a difference of the result Goertzelfilters is performed, after which the quotient of the difference signal is formed by the sum signal.
  • the Goertzelfilter is preferably designed so that it performs a band filtering with respect to a center frequency and a decimation.
  • the signal processing unit comprises a clock unit, wherein in response to a clock signal ⁇ this clock generator both the starting voltage and / or the exciting current to / are generated by the primary coil, and the center frequency of the at least one Goertzelfilters be defined.
  • the displacement sensor arrangement is preferably redundant surebil ⁇ det and preferably has two first secondary coils and two second secondary coils which are connected to the signal processing unit, or each having a signal processing unit ⁇ .
  • the at least one Goertzelfilter is designed so that it filters with respect to a single frequency.
  • the at least one Goertzelfilter is designed to act as a decimating bandpass filter.
  • the position sensor assembly preferably comprises an additional, second soft magnetic coupling element insbeson ⁇ particular immovably arranged, which is constructed and angeord ⁇ net that it is the improvement of the magnetic yoke of the magnetic field used by the first soft magnetic coupling elements and the coil.
  • the soft magnetic coupling element in particular the directly coupled to the coil, preferably has a Leksaus ⁇ expansion, with respect to which it is arranged substantially parallel to the measuring direction of the Wegsensoran nie.
  • the two secondary coils are preferably arranged with respect to the measuring direction at the two ends of the winding body of the primary coil.
  • the first position sensor magnet is part of the associated displacement element, wherein the displacement ⁇ beelement is in particular designed as a piston, and / or that the first position sensor magnet in the Verschiebeele ⁇ ment, in particular in a piston, is inserted and / or at this is attached.
  • the displacement element is preferably formed as a piston or Actuate ⁇ transmission element or actuating rod and serves in particular the power transmission.
  • the displacement sensor arrangement is expediently part of a motor vehicle brake system, wherein the (first) displacement element ment, comprising the first position transmitter magnet, coupled to an actuating device or a brake pedal device and / or is connected.
  • the at least three coils, primary coil and at least first and second secondary coil suitably surround the soft magnetic coupling element and are in particular di ⁇ rectly wound on this formed and arranged and there ⁇ in particular preferably with an electrically insulating material potted or fixed with a varnish.
  • the primary coil is preferably connected to an AC power source or AC power source which drives an alternating current or an AC voltage having a substantially constant amplitude of the current or the voltage and defi ned ⁇ alternating frequency.
  • a Goertzelfilter is preferably understood an electronic unit and / or software unit, which ei ⁇ nen Goertzel algorithm has implemented.
  • the displacement sensor arrangement is preferably designed so that the primary coil with at least two different superimposed over ⁇ frequencies, ie a first and a second excitation frequency is excited and the primary coil, a first secondary coil, an additional first secondary coil, a second secondary coil, and an additional second secondary ⁇ associated with the primary coil all are magnetically coupled via the soft magnetic coupling element.
  • the first two secondary coils, and the two second secondary coils is respectively assigned a signal processing ⁇ unit, each of which holds a Goertzelfilter environmentally wherein the Goertzelfilter the first Signalverarbei ⁇ processing unit having a center frequency of the first excitation frequency and the Goertzelfilter the second Signalverarbei ⁇ processing unit, the second Excitation frequency as the center frequency has.
  • the combination of the first secondary coil and the additional first secondary coil with the first signal processing unit detects and calculates the position and / or the deflection on the basis of the first secondary coil
  • Excitation frequency and additionally, redundantly detects and calculates the combination of the second secondary coil and additional second secondary coil with the second Signalverarbei ⁇ processing unit, the position and / or the deflection based on the second excitation frequency.
  • First and second processing unit comprise Signalverarbei ⁇ particularly preferred, both per ⁇ wells a window function which is upstream of the Goertzelfilter, such as a Hanning window function, as well as each most preferably a difference and a summation with subsequent
  • a differential transformer displacement sensor as a displacement sensor arrangement, designed with a permanent magnet for marking or detecting the path length
  • FIG. 2 shows a signal processing unit with a synchronous demodulator in duplicate for the synchronous rectification of the transformer secondary voltages U1 ⁇ , U2 ⁇ , while an exemplary implementation with digital Signalprozes ⁇ sor, according to the prior art,
  • Fig. 3 the exemplary block diagram of the erfindungsge ⁇ MAESSEN signal processing unit of the travel sensor arrangement implemented Goertzelfiltern or Goertzel algorithm, for example in software,
  • FIG. 4 shows the transmission behavior (example configuration) implemented as an amplitude response using this displacement sensor arrangement and its signal processing circuit from FIG. 3, FIG.
  • Fig. 5 is a travel sensor arrangement with a redundant configuration in which two first and two second Sekundärspu ⁇ len of the primary coil and associated with the two first and the two second secondary coils are each assigned a Signalverarbei ⁇ processing unit, and
  • Fig. 6 shows the amplitude response of the filtered by means of the respective Goertzel filter signals of the two paths 1 and 2, which are each realized as signal processing paths by the two signal processing units and different center frequencies of the Goertzelfilter. Due to the high selectivity of the filter, for example approx. 60dB, completely autonomous signal processing units or paths are maintained, of which the other path remains unaffected even if one excitation frequency fails.
  • Fig. 1 shows a position sensor arrangement exemplified as Diffe ⁇ rentialtransformator formed in which a permanent magnet is moved as the position transducer magnet 7, which is fixed to an unillustrated slide member, such as an operating rod or a piston.
  • Primary coil 1 is magnetically gekop ⁇ pelt with first and second secondary coil 3, 4 via soft magnetic coupling element 2, wherein the exemplary Wegsensoran extract nor an additional soft magnetic coupling element, which is ⁇ formed and arranged so that it improves the magnetic return of the magnetic field through the first soft magnetic coupling element 2 and the coils 1, 3 and 4 is used.
  • the soft magnetic coupling element 2 has a Lekssaus ⁇ expansion, with respect to which it is arranged substantially parallel to the measuring direction m of the Wegsensoran ever.
  • the position P of the position transducer magnet 7 and the deflection of the travel sensor arrangement is obtained from the electrical signals of the two secondary coils, such as from the two secondary voltages U1 ⁇ U2 ⁇ wherein the position P as illustrated by formulas substantially or depen ⁇ gig from the quotient the difference by the sum of the the voltages U2 and Ul results which are determined as values of the clamping ⁇ voltages depending on the excitation frequency of the primary coil 1 and calculated.
  • Fig. 3 shows an exemplary schematic Reali ⁇ tion of the signal processing unit 5 of the Wegsensoranord ⁇ voltage, by way of example formed by means of a digital Sig ⁇ nalreaors.
  • the two signals for example, the voltage signals of the first and second secondary coil are digitized as input signals by means of analog / digital converter 13.
  • These two digital signals are each supplied to a window function 8, for example according to a Hanning window function, with each of which a windowing of the first and the second digital secondary coil signal - upper and lower signal path, is performed.
  • Excitation frequency of the primary coil not shown.
  • the center frequencies of the Goertzelfilter 6 and the excitation frequency of the primary coil match.
  • FIGS. 5 an embodiment of the displacement sensor ⁇ arrangement is shown in which the primary coil 1 having we ⁇ iquess two different superimposed frequencies, ie a first and a second excitation frequency, the part of the electric excitation source 14, an example of a Wech ⁇ selhardsttle, is excited , Primary coil 1, a first secondary coil 3a, an additional first seconding ⁇ därspule 3b, a second secondary coil 4a and a zusharm ⁇ Liche second secondary coil 4b are assigned, which are magnetically coupled to the Pri ⁇ märspule 1 all over the soft-magnetic coupling element. 2
  • the two first secondary coils 3a, 3b and the two second secondary coils 4a, 4b in each case a signal processing unit 5 is assigned, each comprising a Goertzelfilter 6, wherein the
  • Goertzelfilter the first signal processing unit as the center frequency, the first exciting frequency and the Goertzelfilter the second signal processing unit has the second exciting frequency as the center frequency.
  • First and second signal processing units each comprise an NEN A / D converter 13 which digitizes the digitized signals of the first and additional first and second and additional second secondary coils.
  • these two signals are each - upper and lower signal path within ⁇ the signal processing - a window function 8, for example, designed as a Hanning window function, fed ⁇ leads, after which the resulting signals are filtered by the Goertzelfilter 6 respectively.
  • the amplitudes, as results of these filtered signals, then ei ⁇ ner difference formation 10 and a summation 9 are supplied with subsequent quotient formation 11 for calculating the position and / or deflection or of the corresponding signal, which by way of example a respective channel coding he ⁇ follows.
  • the clock units 12 of the two signal processing units 5 generate different clock signals, different frequency, wherein the electrical
  • Excitation source 14 is operated with the superposition of these two frequencies and the Goertzelfilter the respective signal processing unit 5, each receive their center frequencies of the own clock generator unit 12.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Wegsensoranordnung, umfassend zumindest eine Primärspule (1), wenigstens eine erste und eine zweite Sekundärspule (3, 4) und mindestens ein weichmagnetisches Kopplungselement (2), das die Primärspule (1) und die beiden Sekundärspulen (3, 4) magnetisch koppelt, wobei der Wegsensor so ausgebildet ist, dass eine Position und/oder Auslenkung in Abhängigkeit der magnetischen Kopplung zwischen der Primärspulen (1) und zumindest der ersten und zweiten Sekundärspule (3, 4) erfasst wird, wobei die Wegsensoranordnung eine Signalverarbeitungseinheit (5) umfasst, welche so ausgebildet ist, dass sie eine digitale Signalverarbeitung wenigstens einer elektrischen Größe der beiden Sekundärspulen (3, 4) durchführt und die Position und/oder Auslenkung ermittelt, wobei die Signalverarbeitungseinheit (5) wenigstens ein Goertzelfilter (6) umfasst.

Description

Amplitudenauswertung mittels Goertzel-Algorithmus in einem Differenztrafo-Wegsensor
Die Erfindung betrifft eine Wegsensoranordnung gemäß Oberbe¬ griff von Anspruch 1 sowie die Verwendung der Wegsensoranordnung in Kraftfahrzeugen.
Magnetische Wegsensoranordnungen mit einer Primärspule und zwei Sekundärspulen, denen ein weichmagnetisches Kopplungs¬ element zugeordnet ist, welches durch das magnetische Feld eines Positionsgebermagneten zur Wegmessung lokal so beein- flusst wird, dass die Relativposition zwischen Positionsge¬ bermagnet und Kopplungselement bestimmt werden kann, sind in den Druckschriften EP 0 693 673 A2, EP 0 238 922 AI und DE 2 325 752 beschrieben.
Außerdem sind Differenztrafo- Wegsensoren bekannt. Diese gibt es beispielsweise als LVDT „Linear Variable Differenti¬ al Transformer" ausgebildet, wobei ein weichmagnetischer Kern der primär- und sekundärseitigen Spulen bewegt wird und die Bewegungsauslenkung dieses weichmagnetischen Kerns er- fasst wird.
Für eine digitale Wegmessung ist es bekannt die elektrische Wechselspannung an der ersten und der zweiten Sekundärspule jeweils zu digitalisieren und in Abhängigkeit der Frequenz des Anregestroms bzw. der Anregespannung durch/an die/der Primärspule digital auszuwerten und dabei die Position bzw. Auslenkung bzw. den zu erfassenden Weg zu ermitteln.
Die Erfindung hat sich die Aufgabe gestellt eine Wegsensor¬ anordnung vorzuschlagen, welche eine digitale Auswertung wenigstens einer elektrischen Größe der beiden Sekundärspulen durchführt und dabei die Position und/oder Auslenkung bzw. den zu erfassenden Weg in Abhängigkeit der elektrischen Anregung der Primärspule in relativ einfacher und/oder kostengünstiger Weise ermittelt.
Diese Aufgabe wird erfindungsgemäß gelöst durch die Wegsen¬ soranordnung gemäß Anspruch 1.
Unter der elektrischen Größe an den beiden Sekundärspulen wird vorzugsweise jeweils die elektrische Spannung an der ersten und zweiten Sekundärspule verstanden.
Es ist bevorzugt, dass die Wegsensoranordnung mindestens ein erstes Verschiebeelement aufweist, umfassend zumindest einen ersten Positionsgebermagnet, wobei das erste Verschiebeele¬ ment entlang einer Messrichtung relativ zu dem weichmagnetischen Kopplungselement verschiebbar angeordnet ist und die Primärspule und die Sekundärspulen mit dem weichmagnetischen Kopplungselement magnetisch gekoppelt sind und wobei das durch den ersten Positionsgebermagneten erzeugte Magnetfeld das Kopplungselement zumindest lokal so beeinflusst, dass die Relativposition zwischen dem ersten Verschiebeelement und dem weichmagnetischen Kopplungselement bzw. die Auslenkung bzw. der Weg des Verschiebeelements durch mindestens eine der Sekundärspulen direkt oder indirekt erfasst wird. Unter dem Positionsgebermagneten wird bevorzugt ein Permanentmagnet verstanden und alternativ vorzugsweise ein Elekt¬ romagnet .
Alternativ vorzugsweise ist die Wegsensoranordnung als
Differenztrafo-Wegsensor ausgebildet, insbesondere als LVDT „Linear Variable Differential Transformer" ausgebildet ist, wobei das weichmagnetische Kopplungselement bewegbar ausge¬ bildet ist und die Position und/oder Auslenkung dieses Kopp¬ lungselements erfasst wird.
Es ist zweckmäßig, dass die Wegsensoranordnung wie folgt ausgebildet ist: Wegsensoranordnung, umfassend zumindest ei¬ ne Primärspule, wenigstens zwei Sekundärspulen, mindestens ein weichmagnetisches Kopplungselement und mindestens ein erstes Verschiebeelement, umfassend zumindest einen ersten Positionsgebermagnet, wobei das erste Verschiebeelement ent¬ lang einer Messrichtung relativ zu dem weichmagnetischen Kopplungselement verschiebbar angeordnet ist und die Primär¬ spule und die Sekundärspulen mit dem weichmagnetischen Kopplungselement magnetisch gekoppelt sind und wobei das durch den ersten Positionsgebermagneten erzeugte Magnetfeld das Kopplungselement zumindest lokal so beeinflusst, dass die Relativposition zwischen dem ersten Verschiebeelement und dem weichmagnetischen Kopplungselement durch mindestens eine der Sekundärspulen direkt oder indirekt erfasst wird, wobei die Wegsensoranordnung eine Signalverarbeitungseinheit um- fasst, welche so ausgebildet ist, dass sie eine digitale Signalverarbeitung wenigstens einer elektrischen Größe der beiden Sekundärspulen durchführt und die Relativposition zwischen dem ersten Verschiebeelement und dem weichmagneti- sehen Kopplungselement ermittelt, wobei die Signalverarbei¬ tungseinheit wenigstens ein Goertzelfilter umfasst.
Es ist bevorzugt, dass die Signalverarbeitungseinheit so ausgebildet ist, dass mit dem zumindest einen Goertzelfilter die wenigstens eine elektrische Größe der beiden Sekundär¬ spulen in Abhängigkeit des elektrischen Anregesignals der Primärspule bewertet und/oder analysiert wird, wobei insbe¬ sondere die Mittenfrequenz des mindestens einen
Goertzelfilters im Wesentlichen der Frequenz der
Anregespannung und/oder des Anregestroms an/durch die Primärspule entspricht.
Es ist zweckmäßig, dass die Signalverarbeitungseinheit zur Bewertung und/oder Analyse der wenigstens einen elektrischen Größe der ersten und der zweiten Sekundärspule zumindest je¬ weils ein Goertzelfilter aufweist.
Die Signalverarbeitungseinheit weist vorzugsweise mindestens einen Analog-/Digitalwandler auf, mit welchem die wenigstens eine elektrische Größe der beiden Sekundärspulen als erstes digitales Sekundärspulensignal und als zweites digitales Se- kundärspulensignal digitalisiert werden, wobei die Signal¬ verarbeitungseinheit eine Fensterfunktion aufweist, insbe¬ sondere eine Hanning-Fensterfunktion, mit welcher jeweils eine Fensterung des ersten und des zweiten digitalen Sekun- därspulensignals durchgeführt werden. Besonders bevorzugt ist die Signalverarbeitungseinheit so ausgebildet, dass nach der Fensterung des ersten und des zweiten digitalen Sekun- därspulensignals zumindest diese beiden Signale jeweils von einem Goertzelfilter gefiltert werden, wonach eine Summenbildung und eine Differenzbildung des Ergebnisses des Goertzelfilters durchgeführt wird, wonach der Quotient aus dem Differenzsignal durch das Summensignal gebildet wird.
Der Goertzelfilter ist vorzugsweise so ausgebildet, dass er eine Bandfilterung hinsichtlich einer Mittenfrequenz und eine Dezimierung durchführt.
Durch die vorzugsweise Fensterung mit einer Fensterfunktion, z.B. dem Hanning-Fenster, besteht darüber hinaus insbesondere die Möglichkeit störende Seitenfrequenzen rechnerisch auszuwerten. Stimmt das Amplitudenverhältnis der Seitenbän¬ der und der Mittenfrequenz nicht überein, so kann das Signal gestört sein.
Es ist bevorzugt, dass die Signalverarbeitungseinheit eine Taktgebereinheit umfasst, wobei in Abhängigkeit eines Takt¬ signals dieser Taktgebereinheit sowohl die Anregespannung und/oder der Anregestrom an/durch die Primärspule erzeugt werden, als auch die Mittenfrequenz des wenigstens einen Goertzelfilters definiert werden.
Die Wegsensoranordnung ist vorzugsweise redundant ausgebil¬ det und weist vorzugsweise zwei erste Sekundärspulen und zwei zweite Sekundärspulen auf, welche mit der Signalverarbeitungseinheit oder mit jeweils einer Signalverarbeitungs¬ einheit verbunden sind.
Es ist bevorzugt, dass der wenigstens eine Goertzelfilter so ausgelegt ist, dass er hinsichtlich einer einzigen Frequenz filtert .
Es ist zweckmäßig, dass der wenigstens eine Goertzelfilter so ausgelegt ist, dass er als dezimierendes Bandpassfilter wirkt .
Die Wegsensoranordnung umfasst vorzugsweise ein zusätzliches, zweites weichmagnetisches Kopplungselement, insbeson¬ dere unbeweglich angeordnet, das so ausgebildet und angeord¬ net ist, dass es der Verbesserung des magnetischen Rückschlusses des Magnetfelds durch das erste weichmagnetische Kopplungselemente und die Spulen dient.
Das weichmagnetische Kopplungselement, insbesondere das mit den Spulen direkt gekoppelte, weist bevorzugt eine Längsaus¬ dehnung auf, bezüglich welcher es im Wesentlichen parallel zur Messrichtung der Wegsensoranordnung angeordnet ist.
Die zwei Sekundärspulen sind bezüglich der Messrichtung vorzugsweise an den beiden Enden des Wickelkörpers der Primärspule angeordnet.
Es ist bevorzugt, dass der erste Positionsgebermagnet Teil des zugeordneten Verschiebeelements ist, wobei das Verschie¬ beelement insbesondere als Kolben ausgebildet ist, und/oder dass der erste Positionsgebermagnet in das Verschiebeele¬ ment, insbesondere in einen Kolben, eingelassen ist und/oder an diesem befestigt ist.
Das Verschiebeelement ist bevorzugt als Kolben oder Betäti¬ gungselement oder Betätigungsstange ausgebildet und dient insbesondere der Kraftübertragung.
Die Wegsensoranordnung ist zweckmäßigerweise Teil eines Kraftfahrzeugbremssystems, wobei das (erste) Verschiebeele- ment, umfassend den ersten Positionsgebermagneten, mit einer Betätigungseinrichtung bzw. einer Bremspedaleinrichtung gekoppelt und/oder verbunden ist.
Die zumindest drei Spulen, Primärspule und wenigstens erste und zweite Sekundärspule, umgeben zweckmäßigerweise das weichmagnetische Kopplungselement und sind insbesondere di¬ rekt auf dieses gewickelt ausgebildet und angeordnet und da¬ bei besonders bevorzugt mit einem elektrisch isolierenden Material vergossen oder mit einem Lack fixiert.
Die Primärspule ist bevorzugt an eine Wechselstromquelle oder Wechselspannungsquelle angeschlossen, welche einen Wechselstrom oder eine Wechselspannung mit im Wesentlichen konstanter Amplitude des Stroms oder der Spannung und defi¬ nierter Wechselfrequenz treibt.
Unter einem Goertzelfilter wird vorzugsweise eine elektronische Einheit und/oder Softwareeinheit verstanden, welche ei¬ nen Goertzel-Algorithmus implementiert hat.
Unter einem Goertzelfilter bzw. Goertzel- Algorithmus wird vorzugsweise eine I-Punkt diskrete Fouriertransformation verstanden, nach einem definierten Algorithmus, die als Ergebnis die Amplitude des zugeführten Signals liefert. Die Phaseninformation kann insbesondere entfallen. Im Gegensatz zur FFT, fast Fourier Transformation, bietet sich der
Goertzel-Algorithmus stets an, wenn eine bekannte, diskrete Frequenz ausgewertet werden soll. Dies ist in der Wegsensoranordnung der Fall. Es kann sodann insbesondere eine
steilflankig, frequenzselektive Amplitudenberechnung auch auf einfachen, preiswerten yC erfolgen. Die Wegsensoranordnung ist bevorzugt so ausgebildet, dass die Primärspule mit wenigstens zwei unterschiedlichen über¬ lagerten Frequenzen, also einer ersten und einer zweiten Anregefrequenz, angeregt wird und der Primärspule eine erste Sekundärspule, eine zusätzliche erste Sekundärspule, eine zweite Sekundärspule sowie eine zusätzliche zweite Sekundär¬ spule zugeordnet sind, die mit der Primärspule alle über das weichmagnetische Kopplungselement magnetisch gekoppelt sind. Den beiden ersten Sekundärspulen sowie den beiden zweiten Sekundärspulen ist dabei jeweils eine Signalverarbeitungs¬ einheit zugeordnet, welche jeweils ein Goertzelfilter um- fasst, wobei das Goertzelfilter der ersten Signalverarbei¬ tungseinheit als Mittenfrequenz die erste Anregefrequenz aufweist und das Goertzelfilter der zweiten Signalverarbei¬ tungseinheit die zweite Anregefrequenz als Mittenfrequenz aufweist. Insbesondere erfassen und berechnet also die Kom¬ bination aus erster Sekundärspule und zusätzlicher erster Sekundärspule mit der ersten Signalverarbeitungseinheit die Position und/oder die Auslenkung auf Basis der ersten
Anregefrequenz und zusätzlich, redundant erfasst und berechnet die Kombination aus zweiter Sekundärspule und zusätzlicher zweiter Sekundärspule mit der zweiten Signalverarbei¬ tungseinheit die Position und/oder die Auslenkung auf Basis der zweiten Anregefrequenz. Erste und zweite Signalverarbei¬ tungseinheit umfassen dabei besonders bevorzugt beide je¬ weils eine Fensterfunktion, die dem Goertzelfilter vorgeschaltet ist, beispielsweise eine Hanning Fensterfunktion, sowie jeweils ganz besonders bevorzugt eine Differenzbildung und eine Summenbildung mit nachgeschalteter
Quotientenbildung zur Berechnung der Position und/oder Auslenkung bzw. des entsprechenden Signals. Bezugs zeichenliste
1 Primärspule
2 weichmagnetisches Kopplungselement
3 bzw. 3a erste Sekundärspule
3b zusätzliche erste Sekundärspule
4 bzw. 4a zweite Sekundärspule
4b zusätzliche zweite Sekundärspule
5 Signalverarbeitungseinheit
6 Goertzelfilter
7 Positionsgebermagnet
8 Fensterfunktion, insbesondere Hanning Fensterfunktion
9 Summenbildung
10 Differenzbildung
11 Quotientenbildung
12 Taktgebereinheit
13 A/D-Wandler
14 elektrische Anregequelle
Es zeigen beispielhaft in schematischer Darstellung
Fig. 1 einen Differenztrafo-Wegsensor als Wegsensoranordnung, ausgeführt mit einem Permanentmagneten zur Markierung bzw. Erfassung der Weglänge,
Fig. 2 eine Signalverarbeitungseinheit mit einem Syn- chrondemodulator in doppelter Ausführung zur synchronen Gleichrichtung der Trafo-Sekundärspannungen U1~,U2~, dabei eine beispielhafte Realisierung mit digitalem Signalprozes¬ sor, gemäß Stand der Technik,
Fig. 3 das beispielhafte Blockdiagramm der erfindungsge¬ mäßen Signalverarbeitungseinheit der Wegsensoranordnung mit implementierten Goertzelfiltern bzw. Goertzel- Algorithmus, beispielsweise in Software,
Fig. 4 das mit dieser Wegsensoranordnung und dessen Signalverarbeitungsschaltung aus Fig. 3 realisierte Durchlassverhalten (Beispielkonfiguration) als Amplitudengang,
Fig. 5 eine Wegsensoranordnung mit einer redundanten Ausbildung, bei welcher zwei erste und zwei zweite Sekundärspu¬ len der Primärspule zugeordnet sind und den zwei ersten und den zwei zweiten Sekundärspulen jeweils eine Signalverarbei¬ tungseinheit zugeordnet ist, und
Fig. 6 den Amplitudengang der mittels des jeweiligen Goertzel-Filters gefilterten Signale der beiden Pfade 1 und 2, welche jeweils als Signalverarbeitungspfade durch die beiden Signalverarbeitungseinheiten und unterschiedlichen Mittenfrequenzen der Goertzelfilter realisiert sind. Durch die hohe Selektivität des Filters, beispielsweise ca. 60dB, erhält völlig autonome Signalverarbeitungseinheiten bzw. - pfade von denen auch bei Ausfall einer Anregefrequenz der andere Pfad unbeeinflusst bleibt.
Fig. 1 zeigt eine Wegsensoranordnung beispielhaft als Diffe¬ rentialtransformator ausgebildet, bei welcher ein Permanentmagnet als Positionsgebermagnet 7 bewegt wird, der an einem nicht dargestellten Verschiebeelement befestigt ist, wie beispielsweise einer Betätigungsstange oder einem Kolben. Primärspule 1 ist mit erster und zweiter Sekundärspule 3, 4 über weichmagnetisches Kopplungselement 2 magnetisch gekop¬ pelt, wobei die beispielhafte Wegsensoranordnung noch ein zusätzliches weichmagnetisches Kopplungselement, das so aus¬ gebildet und angeordnet ist, dass es der Verbesserung des magnetischen Rückschlusses des Magnetfelds durch das erste weichmagnetische Kopplungselement 2 und die Spulen 1, 3 und 4 dient.
Das weichmagnetische Kopplungselement 2 weist eine Längsaus¬ dehnung auf, bezüglich welcher es im Wesentlichen parallel zur Messrichtung m der Wegsensoranordnung angeordnet ist.
Die Position P des Positionsgebermagneten 7 bzw. die Auslenkung der Wegsensoranordnung ergibt sich aus den elektrischen Signalen der beiden Sekundärspulen, beispielgemäß aus den beiden Sekundärspannungen U1~,U2~ wobei sich die Position P wie formelmäßig veranschaulicht im Wesentlichen bzw. abhän¬ gig als Quotient aus der Differenz durch die Summe der bei- den Spannungen U2 und Ul ergibt, welche als Werte der Span¬ nungen in Abhängigkeit der Anregefrequenz der Primärspule 1 ermittelt bzw. berechnet werden.
Fig. 3 zeigt dabei eine beispielhafte, schematische Reali¬ sierung der Signalverarbeitungseinheit 5 der Wegsensoranord¬ nung, beispielhaft ausgebildet mittels eines digitalen Sig¬ nalprozessors.
Die beiden Signale, beispielgemäß die Spannungssignale der ersten und zweiten Sekundärspule werden als Eingangssignale mittels Analog-/Digitalwandler 13 digitalisiert.
Diese beiden digitalen Signale werden jeweils einer Fensterfunktion 8 zugeführt, beispielgemäß einer Hanning- Fensterfunktion, mit welcher jeweils eine Fensterung des ersten und des zweiten digitalen Sekundärspulensignals - oberer und unterer Signalpfad, durchgeführt wird.
Nach der Fensterung 8 des ersten und des zweiten digitalen Sekundärspulensignals werden diese beiden Signale jeweils von einem Goertzelfilter 6 gefiltert und die Amplitude er¬ mittelt, wonach eine Summenbildung 9 und eine Differenzbil¬ dung 10 des Ergebnisses des Goertzelfilters 6 jeweils der beiden Signale durchgeführt wird, wonach der Quotient 11 aus dem Differenzsignal durch das Summensignal gebildet wird, wobei die Bildung des Quotienten beispielgemäß einer Normie¬ rung entspricht. In Funktionsblock 11 erfolgt außerdem eine Kennlinienkorrektur. Anschließend wird eine Kanalkodierung vorgenommen, bevor die Signalverarbeitungseinheit das Aus¬ gangssignal bereitstellt. Taktgebereinheit 12 stellt sowohl den Takt für die Berechnung der Mittenfrequenz der beiden Goertzelfilter 6 bereit, als auch die Berechnung der
Anregefrequenz der nicht dargestellten Primärspule. Dabei stimmen die Mittenfrequenzen der Goertzelfilter 6 und die Anregefrequenz der Primärspule überein.
Anhand der Fig. 5 ist ein Ausführungsbeispiel der Wegsensor¬ anordnung dargestellt, bei welchem die Primärspule 1 mit we¬ nigstens zwei unterschiedlichen überlagerten Frequenzen, also einer ersten und einer zweiten Anregefrequenz, seitens der elektrischen Anregequelle 14, beispielhaft eine Wech¬ selspannungsquelle, angeregt wird. Primärspule 1 sind dabei eine erste Sekundärspule 3a, eine zusätzliche erste Sekun¬ därspule 3b, eine zweite Sekundärspule 4a sowie eine zusätz¬ liche zweite Sekundärspule 4b zugeordnet, die mit der Pri¬ märspule 1 alle über das weichmagnetische Kopplungselement 2 magnetisch gekoppelt sind. Den beiden ersten Sekundärspulen 3a, 3b sowie den beiden zweiten Sekundärspulen 4a, 4b ist dabei jeweils eine Signalverarbeitungseinheit 5 zugeordnet, welche jeweils ein Goertzelfilter 6 umfasst, wobei das
Goertzelfilter der ersten Signalverarbeitungseinheit als Mittenfrequenz die erste Anregefrequenz aufweist und das Goertzelfilter der zweiten Signalverarbeitungseinheit die zweite Anregefrequenz als Mittenfrequenz aufweist. Die Kombination aus erster Sekundärspule 3a und zusätzlicher ersten Sekundärspule 3b mit der ersten Signalverarbeitungseinheit 5, yC 1 die Position und/oder die Auslenkung auf Basis der ersten Anregefrequenz und zusätzlich, redundant erfasst und berechnet die Kombination aus zweiter Sekundärspule 4a und zusätzlicher zweiter Sekundärspule 4b mit der zweiten Signalverarbeitungseinheit 5, yC 2 die Position und/oder die Auslenkung auf Basis der zweiten Anregefrequenz. Erste und zweite Signalverarbeitungseinheit umfassen dabei jeweils ei- nen A/D-Wandler 13 welcher die digitalisierten Signale der ersten und zusätzlichen ersten bzw. zweiten und zusätzlichen zweiten Sekundärspulen digitalisiert. Danach werden diese beiden Signal jeweils - oberer und unterer Signalpfad inner¬ halb der Signalverarbeitungsheit - einer Fensterfunktion 8, beispielhaft als Hanning Fensterfunktion ausgebildet, zuge¬ führt, wonach die resultierenden Signale jeweils durch das Goertzelfilter 6 gefiltert werden. Die Amplituden, als Ergebnisse dieser gefilterten Signale, werden anschließend ei¬ ner Differenzbildung 10 und eine Summenbildung 9 mit nachgeschalteter Quotientenbildung 11 zur Berechnung der Position und/oder Auslenkung bzw. des entsprechenden Signals zugeführt, wonach beispielhaft jeweils eine Kanalkodierung er¬ folgt. Die Taktgebereinheiten 12 der beiden Signalverarbeitungseinheiten 5 generieren unterschiedliche Taktsignale, unterschiedlicher Frequenz, wobei die elektrische
Anregequelle 14 mit der Überlagerung dieser beiden Frequenzen betrieben wird und die Goertzelfilter der jeweiligen Signalverarbeitungseinheit 5, jeweils ihre Mittenfrequenzen von der eigenen Taktgebereinheit 12 beziehen.

Claims

Patentansprüche
1. Wegsensoranordnung, umfassend zumindest eine Primärspule
(1) , wenigstens eine erste und eine zweite Sekundärspule (3, 4) und mindestens ein weichmagnetisches Kopplungs¬ element (2), das die Primärspule (1) und die beiden Se¬ kundärspulen (3, 4) magnetisch koppelt, wobei der Wegsensor so ausgebildet ist, dass eine Position und/oder Auslenkung in Abhängigkeit der magnetischen Kopplung zwischen der Primärspulen (1) und zumindest der ersten und zweiten Sekundärspule (3, 4) erfasst wird, wobei die Wegsensoranordnung eine Signalverarbeitungseinheit (5) umfasst, welche so ausgebildet ist, dass sie eine digi¬ tale Signalverarbeitung wenigstens einer elektrischen Größe der beiden Sekundärspulen (3, 4) durchführt und die Position und/oder Auslenkung ermittelt, dadurch gekennzeichnet, dass
die Signalverarbeitungseinheit (5) wenigstens ein
Goertzelfilter (6) umfasst.
2. Wegsensoranordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Wegsensoranordnung mindestens ein erstes Verschiebeelement aufweist, umfassend zumindest einen ersten Positionsgebermagnet (7), wobei das erste Ver¬ schiebeelement entlang einer Messrichtung (m) relativ zu dem weichmagnetischen Kopplungselement (2) verschiebbar angeordnet ist und die Primärspule (1) und die Sekundär¬ spulen (3, 4) mit dem weichmagnetischen Kopplungselement
(2) magnetisch gekoppelt sind und wobei das durch den ersten Positionsgebermagneten (7) erzeugte Magnetfeld das Kopplungselement (2) zumindest lokal so beeinflusst, dass die Relativposition zwischen dem ersten Verschiebe- element und dem weichmagnetischen Kopplungselement (2) durch mindestens eine der Sekundärspulen (3, 4) direkt oder indirekt erfasst wird.
3. Wegsensoranordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Wegsensor als Differenztrafo-Wegsensor ausgebildet ist, insbesondere als LVDT „Linear Variable Differential Transformer" ausgebildet ist, wobei das weichmagnetische Kopplungselement (2) bewegbar ausgebil¬ det ist und die Position und/oder Auslenkung dieses Kopplungselements erfasst wird.
4. Wegsensoranordnung nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Signalverarbei¬ tungseinheit (5) so ausgebildet ist, dass mit dem zumin¬ dest einen Goertzelfilter (6) die wenigstens eine elekt¬ rische Größe der beiden Sekundärspulen (3, 4) in Abhängigkeit des elektrischen Anregesignals der Primärspule (1) bewertet und/oder analysiert wird, wobei insbesonde¬ re die Mittenfrequenz des mindestens einen
Goertzelfilters (6) im Wesentlichen der Frequenz der Anregespannung und/oder des Anregestroms an/durch die Primärspule (1) entspricht.
5. Wegsensoranordnung nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Signalverarbei¬ tungseinheit (5) zur Bewertung und/oder Analyse der we¬ nigstens einen elektrischen Größe der ersten und der zweiten Sekundärspule (3, 4) zumindest jeweils ein
Goertzelfilter (6) aufweist.
6. Wegsensoranordnung nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Signalverarbei¬ tungseinheit (5) mindestens einen Analog-/Digitalwandler (13) aufweist, mit welchem die wenigstens eine elektri¬ sche Größe der beiden Sekundärspulen (3, 4) als erstes digitales Sekundärspulensignal und als zweites digitales Sekundärspulensignal digitalisiert werden, wobei die Signalverarbeitungseinheit eine Fensterfunktion (8) auf¬ weist, insbesondere eine Hanning-Fensterfunktion, mit welcher jeweils eine Fensterung des ersten und des zwei¬ ten digitalen Sekundärspulensignals durchgeführt werden.
7. Wegsensoranordnung nach Anspruch 6, dadurch gekennzeichnet, dass die Signalverarbeitungseinheit so ausgebildet ist, dass nach der Fensterung (8) des ersten und des zweiten digitalen Sekundärspulensignals zumindest diese beiden Signale jeweils von einem Goertzelfilter (6) gefiltert werden, wonach eine Summenbildung (9) und eine Differenzbildung (10) des Ergebnisses des
Goertzelfilters (6) durchgeführt wird, wonach der Quoti¬ ent (11) aus dem Differenzsignal durch das Summensignal gebildet wird.
8. Wegsensoranordnung nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Signalverarbei¬ tungseinheit (5) eine Taktgebereinheit (12) umfasst, wo¬ bei in Abhängigkeit eines Taktsignals dieser Taktgeber¬ einheit (12) sowohl die Anregespannung und/oder der Anregestrom an/durch die Primärspule (1) erzeugt werden, als auch die Mittenfrequenz des wenigstens einen
Goertzelfilters (6) definiert werden.
9. Wegsensoranordnung nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Wegsensoranord¬ nung redundant ausgebildet ist und zwei erste Sekundär¬ spulen (3a, 3b) und zwei zweite Sekundärspulen (4a, 4b) aufweist, welche mit der Signalverarbeitungseinheit (5) oder mit jeweils einer Signalverarbeitungseinheit (5) verbunden sind.
10. Wegsensoranordnung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der wenigstens eine Goertzelfilter (6) so ausgelegt ist, dass er hinsicht¬ lich einer einzigen Frequenz filtert.
11. Wegsensoranordnung nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der wenigstens eine Goertzelfilter (6) so ausgelegt ist, dass er als dezi¬ mierendes Bandpassfilter wirkt.
12. Verwendung der Wegsensoranordnung nach mindestens einem der Ansprüche 1 bis 11 in Kraftfahrzeugen.
PCT/EP2012/067575 2011-09-09 2012-09-07 Amplitudenauswertung mittels goertzel-algorithmus in einem differenztrafo-wegsensor WO2013034739A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12756205.6A EP2753899B1 (de) 2011-09-09 2012-09-07 Amplitudenauswertung mittels goertzel-algorithmus in einem differenztrafo-wegsensor
KR1020147009333A KR101958504B1 (ko) 2011-09-09 2012-09-07 차동 변압기 변위 센서에서의 괴르첼 알고리즘에 의한 진폭 평가
CN201280043693.1A CN103782134B (zh) 2011-09-09 2012-09-07 利用戈泽尔算法在差动变压器位移传感器中进行幅度估算
US14/342,850 US9243933B2 (en) 2011-09-09 2012-09-07 Amplitude evaluation by means of a goertzel algorithm in a differential transformer displacement sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011082462.6 2011-09-09
DE102011082462 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013034739A1 true WO2013034739A1 (de) 2013-03-14

Family

ID=46801520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/067575 WO2013034739A1 (de) 2011-09-09 2012-09-07 Amplitudenauswertung mittels goertzel-algorithmus in einem differenztrafo-wegsensor

Country Status (7)

Country Link
US (1) US9243933B2 (de)
EP (1) EP2753899B1 (de)
KR (1) KR101958504B1 (de)
CN (1) CN103782134B (de)
DE (1) DE102012215940A1 (de)
HU (1) HUE036839T2 (de)
WO (1) WO2013034739A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499810A (zh) * 2013-10-04 2014-01-08 吉林大学 一种用于电磁定位的装置和方法
WO2015181031A1 (de) * 2014-05-26 2015-12-03 Continental Teves Ag & Co. Ohg Sensoranordnung mit einer variablen trägerfrequenz und goertzel filterung
US20170234904A1 (en) * 2014-09-22 2017-08-17 Cotinental Teves Ag & Co. Ohg Speed sensor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118332A1 (de) 2013-02-01 2014-08-07 Continental Teves Ag & Co. Ohg Verfahren zum herstellen eines messaufnehmers
DE102013203586A1 (de) 2013-03-01 2014-09-04 Continental Teves Ag & Co. Ohg Sensor zum Erfassen einer Position eines Gebermagneten
DE102014219092A1 (de) * 2014-09-22 2016-03-24 Continental Teves Ag & Co. Ohg Positionssensor
DE102016120785A1 (de) * 2016-11-01 2018-05-03 Krohne Messtechnik Gmbh Verfahren und Messgerät zur Bestimmung einer Eigenschaft eines Mediums
DE102017110388A1 (de) * 2017-05-12 2018-11-15 Hamilton Bonaduz Ag Verfahren zum berührungslosen Bestimmen der Position eines angetriebenen Läufers eines Elektromotors, Elektromotor, und Pipettiersystem zum Aspirieren und Dispensieren von Pipettierflüssigkeit mit einem solchen Elektromotor
DE102018213783A1 (de) * 2018-08-16 2020-02-20 Continental Teves Ag & Co. Ohg Transformator mit Testschaltung
JP7081443B2 (ja) * 2018-10-31 2022-06-07 オムロン株式会社 信号処理装置、および情報書換装置
DE102018222288A1 (de) 2018-12-19 2020-06-25 Continental Teves Ag & Co. Ohg Hochfrequenzgenerator
DE102018222292A1 (de) 2018-12-19 2020-07-09 Continental Teves Ag & Co. Ohg Induktiver Sensor
DE102018222287A1 (de) 2018-12-19 2020-06-25 Continental Teves Ag & Co. Ohg Induktiver Sensor
US11543269B2 (en) * 2020-01-27 2023-01-03 Temposonics GmbH & Co. KG Target detection in magnetostrictive sensors using a target frequency range
EP4141378A1 (de) * 2021-08-30 2023-03-01 Primetals Technologies Germany GmbH Verbesserte kontaktlose schwingungserfassung bei metallbändern

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2325752A1 (de) 1973-05-21 1974-12-12 Siemens Ag Einrichtung zur umformung eines wegs in eine elektrische groesse
EP0238922A1 (de) 1986-03-27 1987-09-30 Vacuumschmelze GmbH Magnetischer Wegsensor
EP0693673A2 (de) 1994-07-21 1996-01-24 Vacuumschmelze Gmbh Magnetischer Wegsensor
US5818296A (en) * 1997-06-17 1998-10-06 Hughes Electronics Corporation FSK demodulator using goertzel's discrete fourier transform
US7248994B1 (en) * 2006-01-27 2007-07-24 Alliant Techsystems Inc. Digital method and apparatus for sensing position with a linear variable differential transformer
DE102008029839A1 (de) * 2008-06-25 2009-12-31 Kenersys Gmbh Verfahren zur Steuerung des Triebstranges einer Strömungskraftmaschine, insbesondere einer Windenergieanlage

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599560A (en) * 1983-04-11 1986-07-08 The Warner & Swasey Company AC excited transducer having stabilized phase sensitive demodulator circuit
US5632093A (en) * 1993-07-19 1997-05-27 Elias; Sharon A. Inductive sensor and method for detecting displacement of a body
US5555190A (en) * 1995-07-12 1996-09-10 Micro Motion, Inc. Method and apparatus for adaptive line enhancement in Coriolis mass flow meter measurement
US5734112A (en) * 1996-08-14 1998-03-31 Micro Motion, Inc. Method and apparatus for measuring pressure in a coriolis mass flowmeter
DE19726256C1 (de) * 1997-06-20 1998-08-27 Bso Steuerungstechnik Gmbh Wegaufnehmersystem für Schaltmagnete
JP2898621B1 (ja) * 1998-03-11 1999-06-02 株式会社コミュータヘリコプタ先進技術研究所 変位検出装置
US6275345B1 (en) * 1998-12-02 2001-08-14 International Business Machines Corporation System and method for estimating a frequency of slider airbearing resonance
WO2008156653A1 (en) * 2007-06-13 2008-12-24 Alken Inc., Dba Polhemus Ac magnetic tracking system with phase locking
DE102007030598A1 (de) * 2007-06-28 2009-01-15 Siemens Ag Verfahren und Vorrichtung zur Auswertung eines INDUSI-Signals
WO2009035645A1 (en) * 2007-09-14 2009-03-19 Alken Inc., Doing Business As Polhemus Ac magnetic tracking with phase disambiguation
WO2011028508A2 (en) * 2009-08-24 2011-03-10 Cc Kinetics, Inc. Apparatus and method for extracting vibration data from a moving drive chain
TWI516746B (zh) * 2012-04-20 2016-01-11 賽格股份有限公司 在干涉編碼系統中執行非諧循環錯誤補償的方法、裝置及計算機程式產品,以及微影系統

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2325752A1 (de) 1973-05-21 1974-12-12 Siemens Ag Einrichtung zur umformung eines wegs in eine elektrische groesse
EP0238922A1 (de) 1986-03-27 1987-09-30 Vacuumschmelze GmbH Magnetischer Wegsensor
EP0693673A2 (de) 1994-07-21 1996-01-24 Vacuumschmelze Gmbh Magnetischer Wegsensor
US5818296A (en) * 1997-06-17 1998-10-06 Hughes Electronics Corporation FSK demodulator using goertzel's discrete fourier transform
US7248994B1 (en) * 2006-01-27 2007-07-24 Alliant Techsystems Inc. Digital method and apparatus for sensing position with a linear variable differential transformer
DE102008029839A1 (de) * 2008-06-25 2009-12-31 Kenersys Gmbh Verfahren zur Steuerung des Triebstranges einer Strömungskraftmaschine, insbesondere einer Windenergieanlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Digital Signal Processing", 31 December 2008, SPRINGER, ISBN: 978-1-84-800118-3, article SHLOMO ENGELBERG: "Digital Signal Processing", pages: 203, XP055048323, DOI: 10.1007/978-1-84800-119-0_30 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499810A (zh) * 2013-10-04 2014-01-08 吉林大学 一种用于电磁定位的装置和方法
WO2015181031A1 (de) * 2014-05-26 2015-12-03 Continental Teves Ag & Co. Ohg Sensoranordnung mit einer variablen trägerfrequenz und goertzel filterung
US20170187556A1 (en) * 2014-05-26 2017-06-29 Continental Teves Ag & Co. Ohg Sensor arrangement with variable carrier frequency and goertzel filtering
US10181971B2 (en) * 2014-05-26 2019-01-15 Continental Teves Ag & Co. Ohg Sensor arrangement with variable carrier frequency and Goertzel filtering
US20170234904A1 (en) * 2014-09-22 2017-08-17 Cotinental Teves Ag & Co. Ohg Speed sensor

Also Published As

Publication number Publication date
CN103782134B (zh) 2017-06-13
HUE036839T2 (hu) 2018-08-28
KR20140077907A (ko) 2014-06-24
US20140203801A1 (en) 2014-07-24
EP2753899A1 (de) 2014-07-16
DE102012215940A1 (de) 2013-03-14
KR101958504B1 (ko) 2019-03-14
US9243933B2 (en) 2016-01-26
EP2753899B1 (de) 2018-01-24
CN103782134A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2013034739A1 (de) Amplitudenauswertung mittels goertzel-algorithmus in einem differenztrafo-wegsensor
DE102015216981B4 (de) Leistungsschalter
DE102013218768A1 (de) Induktive Positionsmesseinrichtung
EP3645977B1 (de) Sensorsystem zur bestimmung mindestens einer rotationseigenschaft eines rotierenden elements
DE102008006865A1 (de) Induktiver Drehmomentsensor
EP1948479B1 (de) Kontaktlose abfrage von systemzuständen
EP2555019A1 (de) Induktiver Näherungssensor
DE102008062864A1 (de) Wegsensoranordnung
EP0693674B1 (de) Vorrichtung mit einem Messtransformator zur Erfassung der position eines linear beweglichen Objektes
DE102007052162A1 (de) Messeinrichtung mit einer eine Spule eines Schwingkreises bildenden Rückstellfeder sowie Pedalmodul mit einer Messeinrichtung
WO2013174483A2 (de) Verfahren zur bestimmung der position einer mobilen einheit und anlage zur durchführung eines verfahrens
EP2674766A1 (de) Verfahren und Vorrichtung zur allstromsensitiven Strommessung
EP2108967A1 (de) Verfahren und Vorrichtung zur Ermittlung der elektrischen Wirkleistung mehrerer Verbraucherabzweige
DE102015211232A1 (de) Verfahren und Schaltung zum Erkennen einer offenen Leitung der Sinus-/Kosinus-Empfängerspule eines Resolvers
DE102011104307B4 (de) Anordnung und Verfahren zum Betreiben eines Sensors, insbesondere eines Brückensensors, und eine Sensoranordnung
DE102012017359A1 (de) Verfahren und Vorrichtung zur magnetisch induzierten Wegmessung
EP3417244B1 (de) Positionssensor
DE102021206006A1 (de) Elektrische Maschine mit einem Stator und einem insbesondere permanentmagnetisch ausgebildeten Rotor, aufweisend wenigstens ein erstes Teilsystem und ein zweites Teilsystem mit jeweils mehreren Phasen zum Antrieb der elektrischen Maschine
DE102007027419A1 (de) Induktiver Messumformer für Weg oder Winkel
EP2553398B1 (de) Vorrichtung zur erfassung der position einer stelleinheit
WO2016030197A1 (de) Sensor
DE102008000630A1 (de) Verfahren und Vorrichtung zur Überwachung und Überprüfung einer Messeinrichtung
EP3549254B1 (de) Vorrichtung und verfahren zur bestimmung der rotorposition
EP3420369A1 (de) Verfahren und vorrichtung zum messen zumindest einer eigenschaft einer spule, verfahren und vorrichtung zum messen der position eines betätigungsglieds, sowie kraftfahrzeug
DE102013225873A1 (de) Induktiver Sensor auf Basis des Noniusprinzips

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12756205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14342850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147009333

Country of ref document: KR

Kind code of ref document: A