WO2013032090A1 - 바이오 디젤의 제조 방법 - Google Patents

바이오 디젤의 제조 방법 Download PDF

Info

Publication number
WO2013032090A1
WO2013032090A1 PCT/KR2012/002268 KR2012002268W WO2013032090A1 WO 2013032090 A1 WO2013032090 A1 WO 2013032090A1 KR 2012002268 W KR2012002268 W KR 2012002268W WO 2013032090 A1 WO2013032090 A1 WO 2013032090A1
Authority
WO
WIPO (PCT)
Prior art keywords
transesterification reaction
reaction
animal
present
biodiesel
Prior art date
Application number
PCT/KR2012/002268
Other languages
English (en)
French (fr)
Other versions
WO2013032090A9 (ko
Inventor
권일한
서재건
이학로
박종석
황보준권
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to US14/240,762 priority Critical patent/US20140202070A1/en
Priority to CN201280041763.XA priority patent/CN104024211A/zh
Priority to JP2014528252A priority patent/JP5948420B2/ja
Priority to BR112014003151A priority patent/BR112014003151A2/pt
Priority to EP12827812.4A priority patent/EP2757087A4/en
Publication of WO2013032090A1 publication Critical patent/WO2013032090A1/ko
Publication of WO2013032090A9 publication Critical patent/WO2013032090A9/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0476Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method for converting animal or vegetable fats and oils into biodiesel (FAMEs: Fatty Acid Methyl Esters) through a transesterification.
  • FAMEs Fatty Acid Methyl Esters
  • the basic component of the edible and non-edible animal and vegetable fats and oils used is triglyceride.
  • the transesterification reaction produces FAMEs and glycerin from triglycerides, the reaction rate of which is very slow. Therefore, in the commercialized biodiesel manufacturing process, an acid catalyst / base catalyst is used to speed up the transesterification reaction.
  • FAME conversion 95% FAME conversion is obtained through transesterification reaction, which takes more than 30 hours of reaction time for acid catalyst and more than 2 hours of reaction time for base catalyst.
  • base catalyst it is preferable to use a base catalyst, but the problem is Fatty Acids, or free Fatty Acids (FFAs), which are separated from triglycerides.
  • FFAs free Fatty Acids
  • the maintenance of high acid value (more than 1) due to this free fatty acid results in saponification reaction in the transesterification reaction using a base catalyst.
  • Free fatty acids are generated relatively easily from fats and oils by heat, sunlight and external stimulation of copper oxide, and free fatty acids are present in all fats and oils used in biodiesel manufacturing process.
  • the commercially available biodiesel conversion process essentially includes a washing process using hot water due to the acid catalyst and the base catalyst.
  • a water washing process not only has a problem of generating a large amount of waste water, but also causes a loss of animal and vegetable fats and oils, which is a reaction material, and thus has a disadvantage in that the overall process yield is significantly reduced.
  • the supercritical transesterification reaction of methanol or ethanol and fats and oils is carried out under high pressure conditions of 120 to 250 ° C. and 50 to 200 bar to directly obtain fatty acid alkyl esters (FAMEs).
  • FAMEs fatty acid alkyl esters
  • the fatty acid alkyl ester produced can be recovered, but a large amount of alcohol and oil and fat such as methanol or ethanol is about 20: 1, and it is difficult to process continuously. Conditions can increase production costs.
  • the supercritical transesterification reaction process is currently only research R & D level technology.
  • the supercritical transesterification process has a drawback that the energy is less efficient because the excess ethanol is added, the commercialization process for the production of diesel is still far away.
  • the present invention is to provide a biodiesel manufacturing method that can employ a continuous method to enable mass production.
  • the present invention is to provide a process for producing a biodiesel capable of obtaining a high-purity fatty acid alkyl ester and glycerol regardless of the content of free fatty acids contained in animal and vegetable fats and oils.
  • the present invention is to provide a process for producing a biodiesel that does not generate waste water or cause a decrease in yield of the biodiesel during the washing process for removing the acid catalyst or base catalyst.
  • the present invention is to provide a process for producing biodiesel that can achieve environmentally friendly and significant energy savings.
  • Biodiesel manufacturing method comprises the step of transesterification reaction of animal and vegetable fats and aliphatic alcohols in the presence of a porous material to produce fatty acid alkyl ester and glycerol.
  • the temperature of the transesterification reaction can be controlled to a temperature at which the transesterification reaction can occur in the presence of a porous material by raising the energy level of the animal and vegetable fat and the aliphatic alcohols by supplying thermal energy. .
  • the temperature of the transesterification reaction can be controlled to a temperature at which the fatty acid alkyl ester can be produced in the gas phase and the thermal cracking of the animal and vegetable oils may not appear.
  • the temperature can be 350 to 500 ° C.
  • the residence time of the transesterification reaction may be 0.1 to 5 minutes.
  • the weight ratio of the said animal and vegetable fat: alcohol can be 1: 0.05-1: 1.
  • the transesterification reaction can be carried out under one or more gas atmospheres such as nitrogen, argon, carbon dioxide.
  • the pressure of the transesterification reaction may be 10 kPa Hg to 10 atm.
  • the transesterification reaction can be carried out in a heterophasic reaction.
  • the transesterification reaction can be carried out in a continuous process.
  • the porous material may be at least one of alumina (A1 2 0 3 ), zeolite, activated carbon, charcoal, silica, and the like.
  • the refractory porous material may include mesoporous macroporous bodies, or both.
  • Biodiesel manufacturing method is a first step to induce a transesterification reaction between fats and oils and aliphatic alcohols by continuously supplying animal and vegetable fats and aliphatic alcohols in a semi-unggi group containing a refractory porous material ; And a second step of capturing the gaseous fatty acid alkyl ester and glycerolol produced by the previous step of the transesterification reaction.
  • a purge gas is continuously supplied together with the animal and vegetable fat and aliphatic alcohols, and the purge gas may be at least one selected from the group consisting of nitrogen, argon, and carbon dioxide.
  • the production method of the non-catalytic biodiesel according to an embodiment of the present invention is not washed separately, so it is environmentally friendly and has an excellent effect of obtaining high-purity fatty acid alkyl esters and glycerol in an energy saving form.
  • one embodiment according to the present invention does not involve waste water treatment due to the washing process of the catalyst, one embodiment according to the present invention is bio The overall process time and cost of smelting diesel can be reduced and renewable fuels can be produced in a more environmentally friendly process.
  • FIG. 1 is a table showing a fatty acid profile present in the flora and fauna according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram schematically showing the mechanism of transesterification reaction according to an embodiment of the present invention.
  • 3 is a view schematically showing the mechanism of transesterification reaction when using MeOH according to an embodiment of the present invention.
  • 4A to 4C are graphs showing pore distributions of activated alumina, cordierite, and charcoal, respectively.
  • FIG. 5 is a picture of biodiesel (FAMEs, right flask) obtained by separating biodiesel (FAMEs, left flask) and glycerin obtained through a non-catalyzed continuous transesterification reaction according to one embodiment of the present invention.
  • Figure 6 is a graph showing the thermogravimetric analysis (Thermo ⁇ gram) and differential thermal gravimetric analysis (DTG :) of soybean oil according to an embodiment of the present invention.
  • FIG. 7 is a graph showing FAME conversion by temperature control according to an embodiment of the present invention.
  • Figure 8 is a table showing the boiling point of the FAMEs according to an embodiment of the present invention.
  • Figure 9 is a graph showing the conversion of the FAME (Conversion) by controlling the mixing ratio of MeOH: flora and fauna according to an embodiment of the present invention.
  • FIG. 10 is a SEM image photograph of a charcoal, a porous material, according to an embodiment of the present invention.
  • 11 is a graph showing the FAME conversion rate when using dicyclic carbon or nitrogen.
  • FIG. 12 is a graph showing a conversion of FAME for an example of reacting with 100% fatty acid according to one embodiment of the present invention.
  • Example 13 illustrates the use of Charcoal in accordance with one embodiment of the present invention. It is a graph showing the FAME Conversion (Example 12).
  • FIG. 14 is a graph showing FAME conversion using ethanol (EtOH) according to one embodiment of the present invention (Example 14).
  • FIG. 15 is a graph showing FAME conversion using a thermochemical method in a conventional manner (Comparative Example 3).
  • FIG. 16 shows a mass spectrometry chromatogram for the product after transesterification using tallow and lard according to Example 16 of the present invention.
  • One embodiment according to the present invention provides a process for producing a biodiesel comprising the step of transesterification reaction of animal and vegetable fats and aliphatic alcohols in the presence of a porous material to produce fatty acid alkyl esters and glycerol.
  • FFAs free fatty acids
  • the present invention induces transesterification reactions by means of thermochemical conversion.
  • the present invention does not require the use of catalysts, liquid or solid, and does not require high pressure supercritical conditions.
  • the reaction temperature can be the main driving force of the transesterification reaction, and that the activation energy of the transesterification reaction can be sufficiently reached by the thermal energy supply.
  • the inventors have noted that the activation energy of the transesterification reaction is lower than the activation energy of other catalytic reactions such as methane steam reforming.
  • thermo-gravimetric analysis TGA was performed on animal and vegetable fats and oils to investigate the possible silver range, and the results are shown in FIG. 6. . Details of the thermogravimetric analysis associated with FIG. 6 will be described later.
  • the inventors have attempted a non-catalytic transesterification reaction in the temperature range investigated via thermogravimetric analysis, but no significant conversion of aliphatic alkyl esters has occurred.
  • the present inventors judged the reason because the contact time between the liquid animal and vegetable fats and oils and the gaseous alcohol is short. Accordingly, the present inventors used a porous material having a tortuosity and an adsorpt ion capability for the non-catalyzed transesterification reaction in order to reduce the contact time of the heterophasic semifinished materials.
  • One embodiment according to the present invention unlike the transesterification reaction using a conventional catalyst, by supplying a heat source to increase the energy level of the semi-ungung substrate and by using a porous material, induces transesterification reaction. Therefore, one embodiment according to the present invention does not use a separate catalyst, and the reactor material is biodiesel even if only alcohols (MeOH, EtOH, etc.) and animal and vegetable oils are used. You can get it.
  • animal and vegetable oils include both edible and non-edible oils and even microalgal oils.
  • Animal and vegetable oil means all fats and oils, including triglycerides, and even their free fatty acids (FFAs).
  • the animal or vegetable oils and fats may include triglyceride (Triglyceride) represented by the following formula (1).
  • R 1 , R 2 , and R 3 are the same as or different from each other, and each may be an aliphatic hydrocarbon group having 4 to 38 carbon atoms, preferably an aliphatic hydrocarbon group having 4 to 24 carbon atoms, more preferably 12 to 20 carbon atoms.
  • the carbon number of the aliphatic hydrocarbon group of the triglyceride may be optimized to a number similar to the carbon number of ordinary diesel.
  • the physicochemical properties (viscosity, molecular weight, boiling point, etc.) of the animal and vegetable fats and oils are the kinds of fatty acids (FAs) present in triglycerides, that is, the substituents R 1 , R 2 , R 3, etc. It may vary depending on the type. Fatty acid profiles for representative components of such animal and vegetable fats and oils are as illustrated in FIG. 1.
  • the animal or vegetable fat or oil may contain a small amount of other impurities or water.
  • waste edibles may contain a large amount of water or some water may be present in non-edible oils.
  • Such fats and oils may be used as it is in the transesterification reaction according to an embodiment of the present invention without a separate water removal process.
  • the amount of water contained in the oil may be minimized to an appropriate range in order to achieve more effective process efficiency.
  • Animal and vegetable fats and oils that can be used according to an embodiment of the present invention, for example, palm oil, soybean oil, rapeseed oil, corn oil, rapeseed oil, sunflower oil, safflower oil, cottonseed oil, sesame oil, perilla oil, rice bran oil, palm kernel oil, camellia oil, castor oil , Olive oil, palm oil, almond oil, yatropa oil, diatom, sewage sludge, microalgae, beef tallow, lard, sunny, fish oil, whale oil, tuna oil, etc. There is this.
  • these animal and vegetable fats and oils may be used in combination of one or more, and their waste oil may also be used.
  • aliphatic alcohols or primary alcohols may be used as the semi-ungwook with the animal and vegetable fats and oils.
  • aliphatic alcohols having 1 to 12 carbon atoms may be used.
  • examples of the aliphatic alcohols include methane, ethanol, propanol, butanol, pentanol, and the like, and these alcohols may be used by mixing one or more kinds.
  • Methanol may be more suitable than ethane, given the reaction properties.
  • methane methane
  • the reactivity of the transesterification reaction can be improved by the reaction and structural factors of methane.
  • various kinds of alcohols having different carbon number various physical property changes can be attempted to the generated FAME.
  • the animal and vegetable fats and oils are in a weight ratio of from 1: 0.1 to 1: 1, preferably from 1: 0.15 to 1: 1, more preferably from 1: 0.2. To 1: 1 can be used. In some cases, the weight ratio of animal and vegetable fats and oils to alcohols may be 1: 0.05. Also, the alcohol may be used in an amount of 10 parts by weight or more, preferably 15 parts by weight or more, and more preferably 20 parts by weight or more, based on 100 parts by weight of the animal and vegetable fat and oil.
  • the alcohols are preferably 10 parts by weight or more in an increase ratio with the animal and vegetable fats and oils in terms of stoichiometric aspects, but may be reacted in a large amount, but the reaction with the animal and vegetable oils can be performed by minimizing the amount thereof used in terms of energy efficiency. Can be.
  • the alcohols may be used in excess of 100 parts by weight based on 100 parts by weight of animal and vegetable fats and oils, the present inventors have confirmed that the excessive use of such alcohols only increases the process cost, but does not significantly improve the effect. There was no. '
  • reaction amount is increased to 10 parts by weight of alcohol with respect to 100 parts by weight of animal or vegetable fats and oils, conversion reaction to generate biodiesel does not occur at all.
  • a reaction time of at least 2 hours (necessary.
  • a conversion rate of about 903 ⁇ 4> or more and 95% or more in a suitable reaction condition can be obtained in a more suitable reaction condition.
  • Significantly less alcohol compared to the conversion process It is characterized by being used.
  • One embodiment according to the present invention is to perform a reaction without a catalyst in the presence of a porous material other than the conventional acid catalyst and base catalyst in performing transesterification reaction using the animal or vegetable fat and aliphatic alcohols It features.
  • the porous material does not act as a catalyst and is clearly distinguished from the solid phase catalyst in this respect.
  • the porous material according to the embodiment of the present invention needs to maintain porosity even during the thermochemical conversion process, that is, the high temperature transesterification reaction.
  • a porous material may be a porous material that does not cause pyrolysis in the reaction temperature range according to one embodiment of the present invention.
  • the porous material has refractory or that the porous material according to the present invention is referred to as a refractory porous material.
  • the refractory porous material according to the present invention may be any porous material in which such pores exist, in which an activated semi-unggi material can be accommodated, in which reaction between animals and plants can be effectively carried out. have. Due to the high temperature, the vaporized alcohols increase the kinetic energy and collide with the animal and vegetable fats and oils adsorbed in the pores, so that the transesterification reaction is rapidly increased. Can proceed. In the description of FIG. 3, the reaction mechanism will be described in more detail.
  • the refractory porous material of one embodiment according to the present invention may have various pore sizes and pore distributions under conditions that enable vaporization and adsorption of the reactor material.
  • mesoporous body mesopore, pore diameter: 1 nm or more and less than 50 nm
  • macropore pore diameter: 50 nm or more and 500 urn or less
  • the refractory porous material has pores having an average diameter of 1 nm or more or 1 nm or more and 500 ⁇ or less, preferably 1.5 nm or more, more preferably 2 nm or more. It may be to include.
  • FIGS. 4A-4C several examples are shown in FIGS. 4A-4C.
  • Figure 4a shows the pore distribution of activated alumina
  • Figure 4b and Figure 4c shows the pore distribution of cordierite and charcoal (charcoal), respectively.
  • the dominant pore size that is, the pore size that forms the largest density or peak in each pore distribution curve, is approximately 10 nm or more.
  • the inventors have previously considered the use of porous materials for the purpose of increasing the contact time between fats and oils in the reaction conditions according to the invention. Since the average molecular size of the triglyceride is approximately 2 nm, the porous material according to the embodiment of the present invention is required to adsorb or receive the triglyceride in the pores and to facilitate the transesterification reaction between the fat and the oil in the pores. We believe that pores larger than 2nm should be dominant.
  • porous material according to the present invention It is difficult to quantitatively clearly define the porous material according to the present invention using the pore size.
  • the present inventors have confirmed that a porous material to the extent that can be commonly called mesopores or macropores can be used as the porous material according to the present invention. Considering only FIGS. 4A-4C, it can only be said that a porous material having a dominant pore size of 10 nm or more will be a little.
  • one embodiment according to the present invention when the conventional carrier is applied, the amount of mesopore is relatively reduced, so that more stratification is required and the reactor size becomes excessively large. This may occur.
  • a conventional sintered carrier that is, the sintered carrier of the microporous body having nano-sized pores may not exhibit the effective reaction of the present invention even if more layered material is added.
  • one embodiment according to the present invention is meso A refractory porous material may be used in which the mesopore is 80% or more of the total pores.
  • a refractory porous material for example, alumina (Al 2 ), zeolite, Act ivated Carbon, charcoal, silica, or the like, or a combination or complex thereof may be used.
  • a refractory porous material for example, alumina (Al 2 ), zeolite, Act ivated Carbon, charcoal, silica, or the like, or a combination or complex thereof may be used.
  • one embodiment according to the present invention can be realized without a catalyst, but in some cases it may be used by doping the specific metals or inorganic materials in addition to the porous material.
  • a refractory porous material doped with at least one metal component in Au, Na, Mg, Ca, Pt, Rh, Zn, Co, Cu, Rh, etc. may be used.
  • the transesterification reaction according to one embodiment according to the present invention thermal cracking (3 ⁇ 4) of the animal and vegetable fats and oils of the reactor material does not occur, but only to the extent that these reactors can reach the activation energy by thermal energy. It features a minimal amount of heat.
  • the reaction temperature of the transesterification reaction according to an embodiment of the present invention for example, the temperature of the reactor is preferably 350 to 500 ° C.
  • the reaction temperature of the transesterification reaction according to the present invention may have a low conversion rate or a long reaction time, but may be extended to 25 ( C). It is believed that the upper limit of the reaction temperature is preferably controlled below 550 ° C. As an example, cooking cracking was observed for thermal cracking at 550 ° C.
  • the transesterification reaction of one embodiment according to the present invention can be used under atmospheric pressure and showed excellent conversion rate under this condition.
  • example According to the experimental example of the inventors it is shown that the transesterification reaction according to the present invention is not limited by the pressure. By way of example, the reaction was possible even under high pressure or reduced pressure. However, atmospheric pressure is more advantageous in terms of process efficiency and cost.
  • the reaction pressure according to the embodiment may be, for example, 10 kPa Hg to 10 atm, preferably 0.5 to 7 atm, more preferably 1 to 5 atm. ,.
  • the transesterification reaction may have a residence time of 0.1 to 5 minutes, or 0.2 to 0.2 under the temperature and pressure conditions as described above. 4 minutes, 0.3 to 3 minutes can be carried out.
  • the transesterification reaction of one embodiment according to the present invention effectively increases the energy level of the animal and animal fats and alcohols of the semi-ungwook substance in the presence of a refractory porous material, so that the gasification and adsorption of the reactor material can be effectively carried out 0.1 It can be carried out with a residence time of at least minutes. However, the residence time can be carried out to 5 minutes or less to prevent the reaction time is prolonged and the reactivity is reduced.
  • the residence time of the transesterification reaction according to the embodiment may be appropriately selected depending on the design of the semiunggi structure.
  • the reaction time of one embodiment according to the present invention is remarkably reduced when using conventional acid catalysts and base catalysts as compared to at least 2 hours or more in the pretreatment and main treatment processes, thus showing very good process efficiency.
  • it shows a very good process efficiency compared to the reaction time of about 5 to 20 minutes of the supercritical transesterification reaction, which is known to be a developmental disease in the present research stage.
  • the transesterification reaction of one embodiment according to the invention can be carried out in a heterogeneous reaction of liquid or gaseous phase in the presence of a porous material.
  • the fat is determined to be a liquid phase. Since alcohols having low boiling point will be in the gas phase under the reaction conditions, the transesterification reaction according to the embodiment is shown to proceed in a manner in which gaseous alcohols react with the maintenance of the liquid phase to produce gaseous FAMEs.
  • Triglycerides the main component of oils and fats, exist in the liquid or gaseous phase, so that they easily adsorb to porous materials.
  • the heat source can reduce the energy level of triglycerides.
  • the activation energy of the transesterification reaction can be reached by the heat source.
  • the non-catalyst continuous reaction of an embodiment according to the present invention can produce F ⁇ Es without the purge gas, but purge gas to control the retention time of the reaction and induce the smooth continuous process
  • Purge gas An inert gas is usually used as the purge gas, and for example, nitrogen (N 2 ), argon (Ar), carbon dioxide (C0 2 ), or the like may be used.
  • This fuza gas can be supplied into the reaction vessel together with a reaction substrate such as oil or fat.
  • the purge gas is preferably carbon dioxide (C0 2 ) or a gas including the same.
  • C0 2 carbon dioxide
  • coking phenomenon is often generated between porous materials. This coking phenomenon interferes with the transesterification continuous process according to the present invention, in which the carbon dioxide used as the purge gas significantly reduces this cobalt phenomenon while the non-catalyst ester according to the embodiment of the present invention when the carbon dioxide purge gas is used.
  • the conversion of fatty acid alkyl esters (FAMEs) in the exchange reaction can be somewhat improved. As can be seen in Figure 11, when using the carbon dioxide purge gas, the conversion rate of the FAME may be increased by about 3 to 4% than when using the other purge gas.
  • the transesterification reaction may be carried out in a continuous process.
  • the process for producing a continuous biodiesel according to the present invention may be configured in the form of continuously performing transesterification reaction while continuously supplying animal and vegetable fats and aliphatic alcohols in the presence of the refractory porous material.
  • most of the refractory porous material is pre-loaded fixedly in the reactor, but in some cases it may be continuously supplied along the reaction.
  • biomass itself having pores may be used as a porous material.
  • the present inventors have applied for Korean Patent Application No. 2011-0101961, which is the subject of the present application. Reference is made to the invention and may be included.
  • one embodiment according to the present invention is to produce biodiesel by reacting only animal and vegetable fats and aliphatic alcohols in the presence of a porous material in the presence of a porous material as described above, thereby minimizing impurities in the obtained biodiesel and high purity Has In this case, the conversion rate can be obtained to a degree that is significantly improved than the conventional process.
  • the fatty acid alkyl ester produced through the transesterification reaction of one embodiment according to the present invention may be an aliphatic moiety having 10 to 24 carbon atoms, preferably 12 to 22 carbon atoms, more preferably 14 to 20 carbon atoms. .
  • R 1 , R 2 , R 3 , R 1 ′ , R 2 ′ , and R 3 ′ are the same as or different from each other, and are each an aliphatic hydrocarbon group having 4 to 38 carbon atoms, preferably 4 to 24 carbon atoms, More preferably, it may be an aliphatic hydrocarbon group having 12 to 20 carbon atoms.
  • R 1 , R 2 , R 3 , R 1 ′ , R 2 ′ , and R 3 ′ are the same as or different from each other, and are each an aliphatic hydrocarbon group having 4 to 38 carbon atoms, preferably 4 to 24 carbon atoms, More preferably, it may be an aliphatic hydrocarbon group having 12 to 20 carbon atoms.
  • the biodiesel manufacturing process according to the embodiment of the present invention is characterized in that porous materials are used.
  • the pores or the bulk phase The vaporized MeOH present increases the kinetic energy due to the high temperature. MeOH, which has become more active, stratifies with triglycerides that are stuck or contained in pores, causing transesterification.
  • the reaction products, FAMEs and glycerin come out of the reactor in the gas phase due to the reaction temperature, and high purity FAMEs and glycerin can be obtained only by condensation of the reaction products in the gas phase. As you know glycerin can be easily separated from FAMEs.
  • FIG. 5 An example of a mixture of FAME and glycerin prepared according to one embodiment of the present invention (left picture) and an example of FAME without glycerin (right) are shown comparatively in FIG. 5.
  • FIG biodiesel seen in 5 was confirmed to show the activated alumina would obtained by using a (Activated Alumina, A1 2 0 3 ) 993 ⁇ 4 the FAME conversion at 400 ° C>.
  • the retention time of the reaction substrate supplied in the reaction vessel of the continuous process is less than 1 minute.
  • the transesterification reaction is completed within 1 minute to generate a gaseous product, which can be simply collected and purified to obtain F ⁇ E.
  • the residence time can be controlled by the reaction rate of the purge gas (Purge Gas) is determined according to the amount of purge gas and MeOH.
  • the optimization of the non-catalyst continuous transesterification reaction of one embodiment according to the present invention is largely dependent on the boiling point of Triglycerides and the boiling point of FAMEs.
  • the reaction temperature of the biodiesel manufacturing process is maintained, that is, triglycerides are supplied with thermal energy above the activation energy required for the reaction, but no thermal cracking occurs, and the FAMEs are vapor phase at the corresponding half temperature. Is designed to be. At this time, the oil and fat is a liquid, a low boiling point alcohol may be gaseous.
  • FIG boiling point of the triglyceride (Triglycerides) of soybean oil as shown in 6 is about 405.2 ° C, it shows DTG 'mass change at 452 ° C as that (Mass Change) is led to the maximum value. Therefore, considering the results of Figure 7, it can be said that the reaction temperature of the biodiesel conversion process using soybean oil triglyceride is preferably 350 ⁇ 400 ° C or 350 ⁇ 450 ° C. Excessively increasing the reaction temperature unnecessarily evaporates Triglyceride and may cause energy loss due to the latent heat of evaporation. As described above, the reaction temperature is preferably controlled at an upper limit of less than 550 ° C., preferably 500 ° C.
  • reaction temperature is preferably reacted at 350 ° C. or higher. This can be easily understood by the boiling point (Boiling Point) of the representative FAMEs as shown in FIG. Carbon surface of most of the animal or vegetable fatty acid of the holding as shown in Figure 8 having a carbon number of 14 to 20 - is (C 14 20).
  • the C 14 produced by the reaction example in accordance with the present invention in order to obtain 20 of FAMEs in a gas-phase process without ungchuk is a little more preferable temperature of 350 to 500 ° C is 350 to 450 ° C are preferred.
  • the boiling point of MeOH is 65 ° C, gaseous FAMEs can be easily separated and energy can be saved during the refining process, so the reaction temperature of 350 to 500 ° C, more preferably 350 to 450 ° C It may be appropriate.
  • FIG. 7 An example of the conversion rate of FAMEs according to the temperature change of the transesterification reaction is shown in FIG. 7.
  • the reaction was performed under atmospheric pressure, and activated alumina (Activated A1 2 0 3 ) was used as the porous material, and the Me0H: 0il increase ratio was about 0.2: 1.
  • Activated A1 2 0 3 activated alumina
  • Me0H: 0il increase ratio was about 0.2: 1.
  • a high FAME conversion rate of 98% to 99> was obtained at a reaction temperature of 350 ° C. or higher.
  • transesterification reaction according to an embodiment of the present invention is possible even at 350 ° C or less. In this case, however, the FAMW conversion rate may drop slightly below 90% and the reaction time may be longer.
  • the reactants are triglycerides and MeOH.
  • the preferred increase ratio of MeOH: Triglyceride is theoretically 0.1: 1, which can be seen in FIG. 9 as calculated from stoichiometry.
  • FIG. 11 is a graph showing an increase in FAME conversion rate when carbon dioxide is used as a purge gas.
  • the experiment of FIG. 11 was conducted under atmospheric pressure Activated alumina was used as the porous material, and methanol was used as the alcohol.
  • FIG. 12 is a graph showing FAME conversion with respect to purge gas as an example of reacting with 100% fatty acid in one embodiment according to the present invention.
  • alumina activated as a porous material under atmospheric pressure was used, methanol was used as an alcohol, and oleic acidol was used as an animal fat or oil.
  • 100% fatty acid having an acid value of about 200 was used in this experiment, as shown in FIG. 12, a FAME conversion rate of about 90% or more was obtained at a temperature of about 400 ° C. or more.
  • the reaction results using charcoal instead of activated alumina (Activated A1 2 0 3 ) in a porous material is shown in FIG. 13.
  • the method of mixing the biodiesel of one exemplary embodiment according to the present invention overcomes the disadvantages of the conventional transesterification process for biodiesel production and overcomes all the disadvantages of the transesterification reaction which is actively progressed by R & D. see.
  • biodiesel may be obtained through a continuous process.
  • FFAs free fatty acids
  • one embodiment according to the present invention since the catalyst used in the transesterification process is not used, the pretreatment and the main treatment are integrated. Biodiesel conversion processes can be established.
  • one embodiment according to the present invention has the effect of blocking the generation of waste water and loss of biodiesel (FAMEs) through the integrated pre-treatment / main treatment process.
  • one embodiment according to the present invention can also be characterized as reacting at atmospheric pressure .
  • one embodiment according to the present invention shows a clear contrast with the conventional commercial transesterification reaction process and the transesterification process of the R & D step in that carbon dioxide is used in the process.
  • This will be the effect of one embodiment according to the present invention because it is an environmentally friendly process.
  • one embodiment according to the present invention shows a significant effect in terms of energy saving because biodiesel can be produced faster than conventional commercial processes.
  • the production of biodiesel (FAMEs) using only reactant methane and animal and vegetable oils can significantly reduce the cost of distillation and purification.
  • the conversion of fatty acid alkyl esters produced from the transesterification reaction performed in the presence of a refractory porous material according to one embodiment according to the present invention can be obtained at least 90%, at least 95%, even higher than 98%. .
  • FAME conversion rate uses analytical values via GC / MS. Analytical methods for biodiesel specify ASTM D6751 or EN14214 standards. In particular, the yield of FAME was determined using EN14103 (Ester and Linoleic AcidMethyl ester content analysis). In addition, EN14106 / ASTM D6584 was used to determine the content of glycerin, Mono-, Di- and Triglyceride.
  • Biodiesel was prepared by performing a transesterification reaction at 30 ° C. for 30 hours using H 2 SO 4 as the acid catalyst in a conventional manner. At this time, the conversion rate of the produced fatty acid methyl ester (FAME) was 94%.
  • Biodiesel was prepared by transesterification at 65 ° C. for 2 hours using NaOH as a base catalyst in a conventional manner. At this time, the conversion rate of the produced fatty acid methyl ester (FAME) was 94%.
  • Fig. 15 shows an example of the result.
  • ME methane
  • TG is triglyceride
  • DG is diglyceride
  • MG monoglyceride
  • the reaction time was all about 1 minute.
  • the conversion rate is also 95% or more, more preferably 99% or more, it can be seen that a high conversion rate can be achieved quickly.
  • Comparative Examples 1 and 2 using the acid catalyst and the base catalyst in the conventional manner the conversion rate was only 94%, and in the case of Comparative Example 3 in which the thermochemical conversion method was performed without stratifying the porous material Even after carrying out the reaction for a long time of 300 minutes or more, only 91% of the conversion was not good.
  • FIG. 16 the chromatogram obtained by performing mass spectrometry (GC-MS: Gas Chromatography Mass Spectroscopy) on the product obtained by performing the transesterification reaction using Uji and larch according to the practical example 16 is shown in FIG. 16.
  • GC-MS Gas Chromatography Mass Spectroscopy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

동식물성 유지와 지방족 알코올류를 다공성 물질의 존재 하에서 에스테르 교환 반응시켜 지방산 알킬 에스테르와 글리세롤을 생성시키는 단계를 포함하는 바이오디젤 제조방법이 소개된다. 이 방법은 높은 빠른 반응속도 및 높은 FAME 전환율을 특징으로 하며, 연속공정화가 가능하다. 또한 이 방법에 의하면 유리 지방산 (FFAs: Free Fatty Acids)의 함량에 크게 관계없이 고순도의 지방산 알킬 에스테르와 글리세롤을 생산할 수 있다. 또한 이 방법은 촉매를 사용하지 않으므로 전체 공정 시간 및 비용 절감을 가능하게 하며, 친환경적이다.

Description

【명세서】
【발명의 명칭】
바이오 디젤의 제조 방법
【기술분야】
본 발명은 동식물성 유지를 에스테르 교환 반응 (Transesterif ication)을 통해 바이오 디젤 (Biodiesel, FAMEs: Fatty Acid Methyl Esters)로 전환하는 방법에 관한 것이다.
【발명의 배경이 되는 기술】
현재 바이오 디젤 생산 공정 증 에스테르 교환 반웅 공정만이 유일하게 상용화되어 있다.
이렇게 에스테르 교환 반웅 (Transesterif ication)을 통하여 바이오 디젤 (Fatty Acid Methyl Esters: FAMEs)로 전환하는 방법에 있어서, 사용되는 식용 /비식용 동식물성 유지의 기본성분은 트리글리세라이드 (Triglyceride)이다.
상기 에스테르 교환 반응을 통해 트리글리세라이드로부터 FAMEs 및 글리세린이 생성되는데, 그 반웅속도가 매우 느리다. 따라서 상용화된 바이오디젤 제조공정에서는 에스테르 교환 반응의 속도를 높이기 위해 산촉매 /염기촉매가사용된다.
알려지기에, 에스테르 교환 반응을 통해 95% FAME 전환율을 얻는데, 산촉매의 경우 30시간 이상의 반응시간이 , 그리고 염기촉매의 경우 2시간 이상의 반웅시간이 소요된다. 당연히 염기촉매를 사용하는 것이 좋다고 하겠으나, 문제는 트리글리세라이드에서 분리된 지방산 (Fatty Acids), 즉 유리 지방산 (Free Fatty Acids: FFAs)이다. 이 유리 지방산으로 인해 산가 (1 이상)가 높은 유지는 염기촉매를 사용한 에스테르 교환 반웅에서 비누화 반웅을 초래한다. 열, 태양광, 산화 둥의 외부 자극에 의해 유지로부터 유리 지방산이 비교적 쉽게 발생되며, 바이오디젤 제조공정에 사용되는 모든 유지에는 유리 지방산이 존재한다고 볼 수 있다 .
현재 상용화 바이오 디젤 전환 공정은 산 촉매 (¾S04)를 이용하는 전처리 공정 및 염기 촉매 (KOH, NaOH)를 이용한 본처리 공정으로 구분되어 수행된다. 상기 전처리 및 본처리 공정은 각각 최소 30 시간 이상 또는 2 시간 이상의 장시간 동안의 반웅 시간을 필요로 하며, 이러한 전처리 및 본처리 공정은 회분식 (Batch) 반응이기 때문에 FAMEs의 대량 생산에 적용하기 어려운 단점이 있다.
또한, 상용화 바이오 디젤 전환 공정은 산 촉매 및 염기 촉매로 인하여 온수를 이용한 수세 (Washing) 공정을 필수적으로 포함한다. 그러나, 이러한 수세 공정은 다량의 폐수를 발생시키는 문제가 있을 뿐만 아니라, 반웅 기질물인 동식물성 유지의 손실을 초래하여 전체 공정 수율이 현저히 저하되는 단점이 있다.
또한, 상용화 바이오 디젤 반응 공정에서 위와 같은촉매를 사용하여 대량의 바이오 디젤을 생산할 때, 수세 및 정치 분리 과정 때문에 많은 시간이 소요되고 및 다량의 폐수가 발생하게 된다. 원심분리기를 사용하지 않는 자연 정치의 경우에는 최소 1시간 통상적으로 2시간 이상이 소요된다. 수세 및 정치 공정에서 바이오 디젤이 씻겨 나가 바이오 디젤 생성 수율이 감소할 수 있다.
위의 촉매 사용으로 인한 단점을 해결하기 위하여, 메탄올 혹은 에탄올과 유지 성분을 120 내지 250 °C 및 50 내지 200 bar의 고압 조건 하에서 반웅하여 직접 지방산 알킬 에스테르 (FAMEs)올 얻는 초임계 에스테르 교환 반웅 (Supercritical Transesterif ication) 공정이 연구되고 있다.
그러나; 상기 초임계 에스테르 교환 반웅 공정에서는 생성된 지방산 알킬 에스테르를 회수할 수는 있지만, 메탄올 혹은 에탄올 등의 알코류와 유지의 비가 약 20:1 정도로 많은 양이 사용되며, 연속공정화 하기 어려우며, 고압 조건으로 인하여 생산 원가가 증대될 수 있다. 따라서, 초임계 에스테르 교환 반웅 공정은 현재까지는 단지 연구 R&D 수준의 기술일 뿐이다. 특히, 상기 초임계 에스테르 교환 반응 공정은 과잉의 에탄올을 투입하기 때문에 에너지가 효율이 적은 것이 단점이 있기 때문에 디젤 생산을 위한사용화 공정은 아직까지는 요원하다.
【발명의 내용]
【해결하고자 하는 과제】 본 발명은 대량 생산이 가능하도록 연속식 방식을 채용할 수 있는 바이오 디젤 제조방법을 제공하고자 한다.
또한 본 발명은 동식물성 유지에 포함된 유리 지방산의 함량 등에 상관 없이 고순도의 지방산 알킬 에스테르와 글리세롤을 얻을 수 있는 바이오 디젤의 제조 공정을 제공하고자 한다.
또한 본 발명은 산 촉매나 염기 촉매를 제거하기 위한 수세 공정의 과정에서 폐수가 발생하거나 바이오 디젤의 수율 저하가 야기되지 않는 바이오 디젤의 제조 공정을 제공하고자 한다.
또한 본 발명은 환경친화적이고 현저한 에너지 절감 효과를 달성할 수 있는 바이오 디젤의 제조 공정을 제공하고자 한다.
【과제의 해결 수단】
본 발명의 개발은 반웅에 필요한 활성화 에너지 이상으로 반응 기질물에 열에너지를 공급함으로씨 무촉매 에스테르 교환 반웅을 유도할 수도 있을 것이라는 사고에서 시작되었다. 은도가 상기 에스테르 교환 반응의 주요 추진력 (main driving force)이 될 수도 있을 것이라고 본 것이다.
본 발명의 한 실시예에 따른 바이오 디젤 제조 방법은 동식물성 유지와 지방족 알코올류를 다공성 물질의 존재 하에서 에스테르 교환 반응시켜 지방산 알킬 에스테르와 글리세롤을 생성시키는 단계를 포함한다. 상기 에스테르 교환 반웅의 온도는, 열에너지의 공급에 의해 상기 동식물성 유지의 에너지 준위와 상기 지방족 알코올류의 에너지 준위를 높임으로써, 다공성 물질의 존재하에서 에스테르 교환 반응이 일어날 수 있는 온도로 제어될 수 있다.
또한, 상기 에스테르 교환 반응의 온도는, 상기 지방산 알킬 에스테르가 기체상으로 생성될 수 있으며 상기 동식물성 유지의 열적 크래킹 (thermal cracking)이 나타나지 않을 수 있는 온도로 제어될 수 있다, 상기 에스테르 교환 반웅의 온도는 350 내지 500 °C일 수 있다.
상기 에스테르 교환 반웅의 체류 시간은 0.1 내지 5 분일 수 있다. 상기 동식물성 유지 : 알코올류의 중량비는 1 : 0.05 내지 1 : 1일 수 있다. 상기 에스테르 교환 반웅은 질소, 아르곤, 이산화탄소 등의 1종 이상의 가스 분위기 하에서 수행할 수 있다.
상기 에스테르 교환 반응의 압력은 10 隱 Hg 내지 10 atm일 수 있다. 상기 에스테르 교환 반응은 이종상 반웅으로 수행할수 있다.
상기 에스테르 교환 반응은 연속식 공정으로 수행할수 있다.
상기 다공성 물질은 알루미나 (A1203), 제올라이트 (Zeolite), 활성탄소 (Activated Carbon) , 챠콜 (Charcoal ), 실리카 등의 1종 이상일 수 있다.
상기 내화성 다공성 물질은 메조 기공체 매크로 기공체, 또는 이들 모두를 포함할 수 있다.
본 발명의 한실시예에 따른 바이오 디젤 제조 방법은 내화성 다공성 물질이 장입되어 있는 반웅기 내에 동식물성 유지와 지방족 알코올류를 연속적으로 공급하여 유지와 지방족 알코올류 간의 에스테르 교환 반응을 유도하는 제 1 단계; 및 전 단계의 에스테르 교환 반응에 의해 생성된 가스상의 지방산 알킬 에스테르 및 글리세롤올 포집하는 제 2 단계;를 포함한다.
위의 제 1 단계에서, 상기 동식물성 유지 및 지방족 알코올류와 더불어 퍼지 가스를 연속적으로 공급하며, 이 퍼지 가스는 질소, 아르곤, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상일 수 있다.
【발명의 효과】
본 발명에 따른 한 실시예에 따르면, 다공성 물질의 존재 하에서 동식물성 유지와 지방족 알코올류를 에스테르 교환 반응시킴으로써 , 연속식 방식으로 바이오 디젤을 효과적으로 대량 생산할 수 있다. 또한 산 촉매 또는 염기 촉매를 사용할 필요가 없으므로, 이들로 인한 종래기술에서의 폐해가 방지된다.
특히, 본 발명에 따른 한 실시예에 따른 무촉매 바이오 디젤의 제조 방법은 별도의 수세 정 없으므로, 환경친화적이며, 에너지 절감 형태로 고순도의 지방산 알킬 에스테르와 글리세를을 얻을 수 있는 우수한 효과를 갖는다. 또한 본 발명에 따른 한 실시예는 촉매의 수세 공정으로 인한 폐수 처리 등이 수반되지 않으므로, 본 발명에 따른 한 실시예는 바이오 디젤을 쎄조하는 전체 공정 시간 및 비용을 절감할 수 있고 보다 친환경적인 공정으로 재생 연료를 생산할 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 일 구현예에 따른 동식물성 유지에 존재하는 지방산프로파일을 나타낸 표이다.
. 도 2는 본 발명의 일 구현예에 따른 에스테르 교환 반웅의 메커니즘을 개략적으로 나타낸 모식도이다.
도 3은 본 발명의 일 구현예에 따른 MeOH를 사용시 에스테르 교환 반웅의 메커니즘을모식적으로 나타낸 도면이다.
도 4a 내지 도 4c는 각각 활성화된 알루미나, 코디어라이트 (cordier e), 차콜 (charcoal )의 기공 분포도를 나타내는 그래프들이다.
도 5는 본 발명의 일 구현예에 따른 무촉매 연속식 에스테르 교환 반응을 통해 얻어진 바이오 디젤 (FAMEs, 좌측 플라스크) 및 글리세린을 분리한 바이오 디젤 (FAMEs, 우측 플라스크) 사진이다.
도 , 6은 본 발명의 일 구현예에 따른 대두유의 열중량분석 (Thermo¬ gram) 및 시차열중량분석 (DTG: Differential Thermo-Gram)를 나타낸 그래프이다.
도 7은 본 발명의 일 구현예에 따른 온도 조절에 의한 FAME 전환율 (Conversion)을 나타낸 그래프이다.
도 8은 본 발명의 일 구현예에 따른 FAMEs의 끓는점을 나타낸 표이다. 도 9는 본 발명의 일 구현예에 따른 MeOH:동식물성 유지의 혼합 비율 조절에 의한 FAME 전환율 (Conversion)을 나타낸 그래프이다.
도 10은 본 발명의 일 구현예에 따른 다공성 물질인 챠콜 (Charcoal)의 SEM 이미지 사진이다.
도 11은 이산환탄소 또는 질소를 사용했을 때의 FAME 전환율을 나타낸 그래프이다.
도 12는 본 발명의 일 구현예에 따라 지방산 100%로 반웅한 일례에 대한 FAME 전환율 (Conversion)을 나타낸 그래프이다.
도 13은은 본 발명의 일 구현예에 따라 챠콜 (Charcoal)을 사용한 FAME 전환율 (Conversion)을 나타낸 그래프이다 (실시예 12).
도 14는 본 발명의 일 구현예에 따라 에탄올 (EtOH)를 사용한 FAME 전환율 (Conversion)을 나타낸 그래프이다 (실시예 14).
도 15는 종래의 방식으로 열화학적 방법을 이용한 FAME 전환율 (Conversion)을 나타낸 그래프이다 (비교예 3).
도 16은 본 발명의 실시예 16에 따라 우지와 돈지를 사용하여 에스테르 교환 반응을 수행한 후 생성물에 대한 질량 분석 크로마토그램을 나타낸 것이다.
【발명을 실시하기 위한구체적인 내용】
본 발명에 따른 한 실시예는 동식물성 유지와 지방족 알코올류를 다공성 물질의 존재 하에서 에스테르 교환 반웅시켜 지방산 알킬 에스테르와 글리세를을 생성시키는 단계를 포함하는 바이오 디젤의 제조 방법을 제공한다.
이하, 발명의 구체적인 구현예에 따라 동식물성 유지로부터 에스테르 교환 반웅을 통해 지방산 알킬 에스테르로 전환하는 바이오 디젤의 제조 방법에 대해 보다 상세히 설명하기로 한다 . 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는
"함유 "라 함은 어떤 구성 요소 (또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하몌 다른 구성 요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
본 발명자들은 동식물성 유지로부터 에스테르 교환 반웅을 통해 바이오 디젤 제조 등에 대한 연구를 거듭하는 과정에서, 별도의 촉매 도입 없이 다공성 물질을 사용할 경우 동식물성 유지에 포함되어 있는 유리 지방산 (FFAs: Free Fatty Acids)의 존재 유무나 함량 등에 관계없이 고순도의 지방산 알킬 에스테르와 글리세를을 회분식 방식이 아닌 연속식 방식으로 생산할 수 있음을 확인하여 본 발명을 완성하였다.
본 발명은 열화학적 전환 방법으로 에스테르 교환 반웅을 유도한다. '본 발명은 액체든 고체든 촉매를 이용할 필요가 없으며, 고압의 초임계 조건도 필요로 하지 않는다.
본 발명자들은 반웅 온도가 에스테르 교환 반웅의 주요 동력 (main driving force)이 될 수 있다고 판단했으며, 에스테르 교환 반응의 활성화 에너지는 열에너지 공급에 의해 충분히 도달될 수 있다고 보았다. 본 발명자들은 에스테르 교환 반웅의 활성화 에너지가 메탄 증기 개질 (methane steam reforming)과 같은 여타의 촉매 반응의 활성화 에너지보다 낮다는 사실에 주목했다. ,
본 발명자들은 이종상의 열화학적 공정 (heterogeneous thermo- chemical process)을 통해 무촉매 에스테르 교환 반응이 가능하다고 판단했다. 여기서 이종상의 열화학적 공정은 높은 온도에서 액체상의 동식물성 유지와 기체상의 알코올류 사이에 일어나는 반응을 포함한다. 그러나, 무촉매 에스테르 교환 반웅이 가능한 온도 범위가 애매하기 때문에, 가능한 은도 범위를 조사하기 위하여 동식물성 유지에 대해 열중량분석 (thermo-gravimetric analysis, TGA)이 수행되었고, 그 결과가 도 6에 나타났다. 도 6과 관련된 열중량 분석에 대한 상세한 설명은 후술한다.
본 발명자들은 열중량분석을 통해 조사된 온도 범위에서 무촉매 에스테르 교환 반응을 시도하였으나 유의미한 지방족 알킬 에스테르의 전환이 일어나지 않았다. 본 발명자들은 그 이유를, 액체상의 동식물성 유지와 기체상의 알코올류 사이의 접촉 시간 (contact time)이 짧기 때문인 것으로 판단했다. 이에 따라, 본 발명자들은 이종상의 반웅기질물들의 접촉 시간을 ½·리기 위하여, 비를림 (tortuosity)과 흡착능 (adsorpt ion capability)을 갖는 다공성 물질을 무촉매 에스테르 교환 반응에 이용하였다.
본 발명에 따른 한 실시예는 종래의 촉매를 이용한 에스테르 교환 반응과 다르게, 열원을 공급하여 반웅기질물의 에너지 준위를 높이고 다공성 물질을 이용함으로써, 에스테르 교환 반응을 유도한다. 따라서, 본 발명에 따른 한 실시예는 별도의 촉매를 사용하지 않으며, 반응기질물은 알코올류 (MeOH, EtOH 등)와 동식물성 유지만 사용하더라도 바이오 디젤을 얻을 수 있다.
본 발명에 따른 한 실시예에서 동식물성 유지는 식용 및 비식용 기름을 모두 포함하며 미세조류 오일까지도 포함한다. 동식물성 기름이라 함은 트리클리세라이드 (Triglyceride)을 포함한 모든 유지를 뜻하며, 그의 유리 지방산 (Free Fatty Acids: FFAs)까지도 포함한다. 특히, 상기 동식물성 유지는 하기 화학식 1로 표시되는 트리글리세라이드 (Triglyceride)를 포함할 수 있다.
[화학식 1]
Figure imgf000010_0001
식 중,
R1, R2, 및 R3는 서로 동일하거나 상이하고, 각각 탄소수 4 내지 38의 지방족 탄화수소기이며 바람직하게는 탄소수 4 내지 24, 좀더 바람직하게는 탄소수 12 내지 20의 지방족 탄화수소기가 될 수 있다. 상기 트리글리세라이드 (Triglyceride)의 지방족 탄화수소기의 탄소수는 통상의 경유가 갖는 탄소수와 비슷한 개수로 최적화될 수 있다.
상기 동식물성 유지의 물리화학적 성질 (점도, 분자량, 끓는점 등)은 트리글리세라이드에 존재하고 있는 지방산 (Fatty Acids: FAs)의 종류, 즉, 상기 화학식 1에서 치환기 R1, R2, R3 등의 종류에 따라 달라질 수 있다. 이러한 동식물성 유지의 대표적인 성분에 대한 지방산 프로파일은 도 1에 예시된 바와 같다.
또한, 상기 동식물성 유지의 구체적인 일례로 하기 화학식 2로 표시되는 트리글리세라이드를 포함하는 것을 들 수 있다.
[화학식 2]
Figure imgf000011_0001
본 발명에 따른 한 실시예에서는 상기 동식물성 유지는 소량의 기타 불순물을 포함하거나 물 등이 포함된 것을 사용할 수도 있다. 특히, 본 발명에 따른 한 실시예에서는 이와 같이 반응기질물에 물이 포함되어 있어도 에스테르 교환 반웅을 효과적으로 진행할 수 있는 장점이 있다. 예컨대, 폐식용류의 경우 다량의 물을 함유하고 있거나 비식용 기름에도 약간의 물이 존재할 수 있는데, 이러한 유지는 별도의 수분 제거 과정 없이 본 발명의 실시예에 따른 에스테르 교환 반웅에 그대로 사용될 수 있다. 다만 유지의 종류에 따라서는 좀더 효과적인 공정 효율을 달성하기 위해서 유지에 포함된 물의 함량은 적정한 범위 내로 최소화될 수 있다.
본 발명의 실시예에 따라 사용될 수 있는 동식물성 유지는, 예로서, 팜유, 대두유, 유채유, 옥수수유, 평지유, 해바라기유, 홍화유, 면실유, 참기름, 들기름, 미강유, 팜핵유, 동백유, 피마자유, 올리브유, 야자유, 아몬드유, 야트로파유, 규조류 (Diatom), 하수슬러지 (Sludge) , 미세조류 (Microalgae), 우지 (beef tallow), 돈지 (lard), 양지, 어유, 고래기름, 다랑어 기름 등이 있다. 또한 이들 동식물성 유지는 1 종 이상이 혼합되어 사용될 수 있으며, 나아가 그들의 폐유 또한사용될 수 있다.
한편, 본 발명에 따른 한 실시예에서 상기 동식물성 유지와 함께 반웅기질물로 지방족 알코올류 또는 일차 알코올류가 사용될 수 있다. 예를 들어, 탄소수 1 내지 12의 지방족 알코올류가사용될 수 있다. 이러한 지방족 알코올류로는, 예로서 메탄을, 에탄올, 프로판올, 부탄올, 펜탄올 등이 사용될 수 있으며, 이들 알코올류는 1 종 이상이 혼합되어 사용될 수 있다.
상기 알코을류 증에서, 메탄올 및 에탄을 등이 가격적인 측면에서 선호될 수 있으며, 반웅성을 고려할 경우에 메탄올이 에탄을보다 적합할 수 있다. 메탄을 (MeOH)의 경우, 메탄을의 반웅성 및 구조적 (steric) 인자들에 의해서 에스테르 교환 반응의 반응성이 좋아질 수 있다. 또한, 탄소수가 많은 알코올을 사용하여 생성되는 FAME의 탄소 분자수를 증가시킬 수 있다. 특히, 탄소수가 다른 다양한 종류의 알코올을 사용함으로써 , 생성되는 FAME에 다양한 물성 변화를 시도할 수 있다.
상기 동식물성 유지와 상기 알코을류를 반응시킴에 있어서, 상기 동식물성 유지 : 알코올류는 중량비로 1 : 0.1 내지 1 : 1, 바람직하게는 1 : 0.15 내지 1 : 1, 좀더 바람직하게는 1 : 0.2 내지 1 : 1의 범위에서 사용될 수 있다. 경우에 따라, 상기 동식물성 유지 : 알코을류의 중량비는 1 : 0.05로 사용할 수도 있을 것이다. 또한, 상기 동식물성 유지 100 증량부에 대하여 상기 알코올류는 10 중량부 이상, 바람직하게는 15 중량부 이상, 좀더 바람직하게는 20 증량부 이상을 사용할 수 있다. 상기 알코올류는 화학양론적 측면에서 상기 동식물성 유지와의 증량비를 10 중량부 이상이 바람직하고, 다량으로 반응시킬 수도 있으나 에너지 효율 측면에서 그의 사용량을 최소화하여 동식물성 유지와의 반웅을 수행할 수 있다. 또한, 동식물성 유지 100 증량부를 기준으로 상기 알코올류를 100 중량부를 초과하여 사용할 수 있겠으나, 본 발명자들이 지금까지 확인한 바로는 이와 같은 알코을류의 초과 사용은 공정 원가가 증가시킬 뿐 유의미한 효과 개선은 없었다. '
한편, 종래의 산촉매 또는 알칼리 촉매를 사용하는 방법이나 초임계적 에스테르 교환 방법을 적용하는 경우에는, 동식물성 유지 100 중량부에 대하여 알코올 10증량부 정도로 반웅시키면, 바이오 디젤를 생성시키는 전환 반옹이 아예 일어나지 않거나 최소한 2 시간 이상의 반웅 시간이 (필요했다. 하지만, 본 발명에 따른 한 실시예에 의하면, 상술한 바와 같은 소량의 알코올류를 적용시에도, 5분 이하, 본 발명자들이 확인할 수 있었던 실험 결과 기준으로는 1분 미만 정도의 단시간 동안 대략 90¾> 이상, 적합한 반웅조건에서는 95% 이상 좀더 적합화된 반응조건에서는 98% 이상의 전환율을 얻을 수 있었다. 특히, 본 발명에 따른 한 실시예는 종래의 바이오 디젤 전환 공정에 비하여 현저히 적은 양의 알코을이 사용됨이 특징이라 할수 있다.
본 발명에 따른 한 실시예는 상기 동식물성 유지와 지방족 알코을류를 사용하여 에스테르 교환 반웅을 수행함에 있어서, 종래의 산 촉매 및 염기 촉매 등이 아닌 다공성 물질의 존재 하에서 무촉매로 반웅을 진행시키는 것을 특징으로 한다. 본 발명에 따른 한 실시예에서 다공성 물질은 촉매로서 작용하지 않으며 이러한 점에서 고상촉매와 명확히 구별된다.
본 발명의 실시예에 따른 다공성 물질 (Porous Material)은 열화학적 전환 과정, 즉 고온의 에스테르 교환 반웅에서도 다공성을 유지할 필요가 있다. 예를 들어, 이러한 다공성 물질은 본 발명의 한 실시예에 따른 반응 온도 범위에서 열분해가 일어나지 않는 다공성 물질일 수 있다. 이러한 관점에서 본 발명에서는 다공성 물질이 내화성 (refractory)을 갖는다고 하거나, 본 발명에 따른 다공성 물질이 내화성 다공성 물질이라고 지칭하고 있음이 이해될 필요가 있다.
본 발명에 따른 내화성 다공성 물질은, 활성화된 반웅기질물이 수용될 수 있으며 그 안에서 동식물성 유지와 알코올류간의 반웅이 효과적으로 수행될 수 있는, 그러한 기공 (Pore)이 존재하는 모든 다공성 물질이 될 수 있다. 고온으로 인하여 기상화된 알코을류는 운동에너지가 증가하여 기공 (Pore)에 흡착되어 존재하는 동식물성 유지 성분과 충돌하고, 이에 의해 에스테르 교환 반응0> 36 6^ £^:3 ∞)이 급격하게 진행될 수 있다. 도 3의 설명에서 반웅 메커니즘이 보다 구체적으로 설명될 것이다. 본 발명에 따른 한 실시예의 내화성 다공성 물질은 반응기질물의 기상화 및 흡착 등이 가능한 조건에서 다양한 기공 크기 및 기공 분포를 가질 수 있다. 예컨대, 상기 내화성 다공성 물질로는 메조 기공체 (mesopore, 기공 직경: 1 nm 이상 내지 50 nm 미만), 또는 매크로 기공체 (macropore, 기공 직경: 50 nm 이상 내지 500 urn이하)가사용될 수 있다. 다만, 반웅기 크기의 최적화 및 공정 효율 개선 측면에서, 상기 내화성 다공성 물질은 1 nm 이상 또는 1 nm 이상 내지 500 μαα 이하, 바람직하게는 1.5 nm 이상, 좀더 바람직하게는 2 nm 이상의 평균 직경을 갖는 기공을 포함하는 것이 될 수 있다. 본 발명의 실시예에 따른 다공성 물질의 기공 크기 또는 형태에 대한 이해를 위해, 몇 가지의 예를 도 4a 내지 도 4c에 나타냈다. 도 4a는 활성화된 알루미나의 기공분포, 도 4b 및 도 4c는 각각 코디어라이트 (cordierite) 및 차콜 (charcoal )의 기공분포를 나타낸 것이다. 도 4a 내지 도 4c에서 보듯이, 지배적인 (dominant) 기공크기, 즉 각각의 기공 분포곡선에서 가장 큰 밀도 혹은 피크를 이루는 기공크기는 대략 10nm 이상인 것으로 판단된다.
앞서 본 발명자들은 본 발명에 따른 반응조건에서 유지와 알코올 간의 접촉시간을 증가시키기 위한 목적으로 다공성 물질의 사용을 고려하였음을 밝혔다. 트리글리세라이드의 평균적인 분자크기가 대략 2nm이므로, 기공 내에 트리글리세라이드를 흡착 또는 수용되고 기공 내에서 유지와 알코올 간의 에스테르화 교환 반웅이 원활하게 이루어지기 위해서는, 본 발명의 실시예에 따른 다공성 물질은 최소한 2nm 이상 크기의 기공이 지배적일 필요가 있는 것으로 판단된다.
본 발명에 따른 다공성 물질을 기공 크기를 이용하여 정량적으로 명확히 정의하기는 어렵다. 다만 그 동안의 실험 결과에 기초하면, 본 발명자들은 통상 메조 기공체 또는 매크로 기공체로 불리울 수 있는 정도의 다공성 물질은 본 발명에 따른 다공성 물질로서 사용될 수 있는 것으로 확인하였다. 도 4a 내지 도 4c만을 고려한다면, 지배적인 (dominant) 기공크기가 10nm 이상인 다공성 물질이 좀을 것이라고 말해질 수는 있을 뿐이다.
한편, 통상적으로 촉매 반웅 둥을 위해 사용되는 고온 (500 °C 초과)용 담지체의 경우, 소결 (sintering) 처리를 하기 때문에 그 과정에 기공이 닫히거나 작아질 수 있다. 따라서, 본 발명에 따른 한 실시예에, 이러한 종래의 담지체를 적용할 경우에 메조 기공체 (raesopore)의 양이 상대적으로 줄어들기 때문에 더 많은 층진물이 필요하고, 반응기 크기가 과도하게 커지는 단점이 발생할 수도 있다. 특히, 종래의 소결 처리된 담체를 이용할 경우, 즉, 나노 사이즈 포어를 갖는 미세 기공체의 소결처리 담체는 더 많은 층진물을 넣어도 본 발명의 효과적인 반응이 나타나지 않을 수 있다. 이러한 측면에서, 본 발명에 따른 한 실시예는 메조 기공체 (mesopore)가 전체 기공의 80% 이상이 되는 내화성 다공성 물질을 사용할 수 있다.
본 발명에 따른 한 실시예에서는 현재까지 알려진 모든 내화성 다공성 물질을 사용할 수 있으며, 심지어는 기공 (Pore)을 가지고 있는 벽돌 등도 사용 가능하다. 이러한 내화성 다공성 물질로는 예로서 알루미나 (Al2 ), 제올라이트 (Zeolite), 활성탄소 (Act ivated Carbon), 챠콜 (Charcoal), 실리카 등이나 이들의 흔합 또는 복합물이 사용될 수 있다. 또한, 본 발명에 따른 한 실시예는 무촉매로도 실현할 수 있는 것이나, 경우에 따라 다공성 물질에 추가로 특정 금속들이나 무기 물질을 도핑 (Doping)하여 사용할 수도 있다. 예를 들어, , Au, Na, Mg, Ca, Pt, Rh, Zn, Co, Cu, Rh 등에서 1종 이상의 금속 성분이 도핑된 내화성 다공성 물질이 사용될 수 있다. 그러나, 본 발명에 따른 한 실시예에서 금속 도핑된 다공성 물질을 사용한 경우, 유의미한 FAME의 전환율 증가가 나타나지 않는 것을 확인한 바 있다. 또한 다공성 물질을 금속 성분 둥으로 도핑하는 경우에, 유지의 크래킹 (Cracking)으로 인해 디젤 범위에 있는 탄소수 12 내지 20의 탄화소수 화합물, 방향족 화합물 둥의 양이 다소 증가할수 있다.
한편, 본 발명에 따른 한 실시예에 따른 에스테르 교환 반응은, 반응기질물인 동식물성 유지의 열적 크래 ¾ (Thermal cracking)이 일어나지 않고 단지 열 에너지에 의해 이들 반응기질물이 활성화 에너지에 도달할 수 있는 정도로만 최소한의 열을 가하는 것이 특징이다. 이러한 측면에서, 본 발명의 실시예에 따른 에스테르 교환 반응의 반응 온도, 일례로서 반응기의 온도는 350 내지 500 °C인 것이 바람직하다. 도 11, 도 14 및 이들 도면의 설명에서 확인할 수 있듯이 본 발명에 따른 에스테르 교환 반웅의 반응온도는, 전환율이 낮거나 반응시간이 길어질 수 있겠지만, 25( C 정도까지 확장될 수도 있을 것이다. 그러나 상기 반웅온도의 상한은 550°C 미만으로 제어되는 것이 바람직한 것으로 판단된다. 일례로서 쿠킹 오일은 550 °C에서 열적 크래킹 (Thermal Cracking)이 관찰되었다.
또한, 본 발명에 따른 한 실시예의 에스테르 교환 반응은 상압 조건에서 사용 가능하며 이 조건에서 우수한 전환율을 나타냈다. 본 발명자들의 실험예에 의하면 본 발명에 따른 에스테르 교환 반웅은 압력에 의한 제한을 받지 않는 것으로 보여진다 . 예로서 상기 반웅은 고압 또는 감압 조건에서도 가능하였다. 그러나 공정 효율 및 원가 측면에서는 상압 조건이 보다 유리하다고 하겠다. 실시예에 따른 반웅 압력은, 예를 들어 , 10 隱 Hg 내지 10 atm, 바람직하게는 0.5 내지 7 atm, 좀더 바람직하게는 1 내지 5 atm일 수 있다. ,.
상기 에스테르 교환 반응은 상술한 바와 같은 온도 및 압력 조건 하에서, 체류 시간이 0.1 내지 5 분, 또는 0.2 내지. 4 분, 0.3 내지 3 분으로 수행할 수 있다. 특히 , 본 명에 따른 한 실시예의 에스테르 교환 반응은 내화성 다공성 물질 존재 하에서 반웅기질물인 동식물성 유지와 알코올류의 에너지 준위를 효과적으로 증가시키며, 상기 반응기질물의 기상화 및 흡착 등이 효과적으로 이뤄질 수 있도록 0.1 분 이상의 체류 시간으로 수행할 수 있다. 다만, 반응 시간이 장시간화되며 반응성이 감소되는 것을 방지할 수 있도록 체류 시간을 5분 이하로 수행할 수 있다. 당연하게도 실시예에 따른 에스테르 교환 반응의 체류시간은 반웅기 구조의 설계에 따라 적절하게 선택될 수 있다. 이러한 본 발명에 따른 한 실시예의 반응 시간은 종래의 산 촉매 및 염기 촉매를 사용할 경우에 전처리 및 본처리 공정에서 최소한 2 시간 이상인 것에 비해 현저히 감소한 것이며, 이에 따라 매우 우수한 공정 효율을 나타낸다. 또한, 현재 연구 단계에서 개발증인 것으로 알려진 초임계 에스테르 교환 반응의 5 분 내지 20 분 정도의 반웅 시간에 비해서도 매우 우수한 공정 효율을 나타내는 것이다. 본 발명에 따른 한 실시예의 에스테르 교환 반응은 다공성 물질 (Porous material)의 존재 하에서 액상 또는 기상의 이종상 (Heterogeneous) 반웅으로 수행될 수 있다. 본 발명의 실시예에 따른 반웅조건에서 유지는, 전적으로 그렇다고는 할 수 없겠지만, 액상일 것으로 판단된다. 끓는점이 낮은 알코올류는 해당 반응조건에서 기상일 것이기에, 실시예에 따른 에스테르 교환 반웅은 기상의 알코을류가 액상의 유지와 반웅하여 기상의 FAMEs을 생성시키는 방식으로 진행된다고 보여진다. 유지의 주성분인 트리글리세라이드 (Triglycerides)가 액상 또는 기상으로 존재하게 되어 쉽게 다공성 물질 (Porous material)에 흡착이 일어나며 열원에 의하여 트리글리세라이드의 에너지 준위가 을라갈 수 있다. 열원에 의해 에스테르 교환 반응의 활성화 에너지가 층분히 도달될 수 있다.
한편, 본 발명에 따른 한 실시예의 무촉매 연속식 반웅은 퍼지 가스 (Purge gas)가 없이도 F層 Es을 생산할 수 있으나 반응의 체류 시간 (Retention time) 조절 및 원활한 연속공정의 진행 유도를 위하여 퍼지 가스 (Purge gas)를 사용할 수 있다. 상기 퍼지 가스 (Purge gas)로는 통상 비활성 기체가 사용되며, 예컨대, 질소 (N2), 아르곤 (Ar), 이산화탄소 (C02) 등이 1종 이상 사용될 수 있다. 이 퍼자 가스는 유지 등의 반응 기질물과 함께 반웅기 내부로 공급될 수 있다.
본 발명의 실시예에 의하면 상기 퍼지 가스로는 이산화탄소 (C02) 또는 적어도 이를 포함하는 가스가 선호된다. 본 발명의 실시예에 따른 에스테르 교환 반웅의 결과로 다공성 물질 (Porous material) 사이에 코킹 (coking) 현상이 발생되곤 한다. 이 코킹 현상은 본 발명에 따른 에스테르 교환 연속공정을 방해하는데, 퍼지 가스로 사용된 이산화탄소가 이러한 코¾ 현상을 현저히 저감시킨다ᅳ 한편 상기 이산화탄소 퍼지 가스를 사용할 경우 본 발명의 실시예에 따른 무촉매 에스테르 교환 반응에서 지방산 알킬 에스테르 (FAMEs)의 전환율이 다소 향상될 수 있다. 도 11에서 확인할 수 있듯이, 이산화탄소 퍼지 가스를 사용할 경우 FAME의 전환율이 타 퍼지 가스를사용하는 경우보다 약 3~4 %증가할수 있다.
본 발명에 따른 한 실시예에 따른 바이오 디젤의 제조 방법에서, 상기 에스테르 교환 반웅은 연속식 공정으로 수행될 수 있다. 본 발명에 따른 연속식 바이오 디젤의 제조 공정은 내화성 다공성 물질의 존재하는 반웅기내에 동식물성 유지와 지방족 알코올류를 연속적으로 공급하면서 에스테르 교환 반웅을 연속적으로 수행하는 형태로 구성될 수 있다. 물론 내화성 다공성 물질은, 반응기에 고정적으로 미리 장입되어 있는 경우가 대부분이겠지만, 경우에 따라서는 반웅기를 따라 연속적으로 공급될 수도 있을 것이다.
한편 본 발명의 실시예에 의하면, 기공올 갖는 바이오매스 (biomass) 자체가 다공성 물질로 사용될 수 있다. 이러한 예로서, 본 발명자들은 한국특허출원 제 2011-0101961을 출원한 바 있으며, 이 출원내용은 본 발명에 참조되며 포함될 수 있다.
한편, 본 발명에 따른 한 실시예는 상술한 바와 무촉매로 다공성 물질의 존재 하에 동식물성 유지와 지방족 알코을류만을 반응시켜 바이오 디젤을 제조하기 때문에, 얻어진 바이오 디젤에 불순물을 최소화하고 순도가 높은 특징을 갖는다. 이때 전환율 또한 종래의 공정보다 현저히 향상되는 정도로 얻을 수 있다ᅳ
이러한 본 발명에 따른 한 실시예의 에스테르 교환 반응을 통해 생성되는 지방산 알킬 에스테르는 탄소수 10 내지 24, 바람직하게는 탄소수 12 내지 22, 좀더 바람직하게는 탄소수 14 내지 20인 지방족 부분을 포함하는 것이 될 수 있다.
한편, 본 발명에 따른 한 실시예에 따른 에스테르 교환 반웅은 하기 반응식 1에 나타낸 바와 같이 이휘진다 .
[반웅식 1]
Figure imgf000018_0001
식 증, R1, R2, R3, R1', R2', 및 R3'는 서로 동일하거나 상이하고, 각각 탄소수 4 내지 38의 지방족 탄화수소기이며, 바람직하게는 탄소수 4 내지 24, 좀더 바람직하게는 탄소수 12 내지 20의 지방족 탄화수소기가 될 수 있다. 이하, 첨부한 도면을 참고로 하여, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도특 본 발명의 실시예에 따른 바이오디젤 제조공정에 대해 구체적으로 설명한다.
먼저, 도 2에 도식화된 것처럼 본 발명의 실시예에 의한 바이오디젤 제조공정에는 다공성물질 (Porous materials)이 사용됨을 특징으로 한다. 도 3에 도식화된 것처럼 기공 (Pore)이나 벌크상 (Bulk Phase)에 존재하는 기상화된 MeOH는 고온으로 인하여 운동에너지가 증가하게 된다. 활동성이 강해진 MeOH는 기공 (Pore)에 홉착 또는 수용되어 있는 트리글리세라이드 (Triglyceride)와 층돌하여 에스테르 교환 반웅 (Transesterification)을 유발한다. 반웅 생산물인 FAMEs과 글리세린은 반응 온도로 인하여 기상으로 반응기 밖으로 나오게 되며, 이 기상의 반응 생성물을 응축 (Condensation)시키는 것만으로 고순도의 FAMEs 및 글리세린을 얻을 수 있다. 아는 바와 같이 글리세린은 FAMEs으로부터 손쉽게 분리될 수 있다. ~
본 발명의 한 실시예에 따라 제조된 FAME과 글리세린의 혼합물의 예 (왼쪽 그림), 그리고 글리세린이 제거된 FAME의 예 (오른쪽)가 도 5에 비교적으로 도시되어 있다. 도 5에 보이는 바이오디젤은 활성화된 알루미나 (Activated Alumina, A1203)를 사용해서 얻어진 것이며 400 °C에서 FAME 전환을 99¾>를 보임을 확인할 수 있었다.
본 발명의 일 실시예에 의하면 연속공정의 반웅기 내 공급된 반응 기질물의 체류시간 (Retention time)은 채 1분을 넘지 않는다. 실시예에 의하면 에스테르 교환 반응은 1분 이내에 완료되어 기상의 생성물을 발생시키며, 이 생성물을 단순히 포집 및 정제하여 F層 E를 얻을 수 있다. 이와 같이 본 발명의 실시예에 따른 에스테르 교환 반웅의 빠른 반응속도 덕택에, 바이오디젤 제조공정을 연속식으로 설계하는 것이 가능하다. 체류시간은 퍼지 가스 (Purge Gas) 및 MeOH의 양에 따라 결정되는 바 퍼지 가스 (Purge Gas)로 반옹속도를 콘트롤할 수 있다.
또한, 본 발명에 따른 한 실시예의 무촉매 연속식 에스테르 교환 반웅의 최적화는 트리글리세라이드 (Triglycerides)의 끓는점 (Boiling Point) 및 FAMEs의 끊는점 (Boiling Point)에 의해 크게 좌우한다.
본 발명의 일실시예에 의하면, 바이오디젤 제조공정의 반응온도는 유지, 즉 트리글리세라이드는 반응에 필요한 활성화 에너지 이상으로 열 에너지를 공급받되 열적 크래킹이 발생되지 않으며, 해당 반온도에서 FAMEs은 기상일 수 있도록 설계된다. 이때 유지는 액상이며, 끓는점이 낮은 알코올은 기상일 수 있다.
본 발명의 일실시예에 따른 바이오디젤 제조공정의 적절한 반웅온도를 구하기 위하여. 일례로서 도 6에서와 같은 열증량 분석이 수행되었다. 도 6에 보여지는 열중량분석 (Thermo— gram)은 NETZSCH사의 열증량분석기 (Thermo— gravimetric Anslysis, TGA)를 이용하여 얻어졌다. 실험조건은 승온온도 (Hewing rate: 100 °C/min)하에서 20 °C에서 1,000 °C까지 Ar 분위기 하에서 실시되었다. 도 6은 온도에 따른 질량 변화 (Mass change) 및 상기 질량 변화 (Mass change)를 1차 미분^ 시차열중량분석 (Differential Thermo— Gram, DTG)로 구성되어 있다.
도 6에 보여지는 것처럼 대두유의 트리글리세라이드 (Triglycerides)의 끓는점은 약 405.2 °C이며 DTG에서 보여 '지는 것처럼 452 °C에서 질량 변화 (Mass Change)는 최대치에 이르게 된다. 따라서 도 7의 결과를 고려한다면, 대두유 트리글리세라이드를 사용한 바이오디젤 전환 공정의 반응온도는 350~400°C 또는 350~450 °C 정도가 바람직하다고 말해질 수 있다. 반웅 온도를 과도하게 증가시키는 것은 불필요하게 트리글리세라이드 (Triglyceride)를 증발시키는 것이고 그 증발잠열로 인한 에너지 손실을 유발하는 것일 수 있다. 앞서 설명하였듯이 반웅온도는 상한은 트리글리세라이드의 열적 크래킹 (thermal cracking)이 발생하지 않도톡 550 °C 미만, 좋게는 500°C 이하로 제어되는 것이 좋다. 또한, 본 발명에 따른 한 실시예를 통해 얻어진 FAMEs의 응축 (Condensation) 혹은 트리글리세라이드의 증발잠열로 인한 에너지 손실을 줄이기 위해서 반웅온도를 350 °C 이상에서 반응하는 것이 바람직하다. 이는 도 8에 나타낸 바와 같은 대표적인 FAMEs의 끓는점 (Boiling Point)에 의하여 쉽게 이해 할 수 있다. 도 8에 나타낸 바와 같은 대부분의 동식물성 유지의 지방산의 탄소범위는 탄소수 14 내지 20(C14-20)이다. 본 발명에 따른 한 실시예의 반응으로 생성된 C14-20의 FAMEs을 웅축 과정 없이 가스상으로 얻기 위해서는 350 내지 500 °C의 온도, 좀 더 바람직하게는 350 내지 450 °C가 바람직하다. MeOH의 끓는 점이 65 °C임을 고려 할 때 가스상의 FAMEs이 쉽게 분리될 수 있으며 정제과정에서 에너지를 절약할 수 있다는 점에서 반웅온도 350 내지 500 °C, 좀 더 바람직하게는 350 내지 450 °C가 적절하다고 할 수 있다. 또한,.도 8에 정리된 것처럼 아라키드산 메틸 에스테르 (Arachidic Acid Methyl Ester)의 경우 끓는점은 약 215 내지 216 °C이지만 상압이 아닌 10 mgHg의 값이기 때문에 바이오 디젤 전환 공정에서 350 °C 이상의 온도가 필요하다고 할 수 있다. 하지만, 반응온도가 너무 과도하게 증가될 경우에, 트리클리세라이드 (Triglyceride)의 증발잠열로 인한 에너지 손실이 최대로 발생하는 바 권장사항이 되지 못한다.
이러한 에스테르 교환 반응의 온도 변화에 따른 FAMEs의 전환율의 일례를 도 7에 나타내었다. 반응은 대기압 하에서 이루어졌으며, 다공성 물질 (Porous material)로는 활성화된 알루미나 (Activated A1203)를 사용했으며 Me0H:0il 증량 비율은 약 0.2:1였다. 도 7에서 보듯이 , 350 °C 이상의 반웅온도에서 98% 내지 99>의 높은 FAME 전환율을 얻을 수 있었다. 또한 도 7에서 보듯이, 본 발명의 실시예에 따른 에스테르 교환 반웅은 350 °C이하에서도 가능하다. 다만 이 경우 FAMW 전환율 90% 이하로 다소 떨어지며 반웅 시간이 다소 길어질 수 있다.
한편, 본 발명에 따른 한 실시예의 무촉매 연속식 에스테르 교환 반응 공정의 일 구현예에서, 반응기질물은 트리글리세라이드 (Triglyceride)와 MeOH이다. 반응기질물인
MeOH:Triglyceride의 바람직한 증량 비율은 이론적으로는 0.1:1이며, 이는 화학양론적 (Stoichiometry) 측면에서 산측된 것으로 도 9에서도 확인 가능하다.
본 발명에 따른 한 실시예 공정의 동식물성 유지, 즉, 트리글리세라이드 (Triglyceride)와 MeOH의 최적화를 위하여 다양한 MeOH:Triglyceride의 증량 비율을 가지고 실험을 하였다. 도 9의 실험에서, 바이오 디젤을 위한 에스테르 교환 반웅은 대기압 및 400 °C에서 실시하였으며 다공성 물질 (Porous Material)로 차콜 (charcoal)이 사용되었다. 도 9에 보여진 것처럼, 바람직하게는 20% 이상의 MeOH의 비율에서 FAME 전환율이 매우 우수한 것을 알 수 있다. 본 발명의 실시예에 따른 다른 다공성 물질, 예로서 활성화된 알루미나 (Activated A1203)를 사용했을 때에도 도 9와 거의 유사한 결과가 나타났다.
도 11은 이산화탄소를 퍼지 가스로 사용하는 경우에 FAME 전환율이 상승함을 보여주는 그래프이다. 도 11의 실험은 대기압하에서 이루어졌으며 다공성 물질로 활성화된 알루미나가 사용되었고, 알코을로 메탄올을 사용되었다.
또한, 본 발명에 따른 한 실시예에서 지방산 100%로 반응한 일례로서 퍼지 가스 (Purge gas)에 대한 FAME 전환율 (Conversion)을 나타낸 그래프를 도 12에 나타내었다. 도 12의 실험에서, 대기압 하에서 다공성 물질로 활성화된 알루미나를 사용하였고, 알코올로 메탄올을 사용하였고, 동식물성 유지로 을레산 (oleic acid)올 사용하였다. 이 실험에서 산가가 대략 200인 100% 지방산을 사용하였음에도, 도 12에서 보듯이, 약 400 °C 이상의 온도에서 약 90% 이상의 FAME 전환율을 얻을 수 있는 것으로 나타났다. 본 발명에 따른 한 실시예에서, 다공성 물질 (Porous material) 중에서 활성화된 알루미나 (Activated A1203) 대신에 챠콜 (Charcoal )을 사용한 반응 결과를 도 13에 나타내었다. 이때, Me0H:0il 중량비는 0.2:1이며 , 실험 온도는 350 °C, 400 °C , 및 450 °C였다. 상기 챠콜 (Charcoal)의 다공성 구조는 도 10에. 나타낸 SEM 이미지로 확인할 수 있다. 한편 상기 챠콜 (Charcoal)을 이용해서 높은 전환율을 달성할 수 있음은 도 9에서도 확인할 수 있다. 실시예에 의하면 챠콜 (Charcoal) 이외에도 실리카 및 제올라이트와 같은 다공성 물질들도 FAME 전환에 사용될 수 있다.
상출한 바와 같은 본 발명에 따른 한 실싱예의 바이오 디젤의 ^조 방법은 종래의 바이오 디젤 생산을 위한 에스테르 교환반응 공정의 단점들을 극복하였으며 현재 R&D로 활발히 진행 증인 에스테르 교환반응의 단점을 모두 극복한 것으로 보인다.
본 발명의 실시예에 의하면 연속공정을 통해 바이오 디젤을 얻을 수 있다.
동식물성 기름에 존재하는 유리 지방산 (FFAs)에 따라 공정 프로세스
' 및 공정 오퍼레이션 (Operation)이 달라지던 종래의 공정과 달리 본 발명에 따른 한 실시예는 유리 지방산의 양과는 무관하게 효과적으로 바이오 디젤 전환 공정이 수행될 수 있다.
또한, 본 발명의 실시예에 의하면, 에스테르 교환반응 공정에서 사용되었던 촉매를 사용하지 않으므로 전처리 및 본처리를 통합한 형태로 바이오 디젤 전환 공정을 구축할 수 있다. 또한, 본 발명에 따른 한 실시예는 통합형 전처리 /본처리 공정을 통하여 폐수 발생 및 바이오 디젤 (FAMEs)의 손실올 원천적으로 봉쇄하는 효과도 있다.
또한, 현재의 연구개발 (R&D) 단계에 있는 고온 /고압의 초임계적 (Supercritical) 반웅에 의한 에스테르 교환반웅 공정과는 달리 본 발명에 따른 한 실시예는 상압에서 반응하는 것도 주요 특징이라 할 수 있다.
한편, 본 발명에 따른 한 실시예는 공정에서 이산화탄소를 사용한다는 점에서 종래 상용화 에스테르 교환반웅 공정 및 R&D 단계의 에스테르 교환반응 공정과 뚜렷한 대비를 보인다. 이는 곧 환경친화적인 공정이기 때문에 본 발명에 따른 한실시예의 효과라 할 수 있을 것이다. 또한, 본 발명에 따른 한 실시예는 바이오 디젤은 종래의 상용공정보다 빨리 생산할 수 있기 때문에 에너지 절감 측면에서 뚜렷한 효과를 보인다. 특히, 반응물질인 메탄을과 동식물성 기름만 가지고 바이오 디젤 (FAMEs)을 제조하기 때문에 증류 정제 비용에 있어 현저한 비용절감을 기대할 수 있다.
한편, 본 발명에 따른 한 실시예에 따라 내화성 다공성 물질 존재 하에서 수행되는 에스테르 교환 반웅으로부터 생성되는 지방산 알킬 에스테르의 전환율은 90% 이상, 높게는 95% 이상, 더 높게는 98% 이상 얻어질 수 있다.
본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 실시예 1~16
하기 표 1에 나타낸 바와 같은 조건으로, 동식물성 유지와 탄소수 1 내지 12의 지방족 알코을류를 내화성 다공성 물질의 존재 하에서 에스테르 교환 반웅을 연속식 공정으로 수행하고, 생성된 지방산 알킬 에스테르와 글리세를을 회수하여 바이오 디젤을 제조하였다. 특히, 동식물성 유지로 실시예 1 내지 14는 대두유 (soybean oil), 실시예 15는 야트로파유 (jatropha oil), 실시예 16은 우지 및 돈지 (extracted lipid from beef tallow and lard)를사용하였다.
이때, 생성된 지방산 메틸 에스테르 (FAME)의 전환율은 다음과 같은 방법으로 측정하였다.
<FAME 전환율 >
FAME 전환율은 GC/MS를 통한 분석값을 이용한다. 바이오디젤의 분석법으로 ASTM D6751 혹은 EN14214 표준규격을 정하고 있다. 특히, EN14103 (Ester와 Linoleic AcidMethyl ester 함량분석)을 이용하여 FAME의 수율을 구했다. 그 외에도 EN14106/ASTM D6584는 글리세린과 Mono-, Di-, Triglyceride의 함량을 구할 때 사용했다.
【표 1]
Figure imgf000024_0001
Figure imgf000025_0001
비교예 1
종래의 방식대로 H2S04를 산 촉매로 사용하여 반응 온도는 65 °C에서 30 시간 동안 에스테르 교환 반응을 수행하여 바이오 디젤을 제조하였다. 이때, 생성된 지방산 메틸 에스테르 (FAME)의 전환율은 94%이였다.
비교예 2
종래의 방식대로 NaOH를 염기 촉매로 사용하여 반응 온도는 65 °C에서 2 시간 동안 에스테르 교환 반응을 수행하여 바이오 디젤을 제조하였다. 이때, 생성된 지방산 메틸 에스테르 (FAME)의 전환율은 94%이였다.
비교예 3
종래의 산 촉매 및 염기 촉매를 사용하지 않고, 다공성 충진물 대신에 버블링 (Bubbling)을 이용하여 무촉매로 반응시간을 300분 이상으로 열화학적 전환방법을 적용한 것을 제외하고는, 실시예 1과 동일한 방법으로 에스테르 교환 반응을 수행하여 바이오 디젤을 제조하였다. 이때, 생성된 지방산 메틸 에스테르 (FAME)의 전환율은 91%이였다. 이와 관련해서, 그 결과의 일례를 나타낸 것이 도 15이다. 도 15에서 ME는 메탄을이고, TG는 트리클리세라이드이고, DG는 디글리세라이드이고, MG는 모노글리세라이드이다.
상기 표 1에 나타낸 바와 같이, 본 발명에 따라 산 촉매 및 염기 촉매 둥을 사용하지 않으며 내화성 다공성 물질 존재 하에서 에스테르 교환 반웅을 수행한 실시예 1~16의 경우에는 반응시간이 모두 1분 내외로 이루어 졌으며 전환율 또한 모두 95% 이상으로 좀더 우수하게는 99% 이상으로 빠른 시간안에 높은 전환율을 달성 할 수 있음올 알 수 있다. 반면에, 종래의 방식대로 산 촉매 및 염기 촉매를 사용한 비교예 1~2의 경우에는 전환율이 모두 94%에 불과하고, 다공성 물질을 층진하지 않고 열화학적 전환방법을 수행한 비교예 3의 경우에 300분 이상의 장시간 반응을 수행한 후에도 전환율이 겨우 91%에 불과하여 좋지 않음올 알수 있었다.
한편, 실사예 16에 따라 우지와 돈지를 사용하여 에스테르 교환 반응을 수행하여 얻어진 생성물쎄 대하여 질량 분석 (GC-MS: Gas Chromatography Mass Spectroscopy)을 수행하여 얻어진 크로마토그램을 도 16에 나타내었다. 도 16에서 확인할 수 있는 바와 같이, 본 발명에 따라 별도의 산 촉매 및 염기 촉매 등을 사용하지 않으면서, 우지와 돈지를 사용하여 에스테르 교환 반웅을 수행한 실시예 16의 경우에 초기 성분에 해당하는 지방산이 검출되지 않고 바이오디젤 (Fatty Acid Methyl Esters: FAMEs)로 전환이 효과적으로 이루어졌음을 확인할 수 있다.

Claims

【특허청구범위】
【청구항 1】
동식물성 유지와 지방족 알코올류를 내화성 다공성 물질의 존재 하에서 에스테르 교환 반웅시켜 지방산 알킬 에스테르와 글리세를을 생성시키는 단계를 포함하는 바이오 디젤의 제조 방법.
【청구항 2】
제 1항에 있어서,
상기 에스테르 교환 반웅의 온도는, 열에너지의 공급에 의해 상기 동식물성 유지의 에너지 준위와 상기 지방족 알코을류의 에너지 준위를 높임으로써, 다공성 물질의 존재하에서 에스테르 교환 반응이 일어날 수 있는 온도로 제어되며, 그리고
상기 에스테르 교환 반웅의 온도는, 상기 지방산 알킬 에스테르가 기체상으로 생성될 수 있으며 상기 동식물성 유지의 열적 크래킹 (thermal cracking)이 나타나지 않을 수 있는 은도로 제어되는 바이오 디젤의 제조 방법 .
【청구항 3】
게 2항에 있어서,
상기 에스테르 교환 반웅의 온도는 350 내지 500 °C인 바이오 디젤의 제조 방법 .
【청구항 4】 r
제 3항에 있어서,
상기 동식물성 유지 : 알코을류의 중량비는 1 : 005 내지 1 : 1인 바이오 디젤의 제조 방법 . ,
【청구항 5】
제 4항에 있어서,
상기 에스테르 교환 반웅의 체류 시간은 0.1 내지 5 분인 바이오 디젤의 제조 방법 .
【청구항 6】
제 1항에 있어서,
상기 에스테르 교환 반응은 질소, 아르곤, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상의 가스 분위기 하에서 수행하는 바이오 디젤의 제조 방법 .
【청구항 7】
제 1항에 있어서,
상기 에스테르 교환 반응의 압력은 10 mmHg 내지 10 atm인 바이오 디젤의 제조 방법.
【청구항 8】
저 U항에 있어서,
상기 에스테르 교환 반응은 이종상 반응으로 수행하는 바이오 디젤의 제조 방법 .
【청구항 9】
제 1항에 있어서,
상기 에스테르 교환 반응은 연속식 공정으로 수행하는 바이오 디젤의 제조 방법 .
【청구항 10】
제 1항에 있어서,
상기 내화성 다공성 물질은 알루미나 (A1203), 제을라이트 (Zeolite), 활성탄소 (Activated Carbon) , 챠콜 (Charcoal )ᅳ 및 실리카로 이루어진 군에서 선택되는 1종 이상인 바이오 디젤의 제조 방법.
【청구항 11】
거 U항에 있어서,
상기 내화성 다공성 물질은 메조 기공체, 매크로 기공체, 또는 이들 모두를 포함하는 바이오 디젤의 제조 방법.
【청구항 12】
내화성 다공성 물질이 장입되어 있는 반응기 내에 동식물성 유지와 지방족 알코올류를 연속적으로 공급하며 유지와 지방족 알코을류 간의 에스테르 교환 반웅을 유도하는 제 1 단계 ; 및
상기 제 1 단계의 에스테르 교환 반응에 의해 생성된 가스상의 지방산 알킬 에스테르 및 글리세롤을 포집하는 제 2 단계;를 포함하는 바이오 디젤의 제조 방법 .
【청구항 13】
제 12항에 있어서,
상기 제 1 단계에서, 상기 동식물성 유지 및 지방족 알코올류와 더불어 퍼지 가스를 연속적으로 공급하며, 상기 퍼지 가스는 질소, 아르곤, 및 이산화탄소로 이루어진 군에서 선택되는 1종 이상인 바이오 디젤의 제조 방법.
【청구항 14】
제 12항에 있어서,
상기 반웅기의 온도는, 열에너지의 공급에 의해 상기 동식물성 유지의 에너지 준위와 상기 지방족 알코을류의 에너지 준위를 높임으로써, 다공성 물질의 존재하에서 에스테르 교환 반응이 일어날 수 있는 온도로 제어되며, 그리고
상기 반웅기의 온도는, 상기 지방산 알킬 에스테르가 기체상으로 생성될 수 있으며 상기 동식물성 유지의 열적 크래킹 (thermal cracking)이 나타나지 않을 수 있는 온도로 제어되는 바이오 디젤의 제조 방법.
PCT/KR2012/002268 2011-08-26 2012-03-28 바이오 디젤의 제조 방법 WO2013032090A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/240,762 US20140202070A1 (en) 2011-08-26 2012-03-28 Method for producing biodiesel
CN201280041763.XA CN104024211A (zh) 2011-08-26 2012-03-28 生产生物柴油的方法
JP2014528252A JP5948420B2 (ja) 2011-08-26 2012-03-28 バイオディーゼルの製造方法
BR112014003151A BR112014003151A2 (pt) 2011-08-26 2012-03-28 métodos para produzir biodiesel
EP12827812.4A EP2757087A4 (en) 2011-08-26 2012-03-28 PROCESS FOR THE PRODUCTION OF BIODIESEL

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0085789 2011-08-26
KR20110085789 2011-08-26
KR1020120031244A KR101364062B1 (ko) 2011-08-26 2012-03-27 바이오 디젤의 제조 방법
KR10-2012-0031244 2012-03-27

Publications (2)

Publication Number Publication Date
WO2013032090A1 true WO2013032090A1 (ko) 2013-03-07
WO2013032090A9 WO2013032090A9 (ko) 2014-06-05

Family

ID=48175057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002268 WO2013032090A1 (ko) 2011-08-26 2012-03-28 바이오 디젤의 제조 방법

Country Status (7)

Country Link
US (1) US20140202070A1 (ko)
EP (1) EP2757087A4 (ko)
JP (1) JP5948420B2 (ko)
KR (1) KR101364062B1 (ko)
CN (1) CN104024211A (ko)
BR (1) BR112014003151A2 (ko)
WO (1) WO2013032090A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436428B1 (ko) * 2013-05-15 2014-09-01 고려대학교 산학협력단 하수 슬러지로부터 바이오디젤을 제조하는 방법 및 제조 장치
CN108395939B (zh) * 2017-02-07 2021-05-04 中国石油化工股份有限公司 一种生物柴油的生产方法及系统
CN108395937B (zh) * 2017-02-07 2021-05-04 中国石油化工股份有限公司 一种生产生物柴油的方法及系统
KR101957041B1 (ko) * 2017-09-22 2019-03-11 세종대학교산학협력단 내화 다공성 물질을 이용한 바이오 중유의 제조 방법
KR102368472B1 (ko) * 2019-02-28 2022-02-25 서울대학교산학협력단 바이오디젤의 제조 방법
JP1687320S (ko) * 2020-09-01 2021-06-07

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060037430A (ko) * 2003-08-18 2006-05-03 도꾸리쯔 교세호징 노우교ㆍ세이부쯔께이 토쿠세이산교 기쥬쯔 겡뀨 기꼬우 부산물을 생성하지 않는 바이오디젤 연료의 무촉매 제조법
WO2006111997A1 (en) * 2005-04-21 2006-10-26 Consiglio Nazionale Delle Ricerche - Istituto Di Scienze E Tecnologie Molecolari A method for the production of biodiesel, starting from high iodine number fatty substances
KR20070106236A (ko) * 2006-04-28 2007-11-01 에스케이케미칼주식회사 지방산을 이용한 지방산알킬에스테르의 제조방법 및 장치
WO2008013551A1 (en) * 2006-07-23 2008-01-31 Iowa State University Research Foundation, Inc. New composite-based catalysts for biodiesel production
KR20090054769A (ko) * 2007-11-27 2009-06-01 한국생산기술연구원 바이오디젤 연료의 제조방법
KR20110101961A (ko) 2010-03-10 2011-09-16 큐넷커뮤니케이션스 코드 기반의 데이터서비스 시스템 및 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752242B1 (fr) * 1996-08-08 1998-10-16 Inst Francais Du Petrole Procede de fabrication d'esters a partir d'huiles vegetales ou animales et d'alcools
JP4205841B2 (ja) * 2000-07-31 2009-01-07 株式会社日本触媒 不均一触媒を用いた反応方法およびその反応装置
MY137733A (en) * 2000-11-22 2009-03-31 Kao Corp Process for producing lower alkyl fatty esters
JP2005206770A (ja) * 2004-01-19 2005-08-04 Ics Kk 脂肪酸エステルの製造方法及び脂肪酸エステルを含む燃料
US20050274065A1 (en) * 2004-06-15 2005-12-15 Carnegie Mellon University Methods for producing biodiesel
JP4849387B2 (ja) * 2004-07-12 2012-01-11 アイシーエス株式会社 油脂類を原料とする脂肪酸エステルの製造方法
JP4963011B2 (ja) * 2005-03-01 2012-06-27 花王株式会社 脂肪酸低級アルキルエステルの製造方法
US7514575B2 (en) * 2005-05-06 2009-04-07 Battelle Energy Allicance, Llc Production of biodiesel using expanded gas solvents
KR100806353B1 (ko) * 2005-11-18 2008-02-27 노민정 초임계 알코올을 이용한 바이오디젤의 제조 방법
EP1971998B1 (en) * 2006-01-11 2019-05-08 DH Technologies Development Pte. Ltd. Fragmenting ions in mass spectrometry
EP1884559A1 (en) * 2006-07-26 2008-02-06 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Novel method for producing biodiesel using an immobilised catalyst
CN100523131C (zh) * 2007-01-19 2009-08-05 张伟明 用废油制备生物柴油的酯化反应工艺
WO2009002880A1 (en) * 2007-06-22 2008-12-31 Biofuelbox Corporation Vessels and methods for synthesis of biofuel
DE102007059967A1 (de) * 2007-12-11 2009-06-18 Henkel Ag & Co. Kgaa Verfahren zur Durchführung chemischer Reaktionen mit Hilfe eines induktiv erwärmten Heizmediums
JP2011006652A (ja) * 2009-06-25 2011-01-13 Ics Kk 脂肪酸エステルの製造方法
US8507702B2 (en) * 2011-03-29 2013-08-13 Southwest Research Institute Continuous production of bioderived esters via supercritical solvent processing using solid heterogeneous catalysts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060037430A (ko) * 2003-08-18 2006-05-03 도꾸리쯔 교세호징 노우교ㆍ세이부쯔께이 토쿠세이산교 기쥬쯔 겡뀨 기꼬우 부산물을 생성하지 않는 바이오디젤 연료의 무촉매 제조법
WO2006111997A1 (en) * 2005-04-21 2006-10-26 Consiglio Nazionale Delle Ricerche - Istituto Di Scienze E Tecnologie Molecolari A method for the production of biodiesel, starting from high iodine number fatty substances
KR20070106236A (ko) * 2006-04-28 2007-11-01 에스케이케미칼주식회사 지방산을 이용한 지방산알킬에스테르의 제조방법 및 장치
WO2008013551A1 (en) * 2006-07-23 2008-01-31 Iowa State University Research Foundation, Inc. New composite-based catalysts for biodiesel production
KR20090054769A (ko) * 2007-11-27 2009-06-01 한국생산기술연구원 바이오디젤 연료의 제조방법
KR20110101961A (ko) 2010-03-10 2011-09-16 큐넷커뮤니케이션스 코드 기반의 데이터서비스 시스템 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2757087A4 *

Also Published As

Publication number Publication date
EP2757087A1 (en) 2014-07-23
CN104024211A (zh) 2014-09-03
EP2757087A4 (en) 2015-04-08
BR112014003151A2 (pt) 2017-03-14
JP2014525490A (ja) 2014-09-29
JP5948420B2 (ja) 2016-07-06
KR20130022367A (ko) 2013-03-06
WO2013032090A9 (ko) 2014-06-05
KR101364062B1 (ko) 2014-02-21
US20140202070A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
Chellappan et al. Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification
Guldhe et al. Conversion of microalgal lipids to biodiesel using chromium-aluminum mixed oxide as a heterogeneous solid acid catalyst
Nisar et al. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst
Dehkordi et al. Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts
Aysu et al. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils
Farooq et al. Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts
Buasri et al. Application of eggshell wastes as a heterogeneous catalyst for biodiesel production
Ning et al. Preparation and catalytic performance in esterification of a bamboo-based heterogeneous acid catalyst with microwave assistance
Teo et al. Methoxy-functionalized mesostructured stable carbon catalysts for effective biodiesel production from non-edible feedstock
Manique et al. Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil
KR101364062B1 (ko) 바이오 디젤의 제조 방법
Li et al. One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst
Sun et al. Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst
Alves et al. Transesterification of waste frying oil using a zinc aluminate catalyst
Shankar et al. Waste crab shell derived CaO impregnated Na-ZSM-5 as a solid base catalyst for the transesterification of neem oil into biodiesel
Boz et al. Conversion of biomass to fuel: Transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst
Viriya-Empikul et al. Biodiesel production over Ca-based solid catalysts derived from industrial wastes
Wang et al. Hydrotalcite-like compounds containing transition metals as solid base catalysts for transesterification
Hosseini et al. Feasibility of honeycomb monolith supported sugar catalyst to produce biodiesel from palm fatty acid distillate (PFAD)
Alves et al. Transesterification of waste frying oils using ZnAl2O4 as heterogeneous catalyst
Tang et al. Development KCl/CaO as a catalyst for biodiesel production by tri‐component coupling transesterification
JP2007153943A (ja) エステル交換反応によるエステルの製造方法
JPWO2006070661A1 (ja) エステル交換反応によるエステルの製造方法
Sani et al. Palm frond and spikelet as environmentally benign alternative solid acid catalysts for biodiesel production
Wu et al. Challenge of biodiesel production from sewage sludge catalyzed by KOH, KOH/activated carbon, and KOH/CaO

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012827812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14240762

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014528252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014003151

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014003151

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140210