WO2013034238A1 - Benzonitrilderivate als kinasehemmer - Google Patents

Benzonitrilderivate als kinasehemmer Download PDF

Info

Publication number
WO2013034238A1
WO2013034238A1 PCT/EP2012/003449 EP2012003449W WO2013034238A1 WO 2013034238 A1 WO2013034238 A1 WO 2013034238A1 EP 2012003449 W EP2012003449 W EP 2012003449W WO 2013034238 A1 WO2013034238 A1 WO 2013034238A1
Authority
WO
WIPO (PCT)
Prior art keywords
hplc
benzonitrile
pyridin
het
ylamino
Prior art date
Application number
PCT/EP2012/003449
Other languages
English (en)
French (fr)
Inventor
Guenter Hoelzemann
Dieter Dorsch
Hans-Michael Eggenweiler
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RS20171056A priority Critical patent/RS56481B1/sr
Priority to LTEP12747896.4T priority patent/LT2753615T/lt
Priority to CN201280043591.XA priority patent/CN103930416B/zh
Priority to CA2848148A priority patent/CA2848148C/en
Priority to MX2014002683A priority patent/MX344335B/es
Priority to EP12747896.4A priority patent/EP2753615B1/de
Priority to KR1020147008982A priority patent/KR101985984B1/ko
Priority to IN769KON2014 priority patent/IN2014KN00769A/en
Priority to BR112014005226A priority patent/BR112014005226A2/pt
Priority to EA201400333A priority patent/EA025038B1/ru
Priority to US14/342,911 priority patent/US8969335B2/en
Priority to ES12747896.4T priority patent/ES2644128T3/es
Priority to PL12747896T priority patent/PL2753615T3/pl
Priority to SG2014015234A priority patent/SG2014015234A/en
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to AU2012306746A priority patent/AU2012306746B2/en
Priority to JP2014528879A priority patent/JP6060163B2/ja
Priority to SI201231093T priority patent/SI2753615T1/sl
Priority to DK12747896.4T priority patent/DK2753615T3/en
Publication of WO2013034238A1 publication Critical patent/WO2013034238A1/de
Priority to IL231382A priority patent/IL231382A/en
Priority to ZA2014/02561A priority patent/ZA201402561B/en
Priority to HK15100368.7A priority patent/HK1199880A1/xx
Priority to HRP20171296TT priority patent/HRP20171296T1/hr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/501Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring

Definitions

  • the present invention relates to benzonitrile compounds which are capable of inhibiting one or more kinases.
  • the compounds find use in the treatment of a variety of disorders including cancer, septic shock, primary open angle glaucoma (POAG), hyperplasia, rheumatoid arthritis, psoriasis, atherosclerosis, retinopathy, osteoarthritis,
  • Endometriosis chronic inflammation and / or neurodegenerative diseases such as Alzheimer's disease.
  • the present invention relates to compounds and the use of compounds in which the inhibition, regulation and / or modulation of the signal transduction of receptor kinases plays a role, further pharmaceutical
  • compositions containing these compounds as well as the use of the compounds for the treatment of kinase-related diseases.
  • protein kinases regulate almost every cell process, including metabolism, cell proliferation, cell differentiation and cell survival, they are attractive targets for therapeutic intervention in various disease states.
  • cell cycle control and angiogenesis in which protein kinases play a key role, are cell events associated with numerous disease states, such as cancer , Inflammatory diseases, abnormal angiogenesis and related diseases, atherosclerosis, macular degeneration, diabetes, obesity, and pain are, but are not limited to.
  • the present invention relates to compounds and to the use of compounds in which the inhibition, regulation and / or modulation of signal transduction of TBK1 and ⁇ plays a role.
  • One of the major mechanisms by which cell regulation is effected is through the transduction of extracellular signals across the membrane, which in turn modulate biochemical pathways in the cell.
  • Protein phosphorylation is a process by which intracellular signals are propagated from molecule to molecule, ultimately resulting in a cellular response.
  • These signal transduction cascades are highly regulated and often overlap, as evidenced by the presence of many protein kinases as well as phosphatases.
  • Phosphorylation of proteins occurs predominantly at serine, threonine or tyrosine residues, and protein kinases were therefore classified according to their specificity of the phosphorylation site, ie serine / threonine kinases and tyrosine kinases. Since phosphorylation is such a widespread process in cells, and as cell phenotypes are largely influenced by the activity of these pathways, it is presently believed that a number of disease states and / or diseases may be due to either aberrant activation or functional mutations in the molecular components of Kinase cascades are attributed. Consequently, the characterization of these proteins and
  • ⁇ and TBK1 are serine / threonine kinases that have high homologies with each other and with other IkB kinases. Both kinases play an integral
  • Double-stranded RNA viruses are recognized by the Toll-like receptors 3 and 4, as well as the RNA helicases RIG-I and MDA-5, and lead to an activation of the TRIF-TBK1 / IKKs-IRF3 signaling cascade, resulting in a Type I interferon Answer leads.
  • Protein kinase-mediated diseases are characterized by an abnormal activity or hyperactivity of such protein kinases.
  • Abnormal activity involves either: (1) expression in cells, usually these
  • Hyperactivity refers to either amplification of the gene encoding a particular protein kinase, or the
  • an activity level associated with a cell proliferation disease ie, as the kinase level increases, the severity of one or more symptoms of cell proliferation disease increases.
  • the bioavailability of a protein kinase may also be affected by the presence or absence of a set of binding proteins of that kinase.
  • ⁇ and TBK1 are highly homologous Ser / Thr kinases that play a crucial role in the innate immune response through the induction of type 1 interferons and other cytokines. These kinases are stimulated in response to viral / bacterial infection.
  • the immune response to viral and bacterial infections involves the binding of antigens such as bacterial lipopolysaccharide (LPS), viral double-stranded RNA (dsRNA) to Toll-like receptors
  • LPS bacterial lipopolysaccharide
  • dsRNA viral double-stranded RNA
  • ⁇ and TBK1 have also been linked to cancer. It has been shown that ⁇ cooperates with activated MEK to transform human cells. In addition, ⁇ is often amplified / overexpressed in breast cancer cell lines and patient-derived tumors. TBK1 is induced under hypoxic conditions and expressed in significant levels in many solid tumors. Furthermore, TBKI is required to support oncogenic Ras transformation, and TBK1 kinase activity is increased in transformed cells and required for their survival in culture. It has also been found that TBK1 and NF-kB signaling are essential in KRAS mutant tumors. TBK1 has been identified as a synthetic lethal partner of oncogenic KRAS.
  • WO 2011/046970 A1 describes the use of TBK1 and / or ⁇ inhibitors for the treatment of various diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjörgrens syndrome, Aicardi-Goutieres syndrome Lupus chilblain, retinal vasculopathy and cerebral leukodystrophy (RVCL), systemic sclerosis, myositis, psoriasis, chronic obstructive pulmonary disease (CPD), inflammatory bowel disease (IBD), obesity, insulin resistance, type 2 diabetes (NIDDM), metabolic syndrome,
  • RA rheumatoid arthritis
  • SLE systemic lupus erythematosus
  • Sjörgrens syndrome Aicardi-Goutieres syndrome Lupus chilblain
  • retinal vasculopathy and cerebral leukodystrophy RVCL
  • systemic sclerosis myositis, psoria
  • the compounds of the invention or a pharmaceutically acceptable salt thereof are administered for the treatment of cancer including solid carcinomas such as carcinomas (eg, the lungs, pancreas, thyroid, bladder, or colon), myeloid diseases (eg myeloid leukemia) or adenomas (eg villous colonic adenoma).
  • solid carcinomas such as carcinomas (eg, the lungs, pancreas, thyroid, bladder, or colon)
  • myeloid diseases eg myeloid leukemia
  • adenomas eg villous colonic adenoma
  • the tumors further include monocytic leukemia, brain, urogenital, lymphatic, gastric, laryngeal and lung carcinomas, including lung adenocarcinoma and small cell lung carcinoma, pancreatic and / or breast carcinoma.
  • the compounds are also useful in the treatment of HIV-1 (human immunodeficiency virus type 1) induced immunodeficiency.
  • Cancerous hyperproliferative disorders include brain, lung, squamous, bladder, stomach, pancreatic, liver, kidney, colorectal, breast, head, neck, esophageal, gynecological, thyroid, lymphoma
  • cancerous cell growth is a disease that is an object of the present invention.
  • the present invention therefore relates to compounds according to the invention as medicaments and / or active pharmaceutical ingredients in the treatment and / or prophylaxis of said diseases and the use of compounds according to the invention for the preparation of a
  • the compounds according to the invention have an antiproliferative action.
  • the compounds of the invention are administered to a patient with a hyperproliferative disorder, e.g. To inhibit tumor growth, to reduce inflammation associated with a lymphoproliferative disorder, to inhibit graft rejection or neurological damage due to tissue repair, etc.
  • the present compounds are useful for prophylactic or therapeutic purposes.
  • the term "treating" is used to refer to both the prevention of disease and the treatment of pre-existing conditions
  • Prevention of proliferation / vitality is achieved by administration of the compounds of the invention prior to the development of the apparent disease, e.g. Prevention of Tumor Growth
  • the compounds are used to treat persistent diseases by stabilizing or ameliorating the clinical symptoms of the patient.
  • the host or patient may be of any mammalian species, e.g. A primate species, especially humans; Rodents, including mice, rats and
  • Animal models are of interest for experimental studies, providing a model for the treatment of human disease.
  • the susceptibility of a particular cell to treatment with the compounds of the invention can be determined by testing in vitro.
  • a culture of the cell is incubated with a compound of the invention at various concentrations for a period of time sufficient to allow the active agents to induce cell death or to inhibit cell proliferation, cell vitality or migration, usually between about one hour and one week.
  • cultured cells from a biopsy sample can be used. be. The amount of cells remaining after treatment are then determined.
  • the dose will vary depending on the specific compound used, the specific disease, the patient status, etc. Typically, a therapeutic dose will be sufficient to substantially reduce the unwanted cell population in the target tissue while maintaining patient viability. Treatment is generally continued until there is a significant reduction, e.g. B. at least about 50% reduction in cell load and can be continued until essentially no more unwanted cells are detected in the body.
  • the compounds of the present invention are useful in the treatment of a variety of conditions in which proliferation and / or migration of smooth muscle cells and / or inflammatory cells into the intimal layer of a vessel results in limited blood flow to that vessel, e.g. In neointimal occlusive lesions. Too occlusive
  • Transplant vascular diseases of interest include atherosclerosis, coronary vascular disease after transplantation, venous graft stenosis, peri-anastomotic prosthetic restenosis, restenosis after angioplasty or stent placement, and the like.
  • the compounds of the invention may be used to achieve additive or synergistic effects in certain existing cancer chemotherapies and radiation and / or to restore the efficacy of certain existing cancer chemotherapies and radiation.
  • method refers to modes of operation, means, techniques, and procedures to accomplish a given task, including those modes of operation, means, techniques, and procedures that are either known to those skilled in the chemical, pharmacological, biological, biochemical, and medical arts are or from him easily known practices, means, techniques and
  • Procedures may be developed, but are not limited thereto.
  • the term "administration" refers to a method for bringing together a compound of the present invention and a target kinase such that the compound directs the enzyme activity of the kinase either directly, i. by interaction with the kinase itself, or indirectly, i. by interaction with another molecule on which the catalytic activity of the kinase depends can influence.
  • administration may be either in vitro, i. in the test tube, or in vivo, i. in cells or tissues of a living organism.
  • treating herein includes overriding, largely inhibiting, slowing or reversing the progression of a disease or disorder, substantially ameliorating the clinical symptoms of a disease or disorder, or largely preventing the occurrence of the clinical symptoms of a disease or disorder.
  • prevent means a method to block an organism from acquiring a disorder or disease at all.
  • a therapeutically effective amount may be first calculated from cell culture assays.
  • a dose may be formulated to achieve a circulatory concentration range comprising the IC50 or IC100 as determined in cell cultures. This information can be used to more accurately determine useful doses for humans.
  • Initial dosages can also be calculated from in vivo data. Based on these initial guidelines, one of ordinary skill in the art could determine an effective dosage for humans.
  • the toxicity and therapeutic efficacy of the compounds described herein can be determined according to standard pharmaceutical procedures on cell cultures or experimental animals by, for example, LD50 and ED50 certainly.
  • the dose ratio between toxic and therapeutic effects is the therapeutic index, which can be expressed as the ratio between LD50 and ED50.
  • Compounds having a high therapeutic index are preferred.
  • the data obtained from these cell culture assays and animal studies can be used to formulate a dosage range that is non-toxic to human use.
  • the dosage of such compounds is preferably in bloodstream concentration ranges that include the ED50 with little or no toxicity. Within this range, the dosage may vary depending on the dosage form used and the route of administration used.
  • the exact formulation, route of administration, and dosage may be chosen by the individual physician, taking into account the condition of the patient (see, eg, Fingl et al., 1975, The Pharmacological Basis of Therapeutics, Chapter 1, page 1).
  • Dosage amount and interval can be adjusted individually to provide plasma levels of active compound sufficient to produce a therapeutic
  • Typical patient doses for oral administration are in the range of about 50-2000 mg / kg / day, generally about 100-1000 mg / kg / day, preferably about 150-700 mg / kg / day, and most preferably about 250-400 mg / kg / day. 500 mg / kg / day.
  • therapeutically effective serum levels are achieved by administering multiple doses per day.
  • the effective local concentration of the drug may not be related to the plasma concentration. The skilled artisan will be able to optimize therapeutically effective local dosages without undue experimentation.
  • Preferred diseases or disorders for the prevention, treatment and / or study of which the compounds described herein are useful are cell proliferative disorders, particularly cancer such as papilloma, blastoglioma, Kaposi's sarcoma, melanoma, lung cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, astrocytoma, Head cancer, cervical, skin, liver, bladder, breast, lung, uterine, prostate but not limited to, rectal cancer, thyroid cancer, pancreatic cancer, gastric cancer, hepatocellular carcinoma, leukemia, lymphoma, Hodgkin's disease, and Burkitt's disease.
  • cancer such as papilloma, blastoglioma, Kaposi's sarcoma, melanoma, lung cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, astrocytoma, Head cancer, cervical, skin, liver, bladder, breast, lung, uterine, prostate but not limited to, rectal cancer
  • benzonitrile derivatives are described in WO 2011/046970 A1 and in WO 2012/010826 A1 as TBK1 and / or ⁇ inhibitors.
  • Pyrrolopyrimidines have been described as ⁇ and TBK1 inhibitors in WO 2010/100431.
  • the invention relates to compounds of the formula I.
  • X is CH or N
  • R 2 is H, A, Ar 1 , (CH 2 ) n Het 3 , CN, (CH 2 ) n Cyc, CONH 2) COOA, (CH 2 ) n OH,
  • Ar 1 is unsubstituted or mono-, di- or trisubstituted by shark, A, OH, OA,
  • Het 3 is unsubstituted or mono- or disubstituted by shark, A, OH, OA, CN, COOA,
  • Cyc is unsubstituted or substituted by CN, (CH 2 ) n OH or A cyclic alkyl having 3, 4, 5, 6 or 7 carbon atoms,
  • n 0, 1, 2, 3 or 4
  • the invention also relates to the optically active forms (stereoisomers), salts, the enantiomers, the racemates, the diastereomers and the hydrates and solvates of these compounds.
  • Solvates of the compounds are understood to mean additions of inert solvent molecules to the compounds which form due to their mutual attraction. Solvates are e.g. Mono or dihydrate or alcoholates.
  • the invention of course also the solvates of the salts.
  • compositions are understood, for example, as the salts of the compounds according to the invention as well as so-called prodrug compounds.
  • prodrug derivatives is understood with z.
  • alkyl or acyl groups sugars or oligopeptides modified compounds of formula I, which are rapidly cleaved in the organism to the active compounds of the invention.
  • biodegradable polymer derivatives of the compounds of the invention as z. In Int. J. Pharm. 115. 61-67 (1995).
  • an effective amount means the amount of a drug or pharmaceutical agent that elicits a biological or medical response in a tissue, system, animal, or human, such as is sought or sought by a researcher or physician.
  • therapeutically effective amount means an amount that, as compared to a corresponding subject who has not received that amount, results in:
  • terapéuticaally effective amount also includes the amounts effective to increase normal physiological function.
  • the invention also provides the use of mixtures of the compounds of formula I, e.g. Mixtures of two diastereomers, e.g. in the ratio 1: 1, 1: 2, 1: 3, 1: 4, 1: 5, 1: 10, 1: 100 or 1: 1000.
  • the invention relates to the compounds of the formula I and their salts and to a process for the preparation of compounds of the formula I and their pharmaceutically usable salts, tautomers and stereoisomers, characterized in that a) a compound of the formula II
  • L is F, Cl, Br or I, reacts, and / or converts a base or acid of the formula I into one of its salts.
  • A is alkyl, is unbranched (linear) or branched and has 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 C atoms.
  • A is preferably methyl, furthermore ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, furthermore also pentyl, 1-, 2- or 3-methylbutyl, 1, 1, 1, 2 or 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1-, 2-, 3- or 4-methylpentyl, 1, 1-, 1, 2-, 1, 3-, 2,2-, 2,3- or 3,3-dimethylbutyl, 1- or 2-ethyl-butyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, 1, 1, 2- or 1,2,2-trimethyl-propyl, more preferred eg Trifluoromethyl.
  • one or two CH and / or CH 2 groups can also be replaced by N, O or S
  • Atoms be replaced.
  • A means e.g. also 2-methoxyethyl.
  • a particularly preferably A is unbranched or branched alkyl having 1-8 C
  • Atoms in which one or two non-adjacent CH and / or CH 2 groups are replaced by N and / or O atoms may be replaced and / or 1-7 H atoms may be replaced by F.
  • Ar 1 is , for example, phenyl, o-, m- or p-tolyl, o-, m- or p-ethylphenyl, o-, m- or p-propylphenyl, o-, m- or p-isopropylphenyl, o-, m - or p-tert-butylphenyl, o-, m- or p-trifluoromethylphenyl, o-, m- or p-fluorophenyl, o-, m- or p-bromophenyl, o-, m- or p-chlorophenyl , o-, m- or p-hydroxyphenyl, o-, m- or p-methoxyphenyl, o-, m- or p-methylsulfonylphenyl, o-, m- or p-nitrophenyl,
  • Het is preferably unsubstituted or substituted by COA
  • Het 3 is preferably unsubstituted or monosubstituted by A pyrrolidinyl, azetidinyl, tetrahydrofuranyl, dihydropyranyl, tetrahydropyranyl, dihydropyridyl, tetrahydropyridyl, piperidinyl, piperazinyl, morpholinyl, furyl, thienyl,
  • Hal preferably denotes F, Cl or Br, but also I, particularly preferably F or Cl.
  • X is preferably CH.
  • the compounds of the formula I can possess one or more chiral centers and therefore occur in different stereoisomeric forms.
  • Formula I encompasses all these forms.
  • one or two non-adjacent CH and / or CH 2 groups can be replaced by N and / or O atoms and / or also 1-7 H atoms can be replaced by F; in lg X CH or N,
  • R 2 is H, A, Ar 1 , (CH 2 ) n Het 3 , CN, (CH 2 ) "Cyc, CONH 2 , COOA, (CH 2 ) n OH,
  • Ar 1 is unsubstituted or mono-, di- or trisubstituted by A
  • Het 2 unsubstituted or substituted by 0 or OA
  • Cyc is unsubstituted or substituted by CN or A.
  • n 0, 1, 2, 3 or 4 and their pharmaceutically acceptable salts, tautomers and stereoisomers, including mixtures thereof in all ratios.
  • the compounds of the formula II and of the formula III are generally known. If they are new, they can be produced by methods known per se.
  • the reaction is preferably carried out under Buchwald-Hartwig conditions which are known to the person skilled in the art.
  • the reaction time is between a few minutes and 14 days, depending on the conditions used, the reaction temperature between about -10 ° and 160 °, usually between 20 ° and 150 °, particularly preferably between 80 ° and 150 ° C.
  • Suitable inert solvents are, for example, hydrocarbons such as hexane, petroleum ether, benzene, toluene or xylene; chlorinated hydrocarbons such as trichlorethylene, 1, 2-dichloroethane carbon tetrachloride, chloroform or dichloromethane; Alcohols such as methanol, ethanol, isopropanol, n-propanol, n-butanol or tert-butanol; Ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran (THF) or dioxane; Glycol ethers such as ethylene glycol monomethyl or monoethyl ether, ethylene glycol dimethyl ether (diglyme); Ketones such as acetone or butanone; Amides, such as acetamide, dimethylacetamide or dimethylformamide (DMF); Nitriles such as acetonitrile; S
  • dioxane is particularly preferred.
  • L is preferably Cl, Br or I, particularly preferably Cl.
  • a standard method for ether cleavage e.g. a methyl ether, is the use of boron tribromide.
  • Hydrogenolytically removable groups e.g. the cleavage of a benzyl ether, z.
  • a catalyst e.g., a noble metal catalyst such as palladium, conveniently on a support such as carbon.
  • Suitable solvents are those given above, in particular z.
  • alcohols such as methanol or ethanol or amides such as DMF.
  • the hydrogenolysis is usually carried out at temperatures between about 0 and 100 ° and pressures between about 1 and 200 bar, preferably at 20-30 ° and 1-10 bar.
  • Esters can e.g. be saponified with acetic acid or with NaOH or KOH in water, water THF or water-dioxane at temperatures between 0 and 100 °.
  • Alkylations on the nitrogen are carried out under standard conditions, as known to those skilled in the art.
  • the abovementioned compounds according to the invention can be used in their final non-salt form.
  • the present invention also encompasses the use of these compounds in the form of their pharmaceutically acceptable salts derived from various organic and inorganic acids and bases can be derived according to well-known procedures.
  • Pharmaceutically acceptable salt forms of the compounds of formula I are for the most part prepared conventionally. If the compound of the formula I contains a carboxylic acid group, one of its suitable salts can be formed by reacting the compound with a suitable base to give the corresponding base addition salt.
  • Such bases include, for example, alkali metal hydroxides, including potassium hydroxide, sodium hydroxide and lithium hydroxide; Alkaline earth metal hydroxides such as barium hydroxide and calcium hydroxide; Alkali metal alcoholates, eg, potassium ethanolate and sodium propanolate; and various organic bases such as piperidine, diethanolamine and N-methylglutamine.
  • alkali metal hydroxides including potassium hydroxide, sodium hydroxide and lithium hydroxide
  • Alkaline earth metal hydroxides such as barium hydroxide and calcium hydroxide
  • Alkali metal alcoholates eg, potassium ethanolate and sodium propanolate
  • various organic bases such as piperidine, diethanolamine and N-methylglutamine.
  • the aluminum salts of the compounds of formula I are also included.
  • acid addition salts can be formed by reacting these compounds with pharmaceutically acceptable organic and inorganic acids, for example hydrogen halides, such as hydrogen chloride, hydrogen bromide or hydrogen iodide, other mineral acids and their corresponding salts, such as sulfate, nitrate or phosphate, and the like. and monoarylsulfonates such as ethanesulfonate, toluenesulfonate and benzenesulfonate, as well as other organic acids and their corresponding salts such as acetate, trifluoroacetate, tartrate, maleate, succinate, citrate, benzoate, salicylate, ascorbate and the like.
  • pharmaceutically acceptable acid addition salts of the compounds of formula I include the following: acetate, adipate, alginate, arginate, aspartate, benzoate,
  • Benzenesulfonate (besylate), bisulfate, bisulfite, bromide, butyrate, camphorate, camphorsulfonate, caprylate, chloride, chlorobenzoate, citrate, cyclopentaneproprionate, digluconate, dihydrogenphosphate, dinitrobenzoate, dodecylsulphate, ethanesulphonate, fumarate, galacterate (from mucic acid), galacturonate, glucoheptanoate , Gluconate, glutamate, glycerophosphate, hemisuccinate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, iodide, isethionate, isobutyrate, lactate, lactobionate, malate, maleate, malonate, mandelate, metaphosphat
  • Salts of compounds of formula I derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary and tertiary amines, substituted amines, including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, e.g.
  • Arginine betaine, caffeine, chloroprocaine, choline, ⁇ , ⁇ '-dibenzylethylenediamine (benzathine), dicyclohexylamine, diethanolamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, Histidine, hydrabamine, iso-propylamine, lidocaine, lysine, meglumine, N-methyl-D-glucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethanolamine, triethylamine, trimethylamine, tripropylamine and tris- (hydroxymethyl) - methylamine (tromethamine), which is not intended to be limiting.
  • Compounds of the present invention which contain basic nitrogen-containing groups can be quaternised using agents such as (C A -C 4) alkyl halides, for example methyl, ethyl, isopropyl and tert-butyl chloride, bromide and iodide; Di (C 1 -C 4 ) alkyl sulfates, eg dimethyl, diethyl and diamylsulfate; (Ci 0 -Ci 8 ) alkyl halides, eg decyl, dodecyl, lauryl, myristyl and stearyl chloride, bromide and iodide; and aryl (C 1 -C 4 ) alkyl halides, eg, benzyl chloride and phenethyl bromide, quaternize. With such salts, both water- and oil-soluble compounds of the invention can be prepared.
  • preferred pharmaceutical salts are acetate, trifluoroacetate, besylate, citrate, fumarate, gluconate, hemisuccinate, hippurate, hydrochloride, hydrobromide, isethionate, mandelate, meglumine, nitrate, oleate, phosphorous phonate, pivalate, sodium phosphate, stearate, sulfate, sulfosalicylate, tartrate, thiomalate, tosylate and tromethamine, but this is not intended to be limiting.
  • the acid addition salts of basic compounds of formula I are prepared by contacting the free base form with a sufficient amount of the desired acid to form the salt in a conventional manner.
  • the free base can be regenerated by contacting the salt form with a base and isolating the free base in a conventional manner.
  • the free base forms in some sense differ from their corresponding salt forms in terms of certain physical properties such as solubility in polar solvents; however, in the context of the invention, the salts otherwise correspond to their respective free base forms.
  • the pharmaceutically acceptable base addition salts of the compounds of formula I are formed with metals or amines such as alkali metals and alkaline earth metals or organic amines.
  • metals are sodium, potassium, magnesium and calcium.
  • Preferred organic amines are ⁇ , ⁇ '-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, N-methyl-D-glucamine and procaine.
  • the base addition salts of acidic compounds of the invention are prepared by contacting the free acid form with a sufficient amount of the desired base to form the salt in a conventional manner.
  • the free acid can be regenerated by contacting the salt form with an acid and isolating the free acid in a conventional manner.
  • the free acid forms in some sense differ from their corresponding salt forms in terms of certain physical properties such as solubility in polar solvents; However, in the context of the invention, the salts otherwise correspond to their respective free acid forms.
  • a compound of the invention contains more than one group capable of forming such pharmaceutically acceptable salts
  • the invention also includes multiple salts.
  • Typical multiple salt forms include, for example, bitartrate, diacetate, difumarate, dimeglumine, diphosphate, disodium and trihydrochloride, but this is not intended to be limiting.
  • the term "pharmaceutically acceptable salt” in the present context means an active ingredient which contains a compound of the formula I in the form of one of its salts, especially if this salt form is the active ingredient in the Imparts improved pharmacokinetic properties to the free form of the active ingredient or any other salt form of the active ingredient which has previously been used.
  • the pharmaceutically acceptable salt form of the active substance may also first impart a desired pharmacokinetic property to this active ingredient which it has not previously possessed, and may even positively influence the pharmacodynamics of this active ingredient in terms of its therapeutic efficacy in the body.
  • the invention furthermore relates to medicaments comprising at least one compound of the formula I and / or pharmaceutically usable salts, tautomers and stereoisomers thereof, including mixtures thereof in all ratios, and optionally excipients and / or adjuvants.
  • compositions may be presented in the form of dosage units containing a predetermined amount of active ingredient per unit dose.
  • a moiety may contain, for example, 0.5 mg to 1 g, preferably 1 mg to 700 mg, more preferably 5 mg to 100 mg of a compound of the invention, depending on the condition being treated, the route of administration and the age, weight and condition of the patient, or pharmaceutical formulations may be presented in the form of dosage units containing a predetermined amount of active ingredient per unit dose.
  • Preferred dosage unit formulations are those containing a daily or partial dose as indicated above or a corresponding fraction of an active ingredient.
  • such pharmaceutical formulations can be included one of the methods well known in the pharmaceutical art.
  • compositions may be administered by any suitable route, for example, oral (including buccal or sublingual), rectal, nasal, topical (including buccal, sublingual or transdermal), vaginal or parenteral (including subcutaneous, intramuscular, intravenous or intradermal). Ways, adapt.
  • Such formulations may be prepared by any method known in the pharmaceutical art, for example, by bringing the active ingredient together with the carrier (s) or excipients.
  • compositions adapted for oral administration may be administered as separate units, e.g. Capsules or tablets; Powder or granules; Solutions or suspensions in aqueous or non-aqueous liquids;
  • the active ingredient component in the case of oral administration in the form of a tablet or capsule, can be mixed with an oral, non-toxic and pharmaceutically acceptable inert carrier, e.g. Ethanol, glycerin, water and the like combine.
  • an oral, non-toxic and pharmaceutically acceptable inert carrier e.g. Ethanol, glycerin, water and the like combine.
  • Powders are prepared by comminuting the compound to a suitable fine size and mixing it with a similarly comminuted pharmaceutical excipient, e.g. an edible carbohydrate such as starch or mannitol.
  • a flavor, preservative, dispersant and dye may also be present.
  • Capsules are made by preparing a powder mix as described above and filling shaped gelatin casings therewith.
  • Lubricants and lubricants such as finely divided silica, talc, magnesium stearate, calcium stearate or polyethylene glycol in solid form can be added to the powder mixture before the filling process.
  • a disintegrating agent or solubilizer, such as Agar-agar, calcium carbonate or sodium carbonate may also be added to improve the availability of the drug after ingestion of the capsule.
  • suitable bonding, lubricating and disintegrants as well as dyes can also be incorporated into the mixture.
  • Suitable binders include starch, gelatin, natural sugars, such as . As glucose or beta-lactose, corn sweeteners, natural and synthetic gums, such as acacia, tragacanth or sodium alginate, carboxymethyl cellulose, polyethylene glycol, waxes, etc.
  • the lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like.
  • the disintegrating agents include, but are not limited to, starch, methyl cellulose, agar, bentonite, xanthan gum and the like .
  • the tablets are formulated by, for example, preparing a powder mixture, granulating or dry-pressing, adding a lubricant and a disintegrating agent and pressing the whole into tablets.
  • a powder mixture is prepared by dissolving the appropriately comminuted compound with a diluent or base as described above and optionally with a binder such as carboxymethyl cellulose, an alginate, gelatin or polyvinylpyrrolidone, a dissolution reducer such as paraffin, a resorption accelerator, such as a quaternary salt and / or an absorbent, such as bentonite, kaolin or dicalcium phosphate.
  • the powder mixture can be granulated by mixing it with a binder such .
  • the powder mixture can be run through a tabletting machine to produce non-uniformly shaped lumps which are broken up into granules.
  • the granules may be greased by the addition of stearic acid, a stearate salt, talc or mineral oil to adhere to the
  • the compounds of the invention can also be used with a
  • a transparent or opaque protective layer consisting of a shellac sealant, a layer of sugar or polymeric material, and a glossy layer of wax may be present. Dyes can be added to these coatings in order to differentiate between different dosage units.
  • Oral fluids e.g. Solution, syrups and elixirs may be prepared in unit dosage form such that a given quantity contains a predetermined amount of the compound.
  • Syrups can be prepared by dissolving the compound in an appropriate taste aqueous solution while preparing elixirs using a non-toxic alcoholic vehicle.
  • Suspensions can be formulated by dispersing the compound in a non-toxic vehicle.
  • Solubilizers and emulsifiers e.g. ethoxylated isostearyl alcohols and polyoxyethylene sorbitol ethers, preservatives, flavoring additives such as e.g. Peppermint oil or natural sweeteners or saccharin or other artificial sweeteners, etc. can also be added.
  • the unit dosage formulations for oral administration may optionally be encapsulated in microcapsules.
  • the formulation may also be prepared to prolong or retard the release, such as by coating or embedding particulate material in polymers, wax, and the like.
  • the compounds of the formula I and their pharmaceutically acceptable salts, tautomers and stereoisomers can also be administered in the form of liposome delivery systems, such as, for example, small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles.
  • Liposomes can be formed from various phospholipids such as cholesterol, stearylamine or phosphatidylcholines.
  • the compounds of formula I as well as their pharmaceutically acceptable salts, tautomers and stereoisomers can also be delivered using monoclonal antibodies as individual carriers to which the compound molecules are coupled. The compounds can also be coupled with soluble polymers as targeted drug carriers.
  • Such polymers may include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamidephenol, polyhydroxyethylaspartamidephenol or polyethyleneoxidepolylysine substituted with palmitoyl radicals.
  • the compounds may be useful in a class of biodegradable polymers suitable for controlled release of a drug, eg, polylactic acid, polyepsiloncaprolactone, polyhydroxybutyric acid, polyorthoesters, polyacetals, polydihydroxypyrans, polycyanoacrylates, and crosslinked or amphipathic block copolymers of hydrogels be coupled.
  • compositions adapted for transdermal administration may be presented as discrete patches for prolonged, intimate contact with the epidermis of the recipient.
  • the drug may be delivered from the patch by iontophoresis as generally described in Pharmaceutical Research, 3 (6), 318 (1986).
  • Pharmaceutical compounds adapted for topical administration may be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols or oils.
  • the formulations are preferably applied as a topical ointment or cream.
  • the active ingredient can be used with either a paraffinic or water miscible cream base.
  • the active ingredient can be formulated into a cream with an oil-in-water cream base or a water-in-oil base.
  • the pharmaceutical formulations adapted for topical application to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent.
  • compositions adapted for topical application in the mouth include lozenges, troches and mouthwashes.
  • compositions adapted for rectal administration may be presented in the form of suppositories or enemas.
  • compositions adapted for nasal administration in which the vehicle is a solid contain a coarse powder having a particle size, for example, in the range of 20-500 microns, which is administered in the manner in which snuff is received, i. by rapid inhalation via the nasal passages from a container held close to the nose with the powder.
  • Suitable formulations for administration as a nasal spray or nasal drops with a liquid carrier include drug solutions in water or oil.
  • Fine particulate dusts or mists which may be generated by various types of pressurized dosing dispensers with aerosols, nebulizers or insufflators.
  • compositions adapted for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations.
  • compositions adapted for parenteral administration include aqueous and nonaqueous sterile injection solutions containing antioxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the recipient to be treated; and aqueous and non-aqueous sterile suspensions which may contain suspending agents and thickeners.
  • the formulations may be presented in single or multi-dose containers, such as sealed vials and vials, and stored in the freeze-dried (lyophilized) state so that only the addition of the sterile carrier liquid, eg water for injections, is required immediately before use.
  • Injection solutions and suspensions prepared by formulation may consist of sterile powders, granules and
  • formulations may include other means conventional in the art with respect to the particular type of formulation; so for example for the oral
  • a therapeutically effective amount of a compound of formula I depends on a number of factors, including e.g. the age and weight of the animal, the exact condition of the disease requiring treatment, as well as its severity, the nature of the formulation and the route of administration, and will ultimately be determined by the doctor or veterinarian.
  • an effective amount of a compound of the invention is useful for the treatment of neoplastic growth, e.g. Colon or breast carcinoma, generally in the range of 0.1 to 100 mg / kg body weight of the recipient
  • (Mammal) per day and more typically in the range of 1 to 10 mg / kg of body weight per day.
  • the actual amount per day would usually be between 70 and 700 mg, this amount as a single dose per day or more commonly in a number of divided doses (such as two, three, four, five or six) per Day can be given, so that the
  • Total daily dose is the same.
  • An effective amount of a salt or solvate or a physiologically functional derivative thereof can be determined as a proportion of the effective amount of the compound of the invention per se. It can be assumed that similar dosages are suitable for the treatment of the other disease states mentioned above.
  • the invention furthermore relates to medicaments comprising at least one compound of the formula I and / or pharmaceutically acceptable salts, tautomers and stereoisomers thereof, including mixtures thereof in all ratios, and at least one further active pharmaceutical ingredient.
  • the invention is also a set (kit), consisting of separate
  • the kit contains suitable containers, such as boxes or boxes, individual bottles, bags or ampoules.
  • the set may e.g. containing separate ampoules each containing an effective amount of a compound of formula I and / or its pharmaceutically acceptable salts, tautomers and stereoisomers, including mixtures thereof in all proportions,
  • a compound of Formula I comprises isotopically-labeled forms thereof.
  • An isotopically-labeled form of a compound of formula I is with this compound except for the fact that one or more atoms of the compound have been replaced by an atom or atoms having an atomic mass or mass number which is different from the atomic mass or mass number of the atom, which is usually naturally occurring, distinguishes, identically.
  • Isotopes which are readily available commercially and can be incorporated into a compound of formula I by well-known methods include, for example, isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, eg 2 H, 3 H, 13 C, 14 C, 5 N, 18 O, 17 O, 31 P, 32 P, 35 S, 8 F and 36 CI, respectively.
  • a compound of formula I, one of its prodrugs, or each a pharmaceutically acceptable salt thereof, containing one or more of the above isotopes and / or other isotopes of other atoms is provided as part of the present invention.
  • An isotope-labeled compound of the formula I can be used in many useful ways.
  • an isotopically labeled compound of Formula I in which, for example, a radioisotope such as 3 H or 14 C has been incorporated is suitable for assays for distribution of the drug and / or substrate tissue.
  • Radioisotopes ie tritium ( 3 H) and carbon-14 ( 14 C), are particularly preferred because of their ease of preparation and excellent detectability. Incorporation of heavier isotopes such as deuterium (2 H), into a compound of formula I has therapeutic advantages because of the higher stability of these isotopes.
  • Metabolism immediately means an increased half-life in vivo or lower dosages, which is a preferred in most circumstances
  • deuterium (2 H) For manipulating the oxidative metabolism of the compound across the primary kinetic isotope effect deuterium (2 H) can be incorporated into a compound of formula I.
  • the primary kinetic isotope effect is a change in the rate of a chemical reaction due to the exchange of isotopic nuclei, which in turn is caused by the change in the ground state energies required to form covalent bonds following this isotopic exchange.
  • the replacement of a heavier isotope usually leads to a lowering of the
  • Metabolism e.g. Hydrogen atoms on a benzyl radical and hydrogen atoms attached to a nitrogen atom are prepared as a series of analogs in which various combinations of hydrogen atoms pass through
  • Deuterium atoms are replaced so that some, most or all of them Hydrogen atoms are replaced by deuterium atoms. Determination of the half-life leads to a favorable and exact determination of how much the improvement of the resistance to oxidative
  • Metabolism product spectrum of the starting compound for the purpose of reducing or excluding undesirable toxic metabolic products.
  • the invention relates to the compounds of formula I for use in the treatment of cancer, septic shock, primary open angle glaucoma (POAG), hyperplasia, rheumatoid arthritis, psoriasis, atherosclerosis, retinopathy, osteoarthritis, endometriosis, chronic inflammation and / or neurodegenerative diseases such as Alzheimer's disease .
  • the invention relates to the use of compounds of formula I for the manufacture of a medicament for the treatment of cancer, septic shock, primary open angle glaucoma (POAG), hyperplasia, rheumatoid arthritis, psoriasis, atherosclerosis, retinopathy, osteoarthritis, endometriosis, chronic inflammation and / or neurodegenerative Diseases such as Alzheimer's disease.
  • the invention relates to a method of treating a mammal suffering from a disease arising from cancer, septic shock, primary open angle glaucoma (POAG), hyperplasia, rheumatoid arthritis, psoriasis, atherosclerosis, retinopathy, osteoarthritis, endometriosis, chronic inflammation and / or neurodegenerative diseases such as Alzheimer's disease, the method comprising administering to a mammal a therapeutically effective amount of a compound of formula I.
  • POAG primary open angle glaucoma
  • the invention further relates to the compounds of formula I for use in the treatment of cancer, septic shock, primary open angle glaucoma (POAG), hyperplasia, atherosclerosis, retinopathy, osteoarthritis, endometriosis, chronic inflammation, neurodegenerative diseases, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjörgrens Syndrome, Aicardi-Goutieres Syndrome Lupus Chilblain, Retinal Vasculopathy, Cerebral Leukodystrophy (RVCL), Systemic Sclerosis, Myositis, Psoriasis, Chronic Obstructive Pulmonary Disease (CPD), Inflammatory Bowel Disease (IBD), Obesity, Insulin Resistance, Type 2 diabetes (NIDDM) and / or metabolic syndrome
  • the instant compounds are useful as pharmaceutical agents for mammals, particularly for humans, in the treatment and control of cancers and inflammatory diseases.
  • the host or patient may be of any mammalian species, e.g. A primate species, especially humans; Rodents, including mice, rats and
  • Animal models are for experimental studies of interest, providing a model for the treatment of a human disease.
  • the susceptibility of a particular cell to treatment with the compounds of the invention can be determined by testing in vitro.
  • a culture of the cell is combined with a compound of the invention at various concentrations for a period of time sufficient to allow the active agents, such as anti-IgM, to induce a cellular response, such as expression of a surface marker, usually between about one hour and one week.
  • a cellular response such as expression of a surface marker
  • cultured cells from blood or a biopsy sample can be used. The amount of surface marker expressed is assessed by flow cytometry, with specific
  • Antibodies are used that recognize the marker.
  • the dose will vary depending on the specific compound used, the specific disease, the patient status, etc. Typically, one therapeutic dose will be sufficient to treat the unwanted cell population in the human body
  • the treatment is generally continued until there is a significant reduction, e.g. At least about 50% reduction in cell load and can be continued until essentially no more unwanted cells are detected in the body.
  • Suitable models or model systems have been developed by various scientists, eg, cell culture models (eg, Khwaja et al., EMBO, 1997, 16, 2783-93) and models of transgenic animals (eg, White et al., Oncogene, 2001, 20, 7064-7072).
  • cell culture models eg, Khwaja et al., EMBO, 1997, 16, 2783-93
  • models of transgenic animals eg, White et al., Oncogene, 2001, 20, 7064-7072.
  • interacting compounds can be used to modulate the signal (eg, Stephens et al., Biochemical J., 2000, 351, 95-105).
  • the compounds according to the invention can also be used as reagents for testing kinase-dependent signal transmission pathways in Animals and / or cell culture models or in the clinical diseases mentioned in this application.
  • kinase activity is a technique well known to those skilled in the art.
  • Generic Assay Systems for Determining Kinase Activity with Substrates e.g. Histone (eg Alessi et al., FEBS Lett. 1996, 399, 3, pages 333-338) or the myelin basic protein are described in the literature (eg Campos-Gonzalez, R. and Glenney, Jr., JR 1992, J. Biol. Chem. 267, page 14535).
  • Non-radioactive ELISA assay methods use specific phospho-antibodies (Phospho-AK).
  • Phospho-AK binds only the phosphorylated substrate. This binding is detectable by chemiluminescence with a second peroxidase-conjugated anti-sheep antibody (Ross et al., 2002, Biochem. J.).
  • the present invention encompasses the use of the compounds of the formula I and / or their physiologically acceptable salts, tautomers and solvates for the preparation of a medicament for the treatment or prevention of cancer.
  • Preferred carcinomas for the treatment are from the brain carcinoma, genitourinary tract carcinoma, carcinoma of the lymphatic system, gastric carcinoma, laryngeal carcinoma and lung carcinoma colorectal cancer.
  • Another group of preferred forms of cancer are monocytic leukemia, lung adenocarcinoma, small cell lung carcinoma, pancreatic cancer, glioblastoma and breast carcinoma.
  • the compounds of formula I and / or their physiologically acceptable salts, tautomers and solvates for the manufacture of a medicament for the treatment and / or control of a tumorous disease in a mammal, which method is given to a diseased mammal carrying a requires such treatment, a therapeutically effective amount of a compound of the invention is administered.
  • the therapeutic amount depends on the particular disease and can be determined by the skilled person without great effort.
  • a disease wherein the cancerous disease is a solid tumor.
  • the solid tumor is preferably selected from the group of squamous cell tumors, bladder, stomach, kidney, head and neck,
  • the solid tumor is furthermore preferably selected from the group lung adenocarcinoma, small cell lung carcinoma, pancreatic cancer,
  • Glioblastomas colon carcinoma and breast carcinoma.
  • a tumor of the blood and immune system preferably for the treatment of a tumor selected from the group of acute myelotic leukemia, chronic myelotic leukemia, acute lymphoblastic leukemia and / or chronic lymphocytic leukemia.
  • the invention furthermore relates to the use of the compounds according to the invention for the treatment of bone pathologies, the bone pathology originating from the group osteosarcoma, osteoarthritis and rickets.
  • the compounds of formula I may also be coadministered with other well-known therapeutics selected for their particular suitability for the condition being treated.
  • the present compounds are also useful for combination with known anticancer agents.
  • known anticancer agents include the following:
  • Estrogen receptor modulators androgen receptor modulators, retinoid receptor modulators, cytotoxic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors, HIV protease inhibitors, reverse transcriptase inhibitors, and other angiogenesis inhibitors.
  • the present compounds are particularly suitable for co-administration with radiotherapy.
  • Estrogen receptor modulators refers to compounds that interfere with or inhibit the binding of estrogen to the receptor, regardless of how it is done. "The estrogen receptor modulators include, for example, tamoxifen, raloxifene, idoxifen, LY353381, LY 117081, toremifene,
  • Fulvestrant 4- [7- (2,2-dimethyl-1-oxopropoxy-4-methyl-2- [4- [2- (1-piperidinyl) ethoxy] phenyl] -2H-1-benzopyran-3-yl ] phenyl-2,2-dimethylpropanoate, 4,4'-dihydroxybenzophenone-2,4-dinitrophenylhydrazone and SH646, but this is not intended to be limiting.
  • Androgen receptor modulators refers to compounds that interfere with or inhibit the binding of androgens to the receptor, regardless of how this occurs, and the androgen receptor modulators include, for example, finasteride and other 5a-reductase inhibitors, nilutamide, flutamide, bicalutamide , Liarozole and abiraterone acetate.
  • Retinoid receptor modulators refers to compounds that interfere with or inhibit the binding of retinoids to the receptor, regardless of how this occurs
  • retinoid receptor modulators include, for example, bexarotene, tretinoin, 13-cis-retinoic acid, 9-cis Retinoic acid, ⁇ -difluoromethyl-ornithine, ILX23-7553, trans-N- (4'-hydroxyphenyl) -retinamide and N-4-carboxyphenyl-retinamide.
  • Cytotoxic agents refers to compounds that cause cell death or inhibit cell myosis, primarily by direct action on cell function or interfering with these, including alkylating agents, tumor necrosis factors, intercalators, microtubulin inhibitors and topoisomerase inhibitors.
  • the cytotoxic agents include, for example, tirapazimine, Sertenef, cachectin, ifosfamide, tasonermine, lonidamine, carboplatin, altretamine, prednimustine, dibromodulcite, ranimustine, fotemustine, nedaplatin, oxaliplatin, temozolomide, heptaplatin, estramustine, improvisulfan-tosylate, trofosfamide, nimustine, dibrospidium chloride, Pumitepa, Lobaplatin, Satraplatin, Profiromycin, Cisplatin, Irofulvene, Dexifosfamide, cis-Amine dichloro (2-methylpyridine) platinum, Benzylguanine, Glufosfamide, GPX100, (trans, trans, trans) -bis-mu (hexane-1, 6 -diamine) -mu- [di
  • microtubulin inhibitors include, for example, paclitaxel, vindesine sulfate, 3 ', 4'-didehydro-4'-deoxy-8'-norvincaleukoblastin, docetaxol, rhizoxin, dolastatin, mivobulinisethionate, auristatin, cemadotin, RPR109881, BMS184476, Vinflunine, Cryptophycin, 2,3,4,5,6-pentafluoro-N- (3-fluoro-4-methoxyphenyl) benzenesulfonamide, anhydrovinblastine, N, N-dimethyl-L-valyl-L-valyl-N-methyl-L -valyl-L-prolyl-L-proline t-butylamide, TDX258 and BMS188797.
  • paclitaxel vindesine sulfate
  • Topoisomerase inhibitors are, for example, topotecan, hycaptamine, irinotecan, rubitecane, e-ethoxypropionyl-S '-' - O-exo-benzylidene-chartreusine, 9-methoxy-N, N-dimethyl-5-nitropyrazolo [3,4,5 -kl] acridine-2- (6H) propanamine, 1-amino-9-ethyl-5-fluoro-2,3-dihydro-9-hydroxy-4-methyl-1H, 12H-benzo [de] pyrano [3 ', 4,: b, 7] indolizino [1, 2b] - quinoline-10,13 (9H, 15H) -dione, lurtotecan, 7- [2- (N-isopropylamino) ethyl] - (20S) - camptothecin, BNP1350, BNPI1100, BN8091
  • Antiproliferative agents include antisense RNA and DNA oligonucleotides such as G3139, ODN698, RVASKRAS, GEM231 and INX3001, and antimetabolites such as enocitabine, carmofur, tegafur, pentostatin, doxifluridine, trimetrexate, fludarabine, capecitabine, galocitabine, Cytarabine ocfosfate, Fosteabin Sodium Hydrate, Raltitrexed, Paltitrexide, Emitefur, Tiazofurin, Decitabine, Nolatrexed, Pemetrexed, Nelzarabine, 2'-Deoxy-2'-methylidenecytidine, 2'-fluoromethylene-2'-deoxycytidine, N- [5- (5- 2,3-dihydrobenzofuryl) sulfonyl] -N '- (3,4-dichlorophenyl) urea, N
  • antiproliferative agents also include other monoclonal antibodies against growth factors than those already mentioned under the “angiogenesis inhibitors”, such as trastuzumab, as well as tumor-suppressing genes, such as p53, which can be delivered via recombinant virus-mediated gene transfer (see eg US Pat 6,069,134).
  • the medicaments of Table 1 below are combined with the compounds of the formula I.
  • Such joint treatment can be achieved by simultaneously, sequentially or separately dosing the individual components of the treatment.
  • Such combination products employ the compounds of the invention.
  • the kinase assay is performed as a 384-well flashplate assay (e.g., for topcount measurement).
  • the kinase assay is performed as a 384-well flashplate assay (e.g., for topcount measurement).
  • TANK binding kinase (TBK1) 0.6 nM, 800 nM biotinylated MELK-derived peptide (biotin-Ah-Ah-AKPKGNKDYHLQTCCGSLAYRRR) and 10 ⁇ M ATP (spiked with
  • 0.25 pCi 33 P-ATP / well are added in a total volume of 50 ⁇ M (10 mM MOPS, 10 mM Mg acetate, 0.1 mM EGTA, 1 mM DTT, 0.02% Brij35, 0.1% BSA, pH 7.5) with or without test compound incubated at 30 ° C for 120 min. The reaction is stopped with 25 ⁇ M 200 mM EDTA. After 30 min at room temperature, the liquid is removed and each well is washed three times with 100 ⁇ 0.9% sodium chloride solution. Unspecific reaction is measured in the presence of 100 nM staurosporine. The radioactivity is measured in a topcount (PerkinElmer). The results (eg IC 50 values) are calculated using program tools (eg AssayExplorer, Symyx) provided by the IT department.
  • program tools eg AssayExplorer, Symyx
  • TBK1 was identified as a RalB effector in the pathway of the Ras-like (Ral) guanine nucleotide exchange factor (GEF) required for Ras-induced transformation.
  • GEF Ras-like guanine nucleotide exchange factor
  • TBK1 directly activates IRF3, which homodimerizes upon phosphorylation and shifts to the nucleus, where it activates processes related to inflammation, immune regulation, cell survival and proliferation.
  • This assay was developed to evaluate the potency / potency of ⁇ 1 / ⁇ inhibitor compounds based on immunocytochemical detection of nuclear localized phospho-IRF3, a target immediately after TBK1.
  • dsRNA double-stranded RNA
  • TLR3 toll-like receptor 3
  • MDA-MB-468 cells are detached with HyQ-Tase, counted and placed on a 384 well TC-bottomed tablet with a density of 10,000 cells per well in a total volume of 35 ⁇ M complete medium seeded. Alternatively, the cells are seeded directly from frozen glass vials.
  • Plating medium culture medium:
  • reaction solution is concentrated by rotary evaporation and the powdery residue is triturated with petroleum ether and ethyl acetate and filtered off with suction. The substance is repeated several times
  • di-tert-butyl-azodicarboxylate (5.748 mmol, 1.35 g) was added. The yellow solution is stirred for 2 h at RT.
  • the triphenylphosphine oxide is filtered off with suction and the filtrate is concentrated by rotary evaporation.
  • the 4-nitro-1H-pyrazole derivative is chromatographed on silica gel in ethyl acetate / petroleum ether, if necessary.
  • the 4-nitro-1H-pyrazole derivative is dissolved in methanol, Pd-C-5% added and hydrogenated with hydrogen at room temperature.
  • the 1 H-pyrazole-4-ylamine derivative is obtained after filtration and concentration of the solution.
  • reaction solution is basified with 2 molar NaOH and extracted with ethyl acetate. The combined organic phases are dried, filtered and concentrated. Chromatography on silica gel gives 27 mg of the desired compound; HPLC-MS Rt. [Min] 1.255; HPLC-MS [M + H] 417.
  • reaction mixture is made basic with 2 molar NaOH.
  • the solution is concentrated by rotary evaporation and chromatographed. This gives 100 mg of the
  • the DMF is spun off and the residue is extracted with ethyl acetate and 2 molar NaOH.
  • the organic phases are dried, filtered and concentrated.
  • the DMF is concentrated by rotary evaporation and the residue is extracted with ethyl acetate and 2 molar NaOH. The combined organic phases are dried, filtered and concentrated.
  • reaction solution is basified with 2 molar NaOH, diluted with ethyl acetate and extracted. The combined organic phases are dried, filtered and concentrated.
  • the crude product obtained is purified by chromatography (silica gel,
  • reaction mixture is cooled to room temperature and diluted with water and ethyl acetate and extracted.
  • the combined organic phases are washed with saturated NaCl solution, dried, filtered and concentrated. 3.5 g of crude product are obtained, which is chromatographed over silica gel for purification (ethyl acetate / petroleum ether).
  • Tetrakis (triphenylphosphine) palladium (0) 133.5 mg, 0.116 mmol was added. The solution is stirred overnight at 90.degree.
  • reaction mixture is cooled to room temperature, diluted with water and extracted with ethyl acetate. The combined organic phases are dried with sodium sulfate, filtered and the solvent is evaporated. The residue is purified by chromatography (silica gel dichloromethane / methanol). This gives 249 mg of 4- (6-amino-pyridin-3-yl) -pyrazole-1-carboxylic acid tert-butyl ester; HPLC-MS Rt. [Min] 1.304; HPLC-MS [M + H] 261.
  • the dioxane is concentrated by rotary evaporation, the residue is diluted with water and extracted with dichloromethane. The combined organic phases are washed with water, dried, filtered and concentrated. The residue is purified over a silica gel column (petroleum ether / ethyl acetate 1/1). 174 mg of 5- (3,6-dihydro-2H-pyran-4-yl) -2-nitro-pyridine are obtained; HPLC-MS Rt. [Min] 1,665;
  • reaction mixture is made basic with 2 molar NaOH.
  • the solution is then concentrated by rotary evaporation and admixed with dichloromethane.
  • the organic phases are dried, filtered and concentrated.
  • the crude product is
  • Method A A-0.1% TFA in H 2 O, B-0.1% TFA in ACN: flow 2.0 mL / min.
  • Method B A-10 mM NH 4 HCO 3, B: ACN; Flow rate: 1.0 ml / min
  • 5-bromo-2-cyclopropylmethoxy-benzonitrile 5 g of 5-bromo-2-cyclobutylmethoxy-benzonitrile are obtained from cyclobutanemethanol (2.58 g, 0.03 mol) and 5-bromo-2-fluorobenzonitrile (5.0 g, 0.025 mol) as a yellow oil;
  • Example A Injection jars
  • a solution of 100 g of an active ingredient according to the invention and 5 g of disodium hydrogen phosphate is adjusted to pH 6.5 in 2 l of bidistilled water with 2N hydrochloric acid, filtered sterile, filled into injection jars, lyophilized under sterile conditions and closed under sterile conditions. Each injection jar contains 5 mg of active ingredient.
  • a mixture of 20 g of an active ingredient according to the invention is melted with 100 g of soya lecithin and 1400 g of cocoa butter, poured into molds and allowed to cool. Each suppository contains 20 mg of active ingredient.
  • a solution of 1 g of an active ingredient according to the invention, 9.38 g of NaH 2 PO 4 .2H 2 O, 28.48 g of Na 2 HPO 4 .12H 2 O and 0.1 g of benzalkonium chloride in 940 ml of bidistilled water is prepared. Adjust to pH 6.8, make up to 1 liter and sterilize by irradiation. This solution can be used in the form of eye drops.
  • 500 mg of an active ingredient according to the invention are mixed with 99.5 g of Vaseline under aseptic conditions.
  • Example E Tablets A mixture of 1 kg of active ingredient, 4 kg of lactose, 1, 2 kg of potato starch, 0.2 kg of talc and 0.1 kg of magnesium stearate is compressed in a conventional manner into tablets, such that each tablet contains 0 mg of active ingredient.
  • Tablets are pressed analogously to Example E, which are then coated in the usual way with a coating of sucrose, potato starch, talc, tragacanth and dye.
  • a solution of 1 kg of an active ingredient according to the invention in 60 l of bidistilled water is sterile filtered, filled into ampoules, lyophilized under sterile conditions and sealed sterile. Each ampoule contains 0 mg active substance.

Abstract

Verbindungen der Formel I worin R1, R2, X und Y die in Anspruch 1 angegebenen Bedeutungen haben, sind Hemmer von TBK1 und ΙΚΚε und können unter anderem für die Behandlung von Krebs und Entzündungskrankheiten eingesetzt werden.

Description

BENZONITRILDERIVATE ALS KINASEHEMMER
Hintergrund der Erfindung
Es war die Aufgabe der Erfindung, neue Verbindungen mit wertvollen Eigenschaften aufzufinden, insbesondere solche, die für die Herstellung von Arzneimitteln verwendet werden können.
Die vorliegende Erfindung betrifft Benzonitrilverbindungen, die in der Lage sind, eine oder mehrere Kinasen zu hemmen. Die Verbindungen finden Verwendung in der Behandlung einer Vielzahl von Störungen, darunter Krebs, septischer Schock, primäres Offenwinkelglaukom (Primary open Angle Glaucoma - POAG), Hyperplasie, rheumatoide Arthritis, Psoriasis, Atherosklerose, Retinopathie, Osteoarthritis,
Endometriose, chronische Entzündung und/oder neurodegenerative Erkrankungen wie Morbus Alzheimer.
Die vorliegende Erfindung betrifft Verbindungen und die Verwendung von Verbindungen, bei denen die Hemmung, Regulierung und/oder Modulation der Signal- transduktion von Rezeptorkinasen eine Rolle spielt, ferner pharmazeutische
Zusammensetzungen, die diese Verbindungen enthalten, sowie die Verwendung der Verbindungen zur Behandlung kinasebedingter Krankheiten.
Da Proteinkinasen nahezu jeden Zellprozeß, darunter Metabolismus, Zellproliferation, Zelldifferenzierung und Zellüberleben, regulieren, stellen sie attraktive Ziele für therapeutische Eingriffe bei verschiedenen Krankheitszuständen dar. Beispielsweise sind Zellzyklussteuerung und Angiogenese, in denen Proteinkinasen eine Schlüsselrolle spielen, Zellvorgänge, die mit zahlreichen Krankheitszuständen wie Krebs, Entzündungskrankheiten, abnormale Angiogenese und damit in Zusammenhang stehende Krankheiten, Atherosklerose, Makula-Degeneration, Diabetes, Fettsucht und Schmerz einhergehen, ohne hierauf beschränkt zu sein.
Die vorliegende Erfindung betrifft insbesondere Verbindungen und die Verwendung von Verbindungen, bei denen die Hemmung, Regulierung und/oder Modulation der Signaltransduktion von TBK1 und ΙΚΚε eine Rolle spielt. Einer der Hauptmechanismen, durch den die Zellregulation bewirkt wird, ist durch die Transduktion der extrazellulären Signale über die Membran, die wiederum biochemische Wege in der Zelle modulieren. Protein-Phosphorylierung stellt einen Ablauf dar, über den intrazelluläre Signale von Molekül zu Molekül propagiert werden, was schließlich in einer Zellantwort resultiert. Diese Signaltransduktionskaskaden sind hoch reguliert und überlappen häufig, wie aus dem Vorliegen vieler Proteinkinasen wie auch Phosphatasen hervorgeht. Phosphorylierung von Proteinen tritt vorwiegend bei Serin-, Threonin- oder Tyrosinresten auf, und Proteinkinasen wurden deshalb nach ihrer Spezifität des Phosporylierungsortes, d. h. der Serin-/Threonin-Kinasen und Tyrosin-Kinasen klassifiziert. Da Phosphorylierung ein derartig weit verbreiteter Prozess in Zellen ist und da Zellphänotypen größtenteils von der Aktivität dieser Wege beeinflusst werden, wird zur Zeit angenommen, dass eine Anzahl von Krankheits- zuständen und/oder Erkrankungen auf entweder abweichende Aktivierung oder funktionelle Mutationen in den molekularen Komponenten von Kinasekaskaden zurückzuführen sind. Folglich wurde der Charakterisierung dieser Proteine und
Verbindungen, die zur Modulation ihrer Aktivität fähig sind, erhebliche Aufmerksamkeit geschenkt (Übersichtsartikel siehe: Weinstein-Oppenheimer et al. Pharma. &. Therap., 2000, 88, 229-279).
ΙΚΚε und TBK1 sind Serin/Threonin Kinasen die hohe Homologien untereinander sowie zu anderen IkB-Kinasen aufweisen. Beide Kinasen spielen eine integrale
Rolle für das angeborene, immanente Immunsystem. Doppelsträngige RNA-Viren werden durch die Toll-like Rezeptoren 3 und 4, sowie die RNA-Helicasen RIG-I und MDA-5 erkannt und führen zu einer Aktivierung der TRIF-TBK1/IKKs-IRF3 Signalkaskade, was zu einer Typ I Interferon-Antwort führt.
Boehm und Kollegen beschrieben 2007 ΙΚΚε als ein neuartiges Brustkrebsonkogen [J.S. Boehm et al., Cell 129, 1065-1079, 2007]. 354 Kinasen wurden auf Ihre
Fähigkeit hin untersucht gemeinschaftlich mit einer aktivierten Form der MAPK
Kinase Mek, den Ras-transformierenden Phänotyp zu rekapitulieren. ΙΚΚε wurde hierbei als ein kooperatives Onkogen identifiziert. Darüber hinaus konnten die Autoren zeigen, dass ΙΚΚε in zahlreichen Brustkrebszelllinien und Tumorproben amplifiziert und überexprimiert vorliegt. Die Verminderung der Genexpression mittels RNA interference in Brustkrebszellen induziert Apoptosis und beeinträchtigt deren Proliferation. Eddy und Kollegen kamen 2005 zu ähnlichen Befunden, was die Bedeutung von ΙΚΚε in Brustkrebserkrankungen unterstreicht [S. F. Eddy et al., Cancer Res. 2005; 65 (24), 11375-11383].
Über einen protumorigenen Effekt von TBK1 wurde erstmals 2006 berichtet. Korherr und Kollegen identifizierten in einem Screening einer 251000 cDNA umfassenden Genbibliothek mit TRIF, TBK1 und IRF3 gleich drei Gene, die typischerweise in der angeborenen Immunabwehr involviert sind, als proangiogene Faktoren
[C. Korherr et al., PNAS, 103, 4240-4245, 2006]. Chien und Kollegen publizierten 2006 [Y.Chien et al., Cell 127, 157-170, 2006], dass TBK1-/- Zellen nur bedingt mit oncogenem Ras transformierbar sind, was eine Involvierung von TBK1 bei der Rasvermittelten Transformation nahelegt. Desweiteren konnten Sie zeigen, dass ein RNAi vermittelter knock down von TBK1 Apoptose in MCF-7 und Panc-1 Zellen auslöst. Kürzlich publizierten Barbie und Kollegen, dass TBK1 in zahlreichen Krebszellinien mit mutierten K-Ras von essentieller Bedeutung ist, was nahelegt, dass eine TBK1 Intervention in entsprechenden Tumoren von therapeutischer Bedeutung sein könnte [D.A.Barbie et al., Nature Letters 1-5, 2009].
Durch Proteinkinasen hervorgerufene Erkrankungen sind durch eine anomale Aktivität oder Hyperaktivität solcher Proteinkinasen gekenn zeichnet. Anomale Aktivität betrifft entweder: (1) die Expression in Zellen, die gewöhnlich diese
Proteinkinasen nicht exprimieren; (2) erhöhte Kinasen-Expression, die zu unerwünschter Zellproliferation, wie Krebs, führt; (3) erhöhte Kinasen-Aktivität, die zu unerwünschter Zellproliferation, wie Krebs, und/oder zu Hyperaktivität der entsprechenden Proteinkinasen führt. Hyperaktivität bezieht sich entweder auf eine Amplifikation des Gens, das eine bestimmte Proteinkinase codiert, oder die
Erzeugung eines Aktivitäts-Spiegels, der mit einer Zellproliferationserkrankung korreliert werden kann (d.h. mit steigendem Kinase-Spiegel steigt die Schwere eines oder mehrerer Symptome der Zellproliferationserkrankung) die biologische Verfügbarkeit einer Proteinkinase kann auch durch das Vorhandensein oder Fehlen eines Satzes von Bindungsproteinen dieser Kinase beeinflusst werden.
ΙΚΚε und TBK1 sind hochgradig homologe Ser/Thr-Kinasen, die durch Induktion von Typ-1-lnterferonen und anderen Zytokinen eine ausschlaggebende Rolle bei der angeborenen Immunantwort spielen. Diese Kinasen werden als Antwort auf eine virale/bakterielle Infektion stimuliert. Zur Immunantwort auf virale und bakterielle Infektionen gehört die Bindung von Antigenen wie bakteriellem Lipopolysaccharid (LPS), viraler doppelsträngiger RNA (dsRNA) an Toll-like Rezeptoren, daran
anschließend Aktivierung des TBK1 -Weges. Aktiviertes TBK1 und ΙΚΚε phosphory- lieren IRF3 und IRF7, was die Dimerisierung und Kerntranslokation dieser Interferon regulierenden Transkriptionsfaktoren auslöst, was letztendlich eine Signalkaskade induziert, die zur IFN-Produktion führt.
Kürzlich wurden ΙΚΚε und TBK1 auch mit Krebs in Zusammenhang gebracht. Es wurde gezeigt, daß ΙΚΚε mit aktiviertem MEK zur Transformation menschlicher Zellen kooperiert. Außerdem wird ΙΚΚε häufig in Brustkrebs-Zellinien und von Patienten stammenden Tumoren amplifiziert/überexprimiert. TBK1 wird unter hypoxischen Bedingungen induziert und in vielen soliden Tumoren in signifikanter Höhe exprimiert. Des weiteren ist TBKI erforderlich, um onkogene Ras-Transformation zu unterstützen, und TBK1-Kinaseaktivität ist in transformierten Zellen erhöht und für ihr Überleben in Kultur erforderlich. Ebenso wurde gefunden, daß TBK1- und NF-kB-Signalgebung in KRAS-mutierten Tumoren wesentlich sind. TBK1 wurde als ein synthetischer letaler Partner des onkogenen KRAS identifiziert.
Lit.:
Y.-H.Ou et al., Molecular Cell 41 , 458-470, 2011 ;
D.A. Barbie et al., Nature, 1-5, 2009. In der WO 2011/046970 A1 wird die Verwendung von TBK1- und/oder ΙΚΚε - Inhibitoren zur Behandlung von verschiedenen Krankheiten beschrieben, wie rheumatoide Arthritis (RA), systemischer Lupus erythematosus (SLE), Sjörgrens Syndrom, Aicardi-Goutieres Syndrom Lupus Chilblain, retinale Vasculopathie und cerebrale Leukodystrophie (RVCL), systemische Sclerosis, Myositis, Psoriasis, chronisch obstruktive pulmonare Krankheit (CPD), endzündliche Darmkrankheit (IBD), Fettsucht, Insulinresistenz, Typ 2 Diabetes (NIDDM), metabolisches Syndrom,
Krebserkrankungen,
Dementsprechend werden die erfindungsgemäßen Verbindungen oder ein pharmazeutisch unbedenkliches Salz davon für die Behandlung von Krebs verabreicht, einschließlich solider Karzinome, wie zum Beispiel Karzinome (z. B. der Lungen, des Pankreas, der Schilddrüse, der Harnblase oder des Kolons), myeloische Erkrankungen (z. B. myeloische Leukämie) oder Adenome (z. B. villöses Kolonadenom).
Zu den Tumoren zählen weiterhin die Monozytenleukämie, Hirn-, Urogenital-, Lymphsystem-, Magen-, Kehlkopf- und Lungenkarzinom, darunter Lungenadenokarzinom und kleinzelliges Lungenkarzinom, Bauchspeicheldrüsen- und/oder Brustkarzinom.
Die Verbindungen sind ferner nützlich bei der Behandlung der durch HIV-1 (Human Immunodeficiency Virus Typ 1) induzierten Immunschwäche.
Als krebsartige hyperproliferative Erkrankungen sind Hirnkrebs, Lungenkrebs, Plattenepithelkrebs, Blasenkrebs, Magenkrebs, Pankreaskrebs, Leberkrebs, Nierenkrebs, Kolorektalkrebs, Brustkrebs, Kopfkrebs, Halskrebs, Osophaguskrebs, gynäkologischer Krebs, Schilddrüsenkrebs, Lymphome, chronische Leukämie und akute Leukämie anzusehen. Insbesondere krebsartiges Zellwachstum ist eine Erkrankung, die ein Ziel der vorliegenden Erfindung darstellt. Gegenstand der vorliegenden Erfindung sind deshalb erfindungsgemäße Verbindungen als Arzneimittel und/oder Arzneimittelwirkstoffe bei der Behandlung und/oder Prophylaxe der genannten Erkrankungen und die Verwendung von erfindungsgemäßen Verbindungen zur Herstellung eines
Pharmazeutikums für die Behandlung und/oder Prophylaxe der genannten Erkrankungen wie auch ein Verfahren zur Behandlung der genannten Erkrankungen umfassend die Verabreichung eines oder mehrerer erfindungsgemäßer Verbindungen an einen Patienten mit Bedarf an einer derartigen Verabreichung.
Es kann gezeigt werden, dass die erfindungsgemäßen Verbindungen antiproliferative Wirkung aufweisen. Die erfindungsgemäßen Verbindungen werden an einen Patienten mit einer hyperproliferativen Erkrankung verabreicht, z. B. zur Inhibition des Tumorwachstums, zur Verminderung der mit einer lymphoproliferativen Erkrankung einhergehenden Entzündung, zur Inhibition der Transplantatabstoßung oder neurologischer Schädigung aufgrund von Gewebereparatur usw. Die vorliegenden Verbindungen sind nützlich für prophylaktische oder therapeutische Zwecke. Wie hierin verwendet, wird der Begriff„Behandeln" als Bezugnahme sowohl auf die Verhinderung von Krankheiten als auch die Behandlung vorbestehender Leiden verwendet. Die Verhinderung von Proliferation/ Vitalität wird durch Verabreichung der erfindungsgemäßen Verbindungen vor Entwicklung der evidenten Krankheit erreicht, z. B. zur Verhinderung des Tumorwachstums. Als Alternative werden die Verbindungen zur Behandlung andauernder Krankheiten durch Stabilisation oder Verbesserung der klinischen Symptome des Patienten verwendet.
Der Wirt oder Patient kann jeglicher Säugerspezies angehören, z. B. einer Primatenspezies, besonders Menschen; Nagetieren, einschließlich Mäusen, Ratten und
Hamstern; Kaninchen; Pferden, Rindern, Hunden, Katzen usw. Tiermodelle sind für experimentelle Untersuchungen von Interesse, wobei sie ein Modell zur Behandlung einer Krankheit des Menschen zur Verfügung stellen.
Die Suszeptibilität einer bestimmten Zelle gegenüber der Behandlung mit den erfindungsgemäßen Verbindungen kann durch Testen in vitro bestimmt werden.
Typischerweise wird eine Kultur der Zelle mit einer erfindungsgemäßen Verbindung bei verschiedenen Konzentrationen für eine Zeitdauer inkubiert, die ausreicht, um den aktiven Mitteln zu ermöglichen, Zelltod zu induzieren oder Zellproliferation, Zellvitalität oder Migration zu inhibieren, gewöhnlich zwischen ungefähr einer Stunde und einer Woche. Zum Testen in vitro können kultivierte Zellen aus einer Biopsieprobe verwen- det werden. Die Menge nach der Behandlung zurückbleibenden Zellen werden dann bestimmt.
Die Dosis variiert abhängig von der verwendeten spezifischen Verbindung, der spezifischen Erkrankung, dem Patientenstatus usw. Typischerweise ist eine therapeutische Dosis ausreichend, um die unerwünschte Zellpopulation im Zielgewebe erheblich zu vermindern, während die Lebensfähigkeit des Patienten aufrechterhalten wird. Die Behandlung wird im Allgemeinen fortgesetzt, bis eine erhebliche Reduktion vorliegt, z. B. mindestens ca. 50 % Verminderung der Zelllast und kann fortgesetzt werden, bis im Wesentlichen keine unerwünschten Zellen mehr im Körper nachgewiesen werden.
Es gibt viele mit einer Deregulation der Zellproliferation und des Zelltods (Apoptose) einhergehende Erkrankungen. Die Leiden von Interesse schließen die folgenden Leiden ein, sind aber nicht darauf beschränkt. Die erfindungsgemäßen Verbindungen sind nützlich bei der Behandlung einer Reihe verschiedener Leiden, bei denen Proliferation und/oder Migration glatter Muskelzellen und/oder Entzündungszellen in die Intimaschicht eines Gefäßes vorliegt, resultierend in eingeschränkter Durchblutung dieses Gefäßes, z. B. bei neointimalen okklusiven Läsionen. Zu okklusiven
Transplantat-Gefäßerkrankungen von Interesse zählen Atherosklerose, koronare Gefäßerkrankung nach Transplantation, Venentransplantatstenose, peri-anastomoti- sche Prothesenrestenose, Restenose nach Angioplastie oder Stent-Platzierung und dergleichen.
Zudem können die erfindungsgemäßen Verbindungen verwendet werden, um bei gewissen existierenden Krebs-Chemotherapien und -bestrahlungen additive oder synergistische Effekte zu erzielen und/oder, um die Wirksamkeit gewisser existierender Krebs-Chemotherapien und -bestrahlungen wiederherzustellen.
Der Ausdruck "Methode" bezeichnet Arbeitsweisen, Mittel, Techniken und Prozeduren, um eine gegebene Aufgabe zu erfüllen, darunter diejenigen Arbeitsweisen, Mittel, Techniken und Prozeduren, die dem Fachmann auf chemischem, pharmakologischem, biologischem, biochemischem und medizinischem Gebiet entweder bekannt sind oder von ihm leicht aus bekannten Arbeitsweisen, Mitteln, Techniken und
Prozeduren entwickelt werden können, ohne jedoch hierauf beschränkt zu sein.
Der Ausdruck "Verabreichung", wie er hier verwendet wird, bezeichnet eine Methode, um eine Verbindung der vorliegenden Erfindung und eine Zielkinase so zusammenzubringen, daß die Verbindung die Enzymaktivität der Kinase entweder direkt, d.h. durch Wechselwirkung mit der Kinase selber, oder indirekt, d.h. durch Wechselwirkung mit einem anderen Molekül, von dem die katalytische Aktivität der Kinase abhängt, beeinflussen kann. Wie hier verwendet, kann Verabreichung entweder in vitro, d.h. im Reagenzglas, oder in vivo, d.h. in Zellen oder Geweben eines lebenden Organismus, erfolgen.
Der Ausdruck "Behandeln" umfaßt hier Außerkraftsetzen, weitgehendes Hemmen, Verlangsamen oder Umkehren des Fortschreitens einer Krankheit oder Störung, weitgehendes Verbessern der klinischen Symptome einer Krankheit oder Störung oder weitgehendes Verhindern des Auftretens der klinischen Symptome einer Krankheit oder Störung.
Der Ausdruck„Verhindern" bezeichnet hier eine Methode, um einen Organismus dagegen zu blockieren, daß er eine Störung oder Krankheit überhaupt erwirbt.
Für eine beliebige in dieser Erfindung verwendete Verbindung kann eine therapeutisch wirksame Menge, die hier auch als therapeutisch wirksame Dosis bezeichnet wird, kann zunächst anhand von Zellkultur-Assays berechnet werden. Beispielsweise kann in Tiermodellen eine Dosis formuliert werden, um einen Kreislaufkonzentrationsbereich zu erreichen, der die IC50 oder die IC100 umfaßt, wie sie in Zellkulturen ermittelt wurden. Diese Information kann verwendet werden, um brauchbare Dosen für den Menschen genauer zu bestimmen. Anfangsdosierungen können auch aus ln-vivo- Daten berechnet werden. Anhand dieser Anfangsrichtlinien könnte ein Durchschnittsfachmann eine wirksame Dosierung für den Menschen bestimmen.
Außerdem können die Toxizität und die therapeutische Wirksamkeit der hier beschriebenen Verbindungen nach pharmazeutischen Standardprozeduren an Zellkulturen oder Versuchstieren bestimmt werden, indem man z.B. die LD50 und die ED50 bestimmt. Das Dosisverhältnis zwischen toxischer und therapeutischer Wirkung ist der therapeutische Index, der als das Verhältnis zwischen LD50 und ED50 ausgedrückt werden kann. Verbindungen, die einen hohen therapeutischen Index aufweisen, sind bevorzugt. Die aus diesen Zellkultur-Assays und Tierversuchen erhaltenen Daten können verwendet werden, um einen Dosierungsbereich zu formulieren, der für die Verwendung am Menschen nicht toxisch ist. Die Dosierung solcher Verbindungen liegt vorzugsweise in Konzentrationsbereichen im Blutkreislauf, die die ED50 mit geringer oder keiner Toxizität umfassen. Innerhalb dieses Bereiches kann die Dosierung in Abhängigkeit von der eingesetzten Dosierungsform und dem verwendeten Verabreichungsweg variieren. Die genaue Formulierung, der Verabreichungsweg und die Dosierung können vom einzelnen Arzt unter Berücksichtigung des Zustandes des Patienten gewählt werden (siehe z.B. Fingl et al., 1975, in: The Pharmacological Basis of Therapeutics, Kapitel 1 , Seite 1).
Dosierungsmenge und -interval können individuell eingestellt werden, um für Plasmaspiegel der Wirkverbindung zu sorgen, die ausreichen, um eine therapeutische
Wirkung zu erhalten. Übliche Patientendosierungen für orale Verabreichung liegen im Bereich von etwa 50-2000 mg/kg/Tag, im allgemeinen von etwa 100-1000 mg/kg/Tag, vorzugsweise von etwa 150-700 mg/kg/Tag und insbesondere bevorzugt von etwa 250-500 mg/kg/Tag.
Vorzugsweise erreicht man therapeutisch wirksame Serumspiegel durch Verabreichen mehrerer Dosen pro Tag. Bei lokaler Verabreichung oder selektiver Aufnahme steht die wirksame lokale Konzentration des Medikamentes möglicherweise nicht mit der Plasmakonzentration in Beziehung. Der Fachmann wird in der Lage sein, therapeutisch wirksame lokale Dosierungen ohne übermäßiges Experimentieren zu optimieren.
Bevorzugte Krankheiten oder Störungen, für deren Vorbeugung, Behandlung und/oder Untersuchung die hier beschriebenen Verbindungen brauchbar sein können, sind zellproliferative Störungen, insbesondere Krebs, wie Papillom, Blastogliom, Kaposi- Sarkom, Melanom, Lungenkrebs, Eierstockkrebs, Prostatakrebs, Plattenepithelkarzinom, Astrozytom, Kopfkrebs, Halskrebs, Hautkrebs, Leberkrebs, Blasenkrebs, Brustkrebs, Lungenkrebs, Gebärmutterkrebs, Prostatakrebs, Hodenkarzinom, Kolo- rektalkrebs, Schilddrüsenkrebs, Bauchspeicheldrüsenkrebs, Magenkrebs, hepato- zelluläres Karzinom, Leukämie, Lymphom, Morbus Hodgkin und Burkitt-Krankheit, ohne hierauf beschränkt zu sein.
STAND DER TECHNIK
Andere Benzonitrilderivate sind in der WO 2011/046970 A1 und in WO 2012/010826 A1 als TBK1- und/oder ΙΚΚε-lnhibitoren beschrieben.
Weitere heterocyclische Derivate und deren Verwendung als Antitumormittel wurden in der WO 2007/129044 beschrieben.
Weitere Pyridin- und Pyrazinderivate wurden in der Verwendung für die Behandlung von Krebs in der WO 2009/053737 und für die Behandlung von anderen Krankheiten in der WO 2004/055005 beschrieben.
Weitere heterocyclische Derivate wurden als ΙΚΚε-Hemmer in der WO 2009/122180 offenbart.
Pyrrolopyrimidine wurden als ΙΚΚε- und TBK1-Hemmer in der WO 2010/100431 beschrieben.
Pyrimidinderivate wurden als ΙΚΚε- und TBK1-Hemmer in der WO 2009/030890 beschrieben.
ZUSAMMENFASSUNG DER ERFINDUNG
Die Erfindung betrifft Verbindungen der Formel I
Figure imgf000011_0001
worin
X CH oder N,
γ He^-diyl,
R O(CH2)nHet\ NH(CH2)nHet1, OA, NHA, NA2, O(CH2)nCyc oder
NH(CH2)nCyc,
R2 H, A, Ar1, (CH2)nHet3, CN, (CH2)nCyc, CONH2) COOA, (CH2)nOH,
(CH2)nOA, (CH2)nNH2, (CH2)nNHA oder (CH2)nNA2,
Ar1 unsubstituiertes oder ein-, zwei- oder dreifach durch Hai, A, OH, OA,
COOH, COOA, CN, CONH2, NHSO2A und/oder SO2A substituiertes Phenyl,
Het unsubstituiertes oder einfach durch OH, COOA, CONH2, COA und/oder A substituiertes Dihydropyrrolyl, Pyrrolidinyl, Azetidinyl, Tetrahydroimidazolyl, Dihydropyrazolyl, Tetra hydropyrazolyl, Dihydropyridyl, Tetrahydropyridyl, Piperidinyl, Morpholinyl, Hexahydropyridazinyl, Hexahydropyrimidinyl,
[1 ,3]Dioxolanyl, Tetrahydropyranyl oder Piperazinyl,
Her2 unsubstituiertes oder einfach durch Hai, A, OH, =O, OA, CN, COOA,
COOH, CONH2 und/oder NHCOA substituiertes Furyl, Thienyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isoxazolyl, Thiazolyl, Triazolyl, Pyridyl, Pyrimidyl, Pyridazinyl, Pyrazinyl, Indolyl, Isoindolyl, Benzimidazolyl,
Indazolyl, Chinolyl, 1 ,3-Benzodioxolyl, Benzothiophenyl, Benzofuranyl, Imidazopyridyi, S.e.Z.S-Tetrahydro-pyrido^.S-dJpyrimidin^-yl oder Furo[3,2- b]pyridyl,
Het3 unsubstituiertes oder ein- oder zweifach durch Hai, A, OH, OA, CN, COOA,
COOH, CONH2, CONHA, CONA2) COA, COCH2NH2, COCH2NHA,
COCH2NA2, (CH2)nCyc und/oder NHCOA substituiertes Dihydropyrrolyl, Pyrrolidinyl, Azetidinyl, Tetrahydroimidazolyl, Tetra hydrofuranyl, Dihydropyrazolyl, Tetrahydropyrazolyl, Dihydropyridyl, Tetrahydropyridyl, Piperidinyl, Morpholinyl, Hexahydropyridazinyl, Hexahydropyrimidinyl,
[1 ,3]Dioxolanyl, Dihydropyranyl, Tetrahydropyranyl, Piperazinyl, Furyl, Thienyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isoxazolyl, Thiazolyl, Triazolyl, Pyridyl, Pyrimidyl, Pyridazinyl, Indolyl, Isoindolyl, Benzimidazolyl, Indazolyl, Chinolyl, 1 ,3-Benzodioxolyl, Benzothiophenyl, Benzofuranyl, Imidazopyridyi oder Furo[3,2-b]pyridyl, A unverzweigtes oder verzweigtes Alkyl mit 1-10 C-Atomen, worin eine oder zwei nicht benachbarte CH- und/oder CH2-Gruppen durch N-, O- und/oder S-Atomen ersetzt sein können und/oder auch 1-7 H-Atome durch F und/oder Cl ersetzt sein können,
Cyc unsubstituiertes oder einfach durch CN, (CH2)nOH oder A substituiertes cyclisches Alkyl mit 3, 4, 5, 6 oder 7 C-Atomen,
Hai F, Cl, Br oder I,
n 0, 1 , 2, 3 oder 4,
bedeuten,
sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
Gegenstand der Erfindung sind auch die optisch aktiven Formen (Stereoisomeren), Salze, die Enantiomeren, die Racemate, die Diastereomeren sowie die Hydrate und Solvate dieser Verbindungen. Unter Solvaten der Verbindungen werden Anlagerungen von inerten Lösungsmittelmolekülen an die Verbindungen verstanden, die sich aufgrund ihrer gegenseitigen Anziehungskraft ausbilden. Solvate sind z.B. Mono- oder Dihydrate oder Alkoholate.
Gegenstand der Erfindung sind natürlich auch die Solvate der Salze.
Unter pharmazeutisch verwendbaren Derivaten versteht man z.B. die Salze der erfindungsgemäßen Verbindungen als auch sogenannte Prodrug-Verbindungen. Unter Prodrug-Derivaten versteht man mit z. B. Alkyl- oder Acylgruppen, Zuckern oder Oligopeptiden abgewandelte Verbindungen der Formel I, die im Organismus rasch zu den wirksamen erfindungsgemäßen Verbindungen gespalten werden. Hierzu gehören auch bioabbaubare Polymerderivate der erfindungsgemäßen Verbindungen, wie dies z. B. in Int. J. Pharm. 115. 61-67 (1995) beschrieben ist.
Der Ausdruck "wirksame Menge" bedeutet die Menge eines Arzneimittels oder eines pharmazeutischen Wirkstoffes, die eine biologische oder medizinische Antwort in einem Gewebe, System, Tier oder Menschen hervorruft, die z.B. von einem Forscher oder Mediziner gesucht oder erstrebt wird. Darüberhinaus bedeutet der Ausdruck "therapeutisch wirksame Menge" eine Menge, die, verglichen zu einem entsprechenden Subjekt, das diese Menge nicht erhalten hat, folgendes zur Folge hat:
verbesserte Heilbehandlung, Heilung, Prävention oder Beseitigung einer Krankheit, eines Krankheitsbildes, eines Krankheitszustandes, eines Leidens, einer Störung oder von Nebenwirkungen oder auch die Verminderung des Fortschreitens einer Krankheit, eines Leidens oder einer Störung.
Die Bezeichnung "therapeutisch wirksame Menge" umfaßt auch die Mengen, die wirkungsvoll sind, die normale physiologische Funktion zu erhöhen.
Gegenstand der Erfindung ist auch die Verwendung von Mischungen der Verbindungen der Formel I, z.B. Gemische zweier Diastereomerer z.B. im Verhältnis 1 :1 , 1 :2, 1 :3, 1 :4, 1 :5, 1 :10, 1 :100 oder 1 :1000.
Besonders bevorzugt handelt es sich dabei um Mischungen stereoisomerer Verbindungen.
Gegenstand der Erfindung sind die Verbindungen der Formel I und ihre Salze sowie ein Verfahren zur Herstellung von Verbindungen der Formel I sowie ihrer pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, dadurch gekennzeichnet, daß man a) eine Verbindung der Formel II
Figure imgf000014_0001
worin Y und R2 die in Anspruch 1 angegebenen Bedeutungen haben, mit einer Verbindung der Formel III
Figure imgf000015_0001
worin X und R die in Anspruch 1 angegebenen Bedeutungen haben und
L F, Cl, Br oder I bedeutet, umsetzt, und/oder eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.
Vor- und nachstehend haben die Reste R1, R2, X und Y die bei der Formel I angegebenen Bedeutungen, sofern nicht ausdrücklich etwas anderes angegeben ist.
A bedeutet Alkyl, ist unverzweigt (linear) oder verzweigt und hat 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 C-Atome. A bedeutet vorzugsweise Methyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl, ferner auch Pentyl, 1-, 2- oder 3- Methylbutyl, 1 ,1-, 1 ,2- oder 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-, 2-, 3- oder 4-Methylpentyl, 1 ,1-, 1 ,2-, 1 ,3-, 2,2-, 2,3- oder 3,3-Dimethylbutyl, 1- oder 2-Ethyl- butyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, 1 ,1 ,2- oder 1 ,2, 2-Trimethyl- propyl, weiter bevorzugt z.B. Trifluormethyl.
A bedeutet ganz besonders bevorzugt Alkyl mit 1 , 2, 3, 4, 5 oder 6 C-Atomen, vorzugsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl, tert.-Butyl,
Pentyl, Hexyl, Trifluormethyl, Pentafluorethyl oder 1 ,1 , 1-Trifluorethyl.
In A können auch eine oder zwei CH- und/oder CH2-Gruppen durch N, O- oder S-
Atome ersetzt sein. So bedeutet A z.B. auch 2-Methoxyethyl.
Besonders bevorzugt bedeutet A unverzweigtes oder verzweigtes Alkyl mit 1-8 C-
Atomen, worin eine oder zwei nicht benachbarte CH- und/oder CH2-Gruppen durch N- und/oder O-Atome ersetzt sein können und/oder auch 1-7 H-Atome durch F ersetzt sein können.
Ar1 bedeutet z.B. Phenyl, o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-lsopropylphenyl, o-, m- oder p-tert.-Butylphenyl, o-, m- oder p-Trifluormethylphenyl, o-, m- oder p-Fluorphenyl, o-, m- oder p-Brom- phenyl, o-, m- oder p-Chlorphenyl, o-, m- oder p-Hydroxyphenyl, o-, m- oder p- Methoxyphenyl, o-, m- oder p-Methylsulfonylphenyl, o-, m- oder p-Nitrophenyl, o-, m- oder p-Aminophenyl, o-, m- oder p-Methylaminophenyl, o-, m- oder p-Dimethyl- aminophenyl, o-, m- oder p-Aminosulfonylphenyl, o-, m- oder p-Methylamino- sulfonylphenyl, o-, m- oder p-Aminocarbonylphenyl, o-, m- oder p-Carboxyphenyl, o-, m- oder p-Methoxycarbonylphenyl, o-, m- oder p-Ethoxycarbonylphenyl, o-, m- oder p-Acetylphenyl, o-, m- oder p-Formylphenyl, o-, m- oder p-Cyanphenyl, weiter bevorzugt 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Difluorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dichlorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dibromphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6- oder 3,4,5-Trichlorphenyl, p-lodphenyl, 4-Fluor-3-chlorphenyl, 2-Fluor-4-bromphenyl, 2,5-Difluor-4-bromphenyl oder 2,5-Dimethyl-4-chlorphenyl. Ar1 bedeutet besonders bevorzugt unsubstituiertes oder ein-, zwei- oder dreifach durch A substituiertes Phenyl.
Het bedeutet vorzugsweise unsubstituiertes oder einfach durch COA substituiertes
Pyrrolidinyl, Piperidinyl, Morpholinyl oder Tetrahydropyranyl.
Het2 bedeutet vorzugsweise unsubstituiertes oder einfach durch =0 oder OA substituiertes Thienyl, Pyrazolyl, Oxazolyl, Isoxazolyl, Pyridyl, Pyrazinyl, Pyridazinyl,
Thiazolyl, Pyrimidyl, Indolyl, 5,6,7,8-Tetrahydro-pyrido[4,3-d]pyrimidin-2-yl oder
Benzofuranyl.
Het3 bedeutet vorzugsweise unsubstituiertes oder einfach durch A substituiertes Pyrrolidinyl, Azetidinyl, Tetrahydrofuranyl, Dihydropyranyl, Tetrahydropyranyl, Dihydro- pyridyl, Tetrahydropyridyl, Piperidinyl, Piperazinyl, Morpholinyl, Furyl, Thienyl,
Pyrazolyl, Benzofuranyl oder Pyridyl.
Hai bedeutet vorzugsweise F, Cl oder Br, aber auch I, besonders bevorzugt F oder Cl. X bedeutet vorzugsweise CH.
Für die gesamte Erfindung gilt, daß sämtliche Reste, die mehrfach auftreten, gleich oder verschieden sein können, d.h. unabhängig voneinander sind.
Die Verbindungen der Formel I können ein oder mehrere chirale Zentren besitzen und daher in verschiedenen stereoisomeren Formen vorkommen. Die Formel I umschließt alle diese Formen.
Dementsprechend sind Gegenstand der Erfindung insbesondere diejenigen
Verbindungen der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln la bis Ig ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch in la R1 O(CH2)nHet1 oder 0(CH2)nCyc; in Ib Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A
substituiertes Phenyl; in Ic Het unsubstituiertes oder einfach durch COA substituiertes
Pyrrolidinyl, Piperidinyl, Morpholinyl oder Tetrahydropyranyl; in Id Het2 unsubstituiertes oder einfach durch =0 oder OA substituiertes
Thienyl, Pyrazolyl, Oxazolyl, Isoxazolyl, Pyridyl, Pyrazinyl, Pyridazinyl, Thiazolyl, Pyrimidyl, Indolyl, 5,6,7, 8-Tetrahydro- pyrido[4,3-d]pyrimidin-2-yl oder Benzofuranyl; in le Het3 unsubstituiertes oder einfach durch A substituiertes Pyrrolidinyl,
Azetidinyl, Tetrahydrofuranyl, Dihydropyranyl, Tetrahydropyranyl, Dihydropyridyl, Tetrahydropyridyl, Piperidinyl, Piperazinyl,
Morpholinyl, Furyl, Thienyl, Pyrazolyl, Benzofuranyl oder Pyridyl; unverzweigtes oder verzweigtes Alkyl mit 1-8 C-Atomen, worin in lf A
eine oder zwei nicht benachbarte CH- und/oder CH^Gruppen durch N- und/oder O-Atome ersetzt sein können und/oder auch 1-7 H-Atome durch F ersetzt sein können; in lg X CH oder N,
Y Het^diyl,
R1 0(CH2)nHet1 oder 0(CH2)nCyc,
R2 H, A, Ar1, (CH2)nHet3, CN, (CH2)„Cyc, CONH2, COOA, (CH2)nOH,
(CH2)„OA, (CH2)nNH2, (CH2)„NHA oder (CH2)nNA2,
Ar1 unsubstituiertes oder ein-, zwei- oder dreifach durch A
substituiertes Phenyl,
Het1 unsubstituiertes Pyrrolidinyl, Piperidinyl, Morpholinyl oder
Tetrahydropyranyl,
Het2 unsubstituiertes oder einfach durch =0 oder OA substituiertes
Thienyl, Pyrazolyl, Oxazolyl, Isoxazolyl, Pyridyl, Pyrazinyl, Pyridazinyl, Thiazolyl, Pyrimidyl, Indolyl, 5,6,7,8-Tetrahydro- pyrido[4,3-d]pyrimidin-2-yl oder Benzofuranyl,
Het3 unsubstituiertes oder einfach durch A substituiertes Pyrrolidinyl,
Azetidinyl, Tetrahydrofuranyl, Dihydropyranyl, Tetrahydropyranyl, Dihydropyridyl, Tetrahydropyridyl, Piperidinyl, Morpholinyl, Furyl, Thienyl, Pyrazolyl, Benzofuranyl oder Pyridyl,
A unverzweigtes oder verzweigtes Alkyl mit 1-8 C-Atomen
bedeutet, worin eine oder zwei nicht benachbarte CH- und/oder CH^Gruppen durch N- und/oder O-Atome ersetzt sein können und/oder auch 1-7 H-Atome durch F ersetzt sein können,
Cyc unsubstituiertes oder einfach durch CN oder A substituiertes
cyclisches Alkyl mit 3, 4, 5, 6 oder 7 C-Atomen,
n 0, 1, 2, 3 oder 4 bedeuten, sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.
Verbindungen der Formel I können vorzugsweise erhalten werden, indem man Verbindungen der Formel II mit einer Verbindung der Formel III umsetzt.
Die Verbindungen der Formel II und der Formel III sind in der Regel bekannt. Sind sie neu, so können sie aber nach an sich bekannten Methoden hergestellt werden.
Die Umsetzung erfolgt vorzugsweise unter Buchwald-Hartwig-Bedingungen, die dem Fachmann bekannt sind.
Die Reaktionszeit liegt je nach den angewendeten Bedingungen zwischen einigen Minuten und 14 Tagen, die Reaktionstemperatur zwischen etwa -10° und 160°, normalerweise zwischen 20° und 150°, besonders bevorzugt zwischen 80° und 150°C.
Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrol- ether, Benzol, Toluol oder Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1 ,2-DichlorethanJetrachlorkohlenstoff, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetra hydrofu ran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether, Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacet- amid oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethyl- sulfoxid (DMSO); Schwefelkohlenstoff; Carbonsäuren wie Ameisensäure oder Essigsäure; Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie
Ethylacetat oder Gemische der genannten Lösungsmittel.
Besonders bevorzugt ist Dioxan.
In den Verbindungen der Formel III bedeutet L vorzugsweise Cl, Br oder I, besonders bevorzugt Cl.
Die Spaltung eines Ethers erfolgt unter Methoden, wie sie dem Fachmann bekannt sind.
Eine Standardmethode zur Etherspaltung, z.B. eines Methylethers, ist die Verwendung von Bortribromid.
Hydrogenolytisch entfernbare Gruppen, z.B. die Spaltung eines Benzylethers, können z. B. durch Behandeln mit Wasserstoff in Gegenwart eines Katalysators (z. B. eines Edelmetallkatalysators wie Palladium, zweckmäßig auf einem Träger wie Kohle) abgespalten werden. Als Lösungsmittel eignen sich dabei die oben angegebenen, insbesondere z. B. Alkohole wie Methanol oder Ethanol oder Amide wie DMF. Die Hydrogenolyse wird in der Regel bei Temperaturen zwischen etwa 0 und 100° und Drucken zwischen etwa 1 und 200 bar, bevorzugt bei 20-30° und 1-10 bar durchgeführt.
Ester können z.B. mit Essigsäure oder mit NaOH oder KOH in Wasser, Wasser- THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.
Alkylierungen am Stickstoff erfolgen unter Standardbedingungen, wie sie dem Fachmann bekannt sind.
Pharmazeutische Salze und andere Formen
Die genannten erfindungsgemäßen Verbindungen lassen sich in ihrer endgültigen Nichtsalzform verwenden. Andererseits umfaßt die vorliegende Erfindung auch die Verwendung dieser Verbindungen in Form ihrer pharmazeutisch unbedenklichen Salze, die von verschiedenen organischen und anorganischen Säuren und Basen nach fachbekannten Vorgehensweisen abgeleitet werden können. Pharmazeutisch unbedenkliche Salzformen der Verbindungen der Formel I werden größtenteils konventionell hergestellt. Sofern die Verbindung der Formel I eine Carbonsäuregruppe enthält, läßt sich eines ihrer geeigneten Salze dadurch bilden, daß man die Verbindung mit einer geeigneten Base zum entsprechenden Basenadditionssalz umsetzt. Solche Basen sind zum Beispiel Alkalimetallhydroxide, darunter Kaliumhydroxid, Natriumhydroxid und Lithiumhydroxid; Erdalkalimetallhydroxide wie Bariumhydroxid und Kalziumhydroxid; Alkalimetallalkoholate, z.B. Kaliumethanolat und Natriumpropanolat; sowie verschiedene organische Basen wie Piperidin, Diethanolamin und N-Methylglutamin. Die Aluminiumsalze der Verbindungen der Formel I zählen ebenfalls dazu. Bei bestimmten Verbindungen der Formel I lassen sich Säureadditionssalze dadurch bilden, daß man diese Verbindungen mit pharmazeutisch unbedenklichen organischen und anorganischen Säuren, z.B. Halogenwasserstoffen wie Chlorwasserstoff, Bromwasserstoff oder Jodwasserstoff, anderen Mineralsäuren und ihren entsprechenden Salzen wie Sulfat, Nitrat oder Phosphat und dergleichen sowie Alkyl- und Monoarylsulfonaten wie Ethansulfonat, Toluolsulfonat und Benzolsulfonat, sowie anderen organischen Säuren und ihren entsprechenden Salzen wie Acetat, Trifluoracetat, Tartrat, Maleat, Succinat, Citrat, Benzoat, Salicylat, Ascorbat und dergleichen behandelt. Dementsprechend zählen zu pharmazeutisch unbedenklichen Säureadditionssalzen der Verbindungen der Formel I die folgenden: Acetat, Adipat, Alginat, Arginat, Aspartat, Benzoat,
Benzolsulfonat (Besylat), Bisulfat, Bisulfit, Bromid, Butyrat, Kampferat, Kampfer- sulfonat, Caprylat, Chlorid, Chlorbenzoat, Citrat, Cyclopentanpropionat, Digluconat, Dihydrogenphosphat, Dinitrobenzoat, Dodecylsulfat, Ethansulfonat, Fumarat, Galacterat (aus Schleimsäure), Galacturonat, Glucoheptanoat, Gluconat, Glutamat, Glycerophosphat, Hemisuccinat, Hemisulfat, Heptanoat, Hexanoat, Hippurat, Hydrochlorid, Hydrobromid, Hydroiodid, 2-Hydroxyethansulfonat, lodid, Isethionat, Isobutyrat, Lactat, Lactobionat, Malat, Maleat, Malonat, Mandelat, Metaphosphat, Methansulfonat, Methylbenzoat, Monohydrogenphosphat, 2-Naphthalinsulfonat, Nicotinat, Nitrat, Oxalat, Oleat, Pamoat, Pectinat, Persulfat, Phenylacetat, 3- Phenylpropionat, Phosphat, Phosphonat, Phthalat, was jedoch keine Einschränkung darstellt. Weiterhin zählen zu den Basensalzen der erfindungsgemäßen Verbindungen Aluminium-, Ammonium-, Kalzium-, Kupfer-, Eisen(lll)-, Eisen(ll)-, Lithium-,
Magnesium-, Mangan(lll)-, Mangan(ll), Kalium-, Natrium- und Zinksalze, was jedoch keine Einschränkung darstellen soll. Bevorzugt unter den oben genannten Salzen sind Ammonium; die Alkalimetallsalze Natrium und Kalium, sowie die Erdalkalimetalsalze Kalzium und Magnesium. Zu Salzen der Verbindungen der Formel I, die sich von pharmazeutisch unbedenklichen organischen nicht-toxischen Basen ableiten, zählen Salze primärer, sekundärer und tertiärer Amine, substituierter Amine, darunter auch natürlich vorkommender substituierter Amine, cyclischer Amine sowie basischer lonenaustauscherharze, z.B. Arginin, Betain, Koffein, Chlorprocain, Cholin, Ν,Ν'-Dibenzylethylendiamin (Benzathin), Dicyclohexylamin, Diethanolamin, Diethylamin, 2-Diethylaminoethanol, 2-Dimethylaminoethanol, Ethanolamin, Ethylendiamin, N-Ethylmorpholin, N-Ethylpiperidin, Glucamin, Glucosamin, Histidin, Hydrabamin, Iso-propylamin, Lidocain, Lysin, Meglumin, N- Methyl-D-glucamin, Morpholin, Piperazin, Piperidin, Polyaminharze, Procain, Purine, Theobromin, Triethanolamin, Triethylamin, Trimethylamin, Tripropylamin sowie Tris-(hydroxymethyl)-methylamin (Tromethamin), was jedoch keine Einschränkung darstellen soll.
Verbindungen der vorliegenden Erfindung, die basische stickstoffhaltige Gruppen enthalten, lassen sich mit Mitteln wie (CA-C4) Alkylhalogeniden, z.B. Methyl-, Ethyl-, Isopropyl- und tert.-Butylchlorid, -bromid und -iodid; Di(CrC4)Alkylsulfaten, z.B. Dimethyl-, Diethyl- und Diamylsulfat; (Ci0-Ci8)Alkylhalogeniden, z.B. Decyl-, Dodecyl-, Lauryl-, Myristyl- und Stearylchlorid, -bromid und -iodid; sowie Aryl-(d- C4)Alkylhalogeniden, z.B. Benzylchlorid und Phenethylbromid, quarternisieren. Mit solchen Salzen können sowohl wasser- als auch öllösliche erfindungsgemäße Verbindungen hergestellt werden.
Zu den oben genannten pharmazeutischen Salzen, die bevorzugt sind, zählen Acetat, Trifluoracetat, Besylat, Citrat, Fumarat, Gluconat, Hemisuccinat, Hippurat, Hydrochlorid, Hydrobromid, Isethionat, Mandelat, Meglumin, Nitrat, Oleat, Phos- phonat, Pivalat, Natriumphosphat, Stearat, Sulfat, Sulfosalicylat, Tartrat, Thiomalat, Tosylat und Tromethamin, was jedoch keine Einschränkung darstellen soll.
Die Säureadditionssalze basischer Verbindungen der Formel I werden dadurch hergestellt, daß man die freie Basenform mit einer ausreichenden Menge der gewünschten Säure in Kontakt bringt, wodurch man auf übliche Weise das Salz darstellt. Die freie Base läßt sich durch In-Kontakt-Bringen der Salzform mit einer Base und Isolieren der freien Base auf übliche Weise regenerieren. Die freien Basenformen unterscheiden sich in gewissem Sinn von ihren entsprechenden Salzformen in bezug auf bestimmte physikalische Eigenschaften wie Löslichkeit in polaren Lösungsmitteln; im Rahmen der Erfindung entsprechen die Salze jedoch sonst ihren jeweiligen freien Basenformen.
Wie erwähnt werden die pharmazeutisch unbedenklichen Basenadditionssalze der Verbindungen der Formel I mit Metallen oder Aminen wie Alkalimetallen und Erdalkalimetallen oder organischen Aminen gebildet. Bevorzugte Metalle sind Natrium, Kalium, Magnesium und Kalzium. Bevorzugte organische Amine sind Ν,Ν'-Dibenzylethylendiamin, Chlorprocain, Cholin, Diethanolamin, Ethylendiamin, N-Methyl-D-glucamin und Procain.
Die Basenadditionssalze von erfindungsgemäßen sauren Verbindungen werden dadurch hergestellt, daß man die freie Säureform mit einer ausreichenden Menge der gewünschten Base in Kontakt bringt, wodurch man das Salz auf übliche Weise darstellt. Die freie Säure läßt sich durch In-Kontakt-Bringen der Salzform mit einer Säure und Isolieren der freien Säure auf übliche Weise regenerieren. Die freien Säureformen unterscheiden sich in gewissem Sinn von ihren entsprechenden Salzformen in bezug auf bestimmte physikalische Eigenschaften wie Löslichkeit in polaren Lösungsmitteln; im Rahmen der Erfindung entsprechen die Salze jedoch sonst ihren jeweiligen freien Säureformen.
Enthält eine erfindungsgemäße Verbindung mehr als eine Gruppe, die solche pharmazeutisch unbedenklichen Salze bilden kann, so umfaßt die Erfindung auch mehrfache Salze. Zu typischen mehrfachen Salzformen zählen zum Beispiel Bitartrat, Diacetat, Difumarat, Dimeglumin, Diphosphat, Dinatrium und Trihydro- chlorid, was jedoch keine Einschränkung darstellen soll.
Im Hinblick auf das oben Gesagte sieht man, daß unter dem Ausdruck "pharmazeutisch unbedenkliches Salz" im vorliegenden Zusammenhang ein Wirkstoff zu verstehen ist, der eine Verbindung der Formel I in der Form eines ihrer Salze enthält, insbesondere dann, wenn diese Salzform dem Wirkstoff im Vergleich zu der freien Form des Wirkstoffs oder irgendeiner anderen Salzform des Wirkstoffs, die früher verwendet wurde, verbesserte pharmakokinetische Eigenschaften verleiht. Die pharmazeutisch unbedenkliche Salzform des Wirkstoffs kann auch diesem Wirkstoff erst eine gewünschte pharmakokinetische Eigenschaft verleihen, über die er früher nicht verfügt hat, und kann sogar die Pharmakodynamik dieses Wirkstoffs in bezug auf seine therapeutische Wirksamkeit im Körper positiv beeinflussen.
Gegenstand der Erfindung sind ferner Arzneimittel, enthaltend mindestens eine Verbindung der Formel I und/oder ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, sowie gegebenenfalls Träger- und/oder Hilfsstoffe.
Pharmazeutische Formulierungen können in Form von Dosiseinheiten, die eine vorbestimmte Menge an Wirkstoff pro Dosiseinheit enthalten, dargereicht werden. Eine solche Einheit kann beispielsweise 0,5 mg bis 1 g, vorzugsweise 1 mg bis 700 mg, besonders bevorzugt 5 mg bis 100 mg einer erfindungsgemäßen Verbindung enthalten, je nach dem behandelten Krankheitszustand, dem Verabreichungsweg und dem Alter, Gewicht und Zustand des Patienten, oder pharmazeutische Formulierungen können in Form von Dosiseinheiten, die eine vorbestimmte Menge an Wirkstoff pro Dosiseinheit enthalten, dargereicht werden. Bevorzugte Dosie- rungseinheitsformulierungen sind solche, die eine Tagesdosis oder Teildosis, wie oben angegeben, oder einen entsprechenden Bruchteil davon eines Wirkstoffs enthalten. Weiterhin lassen sich solche pharmazeutischen Formulierungen mit einem der im pharmazeutischen Fachgebiet allgemein bekannten Verfahren herstellen.
Pharmazeutische Formulierungen lassen sich zur Verabreichung über einen beliebigen geeigneten Weg, beispielsweise auf oralem (einschließlich buccalem bzw. sublingualem), rektalem, nasalem, topischem (einschließlich buccalem, sublingualem oder transdermalem), vaginalem oder parenteralem (einschließlich subkutanem, intramuskulärem, intravenösem oder intradermalem) Wege, anpassen. Solche Formulierungen können mit allen im pharmazeutischen Fachgebiet bekannten Verfahren hergestellt werden, indem beispielsweise der Wirkstoff mit dem bzw. den Trägerstoff(en) oder Hilfsstoffen) zusammengebracht wird.
An die orale Verabreichung angepaßte pharmazeutische Formulierungen können als separate Einheiten, wie z.B. Kapseln oder Tabletten; Pulver oder Granulate; Lösungen oder Suspensionen in wäßrigen oder nichtwäßrigen Flüssigkeiten;
eßbare Schäume oder Schaumspeisen; oder ÖI-in-Wasser-Flüssigemulsionen oder Wasser-in-ÖI-Flüssigemulsionen dargereicht werden.
So läßt sich beispielsweise bei der oralen Verabreichung in Form einer Tablette oder Kapsel die Wirkstoffkomponente mit einem oralen, nichttoxischen und pharmazeutisch unbedenklichen inerten Trägerstoff, wie z.B. Ethanol, Glyzerin, Wasser u.ä. kombinieren. Pulver werden hergestellt, indem die Verbindung auf eine geeignete feine Größe zerkleinert und mit einem in ähnlicher Weise zerkleinerten pharmazeutischen Trägerstoff, wie z.B. einem eßbaren Kohlenhydrat wie beispielsweise Stärke oder Mannit vermischt wird. Ein Geschmacksstoff, Konservierungsmittel, Dispersionsmittel und Farbstoff können ebenfalls vorhanden sein.
Kapseln werden hergestellt, indem ein Pulvergemisch wie oben beschrieben hergestellt und geformte Gelatinehüllen damit gefüllt werden. Gleit- und Schmiermittel wie z.B. hochdisperse Kieselsäure, Talkum, Magnesiumstearat, Kalzium- stearat oder Polyethylenglykol in Festform können dem Pulvergemisch vor dem Füllvorgang zugesetzt werden. Ein Sprengmittel oder Lösungsvermittler, wie z.B. Agar-Agar, Kalziumcarbonat oder Natriumcarbonat, kann ebenfalls zugesetzt werden, um die Verfügbarkeit des Medikaments nach Einnahme der Kapsel zu verbessern.
Außerdem können, falls gewünscht oder notwendig, geeignete Bindungs-, Schmierund Sprengmittel sowie Farbstoffe ebenfalls in das Gemisch eingearbeitet werden. Zu den geeigneten Bindemitteln gehören Stärke, Gelatine, natürliche Zucker, wie z.B. Glukose oder Beta-Lactose, Süßstoffe aus Mais, natürliche und synthetische Gummi, wie z.B. Akazia, Traganth oder Natriumalginat, Carboxymethylzellulose, Polyethylenglykol, Wachse, u.ä. Zu den in diesen Dosierungsformen verwendeten Schmiermitteln gehören Natriumoleat, Natriumstearat, Magnesiumstearat, Natrium- benzoat, Natriumacetat, Natriumchlorid u.ä. Zu den Sprengmitteln gehören, ohne darauf beschränkt zu sein, Stärke, Methylzellulose, Agar, Bentonit, Xanthangummi u.ä. Die Tabletten werden formuliert, indem beispielsweise ein Pulvergemisch hergestellt, granuliert oder trockenverpreßt wird, ein Schmiermittel und ein Sprengmittel zugegeben werden und das Ganze zu Tabletten verpreßt wird. Ein Pulvergemisch wird hergestellt, indem die in geeigneter Weise zerkleinerte Verbindung mit einem Verdünnungsmittel oder einer Base, wie oben beschrieben, und gegebenenfalls mit einem Bindemittel, wie z.B. Carboxymethylzellulose, einem Alginat, Gelatine oder Polyvinylpyrrolidon, einem Lösungsverlangsamer, wie z.B. Paraffin, einem Resorptionsbeschleuniger, wie z.B. einem quaternären Salz und/oder einem Absorptionsmittel, wie z.B. Bentonit, Kaolin oder Dikalziumphosphat, vermischt wird. Das Pulvergemisch läßt sich granulieren, indem es mit einem Bindemittel, wie z.B. Sirup, Stärkepaste, Acadia-Schleim oder Lösungen aus Zellulose- oder Polymermaterialen benetzt und durch ein Sieb gepreßt wird. Als Alternative zur Granulierung kann man das Pulvergemisch durch eine Tablettiermaschine laufen lassen, wobei ungleichmäßig geformte Klumpen entstehen, die in Granulate aufgebrochen werden. Die Granulate können mittels Zugabe von Stearinsäure, einem Stearatsalz, Talkum oder Mineralöl gefettet werden, um ein Kleben an den
Tablettengußformen zu verhindern. Das gefettete Gemisch wird dann zu Tabletten verpreßt. Die erfindungsgemäßen Verbindungen können auch mit einem
freifließenden inerten Trägerstoff kombiniert und dann ohne Durchführung der Granulierungs- oder Trockenverpressungsschritte direkt zu Tabletten verpreßt werden. Eine durchsichtige oder undurchsichtige Schutzschicht, bestehend aus einer Versiegelung aus Schellack, einer Schicht aus Zucker oder Polymermaterial und einer Glanzschicht aus Wachs, kann vorhanden sein. Diesen Beschichtungen können Farbstoffe zugesetzt werden, um zwischen unterschiedlichen Dosierungseinheiten unterscheiden zu können.
Orale Flüssigkeiten, wie z.B. Lösung, Sirupe und Elixiere, können in Form von Dosierungseinheiten hergestellt werden, so daß eine gegebene Quantität eine vorgegebene Menge der Verbindung enthält. Sirupe lassen sich herstellen, indem die Verbindung in einer wäßrigen Lösung mit geeignetem Geschmack gelöst wird, während Elixiere unter Verwendung eines nichttoxischen alkoholischen Vehikels hergestellt werden. Suspensionen können durch Dispersion der Verbindung in einem nichttoxischen Vehikel formuliert werden. Lösungsvermittler und Emulgiermittel, wie z.B. ethoxylierte Isostearylalkohole und Polyoxyethylensorbitolether, Konservierungsmittel, Geschmackszusätze, wie z.B. Pfefferminzöl oder natürliche Süßstoffe oder Saccharin oder andere künstliche Süßstoffe, u.ä. können ebenfalls zugegeben werden.
Die Dosierungseinheitsformulierungen für die orale Verabreichung können gegebenenfalls in Mikrokapseln eingeschlossen werden. Die Formulierung läßt sich auch so herstellen, daß die Freisetzung verlängert oder retardiert wird, wie beispielsweise durch Beschichtung oder Einbettung von partikulärem Material in Polymere, Wachs u.ä.
Die Verbindungen der Formel I sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere lassen sich auch in Form von Liposomenzuführ- systemen, wie z.B. kleinen unilamellaren Vesikeln, großen unilamellaren Vesikeln und multilamellaren Vesikeln, verabreichen. Liposomen können aus verschiedenen Phospholipiden, wie z.B. Cholesterin, Stearylamin oder Phosphatidylcholinen, gebildet werden. Die Verbindungen der Formel I sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere können auch unter Verwendung monoklonaler Antikörper als individuelle Träger, an die die Verbindungsmoleküle gekoppelt werden, zugeführt werden. Die Verbindungen können auch mit löslichen Polymeren als zielgerichtete Arzneistoffträger gekoppelt werden. Solche Polymere können Polyvinylpyrrolidon, Pyran-Copolymer, Polyhydroxypropylmethacrylamidphenol, Polyhydroxyethylaspartamidphenol oder Polyethylenoxidpolylysin, substituiert mit Palmitoylresten, umfassen. Weiterhin können die Verbindungen an eine Klasse von biologisch abbaubaren Polymeren, die zur Erzielung einer kontrollierten Freisetzung eines Arzneistoffs geeignet sind, z.B. Polymilchsäure, Poly-epsilon-capro- lacton, Polyhydroxybuttersäure, Polyorthoester, Polyacetale, Polydihydroxypyrane, Polycyanoacrylate und quervernetzte oder amphipatische Blockcopolymere von Hydrogelen, gekoppelt sein.
An die transdermale Verabreichung angepaßte pharmazeutische Formulierungen können als eigenständige Pflaster für längeren, engen Kontakt mit der Epidermis des Empfängers dargereicht werden. So kann beispielsweise der Wirkstoff aus dem Pflaster mittels lontophorese zugeführt werden, wie in Pharmaceutical Research, 3(6), 318 (1986) allgemein beschrieben.
An die topische Verabreichung angepaßte pharmazeutische Verbindungen können als Salben, Cremes, Suspensionen, Lotionen, Pulver, Lösungen, Pasten, Gele, Sprays, Aerosole oder Öle formuliert sein.
Für Behandlungen des Auges oder anderer äußerer Gewebe, z.B. Mund und Haut, werden die Formulierungen vorzugsweise als topische Salbe oder Creme appliziert. Bei Formulierung zu einer Salbe kann der Wirkstoff entweder mit einer paraffinischen oder einer mit Wasser mischbaren Cremebasis eingesetzt werden. Alternativ kann der Wirkstoff zu einer Creme mit einer Öl-in-Wasser-Cremebasis oder einer Wasser-in-ÖI-Basis formuliert werden. Zu den an die topische Applikation am Auge angepaßten pharmazeutischen Formulierungen gehören Augentropfen, wobei der Wirkstoff in einem geeigneten Träger, insbesondere einem wäßrigen Lösungsmittel, gelöst oder suspendiert ist.
An die topische Applikation im Mund angepaßte pharmazeutische Formulierungen umfassen Lutschtabletten, Pastillen und Mundspülmittel.
An die rektale Verabreichung angepaßte pharmazeutische Formulierungen können in Form von Zäpfchen oder Einläuten dargereicht werden.
An die nasale Verabreichung angepaßte pharmazeutische Formulierungen, in denen die Trägersubstanz ein Feststoff ist, enthalten ein grobes Pulver mit einer Teilchengröße beispielsweise im Bereich von 20-500 Mikrometern, das in der Art und Weise, wie Schnupftabak aufgenommen wird, verabreicht wird, d.h. durch Schnellinhalation über die Nasenwege aus einem dicht an die Nase gehaltenen Behälter mit dem Pulver. Geeignete Formulierungen zur Verabreichung als Nasenspray oder Nasentropfen mit einer Flüssigkeit als Trägersubstanz umfassen Wirkstofflösungen in Wasser oder Öl.
An die Verabreichung durch Inhalation angepaßte pharmazeutische Formulierungen umfassen feinpartikuläre Stäube oder Nebel, die mittels verschiedener Arten von unter Druck stehenden Dosierspendern mit Aerosolen, Verneblern oder Insufflatoren erzeugt werden können.
An die vaginale Verabreichung angepaßte pharmazeutische Formulierungen können als Pessare, Tampons, Cremes, Gele, Pasten, Schäume oder Sprayformulierungen dargereicht werden.
Zu den an die parenterale Verabreichung angepaßten pharmazeutischen Formulierungen gehören wäßrige und nichtwäßrige sterile Injektionslösungen, die Antioxidantien, Puffer, Bakteriostatika und Solute, durch die die Formulierung isotonisch mit dem Blut des zu behandelnden Empfängers gemacht wird, enthalten; sowie wäßrige und nichtwäßrige sterile Suspensionen, die Suspensionsmittel und Verdicker enthalten können. Die Formulierungen können in Einzeldosis- oder Mehrfachdosisbehältern, z.B. versiegelten Ampullen und Fläschchen, dargereicht und in gefriergetrocknetem (lyophilisiertem) Zustand gelagert werden, so daß nur die Zugabe der sterilen Trägerflüssigkeit, z.B. Wasser für Injektionszwecke, unmittelbar vor Gebrauch erforderlich ist. Rezepturmäßig hergestellte Injektionslösungen und Suspensionen können aus sterilen Pulvern, Granulaten und
Tabletten hergestellt werden.
Es versteht sich, daß die Formulierungen neben den obigen besonders erwähnten Bestandteilen andere im Fachgebiet übliche Mittel mit Bezug auf die jeweilige Art der Formulierung enthalten können; so können beispielsweise für die orale
Verabreichung geeignete Formulierungen Geschmacksstoffe enthalten.
Eine therapeutisch wirksame Menge einer Verbindung der Formel I hängt von einer Reihe von Faktoren ab, einschließlich z.B. dem Alter und Gewicht des Tiers, dem exakten Krankheitszustand, der der Behandlung bedarf, sowie seines Schweregrads, der Beschaffenheit der Formulierung sowie dem Verabreichungsweg, und wird letztendlich von dem behandeln den Arzt bzw. Tierarzt festgelegt. Jedoch liegt eine wirksame Menge einer erfindungsgemäßen Verbindung für die Behandlung von neoplastischem Wachstum, z.B. Dickdarm- oder Brustkarzinom, im allgemeinen im Bereich von 0,1 bis 100 mg/kg Körpergewicht des Empfängers
(Säugers) pro Tag und besonders typisch im Bereich von 1 bis 10 mg/kg Körpergewicht pro Tag. Somit läge für einen 70 kg schweren erwachsenen Säuger die tatsächliche Menge pro Tag für gewöhnlich zwischen 70 und 700 mg, wobei diese Menge als Einzeldosis pro Tag oder üblicher in einer Reihe von Teildosen (wie z.B. zwei, drei, vier, fünf oder sechs) pro Tag gegeben werden kann, so daß die
Gesamttagesdosis die gleiche ist. Eine wirksame Menge eines Salzes oder Solvats oder eines physiologisch funktionellen Derivats davon kann als Anteil der wirksamen Menge der erfindungsgemäßen Verbindung perse bestimmt werden. Es läßt sich annehmen, daß ähnliche Dosierungen für die Behandlung der anderen, oben erwähnten Krankheitszustände geeignet sind. Gegenstand der Erfindung sind ferner Arzneimittel enthaltend mindestens eine Verbindung der Formel I und/oder sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, und mindestens einen weiteren Arzneimittelwirkstoff.
Gegenstand der Erfindung ist auch ein Set (Kit), bestehend aus getrennten
Packungen von
(a) einer wirksamen Menge an einer Verbindung der Formel I und/oder ihre
pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen,
und
(b) einer wirksamen Menge eines weiteren Arzneimittelwirkstoffs.
Das Set enthält geeignete Behälter, wie Schachteln oder Kartons, individuelle Flaschen, Beutel oder Ampullen. Das Set kann z.B. separate Ampullen enthalten, in denen jeweils eine wirksame Menge an einer Verbindung der Formel I und/oder ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen,
und einer wirksamen Menge eines weiteren Arzneimittelwirkstoffs gelöst oder in lyophilisierter Form vorliegt.
Isotope
Es ist weiterhin vorgesehen, daß eine Verbindung der Formel I isotopenmarkierte Formen davon umfaßt. Eine isotopenmarkierte Form einer Verbindung der Formel I ist mit dieser Verbindung bis auf die Tatsache, daß eines oder mehrere Atome der Verbindung durch ein Atom bzw. Atome mit einer Atommasse oder Massenzahl ersetzt wurden, die sich von der Atommasse oder Massenzahl des Atoms, das üblicherweise natürlich vorkommt, unterscheidet, identisch. Zu den Isotopen, die leicht im Handel erhältlich sind und in eine Verbindung der Formel I nach gut bekannten Verfahren eingebaut werden können, zählen zum Beispiel Isotope von Wasserstoff, Kohlenstoff, Stickstoff, Sauerstoff, Phosphor, Fluor und Chlor, z.B. 2H, 3H, 13C, 14C, 5N, 18O, 170, 31P, 32P, 35S, 8F bzw. 36CI. Eine Verbindung der Formel I, eines ihrer Prodrugs oder jeweils ein pharmazeutisch unbedenkliches Salz davon, die eines oder mehrere der oben genannten Isotope und/oder andere Isotope von anderen Atomen enthält, ist als Bestandteil der vorliegenden Erfindung vorgesehen. Eine isotopenmarkierte Verbindung der Formel I läßt sich auf vielerlei nützliche Art verwenden. Zum Beispiel eignet sich eine isotopenmarkierte Verbindung der Formel I, in die z.B. ein Radioisotop wie 3H oder 14C eingebaut worden ist, für Assays zur Verteilung des Arzneistoffs und/oder Substratgewebes. Diese
Radioisotope, d.h. Tritium (3H) und Kohlenstoff-14 (14C), sind aufgrund ihrer einfachen Herstellung und ausgezeichneten Nachweisbarkeit besonders bevorzugt. Der Einbau schwererer Isotope, z.B. Deuterium (2H), in eine Verbindung der Formel I weist therapeutische Vorteile aufgrund der höheren Stabilität dieser
isotopenmarkierten Verbindung im Metabolismus auf. Höhere Stabilität in
Metabolismus bedeutet unmittelbar eine erhöhte Halbwertszeit in vivo oder niedrigere Dosierungen, was unter den meisten Umständen eine bevorzugte
Ausführungsform der vorliegenden Erfindung darstellen würde. Eine
isotopenmarkierte Verbindung der Formel I läßt sich üblicherweise durch
Durchführung der in den Syntheseschemata und der damit in Zusammenhang stehenden Beschreibung, im Beispielteil und im Herstellungsteil im vorliegenden Text offenbarten Vorgehensweisen herstellen, wobei ein nicht isotopenmarkierter Reaktionspartner durch einen leicht verfügbaren isotopenmarkierten
Reaktionspartner ersetzt wird.
Zur Manipulation des oxidativen Metabolismus der Verbindung über den primären kinetischen Isotopeneffekt kann auch Deuterium (2H) in eine Verbindung der Formel I eingebaut werden. Beim primären kinetischen Isotopeneffekt handelt es sich um eine Veränderung der Geschwindigkeit einer chemischen Reaktion aufgrund des Austausches isotopischer Kerne, was wiederum durch die Änderung der für die Bildung kovalenter Bindungen im Anschluß an diesen isotopischen Austausch erforderlichen Grundzustandsenergien verursacht wird. Der Austausch eines schwereren Isotops führt üblicherweise zu einer Erniedrigung der
Grundzustandsenergie für eine chemische Bindung und verursacht so eine Verringerung der Geschwindigkeit bei einem geschwindigkeitslimitierenden
Bindungsbruch. Findet der Bindungsbruch an bzw. in der Nähe einer
Sattelpunktregion entlang der Koordinate einer Reaktion mit mehreren Produkten statt, so können sich die Produktverteilungsverhältnisse stark ändern. Zur
Erläuterung: Wird Deuterium an ein Kohlenstoffatom in einer nichtaustauschbaren Position gebunden, so sind Geschwindigkeitsunterschiede von k^ko = 2-7 typisch. Wird dieser Geschwindigkeitsunterschied erfolgreich auf eine oxidationsanfällige Verbindung der Formel I angewandt, so kann sich dadurch das Profil dieser
Verbindung in vivo drastisch ändern und zu verbesserten pharmakokinetischen Eigenschaften führen.
Bei der Entdeckung und Entwicklung von Therapeutika versucht der Fachmann, pharmakokinetische Parameter zu optimieren und gleichzeitig wünschenswerte In- vitro-Eigenschaften beizubehalten. Man kann vernünftig annehmen, daß viele Verbindungen mit schlechten pharmakokinetischen Profilen gegenüber dem oxidativen Metabolismus anfällig sind. Aus derzeitig verfügbaren In-vitro-Assays mit Lebermikrosomen erhält man wertvolle Informationen über den Verlauf dieses oxidativen Metabolismus, aufgrund dessen wiederum deuterierte Verbindungen der Formel I mit einer verbesserten Stabilität durch Resistenz gegenüber einem derartigen oxidativen Metabolismus rational gestaltet werden können. So gelangt man zu wesentlichen Verbesserungen der pharmakokinetischen Profile der
Verbindungen der Formel I, die sich quantitativ als erhöhte Ih-vivo-Halbwertszeit (T/2), Konzentration bei maximaler therapeutischer Wirkung (Cmax), Fläche unter der Dosis-Wirkungskurve (AUC) sowie F und als verringerte Clearance, Dosis und Materialkosten ausdrücken lassen.
Zur Veranschaulichung des Obigen soll folgendes dienen: eine Verbindung der Formel I mit mehrfachen potentiellen Angriffsstellen für den oxidativen
Metabolismus, z.B. Wasserstoffatome an einem Benzylrest und Wasserstoffatome, die an ein Stickstoffatom gebunden sind, wird als Reihe von Analogen hergestellt, in denen verschiedene Kombinationen von Wasserstoffatomen durch
Deuteriumatome ersetzt werden, so daß einige, die meisten oder alle dieser Wasserstoffatome durch Deuteriumatome ersetzt sind. Durch Bestimmungen der Halbwertszeit gelangt man zu einer günstigen und genauen Bestimmung, wie sehr sich die Verbesserung der Widerstandsfähigkeit gegenüber oxidativen
Metabolismen verbessert hat. Auf diese Weise wird bestimmt, daß aufgrund eines derartigen Austausches von Wasserstoff gegen Deuterium die Halbwertszeit der Ausgangsverbindung um bis zu 100% verlängert werden kann.
Der Austausch von Wasserstoff gegen Deuterium in einer Verbindung der Formel I läßt sich auch dazu verwenden, um zu einer günstigen Änderung des
Stoffwechselproduktspektrums der Ausgangsverbindung zwecks Verringerung oder Ausschluß von unerwünschten toxischen Stoffwechselprodukten zu gelangen.
Entsteht zum Beispiel ein toxisches Stoffwechselprodukt aufgrund der Spaltung einer oxidativen Kohlenstoff-Wasserstoff (C-H)-Bindung kann vernünftigerweise angenommen werden, daß das deuterierte Analog die Produktion des
unerwünschten Stoffwechselprodukts wesentlich verringert oder ausschließt, sogar dann, wenn es sich bei der jeweiligen Oxidation nicht um einen
geschwindigkeitsbestimmenden Schritt handelt. Weitere Informationen zum Stand der Technik in bezug auf den Austausch von Wasserstoff gegen Deuterium finden sich z.B. bei Hanzlik et al., J. Org. Chem. 55, 3992-3997, 1990, Reider et al., J.
Org. Chem. 52, 3326-3334, 1987, Foster, Adv. Drug Res. 14, 1-40, 1985, Gillette et al., Biochemistry 33(10), 2927-2937, 1994, und Jarman et al., Carcinogenesis
16(4), 683-688, 1993.
VERWENDUNG
Die Erfindung betrifft die Verbindungen der Formel I zur Verwendung für die Behandlung von Krebs, septischem Schock, primärem Offenwinkelglaukom (POAG), Hyperplasie, rheumatoider Arthritis, Psoriasis, Atherosklerose, Retinopathie, Osteoarthritis, Endometriose, chronischer Entzündung und/oder neurodegenerativen Erkrankungen wie Morbus Alzheimer. Die Erfindung betrifft die Verwendung von Verbindungen der Formel I zur Herstellung eines Arzneimittels für die Behandlung von Krebs, septischem Schock, primärem Offenwinkelglaukom (POAG), Hyperplasie, rheumatoider Arthritis, Psoriasis, Atherosklerose, Retinopathie, Osteoarthritis, Endometriose, chronischer Entzündung und/oder neurodegenerativen Erkrankungen wie Morbus Alzheimer.
Die Erfindung betrifft eine Methode für die Behandlung eines Säugetiers, das an einer Krankheit leidet, die aus Krebs, septischem Schock, primärem Offenwinkelglaukom (POAG), Hyperplasie, rheumatoider Arthritis, Psoriasis, Atherosklerose, Retinopathie, Osteoarthritis, Endometriose, chronischer Entzündung und/oder neurodegenerativen Erkrankungen wie Morbus Alzheimer ausgewählt ist, wobei die Methode die Verabreichung einer therapeutisch wirksamen Menge einer Verbindung der Formel I an ein Säugetier umfaßt.
Die Erfindung betrifft weiterhin die Verbindungen der Formel I zur Verwendung für die Behandlung von Krebs, septischem Schock, primärem Offenwinkelglaukom (POAG), Hyperplasie, Atherosklerose, Retinopathie, Osteoarthritis, Endometriose, chronischer Entzündung, neurodegenerativen Erkrankungen, rheumatoide Arthritis (RA), systemischer Lupus erythematosus (SLE), Sjörgrens Syndrom, Aicardi-Goutieres Syndrom Lupus Chilblain, retinale Vasculopathie, cerebrale Leukodystrophie (RVCL), systemische Sklerosis, Myositis, Psoriasis, chronisch obstruktive pulmonare Krankheit (CPD), endzündliche Darmkrankheit (IBD), Fettsucht, Insulinresistenz, Typ 2 Diabetes (NIDDM) und/oder metabolisches Syndrom
Die vorliegenden Verbindungen eignen sich als pharmazeutische Wirkstoffe für Säugetiere, insbesondere für den Menschen, bei der Behandlung und Bekämpfung von Krebserkrankungen und Entzündungserkrankungen.
Der Wirt oder Patient kann jeglicher Säugerspezies angehören, z. B. einer Primatenspezies, besonders Menschen; Nagetieren, einschließlich Mäusen, Ratten und
Hamstern; Kaninchen; Pferden, Rindern, Hunden, Katzen usw. Tiermodelle sind für experimentelle Untersuchungen von Interesse, wobei sie ein Modell zur Behandlung einer Krankheit des Menschen zur Verfügung stellen.
Die Suszeptibilität einer bestimmten Zelle gegenüber der Behandlung mit den erfindungsgemäßen Verbindungen kann durch Testen in vitro bestimmt werden. Typischerweise wird eine Kultur der Zelle mit einer erfindungsgemäßen Verbindung bei verschiedenen Konzentrationen für eine Zeitdauer kombiniert, die ausreicht, um den aktiven Mitteln wie Anti-lgM zu ermöglichen, eine Zellantwort wie Expression eines Oberflächenmarkers zu induzieren, gewöhnlich zwischen ungefähr einer Stunde und einer Woche. Zum Testen in vitro können kultivierte Zellen aus Blut oder einer Biopsieprobe verwendet werden. Die Menge an exprimiertem Oberflächenmarker wird durch Durchflußzytometrie beurteilt, wobei spezielle
Antikörper verwendet werden, die den Marker erkennen.
Die Dosis variiert abhängig von der verwendeten spezifischen Verbindung, der spezifischen Erkrankung, dem Patientenstatus usw. Typischerweise ist eine therapeutische Dosis ausreichend, um die unerwünschte Zellpopulation im
Zielgewebe erheblich zu vermindern, während die Lebensfähigkeit des Patienten aufrechterhalten wird. Die Behandlung wird im Allgemeinen fortgesetzt, bis eine erhebliche Reduktion vorliegt, z.B. mindestens ca. 50 % Verminderung der Zelllast und kann fortgesetzt werden, bis im Wesentlichen keine unerwünschten Zellen mehr im Körper nachgewiesen werden.
Zur Identifizierung eines Signalübertragungswegs und zum Nachweis von Wechselwirkungen zwischen verschiedenen Signalübertragungswegen wurden von verschiedenen Wissenschaftlern geeignete Modelle oder Modellsysteme entwickelt, z.B. Zellkulturmodelle (z.B. Khwaja et al., EMBO, 1997, 16, 2783-93) und Modelle trans- gener Tiere (z.B. White et al., Oncogene, 2001 , 20, 7064-7072). Zur Bestimmung bestimmter Stufen in der Signalübertragungskaskade können wechselwirkende Verbindungen genutzt werden, um das Signal zu modulieren (z.B. Stephens et al., Biochemical J., 2000, 351 , 95-105). Die erfindungsgemäßen Verbindungen können auch als Reagenzien zur Testung kinaseabhängiger Signalübertragungswege in Tieren und/oder Zellkulturmodellen oder in den in dieser Anmeldung genannten klinischen Erkrankungen verwendet werden.
Die Messung der Kinaseaktivität ist eine dem Fachmann wohlbekannte Technik. Generische Testsysteme zur Bestimmung der Kinaseaktivität mit Substraten, z.B. Histon (z.B. Alessi et al., FEBS Lett. 1996, 399, 3, Seiten 333-338) oder dem basischen Myelinprotein sind in der Literatur beschrieben (z.B. Campos-Gonzälez, R. und Glenney, Jr., J.R. 1992, J. Biol. Chem. 267, Seite 14535).
Zur Identifikation von Kinase-Inhibitoren stehen verschiedene Assay-Systeme zur Verfügung. Beim Scintillation-Proximity-Assay (Sorg et al., J. of. Biomolecular
Screening, 2002, 7, 11-19) und dem Flash Plate-Assay wird die radioaktive Phosphorylierung eines Proteins oder Peptids als Substrat mit ATP gemessen. Bei Vorliegen einer inhibitorischen Verbindung ist kein oder ein vermindertes radioaktives Signal nachweisbar. Ferner sind die Homogeneous Time-resolved Fluorescence Resonance Energy Transfer- (HTR-FRET-) und Fluoreszenzpolarisations- (FP-) Technologien als Assay-Verfahren nützlich (Sills et al., J. of Biomolecular Screening, 2002, 191-214).
Andere nicht radioaktive ELISA-Assay-Verfahren verwenden spezifische Phospho- Antikörper (Phospho-AK). Der Phospho-AK bindet nur das phosphorylierte Substrat. Diese Bindung ist mit einem zweiten Peroxidase-konjugierten Anti-Schaf-Antikörper durch Chemilumineszenz nachweisbar (Ross et al., 2002, Biochem. J.).
Die vorliegende Erfindung umfasst die Verwendung der Verbindungen der Formel I und/oder ihre physiologisch unbedenklichen Salze, Tautomere und Solvate zur Herstellung eines Arzneimittels zur Behandlung oder Vorbeugung von Krebs.
Bevorzugte Karzinome für die Behandlung stammen aus der Gruppe Hirnkarzinom, Urogenitaltraktkarzinom, Karzinom des lymphatischen Systems, Magenkarzinom, Kehlkopfkarzinom und Lungenkarzinom Darmkrebs. Eine weitere Gruppe bevorzugter Krebsformen sind Monozytenleukämie, Lungenadenokarzinom, kleinzellige Lungenkarzinome, Bauchspeicheldrüsenkrebs, Glioblastome und Brustkarzinom. Ebenfalls umfasst ist die Verwendung der Verbindungen der Formel I und/oder ihre physiologisch unbedenklichen Salze, Tautomere und Solvate zur Herstellung eines Arzneimittels zur Behandlung und/oder Bekämpfung einer durch Tumore bedingten Krankheit bei einem Säugetier, wobei man diesem Verfahren einem kranken Säugetier, das einer derartigen Behandlung bedarf, eine therapeutisch wirksame Menge einer erfindungsgemäßen Verbindung verabreicht. Die therapeutische Menge hängt von der jeweiligen Krankheit ab und kann vom Fachmann ohne allen großen Aufwand bestimmt werden.
Insbesondere bevorzugt ist die Verwendung zur Behandlung einer Krankheit, wobei die Krebskrankheit ein fester Tumor ist.
Der feste Tumor ist vorzugsweise ausgewählt aus der Gruppe der Tumoren des Plattenepithel, der Blasen, des Magens, der Nieren, von Kopf und Hals, des
Ösophagus, des Gebärmutterhals, der Schilddrüse, des Darm, der Leber, des Gehirns, der Prostata, des Urogenitaltrakts, des lymphatischen Systems, des Magens, des Kehlkopf und/oder der Lunge.
Der feste Tumor ist weiterhin vorzugsweise ausgewählt aus der Gruppe Lungen- adenokarzinom, kleinzellige Lungenkarzinome, Bauchspeicheldrüsenkrebs,
Glioblastome, Kolonkarzinom und Brustkarzinom.
Weiterhin bevorzugt ist die Verwendung zur Behandlung eines Tumors des Blut- und Immunsystems, vorzugsweise zur Behandlung eines Tumors ausgewählt aus der Gruppe der akuten myelotischen Leukämie, der chronischen myelotischen Leukämie, akuten lymphatischen Leukämie und/oder chronischen lymphatischen Leukämie.
Gegenstand der Erfindung ist weiterhin die Verwendung der erfindungsgemäßen Verbindungen zur Behandlung von Knochen-Pathologien, wobei die Knochenpathologie aus der Gruppe Osteosarkom, Osteoarthritis und Rachitis stammt. Die Verbindungen der Formel I können auch gemeinsam mit anderen gut bekannten Therapeutika, die aufgrund ihrer jeweiligen Eignung für das behandelte Leiden ausgewählt werden, verabreicht werden.
Die vorliegenden Verbindungen eignen sich auch zur Kombination mit bekannten Antikrebsmitteln. Zu diesen bekannten Antikrebsmitteln zählen die folgenden:
Östrogenrezeptormodulatoren, Androgenrezeptormodulatoren, Retinoidrezeptor- modulatoren, Zytotoxika, antiproliferative Mittel, Prenyl-Proteintransferasehemmer, HMG-CoA-Reduktase-Hemmer, HIV-Protease-Hemmer, Reverse-Transkriptase- Hemmer sowie weitere Angiogenesehemmer. Die vorliegenden Verbindungen eignen sich insbesondere zur gemeinsamen Anwendung mit Radiotherapie.
„Östrogenrezeptormodulatoren" bezieht sich auf Verbindungen, die die Bindung von Östrogen an den Rezeptor stören oder diese hemmen, und zwar unabhängig davon, wie dies geschieht. Zu den Östrogenrezeptormodulatoren zählen zum Beispiel Tamoxifen, Raloxifen, Idoxifen, LY353381 , LY 117081, Toremifen,
Fulvestrant, 4-[7-(2,2-Dimethyl-1-oxopropoxy-4-methyl-2-[4-[2-(1- piperidinyl)- ethoxy]phenyl]-2H-1-benzopyran-3-yl]phenyl-2,2-dimethylpropanoat, 4,4'- Dihydroxybenzophenon-2,4-dinitrophenylhydrazon und SH646, was jedoch keine Einschränkung darstellen soll.
„Androgenrezeptormodulatoren" bezieht sich auf Verbindungen, die die Bindung von Androgenen an den Rezeptor stören oder diese hemmen, und zwar unabhängig davon, wie dies geschieht. Zu den Androgenrezeptormodulatoren zählen zum Beispiel Finasterid und andere 5a-Reduktase-Hemmer, Nilutamid, Flutamid, Bicalutamid, Liarozol und Abirateron-acetat.
„Retinoidrezeptormodulatoren" bezieht sich auf Verbindungen, die die Bindung von Retinoiden an den Rezeptor stören oder diese hemmen, und zwar unabhängig davon, wie dies geschieht. Zu solchen Retinoidrezeptormodulatoren zählen zum Beispiel Bexaroten, Tretinoin, 13-cis-Retinsäure, 9-cis-Retinsäure, a-Difluormethyl- ornithin, ILX23-7553, trans-N-(4'-Hydroxyphenyl)retinamid und N-4-Carboxyphenyl- retinamid.
„Zytotoxika" bezieht sich auf Verbindungen, die in erster Linie durch direkte Einwirkung auf die Zellfunktion zum Zelltod führen oder die die Zellmyose hemmen oder diese stören, darunter Alkylierungsmittel, Tumornekrosefaktoren, inter- kaliernde Mittel, Mikrotubulin-Hemmer und Topoisomerase-Hemmer.
Zu den Zytotoxika zählen zum Beispiel Tirapazimin, Sertenef, Cachectin, Ifosfamid, Tasonermin, Lonidamin, Carboplatin, Altretamin, Prednimustin, Dibromdulcit, Ranimustin, Fotemustin, Nedaplatin, Oxaliplatin, Temozolomid, Heptaplatin, Estramustin, Improsulfan-tosylat, Trofosfamid, Nimustin, Dibrospidium-chlorid, Pumitepa, Lobaplatin, Satraplatin, Profiromycin, Cisplatin, Irofulven, Dexifosfamid, cis-Amindichlor(2-methylpyridin)platin, Benzylguanin, Glufosfamid, GPX100, (trans,trans,trans)-bis-mu-(hexan-1 ,6-diamin)-mu-[diamin-platin(ll)]bis[diamin- (chlor)platin(ll)]-tetrachlorid, Dianzidinylspermin, Arsentrioxid, 1-(11-Dodecylamino- 10-hydroxyundecyl)-3,7-dimethylxanthin, Zorubicin, Idarubicin, Daunorubicin, Bisantren, Mitoxantron, Pirarubicin, Pinafid, Valrubicin, Amrubicin, Antineoplaston, 3'-Desamino-3'-morpholino-13-desoxo-10-hydroxycarminomycin, Annamycin, Galarubicin, Elinafid, MEN10755 und 4-Desmethoxy-3-desamino-3-aziridinyl-4- methylsulfonyldaunorubicin (siehe WO 00/50032), was jedoch keine Einschränkung darstellen soll.
Zu den Mikrotubulin-Hemmern zählen zum Beispiel Paclitaxel, Vindesin-sulfat, 3',4'- Dideshydro-4'-desoxy-8'-norvincaleukoblastin, Docetaxol, Rhizoxin, Dolastatin, Mivobulin-isethionat, Auristatin, Cemadotin, RPR109881 , BMS184476, Vinflunin, Cryptophycin, 2,3,4,5,6-pentafluor-N-(3-fluor-4-methoxyphenyl)benzolsulfonamid, Anhydrovinblastin, N,N-dimethyl-L-valyl-L-valyl-N-methyl-L-valyl-L-prolyl-L-prolin-t- butylamid, TDX258 und BMS188797.
Topoisomerase-Hemmer sind zum Beispiel Topotecan, Hycaptamin, Irinotecan, Rubitecan, e-Ethoxypropionyl-S'^'-O-exo-benzyliden-chartreusin, 9-Methoxy-N,N- dimethyl-5-nitropyrazolo[3,4,5-kl]acridin-2-(6H)propanamin, 1-Amino-9-ethyl-5-fluor- 2,3-dihydro-9-hydroxy-4-methyl-1 H,12H-benzo[de]pyrano[3',4,:b,7]indolizino[1 ,2b]- chinolin-10,13(9H,15H)-dion, Lurtotecan, 7-[2-(N-lsopropylamino)ethyl]-(20S)- camptothecin, BNP1350, BNPI1100, BN80915, BN80942, Etoposid-phosphat, Teniposid, Sobuzoxan, 2'-Dimethylamino-2'-desoxy-etoposid, GL331 , N-[2- (Dimethylamino)ethyl]-9-hydroxy-5,6-dimethyl-6H-pyrido[4,3-b]carbazol-1- carbonsäureamid, Asulacrin, (5a,5aB,8aa,9b)-9-[2-[N-[2-(Dimethylamino)ethyl]-N- methylaminolethyll-S-^-hydroxy-S.S-dimethoxyphenyll-S.Sa.e.e.Sa.g-hexohydro- furo(3^6,7)naphtho(2,3-d)-1 ,3-dioxol-6-on, 2,3-(Methylendioxy)-5-methyl-7- hydroxy-8-methoxybenzo[c]phenanthridinium, 6,9-Bis[(2-aminoethyl)amino]benzo- [g]isochinolin-5,10-dion, 5-(3-Aminopropylamino)-7,10-dihydroxy-2-(2-hydroxyethyl- aminomethyl)-6H-pyrazolo[4,5,1-de]acridin-6-on, N-[1-[2(Diethylamino)ethylamino]- 7-methoxy-9-oxo-9H-thioxanthen-4-ylmethyl]formamid, N-(2-(Dimethyl-amino)- ethyl)acridin-4-carbonsäureamid, 6-[[2-(Dimethylamino)-ethyl]amino]-3-hydroxy-7H- indeno[2,1-c]chinolin-7-on und Dimesna.
Zu den„antiproliferativen Mitteln" zählen Antisense-RNA- und -DNA-Oligo- nucleotide wie G3139, ODN698, RVASKRAS, GEM231 und INX3001 , sowie Antimetaboliten wie Enocitabin, Carmofur, Tegafur, Pentostatin, Doxifluridin, Trimetrexat, Fludarabin, Capecitabin, Galocitabin, Cytarabin-ocfosfat, Fosteabin- Natriumhydrat, Raltitrexed, Paltitrexid, Emitefur, Tiazofurin, Decitabin, Nolatrexed, Pemetrexed, Nelzarabin, 2'-Desoxy-2'-methylidencytidin, 2'-Fluormethylen-2'- desoxycytidin, N-[5-(2,3-Dihydrobenzofuryl)sulfonyl]-N'-(3,4-dichlorphenyl)harnstoff, N6-[4-Desoxy-4-[N2-[2(E),4(E)-tetradecadienoyl]glycylamino]-L-glycero-B-L-manno- heptopyranosyl]adenin, Aplidin, Ecteinascidin, Troxacitabine, 4-[2-Amino-4-oxo- 4,6J,8-tetrahydro-3H-pyrimidino[5,4-b][1,4]thiazin-6-yl-(S)-ethyl]-2,5-thienoyl-L- glutaminsäure, Aminopterin, 5-Flurouracil, Alanosin, 11-Acetyl-8-(carbamoyloxy- methyl)-4-formyl-6-methoxy-14-oxa-1 ,11-diazatetracyclo(7.4.1.0.0)-tetradeca-2,4,6- trien-9-ylessigsäureester, Swainsonin, Lometrexol, Dexrazoxan, Methioninase, 2'- cyan-2'-desoxy-N4-palmitoyl-1-B-D-Arabinofuranosylcytosin und 3-Aminopyridin-2- carboxaldehyd-thiosemicarbazon. Die„antiproliferativen Mittel" beinhalten auch andere monoklonale Antikörper gegen Wachstumsfaktoren als bereits unter den „Angiogenese-Hemmern" angeführt wurden, wie Trastuzumab, sowie Tumor- suppressorgene, wie p53, die über rekombinanten virusvermittelten Gentransfer abgegeben werden können (siehe z.B. US-Patent Nr. 6,069,134).
Bevorzugt aber nicht ausschliesslich werden die Arzneimittel der nachstehenden Tabelle 1 mit den Verbindungen der Formel I kombiniert.
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Eine derartige gemeinsame Behandlung kann mithilfe gleichzeitiger, aufeinander folgender oder getrennter Dosierung der einzelnen Komponenten der Behandlung erzielt werden. Solche Kombinationsprodukte setzen die erfindungsgemäßen Verbindungen ein.
Test für die Hemmung von ΙΚΚε ΙΚΚε - Kinase-Assay (IKKepsilon) Zusammenfassung
Der Kinase-Assay wird als 384-Well-Flashplate-Assay durchgeführt (z.B. für Topcount- Messung).
1 nM ΙΚΚε, 800 nM biotinyliertes ΙκΒα(19-42) Peptid (Biotin-C6-C6- GLKKERLLDDRHDSGLDSMKDEE) und 10 μΜ ATP (gespikt mit 0,3 pCi 33P- ATP/Well) werden in einem Gesamtvolumen von 50 μΙ (10 mM MOPS, 10 mM Mg- acetat, 0,1 mM EGTA, 1 mM Dithiothreitol, 0,02 % Brij35, 0,1 % BSA, 0,1 % BioStab, pH 7,5) mit oder ohne Testverbindung für 2 Stunden bei 30°C inkubiert. Die Reaktion wird mit 25 pl 200 mM EDTA gestoppt. Nach 30 Min bei Raumtemperatur wird die Flüssigkeit entfernt und jeder Well dreimal mit 100 μΙ 0,9%iger Natriumchloridlösung gewaschen. Unspezifische Reaktion wird in Gegenwart von 3 μΜ MSC2119074 (BX- 795) bestimmt. Die Radioaktivität wird mit einem Topcount (PerkinElmer) gemessen. Die Ergebnisse (z.B. IC50-Werte) werden mit durch die IT-Abteilung breitgestellten Programm-Tools (z.B. AssayExplorer, Symyx) berechnet.
Test für die Hemmung von TBK1
Enzymtest Zusammenfassung
Der Kinase-Assay wird als 384-Well-Flashplate-Assay durchgeführt (z.B. für Topcount- Messung).
0,6 nM TANK Bindungskinase (TBK1), 800 nM biotinyliertes von MELK abgeleitetes Peptid (Biotin-Ah-Ah-AKPKGNKDYHLQTCCGSLAYRRR) und 10 μΜ ATP (gespikt mit
0.25 pCi 33P-ATP/Well) werden in einem Gesamtvolumen von 50 μΙ (10 mM MOPS, 10 mM Mg-acetat, 0,1 mM EGTA, 1 mM DTT, 0,02 % Brij35, 0,1 % BSA, pH 7,5) mit oder ohne Testverbindung 120 Min bei 30°C inkubiert. Die Reaktion wird mit 25 μΙ 200 mM EDTA gestoppt. Nach 30 Min bei Raumtemperatur wird die Flüssigkeit entfernt und jeder Well dreimal mit 100 μΐ 0,9%iger Natriumchloridlösung gewaschen. Unspezifische Reaktion wird in Gegenwart von 100 nM Staurosporin gemessen. Die Radioaktivität wird in einem Topcount (PerkinElmer) gemessen. Die Ergebnisse (z.B. IC50-Werte) werden mit durch die IT-Abteilung breitgestellten Programm-Tools (z.B. AssayExplorer, Symyx) berechnet.
Zelltest
Dosis-Antwort Hemmung von Phospho-IRF3 @ Ser 386
cell/MDAMB468/INH/PHOS/IMAG/plRF3
1. Umfang
Obwohl TBK1 und ΙΚΚε vor allem als Schlüsselsubstanzen in der angeborenen
Immunantwort bekannt sind, weisen neuere Erkenntnisse auf eine Rolle für TBK1 und ΙΚΚε in der Ras-induzierten onkogenen Transformation hin. TBK1 wurde als RalB-Effektor im Weg des Ras-like (Ral)-Guanine Nucleotide Exchange Factor (GEF) identifiziert, der für die Ras-induzierte Transformation erforderlich ist. TBK1 aktiviert direkt IRF3, das bei Phosphorylierung homodimerisiert und sich zum Kern verlagert, wo es Prozesse, die mit Entzündung, Immunregulierung, Zellüberleben und Proliferation in Zusammenhang stehen, aktiviert.
Dieser Assay wurde entwickelt, um die Wirksamkeit/Stärke von ΤΒΚ1/ΙΚΚε- Hemmer-Verbindungen auf der Basis der immunozytochemischen Detektion von kernlokalisiertem Phospho-IRF3, einem Ziel direkt nach TBK1 , zu beurteilen.
Behandlung mit Polyinosin-Polycytidylsäure (poly(l:C), einem synthetischen
Analogon von doppelsträngiger RNA (dsRNA), ein Molekülmuster, das mit viraler Infektion in Zusammenhang steht und vom Toll-like Rezeptor 3 (TLR3) erkannt wird, wird verwendet, um ΤΒΚΙ/ΙΚΚε-Aktivität und IRF3-Phosphorylierung bei Ser386 zu induzieren.
2. ASSAY-ÜBERSICHT
1. Tag: MDA-MB-468-Zellen werden mit HyQ-Tase abgelöst, gezählt und auf einer 384-Well-Platte mit TC-Oberfläche und transparentem Boden mit einer Dichte von 10 000 Zellen pro Well in einem Gesamtvolumen von 35 μΙ Komplettmedium ausgesät. Alternativ werden die Zellen direkt aus tiefgefrorenen Glasfläschchen ausgesät.
2. Tag: Die Zellen werden vor der Poly(l:C)-Stimulierung 1h mit Hemmer- Verbindungen vorbehandelt. Nach 2h Inkubation mit Poly(l:C) werden die Zellen in (Para)formaldehyd (PFA) fixiert und mit Methanol (MeOH) permeabilisiert. Die Zellen werden dann blockiert und mit einem anti-plRF3-Antikörper bei 4°C über Nacht inkubiert.
3. Tag: Der primäre Antikörper wird weggewaschen, ein AlexaFluor488-konjugierter sekundärer zugegeben, die Zellen werden mit Propidiumiodid kontrastgefärbt, gefolgt durch Bildaufnahme auf einem IMX Ultra High Content Reader. 3. Reagenzien, Materialien
Zellen : ATCC HTB 132, Burger Lab (MP-CB 2010-327 oder MDA-MB-468 / 10)
Plattiermedium = Kulturmedium:
RPMI 1640, Invitrogen # 31870
10% FCS, Invitrogen # 10270-106
2mM Glutamax, Invitrogen #35050-038
1mM Natrium-Pyruvat, Invitrogen # 11360
1% Pen / Strep
37°C, 5% COz
Platten : 384-Well-Boden-Zellkulturplatten mit schwarzem / transparentem
Boden, Falcon #35 3962 oder Greiner #781090
Subkultivierung: HyQ-Tase, Thermo Scientific (HyClone) # SV30030.01 weitere Reagenzien:
Poly(I.C) (LMW), Invitrogen # tlrl-picw (20mg/ml Stammlösung in steriler PBS herstellen, 30min 55°C im Wasserbad denaturieren, langsam auf RT abkühlen, in Aliquots bei -20°C lagern)
Referenzhemmer : MSC2119074A-4 = BX-795 ( IC50 : 200-800nM)
Hemmkontrolle: 10μΜ MSC2119074A-4 = BX-795
neutrale Kontrolle: 0,5% DMSO
eine 10Punkt-Dosis-Antwort-Kurve mit MSC2119074A-4 = BX-795 ist in jedem
Versuch enthalten
Hepes, Merck #1.10110
PBS 1x DPBS , Invitrogen # 14190
Formaldehyd (methanolfrei, 16%, ultrareine EM-Qualität), Polysciences # 18814 (Lagerung RT), Endkonz.: 4% Methanol, Merck # 1.06009.1011 (vorgekühlt -20°C)
Ziegenserum, PAA # B15-035 (Lagerung 4°C, langfristig -20°C), Endkonz.: 10%
BSA (IgG- und Protease-frei, 30%), US-Biological # A1317 (Lagerung 4°C, langfristig -20°C), Endkonz.: 2%
Tween 20 Detergens, Calbiochem # 655204 (Lagerung RT), (10%ige
Stammlösung in Wasser herstellen; Endkonz.: 0,1%) anti-plRF-3 Kaninchen MAK, Epitomics # 2526-B (Lagerung -20°C), Endkonz.: 1:2000 in PBS / 2% BSA
Alexa Fluor Ziege-anti-Kaninchen-488, Invitrogen # A11034 oder # A 1008
(Lagerung 4°C, dunkel), Endkonz.: 1:2000 in PBS / 2% BSA / 0,1% Tween
Propidiumiodid (PI), Fluka # 81845, 1 mg/ml in H20 (Lagerung 4°C, dunkel),
Endkonz.: 0,2pg/ml
4. Ablauf
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
HPLC/HPLC-MS Bedingungen
Die Retentionszeit Rt [min] wird durch HPLC bestimmt:
Säule: Chromolith SpeedROD RP-18e, 50 x 4.6
Gradient: A:B = 96:4 to 0:100
Flussrate: 2.4 ml/min
Eluent A: Wasser + 0.05 % Ameisensäure,
Eluent B: Acetonitril + 0.04 % Ameisensäure
Wellenlänge: 220 nm
MS: positive mode
Beispiele
Syntheseschema 1
Allgemeiner Syntheseweg für Verbindungen der Formel I, worin X = CH ist.
Figure imgf000054_0001
2-(Tetrahydro-pyran-4-yloxy)-5-(4,4,5,5-tetramethyl-[1 ,3,2]dioxaborolan-2-yl)- benzonitril wird hergestellt wie in WO 2011/046970 A1 beschrieben.
Synthese von 5-(2-Chlor-pyridin-4-yl)-2-(tetrahydro-pyran-4-yloxy)-benzonitril:
In einem 100 ml Dreihalskolben werden unter N2 2-(Tetrahydro-pyran-4-yloxy)-5- (4,4l5,5-tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-benzonitril (3,645 mmol; 1 ,20 g) und 4-Brom-2-chlorpyridin (3,645 mmol; 779 mg) in 10 ml Dioxan und 4 mL Wasser gelöst. Es wird mit 1 ,008 g Kaliumcarbonat und 211mg Tetrakis(triphenylphosphin)- palladium(O) versetzt. Die gelb-braune Lösung wird 2,5 h bei 90°C gerührt. Zur Aufarbeitung wird das Reaktionsgemisch auf Raumtemperatur gekühlt und mit
Wasser und Ethylacetat verdünnt und extrahiert. Die vereinten organischen Phasen werden mit gesättigter NaCI-Lösung gewaschen, getrocknet, filtriert und eingeengt.
Man erhält 1 ,965 g Rohprodukt. Zur Aufreinigung wird das Rohgemisch mit
Petrolether/Ethylacetat auf Kieselgel chromatographiert.
Es werden 968 mg des gewünschten Produktes erhalten; HPLC-MS Rt. [min]
2.225; HPLC-MS [M+H] 315;
1H NMR (500 MHz, DMSO-d6) δ [ppm]
Aligemeine Vorschrift für die Buchwald-Hartwig-Reaktion:
In einem 100 ml Dreihalskolben werden unter N2 5-(2-Chlor-pyridin-4-yl)-2- (tetrahydro-pyran-4-yloxy)-benzonitril (100 mg; 0,318 mmol), 1.1 Äquivalente der heterozyklischen Aminokomponente, Tris(dibenzylidenaceton)dipalladium(0), 99% (5,8 mg; 0,006 mmol), 9,9-Dimethyl-4,5-bis(diphenylphosphino)xanthen, 99% (36,8 mg; 0,064 mmol), Cäsiumcarbonat (207 mg; 0,635 mmol), und 2-Dicyclohexyl- phosphino-2\4\6'-tri-iso-propyl-1,r-biphenyl (3,8 mg; 0,008 mmol) in 10 ml Dioxan gelöst. Das Reaktionsgemisch wird dann 4 h auf 140°C erwärmt und über Nacht bei Raumtemperatur gerührt.
Zur Aufarbeitung wird das Lösungsmittel entfernt. Der Rückstand wird mit Wasser verdünnt und mit Dichlormethan extrahiert. Die vereinten organischen Phasen werden mit Wasser gewaschen, getrocknet, filtriert und eingeengt. Der Rückstand wird, wenn nötig, chromatographisch aufgereinigt.
Herstellung von Verbindungen der Formel I gemäß der allgemeinen Vorschrift für die Buchwald-Hartwig-Reaktion
2-(Tetrahydro-pyran-4-yloxy)-5-{2-[1-(3-trifluormethyl-phenyl)-1 H-pyrazol-4- ylamino]-pyridin-4-yl}-benzonitnl ("A1 ")
Mit 1-[3-(Trifluormethyl)phenyl]-1 H-pyrazol-4-amin wird das gewünschte Produkt in einer Ausbeute von 44% erhalten; HPLC-MS Rt. [min] 2.345; HPLC-MS [M+H] 506; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.47 (s, 1 H), 9.02 (s, 1 H), 8.35 (d, J= 2.4, 1 H), 8.23 (m, 2H), 8.14 (dd, J= 9.0, 2.4, 1H), 8.08 (d, J= 6.6, 1 H), 8.02 (s, 1H), 7.81 (t, J= 8.3, 1 H), 7.72 (d, J= 7.7, 1 H), 7.56 (d, J= 9.1 , 1H), 7.5 - 7.43 (m, 2H), 4.97 (tt, J= 7.8, 3.7, 1 H), 3.93 - 3.85 (m, 2H), 3.58 (m, 2H), 2.11 - 2.01 (m, 2H), 1.72 (m, 2H).
5-{2-[1-(1-Methyl-piperidin-4-yl)-1H-pyrazol-4-ylamino]-pyridin-4-yl}-2-(tetra pyran-4-yloxy)-benzonitril ("A2")
Mit 1-(1-Methyl-piperidin-4-yl)-1 H-pyrazol-4-ylamin Hydrochlorid wird das
gewünschte Produkt in einer Ausbeute von 6.7% erhalten; HPLC-MS Rt. [min] 1.235; HPLC-MS [M+H] 459;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.49 (s, 1 H), 8.27 (d, J=2.4, 1H), 8.12 - 8.06 (m, 2H), 8.01 (d, J=6.4, 1 H), 7.73 (d, J=4.0, 1H), 7.52 (d, J=9.2, 1H), 7.41 - 7.37 (m, 2H), 4.96 (m, 1 H), 4.61 - 4.50 (m, 1 H), 3.96 - 3.87 (m, 2H), 3.69 - 3.52 (m, 5H), 3.33 - 3.16 (m, 2H), 2.90 (s, 3H), 2.39 - 2.18 (m, 4H), 2.08 (m, 2H), 1.76 (m, 2H).
5-[2-([3,3']Bipyridinyl-6-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A3")
Mit [3,3']Bipyridinyl-6-ylamin wird das gewünschte Produkt in quantitativer Ausbeute erhalten; HPLC-MS Rt. [min] 1.492; HPLC-MS [M+H] 450;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 11.36 (s, 1 H), 9.06 (d, J=1.9, 1H), 8.77 (d, J=2.4, 1 H), 8.70 (dd, J=5.0, 1.4, 1 H), 8.41 (d, J=6.0, 1 H), 8.38 - 8.30 (m, 2H), 8.25 (d, J= 2.4, 1 H), 8.10 (dd, J=8.9, 2.4, 1 H), 7.79 (d, J=0.8, 1 H), 7.71 (dd, J=8.0, 5.0, 1H), 7.64 (d, J=8.8, 1 H), 7.61 - 7.52 (m, 2H), 4.96 (m, 1H), 3.88 (m, 2H), 3.6 (m, 2H), 2.11 - 1.98 (m, 2H), 1.77 - 1.63 (m, 2H).
5-[2-(5-Methyl-isoxazol-3-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A4")
Mit 5-Methyl-isoxazol-3-ylamin erhält man das gewünschte Produkt in 30%
Ausbeute; HPLC-MS Rt. [min] 1.934; HPLC-MS [M+H] 377;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.81 (s, 1 H), 8.26 (d, J=5.3, 1 H), 8.08 (d, J=2.4, 1H), 7.96 (dd, J=8.9, 2.4, 1 H), 7.64 (m, 1 H), 7.51 (d, J=9.1 , 1 H), 7.22 (dd, J=5.3, 1.6, 1 H), 6.38 (d, J=0.6, 1 H), 4.90 (m, 1 H), 3.93 - 3.81 (m, 2H), 3.55 (m, 2H), 2.03 (m, 2H), 1.68 (m, 2H).
5-[2-(1-Methyl-1 H-pyrazol-3-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy benzonitril ("A5")
Mit 1-Methyl-1 H-pyrazol-3-amin erhält man das gewünschte Produkt in quantitativer Ausbeute; HPLC-MS Rt. [min] 1.558; HPLC-MS [M+H] 376;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 11.08 (br, 1H), 8.28 - 8.22 (m, 2H), 8.07 (dd, J=9.0, 2.4, 1 H), 7.76 (d, J=2.2, 1H), 7.57 (d, J=9.1 , 1H), 7.50 (d, J=1.3, 1H), 7.44 - 7.36 (m, 1 H), 6.20 (d, J=2.3, 1 H), 5.00 - 4.88 (m, 1 H), 3.94 - 3.81 (m, 5H), 3.56 (m, 2H), 2.10 - 1.97 (m, 2H), 1.77 - 1.63 (m, 2H).
5-[2-(2-Furan-2-ylmethyl-2H-pyrazol-3-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4- yloxy)-benzonitril ("A6")
Mit 2-Furan-2-ylmethyl-2H-pyrazol-3-ylamin erhält man das gewünschte Produkt in 55% Ausbeute; HPLC-MS Rt. [min] 1.908; HPLC-MS [M+H] 442;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 8.87 (s, 1 H), 8.17 (d, J=5.3, 1 H), 8.06 (d, J=2.4, 1 H), 7.93 (dd, J=8.9, 2.4, 1 H), 7.52 (dd, J=1.8, 0.8, 1 H), 7.48 (d, J=9.1 , 1 H), 7.39 (d, J=6.9, 1 H), 7.11 (dd, J=5.4, 1.6, 1 H), 6.97 (s, 1 H), 5.28 (s, 2H), 4.95 - 4.83 (m, 1 H), 3.94 - 3.83 (m, 2H), 3.59 - 3.51 (m, 2H), 2.08 - 1.95 (m, 2H), 1.72 - 1.60 (m, 2H).
5-[2-(5-Morpholin-4-yl-pyridin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A7")
Mit 5-Morpholin-4-yl-pyridin-2-ylamin erhält man das gewünschte Produkt in 23% Ausbeute; HPLC-MS Rt. [min] 1.682; HPLC-MS [M+H] 458;
H NMR (500 MHz, DMSO-d6) δ [ppm] 11.33 (s, 1H), 8.34 (d, J=6.3, 1H), 8.24 (t, J=7.8, 1 H), 8.08 (dd, J=9.0, 2.4, 1 H), 7.95 (d, J=2.9, 1 H), 7.81 (d, J=7.2, 1 H), 7.58 (d, J=9.1 , 1 H), 7.55 - 7.46 (m, 2H), 7.33 (d, J=9.2, 1H), 5.01 - 4.88 (m, 1 H), 3.93 - 3.83 (m, 2H), 3.81 - 3.71 (m, 4H), 3.61 - 3.51 (m, 4H), 3.20 - 3.11 (m, 2H), 2.10 - 1.99 (m, 2H), 1.74 - 1.63 (m, 2H). 5-[2-(1-Phenyl-1 H-pyrazol-4-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A8")
Mit 1-Phenyl-1H-pyrazol-4-amin erhält man das gewünschte Produkt in 46%
Ausbeute; HPLC-MS Rt. [min] 1.977; HPLC-MS [M+H] 438;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.45 (s, 1H), 8.70 (s, 1H), 8.17 (dd, J=5.5, 4.3, 2H), 8.01 (dd, J=8.9, 2.2, 1H), 7.85 (s, 1H), 7.82 (d, J=7.8, 2H), 7.54 - 7.47 (m, 3H), 7.30 (t, J=7.4, 1 H), 7.17 - 7.05 (m, 2H), 4.99 - 4.86 (m, 1 H), 3.93 - 3.80 (m, 2H), 3.60 - 3.49 (m, 2H), 2.11 - 1.97 (m, 2H), 1.75 - 1.61 (m, 2H).
5-{2-[5-(1 H-Pyrazol-4-yl)-pyridin-2-ylamino]-pyridin-4-yl}-2-(tetrahydro-pyran-4- yloxy)-benzonitril ("A9")
Mit 4-(6-Amino-pyridin-3-yl)-pyrazol-1-carbonsäure-tert.-butylester erhält man das gewünschte Produkt in 16% Ausbeute; HPLC-MS Rt. [min] 1.648; HPLC-MS [M+H] 439.
5- [2-(5-tert.-Butyl-1 H-pyrazol-3-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A10")
Mit 5-tert.-Butyl- H-pyrazol-3-ylamin erhält man das gewünschte Produkt in 8% Ausbeute; HPLC-MS Rt. [min] 1.778; HPLC-MS [M+H] 418;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 12.39 (br, 1H), 10.73 (br, 1 H), 8.27 (d, J=6.3, 1 H), 8.22 (s, 1 H), 8.05 (dd, J=8.9, 2.3, 1 H), 7.56 (d, J=9.0, 2H), 7.34 (s, 1 H),
5.96 (s, 1 H), 5.00 -4.88 (m, 1H), 3.95 - 3.80 (m, 2H), 3.61 - 3.53 (m, 2H), 2.10 -
1.97 (m, 2H), 1.77 - 1.62 (m, 2H), 1.31 (s, 9H).
6- {4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin-2-ylamino}-nicotinonitril ("A11")
Mit 6-Amino-nicotinonitril erhält man das gewünschte Produkt in 94% Ausbeute; HPLC-MS Rt. [min] 1.738; HPLC-MS [M+H] 398;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.37 (s, 1H), 8.67 (dd, J=2.3, 0.7, 1H), 8.36 (d, J=5.3, 1H), 8.12 (d, J=2.4, 1H), 8.07 (dd, J=8.9, 2.3, 1 H), 7.99 (dd, J=5.9, 3.0, 1 H), 7.97 - 7.90 (m, 2H), 7.52 (d, J=9.1 , 1 H), 7.36 (dd, J=5.3, 1.6, 1 H), 4.99 - 4.83 (m, 1 H), 3.96 - 3.82 (m, 2H), 3.63 - 3.46 (m, 2H), 2.10 - 1.96 (m, 2H), 1.78 - 1.57 (m, 2H).
5-[2-(5-Cyclopropyl-2H-pyrazol-3-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4- yloxy)-benzonitril ("A12")
Mit 5-Amino-3-cyclopropyl-1 H-pyrazol erhält man das gewünschte Produkt in 5% Ausbeute; HPLC-MS Rt. [min] 1.674; HPLC-MS [M+H] 402;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.79 (br, 1 H), 8.26 (d, J=6.3, 1 H), 8.21 (d, J=2.0, 1 H), 8.04 (dd, J=8.9, 2.4, 1H), 7.56 (d, J=9.1 , 1 H), 7.50 (s, 1H), 7.37 (d, J=5.1 , 1 H), 5.87 (s, 1 H), 4.94 (m, 1 H), 3.87 (m, 2H), 3.55 (m, 2H), 2.13 - 1.87 (m, 3H), 1.69 (m, 2H), 1.07 - 0.94 (m, 2H), 0.83 - 0.67 (m, 2H).
2-(Tetrahydro-pyran-4-yloxy)-5-[2-(5-trifluormethyl-pyridin-2-ylamino)-pyridin-4-yl]- benzonitril ("A13")
Mit 5-Trifluormethyl-pyridin-2-ylamin erhält man das gewünschte Produkt in 34% Ausbeute; HPLC-MS Rt. [min] 1.917; HPLC-MS [M+H] 441 ;
H NMR (500 MHz, DMSO-d6) δ [ppm] 10.25 (s, 1 H), 8.60 (s, 1 H), 8.34 (d, J=5.3, 1H), 8.13 (d, J=2.4, 1H), 8.04 - 7.95 (m, 4H), 7.52 (d, J=9.1 , 1 H), 7.32 (dd, J=15.1 , 7.5, 1 H), 4.99 - 4.84 (m, 1H), 3.92 - 3.80 (m, 2H), 3.61 - 3.50 (m, 2H), 2.10 - 1.98 (m, 2H), 1.75 - 1.61 (m, 2H).
5-[2-(Pyrimidin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)-benzonitril ("A14")
Mit Pyrimidin-2-ylamin erhält man das gewünschte Produkt in 95% Ausbeute;
HPLC-MS Rt. [min] 1.508; HPLC-MS [M+H] 374;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.89 (s, 1H), 8.58 (d, J=4.8, 2H), 8.51 (d, J=0.8, 1 H), 8.34 (d, J=5.2, 1 H), 8.13 (d, J=2.4, 1 H), 8.01 (dd, J=8.9, 2.4, 1 H), 7.51 (d, J=9.0, 1 H), 7.33 (dd, J=5.2, 1.6, 1 H), 6.97 (t, J=4.8, 1 H), 4.97 - 4.85 (m, 1 H), 3.91 - 3.82 (m, 2H), 3.61 - 3.49 (m, 2H), 2.09 - 1.97 (m, 2H), 1.76 - 1.63 (m, 2H).
5-[2-(5-Hydroxymethyl-pyridin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A15") Mit (6-Amino-pyridin-3-yl)-methanol erhält man das gewünschte Produkt in 31% Ausbeute; HPLC-MS Rt. [min] 1.536; HPLC-MS [M+H] 403;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 11.41 (br, 1H), 8.42 (d, J=6.0, 1 H), 8.31 (d, J=1.2, 1 H), 8.25 (d, J=2.3, 1H), 8.08 (dd, J=8.9, 2.4, 1H), 8.00 (d, J=8.5, 1H), 7.63 - 7.54 (m, 3H), 7.45 (d, J=8.6, 1 H), 5.04 - 4.90 (m, 1 H), 4.56 (s, 2H), 3.94 - 3.84 (m, 2H), 3.62 - 3.51 (m, 2H), 2.11 - 2.00 (m, 2H), 1.77 - 1.62 (m, 2H).
5-[2-(1-Piperidin-4-yl-1H-pyrazol-4-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4- yloxy)-benzonitril ("A16")
Mit 4-(4-Amino-pyrazol-1-yl)-piperidin-1-carbonsäure-tert.-butylester erhält man 4-
(4_{4_[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin-2-ylamino}-pyrazol-1-yl)- piperidin-1-carbonsäure-tert.-butylester in 40% Ausbeute.
87 mg des so erhaltenen tert.-Butylesters werden in 3 ml_ getrocknetem Dioxan gelöst und mit 3mL 4 molarer HCl in Dioxan versetzt. Die leicht gelbe Lösung läßt man 1h bei RT rühren.
Die Reaktionslösung wird einrotiert und der pulvrige Rückstand wird mit Petrolether und Ethylacetat verrieben und abgesaugt. Die Substanz wird mehrmals
gefriergetrocknet. Man erhält 38,8 mg des gewünschten Produktes; HPLC-MS Rt. [min] 1.244; HPLC-MS [M+H] 445;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 8.78 (s, 1 H), 8.15 (d, J=5A, 1 H), 8.04 (d, J=4.5, 1 H), 7.97 (d, 1 H), 7.92 (dt, J=17.9, 8.9, 1H), 7.51 - 7.43 (m, 2H), 6.93 (dd, J=5.4, 1.5, 1 H), 6.86 (s, 1 H), 4.96 - 4.84 (m, 1 H), 4.22 - 4.08 (m, 1 H), 3.95 - 3.82 (m, 2H), 3.59 - 3.47 (m, 2H), 3.10 - 3.02 (m, 2H), 2.61 (td, J=12.3, 2.1 , 2H), 2.08 - 1.98 (m, 2H), 1.98 - 1.89 (m, 2H), 1.84 - 1.73 (m, 2H), 1.73 - 1.61 (m, 2H).
2-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin-2-ylamino}-isonicotinonitril ("A17")
Mit 2-Amino-isonicotinonitril erhält man das gewünschte Produkt in 9% Ausbeute; HPLC-MS Rt. [min] 1.7 9; HPLC-MS [M+H] 398;
H NMR (500 MHz, DMSO-d6) δ [ppm] 10.34 (s, 1 H), 8.49 (d, J=5.1 , 1 H), 8.36 (d, J=5.5, 1 H), 8.25 (s, 1 H), 8.13 (d, J=2.3, 1 H), 8.00 (dd, J=8.9, 2.4, 1H), 7.80 (d, J=0.9, 1 H), 7.53 (d, =9.0, 1 H), 7.39 - 7.33 (m, 1 H), 7.31 (dd, J=5.1 , 0.9, 1 H), 4.92 (tt, J=7.8, 3.8, 1H), 3.91 - 3.82 (m, 2H), 3.56 (ddd, J=11.5, 8.4, 3.1 , 2H), 2.08 - 1.98 (m, 2H), 1.74 - 1.63 (m, 2H).
5-[2-(4-Hydroxymethyl-pyridin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A18")
Mit (2-Amino-pyridin-4-yl)-methanol erhält man das gewünschte Produkt in 60% Ausbeute; HPLC-MS Rt. [min] 1.567; HPLC-MS [M+H] 403;
H NMR (500 MHz, DMSO-d6) δ [ppm] 11.52 (s, 1 H), 8.41 (d, J=5.8, 1H), 8.29 (d, J=6.0, 1 H), 8.21 (d, J=2.3, 1 H), 8.05 (dd, J=8.9, 2.4, 1H), 7.55 (d, J=9.0, 3H), 7.43 (s, 1H), 7.13 (d, J=5.7, 1H), 5.56 (br, 1 H), 4.99 - 4.88 (m, 1 H), 4.65 (s, 2H), 3.93 - 3.83 (m, 2H), 3.63 - 3.49 (m, 2H), 2.11 - 1.97 (m, 2H), 1.77 - 1.61 (m, 2H).
5-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin-2-ylamino}-benzofuran-2- carbonsäure-amid ("A19")
Mit 5-Amino-benzofuran-2-carbonsäure-amid erhält man das gewünschte Produkt in 51% Ausbeute; HPLC-MS Rt. [min] 1.824; HPLC-MS [M+H] 455;
H NMR (500 MHz, DMSO-d6) δ [ppm] 10.94 (br, 1 H), 9.2 (br, 2H), 8.48 (d, J=5.2,
1 H), 8.42 (d, J=1.0, 1 H), 8.19 (d, J=2.4, 1 H), 8.04 (dd, J=8.9, 2.4, 1 H), 7.98 (s, 1 H),
7.74 (d, J=8.8, 1 H), 7.59 - 7.50 (m, 3H), 7.30 (dd, J=8.8, 1.9, 1 H), 4.98 - 4.87 (m,
1 H), 3.92 - 3.83 (m, 2H), 3.62 - 3.50 (m, 2H), 2.09 - 1.98 (m, 2H), 1.75 - 1.63 (m,
2H).
2-(Tetrahydro-pyran-4-yloxy)-5-[2-(5,6,7,8-tetrahydro-pyrido[4,3-d]pyrimidin-2- ylamino)-pyridin-4-yl]-benzonitril ("A36")
In einem 50 mL Kolben wird 2-Amino-5,6,7,8-tetrahydropyrido-[4,3-d]pyrimidin dihydrochlorid (100 mg; 0,448 mmol) in 10 mL Dichlormethan gelöst und unter rühren Di-tert.-butyldicarbonat (0,14 ml; 0,672 mmol) und Triethylamin (0,062 ml; 0,448 mmol) zugegeben. Das Reaktionsgemisch wird bei RT über Nacht gerührt. Zur Aufarbeitung wird das Reaktionsgemisch eingeengt. Der Rückstand wird in Essigester verrieben und abgesaugt. Das Filtrat wird eingeengt und man erhält 80 mg 2-Amino-7,8-dihydro-5H-pyrido[4,3-d]pyrimidin-6-carbonsäure-tert.-butylester; HPLC-MS Rt. [min] 1.504; HPLC-MS [M+H] 251 ; Mit dem hergestellten 2-Amino-7,8-dihydro-5H-pyrido[4,3-d]pyrimidin-6- carbonsäure-tert.-butylester erhält man nach Buchwald-Hartwig-Bedingungen 2-{4- [S-Cyan^-itetrahydro-pyran^-yloxyJ-phenyll-pyridin^-ylaminoJ-T.S-dihydro-SH- pyrido[4,3-d]pyrimidin-6-carbonsäure-tert.-butylester.
2-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin-2-ylamino}-7,8-dihydro- 5H-pyrido[4,3-d]pyrimidin-6-carbonsäure-tert.-butylester (155 mg; 0,241 mmol) werden in 3,5 mL getrocknetem Dioxan gelöst und mit 3 mL HCl in Dioxan (4 mol/L) versetzt. Die gelbe Lösung wird 30 min bei Raumtemepratur gerührt.
Das Reaktionsgemisch wird mit 2 molarer NaOH basisch gestellt. Der Niederschlag wird abgesaugt und mit Dioxan gewaschen. Man erhält 97 mg vom gewünschten Produkt; HPLC-MS Rt. [min] 1.223; HPLC-MS [M+H] 429;
NMR
6-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin-2-ylamino}-nicotinamid ("A37")
Mit 6-Amino-nicotinamid erhält man das gewünschte Produkt in 5% Ausbeute;
HPLC-MS Rt. [min] 1.476; HPLC-MS [M+H] 416;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.90 (s, 1 H), 8.68 (d, J=1.9, 1H), 8.44 (d, J=5.3, 1 H), 8.41 (d, J=1.0, 1 H), 8.28 (dd, J=9.1 , 2.0, 1 H), 8.16 (d, J=2.4, 1 H), 8.02 (dd, J=8.9, 2.4, 1 H), 7.98 - 7.63 (m, 1H), 7.57 - 7.49 (m, 2H), 6.85 (d, J=9.1 , 1 H), 4.98 - 4.87 (m, H), 3.92 - 3.83 (m, 2H), 3.60 - 3.51 (m, 2H), 2.10 - 1.97 (m, 2H), 1.76 - 1.61 (m, 2H).
Syntheseschema 2
Herstellung von 1H-Pyrazol-4-ylaminderivaten
Figure imgf000062_0001
Allgemeine Vorschrift: In einem 100 ml Dreihalskolben mit Trockenrohr werden unter N2, 4-Nitro-1 H- pyrazol (4,422 mmol; 500,00 mg), 1 Äquivalent des primären Alkohols und 1 ,77 g Triphenylphosphin in 20 ml getrocknetem THF gelöst. Anschließend wird
portionsweise Di-tert.-butyl-azodicarboxylat (5,748 mmol; 1,35 g) zugegeben. Die gelbe Lösung wird 2 h bei RT gerührt.
Zur Aufarbeitung wird das Triphenylphosphinoxid abgesaugt und das Filtrat einrotiert. Das 4-Nitro-1 H-pyrazolderivat, wird, falls erforderlich, über Kieselgel in Ethylacetat/Petrolether chromatographiert.
Das 4-Nitro-1 H-pyrazolderivat wird in Methanol gelöst, Pd-C-5% hinzugegeben und mit Wasserstoff bei Raumtemperatur hydriert. Man erhält das 1 H-Pyrazol-4- ylaminderivat nach der Filtration und dem Einengen der Lösung.
1-(2,2-Difluor-ethyl)-1 H-pyrazol-4-ylamin wird hergestellt mit 2,2-Difluorethanol; HPLC-MS Rt. [min] 0.351 ; HPLC-MS [M+H] 148.
4-[2-(4-Amino-pyrazol-1-yl)-ethyl]-piperidin-1-carbonsäure-tert.-butylester wird hergestellt mit 4-(2-Hydroxy-ethyl)-piperidin-1-carbonsäure-tert.-butylester;
HPLC-MS Rt. [min] 1.357; HPLC-MS [M+H] 295.
1-(2-Morpholin-4-yl-ethyl)-1 H-pyrazol-4-ylamin wird hergestellt mit N-(2- Hydroxyethyl)-morpholin; HPLC-MS Rt. [min] 0.320; HPLC-MS [M+H] 197.
1- (3-Methoxy-propyl)-1 H-pyrazol-4-ylamin wird hergestellt mit 3-Methoxy-1- propanol; HPLC-MS Rt. [min] 0.363; HPLC-MS [M+H] 155.
2- (4-Amino-pyrazol-1-ylmethyl)-cyclopropancarbonitril wird hergestellt mit 2- Hydroxymethyl-cyclopropancarbonitril; HPLC-MS Rt. [min] 0.380; HPLC-MS [M+H] 163.
3- (4-Amino-pyrazol-1-yl)-azetidin-1-carbonsäure-tert.-butylester wird hergestellt mit 3-Hydroxy-azetidin-1-carbonsäure-tert.-butylester; HPLC-MS Rt. [min] 1.117;
HPLC-MS [M+H] 183. [trans-2-(4-Amino-pyrazol-1-ylmethyl)-cyclopropyl]-methanol wird hergestellt mit trans-2-Hydroxymethyl-cyclopropyl)-methanol; HPLC-MS Rt. [min] 0.355;
HPLC-MS [M+H] 168.
1-(Tetrahydro-furan-3-ylmethyl)-1 H-pyrazol-4-ylamin wird hergestellt mit
(Tetrahydro-furan-3-yl)-methanol; HPLC-MS Rt. [min] 0.357; HPLC-MS [M+H] 168.
3-(4-Amino-pyrazol-1 -yl)-pyrrolidin-1 -carbonsäure-tert.-butylester wird hergestellt mit 3-Hydroxy-pyrrolidin-1 -carbonsäure-tert.-butylester; HPLC-MS Rt. [min] 1.099; HPLC-MS [M+H] 253.
1-(2-Pyrazol-1-yl-ethyl)-1 H-pyrazol-4-ylamin wird hergestellt mit 2-(1 H-Pyrazol-1- yl)ethanol; HPLC-MS Rt. [min] 0.355; HPLC-MS [M+H] 178.
Herstellung von Verbindungen der Formel I
5-{2-[1-(2,2-Difluor-ethyl)-1H-pyrazol-4-ylamino]-pyridin-4-yl}-2-(tetrahydro-pyran-4- yloxy)-benzonitril ("A20")
Mit dem oben beschriebenen 1-(2,2-Difluor-ethyl)-1 H-pyrazol-4-ylamin erhält man das gewünschte Produkt in 34% Ausbeute; HPLC-MS Rt. [min] 1.619;
HPLC-MS [M+H] 426;
H NMR (500 MHz, DMSO-d6) δ [ppm] 8.94 (s, 1H), 8.16 (d, J=8.1, 1 H), 8.10 (s, 1H), 8.06 (d, J=2.4, 1H), 7.94 (dd, J=8.9, 2.4, 1 H), 7.55 (s, 1 H), 7.47 (d, J=10.1, 1H), 6.97 (dd, J=5.4, 1.5, 1 H), 6.89 (d, J=0.7, 1 H), 6.33 (tt, J=55.1 , 3.9, 1 H), 4.95 - 4.83 (m, 1H), 4.66 - 4.50 (m, 2H), 3.93 - 3.82 (m, 2H), 3.62 - 3.48 (m, 2H), 2.08 - 1.96 (m, 2H), 1.74 - 1.60 (m, 2H).
5- 2-[1-(2-Piperidin-4-yl-ethyl)-1 H-pyrazol-4-ylamino]-pyridin-4-yl}-2-(tetrahydro- pyran-4-yloxy)-benzonitril ("A21")
Mit dem oben hergestellten 4-[2-(4-Amino-pyrazol-1-yl)-ethyl]-piperidin-1- carbonsäure-tert.-butylester erhält man 4-[2-(4-{4-[3-Cyan-4-(tetrahydro-pyran-4- yloxy)-phenyl]^yridin-2-ylamino}-pyrazol-1-yl)-ethyl]-piperidin-1-carbonsäure-tert.^ butylester in 41 % Ausbeute.
210 mg 4-[2-(4-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin-2-ylamino}- pyrazol-1-yl)-ethyl]-piperidin-1-carbonsäure-tert.-butylester werden in 5 ml_ getrocknetem Dioxan gelöst und mit 5 ml_ HCl in Dioxan (4 mol/L) versetzt. Die gelbe Lösung wird 30 min bei Raumtemperatur gerührt.
Das Reaktionsgemisch wird mit 2 molarer NaOH basisch gestellt und extrahiert. Die vereinten organischen Phasen werden getrocknet, filtriert und eingeengt. Man erhält 150 mg der gewünschten Verbindung; HPLC-MS Rt. [min] 1.274;
HPLC-MS [M+H] 473;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 8.78 (d, 1H), 8.15 (d, J=5.4, 1H), 8.04 (d, J=2.4, 1H), 7.97 (s, 1H), 7.92 (dd, J=8.9, 2.4, 1H), 7.47 (d, J=9.1, 1H), 7.44 (s, 1H), 6.93 (dd, J=5.4, 1.6, 1H), 6.86 (d, J=0.8, 1H), 4.96 - 4.82 (m, 1H), 4.15 - 4.04 (m, 2H), 3.91 - 3.81 (m, 2H), 3.59 - 3.51 (m, 2H), 2.99 - 2.85 (m, 2H), 2.47 - 2.36 (m, 2H), 2.10 - 1.96 (m, 2H), 1.74 - 1.52 (m, 6H), 1.34 - 0.98 (m, 3H).
5-{2-[1-(2-Morpholin-4-yl-ethyl)-1H-pyrazol-4-ylamino]-pyridin-4-yl}-2-(tetrahydro- pyran-4-yloxy)-benzonitril ("A22")
Mit dem oben hergestellten 1-(2-Morpholin-4-yl-ethyl)-1H-pyrazol-4-ylamin erhält man das gewünschte Produkt in 42% Ausbeute; HPLC-MS Rt. [min] 1.307;
HPLC-MS [M+H] 475;
H NMR (500 MHz, DMSO-d6) δ [ppm] 9.03 (br, 1H), 8.20 - 8.13 (m, 2H), 8.08 (d, J=2.3, 1H), 7.96 (dd, J=8.9, 2.4, 1H), 7.58 (s, 1H), 7.50 (d, J=9.1, 1H), 7.01 (d, =5.0, 1H), 6.93 (s, 1H), 4.96 - 4.85 (m, 1H), 4.53 (t, J=6.1, 2H), 3.96 - 3.83 (m, 6H), 3.61 - 3.52 (m, 8H), 2.08 - 1.97 (m, 2H), 1.75 - 1.57 (m, 2H).
5-{2-[1-(3-Methoxy-propyl)-1H-pyrazol-4-ylamino]-pyridin-4-yl}-2-(tetrahydro-pyran- 4-yloxy)-benzonitril ("A23")
Mit dem oben hergestellten 1-(3-Methoxy-propyl)-1H-pyrazol-4-ylamin erhält man das gewünschte Produkt in 16% Ausbeute; HPLC-MS Rt. [min] 1.565;
HPLC-MS [M+H] 434; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.41 (br, 1 H), 8.17 (d, J=2.0, 1H), 8.06 (d, J=6.0, 1H), 8.02 - 7.97 (m, 2H), 7.55 (s, 1 H), 7.51 (d, J=9.1 , 1 H), 7.16 (s, 1H), 7.07 (s, 1 H), 5.01 - 4.84 (m, 1 H), 4.14 (t, J=7.0, 2H), 3.91 - 3.78 (m, 3H), 3.32 (t, J=6.2, 2H), 3.24 (s, 3H), 2.11 - 1.95 (m, 4H), 1.76 - 1.58 (m, 2H).
5-{2-[1-(2-Cyan-cyclopropylmethyl)-1 H-pyrazol-4-ylamino]-pyridin-4-yl}-2- (tetrahydro-pyran-4-yloxy)-benzonitril ("A24")
Mit dem oben hergestellten 2-(4-Amino-pyrazol-1-ylmethyl)-cyclopropancarbonitril erhält man das gewünschte Produkt in 28% Ausbeute; HPLC-MS Rt. [min] 1.573; HPLC-MS [M+H] 431 ;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.49 (br, 1H), 8.17 (d, J=2.2, 1H), 8.08 (d, J=6.0, 1H), 8.06 (s, H), 8.00 (dd, J=8.9, 2.4, 1H), 7.59 (s, 1H), 7.51 (d, J=9.1 , 1H), 7.15 (d, J=5.5, 1H), 7.09 (s, 1 H), 4.98 - 4.86 (m, 1H), 4.18 - 4.10 (m, 1H), 4.10 - 4.00 (m, 1 H), 3.92 - 3.82 (m, 2H), 3.60 - 3.49 (m, 2H), 2.07 - 1.90 (m, 3H), 1.86 - 1.78 (m, 1 H), 1.74 - 1.63 (m, 2H), 1.35 - 1.27 (m, 1 H), 1.17 - 1.09 (m, 1 H).
5-[2-(1-Azetidin-3-yl-1 H-pyrazol-4-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4- yloxy)-benzonitril ("A25")
Mit dem oben hergestellten 3-(4-Amino-pyrazol-1-yl)-azetidin-1-carbonsäure-tert- butylester erhält man 3-(4-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin- 2-ylamino}-pyrazol-1-yl)-azetidin-1-carbonsäure-tert.-butylester in 18% Ausbeute. 71 mg 3-(4-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin-2-ylamino}- pyrazol-1-yl)-azetidin-1-carbonsäure-tert.-butylester werden in 3 mL Dioxan gelöst und mit 3 mL HCl in Dioxan (4 molar) versetzt. Die gelbe Lösung wird 30 min bei Raumtemperatur gerührt.
Zur Aufarbeitung wird die Reaktionslösung mit 2 molarer NaOH basisch gestellt und mit Ethylacetat extrahiert. Die vereinten organischen Phasen werden getrocknet, filtriert und eingeengt. Nach Chromatographie auf Kieselgel erhält man 27 mg der gewünschten Verbindung; HPLC-MS Rt. [min] 1.255; HPLC-MS [M+H] 417.
5-{2-[1-((1S,2S)-2-Hydroxymethyl-cyclopropylmethyl)-1 H-pyrazol-4-ylamino]- pyridin-4-yl}-2-(tetrahydro-pyran-4-yloxy)-benzonitril ("A26") Mit dem oben hergestellten [trans-2-(4-Amino-pyrazol-1-ylmethyl)-cyclopropyl]- methanol erhält man das gewünschte Produkt in 35% Ausbeute; HPLC-MS Rt. [min] 1.490; HPLC-MS [M+H] 446;
H NMR (500 MHz, DMSO-d6) δ [ppm] 9.45 (s, 1 H), 8.18 (s, 1 H), 8.11 - 7.95 (m, 2H), 7.58 - 7.48 (m, 2H), 7.16 (s, 1 H), 7.09 (s, 1 H), 4.99 - 4.86 (m, 1H), 4.08 - 3.93 (m, 2H), 3.87 (dt, J=10.3, 3.5, 2H), 3.61 - 3.48 (m, 2H), 3.35 (dd, J=11.2, 6.1 , 1 H), 3.26 (dd, J=11.2, 6.5, 1 H), 2.07 - 1.96 (m, 2H), 1.73 - 1.62 (m, 2H), 1.19 - 0.99 (m, 2H), 0.59 - 0.38 (m, 2H).
5-{2-[1-(Tetrahydro-furan-3-ylmethyl)-1H-pyrazol-4-ylamino]-pyridin-4-yl}-2- (tetrahydro-pyran-4-yloxy)-benzonitril ("A27")
Mit dem oben hergestellten 1-(Tetrahydro-furan-3-ylmethyl)-1 H-pyrazol-4-ylamin erhält man das gewünschte Produkt in 37% Ausbeute; HPLC-MS Rt. [min] 1.536; HPLC-MS [M+H] 446;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.51 (s, 1 H), 8.18 (d, J=1.6, 1 H), 8.09 - 8.03 (m, 2H), 8.01 (dd, J=8.9, 2.3, 1H), 7.57 (s, 1 H), 7.52 (d, J=9.1 , 1 H), 7.18 (d, J=4.2, 1H), 7.10 (s, 1 H), 4.98 - 4.87 (m, 1H), 4.17 - 4.04 (m, 2H), 3.90 - 3.83 (m, 2H), 3.77 (td, J=8.1 , 5.7, 1H), 3.71 - 3.60 (m, 2H), 3.60 - 3.45 (m, 3H), 2.79 - 2.67 (m, 1 H), 2.08 - 1.99 (m, 2H), 1.99 - 1.86 (m, 1 H), 1.74 - 1.53 (m, 3H).
5-[2-(1-Pyrrolidin-3-yl-1H-pyrazol-4-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4- yloxy)-benzonitril ("A28")
Mit dem oben hergestellten 3-(4-Amino-pyrazol-1-yl)-pyrrolidin-1-carbonsäure-tert.- butylester erhält man 3-(4-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin- 2-ylamino}-pyrazol-1-yl)-pyrrolidin-1-carbonsäure-tert.-butylester in 68% Ausbeute. 110 mg 3-(4-{4-[3-Cyan-4-(tetrahydro-pyra n-4-yloxy)-phenyl]-pyridin-2-ylamino}- pyrazol-1-yl)-pyrrolidin-1-carbonsäure-tert.-butylester werden in 3 mL getrocknetem Dioxan gelöst und mit 3 mL HCl in Dioxan (4 mol/L) versetzt. Die gelbe Lösung wird 30 min bei Raumtemperatur gerührt.
Zur Aufarbeitung wird das Reaktionsgemisch mit 2 molarer NaOH basisch gestellt. Die Lösung wird einrotiert und chromatographiert. Man erhält 100 mg des
gewünschten Produkts; HPLC-MS Rt. [min] 1.288; HPLC-MS [M+H] 431 ; H NMR (500 MHz, DMSO-d6) δ [ppm] 8.93 (s, 1 H), 8.17 (d, J=5.4, 1H), 8.11 (s, H), 8.07 (d, J=2.4, 1 H), 7.95 (dd, J=8.9, 2.4, 1 H), 7.55 (s, 1 H), 7.50 (d, J=9.1 , 1 H), .97 (dd, J=5.4, 1.5, 1 H), 6.91 (s, 1 H), 5.09 - 5.00 (m, 1 H), 4.95 - 4.86 (m, 1 H), .93 - 3.82 (m, 2H), 3.60 - 3.52 (m, 2H), 3.51 - 3.43 (m, 2H), 3.22 - 3.12 (m, 2H), .35 - 2.27 (m, 1H), 2.22 - 2.13 (m, 1 H), 2,08 - 1.99 (m, 2H), 1.74 - 1.63 (m, 2H).
5_{2-[1 -(2-Pyrazol-1 -yl-ethyl)-1 H-pyrazol-4-ylamino]-pyridin-4-yl}-2-(tetrahydro- pyran-4-yloxy)-benzonitril ("A38")
Mit dem oben hergestellten 1-(2-Pyrazol-1-yl-ethyl)-1 H-pyrazol-4-ylamin erhält man das gewünschte Produkt in 46% Ausbeute; HPLC-MS Rt. [min] .538;
HPLC-MS [M+H] 456;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.43 (s, 1 H), 8.17 (d, J=1.7, 1 H), 8.07 (d, J=6.1 , 1H), 8.00 (dd, J=8.9, 2.3, 1H), 7.75 (s, 1H), 7.59 (s, 1 H), 7.55 - 7.51 (m, 2H), 7.45 (d, J=1.5, 1H), 7.17 (s, 1 H), 7.00 (s, 1 H), 6.16 (t, J=2.0, H), 4.99 - 4.89 (m, 1 H), 4.61 - 4.48 (m, 4H), 3.91 - 3.82 (m, 2H), 3.62 - 3.51 (m, 2H), 2.10 - 1.99 (m, 2H), 1.73 - 1.62 (m, 2H).
5-[2-(1-{2-[1-(2-Hydroxy-acetyl)-piperidin-4-yl]-ethyl}-1 H-pyrazol-4-ylamino)-pyridin- 4-yl]-2-(tetrahydro-pyran-4-yloxy)-benzonitril ("A29")
In einem 50 ml_ Kolben werden 5-{2-[1-(2-Piperidin-4-yl-ethyl)-1 H-pyrazol-4- ylamino]-pyridin-4-yl}-2-(tetrahydro-pyran-4-yloxy)-benzonitril (0,060 mmol; 30,00 mg) und Glycolsäure (0,072 mmol; 5,50 mg) in 5 ml_ DMF gelöst und mit HATU (0,090 mmol; 34,40 mg) und 4-Methylmorpholin (0,181 mmol; 0,02 ml) versetzt. Die beige Lösung wird 4,5 h bei Raumtemperatur gerührt.
Zur Aufarbeitung wird das DMF abrotiert und der Rückstand mit Ethylacetat und 2 molarer NaOH extrahiert. Die organischen Phasen werden getrocknet, filtriert und eingeengt.
Das erhaltene Rohprodukt wird über Kieselgel chromatographiert (Dichlormethan, Methanol).
Man erhält 32 mg vom gewünschten Produkt; HPLC-MS Rt. [min] 1.527
HPLC-MS [M+H] 531; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 11 ,94 (br, 1H), 8.79 (s, 1H), 8.15 (d, J=5.4, 1H), 8.05 (d, J=2.4, 1 H), 7.99 (s, 1 H), 7.92 (dd, J=8.9, 2.4, 1H), 7.51 - 7.40 (m, 1 H), 6.94 (dd, J=5.4, 1.3, 1 H), 6.86 (s, 1 H), 4.94 - 4.84 (m, 1 H), 4.40 (s, 1 H), 4.30 (d, J=12.6, 1 H), 4.11 (t, J=7.1 , 2H), 4.07 - 3.99 (m, 2H), 3.91 - 3.82 (m, 2H), 3.66 - 3.58 (m, 1H), 3.58 - 3.49 (m, 2H), 2.87 (t, J=12.3, 1 H), 2.59 - 2.50 (m, 1 H), 2.10 - 1.97 (m, 2H), 1.78 - 1.61 (m, 5H), 1.51 - 1.37 (m, 1H), 1.16 - 0.91 (m, 3H).
5-[2-(1 -{2-[1 -(2-Amino-acetyl)-piperidin-4-yl]-ethyl}-1 H-pyrazol-4-ylamino)-pyridin-4- yl]-2-(tetrahydro-pyran-4-yloxy)-benzonitril ("A30")
In einem 50 mL Kolben werden 5-{2-[1-(2-Piperidin-4-yl-ethyl)-1 H-pyrazol-4- ylamino]-pyridin-4-yl}-2-(tetrahydro-pyran-4-yloxy)-benzonitril (0,121 mmol; 60,00 mg) und BOC-Glycin (0,145 mmol; 25,36 mg) in 10 mL DMF gelöst, mit HATU (0,181 mmol; 68,79 mg) und 4-Methylmorpholin (0,362 mmol; 0,04 ml; 3,00 äq.) versetzt. Die hellgelbe Lösung wird 2 h bei Raumtemperatur gerührt.
Zur Aufarbeitung wird das DMF einrotiert und Rückstand mit Ethylacetat und 2 molarer NaOH extrahiert. Die vereinten organischen Phasen werden getrocknet, filtriert und eingeengt.
Man erhält 127 mg gelbes Öl von (2-{4-[2-(4-{4-[3-Cyan-4-(tetrahydro-pyran-4- yloxy)-phenyl]-pyridin-2-ylamino}-pyrazol-1-yl)-ethyl]-piperidin-1-yl}-2-oxo-ethyl)- carbaminsäure-tert.-butylester.
Diese werden in 5 mL Dioxan gelöst und mit 3 mL HCl in Dioxan (4 molar) versetzt. Die gelbe Lösung wird 1 h bei Raumtemperatur gerührt.
Zur Aufarbeitung wird die Reaktionslösung mit 2 molarer NaOH basisch gestellt, mit Ethylacetat verdünnt und extrahiert. Die vereinten organischen Phasen werden getrocknet, filtriert und eingeengt.
Das erhaltene Rohprodukt wird chromatographisch gereinigt (Kieselgel,
Dichlormethan/Methanol). Man erhält 35 mg des gewünschten Produktes; HPLC- MS Rt. [min] 1.323; HPLC-MS [M+H] 530;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 8.79 (d, 1H), 8.14 (d, J=6.0, 1 H), 8.04 (d, J=2.3, 1 H), 7.99 (s, 1 H), 7.92 (dd, J=8.9, 2.3, 1 H), 7.47 (d, J=6.3, 1H), 7.46 (s, 1 H), 6.94 (dd, J=5.4, 1.4, 1H), 6.86 (s, 1H), 4.95 - 4.84 (m, 1 H), 4.31 (s, 1 H), 4.11 (t, J=7.1 , 2H), 3.92 - 3.82 (m, 2H), 3.67 (d, J=12.4, 1H), 3.60 - 3.43 (m, 4H), 2.98 - 2.82 (m, 1 H), 2.59 - 2.52 (m, 1 H), 2.09 - 1.98 (m, 2H), 1.79 - 1.61 (m, 6H), 1.54 - 1.35 (m, 1 H), 1.17 - 0.93 (m, 3H).
Synthese unter Verwendung von Kalium-tert-butylat
5-[2-(3-tert.-Butyl-isoxazol-5-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A31")
Figure imgf000070_0001
In einem 100 ml Dreihalskolben werden unter N2 2-(Tetrahydro-pyran-4-yloxy)-5- (4,4,5,5-tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-benzonitril (6,766 mmol; 2,75 g) und 4-Brom-2-fluor-pyridin (6,766 mmol; 0,77 ml) in 25 ml Dioxan und 10 mL Wasser gelöst und mit 1 ,87g Kaliumcarbonat und 392mg Tetrakis(triphenylphosphin)- palladium(O) versetzt. Die dunkelbraune Lösung wird 2,5 h bei 90°C gerührt. Zur Aufarbeitung wird das Reaktionsgemisch auf Raumtemperatur abgekühlt und mit Wasser und Ethylacetat verdünnt und extrahiert. Die vereinten organischen Phasen werden mit gesättigter NaCI-Lösung gewaschen, getrocknet, filtriert und eingeengt. Man erhält 3,5 g Rohprodukt, das zur Aufreinigung über Kieselgel chromato- graphiert wird (Ethylacetat/Petrolether).
Es werden 2,1 g 5-(2-Fluor-pyridin-4-yl)-2-(tetrahydro-pyran-4-yloxy)-benzonitril erhalten; HPLC-MS Rt. [min] 2.135; HPLC-MS [M+H] 299;
In einem 50 mL Dreihalskolben werden 100 mg 5-(2-Fluor-pyridin-4-yl)-2- (tetrahydro-pyran-4-yloxy)-benzonitril unter N2 in 6 ml Dioxan suspendiert, 52 mg 3- tert-Butyl-isoxazol-5-ylamin und 79 mg KOtBu zugegeben Die gelbe Lösung wird 2,5 h bei 80°C gerührt. Zur Aufarbeitung wird das Reaktionsgemisch einrotiert, der Rückstand wird in Ethylacetat und Wasser aufgenommen und extrahiert. Die gesammelten organischen Phasen werden getrocknet, filtriert und eingeengt.
Das Rohprodukt wird durch präparative HPLC gereinigt. Man erhält das
gewünschte Produkt in 46% Ausbeute; HPLC-MS Rt. [min] 2.556; HPLC-MS [M+H] 419;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 8.36 (d, J=5.7, 1H), 8.19 (d, J=2A, 1 H), 8.04 (dd, J=8.9, 2.4, 1 H), 7.53 (d, J=9.1 , 1 H), 7.42 (dd, J=5.8, 1.6, 1 H), 7.38 (s, 1H), 5.00 - 4.88 (m, 1 H), 3.96 - 3.85 (m, 2H), 3.64 - 3.50 (m, 2H), 2.12 - 2.00 (m, 2H), 1.79 - 1.66 (m, 2H), 1.38 - 1.24 (s, 9H).
Synthese von 5-{2-[5-(1 H-Pyrazol-4-yl)-pyridin-2-ylamino]-pyridin-4-yl}-2- (tetrahydro-pyran-4-yloxy)-benzonitril ("A9")
Figure imgf000072_0001
In einem 50 ml Dreihalskolben werden unter N2 5-Brom-pyridin-2-ylamin (200 mg; 1 ,156 mmol) und 4-(4,4,5,5-Tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-pyrazol-1- carbonsäure-tert.-butylester (420,670 mg; 1 ,387 mmol) in 3 ml Dioxan und 1 ml Wasser gelöst und mit Kaliumcarbonat (0,131 ml; 2,312 mmol) und
Tetrakis(triphenylphosphin)-palladium(0) (133,5 mg; 0,116 mmol) versetzt. Die Lösung wird über Nacht bei 90°C gerührt.
Zur Aufarbeitung wird das Reaktionsgemisch auf Raumtemperatur gekühlt, mit Wasser verdünnt und mit Essigester extrahiert. Die vereinten organischen Phasen werden mit Natriumsulfat getrocknet, filtriert und das Lösungsmittel wird einrotiert. Der Rückstand wird chromatographisch (Kieselgel Dichlormethan/Methanol) gereinigt. Man erhält 249 mg 4-(6-Amino-pyridin-3-yl)-pyrazol-1-carbonsäure-tert.- butylester; HPLC-MS Rt. [min] 1.304; HPLC-MS [M+H] 261.
85 mg 4-(6-Amino-pyridin-3-yl)-pyrazol-1-carbonsäure-tert.-butylester werden mit 100 mg 5-(2-Chlor-pyridin-4-yl)-2-(tetrahydro-pyran-4-yloxy)-benzonitril nach der oben angegebenen allgemeinen Vorschrift für die Buchwald-Hartwig-Reaktion umgesetzt. Man erhält das gewünschte Produkt in 16% Ausbeute;
HPLC-MS Rt. [min] 1.648; HPLC-MS [M+H] 439; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.69 (s, 1 H), 8.54 (d, J=2.0, 1H), 8.28 (d, J=5.2, 1 H), 8.08 (d, J=10.4, 1 H), 8.00 - 7.95 (m, 2H), 7.90 (dd, J=8.7, 2.4, 2H), 7.80 (d, J=8.7, 1 H), 7.52 (d, J=9.1 , 1 H), 7.20 (dd, J=5.3, 1.6, 1 H), 4.96 - 4.83 (m, 1 H), 3.92 - 3.83 (m, 2H), 3.60 - 3.52 (m, 2H), 2.08 - 1.98 (m, 2H), 1.76 - 1.64 (m, 2H).
Syntheseschema 2
Allgemeiner Syntheseweg für Verbindungen der Formel I, worin X = N ist.
Figure imgf000073_0001
5-(2-Chlor-pyrimidin-4-yl)-2-(tetrahydro-pyran-4-yloxy)-benzonitril wird hergestellt wie in WO 2011/046970 A1 beschrieben. Herstellung von Verbindungen der Formel I nach Buchwald-Hartwig
2-(Tetrahydro-pyran-4-yloxy)-5-{2-[1-(3-trifluormethyl-phenyl)-1 H-pyrazol-4- ylamino]-pyrimidin-4-yl}-benzonitril ("A32")
Mit 1-[3-(Trifluormethyl)phenyl]-1 H-pyrazol-4-amin wird das gewünschte Produkt in einer Ausbeute von 12% erhalten; HPLC-MS Rt. [min] 2.717; HPLC-MS [M+H] 507; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.80 (s, 1 H), 8.75 (s, 1H), 8.60 - 8.54 (m, 2H), 8.45 (dd, J=9.0, 2.2, 1 H), 8.17 - 8.10 (m, 2H), 7.98 (s, 1 H), 7.74 (t, J=7.9, 1 H), 7.64 (d, J=7.8, 1 H), 7.53 (d, J=9.1 , 1H), 7.43 (d, J=5.2, 1 H), 5.00 - 4.89 (m, 1H), 3.92 - 3.83 (m, 2H), 3.60 - 3.51 (m, 2H), 2.10 - 1.99 (m, 2H), 1.75 - 1.63 (m, 2H).
5-[2-(1-Methyl-1 H-pyrazol-3-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A33")
Mit 1-Methyl-1H-pyrazol-3-amin erhält man das gewünschte Produkt in 36%
Ausbeute; HPLC-MS Rt. [min] 1.956; HPLC-MS [M+H] 377;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.70 (s, 1H), 8.49 (dd, J=5.8, 3.7, 2H), 8.42 (dd, J=9.0, 2.3, 1 H), 7.58 (d, J=2.2, 1H), 7.53 (d, J=9.1, 1H), 7.39 (d, J=5.2, 1H), 6.62 (d, J=2.2, 1 H), 5.01 - 4.84 (m, 1H), 3.95 - 3.81 (m, 2H), 3.76 (s, 3H), 3.62 - 3.49 (m, 2H), 2.13 - .98 (m, 2H), 1.78 - 1.59 (m, 2H).
5-[2-(1 H-Pyrazol-4-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran-4-yloxy)-benzonitnl ("A34")
Mit 4-Amino-pyrazol-1-carbonsäure-tert.-butylester erhält man das gewünschte Produkt in 4% Ausbeute; HPLC-MS Rt. [min] 1.804; HPLC-MS [M+H] 363;
H NMR (500 MHz, DMSO-d6) δ [ppm] 9.47 (s, 1H), 8.48 (m, 2H), 8.41 (dd, J=9.0, 2.2, 1H), 7.79 (s, 2H), 7.53 (d, J=9.1 , 1 H), 7.32 (d, J=5.2, 1 H), 4.97 - 4.87 (m, 1 H), 3.92 - 3.82 (m, 2H), 3.60 - 3.49 (m, 2H), 2.10 - 1.99 (m, 2H), 1.75 - 1.63 (m, 2H).
5-{2-[1-(2-Methoxy-ethyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-2-(tetrahydro-pyran- 4-yloxy)-benzonitril ("A35")
In einem 50 mL Kolben, versehen mit Magnetrührer, Kühler und Trockenröhrchen, werden 16 mg 5-[2-(1 H-Pyrazol-4-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran-4- yloxy)-benzonitril in 1 ml getrocknetem Acetonitril gelöst, mit 9 mg Bromethyl- methylether und 28 mg Cs2C03 versetzt und die Suspension bei 90°C Badtemperatur gerührt. Das Reaktionsgemisch wird 5 Stunden bei 90°C und über Nacht bei Raumtemperatur gerührt.
Zur Aufarbeitung wird die Mischung einrotiert und mit der präparativen HPLC gereinigt. Man erhält 8 mg vom gewünschten Produkt; HPLC-MS Rt. [min] 1.957 HPLC-MS [M+H] 421 ;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.48 (s, 1H), 8.51 - 8.45 (m, 2H), 8.42 (dd, J=9.0, 2.2, 1 H), 7.94 (s, 1 H), 7.59 (s, 1 H), 7.52 (d, J=9.1 , 1H), 7.34 (d, J=5.2, 1 H), 4.99 - 4.90 (m, 1H), 4.24 (t, J=5.3, 2H), 3.91 - 3.82 (m, 2H), 3.68 (t, J=5.3, 2H), 3.56 (ddd, J=11.5, 8.4, 3.1 , 2H), 3.24 (s, 3H), 2.09 - 1.98 (m, 2H), 1.75 - 1.63 (m, 2H).
5-{2-[1-(2-Morpholin-4-yl-ethyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-2-(tetrahydro- pyran-4-yloxy)-benzonitril ("A39")
Mit 1-(2-Morpholin-4-yl-ethyl)-1 H-pyrazol-4-ylamin erhält man das gewünschte Produkt in 7% Ausbeute; HPLC-MS Rt. [min] 1.537; HPLC-MS [M+H] 476;
H NMR (500 MHz, DMSO-d6) δ [ppm] 9.62 (s, 1 H), 8.54 - 8.47 (m, 2H), 8.41 (dd, J=9.0, 2.2, 1 H), 8.06 (s, 1 H), 7.70 (s, 1H), 7.52 (d, J=9.1 , 1 H), 7.36 (d, J=6.2, 1 H), 5.01 - 4.86 (m, 1 H), 4.54 (t, J=6.3, 2H), 3.92 - 3.84 (m, 4H), 3.65 - 3.50 (m, 6H), 3.42 (br, 2H), 3.19 (br, 2H), 2.10 - 1.99 (m, 2H), 1.77 - 1.61 (m, 2H).
5-[2-(1-Pyrrolidin-3-yl-1 H-pyrazol-4-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran-4- yloxy)-benzonitril ("A40")
Mit dem oben hergestellten 3-(4-Amino-pyrazol-1-yl)-pyrrolidin-1-carbonsäure-tert- butylester erhält man 3-(4-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]- pyrimidin-2-ylamino}-pyrazol-1-yl)-pyrrolidin-1-carbonsäure-tert.-butylester in 12% Ausbeute.
41 mg 3-(4-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyrimidin-2-ylamino}- pyrazol-1-yl)-pyrrolidin-1-carbonsäure-tert-butylester werden in 1 mL getrocknetem Dioxan gelöst und mit 1 mL HCl in Dioxan (4 mol/L) versetzt. Die gelbe Lösung wird 60 min bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit 2 molarer NaOH basisch gestellt. Die Lösung wird einrotiert und chromatographiert. Man erhält 22 mg des
gewünschten Produkts; HPLC-MS Rt. [min] 1.522; HPLC-MS [M+H] 432;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.59 (s, 1H), 9.00 (d, J=21.0, 2H), 8.54 - 8.46 (m, 2H), 8.41 (dd, J=9.0, 2.2, 1H), 8.08 (s, 1 H), 7.71 (s, 1 H), 7.52 (d, J=9.1 , 1H), 7.36 (d, J=5.2, 1 H), 5.25 - 5.15 (m, 1H), 4.99 - 4.87 (m, 1 H), 3.92 - 3.80 (m, 3H), 3.67 - 3.52 (m, 6H), 2.46 - 2.33 (m, 1 H), 2.33 - 2.20 (m, 1 H), 2.09 - .99 (m, 2H), 1.74 - 1.63 (m, 2H).
5-{2-[1-(Tetrahydro-furan-3-ylmethyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-2- (tetrahydro-pyran-4-yloxy)-benzonitril ("A41")
Mit dem oben hergestellten 1-(Tetrahydro-furan-3-ylmethyl)-1H-pyrazol-4-ylamin erhält man das gewünschte Produkt in 8% Ausbeute; HPLC-MS Rt. [min] 1.986; HPLC-MS [M+H] 447;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.49 (s, 1H), 8.52 - 8.45 (m, 2H), 8.41 (d, J=8.9, 1H), 7.96 (s, 1H), 7.58 (s, 1 H), 7.52 (d, J=9.0, 1 H), 7.33 (d, J=5.2, 1H), 4.99 - 4.88 (m, 1H), 4.11 - 4.04 (m, 2H), 3.91 - 3.83 (m, 2H), 3.76 (dd, J=13.8, 7.9, 1 H), 3.70 - 3.60 (m, 2H), 3.60 - 3.51 (m, 2H), 3.47 (dd, J=8.3, 5.7, 1 H), 2.76 - 2.65 (m, 1H), 2.10 - 1.98 (m, 2H), 1.97 - 1.85 (m, 1 H), 1.75 - 1.56 (m, 3H).
5-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyrimidin-2-ylamino}-benzofuran- 2-carbonsäure amid ("A42")
Mit 5-Amino-benzofuran-2-carbonsäure-amid erhält man das gewünschte Produkt in 5% Ausbeute; HPLC-MS Rt. [min] 2.036; HPLC-MS [M+H] 456;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.75 (s, 1H), 8.55 (dd, J=8.3, 3.7, 2H), 8.46 (dd, J=9.0, 2.3, 1 H), 8.28 (d, J=2.1 , 1 H), 8.03 (s, 1 H), 7.72 (dd, J=9.0, 2.2, 1 H), 7.62 (s, 1 H), 7.56 (dd, J=12.4, 9.1 , 2H), 7.51 (d, J=0.6, 1H), 7.47 (d, J=5.3, 1 H), 5.00 - 4.88 (m, 1H), 3.93 - 3.83 (m, 2H), 3.60 - 3.51 (m, 2H), 2.10 - 2.00 (m, 2H), 1.76 - 1.61 (m, 2H).
5-{2-[1-(2-Pyrazol-1-yl-ethyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-2-(tetrahydro- pyran-4-yloxy)-benzonitril ("A43") Mit dem oben hergestellten 1-(2-Pyrazol-1-yl-ethyl)-1H-pyrazol-4-ylamin erhält man das gewünschte Produkt in 8% Ausbeute; HPLC-MS Rt. [min] 1.954; HPLC-MS [M+H] 457;
H NMR (500 MHz, DMSO-d6) δ [ppm] 9.47 (s, 1 H), 8.49 - 8.43 (m, 2H), 8.39 (dd, J=9.0, 2.3, 1H), 7.68 (s, 1 H), 7.52 (d, J=9.1, 1H), 7.48 (d, J=2.1 , 1 H), 7.45 - 7.42 (m, 1 H), 7.32 (d, J=5.2, 1 H), 6.20 - 6.13 (m, 1 H), 5.00 - 4.88 (m, 1H), 4.56 - 4.45 (m, 4H), 3.91 - 3.83 (m, 2H), 3.61 - 3.50 (m, 2H), 2.09 - 1.98 (m, 2H), 1.76 - 1.59 (m, 2H).
5-{2-[1-(2,2-Difluor-ethyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-2-(tetrahydro-pyran-
4- yloxy)-benzonitril ("A44")
Mit dem oben hergestellten 1-(2,2-DifIuor-ethyl)-1 H-pyrazol-4-ylamin erhält man das gewünschte Produkt in 11% Ausbeute; HPLC-MS Rt. [min] 2.069;
HPLC-MS [M+H] 427;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.56 (s, 1 H), 8.53 - 8.46 (m, 2H), 8.42 (dd, J=9.0, 2.2, 1 H), 8.03 (s, 1 H), 7.66 (s, 1 H), 7.51 (d, J=9.1 , 1 H), 7.35 (d, J=5.3, 1 H), 6.34 (tt, J=55.1 , 3.8, 1H), 5.01 - 4.89 (m, 1 H), 4.60 (td, J=15.1 , 3.8, 2H), 3.93 - 3.76 (m, 2H), 3.56 (ddd, J=11.5, 8.4, 3.1 , 2H), 2.10 - 1.91 (m, 2H), 1.77 - 1.62 (m, 2H).
5- {2-[1-(2-Piperidin-4-yl-ethyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-2-(tetrahydro- pyran-4-yloxy)-benzonitril ("A45")
Mit dem oben hergestellten 4-[2-(4-Amino-pyrazol-1-yl)-ethyl]-piperidin-1- carbonsäure-tert.-butylester erhält man 4-[2-(4-{4-[3-Cyan-4-(tetrahydro-pyran-4- yloxy)-phenyl]-pyrimidin-2-ylamino}-pyrazol-1-yl)-ethyl]-piperidin-1-carbonsäure- tert.-butylester in 27 % Ausbeute.
119 mg 4-[2-(4-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyrimidin-2- ylamino}-pyrazol-1-yl)-ethyl]-piperidin-1-carbonsäure-tert.-butylester werden in 3 mL getrocknetem Dioxan gelöst und mit 3 mL HCl in Dioxan (4mol/L) versetzt. Die gelbe Lösung wird 60 min bei Raumtemperatur gerührt.
Das Reaktionsgemisch wird mit 2 molarer NaOH basisch gestellt und extrahiert. Die vereinten organischen Phasen werden getrocknet, filtriert und eingeengt. Das Rohprodukt wird chromatographiert. Man erhält 91 mg der gewünschten Verbindung; HPLC-MS Rt. [min] 1.556; HPLC-MS [M+H] 474;
H NMR (500 MHz, DMSO-d6) δ [ppm] 9.51 (s, 1H), 8.57 - 8.45 (m, 3H), 8.41 (dd, J=9.0, 2.2, 1H), 8.21 (d, J=25.7, 1 H), 7.95 (s, 1 H), 7.58 (s, 1 H), 7.52 (d, J=9.2, 1 H), 7.35 (d, J=7.5, 1 H), 4.99 - 4.90 (m, 1 H), 4.14 (t, J=6.9( 2H), 3.91 - 3.83 (m, 2H), 3.61 - 3.51 (m, 2H), 3.23 (d, J=12.7( 2H), 2.81 (q, J=12.4, 2H), 2.09 - 2.00 (m, 2H), 1.88 - 1.63 (m, 6H), 1.55 - 1.42 (m, 1 H), 1.39 - 1.24 (m, 2H).
Synthese von 5-{2-[1 -(3-Methoxy-propyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-2- (tetrah dro-pyran-4-yloxy)-benzonitril ("A46")
Figure imgf000078_0001
In einem 100 ml_ Dreihalskolben werden 5-(2-Chlor-pyrimidin-4-yl)-2-(tetrahydro- pyran-4-yloxy)-benzonitril (200 mg) in Ethanol und Dioxan gelöst und mit dem oben hergestellten 1-(3-Methoxy-propyl)-1 H-pyrazol-4-ylamin (129 mg) und 0.8 ml Triethylamin versetzt. Die gelbe Lösung wird bei 100°C zwei Tage gerührt.
Zur Aufarbeitung wird das Gemisch einrotiert und chromatographisch gereinigt. Man erhält 71 mg vom gewünschten Produkt; HPLC-MS Rt. [min] 2.041 ;
HPLC-MS [M+H] 435;
H NMR (500 MHz, DMSO-d6) δ [ppm] 9.47 (s, 1 H), 8.51 - 8.45 (m, 2H), 8.41 (dd, J=9.0, 2.3, 1H), 7.91 (s, 1 H), 7.58 (s, 1H), 7.52 (d, J=9.1 , 1H), 7.33 (d, J=5.2, 1H), 4.99 - 4.88 (m, 1 H), 4.12 (t, J=6.9, 2H), 3.94 - 3.81 (m, 2H), 3.61 - 3.49 (m, 2H), 3.37 - 3.24 (m, 2H), 3.24 (s, 3H), 2.10 - 1.93 (m, 4H), 1.78 - 1.61 (m, 2H). Synthese von 5-{2-[5-(3,6-Dihydro-2H-pyran-4-yl)-pyridin-2-ylamino]-pyridin-4-yl}-2- (tetra hyd ro-py ra η-4-y loxy)-benzon itril ("A47")
In einem 50 ml Dreihalskolben werden unter N2 5-Brom-2-nitro-pyridin (200 mg; 0,985 mmol) und 4-(4,4,5,5-Tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-3,6-dihydro-2H- pyran (227 mg; 1 ,084 mmol) in 3 ml Dioxan und 1 ml Wasser gelöst, mit Natrium- carbonat (208 mg; 1 ,971 mmol) und Bis(triphenylphosphin)-palladium(ll)-chlorid (69 mg; 0,099 mmol) versetzt. Das Gemisch wird 1 Stunde auf 80° erhitzt und über Nacht bei Raumtemperatur gerührt.
Zur Aufarbeitung wird das Dioxan einrotiert, der Rückstand mit Wasser verdünnt und mit Dichlormethan extrahiert. Die vereinten organischen Phasen werden mit Wasser gewaschen, getrocknet, filtriert und eingeengt. Der Rückstand wird über eine Kieselgelsäule (Petrolether/Ethylacetat 1/1) gereinigt. Man erhält 174 mg 5- (3,6-Dihydro-2H-pyran-4-yl)-2-nitro-pyridin; HPLC-MS Rt. [min] 1.665;
HPLC-MS [M+H] 207.
174 mg 5-(3,6-Dihydro-2H-pyran-4-yl)-2-nitro-pyridin werden mit 100 mg Pd-C-5% und Wasserstoff in 10 ml Tetrahydrofuran hydriert. Das Gemisch wird abfiltriert und einrotiert. Man erhält 138 mg 5-(3,6-Dihydro-2H-pyran-4-yl)-pyridin-2-ylamin
Rohprodukt, das oben Aufreinigung weiter umgesetzt wird.
Mit 5-(2-Chlor-pyridin-4-yl)-2-(tetrahydro-pyran-4-yloxy)-benzonitril und dem hergestellten 5-(3,6-Dihydro-2H-pyran-4-yl)-pyridin-2-ylamin erhält man unter den angegebenen Buchwald-Hartwig-Bedingungen 5-{2-[5-(3,6-Dihydro-2H-pyran-4-yl)- pyridin-2-ylamino]-pyridin-4-yl}-2-(tetrahydro-pyran-4-yloxy)-benzonitril in 23% Ausbeute; HPLC-MS Rt. [min] 1.717; HPLC-MS [M+H] 455;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 11.19 (s, 1 H), 8.38 (dd, J=9.1 , 6.2, 2H), 8.24 - 8.21 (m, 1 H), 8.13 - 8.04 (m, 2H), 7.68 (s, 1H), 7.57 (d, J=9.1 , 1H), 7.54 - 7.45 (m, 2H), 6.37 (s, 1 H), 4.99 - 4.89 (m, 1H), 4.29 - 4.20 (m, 2H), 3.91 - 3.81 (m, 5H), 3.61 - 3.52 (m, 2H), 2.47 (m, 1 H), 2.09 - 2.00 (m, 2H), 1.75 - 1.64 (m, 2H).
5-[2-(r,2',3,,6,-Tetrahydro-[3>4,]bipyridinyl-6-ylamino)-pyridin-4-yl]-2-(tetrahydro- pyran-4-yloxy)-benzonitril ("A48")
Ausgehend von 4-(4,4,5,5-Tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-3,6-dihydro-2H- pyridin-1-carbonsäure-tert.-butylester erhält man in gleicher Reaktionssequenz 6- {4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin-2-ylamino}-3',6'-dihydro- 2'H-[3,4,]bipyridinyl-1'-carbonsäure-tert-butylester.
e^-IS-Cyan^-itetrahydro-pyran^-yloxy^phenyll-pyridin^-ylamino^S'.e'-dihydro- 2'H-[3,4,]bipyridinyl-1,-carbonsäure-tert.-butylester (247 mg; 0,134 mmol) werden in 2 ml_ getrocknetem Dioxan gelöst und mit 2 ml_ HCl in Dioxan (4mol/L) versetzt. Das Reaktionsgemisch wird 1 h bei Raumtemperatur gerührt.
Zur Aufarbeitung wird das Reaktionsgemisch mit 2 molarer NaOH basisch gestellt. Die Lösung wird dann einrotiert und mit Dichloromethan versetzt. Die organischen Phasen werden getrocknet, filtriert und eingeengt. Das Rohprodukt wird
chromatographisch gereinigt. Man erhält das gewünschte Produkt in 20%
Ausbeute; HPLC-MS Rt. [min] 1.352; HPLC-MS [M+H] 454;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.67 (br, 1H), 8.79 (br, 2H), 8.41 (d, J=2.4, 1 H), 8.34 (d, J=5.7, 1 H), 8.17 (m, 1 H), 8.06 - 7.96 (m, 2H), 7.84 (s, 1 H), 7.64 (d, J=8.7, 1 H), 7.58 - 7.52 (m, 1 H), 7.41 (d, J=4.5, 1 H), 6.23 (s, 1 H), 5.01 - 4.86 (m, 1H), 3.93 - 3.83 (m, 3H), 3.79 (s, 2H), 3.61 - 3.50 (m, 2H), 3.39 - 3.31 (m, 2H), 2.70 (s, 1H), 2.09 - 1.97 (m, 2H), 1.74 - 1.62 (m, 2H). Analog werden die nachstehenden Verbindung hergestellt
Figure imgf000081_0001
Figure imgf000082_0001
Analog "A40" erhält man mit 4-(4-Amino-pyrazol-1-yl)-piperidine-1-carbonsäure- tert-butylester und anschließender Schutzgruppenabspaltung die Verbindung 5-[2-(1-Piperidin-4-yl-1 H-pyrazol-4-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran-4- yloxy)-benzonitril "A64")
Figure imgf000083_0001
HPLC-MS Rt. [min] 1.537; HPLC-MS [M+H] 446;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.46 (d, J=12.2, 1 H), 8.49 (dd, J=7.3, 3.7, 2H), 8.41 (dd, J=9.0, 2.3, 1 H), 7.99 (d, J=12.4, 1 H), 7.59 (s, 1 H), 7.53 (d, J=9.1 , 1 H), 7.33 (d, J=5.2, 1 H), 4.94 (m, 1H), 4.25 - 4.13 (m, 1H), 3.93 - 3.82 (m, 2H), 3.56 (m, 6H), 3.09 (d, J=12.5, 2H), 2.71 - 2.58 (m, 2H), 2.14 - 1.95 (m, 4H), 1.86 - 1.60 (m, 4H).
Analog "A11" erhält man mit 2-Amino-isonicotinsäure-methylester die Verbindung 2-{4-[3-Cyan-4-(tetrahydro-pyran-4-yloxy)-phenyl]-pyridin-2-ylamino}- isonicotinsäure ("A65"
Figure imgf000083_0002
HPLC-MS Rt. [min] 1.682; HPLC-MS [M+H] 431 ; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.00 (s, 1 H), 8.42 (d, J=5.2, 1 H), 8.36 (s, 1 H), 8.32 (t, J=5.3, 1 H), 8.11 (d, J=2.4, 1 H), 7.99 (dd, J=8.9, 2.4, 1H), 7.95 (d, J=0.7, 1 H), 7.52 (d, J=9.0, 1 H), 7.29 (ddd, J=18.1 , 5.2, 1.5, 2H), 4.91 (tt, J=7.8, 3.8, 1 H), 3.94 - 3.82 (m, 5H), 3.60 - 3.49 (m, 2H), 2.03 (m, 2H), 1.69 (m, 2H).
Analog "A1 " erhält man mit 4-(2-Amino-pyrimidin-5-yl)-piperidin-1-carbonsäure- tert-butylester und anschließender Abspaltung der Schutzgruppe die Verbindung 5- [2-(5-Piperidin-4-yl-pyrimidin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A66"
Figure imgf000084_0001
HPLC-MS Rt. [min] 1.353; HPLC-MS [M+H] 457.
Analog "A26" erhält man mit 5-(2-Chlor-pyrimidin-4-yl)-2-(tetrahydro-pyran-4-yloxy)- benzonitril und [(1S,2S)-2-(4-Amino-pyrazol-1-ylmethyl)-cyclopropyl]-methanol die Verbindung 5-{2-[1 -((1 S,2S)-2-Hydroxymethyl-cyclopropylmethyl)-1 H-pyrazol-4- ylamino]-pyrimidi -4-yl}-2-(tetrahydro-pyran-4-yloxy)-benzonitril ("A67")
Figure imgf000084_0002
HPLC-MS Rt. [min] 2.207; HPLC-MS [M+H] 447;
H NMR (500 MHz, DMSO-d6) δ [ppm] 9.47 (s, 1H), 8.48 (dd, J=10.2, 3.7, 2H), 8.42 (dd, J=8.9, 1.8, 1H), 8.00 (s, 1 H), 7.60 - 7.49 (m, 2H), 7.33 (d, J=5.2, 1 H), 4.93 (tt, J=7.9, 3.8, 1 H), 4.46 (t, J=5.5, 1 H), 4.05 (dd, J=14.0, 6.7, 1 H), 3.89 (m, 3H), 3.62 - 3.47 (m, 2H), 3.37 - 3.22 (m, 2H), 2.09 - 1.98 (m, 2H), 1.75 - 1.61 (m, 2H), 1.16 - 0.98 (m, 2H), 0.60 - 0.41 (m, 2H). Analog "A42" erhält man mit 6-Amino-2-methyl-2H-pyridazin-3-on die Verbindung 5-[2-(1-Methyl-6-oxo-1,6-dihydro-pyridazin-3-ylamino)-pyrimidin-4-yl]-2-(tetrahydro- pyran-4-yloxy)-benzonitril ("A68")
Figure imgf000085_0001
HPLC- S Rt. [min] 1.622; HPLC-MS [M+H] 405;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.01 (s, 1H), 8.53 (d, J=5.3, 1H), 8.51 (t, j=4A, 1H), 8.39 (dd, J=9.0, 2.3, 1H), 7.96 (d, J=9.8, 1H), 7.55 (d, J=5.3, 1H), 7.51 (d, J=11.8, 1H), 7.00-6.94 (m, 1H), 4.93 (m, 1H), 3.87 (m, 2H), 3.62 (s, 3H), 3.58 - 3.50 (m, 2H), 2.10 - 1.98 (m, 2H), 1.77 - 1.62 (m, 2H).
Analog "A42" erhält man mit 6-Amino-2H-pyridazin-3-on die Verbindung 5-[2-(6- Oxo-1 ,6-dihydro-pyridazin-3-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A6 ")
Figure imgf000085_0002
HPLC-MS Rt. [min] 2.058; HPLC-MS [M+H] 391;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 12.54 (s, H), 9.95 (s, 1H), 8.53 (d, J=5.3, 1H), 8.49 (d, J=2.3, 1H), 8.38 (dd, J=9.0, 2.3, 1H), 7.96 (d, J=10.0, 1H), 7.52 (dd, J=15.9, 6.8, 2H), 6.90 (d, J=10.0, 1H), 5.00-4.85 (m, 1H), 3.87 (m, 2H), 3.60 - 3.46 (m, 2H), 2.11 - 1.97 (m, 2H), 1.68 (m, 2H). Analog "A42" erhält man mit (2-Amino-pyridin-4-yl)-methanol die Verbindung 5-[2- (4-Hydroxymethyl-pyridin-2-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A70")
Figure imgf000086_0001
HPLC-MS Rt. [min] 1.519; HPLC-MS [M+H] 404.
Analog "A11" erhält man mit 4-(6-Amino-pyridazin-3-yl)-piperidin-1-carbonsäure- tert-butylester und anschließender Abspaltung der Schutzgruppe die Verbindung 5- [2-(6-Piperidin-4-yl-pyridazin-3-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A71"
Figure imgf000086_0002
HPLC-MS Rt. [min] 1.297; HPLC-MS [M+H] 457;
1H NMR (400 MHz, DMSO-d6) δ [ppm] 10.03 (s, 1H), 8.29 (d, J=5.3, 1H), 8.11 (d, J=2.4, 1 H), 8.01 (ddd, J=11.3, 7.7, 3.0, 3H), 7.51 (dd, J=18.7, 9.2, 2H), 7.26 (dd, J=5.3, 1.6, 1 H), 4.95 - 4.85 (m, H), 3.93 - 3.79 (m, 2H), 3.74 - 3.61 (m, 1 H), 3.60 - 3.44 (m, 3H), 3.07 (m, 2H), 2.93 - 2.80 (m, 1 H), 2.63 (m, 2H), 2.10 - 1.98 (m, 3H), 1.83 - 1.55 (m, 3H).
Analog "A11" erhält man mit 4-(5-Amino-pyrazin-2-yl)-piperidine-1-carbonsäure- tert-butylester und anschließender Abspaltung der Schutzgruppe die Verbindung 5- [2-(5-Piperidin-4-yl-pyrazin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A72")
Figure imgf000087_0001
HPLC-MS Rt. [min] 1.297; HPLC-MS [M+H] 457;
1H NMR (400 MHz, DMSO-d6) δ [ppm] 1H NMR (400 MHz, DMSO) δ = 10.18 (s, 1H), 9.02 (d, »7=1.4, 1H), 8.34 (d, J=9.2, 2H), 8.25 - 8.19 (m, 1H), 8.12 (d, J=2.4, 1H), 8.00 (dd, J=8.9, 2.4, 1H), 7.87 (d, J=1.0, 1 H), 7.53 (d, J=9.1 , 1 H), 7.32 (dd, J=5.5, 1.6, 1H), 4.92 (m, 1 H), 3.93 - 3.83 (m, 2H), 3.62 - 3.25 (m, 5H), 3.09 - 2.94 (m, 3H), 2.04 (m, 3H), 1.97 - 1.82 (m, 2H), 1.69 (m, 2H).
Analog "A26" erhält man mit 5-(2-Chlor-pyrimidin-4-yl)-2-(tetrahydro-pyran-4-yloxy)- benzonitril und cis-4-(4-Amino-pyrazol-1-yl)-cyclohexanol die Verbindung 5-{2-[1-(4- Hydroxy-cyclohexyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-2-(tetrahydro-pyran-4- yloxy)-benzonitri ("A73")
Figure imgf000087_0002
HPLC-MS Rt. [min] 2.294; HPLC-MS [M+H] 461 ;
H NMR (500 MHz, DMSO-d6) δ [ppm] 9.48 (s, 1 H), 8.49 (m, 2H), 8.40 (dd, J=14.9, 7.4, 1H), 7.94 (s, 1H), 7.58 (s, 1H), 7.52 (d, J=9.1 , 1H), 7.33 (d, J=5.2, 1 H), 4.94 (m, 1 H), 4.16 - 4.07 (m, 1 H), 3.91 - 3.79 (m, 4H), 3.56 (m, 2H), 2.20 - 1.97 (m, 4H), 1.84 - 1.53 (m, 8H).
Analog "A11" erhält man mit 2,-Amino-3,4,5,6-tetrahydro-2H-[4,4']bipyridinyl-1- carbonsäure-tert-butylester und anschließender Abspaltung der Schutzgruppe die Verbindung 5-[2-(1,,2,,3,,4,,5,,6'-Hexahydro-[4,4']bipyridinyl-2-ylamino)-pyridin-4-yl]- 2-(tetrahydro-pyr -4-yloxy)-benzonitril ("A74")
Figure imgf000088_0001
HPLC-MS Rt. [min] 1.351; HPLC-MS [M+H] 456;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 11.44 (s, 1H), 8.74 (d, J=9.9, 1H), 8.51 (d, J=10.1, 1H), 8.39 (d, J=5.8, 1H), 8.32 (d, J=5.8, 1H), 8.22 (d, J=2.3, 1H), 8.06 (dd, J=8.2, 4.1, 1H), 7.71 (d, J=12.3, 1H), 7.61-7.49 (m, 2H), 7.36 (s, 1H), 7.08 (d, J=5.5, 1H), 4.95 (m, 1H), 3.92-3.83 (m, 2H), 3.56 (m, 2H), 3.43 (d, J=12.3, 2H), 3.11-2.95 (m, 3H), 2.10 - 1.97 (m, 4H), 1.80 (m, 2H), 1.70 (m, 2H).
Analog "A26" erhält man mit 5-(2-Chlor-pyrimidin-4-yl)-2-(tetrahydro-pyran-4-yloxy)- benzonitril und 1-(2-tert-Butoxy-ethyl)-1H-pyrazol-4-ylamin mit anschließender Schutzgruppenabspaltung die Verbindung 5-{2-[1-(2-Hydroxy-ethyl)-1H-pyrazol-4- ylamino]-pyrimid -4-yl}-2-(tetrahydro-pyran-4-yloxy)-benzonitril ("A75")
Figure imgf000088_0002
HPLC-MS Rt. [min] 2.105; HPLC-MS [M+H] 407;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.57 (s, 1H), 8.53 - 8.41 (m, 3H), 7.97 (s, 1H), 7.60 (s, 1H), 7.53 (d, J=9.1, 1H), 7.36 (d, J=5.3, 1H), 4.94 (tt, J=7.9, 3.8, 1H), 4.2 (m, 1H), 3.92 - 3.81 (m, 3H), 3.72 (m, 2H), 3.61 - 3.51 (m, 2H), 2.05 (m, 2H), 1.77-1.60 (m, 2H). Analog "A42" erhält man mit 5-[2-(5-Brom-6-methoxy-pyridin-2-ylamino)-pyrimidin- 4-yl]-2-(tetrahydro-pyran-4-yloxy)-benzonitril und 4-(4,4,5,5-Tetramethyl- [1 ,3,2]dioxaborolan-2-yl)-3,6-dihydro-2H-pyridin-1-carbonsäure-tert-butylester und snschließender Schutzgruppenabspaltung die Verbindung 5-[2-(2-Methoxy- 1\2\3',6,-tetrahydro-[3,4,]bipyridinyl-6-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran- 4-yloxy)-benzonitril ("A76")
Figure imgf000089_0001
HPLC-MS Rt. [min] 2.018; HPLC-MS [M+H] 485;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.53 (s, 1H), 8.65 - 8.56 (m, 2H), 8.48 (dd, J=9.0, 2.3, 1 H), 7.86 - 7.79 (m, 1 H), 7.58 - 7.49 (m, 3H), 6.04 - 5.95 (m, 1 H), 5.00 - 4.88 (m, 1H), 3.93 - 3.83 (m, 5H), 3.60 - 3.51 (m, 2H), 3.41 - 3.36 (m, 2H), 2.92 (t, J=5.6, 2H), 2.37 - 2.28 (m, 2H), 2.10 - 1.99 (m, 2H), 1.76 - 1.63 (m, 2H).
Analog "A11" erhält man mit (2-Amino-pyridin-4-ylmethyl)-carbaminsäure-tert- butylester und anschließender Abspaltung der Schutzgruppe die Verbindung 5-[2- (4-Aminomethyl-pyridin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A77"
Figure imgf000089_0002
HPLC-MS Rt. [min] 1.251 ; HPLC-MS [M+H] 402;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 11.12 (s, 1 H), 8.49 - 8.31 (m, 5H), 8.21 (d, J=5.1 , 1H), 8.05 (dd, J=9.2, 4.6, 1H), 7.79 (d, J=0.9, 1 H), 7.57 (d, J=9.0, 2H), 7.48 (dd, J=18.9, 5.3, 1 H), 7.17 (d, J=5.2, 1H), 4.95 (tt, J=7.7, 3.8, 1 H), 4.15 (d, J=4.7, 2H), 3.91 - 3.83 (m, 2H), 3.60 - 3.51 (m, 2H), 2.09 - 1.99 (m, 2H), 1.75 - 1.62 (m, 2H).
Aus "A74" erhält man mit Formaldehyd und Ameisensäure die Verbindung 5-[2-(1'- Methyl-l'^'.S'^'.S'.e'-hexahydro-^^'lbipyridinyl^-ylaminoJ-pyridin^-yl]^- (tetrahydro-pyran-4- loxy)-benzonitril ("A78")
Figure imgf000090_0001
HPLC-MS Rt. [min] 1.338; HPLC-MS [M+H] 470;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.58 (s, 1 H), 8.28 (d, J=5.3, 1H), 8.13 (d, J=5.2, 1 H), 8.08 (d, J=2.3, 1 H), 8.03 (s, 1 H), 7.96 (dd, J=8.9, 2.4, 1H), 7.63 (s, 1 H), 7.50 (d, J=13.0, 1H), 7.19 (dd, J=5.3, 1.5, 1H), 6.79 (dd, J=5.2, 1.1 , 1 H), 4.97 - 4.86 (m, 1 H), 3.94 - 3.82 (m, 2H), 3.61 - 3.47 (m, 2H), 2.95 - 2.83 (m, 2H), 2.47 - 2.36 (m, 1 H), 2.21 (s, 3H), 2.09 - 1.94 (m, 4H), 1.81 - 1.53 (m, 6H).
Analog "A26" erhält man mit 1-(2-tert-Butoxy-ethyl)-1H-pyrazol-4-ylamin und anschließender Schutzgruppenabspaltung die Verbindung 5-{2-[1-(2-Hydroxy- ethyl)-1H-pyrazol-4-ylamino]-pyridin-4-yl}-2-(tetrahydro-pyran-4-yloxy)-benzonitril ("A79")
Figure imgf000090_0002
HPLC-MS Rt. [min] 1.626; HPLC-MS [M+H] 406; H NMR (500 MHz, DMSO-d6) δ [ppm] 9.40 (s, 1 H), 8.15 (d, J=17.7, 1H), 8.07 (d, J=6.0, 1 H), 8.02 - 7.95 (m, 2H), 7.57 - 7.46 (m, 2H), 7.10 (d, J=31.6, 2H), 4.98 - 4.86 (m, 1 H), 4.14 (t, J=5.6, 3H), 3.92 - 3.81 (m, 2H), 3.75 (t, J=5.7, 2H), 3.59 - 3.51 (m, 2H), 2.08 - 1.98 (m, 2H), 1.73 - 1.60 (m, 2H).
Analog "A42" erhält man mit 5-Methyl-isoxazol-3-ylamin die Verbindung 5-[2-(5-
Methyl-isoxazol-3-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran-4-yloxy)-benzonitril
("A80")
Figure imgf000091_0001
HPLC-MS Rt. [min] 1.818; HPLC-MS [M+H] 378;
H NMR (400 MHz, DMSO-d6) δ [ppm] 10.32 (s, 1 H), 8.57 (d, J=5.3, 1 H), 8.53 (d, J=2.3, 1 H), 8.45 (dd, J=9.0, 2.3, 1 H), 7.63 - 7.47 (m, 2H), 6.77 (s, 1 H), 5.04 - 4.88 (m, 1 H), 3.94 - 3.79 (m, 2H), 3.62 - 3.46 (m, 2H), 2.40 (s, 3H), 2.09 - 1.92 (m, 2H), 1.77 - 1.59 (m, 2H).
Aus "A77" erhält man mit Formaldehyd und Ameisensäure die Verbindung 5-[2-(4- Dimethylaminomethyl-pyridin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A81"
Figure imgf000091_0002
HPLC-MS Rt. [min] 1.272; HPLC-MS [M+H] 430; 1H NMR (400 MHz, DMSO-d6) δ [ppm] 9.61 (s, 1 H), 8.28 (d, J=5.3, 1 H), 8.16 (d, J=5.1 , 1 H), 8.09 (d, J=2.4, 1 H), 8.03 (d, J=0.9, 1 H), 7.97 (dd, J=8.9, 2.4, 1H), 7.67 (s, 1H), 7.52 (d, J=9.1 , 1H), 7.20 (dd, J=5.3, 1.6, 1H), 6.83 (dd, J=5.1 , 1.1 , 1H), 4.96 - 4.85 (m, 1 H), 3.94 - 3.81 (m, 2H), 3.61 - 3.47 (m, 2H), 3.37 (s, 2H), 2.16 (s, 6H), 2.08 - 1.96 (m, 2H), 1.76 - 1.61 (m, 2H).
Analog "A11" erhält man mit 4-Morpholin-4-yl-pyridin-2-ylamin die Verbindung 5-[2- (4-Morpholin-4-yl-pyridin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A82"
Figure imgf000092_0001
HPLC-MS Rt. [min] 1.690; HPLC-MS [M+H] 458.
Analog "A42" erhält man mit 1-(2-Pyrrolidin-1-yl-ethyl)-1H-pyrazol-4-ylamin die Verbindung 5-{2-[1-(2-Pyrrolidin-1-yl-ethyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-2- (tetrahydro-pyra -4-yloxy)-benzonitril ("A83")
Figure imgf000092_0002
HPLC-MS Rt. [min] 1.795; HPLC-MS [M+H] 460;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.65 (s, 1 H), 9.54 (s, 1H), 8.54 - 8.47 (m, 2H), 8.42 (dd, J=9.0, 2.1 , 1H), 8.07 (s, 1 H), 7.70 (s, 1 H), 7.52 (d, J=9.1 , 1 H), 7.36 (t, J=10.5, 1 H), 4.99 - 4.89 (m, 1 H), 4.49 (t, J=6.0, 2H), 3.91 - 3.81 (m, 2H), 3.71 - 3.61 (m, 2H), 3.60 - 3.45 (m, 4H), 3.10 - 2.94 (m, 2H), 2.10 - 1.94 (m, 4H), 1.91 - 1.76 (m, 2H), 1.75 - 1.62 (m, 2H). Analog "A11" erhält man mit 4-(4-Methyl-piperazin-1-yl)-pyridin-2-ylamin die
Verbindung 5-{2-[4-(4-Methyl-piperazin-1-yl)-pyridin-2-ylamino]-pyridin-4-yl}-2- (tetrahydro-pyra -4-yloxy)-benzonitril ("A84")
Figure imgf000093_0001
HPLC-MS Rt. [min] 1.344; HPLC-MS [M+H] 471 ;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 11.52 (s, 1H), 10.41 (s, 1H), 8.39 (d, J=5.5, 1 H), 8.19 (d, J=2.4, 1H), 8.09 - 7.99 (m, 2H), 7.56 (d, J=9.1, 1H), 7.52 (d, J=4.9, 1 H), 7.38 (s, 1 H), 6.96 (d, J=5.6, 1 H), 6.71 (s, 1 H), 4.98 - 4.89 (m, 1 H), 4.2 (m, 2H), 3.92 - 3.82 (m, 2H), 3.59 - 3.49 (m, 4H), 3.2 (m, 4H), 2.85 (s, 3H), 2.09 - 1.96 (m, 2H), 1.75 - 1.61 (m, 2H).
Analog "A11" erhält man mit 6-Morpholin-4-yl-pyrazin-2-ylamin die Verbindung 5-[2- (6-Morpholin-4-yl-pyrazin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A85"
Figure imgf000093_0002
HPLC-MS Rt. [min] 1.767; HPLC-MS [M+H] 459.
Analog "A11" erhält man mit 4-(5,6-Dihydro-4H-pyran-2-yl)-pyridin-2-ylamin die Verbindung 5-{2-[4-(5,6-Dihydro-4H-pyran-2-yl)-pyridin-2-ylamino]-pyridin-4-yl}-2- (tetrahydro-pyran-4-yloxy)-benzonitril ("A86")
Figure imgf000094_0001
HPLC-MS Rt. [min] 1.860; HPLC-MS [M+H] 455.
Analog "A42" erhält man mit 4-Cyclopropyl-thiazol-2-ylamin die Verbindung 5-[2-(4- Cyclopropyl-thiazol-2-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A87"
Figure imgf000094_0002
HPLC-MS Rt. [min] 2.839; HPLC-MS [M+H] 420.
Analog "A 1" erhält man mit 5-(2-Oxa-6-aza-spiro[3.3]hept-6-ylmethyl)-pyridin-2- ylamin die Verbindung 5-{2-[5-(2-Oxa-6-aza-spiro[3.3]hept-6-ylmethyl)-pyridin-2- ylamino]-pyridin- -yl}-2-(tetrahydro-pyran-4-yloxy)-benzonitril ("A88")
Figure imgf000094_0003
HPLC-MS Rt. [min] 1.463; HPLC-MS [M+H] 484;
H NMR (500 MHz, DMSO-d6) δ [ppm] 10.24 (s, 1H), 9.86 (s, 1H), 8.32 (d, J=5.4, 2H), 8.13 (d, J=2.2, 1H), 8.00 (dd, J=8.9, 2.4, 1 H), 7.92 (s, 1H), 7.81 - 7.73 (m, 2H), 7.54 (d, J=9.1, 1H), 7.33 (d, J=4.9, 1 H), 4.98 - 4.88 (m, 1 H), 4.68 (s, 2H), 4.63 (s, 2H), 4.36 - 4.18 (m, 4H), 3.92 - 3.82 (m, 4H), 3.61 - 3.51 (m, 2H), 2.08 - 1.97 (m, 2H), 1.74 - 1.62 (m, 2H).
Analog "A11" erhält man mit 4-(2-Amino-pyrimidin-4-yl)-piperidin-1-carbonsäure- tert-butylester mit anschließender Schutzgruppenabspaltung die Verbindung 5-[2- (4-Piperidin-4-yl-pyrimidin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A89")
Figure imgf000095_0001
HPLC-MS Rt. [min] 1.287; HPLC-MS [M+H] 457;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.46 (s, 1H), 8.66 (d, J=9.9, 1H), 8.58 (d, J=5.1 , 1H), 8.42 - 8.30 (m, 3H), 8.20 (d, J=2.4, 1H), 8.07 (dd, J=8.9, 2.4, 1 H), 7.56 (d, J=9.1 , 1 H), 7.50 - 7.44 (m, 1H), 7.03 (d, J=5.1, 1H), 4.99 - 4.90 (m, 1H), 3.93 - 3.83 (m, 2H), 3.61 - 3.52 (m, 2H), 3.43 (d, J=12.6, 2H), 3.12 - 2.99 (m, 3H), 2.16 (d, J=13.0, 2H), 2.10 - 1.99 (m, 2H), 1.98 - 1.82 (m, 2H), 1.75 - 1.64 (m, 2H).
Analog "A11" erhält man mit 6-Morpholin-4-yl-pyridazin-3-ylamin die Verbindung 5- [2-(6-Morpholin-4-yl-pyridazin-3-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A90"
Figure imgf000095_0002
HPLC-MS Rt. [min] 1.529; HPLC-MS [M+H] 459; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.69 (s, 1 H), 8.24 (d, J=5.3, 1 H), 8.08 (d, J=2.4, 1 H), 7.98 - 7.93 (m, 2H), 7.86 (d, J=9.8, 1H), 7.52 (d, J=9.1 , 1 H), 7.34 (t, J=8.6, 1 H), 7.19 (dd, J=5.3, 1.6, 1 H), 4.95 - 4.85 (m, 1 H), 3.91 - 3.80 (m, 2H), 3.73 (dd, J=16.7, 11.7, 4H), 3.60 - 3.49 (m, 2H), 3.47 - 3.38 (m, 4H), 2.08 - 1.97 (m, 2H), 1.75 - 1.64 (m, 2H).
Analog "A11" erhält man mit 6-Amino-3 ',4',5',6'-tetrahydro2'H[-2,4 ']bipyridinyl-l'- carbonsäure tert-butyl ester und anschließender Schutzgruppenabspaltung die Verbindung 5-[2-(1' ,2,,3',4,,5,,6,-Hexahydro-[2,4,]bipyridinyl-6-ylamino)-pyridin-4-yl]- 2-(tetrahydro-pyran-4- loxy)-benzonitril ("A91")
Figure imgf000096_0001
HPLC-MS Rt. [min] 1.291 ; HPLC-MS [M+H] 456;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.63 (s, 1H), 8.51 (s, 1 H), 8.27 (d, J=4.2, 1 H), 8.12 - 8.01 (m, 2H), 7.61 - 7.54 (m, 1H), 7.49 (d, J=6.7, 1H), 7.30 (d, J=8.2, 1 H), 7.21 (d, J=6.0, 1 H), 6.75 (t, J=7.5, 1 H), 4.97 - 4.88 (m, 1 H), 3.92 - 3.82 (m, 2H), 3.62 - 3.53 (m, 3H), 3.06 (d, J=11.9, 2H), 2.72 - 2.56 (m, 3H), 2.08 - 2.00 (m, 2H), 1.87 - 1.77 (m, 2H), 1.74 - 1.58 (m, 4H).
Analog "A11" erhält man mit 6-(5,6-Dihydro-4H-pyran-2-yl)-pyrazin-2-ylamin die Verbindung 5-{2-[6-(5,6-Dihydro-4H-pyran-2-yl)-pyrazin-2-ylamino]-pyridin-4-yl}-2- (tetrahydro-pyra -4-yloxy)-benzonitril ("A92")
Figure imgf000096_0002
HPLC-MS Rt. [min] 2.266; HPLC-MS [M+H] 456; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.16 (s, 1H), 8.72 (s, 1H), 8.40 (s, 1H), 8.35 (d, J=5.3, 1H), 8.21 -8.17 (m, 1H), 8.11 (d, J=2.4, 1H), 8.03 (dd, J=8.9, 2.4, 1 H), 7.63 - 7.59 (m, 1 H), 7.59 - 7.51 (m, 2H), 7.33 (dd, J=5.3, 1.6, 1 H), 6.06 - 6.00 (m, 1H), 4.97-4.89 (m, 1H), 4.21 -4.15 (m, 2H), 3.91-3.83 (m, 2H), 3.60-3.52 (m, 2H), 2.34 - 2.24 (m, 2H), 2.08-1.98 (m, 2H), 1.93-1.84 (m, 2H), 1.76 - 1.64 (m, 2H).
Analog "A40" erhält man mit 4-Methyl-oxazol-2-ylamin die Verbindung 5-[2-(4-
Methyl-oxazol-2-ylamino)-pyrimidin-4-yl]-2-(tetrahydro-pyran-4-yloxy)-benzonitril
("A93")
Figure imgf000097_0001
HPLC-MS Rt. [min] 2.066; HPLC-MS [M+H] 378;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.64 (s, 1H), 8.57 (dd, J=13.8, 3.8, 2H), 8.45 (dd, J=9.0, 2.3, 1H), 7.62 (d, J=5.3, 1H), 7.53 (d, J=9.1, 2H), 4.99-4.89 (m, 1H), 3.91-3.83 (m, 2H), 3.60-3.51 (m, 2H), 2.10-1.99 (m, 5H), 1.73-1.63 (m, 2H).
Analog "A26" erhält man mit 5-(2-Chlor-pyrimidin-4-yl)-2-cyclobutylmethoxy- benzonitril und 1-(2-tert-Butoxy-ethyl)-1H-pyrazol-4-ylamin mit anschließender Schutzgruppenabspaltung die Verbindung 2-Cyclobutylmethoxy-5-{2-[1-(2-hydroxy- ethyl)- H-pyraz -4-ylamino]-pyrimidin-4-yl}-benzonitril ("A94")
Figure imgf000097_0002
HPLC-MS Rt. [min] 2.573; HPLC-MS [M+H] 391; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.49 (s, 1 H), 8.52 - 8.43 (m, 3H), 7.97 (s, 1 H), 7.58 (s, 1 H), 7.43 (d, J=9.0, 1 H), 7.34 (d, J=5.2, 1 H), 4.88 (t, J=4.9, 1 H), 4.23 (d, J=6.4, 2H), 4.13 (t, J=5.5, 2H), 3.75 (q, J=5.4, 2H), 2.87 - 2.74 (m, 1H), 2.18 - 2.07 (m, 2H), 2.01 - 1.85 (m, 4H).
Analog "A26" erhält man mit 5-(2-Chlor-pyrimidin-4-yl)-2-cyclobutylmethoxy- benzonitril und [(1S,2S)-2-(4-Amino-pyrazol-1-ylmethyl)-cyclopropyl]-methanol die Verbindung 2-Cyclobutylmethoxy-5-{2-[1-((1S,2S)-2-hydroxymethyl-cyclopropyl- methyl)-1H-pyrazol-4-ylamino]-pyrimidin-4-yl}-benzonitril ("A95")
Figure imgf000098_0002
HPLC-MS Rt. [min] 2.677; HPLC-MS [M+H] 431 ;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.49 (s, 1H), 8.52 - 8.41 (m, 3H), 8.02 (s, 1H), 7.56 (s, 1H), 7.43 (d, J=9.0, 1H), 7.34 (d, J=5.2, 1 H), 4.47 (t, J=5.5, 1 H), 4.23 (d, J=6.4, 2H), 4.06 (dd, J=14.0, 6.7, 1 H), 3.93 (dd, J=14.0, 7.4, 1H), 3,3 (m, 2H), 2.88 - 2.73 (m, 1 H), 2.17 - 2.02 (m, 2H), 2.02 - 1.84 (m, 4H), 1.19 - 0.96 (m, 2H), 0.57 - 0.41 (m, 2H).
Analog "A11" erhält man mit 4-(6-Amino-pyrazin-2-yl)-piperidine-1-carbonsäure- tert-butylester und anschließender Schutzgruppenabspaltung die Verbindung 5-[2- (6-Piperidin-4-yl-pyrazin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A96"
Figure imgf000098_0001
HPLC-MS Rt. [min] 1.368; HPLC-MS [M+H] 457. Analog "A26" erhält man mit 5-(2-Chlor-pyrimidin-4-yl)-2-cyclobutylmethoxy- benzonitril und 4-(4-Amino-pyrazol-1-yl)-cyclohexanol die Verbindung 2- Cyclobutylmethoxy-5-{2-[1-(4-hydroxy-cyclohexyl)-1H-pyrazol-4-ylamino]-pyrimidin- 4-yl}-benzonitril "A97")
Figure imgf000099_0001
HPLC-MS Rt. [min] 2.765; HPLC-MS [M+H] 445;
H NMR (500 MHz, DMSO-d6) δ [ppm] 9.46 (s, 1H), 8.48 (d, J=2.3, 2H), 8.43 (dd, J=8.9, 2.3, 1H), 7.95 (s, 1H), 7.57 (s, 1H), 7.42 (d, J=9.0, 1H), 7.33 (d, J=5.2, 1H), 4.43 (d, J=3.4, 1H), 4.22 (d, J=6.4, 2H), 4.16-4.06 (m, 1H), 3.86 - 3.80 (m, 1H), 2.85-2.74 (m, 1H), 2.18-2.05 (m, 4H), 2.00-1.85 (m, 4H), 1.84-1.68 (m, 4H), 1.65-1.54 (m, 2H).
Analog "A11" erhält man mit 5-(Tetrahydro-pyran-4-yl)-pyrazin-2-ylamin die
Verbindung 2-(Tetrahydro-pyran-4-yloxy)-5-{2-[5-(tetrahydro-pyran-4-yl)-pyrazin-2- ylamino]-pyridin-4-yl}-benzonitril ("A98")
Figure imgf000099_0002
HPLC-MS Rt. [min] 1.646; HPLC-MS [M+H] 458;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.06 (s, 1H), 8.75 (s, 1H), 8.37-8.31 (m, 2H), 8.25 (s, 1H), 8.13 (t, J=5.4, 1H), 8.07 - 7.99 (m, 2H), 7.53 (d, J=8.9, 1H), 7.32 (dd, J=5.3, 1.6, 1H), 4.97-4.85 (m, 1H), 3.94-3.84 (m, 2H), 3.61-3.53 (m, 2H), 3.32 - 3.25 (m, 2H), 3.01 - 2.81 (m, 3H), 2.10 - 1.96 (m, 4H), 1.86 (qd, J=12.9, 3.8, 2H), 1.76-1.60 (m, 2H). Analog "A11" erhält man mit (5-Amino-pyrazin-2-yl)-methanol die Verbindung 5-[2- (5-Hydroxymethyl-pyrazin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("A99"
Figure imgf000100_0001
HPLC-MS Rt. [min] 1.457; HPLC-MS [M+H] 404;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.00 (s, 1H), 9.05 (d, J=1.3, 1 H), 8.33 (d, J=5.3, 1H), 8.30 (s, 1H), 8.12 (d, J=4.1 , 1 H), 7.99 (dd, J=8.9, 2.4, 1 H), 7.90 (d, J=0.9, 1H), 7.53 (d, J=9.0, 1H), 7.29 (dd, J=5.3, 1.6, 1H), 5.35 (t, J=5.8, 1 H), 4.97 - 4.87 (m, 1 H), 4.55 (d, J=5.6, 2H), 3.92 - 3.82 (m, 2H), 3.61 - 3.52 (m, 2H), 2.09 - 1.98 (m, 2H), 1.75 - 1.61 (m, 2H).
Analog "A11" erhält man mit 6-(Tetrahydro-pyran-4-yl)-pyridazin-3-ylamin die Verbindung 2-(Tetrahydro-pyran-4-yloxy)-5-{2-[6-(tetrahydro-pyran-4-yl)-pyridazin- 3-ylamino]-pyrid -4-yl}-benzonitril ("A100")
Figure imgf000100_0002
HPLC-MS Rt. [min] 1.643; HPLC-MS [M+H] 458;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.04 (s, 1 H), 8.29 (d, J=5.3, 1 H), 8.11 (d, J=2.4, 1 H), 8.05 - 8.02 (m, 1 H), 8.01 - 7.97 (m, 2H), 4.95 - 4.85 (m, 1 H), 4.02 - 3.94 (m, 2H), 3.92 - 3.83 (m, 3H), 3.60 - 3.44 (m, 5H), 3.10 - 3.01 (m, 1 H), 2.09 - 1.98 (m, 2H), 1.86 - 1.59 (m, 4H). Analog "A26" erhält man mit 5-(2-Chlor-pyrimidin-4-yl)-2-(tetrahydro-pyran-4-yloxy)- benzonitril und trans-4-(4-Amino-pyrazol-1-yl)-cyclohexanol die Verbindung 5-{2-[1- (4-Hydroxy-cyclohexyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-2-(tetrahydro-pyran-4- yloxy)-benzonitri ("A 01")
Figure imgf000101_0001
HPLC-MS Rt. [min] 1.915; HPLC-MS [M+H] 461 ;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.47 (s, 1 H), 8.50 (dd, ϋ= Μ, 3.7, 2H), 8.41 (dd, J=9.0, 2.3, 1 H), 7.96 (s, 1 H), 7.61 - 7.50 (m, 2H), 7.34 (d, J=5.2, 1 H), 5.00 - 4.90 (m, 1H), 4.63 (d, J=4.4, 1 H), 4.15 - 4.04 (m, 1 H), 3.94 - 3.83 (m, 2H), 3.61 - 3.46 (m, 3H), 2.11 - 1.88 (m, 6H), 1.86 - 1.63 (m, 4H), 1.43 - 1.29 (m, 2H).
Analog "A11" erhält man mit (3-Amino-pyrazin-2-yl)-methanol die Verbindung 5-[2- (3-Hydroxymethyl-pyrazin-2-ylamino)-pyridin-4-yl]-2-(tetrahydro-pyran-4-yloxy)- benzonitril ("AIO ')
Figure imgf000101_0002
HPLC-MS Rt. [min] 1.530; HPLC-MS [M+H] 404;
1H NMR (400 MHz, DMSO-d6) δ [ppm] 9.41 (s, 1 H), 8.49 (s, 1 H), 8.34 (d, J=5.2, H), 8.24 (d, J=2.7, 1H), 8.15 (d, J=2.4, 1 H), 8.06 (d, J=2.7, 1 H), 8.03 (dd, J=8.9, 2.4, 1 H), 7.53 (d, J=9.0, 1 H), 7.36 (dd, J=5.3, 1.6, 1H), 6.23 (t, J=5.3, 1 H), 4.97 - 4.87 (m, 1H), 4.80 (d, J=5.1 , 2H), 3.95 - 3.82 (m, 2H), 3.63 - 3.51 (m, 2H), 2.10 - 1.98 (m, 2H), 1.77 - 1.61 (m, 2H). Analog "A26" erhält man mit 5-(2-Chlor-pyrimidin-4-yl)-2-cyciobutylmethoxy-benzo- nitril und 1-(2-Methoxy-ethyl)-1H-pyrazol-4-ylamin die Verbindung 2-Cyclobutyl- methoxy-5-{2-[1-(2-methoxy-ethyl)-1 H-pyrazol-4-ylamino]-pyrimidin-4-yl}-benzonitril ("A103")
Figure imgf000102_0001
HPLC-MS Rt. [min] 2.839; HPLC-MS [M+H] 405;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.47 (s, 1H), 8.48 (d, J=1.8, 2H), 8.43 (d, J=8.9, 1H), 7.94 (s, 1 H), 7.57 (s, 1 H), 7.41 (d, J=9.0, 1 H), 7.33 (d, J=5.2, 1 H), 4.29 - 4.18 (m, 4H), 3.68 (t, J=5.2, 2H), 3.25 (s, 3H), 2.85 - 2.73 (m, 1 H), 2.17 - 2.04 (m, 2H), 1.99 - 1.83 (m, 4H).
Analog "A11" erhält man mit 5-Morpholin-4-ylmethyl-pyridin-2-ylamin die
Verbindung 5-[2-(5-Morpholin-4-ylmethyl-pyridin-2-ylamino)-pyridin-4-yl]-2- (tetrahydro-pyra -4-yloxy)-benzonitril ("A118")
Figure imgf000102_0002
HPLC-MS Rt. [min] 1.278; HPLC-MS [M+H] 472;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.67 (s, 1H), 8.26 (d, J=5.3, 1 H), 8.16 - 8.11 (m, 2H), 8.09 (d, J=2.4, 1 H), 7.99 - 7.94 (m, 2H), 7.76 (d, J=8.5, 1 H), 7.60 (dd, J=8.6, 2.3, 1 H), 7.52 (d, J=9.1 , 1 H), 7.20 (dd, J=5.3, 1.6, 1 H), 4.95 - 4.84 (m, 1 H), 3.92 - 3.83 (m, 2H), 3.61 - 3.50 (m, 6H), 3.38 (s, 2H), 2.36 (s, 4H), 2.10 - 1.99 (m, 2H), 1.75 - 1.62 (m, 2H). Beispiele 105-117
Analysenmethoden:
LCMS-Analyse:
Methode A: A-0.1 % TFA in H20, B-0.1 % TFA in ACN: Fluß 2.0 mL/min.
Säule: XBridge C8 (50 x 4.6mm, 3.5 μ)
Methode B: A-10mM NH4HCO3, B: ACN; Fluß Rate: 1.0 ml/min
Säule: XBridge C8 (50x4.6mm, 3.5μ), H NMR:
Bruker 400 MHz
HPLC:
Methode A:
Methode: A-0.1 % TFA in H20, B-0.1 % TFA in ACN: Fluß - 2.0 mL/min.
Säule: XBridge C8 (50 x 4.6 mm, 3.5 μ).
Synthese von 5-Bromo-2-cyclopropylmethoxy-benzonitril
Figure imgf000103_0001
Zu einer Lösung von Cyclopropylmethanol (6.49 g, 0.09 mol) in trockenem DMF (200 mL) wird Natriumhydrid, 60% Suspension in Öl (3.6 g, 0.09 mol), bei 0°C unter Stickstoff gegeben. Nach 30 min bei 0°C wird 5-Brom-2-fluorbenzonitril (12.0 g, 0.06 mol) in trockenem DMF (50 mL) zugegeben und die Reaktion wird bei 50°C für 16 h gerührt. Das Reaktionsgemisch wird mit Eiswasser (200 mL) versetzt und mit Ethyl- acetat extrahiert (2 x 200 mL). Die organischen Phasen werden mit Wasser (2 x 200 mL) und gesättigter Kochsalzlösung (1 x 200 mL) gewaschen und über Natriumsulfat getrocknet. Nach Entfernen des Lösungsmittels wird das Rohprodukt durch
Chromatographie gereinigt. Man erhält 14 g eines gelben Öls;
H NMR (400 MHz, CDCI3): δ [ppm] 7.65 (d, J = 2.48 Hz, 1H), 7.59 (dd, J = 2.48, 8.96
Hz, 1 H), 6.84 (d, J = 9.00 Hz, 1 H), 3.92 (d, J = 6.84 Hz, 2H), 1.27-1.34 (m, 1 H), 0.65-
0.09 (m, 2H), 0.35-0.41 (m, 2H);
LCMS: (Methode A): 252 (M+H), RT 4.96 min.
Synthese von 2-Cvclopropylmethoxy-5-(4,4,5.5-tetramethyl-H .3,21dioxaborolan-2-ylV benzonitril
Figure imgf000104_0001
Eine Lösung von 5-Brom-2-cyclopropylmethoxy-benzonitril (14.0 g, 0.055 mol) in 1 ,4- Dioxan (200 mL) wird für 10 min entgast, Bis(pinacolato)diboron (15.5 g, 0.061 mol), [1 ,1'-Bis(diphenylphosphino)ferrocen]dichloropalladium (II) (1.0 g, 0.00138 mol), 1 ,1'- Bis(diphenylphosphino)ferrocen (0.75 g, 0.0138 mol) und Kaliumacetat (10.9 g, 0.111 mol) werden bei Raumtemperatur zugegeben. Die Mischung wird 18 h unter Rückfluß gekocht. Man läßt auf Raumtemperatur abkühlen und filtriert ab. Das Filtrat wird einrotiert und mit Essigester aufgenommen (300 mL), mit Wasser (2 x 200 mL) und gesättigter Kochsalzlösung (1 x 200 mL) gewaschen und über Natriumsulfat getrocknet. Nach Filtration wird das Rohprodukt durch Chromatographie gereinigt. Man erhält 9 g des gewünschten Produktes als weißen Feststoff;
1H NMR (400 MHz, CDCI3): δ [ppm] 8.01 (d, J = 1.56 Hz, 1H), 7.91 (dd, J = 1.64, 8.48 Hz, 1 H), 6.92 (d, J = 8.48 Hz, 1H), 3.96 (d, J = 6.84 Hz, 2H), 1.34 (s, 12H), 1.22-1.30 (m, H), 0.65-0.70 (m, 2H), 0.41 (t, J = 4.92 Hz, 2H).
Synthese von 5-(2-Chlor-pyridin-4-yl)-2-cvclopropylmethoxy-benzonitril
Figure imgf000105_0001
Eine Lösung von 2-Cyclopropylmethoxy-5-(4,4,5,5-tetramethyl-[1 >3,2]dioxaborolan-2- yl)-benzonitril (3.0 g, 0.010 mol) in Acetonitril (60 mL) und Wasser (20 mL) wird für 10 min entgast. 4-Bromo-2-chloropyridin (1.92 g, 0.01 Omol), Kaliumcarbonat (2.76 g, 0.02 mol) und Tetrakis-(triphenyl phosphine)-palladium(O) (0.11g, 0.0001 mol) werden zugegeben. Das Reaktionsgemisch wird bei 90°C für 6 h gerührt. Die Mischung wird auf Raumtemperatur abgekühlt, filtriert und einrotiert. Der Rückstand wird in Essigester aufgenommen (200 mL), mit Wasser (2 x 200 mL) und gesättigter Kochsalzlösung (1 x 200 mL) gewaschen. Anschließend wird über Natriumsulfat getrocknet, einrotiert und zur Reinigung chromatographiert. Man erhält 2,1 g eines hellgelben
Feststoffs;
H NMR (400 MHz, CDCI3): δ [ppm] 8.44 (d, J = 5.24 Hz, 1 H), 7.83 (s, 1 H), 7.75-7.83 (m, 1 H), 7.48 (s, 1 H), 7.45 (dd, J = 0.44, 1.46 Hz, 1 H), 7.07 (d, J = 8.84 Hz, 1 H), 4.02 (q, J = 2.76 Hz, 2H), 1.33-1.37 (m, 1H), 0.69-0.73 (m, 2H), 0.41-0.45 (m, 2H);
LCMS: (Methode A) 285 (M+H), RT 4.90 min.
Synthese von 5-Brom-2-cvclobutylmethoxy-benzonitril
Figure imgf000105_0002
In analoger Weise wie oben beschrieben für 5-Brom-2-cyclopropylmethoxy-benzonitril erhält man 5 g 5-Brom-2-cyclobutylmethoxy-benzonitril aus Cyclobutanmethanol (2.58 g, 0.03 mol) und 5-Brom-2-fluorobenzonitril (5.0 g, 0.025 mol) als gelbes Öl;
1H NMR (400 MHz, CDCI3): δ [ppm] 7.65 (d, J = 2.48 Hz, 1H), 7.60 (dd, J = 2.48, 8.96 Hz, 1 H), 6.85 (d, J = 8.96 Hz, 1H), 4.02 (d, J = 6.28 Hz, 2H), 2.79-2.86 (m, 1 H), 2.13- 2.20 (m, 2H), 1.96-2.02 (m, 4H). Synthese von 2-Cyclobutylmethoxy-5-(4,4,5,5-tetramethyl-f1 ,3,21dioxaborolan-2-yl)- benzonitril
Figure imgf000106_0001
Die Herstellung gelingt in ähnlicher Weise wie oben beschrieben für 2-Cyclopropyl- methoxy-5-(4,4,5,5-tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-benzonitril mit 5-Bromo-2- cyclobutylmethoxy-benzonitril (5.0 g, 0.018 mol). Man erhält 3.5 g des gewünschten Produktes als farbloses Öl;
1H NMR (400 MHz, CD3OD): δ [ppm] 7.90-7.96 (m, 2H), 7.17 (d, J = 8.52 Hz, 1 H), 4.13 (d, J = 6.16 Hz, 2H), 2.81-2.88 (m, 1 H), 2.13-2.20 (m, 2H), 2.02-2.05 (m, 4H), 1.31 (s, 12H).
Synthese von 5- -Chlor-pyridin-4-yl)-2-cvclobutylmethoxy-benzonitril
Figure imgf000106_0002
Mit 2-Cyclobutylmethoxy-5-(4,4,5,5-tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-benzonitril (5.0 g, 0.015 mol) und 4-Brom-2-chloropyridin (3.0 g, 0.015mol) erhält man in ähnlicher Weise wie für 5-(2-Chlor-pyridin-4-yl)-2-cyclopropylmethoxy-benzonitril beschrieben 2.5 g des gewünschten Produktes als hellgelben Feststoff;
1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.45 (s, 1H), 8.44 (s, 1H), 8.18 (dd, J = 2.44, 8.94 Hz, 1 H), 7.94 (d, J = 1.20 Hz, 1 H), 7.80 (dd, J = 1.64, 5.28 Hz, 1 H), 7.38 (d, J = 8.96 Hz, 1 H), 4.20 (d, J = 6.40 Hz, 2H), 2.75-2.79 (m, 1H), 2.05-2.12 (m, 2H), 1.86- 1.94 (m, 4H);
LCMS: (Methode A) 299 (M+H), RT 5.40 min.
Synthese von 4-(4-Brom-2-cvan-phenoxymethvn-piperidin-1-carbonsäure-tert-butyl ester
Figure imgf000107_0001
Mit N-BOC-4-Piperidinmethanol (6.45 g, 0.03 mol) und 5-Brom-2-fluorbenzonithl (5.0 g, 0.025 mol) erhält man 7.0 g des gewünschten Produktes als hellgelbes Öl wie oben beschrieben für 5-Brom-2-cyclopropylmethoxy-benzonitril;
H NMR (400 MHz, CDCI3): δ [ppm] 7.59-7.65 (m, 2H), 6.84 (d, J = 8.96 Hz, 1 H), 4.15- 4.18 (m, 2H), 3.87 (d, J = 6.64 Hz, 2H), 2.66-2.79 (m, 2H), 2.03-2.08 (m, 1H), 1.84- 1.88 (m, 2H), 1.45 (s, 9H), 1.24-1.28 (m, 2H);
LCMS: (Methode A) 297 (M+2), RT 5.67 min.
Synthese von 4-f2-Cvan-4-(4.4.5,5-tetramethyl-f .3,2ldioxaborolan-2-yl)- phenoxymethyll-pipe din-l-carbonsäure-tert-butylester
Figure imgf000107_0002
Mit 4-(4-Brom-2-cyan-phenoxymethyl)-piperidin-1-carbonsäure-tert-butylester (7.0 g, 0.17 mol) erhält man wie oben beschrieben für 2-Cyclopropylmethoxy-5-(4,4,5,5- tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-benzonitril 6.0 g vom gewünschten Produkt als farbloses Öl;
1H NMR (400 MHz, CDCI3): δ [ppm] 8.01 (s, 1H), 7.93 (dd, J = 1.60, 8.46 Hz, 1H), 6.93 (d, J = 8.52 Hz, 1H), 4.10-4.20 (m, 2H), 3.93 (d, J = 6.60 Hz, 2H), 2.77 (t, J = 12.08 Hz, 2H), 2.05-2.10 (m, 1H), 1.88-1.91 (m, 2H), 1.47 (s, 9H), 1.36 (s, 12H), 1.22-1.29 (m, 2H).
Synthese von 2-(Piperidin-4-ylmethoxy)-5-(4,4.5.5-tetramethyl-f1 ,3.21dioxaborolan-2- yl)-benzonitril
Figure imgf000108_0001
Zu einer Lösung von 4-[2-Cyan-4-(4,4,5,5-tetramethyl-[1 ,3,2]dioxaborolan-2-yl)- phenoxymethyl]-piperidin-1-carbonsäure-tert-butylester (6.0 g, 0.0135 mol) in 1 ,4- Dioxan (50 mL) wird HCl in Dioxan (50 mL) zugegeben und für 16 h bei
Raumtemperatur gerührt. Das Gemisch wird einrotiert und ohne Reinigung in die nächste Stufe eingesetzt.
Synthese von 2-(1-Acetyl-piperidin-4-ylmethoxy)-5-(4,4,5.5-tetramethyl- M .3.21dioxaborolan-2-yl)-benzonitril
Figure imgf000108_0002
Zu einer Lösung von 2-(Piperidin-4-ylmethoxy)-5-(4,4,5,5-tetramethyl-[1 ,3l2]dioxa- borolan-2-yl)-benzonitril (4.0 g, 0.0116 mol) in Dichloromethan (40 mL) werden Eisessig (2.1 g, 0.035 mol), Triethylamin (3.5 g, 0.035 mol) und 1-Propan-phosphon- säure-anhydrid (60% w / w in Essigester) (11 mL, 0.0174 mol) bei 0°C unter Stickstoff zugegeben. Die Reaktion wird 15 h bei Raumtemperatur gerührt. Die Lösung wird eingeengt und in Wasser gegossen (200 mL). Es wird mit Dichloromethan (100 mL x 2) extrahiert und einrotiert. Das Rohprodukt wird durch Chromatographie gereinigt. Man erhält 6.0 g des gewünschten Produktes als farbloses Öl;
1H NMR (400 MHz, CD3OD): δ [ppm] 7.95 (dd, J = 1.64, 8.48 Hz, 1H), 7.91 (d, J - 1.48 Hz, 1 H), 7.18 (d, J = 8.52 Hz, 1 H), 4.57-4.87 (m, 1H), 3.98-4.08 (m, 3H), 3.16- 3.23 (m, 1H), 2.67-2.74 (m, 1 H), 2.15-2.29 (m, 1H), 2.12 (s, 3H), 1.90-2.02 (m, 2H), 1.35-1.45 (m, 2H), 1.33 (s, 12H).
Synthese von 2-n-Acetyl-piperidin-4-ylmethoxy)-5-(2-chlor-pyridin-4-yl)-benzonitril
Figure imgf000109_0001
In ähnlicher Weise wie oben beschrieben für 5-(2-Chlor-pyridin-4-yl)-2-cyclo- butylmethoxy-benzonitril erhält man mit 2-(1-Acetyl-piperidin-4-ylmethoxy)-5- (4i4i5)5-tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-benzonitril (2.0 g, 0.005 mol) und 4- Brom-2-chloropyridin (0.96 g, 0.005 mol) 1.0 g des gewünschten Produktes als weißen Feststoff;
1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.44 (s, 1 H), 8.34 (d, J = 2.44 Hz, 1 H), 8.18 (dd, J = 2.44, 8.92 Hz, 1 H), 7.93 (d, J = 1.16 Hz, 1 H), 7.80 (dd, J = 1.64, 5.32 Hz, 1H), 7.39 (d, J = 9.00 Hz, 1 H), 4.39-4.42 (m, 1H), 3.92-4.12 (m, 2H), 3.84-3.88 (m, 1H), 3.06-3.06 (m, 1 H), 2.56-2.57 (m, 1 H), 2.01-2.16 (m, 1 H), 1.99 (s, 3H), 1.76- 1.81 (m, 2H), 1.13-1.29 (m, 2H);
LCMS: (Methode A) 370 (M+H), RT. 4.02 min.
Synthese von 2-Cvclopropylmethoxy-5-f2-(1 H-pyrazol-4-ylamino)-pyridin-4-vn- benzonitril ΓΑ10 ")
Figure imgf000109_0002
Eine Lösung von 5-(2-Chlor-pyridin-4-yl)-2-cyclopropylmethoxy-benzonitril (0.25 g, 0.0878 mmol) in t-Butanol (5 ml_) wird mit Stickstoff für 5 min entgast. Dann wird 1H- Pyrazol-4-ylamin Hydrochlorid (0.12 g, 1.08 mmol), Josiphos (24.3 mg, 0.00439 mmol) und Tris(dibenzylidenaceton)dipalladium(0) (40.0 mg, 0.00439 mmol) zugegeben. Eine Lösung von 1.6M Lithium-bis(trimethylsilyl)amid in THF (0.35 g, 2.1 mmol) wird tropfenweise zugegeben. Die Mischung wird in der Mikrowelle 2 h bei 140°C bestrahlt. Dann werden 30 mL Wasser zugegeben und es wird filtriert. Das Rohprodukt wird durch Chromatographie gereinigt. Man erhält 26.6 mg des gewünschten Produktes als braunen Feststoff; 1H NMR (400 MHz, DMSO-d6): δ [ppm] 12.47 (bs, 1H), 8.80 (s, 1 H), 8.13 (d, J = 5.36 Hz, 1 H), 8.04 (d, J = 2.16 Hz, 1 H), 7.92 (dd, J = 2.24, 8.82 Hz, 2H), 7.54 (bs, 1 H), 7.34 (d, J = 8.92 Hz, 1H), 6.92 (d, J = 5.28 Hz, 1H), 6.86 (s, 1H), 4.06 (d, J = 7.00 Hz, 2H), 1.23-1.30 (m, 1H), 0.59-0.63 (m, 2H), 0.31-0.39 (m, 2H);
LCMS: (Methode A) 332 (M+H), RT. 3.25 min;
HPLC: (Methode A) RT. 3.23 min.
Synthese von 2-Cvclopropylmethoxy-5-{2-ri-(2-methoxy-ethyl)-1 H-pyrazol-4-ylaminol- pyridin-4-yl)-benzonitril ("A105")
Figure imgf000110_0001
Zu einer Lösung des oben hergestellten 2-Cyclopropylmethoxy-5-[2-(1H-pyrazol-4- ylamino)-pyridin-4-yl]-benzonitril (0.09 g, 0.27 mmol) in trockenem DMF (2 mL) werden Cäsiumcarbonat (0.17 g, 0.54 mmol) und 2-Brom-ethyl-methylether (0.045 g, 0.325 mmol) gegeben. Das Reaktionsgemisch wird für 8 h auf 80°C erwärmt. Es wird Eis hinzugegeben und mit Essigester extrahiert (2 x 50 mL). Die organische Phase wird mit Wasser gewaschen (1 x 25 mL) und über Natriumsulfat getrocknet. Danach wird einrotiert. Das Rohprodukt wird durch Chromatographie gereinigt. Man erhält 5.8 mg des gewünschten Produktes als braunen Feststoff;
1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.31 (s, 1 H), 8.14 (d, J = 5.40 Hz, 1 H), 8.04 (d, J = 2.36 Hz, H), 7.97 (s, 1 H), 7.93 (dd, J = 2.40, 8.92 Hz, 1 H), 7.46 (d, J = 0.44 Hz, H), 7.34 (d, J = 8.96 Hz, 1 H), 6.94 (dd, J = 1.56, 5.44 Hz, 1 H), 6.85 (s, 1 H), 4.20 (t, J = 5.40 Hz, 2H), 4.06 (d, J = 7.04 Hz, 2H), 3.66 (t, J = 5.32 Hz, 2H), 3.22 (s, 3H), 1.24- 1.30 (m, 1 H), 0.60-0.62 (m, 2H), 0.38-0.40 (m, 2H);
LCMS: (Methode A) 390 (M+H), RT. 3.42 min;
HPLC: (Methode A) RT. 3.44 min.
Synthese von 2-Cvclopropylmethoxy-5-f2-(5-hvdroxymethyl-pyridin-2-ylaminoVpyridin- 4-yll-benzonitril ("A106")
Figure imgf000111_0001
Wie oben beschrieben für 2-Cyclopropylmethoxy-5-[2-(1H-pyrazol-4-ylamino)-pyridin- 4-yl]-benzonitril ("A104") erhält man 18.5 mg der gewünschten Verbindung mit 5-(2- Chlor-pyridin-4-yl)-2-cyclopropylmethoxy-benzonitril (0.2 g, 0.702 mmol) und (6- Amino-3-pyridinyl)-methanol (0.104 g, 0.843 mmol) als gelben Feststoff;
1H NMR (400 MHz, DMSO-d6): δ [ppm] 9.67 (s, 1H), 8.26 (d, J = 5.32 Hz, 1H), 8.17 (d, J = 1.92 Hz, 1 H), 8.08 (d, J = 2.40 Hz, 1 H), 7.97 (d, J = 2.40 Hz, 1 H), 7.93 (d, J = 1.00 Hz, 1 H), 7.78 (d, J = 8.56 Hz, 1 H), 7.62 (dd, J = 2.36, 8.58 Hz, 1 H), 7.38 (d, J = 9.00 Hz, 1 H), 7.19 (dd, J = 1.68, 5.36 Hz, 1H), 5.12 (t, J = 5.56 Hz, 1 H), 4.42 (d, J = 5.60 Hz, 2H), 4.08 (d, J = 7.00 Hz, 2H), 1.24-1.36 (m, 1H), 0.61-0.63 (m, 2H), 0.38-0.40 (m, 2H);
LCMS: (Methode B) 373 (M+H), RT. 5.46 min;
HPLC: (Methode B) RT. 9.92 min.
Synthese von fert-Butyl 4-(4-nitro-1/- -pyrazol-1-yl)piperidin-1-carboxylat
Figure imgf000111_0002
Zu einer Lösung von 4-Nitro-1H-pyrazole (1.5 g, 0.0132 mol) in THF (40 mL) werden 1-Boc-4-hydroxy piperidin (2.6 g, 0.0132 mol), Triphenylphosphin (4.1 g, 0.015 mol) und Di-tert-butylazodicarboxylat (3.9 g, 0.0172 mol) in Portionen bei 10-15°C
zugegeben. Die Reaktionsmischung wird bei Raumtemperatur für 48 h gerührt. Die Mischung wird einrotiert und das Rohmaterial chromatographiert. Man erhält 2.1 g eines weißen Feststoffs; 1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.94 (s,1H), 8.27 (s, 1 H), 4.49-4.41 (m, 1 H), 4.04-4.0 (m, 2H), 2.88 (bs, 2H), 2.03-2.00 (m, 2H), 1.84-1.78 (m, 2H), 1.40 (s, 9H).
Synthese von tert-Butyl 4-(4-amino-1H-pyrazol-1-yl)piperidin-1-carboxylat
Figure imgf000112_0001
Zu einer Lösung von tert-Butyl 4-(4-nitro-1H-pyrazol-1-yl)piperidin-1-carboxylat (2.1 g, 0.0040 mol) in Methanol (50 mL) gibt man Palladium auf Kohle (10 % w/w, 0.2 g) und hydriert bei Raumtemperatur für 3 h. Der Katalysator wird abfiltriert und die Lösung einrotiert. Der Rückstand wird durch Chromatographie gereinigt. Man erhält 1.1 g eines braunen Öls;
1H NMR (400 MHz, DMSO-d6): δ [ppm] 7.05 (d, J=0.8 Hz, 1 H ), 6.89 (d, J=0.8 Hz, 1 H), 4.14 (m, 1H), 3.99 (d, 2H), 3.84(d, 2H), 2.84 (bs, 2H), 1.90-1.87 (m, 2H), 1.70-1.61 (m, 2H), 1.40 (s ,9H);
tert-Butyl 4-(4-amino-1 H-pyrazol-1-yl)piperidin-1-carboxylat wird bei der Synthese von "A16" eingesetzt.
Synthese von 4-(3-[4-(3-Cvan-4-cvclopropylmethoxy-phenyl)-pyridin-2-ylamino]- pyrazol-1 -yl }-piperidin-1 -carbonsäure-tert-butylester
Figure imgf000112_0002
Die Herstellung erfolgt wie oben beschrieben für 2-Cyclopropylmethoxy-5-[2-(5- hydroxymethyl-pyridin-2-ylamino)-pyridin-4-yl]-benzonitril;
1H NMR (400 MHz, CDCI3): δ [ppm] 8.17 (s, 1H), 7.76 (d, J = 2.32 Hz, 1H), 7.68-7.71 (m, 2H), 7.53 (d, J = 0.36 Hz, 1 H), 7.02 (d, J = 8.84 Hz, 1 H), 6.83 (dd, J = 1.56, 5.46 Hz, 1 H), 6.66 (s, 1H), 6.40 (s, 1 H), 4.24-4.30 (m, 3H), 4.00 (d, J = 6.88 Hz, 2H), 2.85- 2.92 (m, 2H), 2.15-2.19 (m, 2H), 1.92-1.96 (m, 2H), 1.49 (s, 9H), 1.25-1.27 (m, 1H), 0.68-0.71 (m, 2H), 0.42-0.45 (m, 2H);
LCMS: (Methode A) 515 (M+H), RT. 4.43 min.
Synthese von 2-Cvclopropylmethoxy-5-i2-( 1 -piperidin-4-yl-1 H-pyrazol-3-ylamino)- pyridin-4-vn-benzonitril Α107")
Figure imgf000113_0001
Zu einer Lösung von 4-{3-[4-(3-Cyan-4-cyclopropylmethoxy-phenyl)-pyridin-2- ylamino]-pyrazol-1-yl}-piperidin-1-carbonsäure-tert-butylester (0.12 g, 0.23 mmol) in 1 ,4-Dioxan (10 mL) werden HCl in Dioxan (10 mL) zugegeben. Das Ganze wird bei Raumtemperatur für 6 h gerührt. Die Reaktionslösung wird einrotiert und mit 10% Natriumbicarbonat-Lösung basisch gestellt (20 mL). Es wird 10 min gerührt. Der Feststoff wird abfiltriert, mit Diethylether (20 mL) gewaschen und getrocknet. Man erhält 85.4 mg des gewünschten Materials als braunen Feststoff;
1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.82 (s, 1 H), 8.14 (d, J = 5.40 Hz, 1H), 8.04 (d, J = 2.28 Hz, 1 H), 7.98 (s, 1 H), 7.93 (dd, J = 2.28, 8.88 Hz, 1 H), 7.46 (s, 1 H), 7.34 (d, J = 8.96 Hz, 1H), 6.93 (dd, J = 1.24, 5.38 Hz, 1H), 6.86 (s, 1 H), 4.07-4.15 (m, 1H), 4.06 (d, J = 7.04 Hz, 2H), 3.00-3.03 (m, 2H), 2.56-2.59 (m, 2H), 1.90-1.92 (m, 2H), 1.69- 1.79 (m, 2H), 1.25-1.32 (m, 1 H), 0.59-0.63 (m, 2H), 0.38-0.40 (m, 2H);
LCMS: (Methode A) 415 (M+H), RT. 3.00 min;
HPLC: (Methode A) RT. 3.00 min.
Synthese von 5-Morpholin-4-yl-pyridin-2-ylamin
Figure imgf000113_0002
Eine Lösung von 2-Amino-5-brom-pyridin (2.0 g, 0.011 mol) in t-Butanol (5 mL) wird mit Stickstoff für 5 min entgast. Es wird Morpholin (1.4 g, 0.016 mol), Davephos (0.4 g, 0.001 mol) und Tris(dibenzylideneacetone)dipalladium(0) (0.25 g, 0.027 mmol) zugegeben. Dann gibt man eine 1.6M Lösung von Lithium-bis(trimethylsilyl)amid in THF (5.51 g, 0.033 mol) tropfenweise zu. Die Reaktionsmischung wird in der
Mikrowelle für 2 h bei 150°C bestrahlt. Es wird Wasser hinzugegeben (30 mL) und mit Essigester extrahiert (2 x 100 mL). Die organischen Phasen werden mit Wasser (1 x 100 mL) gewaschen und über Natriumsulfat getrocknet. Das Rohmaterial wird ohne Reinigung in der nächsten Stufe eingesetzt.
5-Morpholin-4-yl-pyridin-2-ylamin wird bei der Synthese von "A7" eingesetzt.
Synthese von 2-Cvclopropylmethoxy-5-f2-(5-morpholin-4-yl-pyridin-2-ylamino)-Dyridin- 4-vn-benzonitril ΓΑ108")
Figure imgf000114_0001
Die Herstellung erfolgt wie oben beschrieben für 2-Cyclopropylmethoxy-5-[2-(5- hydroxymethyl-pyridin-2-ylamino)-pyridin-4-yl]-benzonitril. Man erhält 50.9 mg eines braunen Feststoffs in 16% Ausbeute;
1H NMR (400 MHz, DMSO-d6): δ [ppm] 9.42 (s, 1H), 8.21 (d, J = 5.28 Hz, 1 H), 8.06 (d, J = 2.28 Hz, 1 H), 7.93-7.94 (m, 2H), 7.82 (s, 1 H), 7.73 (d, J = 9.04 Hz, 1 H), 7.36-7.42 (m, 2H), 7.12 (dd, J = 1.48, 5.36 Hz, 1 H), 4.07 (d, J = 7.00 Hz, 2H), 3.74 (t, J = 4.92 Hz, 4H), 3.05 (t, J = 4.76 Hz, 4H), 1.24-1.29 (m, 1 H), 0.59-0.64 (m, 2H), 0.37-0.40 (m, 2H);
LCMS: (Methode A) 428 (M+H), RT. 3.98 min;
HPLC: (Methode A) RT. 3.93 min.
Synthese von 2-Cyclobutylmethoxy-5-f2-(1 H-pyrazol-4-ylamino)-pyridin-4-yll- benzonitril ("A109")
Figure imgf000115_0001
Herstellung wie bei 2-Cyclopropylmethoxy-5-[2-(1H-pyrazol-4-ylamino)-pyridin-4-yl]- benzonitril ("A104") beschrieben. Man erhält 20.4 mg eines braunen Feststoffs (41 % Ausbeute);
1H NMR (400 MHz, DMSO-d6): δ [ppm] 12.45 (bs, 1 H), 8.77 (s, 1H), 8.13 (d, J = 5.36 Hz, 1H), 8.04 (d, J = 2.16 Hz, 1 H), 7.92-7.95 (m, 2H), 7.52 (s, 1H), 7.37 (d, J = 8.92 Hz, 1 H), 6.92 (d, J = 5.36 Hz, 1H), 6.85 (s, 1 H), 4.17 (d, J = 6.36 Hz, 2H), 2.50-2.80 (m, 1 H), 2.06-2.10 (m, 2H), 1.90-1.96 (m, 4H);
LCMS: (Methode A) 346 (M+H), RT. 3.69 min;
HPLC: (Methode A) RT. 3.69 min.
Synthese von 2-Cvclobutylmethoxy-5-(2-ri-(2-methoxy-ethyl)-1 H-pyrazol-4-ylamino1- pyridin-4-yl)-benzonitril ("A110"):
Figure imgf000115_0002
Herstellung wie beschrieben für 2-Cyclopropylmethoxy-5-{2-[1-(2-methoxy-ethyl)-1 H- pyrazol-4-ylamino]-pyridin-4-yl}-benzonitril ("A105"); Ausbeute 18 % (18.4 mg, gelber Feststoff);
1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.82 (s, 1 H), 8.14 (d, J = 5.40 Hz, 1 H), 8.04 (d, J = 2.40 Hz, H), 7.93-7.97 (m, 2H), 7.46 (d, J = 0.40 Hz, 1 H), 7.37 (d, J = 8.96 Hz, 1 H), 6.94 (dd, J = 1.56, 5.42 Hz, 1H), 6.85 (d, J = 0.84 Hz, 1H), 4.17-4.22 (m, 4H), 3.62-3.68 (m, 2H), 3.23 (s, 3H), 2.73-2.80 (m, 1 H), 2.06-2.11 (m, 2H), 1.86-1.94 (m, 4H);
LCMS: (Methode A) 404 (M+H), RT. 3.91 min;
HPLC: (Methode A) RT. 3.89 min. Synthese von 2-CvclobuWlmethoxy-5-f2-(5-hvdroxymethyl-pyridin^
4-vn-benzonitril ("A111"):
Figure imgf000116_0001
Herstellung wie für 2-Cyclopropylmethoxy-5-[2-(5-hydroxymethyl-pyridin-2-ylamino)- pyridin-4-yl]-benzonitril ("A106") beschrieben; Ausbeute: 32 % (87.0 mg, gelber Feststoff);
H NMR (400 MHz, DMSO-d6): δ [ppm] 9.69 (s, 1 H), 8.26 (d, J = 5.32 Hz, 1 H), 8.17 (d, J = 1.88 Hz, H), 8.07 (d, J = 2.36 Hz, 1 H), 7.98 (dd, J = 2.36, 8.88 Hz, 1 H), 7.93 (d, J = 0.88 Hz, 1 H), 7.78 (d, J = 8.52 Hz, 1 H), 7.62 (dd, J = 2.28, 8.56 Hz, 1 H), 7.41 (d, J = 8.96 Hz, 1H), 7.19 (dd, J - 1.60, 5.36 Hz, 1H), 5.12 (t, J = 5.56 Hz, 1H), 4.42 (d, J = 5.56 Hz, 2H), 4.19 (d, J = 6.44 Hz, 2H), 2.73-2.79 (m, 1 H), 2.09-2.11 (m, 2H), 1.89- 1.94 (m, 4H);
LCMS: (Methode A) 387 (M+H), RT. 4.02 min;
HPLC: (Methode A) RT. 3.99 min.
Synthese von 4-(4-[4-(3-Cvan-4-cvclobutylmethoxy-phenyl)-pyridin-2-ylamino1-Dyrazol- 1 -ylVpiperidin-1 -carbonsäure-tert-butylester
Figure imgf000116_0002
Die Herstellung erfolgt wie bei 4-{3-[4-(3-Cyan-4-cyclopropylmethoxy-phenyl)-pyridin- 2-ylamino]-pyrazol-1-yl}-piperidin-1 -carbonsäure-tert-butylester beschrieben;
Ausbeute: 27 % (0.1g, braune Festsubstanz);
1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.18 (s, 1 H), 7.75 (d, J = 2.32 Hz, 1 H), 7.70 (dd, J = 2.40, 8.74 Hz, 2H), 7.53 (d, J = 0.40 Hz, 1 H), 7.03 (d, J = 8.84 Hz, 1 H), 6.83 (dd, J = 1.56, 5.40 Hz, 1 H), 6.66 (d, J = 0.88 Hz, 1 H), 6.35 (b, 1 H), 4.26-4.27 (m, 3H), 4.09 (d, J = 6.28 Hz, 2H), 2.79-2.83 (m, 3H), 2.00-2.20 (m, 4H), 1.92-2.00 (m, 6H), 1.49 (s, 9H);
LCMS: (Methode A) 529 (M+H), RT. 4.78 min.
Synthese von 2-Cvclobutylmethoxy-5-r2-(1 -piperidin-4-yl-1 H-pyrazol-4-ylamino)- pyridin-4-yll-benzonitril f"A112")
Figure imgf000117_0001
Die Herstellung erfolgt wie bei 2-Cyclopropylmethoxy-5-[2-(1-piperidin-4-yl-1 H-pyrazol- 3-ylamino)-pyridin-4-yl]-benzonitril ("A107") beschrieben; Ausbeute: 92 % (41.0 mg, brauner Feststoff);
1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.82 (s, 1H), 8.14 (d, J = 5.36 Hz, 1 H), 8.04 (d, J = 2.00 Hz, 1 H), 7.93-7.98 (m, 2H), 7.46 (s, 1 H), 7.37 (d, J = 8.92 Hz, 1 H), 6.93 (d, J = 4.64 Hz, 1 H), 6.86 (s, 1 H), 4.12-4.18 (m, 4H), 3.00-3.03 (m, 2H), 2.75-2.79 (m, 1 H), 2.56-2.59 (m, 1 H), 2.06-2.10 (m, 2H), 1.86-1.96 (m, 6H), 1.73-1.78 (m, 2H);
LCMS: (Methode A) 429.2 (M+H), RT. 3.40 min;
HPLC: (Methode A) RT. 3.40 min.
Synthese von 2-Cvclobutylmethoxy-5-r2-(5-morpholin-4-yl-pyridin-2-ylamino)-pyridin-4- yll-henzonitril ΓΑ113")
Figure imgf000117_0002
Die Herstellung erfolgt wie bei 2-Cyclopropylmethoxy-5-[2-(5-morpholin-4-yl-pyridin-2- ylamino)-pyridin-4-yl]-benzonitril ("A108") beschrieben; Ausbeute: 16.5 % (48.0 mg, gelber Feststoff); 1H NMR (400 MHz, DMSO-d6): δ [ppm] 9.44 (s, 1H), 8.21 (d, J = 5.36 Hz, 1 H), 8.05 (d,
J = 2.36 Hz, H), 7.93-7.98 (m, 2H), 7.82 (d, J = 0.80 Hz, 1 H), 7.73 (d, J = 9.08 Hz,
1 H), 7.38-7.42 (m, 2H), 7.12 (dd, J = 1.60, 5.36 Hz, 1 H), 4.19 (dd, J = 6.44, Hz, 1 H),
3.74 (t, J = 4.96 Hz, 4H), 3.05 (t, J = 4.84 Hz, 4H), 2.73-2.79 (m, 1 H), 2.09-2.10 (m,
2H), 1.88-1.94 (m, 4H);
LCMS: (Methode A) 442 (M+H), RT 4.33 min;
HPLC: (Methode A) RT. 4.31 min.
Synthese von 2-(1-Acetyl-piperidin-4-ylmethoxy)-5-(2-ri-(2-methoxy-ethyl)-1 H-pyrazol- 4-ylamino1-pyridin-4-yl)-benzonitril ("A114"):
Figure imgf000118_0001
Die Herstellung erfolgt analog wie bei 2-Cyclopropylmethoxy-5-{2-[1-(2-methoxy- ethyl)-1 H-pyrazol-4-ylamino]-pyridin-4-yl}-benzonitril ("A110") beschrieben;
Ausbeute: 16 % (5.7 mg, brauner Feststoff);
1H NMR (400 MHz, CD3OD): δ [ppm] (s, 1 H),8.12 (d, J = 5.36 Hz, 1H), 7.89-7.95 (m, 3H), 7.54 (d, J = 0.52 Hz, 1 H), 7.27 (d, J = 8.72 Hz, 1 H), 6.91 (dd, J = 1.56, 5.48 Hz, 1H), 6.83 (d, J = 0.88 Hz, 1 H), 4.58-4.62 (m, 1 H), 4.27-4.29 (m, 2H), 3.99-4.09 (m, 3H), 3.75 (t, J = 5.20 Hz, 2H), 3.29-3.28 (m, 3H), 3.16-3.23 (m, 1H), 2.71-2.72 (m, 1 H), 2.13-2.24 (m, 1 H), 2.12 (s, 3H), 1.91-2.03 (m, 2H), 1.29-1.46 (m, 2H);
LCMS: (Methode A) 475 (M+H), RT 2.81 min;
HPLC: (Methode A) RT. 2.75 min.
Synthese von 2-(1-Acetyl-piperidin-4-ylmethoxy)-5-f2-(5-hvdroxymethyl-pyridin-2- ylamino)-Pyridin-4-vn-benzonitril ΓΑ115")
Figure imgf000119_0001
Die Herstellung erfolgt analog wie bei 2-Cyclopropylmethoxy-5-[2-(5-hydroxy- methyl-pyridin-2-ylamino)-pyridin-4-yl]-benzonitril ("A106") beschrieben;
Ausbeute: 7.2 % (16.9 mg, gelber Feststoff);
1H NMR (400 MHz, DMSO-d6): δ [ppm] 9.68 (s, 1H), 8.26 (d, J = 5.32 Hz, 1H), 8.17 (d, J = 2.00 Hz, 1H), 8.08 (d, J = 2.32 Hz, 1H), 7.98 (dd, J = 2.32, 8.88 Hz, 1 H), 7.93 (s, 1 H), 7.78 (d, J = 8.52 Hz, 1 H), 7.62 (dd, J = 2.16, 8.56 Hz, 1H), 7.42 (d, J = 8.96 Hz, 1 H), 7.19 (dd, J = 1.32, 5.34 Hz, 1H), 5.11 (t, J = 5.56 Hz, 1H), 4.40-4.43 (m, 3H), 4.06-4.13 (m, 2H), 3.85-3.88 (m, 1H), 3.04-3.10 (m, 1 H), 2.57-2.66 (m, 1H), 2.06-2.11 (m, 1 H), 1.98 (s, 3H), 1.77-1.85 (m, 2H), 1.08-1.30 (m, 2H);
LCMS: (Methode A) 458 (M+H), RT 2.93 min;
HPLC: (Methode A) RT. 2.89 min.
Synthese von 4-(4-(4 4-(1 -Acetyl-piperidin-4-ylmethoxy)-3-cvano-phenvn-pyridin-2- ylamino)-pyrazol-1-vn-piperidin-1-carbonsäure-tert-butylester
Figure imgf000119_0002
Die Herstellung erfolgt wie bei der Synthese von 4-{3-[4-(3-Cyan-4-cyclopropyl- methoxy-phenyl)-pyridin-2-ylamino]-pyrazol-1-yl}-piperidin-1-carbonsäure-tert- butylester beschrieben; Ausbeute: 37.0 % (0.12 g, brauner Feststoff);
1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.81 (s, 1 H), 8.14 (d, J = 5.44 Hz, 1 H), 8.05 (s, 1H),8.01 (s, 1H), 7.94 (dd, J = 2.36, 8.90 Hz, 1 H), 7.48 (d, J = 0.36 Hz, 1 H), 7.38 (d, J = 8.96 Hz, 1 H), 6.93 (dd, J = 1.52, 5.44 Hz, 1H), 6.86 (s, 1H), 4.21-4.45 (m, 2H), 4.02- 4.09 (m, 4H), 3.82-3.84 (m, 1H), 2.98-3.04 (m, 1H), 2.80 (s, 1 H), 2.56-2.57 (m, 1H), 1.81-2.05 (m, 4H), 1.74-1.81 (m, 4H), 1.41 (s, 9H), 1.15-1.26 (m, 2H); LCMS: (Methode A) 600 (M+H), RT 3.41 min.
Synthese von 2-n-Acetyl-piperidin-4-ylmethoxy)-5-f2-(1-piperidin-4-yl- H-pyrazol-4- ylami -Pyridin-4-vn-benzonitril ("A 16")
Figure imgf000120_0001
Die Herstellung erfolgt wie bei 2-Cyclopropylmethoxy-5-[2-(1-piperidin-4-yl-1 H-pyrazol- 3-ylamino)-pyridin-4-yl]-benzonitril ("A107") beschrieben; Ausbeute: 18 % (17.3 mg, brauner Feststoff);
H NMR (400 MHz, DMSO-d6): δ [ppm] 8.81 (s, 1H), 8.14 (d, J = 5.40 Hz, 1 H), 8.05 (d, J = 2.32 Hz, 1 H), 7.98 (s, 1 H), 7.94 (dd, J = 2.32, 8.90 Hz, 1 H), 7.45 (s, 1 H), 7.38 (d, J = 8.96 Hz, 1 H), 6.93 (dd, J = 1.32, 5.42 Hz, 1 H), 6.85 (s, 1 H), 4.39-4.43 (m, 1 H), 4.04- 4.15 (m, 3H), 3.84-3.88 (m, 1H), 3.00-3.09 (m, 3H), 2.54-2.60 (m, 3H), 2.05-2.08 (m, 1 H), '1.99 (s, 3H), 1.72-1.92 (m, 6H), 1.12-1.30 (m, 2H);
LCMS: (Methode A) 500.2 (M+H), RT 2.55 min;
HPLC: (Methode A) RT. 2.44 min.
Synthese von 2-(1-Acetyl-piperidin-4-ylmethoxy)-5-[2-(5-morpholin-4-yl-pyridin-2- ylamino -pyridin-4-yll-benzonitril ("A117")
Figure imgf000120_0002
Die Herstellung erfolgt in Analogie zu 2-Cyclopropylmethoxy-5-[2-(5-morpholin-4-yl- pyridin-2-ylamino)-pyridin-4-yl]-benzonitril ("A113"); Ausbeute: 3.5% (4.6 mg, gelber Feststoff);
1H NMR (400 MHz, DMSO-d6): δ [ppm]9.44 (s, 1 H), 8.21 (d, J = 5.28 Hz, 1H), 8.06 (d, J = 2.36 Hz, 1H), 7.93-7.98 (m, 2H), 7.82 (s, 1 H), 7.73 (d, J = 9.08 Hz, 1 H), 7.41 (dd, J = 3.16, 9.06 Hz, 2H), 7.12 (dd, J = 1.64, 5.38 Hz, 1H), 4.40-4.43 (m, 1H), 4.05-4.13 (m, 2H), 3.85-3.88 (m, 2H), 3.74 (t, J = 4.88 Hz, 4H), 3.04-3.09 (m, 4H), 2.55-2.61 (m, 1 H), 2.03-2.11 (m, 1 H), 1.99 (s, 3H), 1.77-1.85 (m, 2H), 1.11-1.35 (m, 2H);
LCMS: (Methode A) 513 (M+H), RT 3.31 min;
HPLC: (Methode A) RT. 3.46 min.
IC50-Werte von erfindungsgemäßen TBK1- und ΙΚΚε-hemmenden Verbindungen
Figure imgf000121_0001
Figure imgf000122_0001
Figure imgf000123_0001
Figure imgf000124_0001
Die nachfolgenden Beispiele betreffen Arzneimittel: Beispiel A: Injektionsgläser
Eine Lösung von 100 g eines erfindungsgemäßen Wirkstoffes und 5 g Dinatrium- hydrogenphosphat wird in 3 I zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.
Beispiel B: Suppositorien
Man schmilzt ein Gemisch von 20 g eines erfindungsgemäßen Wirkstoffes mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg Wirkstoff.
Beispiel C: Lösung
Man bereitet eine Lösung aus 1 g eines erfindungsgemäßen Wirkstoffes, 9,38 g NaH2P04 · 2 H2O, 28,48 g Na2HP04 · 12 H2O und 0,1 g Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 I auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.
Beispiel D: Salbe
Man mischt 500 mg eines erfindungsgemäßen Wirkstoffes mit 99,5 g Vaseline unter aseptischen Bedingungen.
Beispiel E: Tabletten Ein Gemisch von 1 kg Wirkstoff, 4 kg Lactose, 1 ,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 0 mg Wirkstoff enthält.
Beispiel F: Dragees
Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.
Beispiel G: Kapseln
2 kg Wirkstoff werden in üblicher Weise in Hartgelatinekapseln gefüllt, so daß jede Kapsel 20 mg des Wirkstoffs enthält.
Beispiel H: Ampullen
Eine Lösung von 1 kg eines erfindungsgemäßen Wirkstoffes in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 0 mg Wirkstoff.

Claims

Patentansprüche
1. Verbindungen der Formel I
Figure imgf000127_0001
worin
X CH oder N,
Y Het^diyl,
R1 0(CH2)nHet\ NH(CH2)nHet1, OA, NHA, NA2) O(CH2)nCyc oder
NH(CH2)nCyc,
R2 H, A, Ar1, (CH2)nHet3, CN, (CH2)nCyc, CONH2, COOA, (CH2)nOH,
(CH2)nOA, (CH2)nNH2, (CH2)nNHA oder (CH2)nNA2l
Ar1 unsubstituiertes oder ein-, zwei- oder dreifach durch Hai, A, OH, OA,
COOH, COOA, CN, CONH2, NHSO2A, NO2, NH2> NHA, NA2, SO2NH2, SO2NHA, SO2NA2, CHO und/oder SO2A substituiertes Phenyl,
Het1 unsubstituiertes oder einfach durch OH, COOA, CONH2, COA und/oder A substituiertes Dihydropyrrolyl, Pyrrolidinyl, Azetidinyl, Tetrahydro- imidazolyl, Dihydropyrazolyl, Tetra hydropyrazolyl, Dihydropyridyl, Tetrahydropyridyl, Piperidinyl, Morpholinyl, Hexahydropyridazinyl, Hexahydropyrimidinyl, [1 ,3]Dioxolanyl, Tetrahydropyranyl oder
Piperazinyl,
Het2 unsubstituiertes oder einfach durch Hai, A, OH, =O, OA, CN, COOA,
COOH, CONH2 und/oder NHCOA substituiertes Furyl, Thienyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isoxazolyl, Thiazolyl, Triazolyl, Pyridyl, Pyrimidyl, Pyridazinyl, Pyrazinyl, Indolyl, Isoindolyl, Benzimidazolyl, Indazolyl, Chinolyl, 1 ,3-Benzodioxolyl, Benzothiophenyl, Benzofuranyl, Imidazopyridyl, 5,6,7,8-Tetrahydro-pyrido[4,3-d]pyrimidin-2-yl oder Furo[3,2-b]pyridyl, Het3 unsubstituiertes oder ein- oder zweifach durch Hai, A, OH, OA, CN, COOA, COOH, CONH2, CONHA, CONA2, COA, COCH2NH2,
COCH2NHA, COCH2NA2, (CH2)nCyc und/oder NHCOA substituiertes Dihydropyrrolyl, Pyrrolidinyl, Azetidinyl, Tetrahydroimidazolyl,
Tetrahydrofuranyl, Dihydropyrazolyl, Tetra hydropyrazolyl, Dihydropyridyl, Tetrahydropyridyl, Dihydropyranyl, Tetrahydropyranyl, Piperidinyl, Morpholinyl, Hexahydropyridazinyl, Hexahydropyrimidinyl,
[1 ,3]Dioxolanyl, Piperazinyl, Furyl, Thienyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Oxazolyl, Isoxazolyl, Thiazolyl, Triazolyl, Pyridyl, Pyrimidyl, Pyridazinyl, Indolyl, Isoindolyl, Benzimidazolyl, Indazolyl, Chinolyl, 1 ,3-Benzodioxolyl, Benzothiophenyl, Benzofuranyl, Imidazopyridyl oder Furo[3,2-b]pyridyl,
A unverzweigtes oder verzweigtes Alkyl mit 1- 0 C-Atomen, worin eine oder zwei nicht benachbarte CH- und/oder CH2-Gruppen durch N-, O- und/oder S-Atomen ersetzt sein können und/oder auch 1-7 H-Atome durch F und/oder Cl ersetzt sein können,
Cyc unsubstituiertes oder einfach durch CN, (CH2)nOH oder A
substituiertes cyclisches Alkyl mit 3, 4, 5, 6 oder 7 C-Atomen,
Hai F, Cl, Br oder l,
n 0, 1 , 2, 3 oder 4,
bedeuten,
sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
2. Verbindungen gemäß Anspruch 1 , worin
R O(CH2)nHet1 oder O(CH2)nCyc bedeutet,
sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
3. Verbindungen gemäß Anspruch 1 oder 2, worin
Ar1 unsubstituiertes oder ein-, zwei- oder dreifach durch A substituiertes
Phenyl bedeutet, sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
4. Verbindungen gemäß einem oder mehreren der Ansprüche 1-3, worin Het unsubstituiertes oder einfach durch COA substituiertes Pyrrolidinyl,
Piperidinyl, Morpholinyl oder Tetrahydropyranyl,
bedeutet,
sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
5. Verbindungen gemäß einem oder mehreren der Ansprüche 1-4, worin Het2 unsubstituiertes oder einfach durch =0 oder OA substituiertes Thienyl,
Pyrazolyl, Oxazolyl, Isoxazolyl, Pyridyl, Pyrazinyl, Pyridazinyl, Thiazolyl, Pyrimidyl, Indolyl, 5,6,7, 8-Tetrahydro-pyrido[4,3-d]pyrimidin-2-yl oder Benzofuranyl,
bedeutet,
sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
6. Verbindungen gemäß einem oder mehreren der Ansprüche 1-5, worin Het3 unsubstituiertes oder einfach durch A substituiertes Pyrrolidinyl,
Azetidinyl, Tetrahydrofuranyl, Dihydropyranyl, Tetrahydropyranyl, Dihydropyridyl, Tetrahydropyridyl, Piperidinyl, Piperazinyl, Morpholinyl, Furyl, Thienyl, Pyrazolyl, Benzofuranyl oder Pyridyl,
bedeutet,
sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
7. Verbindungen gemäß einem oder mehreren der Ansprüche 1-6, worin
A unverzweigtes oder verzweigtes Alkyl mit 1-8 C-Atomen bedeutet, worin eine oder zwei nicht benachbarte CH- und/oder CH2-Gruppen durch N- und/oder O-Atome ersetzt sein können und/oder auch 1-7 H-Atome durch F ersetzt sein können,
bedeutet,
sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
8. Verbindungen gemäß einem oder mehreren der Ansprüche 1-7, worin X CH oder N,
Y He^-diyl,
R1 0(CH2)nHet1 oder 0(CH2)nCyc,
R2 H, A, Ar1, (CH2)nHet3, CN, (CH2)nCyc, CONH2> COOA, (CH2)nOH,
(CH2)nOA, (CH2)nNH2, (CH2)nNHA oder (CH2)nNA2,
Ar1 unsubstituiertes oder ein-, zwei- oder dreifach durch A substituiertes
Phenyl,
Het1 unsubstituiertes oder einfach durch COA substituiertes Pyrrolidinyl,
Piperidinyl, Morpholinyl oder Tetrahydropyranyl,
Het2 unsubstituiertes oder einfach durch =O oder OA substituiertes Thienyl,
Pyrazolyl, Oxazolyl, Isoxazolyl, Pyridyl, Pyrazinyl, Pyridazinyl, Thiazolyl,
Pyrimidyl, Indolyl, 5,6,7,8-Tetrahydro-pyrido[4,3-d]pyrimidin-2-yl oder
Benzofuranyl,
Het3 unsubstituiertes oder einfach durch A substituiertes Pyrrolidinyl,
Azetidinyl, Tetra hydrofuranyl, Dihydropyranyl, Tetrahydropyranyl, Dihydropyridyl, Tetrahydropyridyl, Piperidinyl, Piperazinyl, Morpholinyl, Furyl, Thienyl, Pyrazolyl, Benzofuranyl oder Pyridyl,
A unverzweigtes oder verzweigtes Alkyl mit 1-8 C-Atomen bedeutet, worin eine oder zwei nicht benachbarte CH- und/oder CH2-Gruppen durch N- und/oder O-Atome ersetzt sein können und/oder auch 1-7 H-Atome durch F ersetzt sein können,
Cyc unsubstituiertes oder einfach durch CN, (CH2)nOH oder A
substituiertes cyclisches Alkyl mit 3, 4, 5, 6 oder 7 C-Atomen,
n 0, 1 , 2, 3 oder 4
bedeuten, sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
9. Verbindungen gemäß Anspruch 1 , ausgewählt aus der Gruppe
Figure imgf000131_0001
Figure imgf000132_0001
Figure imgf000133_0001
Figure imgf000134_0001
Figure imgf000135_0001
Figure imgf000136_0001
Figure imgf000137_0001
Figure imgf000138_0001
Figure imgf000139_0001
sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.
10. Verfahren zur Herstellung von Verbindungen der Formel I nach den Ansprüchen 1-9 sowie ihrer pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, dadurch gekennzeichnet, daß man a) eine Verbindung der Formel II
R2-Y-NH2 II worin Y und R2 die in Anspruch 1 angegebenen Bedeutungen haben, mit einer Verbindung der Formel III
Figure imgf000140_0001
worin R1 die in Anspruch 1 angegebene Bedeutung hat und
L F, Cl, Br oder I bedeutet, umsetzt, und/oder
eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.
11. Arzneimittel enthaltend mindestens eine Verbindung der Formel I gemäß Anspruch 1-9 und/oder ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, sowie gegebenenfalls Träger- und/oder Hilfsstoffe.
12. Verbindungen gemäß Anspruch 1-9 sowie ihre pharmazeutisch verwendbaren Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, zur Verwendung für die Behandlung von Krebs, septischem Schock, primärem Offenwinkelglaukom (POAG), Hyperplasie, Atherosklerose, Retinopathie, Osteoarthritis, Endometriose, chronischer Entzündung,
neurodegenerativen Erkrankungen, rheumatoide Arthritis (RA), systemischer Lupus erythematosus (SLE), Sjörgrens Syndrom, Aicardi-Goutieres Syndrom Lupus Chilblain, retinale Vasculopathie, cerebrale Leukodystrophie (RVCL), systemische Sklerosis, Myositis, Psoriasis, chronisch obstruktive pulmonare Krankheit (CPD), endzündliche Darmkrankheit (IBD), Fettsucht, Insulinresistenz, Typ 2 Diabetes (NIDDM) und/oder metabolisches Syndrom.
13. Verbindungen der Formel I gemäß Anspruch 1-9 und/oder ihre physiologisch unbedenklichen Salze, Tautomere und Stereoisomere zur Verwendung für die Behandlung von Tumoren, wobei eine therapeutisch wirksame Menge einer Verbindung der Formel I in Kombination mit einer Verbindung aus der Gruppe 1) Östrogenrezeptormodulator, 2) Androgenrezeptormodulator, 3) Retinoidrezeptormodulator, 4) Zytotoxikum, 5) antiproliferatives Mittel, 6) Prenyl- Proteintransferasehemmer, 7) HMG-CoA-Reduktase-Hemmer, 8) HlV-Protease- Hemmer, 9) Reverse-Transkriptase-Hemmer sowie 10) weitere Angiogenese- Hemmer verabreicht wird.
14. Verbindungen der Formel I gemäß Anspruch 1-9 und/oder ihre physiologisch unbedenklichen Salze, Tautomere und Stereoisomere zur Verwendung für die Behandlung von Tumoren, wobei eine therapeutisch wirksame Menge einer Verbindung der Formel 1 in Kombination mit Radiotherapie und einer Verbindung aus der Gruppe 1) Östrogenrezeptormodulator, 2) Androgenrezeptormodulator, 3) Retinoidrezeptormodulator, 4) Zytotoxikum, 5) antiproliferatives Mittel, 6) Prenyl-Proteintransferasehemmer, 7) HMG-CoA- Reduktase-Hemmer, 8) HIV-Protease-Hemmer, 9) Reverse-Transkriptase- Hemmer sowie 10) weitere Angiogenese-Hemmer verabreicht wird.
PCT/EP2012/003449 2011-09-09 2012-08-13 Benzonitrilderivate als kinasehemmer WO2013034238A1 (de)

Priority Applications (22)

Application Number Priority Date Filing Date Title
JP2014528879A JP6060163B2 (ja) 2011-09-09 2012-08-13 キナーゼインヒビターとしてのベンゾニトリル誘導体
CN201280043591.XA CN103930416B (zh) 2011-09-09 2012-08-13 作为激酶抑制剂的苄腈衍生物
CA2848148A CA2848148C (en) 2011-09-09 2012-08-13 Benzonitrile derivatives as kinase inhibitors
MX2014002683A MX344335B (es) 2011-09-09 2012-08-13 Derivados de benzonitrilo como inhibidores de cinasa.
EP12747896.4A EP2753615B1 (de) 2011-09-09 2012-08-13 Benzonitrilderivate als kinasehemmer
KR1020147008982A KR101985984B1 (ko) 2011-09-09 2012-08-13 키나아제 저해제로서의 벤조니트릴 유도체
IN769KON2014 IN2014KN00769A (de) 2011-09-09 2012-08-13
BR112014005226A BR112014005226A2 (pt) 2011-09-09 2012-08-13 derivados de benzonitrila como inibidores de cinase
EA201400333A EA025038B1 (ru) 2011-09-09 2012-08-13 Бензонитрильные производные в качестве ингибиторов киназ
US14/342,911 US8969335B2 (en) 2011-09-09 2012-08-13 Benzonitrile derivatives as kinase inhibitors
ES12747896.4T ES2644128T3 (es) 2011-09-09 2012-08-13 Derivados de benzonitrilo como inhibidores de quinasa
RS20171056A RS56481B1 (sr) 2011-09-09 2012-08-13 Derivati benzonitrila kao inhibitori kinaza
SG2014015234A SG2014015234A (en) 2011-09-09 2012-08-13 Benzonitrile derivatives as kinase inhibitors
PL12747896T PL2753615T3 (pl) 2011-09-09 2012-08-13 Pochodne benzonitrylowe jako inhibitory kinazowe
AU2012306746A AU2012306746B2 (en) 2011-09-09 2012-08-13 Benzonitrile derivatives as kinase inhibitors
LTEP12747896.4T LT2753615T (lt) 2011-09-09 2012-08-13 Benzonitrilo dariniai kaip kinazės inhibitoriai
SI201231093T SI2753615T1 (sl) 2011-09-09 2012-08-13 Benzonitrilni derivati kot zaviralci kinaze
DK12747896.4T DK2753615T3 (en) 2011-09-09 2012-08-13 BENZONITRIL DERIVATIVES AS KINASE INHIBITORS
IL231382A IL231382A (en) 2011-09-09 2014-03-06 History of benzonitrile, their preparation and medications containing them
ZA2014/02561A ZA201402561B (en) 2011-09-09 2014-04-08 Benzonitrile derivatives as kinase inhibitors
HK15100368.7A HK1199880A1 (en) 2011-09-09 2015-01-14 Benzonitrile derivatives as kinase inhibitors
HRP20171296TT HRP20171296T1 (hr) 2011-09-09 2017-08-28 Derivati benzonitrila kao inhibitori kinaze

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011112978A DE102011112978A1 (de) 2011-09-09 2011-09-09 Benzonitrilderivate
DE102011112978.6 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013034238A1 true WO2013034238A1 (de) 2013-03-14

Family

ID=46679243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/003449 WO2013034238A1 (de) 2011-09-09 2012-08-13 Benzonitrilderivate als kinasehemmer

Country Status (28)

Country Link
US (1) US8969335B2 (de)
EP (1) EP2753615B1 (de)
JP (1) JP6060163B2 (de)
KR (1) KR101985984B1 (de)
CN (1) CN103930416B (de)
AR (1) AR087807A1 (de)
AU (1) AU2012306746B2 (de)
BR (1) BR112014005226A2 (de)
CA (1) CA2848148C (de)
DE (1) DE102011112978A1 (de)
DK (1) DK2753615T3 (de)
EA (1) EA025038B1 (de)
ES (1) ES2644128T3 (de)
HK (1) HK1199880A1 (de)
HR (1) HRP20171296T1 (de)
HU (1) HUE036774T2 (de)
IL (1) IL231382A (de)
IN (1) IN2014KN00769A (de)
LT (1) LT2753615T (de)
MX (1) MX344335B (de)
NO (1) NO2753615T3 (de)
PL (1) PL2753615T3 (de)
PT (1) PT2753615T (de)
RS (1) RS56481B1 (de)
SG (1) SG2014015234A (de)
SI (1) SI2753615T1 (de)
WO (1) WO2013034238A1 (de)
ZA (1) ZA201402561B (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174780A1 (en) * 2012-05-22 2013-11-28 F. Hoffmann-La Roche Ag Substituted dipyridylamines and uses thereof
WO2015187684A1 (en) 2014-06-03 2015-12-10 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
WO2016057338A1 (en) * 2014-10-06 2016-04-14 Takeda Pharmaceutical Company Limited Heteroarylamide inhibitors of tbk1
US20160254481A1 (en) * 2014-09-16 2016-09-01 Shenzhen China Star Optoelectronics Technology Co., Ltd. An encapsulation method of OLED and a structure of OLED
US9433622B2 (en) 2013-02-21 2016-09-06 Case Western Reserve University Pyrimidine compounds useful in the treatment of diseases mediated by IKKE and/or TBK1 mechanisms
WO2017106556A1 (en) * 2015-12-17 2017-06-22 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
WO2017102091A1 (en) 2015-12-18 2017-06-22 Bayer Pharma Aktiengesellschaft Heteroarylbenzimidazole compounds
WO2017207534A1 (en) 2016-06-03 2017-12-07 Bayer Pharma Aktiengesellschaft Substituted heteroarylbenzimidazole compounds
US9868720B2 (en) 2013-05-01 2018-01-16 Genentech, Inc. C-linked heterocycloaklyl substituted pyrimidines and their uses
WO2018019341A1 (de) 2016-07-26 2018-02-01 Karl Rosa Transfektionsverfahren mit nicht-viralen genliefersystemen
US10040781B2 (en) 2014-09-26 2018-08-07 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
WO2019079373A1 (en) * 2017-10-17 2019-04-25 Merck Patent Gmbh PYRIMIDINE TBK / IKKε INHIBITORY COMPOUNDS AND USES THEREOF
CN110627775A (zh) * 2019-10-24 2019-12-31 嘉兴特科罗生物科技有限公司 一种小分子化合物
WO2020119819A1 (en) * 2018-12-14 2020-06-18 Lynk Pharmaceuticals Co. Ltd. Benzamides of pyrazolyl-amino-pyrimidinyl derivatives, and compositions and methods thereof
WO2020207414A1 (en) * 2019-04-08 2020-10-15 Lynk Pharmaceuticals Co. Ltd. Benzethers and anilines of pyrazolyl-amino-pyrimidinyl derivatives, and compositions and methods thereof
US11440899B2 (en) 2017-10-17 2022-09-13 Merck Patent Gmbh Pyrimidine TBK/IKKe inhibitor compounds and uses thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359214B1 (ko) 2014-04-04 2022-02-07 델 마 파마슈티컬스 폐의 비소세포 암종 및 난소암을 치료하기 위한 디안하이드로갈락티톨 및 이의 유사체 또는 유도체
CN106854174A (zh) * 2015-12-08 2017-06-16 湖南华腾制药有限公司 一种4位取代哌啶衍生物的制备方法
CN107286076A (zh) * 2016-04-05 2017-10-24 湖南华腾制药有限公司 一种哌啶类化合物的制备方法
CN107400082A (zh) * 2016-05-19 2017-11-28 湖南华腾制药有限公司 一种取代哌啶衍生物的制备方法
CN107698491A (zh) * 2016-08-08 2018-02-16 湖南华腾制药有限公司 一种取代哌啶衍生物的制备方法
CN107778216A (zh) * 2016-08-30 2018-03-09 湖南华腾制药有限公司 一种氟取代哌啶衍生物的制备方法
CN107778215A (zh) * 2016-08-30 2018-03-09 湖南华腾制药有限公司 一种氟取代哌啶衍生物的制备方法
CN108117510A (zh) * 2016-11-29 2018-06-05 湖南华腾制药有限公司 一种哌啶衍生物的制备方法
CN108610309A (zh) * 2016-12-13 2018-10-02 湖南华腾制药有限公司 一种哌啶衍生物的制备方法
GB201702947D0 (en) 2017-02-23 2017-04-12 Domainex Ltd Novel compounds
CN112209886A (zh) * 2020-11-09 2021-01-12 沈阳药科大学 2-(3-氰基-4-烷氧基)苯基嘧啶衍生物及其制备方法和用途
CN113024565B (zh) * 2021-03-31 2022-09-13 上海启甄环境科技有限公司 一种放射性同位素碳-14标记依鲁替尼及其合成方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069134A (en) 1991-03-06 2000-05-30 Board Of Regents, The University Of Texas System Methods and compositions comprising DNA damaging agents and p53
WO2000050032A1 (en) 1999-02-25 2000-08-31 Pharmacia & Upjohn S.P.A. Antitumour synergistic composition
WO2004016597A2 (en) * 2002-08-14 2004-02-26 Vertex Pharmaceuticals Incorporated Protein kinase inhibitors and uses thereof
WO2004055005A1 (en) 2002-12-17 2004-07-01 Astrazeneca Ab Novel compounds having selective inhibiting effect at gsk3
WO2005012262A1 (en) * 2003-07-30 2005-02-10 Cyclacel Limited 2-aminophenyl-4-phenylpyrimidines as kinase inhibitors
WO2007129044A1 (en) 2006-05-03 2007-11-15 Astrazeneca Ab Thiazole derivatives and their use as anti-tumour agents
WO2008065155A1 (en) * 2006-11-30 2008-06-05 Ingenium Pharmaceuticals Gmbh Cdk inhibitors for treating pain
WO2008109943A1 (en) * 2007-03-12 2008-09-18 Cytopia Research Pty Ltd Phenyl amino pyrimidine compounds and uses thereof
WO2009030890A1 (en) 2007-09-03 2009-03-12 University Court Of The University Of Dundee Pyrimidine compounds for the treatment of cancer, septic shock and/or primary open angle glaucoma
WO2009032861A1 (en) * 2007-09-04 2009-03-12 The Scripps Research Institute Substituted pyrimidinyl-amines as protein kinase inhibitors
WO2009053737A2 (en) 2007-10-25 2009-04-30 Astrazeneca Ab Pyridine and pyrazine derivatives useful in the treatment of cell proliferative disorders
WO2009122180A1 (en) 2008-04-02 2009-10-08 Medical Research Council Pyrimidine derivatives capable of inhibiting one or more kinases
WO2010100431A1 (en) 2009-03-04 2010-09-10 Medical Research Council Technology Pyrrolopyrimidines used as kinase inhibitors
WO2010151747A1 (en) * 2009-06-26 2010-12-29 Cystic Fibrosis Foundation Therapeutics, Inc. Pyrimine compounds and methods of making and using same
WO2011046970A1 (en) 2009-10-12 2011-04-21 Myrexis, Inc. Amino - pyrimidine compounds as inhibitors of tbkl and/or ikk epsilon
WO2012010826A1 (en) 2010-07-19 2012-01-26 Domainex Limited Pyrimidine compounds as inhibitors of protein kinases ikk epsilon and/or tbk-1, processes for their preparation, and pharmaceutical compositions containing them
WO2012062704A1 (en) * 2010-11-09 2012-05-18 Cellzome Limited Pyridine compounds and aza analogues thereof as tyk2 inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510794A (ja) * 2011-04-12 2014-05-01 アルツハイマーズ・インスティテュート・オブ・アメリカ・インコーポレイテッド IKK関連キナーゼεおよびTANK結合キナーゼ1の阻害剤の組成物および治療的使用

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069134A (en) 1991-03-06 2000-05-30 Board Of Regents, The University Of Texas System Methods and compositions comprising DNA damaging agents and p53
WO2000050032A1 (en) 1999-02-25 2000-08-31 Pharmacia & Upjohn S.P.A. Antitumour synergistic composition
WO2004016597A2 (en) * 2002-08-14 2004-02-26 Vertex Pharmaceuticals Incorporated Protein kinase inhibitors and uses thereof
WO2004055005A1 (en) 2002-12-17 2004-07-01 Astrazeneca Ab Novel compounds having selective inhibiting effect at gsk3
WO2005012262A1 (en) * 2003-07-30 2005-02-10 Cyclacel Limited 2-aminophenyl-4-phenylpyrimidines as kinase inhibitors
WO2007129044A1 (en) 2006-05-03 2007-11-15 Astrazeneca Ab Thiazole derivatives and their use as anti-tumour agents
WO2008065155A1 (en) * 2006-11-30 2008-06-05 Ingenium Pharmaceuticals Gmbh Cdk inhibitors for treating pain
WO2008109943A1 (en) * 2007-03-12 2008-09-18 Cytopia Research Pty Ltd Phenyl amino pyrimidine compounds and uses thereof
WO2009030890A1 (en) 2007-09-03 2009-03-12 University Court Of The University Of Dundee Pyrimidine compounds for the treatment of cancer, septic shock and/or primary open angle glaucoma
WO2009032861A1 (en) * 2007-09-04 2009-03-12 The Scripps Research Institute Substituted pyrimidinyl-amines as protein kinase inhibitors
WO2009053737A2 (en) 2007-10-25 2009-04-30 Astrazeneca Ab Pyridine and pyrazine derivatives useful in the treatment of cell proliferative disorders
WO2009122180A1 (en) 2008-04-02 2009-10-08 Medical Research Council Pyrimidine derivatives capable of inhibiting one or more kinases
WO2010100431A1 (en) 2009-03-04 2010-09-10 Medical Research Council Technology Pyrrolopyrimidines used as kinase inhibitors
WO2010151747A1 (en) * 2009-06-26 2010-12-29 Cystic Fibrosis Foundation Therapeutics, Inc. Pyrimine compounds and methods of making and using same
WO2011046970A1 (en) 2009-10-12 2011-04-21 Myrexis, Inc. Amino - pyrimidine compounds as inhibitors of tbkl and/or ikk epsilon
WO2012010826A1 (en) 2010-07-19 2012-01-26 Domainex Limited Pyrimidine compounds as inhibitors of protein kinases ikk epsilon and/or tbk-1, processes for their preparation, and pharmaceutical compositions containing them
WO2012062704A1 (en) * 2010-11-09 2012-05-18 Cellzome Limited Pyridine compounds and aza analogues thereof as tyk2 inhibitors

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
ALESSI ET AL., FEBS LETT., vol. 399, no. 3, 1996, pages 333 - 338
C.KORHERR ET AL., PNAS, vol. 103, 2006, pages 4240 - 4245
CAMPOS-GONZÄLEZ, R.; GLENNEY, JR., J.R., J. BIOL. CHEM., vol. 267, 1992, pages 14535
D.A. BARBIE ET AL., NATURE, 2009, pages 1 - 5
D.A.BARBIE ET AL., NATURE LETTERS, 2009, pages 1 - 5
FINGL ET AL.: "The Pharmacological Basis of Therapeutics", 1975, pages: 1
FOSTER, ADV. DRUG RES., vol. 14, 1985, pages 1 - 40
GILLETTE ET AL., BIOCHEMISTRY, vol. 33, no. 10, 1994, pages 2927 - 2937
HANZLIK ET AL., J. ORG. CHEM., vol. 55, 1990, pages 3992 - 3997
INT. J. PHARM., vol. 115, 1995, pages 61 - 67
J.S. BOEHM ET AL., CELL, vol. 129, 2007, pages 1065 - 1079
JARMAN ET AL., CARCINOGENESIS, vol. 16, no. 4, 1993, pages 683 - 688
KHWAJA ET AL., EMBO, vol. 16, 1997, pages 2783 - 93
PHARMACEUTICAL RESEARCH, vol. 3, no. 6, 1986, pages 318
REIDER ET AL., J. ORG. CHEM., vol. 52, 1987, pages 3326 - 3334
ROSS ET AL., BIOCHEM. J., 2002
S.F.EDDY ET AL., CANCER RES., vol. 65, no. 24, 2005, pages 11375 - 11383
SILLS ET AL., J. OF BIOMOLECULAR SCREENING, 2002, pages 191 - 214
SORG ET AL., J. OF. BIOMOLECULAR SCREENING, vol. 7, 2002, pages 11 - 19
STEPHENS ET AL., BIOCHEMICAL J., vol. 351, 2000, pages 95 - 105
WEINSTEIN-OPPENHEIMER ET AL., PHARMA. &. THERAP., vol. 88, 2000, pages 229 - 279
WHITE ET AL., ONCOGENE, vol. 20, 2001, pages 7064 - 7072
Y.CHIEN ET AL., CELL, vol. 127, 2006, pages 157 - 170
Y.-H.OU ET AL., MOLECULAR CELL, vol. 41, 2011, pages 458 - 470

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174780A1 (en) * 2012-05-22 2013-11-28 F. Hoffmann-La Roche Ag Substituted dipyridylamines and uses thereof
CN104271566A (zh) * 2012-05-22 2015-01-07 霍夫曼-拉罗奇有限公司 取代的联吡啶胺及其用途
US9399636B2 (en) 2012-05-22 2016-07-26 Genentech, Inc. Substituted dipyridylamines and uses thereof
US9433622B2 (en) 2013-02-21 2016-09-06 Case Western Reserve University Pyrimidine compounds useful in the treatment of diseases mediated by IKKE and/or TBK1 mechanisms
US9868720B2 (en) 2013-05-01 2018-01-16 Genentech, Inc. C-linked heterocycloaklyl substituted pyrimidines and their uses
WO2015187684A1 (en) 2014-06-03 2015-12-10 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
US10259811B2 (en) 2014-06-03 2019-04-16 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
US10072001B2 (en) 2014-06-03 2018-09-11 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
US20160254481A1 (en) * 2014-09-16 2016-09-01 Shenzhen China Star Optoelectronics Technology Co., Ltd. An encapsulation method of OLED and a structure of OLED
US9614176B2 (en) * 2014-09-16 2017-04-04 Shenzhen China Star Optoelectronics Technology Co., Ltd Encapsulation method of OLED and a structure of OLED
US10253019B2 (en) 2014-09-26 2019-04-09 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
US10040781B2 (en) 2014-09-26 2018-08-07 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
US9994547B2 (en) 2014-10-06 2018-06-12 Takeda Pharmaceutical Company Limited Heteroarylamide inhibitors of TBK1
WO2016057338A1 (en) * 2014-10-06 2016-04-14 Takeda Pharmaceutical Company Limited Heteroarylamide inhibitors of tbk1
WO2017106556A1 (en) * 2015-12-17 2017-06-22 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
US10316049B2 (en) 2015-12-17 2019-06-11 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
US10894784B2 (en) 2015-12-18 2021-01-19 Bayer Pharma Aktiengesellschaft Heteroarylbenzimidazole compounds
WO2017102091A1 (en) 2015-12-18 2017-06-22 Bayer Pharma Aktiengesellschaft Heteroarylbenzimidazole compounds
WO2017207534A1 (en) 2016-06-03 2017-12-07 Bayer Pharma Aktiengesellschaft Substituted heteroarylbenzimidazole compounds
DE102016113714A1 (de) 2016-07-26 2018-02-01 Rosa Karl Transfektionsverfahren mit nicht-viralen Genliefersystemen
WO2018019341A1 (de) 2016-07-26 2018-02-01 Karl Rosa Transfektionsverfahren mit nicht-viralen genliefersystemen
WO2019079373A1 (en) * 2017-10-17 2019-04-25 Merck Patent Gmbh PYRIMIDINE TBK / IKKε INHIBITORY COMPOUNDS AND USES THEREOF
TWI802604B (zh) * 2017-10-17 2023-05-21 德商默克專利有限公司 嘧啶TBK/IKKε抑制劑化合物及其用途
US11440899B2 (en) 2017-10-17 2022-09-13 Merck Patent Gmbh Pyrimidine TBK/IKKe inhibitor compounds and uses thereof
CN113227074A (zh) * 2018-12-14 2021-08-06 凌科药业(杭州)有限公司 吡唑基-氨基-嘧啶基衍生物的苯甲酰胺及其组合物和方法
WO2020119819A1 (en) * 2018-12-14 2020-06-18 Lynk Pharmaceuticals Co. Ltd. Benzamides of pyrazolyl-amino-pyrimidinyl derivatives, and compositions and methods thereof
WO2020206588A1 (en) * 2019-04-08 2020-10-15 Lynk Pharmaceuticals Co., Ltd. Benzethers and anilines of pyrazolyl-amino-pyrimidinyl derivatives, and compositions and methods thereof
WO2020207414A1 (en) * 2019-04-08 2020-10-15 Lynk Pharmaceuticals Co. Ltd. Benzethers and anilines of pyrazolyl-amino-pyrimidinyl derivatives, and compositions and methods thereof
EP3953347A4 (de) * 2019-04-08 2023-01-18 Lynk Pharmaceuticals Co. Ltd. Benzether und aniline von pyrazolyl-amino-pyrimidinylderivaten sowie zusammensetzungen und verfahren dafür
CN110627775A (zh) * 2019-10-24 2019-12-31 嘉兴特科罗生物科技有限公司 一种小分子化合物

Also Published As

Publication number Publication date
US8969335B2 (en) 2015-03-03
HRP20171296T1 (hr) 2017-10-20
HUE036774T2 (hu) 2018-07-30
AU2012306746A1 (en) 2014-04-17
CA2848148C (en) 2019-06-04
CN103930416B (zh) 2017-03-29
MX2014002683A (es) 2014-04-14
RS56481B1 (sr) 2018-01-31
BR112014005226A2 (pt) 2017-03-21
PL2753615T3 (pl) 2017-12-29
SG2014015234A (en) 2014-07-30
DE102011112978A1 (de) 2013-03-14
SI2753615T1 (sl) 2017-11-30
IN2014KN00769A (de) 2015-10-02
EP2753615B1 (de) 2017-07-19
CN103930416A (zh) 2014-07-16
AR087807A1 (es) 2014-04-16
ZA201402561B (en) 2015-03-25
JP6060163B2 (ja) 2017-01-11
EA201400333A1 (ru) 2014-12-30
EA025038B1 (ru) 2016-11-30
IL231382A (en) 2017-11-30
KR101985984B1 (ko) 2019-06-04
MX344335B (es) 2016-12-13
IL231382A0 (en) 2014-04-30
EP2753615A1 (de) 2014-07-16
PT2753615T (pt) 2017-10-27
AU2012306746B2 (en) 2016-12-22
LT2753615T (lt) 2017-10-25
US20140228340A1 (en) 2014-08-14
ES2644128T3 (es) 2017-11-27
KR20140062120A (ko) 2014-05-22
CA2848148A1 (en) 2013-03-14
DK2753615T3 (en) 2017-08-28
HK1199880A1 (en) 2015-07-24
NO2753615T3 (de) 2017-12-16
JP2014526447A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
EP2753615A1 (de) Benzonitrilderivate als kinasehemmer
EP2454253B1 (de) Aminopyridinderivate zur behandlung von tumoren und entzündungskrankheiten
EP2291375B1 (de) Pyrrolopyridinyl-pyrimidin-2-yl-amin-derivate
EP2794602B1 (de) 3-cyanaryl-1h-pyrazolo-(2,3-b-)pyridinderivate
EP2155745B1 (de) 6-(Pyrrolopyridinyl)- Pyrimidin-2-yl-Amin-Derivate und ihre Verwendung zur Behandlung von Krebs und Aids
EP3868761A1 (de) Imidazolonylchinoline und deren verwendung als atm kinase inhibitoren
EP2635581B1 (de) 7-([1,2,3]triazol-4-yl)-pyrrolo[2,3-b]pyrazinderivate
EP2663566B1 (de) 5-([1,2,3]triazol-4-yl)-7h-pyrrolo[2,3-d]pyrimidinderivate
EP2516431B1 (de) Pyrrolopyridinyl-pyrimidin-2-yl-amin-derivate
EP2635574A1 (de) 1h-pyrrolo[2,3-b]pyridinderivate
EP2516442B1 (de) Pyrrolo[2,3-d]pyrazin-7-yl-Pyrimidin-Verbindungen
DE102012019369A1 (de) 7-Azaindolderivat
WO2012072200A1 (de) 3-hetaryl-substituierte pyrrolo[2,3-b]pyridin-derivative als pdk1 - inhibitoren
EP2723736B1 (de) Zur Behandlung von Krebserkrankungen geeignete 7-Azaindolderivate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747896

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012747896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14342911

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 231382

Country of ref document: IL

Ref document number: MX/A/2014/002683

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2848148

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014528879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147008982

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201400333

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2012306746

Country of ref document: AU

Date of ref document: 20120813

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014005226

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014005226

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140307