WO2013031480A1 - Semiconductor device manufacturing method and bonding method - Google Patents

Semiconductor device manufacturing method and bonding method Download PDF

Info

Publication number
WO2013031480A1
WO2013031480A1 PCT/JP2012/069765 JP2012069765W WO2013031480A1 WO 2013031480 A1 WO2013031480 A1 WO 2013031480A1 JP 2012069765 W JP2012069765 W JP 2012069765W WO 2013031480 A1 WO2013031480 A1 WO 2013031480A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
substrates
installation
bonding
semiconductor device
Prior art date
Application number
PCT/JP2012/069765
Other languages
French (fr)
Japanese (ja)
Inventor
菅 勝行
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013031480A1 publication Critical patent/WO2013031480A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device such as an SOI (Silicon-on-Insulator) substrate having a structure in which a plurality of small substrates are bonded to a large substrate, and a bonding method.
  • SOI Silicon-on-Insulator
  • low-temperature polysilicon p-Si
  • TFT Thin Film Transistor
  • the low temperature polysilicon has a small crystal grain size, the variation in characteristics is large.
  • a single crystal without a crystal grain boundary may be formed, but it is impossible to form single crystal silicon (c-Si) on a large substrate by a normal film formation method. Therefore, techniques for transferring a single crystal silicon wafer onto a large glass substrate have been proposed (see, for example, Non-Patent Documents 1 and 2).
  • FIGS. 29A and 29B are views showing the configuration of the first substrate support 551 (jig) used in the SOI substrate manufacturing process of FIG.
  • a plurality of semiconductor substrates 502 are installed on the first substrate support base 551, and the base substrate 501 is installed on the second substrate support base 561. Then, after the second substrate support base 561 is disposed above the first substrate support base 551 so that the surface of each semiconductor substrate 502 and the surface of the base substrate 501 face each other with a predetermined interval, all the semiconductors The substrate 502 is charged. Note that the structure is not limited to charging only the semiconductor substrate 502. If the semiconductor substrate 502 and the base substrate 501 have different polarities, only the base substrate 501 or both can be charged.
  • the plurality of lift pins 553 provided below the first substrate support base 551 are raised to raise each semiconductor substrate 502.
  • the distance between the surface of each semiconductor substrate 502 and the surface of the base substrate 501 is reduced.
  • each semiconductor substrate 502 When the distance between the surface of each semiconductor substrate 502 and the surface of the base substrate 501 is narrowed to some extent, the two attract each other due to static electricity, and each semiconductor substrate 502 is separated from the lift pins 553 and contacts the surface of the base substrate 501. Thereafter, as shown in FIG. 28C, one of the lift pins 553 is raised with respect to each semiconductor substrate 502, and pressure is applied to each semiconductor substrate 502, whereby each semiconductor substrate 502 is applied to the surface of the base substrate 501. Are joined.
  • a plurality of semiconductor substrates 502 can be attached to the base substrate 501 at once.
  • the semiconductor substrate 502 is brought into contact with the base substrate 501 using static electricity, even when a plurality of semiconductor substrates 502 having different thicknesses are bonded to the base substrate 501, bonding is performed efficiently. Is possible.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2009-231819 (published on Oct. 8, 2009)”
  • the bonding method described in Patent Document 1 has a problem that a gap between the semiconductor substrates 502 bonded to the base substrate 501 is large.
  • each semiconductor substrate 502 is normally sequentially installed on the corresponding concave substrate placement portion 552 of the first substrate support 551 using the transfer robot 600, as shown in FIG. Is done.
  • the position of the substrate placement portion 552 is designed to ensure a sufficient margin (about several mm), and the placement position of the semiconductor substrate 502 is fixed according to the position of the substrate placement portion 552.
  • a large gap (P in FIG. 32) where the semiconductor substrate 502 is not transferred is surely generated on the base substrate 501 after bonding. . Since the size and number of SOI substrates that can be manufactured can be increased if the semiconductor substrate 502 to be attached is made as large as possible and the gap between the semiconductor substrates 502 is made as small as possible, the above problem reduces the utilization efficiency of the base substrate 501. It is a factor.
  • the bonding method described in Patent Document 1 uses the first substrate support base 551 (jig) in which the region (position and size of the substrate placement portion 552) where the semiconductor substrate 502 is placed is different.
  • the first substrate support 551 cannot be shared with other semiconductor substrates of the size. Therefore, when the size of the semiconductor substrate is changed in order to optimize the SOI substrate to be manufactured, it is necessary to replace the first substrate support itself.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a first substrate (an insulating substrate such as a glass substrate) and a plurality of second substrates (a semiconductor substrate such as a single crystal silicon wafer).
  • a first substrate an insulating substrate such as a glass substrate
  • second substrates a semiconductor substrate such as a single crystal silicon wafer.
  • the gap between the second substrates bonded to the first substrate can be made smaller than before, and the semiconductor device manufacturing method that can improve the utilization efficiency of the first substrate, And providing a joining method.
  • a method for manufacturing a semiconductor device of the present invention provides A method for manufacturing a semiconductor device comprising a first substrate and a second substrate smaller than the first substrate, wherein the plurality of second substrates are joined to the first substrate, A bonding step of bonding the plurality of second substrates on the first substrate;
  • the joining process A first arrangement step of arranging a plurality of independently movable support bases apart from each other; An installation step of installing a second substrate on the upper surface of each support; A second disposing step of disposing each support base by moving each support base on which the second substrate is disposed so that the distance between the second substrates is the first distance; A bonding step in which the second substrates are pushed up from the support bases and bonded to the first substrates held above the second substrates,
  • the upper surface of the support table is smaller than the installation surface of the second substrate on the support table,
  • the plurality of support bases are arranged so that the interval between the second substrates when the installation step is completed is a second interval larger than
  • the support bases on which the second substrate is installed can move independently. Therefore, it is possible to optimize the arrangement of the second substrate when the second substrate is installed and when the second substrate is bonded.
  • the support table is arranged so that the interval between the installed second substrates is a second interval larger than the first interval at the time of bonding, so that the deviation in the conveyance can be prevented. Even if it occurs, it is possible to eliminate a problem caused by the shift such as collision between the second substrates.
  • the support bases are moved so that the intervals between the second substrates are set to the first intervals, regardless of the installation position of the second substrate with respect to the support base (presence of installation deviation).
  • the second substrates can be arranged at the first interval. In other words, since the placement of the second substrate can be adjusted with high accuracy after installation, the position of the second substrate can be corrected by the support stand even if the placement shift occurs during installation.
  • the interval between the second substrates which is the first interval, can be brought close to the limit. Therefore, at the time of bonding the second substrate, the interval between the second substrates can be set to a minimum interval instead of the interval considering the margin of the transfer system as in the prior art.
  • the gap between the second substrates joined to the first substrate can be made smaller than before, and the utilization efficiency of the first substrate can be improved.
  • the utilization efficiency of the first substrate can be increased to the maximum.
  • a method for manufacturing a semiconductor device of the present invention provides A method for manufacturing a semiconductor device comprising a first substrate and a second substrate smaller than the first substrate, wherein the plurality of second substrates are joined to the first substrate, A bonding step of bonding the plurality of second substrates on the first substrate;
  • the joining process After installing the second substrate on the upper surface of the support table that can be moved independently at the installation position, the installation movement process for moving the support table on which the second substrate is installed to the first region is repeated a plurality of times, An installation arrangement step of arranging each support on which the second substrate is installed in the first region such that the interval between the second substrates is the first interval; A bonding step in which the second substrates are pushed up from the support bases and bonded to the first substrates held above the second substrates, The upper surface of the support table is smaller than the installation surface of the second substrate on the support table, The installation position is a fixed position outside the first region.
  • the support bases on which the second substrate is installed can move independently. Therefore, it is possible to optimize the arrangement of the second substrate when the second substrate is installed and when the second substrate is bonded.
  • the second substrates when the second substrate is installed, the second substrates are installed one by one on the support base at a fixed position different from the position at the time of bonding, and the second substrates collide with each other. Therefore, it is possible to eliminate the problem caused by the deviation. In addition, since the operating area for conveyance for installation is narrowed, it is possible to increase the accuracy of the installation position of the second substrate with respect to the support base.
  • each support base is moved so that the intervals between the second substrates are the same as the first interval. It is possible to arrange them at one interval. In other words, since the placement of the second substrate can be adjusted with high accuracy after installation, the position of the second substrate can be corrected by the support stand even if the placement shift occurs during installation.
  • the interval between the second substrates which is the first interval, can be brought close to the limit. Therefore, at the time of bonding the second substrate, the interval between the second substrates can be set to a minimum interval instead of the interval considering the margin of the transfer system as in the prior art.
  • the gap between the second substrates joined to the first substrate can be made smaller than before, and the utilization efficiency of the first substrate can be improved.
  • the utilization efficiency of the first substrate can be increased to the maximum.
  • the bonding method of the present invention A bonding method for bonding a plurality of second substrates smaller than the first substrate on the first substrate, At a position different from the position for bonding, each of the plurality of second substrates is moved more independently than the bonding surface of each of the plurality of support bases that can be moved independently of the second substrate to the first substrate.
  • the support bases on which the second substrate is installed can move independently. Therefore, it is possible to optimize the arrangement of the second substrate when the second substrate is installed and when the second substrate is bonded.
  • the second substrate when the second substrate is installed, the second substrate is arranged on the support base at a position different from the bonding position, for example, at a position where the previously installed second substrate is sufficiently away.
  • the second substrate is arranged on the support base at a position different from the bonding position, for example, at a position where the previously installed second substrate is sufficiently away.
  • each support base is moved and arranged at a position for bonding, so that each second board is packed and arranged regardless of the installation position of the second board with respect to the support base (presence of installation deviation). It becomes possible to make it.
  • the placement of the second substrate can be adjusted with high accuracy after installation, the position of the second substrate can be corrected by the support stand even if the placement shift occurs during installation.
  • the interval between the second substrates can be made as close as possible. Therefore, at the time of bonding the second substrate, the interval between the second substrates can be set to a minimum interval instead of the interval considering the margin of the transfer system as in the prior art.
  • the gap between the second substrates joined to the first substrate can be made smaller than before, and the utilization efficiency of the first substrate can be improved.
  • the utilization efficiency of the first substrate can be increased to the maximum.
  • the support base is moved and disposed at the position for bonding. is doing. Therefore, the gap between the second substrates joined to the first substrate can be made smaller than before, and the use efficiency of the first substrate can be improved.
  • FIG. 3 is a flowchart illustrating a joining method according to the first embodiment. It is a figure which shows one structural example of the stage which is a jig
  • FIG. 5 is a flowchart showing a joining method of Example 2. It is a figure which shows the other structural example of the stage which is a jig
  • A) * (b) is a figure which shows a mode that fine adjustment is performed.
  • Example 10 is a flowchart showing a joining method of Example 4. It is a figure which shows the mode of conveyance of the Example 4, installation, and a movement. It is a figure which shows an example of a mode that it is moved to the predetermined position using the stage provided with the distance measurement function, (a) is a side view, (b) is a plan view. It is a figure which shows the other example of a mode that it is moving to the predetermined position using the stage provided with the distance measurement function, (a) is a side view, (b) is a planar view. (A) to (C) are diagrams showing a conventional SOI substrate manufacturing process. FIGS.
  • 29A and 29B are views showing a configuration of a first substrate support used in the manufacturing process of the SOI substrate of FIG. It is a figure which shows the mode of conveyance and installation of the manufacturing process of the SOI substrate of FIG. It is a figure which shows a mode when there is no margin between semiconductor substrates at the time of conveyance and installation. It is a figure which shows the structure of the conventional SOI substrate.
  • the bonding method according to the present embodiment is not limited to the SOI substrate, but can be applied to a semiconductor device having a structure in which a plurality of small substrates (second substrates) are bonded to a large substrate (first substrate).
  • second substrates small substrates
  • first substrate large substrate
  • organic EL, MEMS, and the like it can be applied to a process of bonding glass or a metal cap for protecting an element from moisture or the like to a glass substrate on which the element is formed.
  • FIGS. 1A and 1B are diagrams showing a configuration example of an SOI substrate 100, where FIG. 1A is a plan view and FIG. 1B is a side view.
  • the SOI substrate 100 semiconductor device
  • the SOI substrate 100 includes one insulating substrate 101 (first substrate) and a plurality of semiconductor substrates 102 (second substrates).
  • the insulating substrate 101 is, for example, a glass substrate.
  • the insulating substrate 101 has a rectangular shape in plan view, and the front surface and the back surface have a large area.
  • the large area is, for example, an area that is larger than the display unit of the liquid crystal display device and is large enough to be incorporated in the housing of the liquid crystal display device.
  • the semiconductor substrate 102 is, for example, a single crystal silicon wafer.
  • the semiconductor substrate 102 has a rectangular shape in plan view, and the front surface and the back surface have a small area.
  • the small area is an area several times smaller than the surface of the insulating substrate 101.
  • the SOI substrate 100 has a structure in which a plurality of semiconductor substrates 102 are bonded to the surface of an insulating substrate 101.
  • the plurality of semiconductor substrates 102 are arranged in a tile shape (matrix shape).
  • FIG. 1 illustrates a configuration in which nine semiconductor substrates 102 are bonded in a 3 ⁇ 3 matrix arrangement, but the number of semiconductor substrates 102 to be bonded is the number of insulating substrates 101, semiconductor substrates 102, and the like. It is determined according to the size of the, and is not limited to nine.
  • the shape of the insulating substrate 101 is not limited to a rectangle, and the shape of the semiconductor substrate 102 may be any shape as long as a gap is not easily formed.
  • the SOI substrate 100 may have a conventional general configuration as the SOI substrate 100 in addition to the above-described configuration, and the manufacturing process of the SOI substrate 100 includes a conventional general process in addition to the bonding process. Although it may be provided, it is omitted for convenience of explanation.
  • FIG. 2 is a flowchart illustrating the bonding method according to the first embodiment.
  • the joining method of the present embodiment includes steps S11 to S15 shown in FIG. 2, and a joining jig is used in the implementation of these steps.
  • FIG. 3 is a diagram illustrating a configuration example of a stage 200 that is a jig for a semiconductor substrate. As shown in FIG. 3, the stage 200 protrudes from the lower table 201, the support column 202 provided on the upper surface of the lower table 201, the installation table 203 (support table) supported by the support column 202, and the upper surface of the lower table 201. A pin 204 and a moving unit 205 provided on the lower surface of the lower base 201 are provided.
  • the installation table 203 is a table on which the semiconductor substrate 102 is installed.
  • the installation table 203 has a rectangular shape in plan view, and the front surface (upper surface) and the back surface thereof are smaller than the back surface (installation surface on the installation table 203) of the semiconductor substrate 102 to be installed.
  • the support column 202 is disposed at the center of the upper surface of the lower base 201.
  • Four pins 204 are provided, and are arranged at four corners around the column 202 on the upper surface of the lower base 201.
  • the pin 204 is configured to be able to rise and fall.
  • the installation base 203 is formed with an opening (not shown) through which the raised pin 204 can pass.
  • the pin 204 has a length such that the tip is positioned below the installation table 203 when the lowering is completed, and the tip is positioned above the installation table 203 when the lifting is completed.
  • the stage 200 can be moved by the moving unit 205.
  • the holding table which is a jig for the insulating substrate, is a table for holding the insulating substrate 101 in a downward state as shown in FIG.
  • the holding table may have any shape and holding mechanism as long as the insulating substrate 101 can be held when the semiconductor substrate 102 is bonded to the insulating substrate 101.
  • FIGS. 4A and 4B are diagrams showing the arrangement of the stage 200 in the joining process, where FIGS. 4A and 4B show installation positions (plan view and side view), and FIGS. (Plan view and side view).
  • the installation position is a position when the semiconductor substrate 102 is installed on the installation table 203 of the stage 200.
  • the stages 200 are arranged in a matrix (here, 3 ⁇ 3) and are separated from each other. Specifically, each stage 200 is arranged such that the distance between the semiconductor substrate 102 and another semiconductor substrate 102 adjacent to the semiconductor substrate 102 when the installation is completed is a (second interval).
  • the transfer position is a position when the semiconductor substrate 102 is bonded to the insulating substrate 101.
  • each stage 200 has a matrix shape (3 ⁇ 3 in this case), and the interval between the semiconductor substrate 102 and another semiconductor substrate 102 adjacent to the semiconductor substrate 102 is b (first interval). It is arranged to be.
  • Interval a is a value sufficiently larger than interval b.
  • the interval a is determined in consideration of the deviation of the transport system from the assumption that the semiconductor substrate 102 is accurately arranged on the installation base 203 of the stage 200.
  • the interval b is a very small value.
  • the semiconductor substrates 102 adjacent to each other at the interval b at the transfer position are close to each other (closely close to each other).
  • each stage 200 is arranged at an installation position (step S11 in FIG. 2).
  • each stage 200 can be moved according to a command from a control device (not shown) so that it can be placed at the installation position.
  • the semiconductor substrate 102 is installed on the upper surface of the installation table 203 of each stage 200 (step S12 in FIG. 2). Specifically, using the transfer robot 210, one semiconductor substrate 102 is transferred toward the corresponding stage 200, and installed on the upper surface of the installation table 203 of the stage 200, one by one.
  • the transfer robot 210 has an arm for mounting and transferring the semiconductor substrate 102. In this installation, it is preferable to install the semiconductor substrate 102 in order from the stage 200 far from the installation position of the transfer robot 210, that is, the stage 200 in the back. Thereby, the semiconductor substrate 102 is installed in all nine stages.
  • the pins 204 of the stage 200 may be located below the upper surface of the installation table 203 after the semiconductor substrate 102 is installed, and may be in any position before the semiconductor substrate 102 is installed.
  • each stage 200 on which the semiconductor substrate 102 is installed is moved and placed at the transfer position (step S13 in FIG. 2). Specifically, each stage 200 other than the stage 200 located at the center is moved so as to gather on the stage 200 located at the center, and each stage 200 is arranged at the transfer position.
  • the transfer position the space
  • the insulating substrate 101 is disposed above the semiconductor substrate 102 (step S14 in FIG. 2). Specifically, first, the insulating substrate 101 is placed and held on the holding table 220 such that the surface (bonding surface) of the insulating substrate 101 faces away from the holding table 220. Then, the holding table 220 is moved to a position above the semiconductor substrate 102 and overlapping with all the semiconductor substrates 102 with the insulating substrate 101 facing downward. Thereby, the insulating substrate 101 is disposed above the semiconductor substrate 102.
  • each semiconductor substrate 102 is bonded to the insulating substrate 101 (step S15 in FIG. 2). Specifically, first, as shown in FIG. 9, by raising all the pins 204 of each stage 200 all at once (pushing up), each semiconductor substrate 102 is pushed up from each installation base 203 all at once, Adhere to the insulating substrate 101.
  • the pin 204 can be raised by a command from a controller (not shown). Note that “all at once” does not have to be strictly all at once, and may be slightly shifted.
  • the amount by which the semiconductor substrate 102 is pushed up is optimally set so that the semiconductor substrate 102 is in close contact with the insulating substrate 101 at the time of this pushing up. Then, after the semiconductor substrates 102 and the insulating substrate 101 are brought into close contact with each other, the pins 204 are lowered (lowered) as shown in FIG. Thereby, each semiconductor substrate 102 is bonded (bonded) to the insulating substrate 101.
  • the said bonding can be performed by sticking both together and it is hard to peel off. This is because the oxide film formed on the semiconductor substrate 102 and the insulating substrate 101 (glass substrate) start to join from the portion where pressure is applied by the pins 204, and the bond is spontaneously formed and covers the entire surface. Because. This bonding can be performed at room temperature without van der Waals force or hydrogen bonding and without heat treatment.
  • the bonding process is completed, and the insulating substrate 101 onto which the plurality of semiconductor substrates 102 are transferred can be obtained. Thereafter, post processing is appropriately performed to manufacture the SOI substrate 100.
  • the gap between the semiconductor substrates 102 bonded to the insulating substrate 101 can be made extremely small as compared with the conventional case.
  • the stage 200 (installation table 203) on which the semiconductor substrate 102 is installed can move independently. Therefore, the placement of the semiconductor substrate 102 can be optimized when the semiconductor substrate 102 is installed and when the semiconductor substrate 102 is bonded.
  • the stage 200 is arranged so that the interval between the installed semiconductor substrates 102 is sufficiently larger than the interval b at the time of bonding. Even if this occurs, it is possible to eliminate a problem caused by the shift such as collision between the semiconductor substrates (see FIG. 11A).
  • a dotted line E indicates the outline of the semiconductor substrate 102 when correctly arranged.
  • each stage 200 is moved so that the intervals between the semiconductor substrates 102 are set to be the interval b, so that the semiconductor substrate 102 is installed with respect to the installation table 203 regardless of the installation position (presence or absence of installation deviation).
  • the semiconductor substrates 102 can be arranged at intervals b (see FIG. 11B). That is, since the arrangement (interval) of the semiconductor substrate 102 can be accurately adjusted after installation, the position of the semiconductor substrate 102 can be corrected by the stage 200 even if the installation is displaced during installation.
  • the interval of the semiconductor substrates 102 which is the interval b, can be brought close to the limit. Therefore, at the time of bonding the semiconductor substrate 102, it is possible to set the interval between the semiconductor substrates 102 to a minimum interval rather than the interval considering the margin of the transfer system as in the conventional case.
  • the interval between the semiconductor substrates 102 bonded to the insulating substrate 101 can be made smaller than before, and the insulating property can be reduced.
  • the utilization efficiency of the substrate 101 can be improved. In other words, since the gap between the semiconductor substrates 102 bonded to the insulating substrate 101 can be minimized, the utilization efficiency of the insulating substrate 101 can be increased to the maximum.
  • a jig for a semiconductor substrate an integrated jig in which a region for arranging the semiconductor substrate is determined is used, so that the jig cannot be shared by other semiconductor substrates of different sizes.
  • the size of the semiconductor substrate was changed according to the design, it was necessary to replace the jig itself.
  • an independent movable jig (stage 200) is used as a jig for the semiconductor substrate.
  • the number can be changed freely. Therefore, since a jig can be shared, it is possible to flexibly cope with changes in the size and number of semiconductor substrates 102.
  • FIG. 12 is a flowchart illustrating the joining method according to the second embodiment.
  • the joining method of this embodiment includes steps S21 to S26 shown in FIG. 12, and a joining jig is used in carrying out these steps.
  • FIG. 13 is a diagram showing a configuration example of the stage 230 which is a jig for a semiconductor substrate.
  • FIG. 13 shows a state when the semiconductor substrate 102 is installed.
  • the stage 230 protrudes from the lower base 231, the support 232 provided on the upper surface of the lower base 231, the installation base 233 (support base) supported by the support 232, and the upper surface of the lower base 231.
  • a pin 236 and a moving part 237 provided on the lower surface of the lower base 231 are provided.
  • the parallel direction is the x direction / y direction (the through direction in the drawing is the y direction), and the vertical direction Let the direction be the z direction.
  • the xy direction is also referred to as the left-right direction, and the z direction is also referred to as the up-down direction.
  • the lower base 231 has a mechanism that can move a little in the xy direction with high accuracy (high precision).
  • the moving range of the lower base 231 is narrower than the moving range of the moving unit 237 (movable region N).
  • the position of the installation table 233 that is, the position of the semiconductor substrate 102 installed on the installation table 233 can be further finely adjusted in addition to the adjustment by the movement of the moving unit 237.
  • the installation base 233 includes a fixing unit 234 and an inclination adjusting unit 235.
  • the semiconductor substrate 102 is installed on the upper surface of the inclination adjusting unit 235.
  • the installation table 233 has a size smaller than the back surface of the semiconductor substrate 102 to be installed (installation surface to the tilt adjustment unit 235).
  • the inclination adjusting unit 235 can change the inclination of the upper surface thereof, and thereby the inclination of the semiconductor substrate 102 installed on the installation table 233 can be adjusted.
  • the support column 232 is disposed at the center of the upper surface of the lower base 231.
  • the support column 232 has a mechanism that can move up and down in the z direction and a mechanism that can rotate in the xy direction. Thereby, it is possible to adjust the height and position of the rotation direction of the semiconductor substrate 102 installed on the installation table 233.
  • pins 236 are provided, and are arranged around the columns 232 on the upper surface of the lower base 231 and at the four corners, respectively.
  • the pin 236 is configured to be able to ascend and descend.
  • the installation base 233 is formed with an opening (not shown) through which the raised pin 236 can pass.
  • the pin 236 has such a length that the tip is positioned below the installation table 233 when the lowering is completed and the tip is positioned above the installation table 233 when the lifting is completed.
  • the moving unit 237 can move over a wide operating range (movable area N) at high speed.
  • the stage 230 can be moved by the moving unit 237.
  • the stage 230 (particularly the installation table 233) has an adjustment function (position adjustment function, height adjustment function) that can adjust the installation position of the semiconductor substrate 102 installed on the installation table 233 in the 360 ° direction. , Rotation function, and tilt correction function).
  • each stage 230 is arranged at an installation position (step S21 in FIG. 12). Then, the semiconductor substrate 102 is installed on the upper surface of the installation table 233 of each stage 230 (step S22 in FIG. 12). The processing so far is the same as the processing in steps S11 to S12 in FIG. Thereby, the semiconductor substrate 102 is installed in all nine stages.
  • each stage 230 on which the semiconductor substrate 102 is placed is moved and placed at the transfer position (step S23 in FIG. 12). Specifically, each stage 230 other than the stage 230 located at the center is moved so as to gather on the stage 230 located at the center, and each stage 230 is arranged at the transfer position. At this time, each stage 230 places importance on high-speed movement, and does not need to be accurately positioned at the transfer position.
  • each stage 230 on which the semiconductor substrate 102 is placed is accurately positioned at the transfer position (step S24 in FIG. 12).
  • the adjustment function of each stage 230 is used to adjust the interval between the semiconductor substrates 102 from the state of being roughly arranged at the transfer position (FIG. 15A) to be the interval b. (FIG. 15B).
  • each stage 230 places importance on precise movement and does not need to move at high speed.
  • the insulating substrate 101 is disposed above the semiconductor substrate 102 (step S25 in FIG. 12). Thereafter, each semiconductor substrate 102 is bonded to the insulating substrate 101 (step S26 in FIG. 12).
  • the processing in steps S25 to S26 may be performed in the same manner as the processing in steps S14 to S15 in FIG. In this way, the bonding process is completed, and the insulating substrate 101 onto which the plurality of semiconductor substrates 102 are transferred can be obtained.
  • the position of the semiconductor substrate 102 can be controlled with higher accuracy, so that the utilization efficiency of the insulating substrate 101 can be further increased.
  • the position of the semiconductor substrate 102 is adjusted by the movement of the stage 200 in the two-dimensional plane (movement in the xy direction).
  • position accuracy will fall. In particular, when the moving distance is long, it is difficult to obtain accuracy.
  • each stage 230 includes not only a mechanism that moves a long distance but also a mechanism that can be precisely adjusted in the 360 ° direction, thereby enabling high-accuracy placement, which is referred to as the above-described low accuracy. The problem has been solved.
  • the provision of the stage 230 makes it possible to achieve both shortening of the adjustment time and accurate control, and improve the throughput.
  • the stage 230 (especially the installation base 233) does not need to have all the above-mentioned adjustment functions (position adjustment function, height adjustment function, rotation function, and tilt correction function), and depends on the desired effect. It is sufficient that at least one of the adjustment functions is added.
  • FIG. 16 is a diagram illustrating a state in which the semiconductor substrate 102 is displaced in the rotational direction during installation.
  • the rotation function rotation mechanism of the support column 232
  • the rotation shift of the semiconductor substrate 102 can be corrected by rotating the installation base 233 of the stage 230.
  • FIG. 17 is a diagram showing a state where the thicknesses of the semiconductor substrates 102 are different at the time of bonding.
  • the degree of adhesion to the insulating substrate 101 may vary, and a semiconductor substrate 102 that cannot be bonded may be generated.
  • the height adjustment function the vertical mechanism of the support column 232
  • the contact surfaces of the respective semiconductor substrates 102 can be made to have the same height and can be optimally crimped. It becomes.
  • FIG. 18 is a diagram illustrating a state where the insulating substrate 101 is not flat at the time of bonding.
  • a silicon wafer that is the semiconductor substrate 102 is very flat, but a glass substrate that is the insulating substrate 101 may have an inclination or a swell. In this case, there is a possibility that the semiconductor substrate 102 cannot be attached.
  • the tilt adjustment function tilt correction mechanism of the tilt adjusting unit 235
  • the tilt of the semiconductor substrate 102 can be adjusted in accordance with the tilt of the insulating substrate 101 or the like. Thus, it is possible to suitably bond them together.
  • FIG. 19 is a flowchart illustrating the joining method according to the third embodiment.
  • the joining method of this embodiment includes steps S31 to S35 shown in FIG. 19, and a jig for joining is used in carrying out these steps.
  • this jig the same one as in Example 1 or Example 2 may be used, and here, the same one as in Example 1 is used.
  • the “installation position” is a position where the “transfer position” is slightly enlarged, and is provided in the same region.
  • the operating area of the transfer robot 210 (the area including the storage portion 240 where the semiconductor substrate 102 for bonding is prepared and the installation position) must be wide to some extent.
  • the position where the semiconductor substrate 102 is placed is also different for each stage (there are a plurality of locations). For this reason, misalignment of the semiconductor substrate 102 is likely to occur, and a fine adjustment mechanism as in the second embodiment may be required.
  • Example 3 as shown in FIG. 21, the “installation position” is outside the region where the “transfer position” is provided and is a position fixed at one place. Therefore, there is only one position where the semiconductor substrate 102 is placed, and the operating area of the transfer robot 210 is narrow.
  • a plurality of stages 200 are prepared in advance in another place (second region) different from the installation position and the transfer position.
  • the stage 200 waiting in this place is sequentially sent out to the installation position (step S31 in FIG. 19).
  • the semiconductor substrate 102 is installed on the stage 200 that is sequentially sent out (step S32 in FIG. 19). Specifically, the operation of installing one semiconductor substrate 102 on the stage 200 that has reached the installation position using the transfer robot 210 is repeatedly performed. Since the installation position is fixed at one place, it can be installed with high accuracy.
  • the stage 200 on which the semiconductor substrate 102 is installed is moved and placed at the transfer position (step S33 in FIG. 19). Specifically, the stage 200 on which the moving semiconductor substrate 102 is placed is sequentially arranged at the transfer position.
  • steps S34 to S35 may be performed in the same manner as the processes in steps S14 to S15 in FIG. In this way, the bonding process is completed, and the insulating substrate 101 onto which the plurality of semiconductor substrates 102 are transferred can be obtained.
  • the semiconductor substrate 102 when the semiconductor substrate 102 is installed, the semiconductor substrate 102 is placed on the installation base 203 of the stage 200 at a fixed position different from the position at the time of bonding. Since it is installed one by one, it is possible to eliminate problems caused by deviations in conveyance such as semiconductor substrates colliding with each other. In addition, since the operation area of the transfer robot 210 (operation area for transfer for installation) is narrowed, it is possible to increase the accuracy of the installation position of the semiconductor substrate 102 with respect to the installation table 203.
  • each stage 200 is moved so that the intervals between the semiconductor substrates 102 are set to be the interval b, so that the semiconductor substrate 102 is installed with respect to the installation table 203 regardless of the installation position (presence or absence of installation deviation).
  • the semiconductor substrates 102 can be arranged at intervals b. Therefore, the interval of the semiconductor substrates 102 which is the interval b can be brought close to the limit.
  • the interval between the semiconductor substrates 102 bonded to the insulating substrate 101 can be made smaller than before, and the utilization efficiency of the insulating substrate 101 can be improved.
  • the number of stages 200 it is preferable to prepare the number of stages 200 with a margin. Thereby, as shown in FIGS. 22A and 22B, even if the stage 200 is left in the bonding process of the SOI substrate 100, the semiconductor substrate 102a whose size is reduced in the bonding process of another SOI substrate. When a larger number of stages 200 are required to bond the two, it is possible to flexibly cope with them.
  • the plurality of transfer robots 210 may be used for parallel processing. Specifically, each of the plurality of transfer robots 210 performs installation at a corresponding installation position (fixed position), and moves the stage 200 on which the semiconductor substrate 102 is installed from each installation position to perform transfer. It can be arranged at each position. In this way, by providing a plurality of installation locations and performing the installation process in parallel, it is possible to improve the throughput.
  • FIG. 24 is a flowchart illustrating the joining method according to the fourth embodiment.
  • the joining method of this embodiment includes steps S41 to S46 shown in FIG. 24, and a jig for joining is used in carrying out these steps.
  • this jig the same one as in Example 1 or Example 2 may be used, and here, the same one as in Example 1 is used.
  • Example 4 (4-1) Joining Method The joining method of Example 4 will be specifically described. In this embodiment, in addition to the bonding method of the third embodiment, a process for measuring the installation position of the semiconductor substrate 102 is added.
  • the standby stage 200 is sequentially sent to the installation position (step S41 in FIG. 24), and the semiconductor substrate 102 is installed on the stage 200 that is sequentially sent out at the installation position (step in FIG. 24).
  • the stage 200 on which the semiconductor substrate 102 is placed is moved to the transfer position and placed at the transfer position (step S44 in FIG. 24).
  • Step S42 the position of the semiconductor substrate 102 with respect to the installation table 203 is measured between Step S42 and Step S44, that is, during the movement from the installation of the semiconductor substrate 102 to the stage 200 to the transfer position.
  • Step S43 in FIG. Note that the processing in steps S41 to S42, 44 is the same as the processing in steps S31 to S33 in FIG.
  • a measuring device 250 is provided in the vicinity of the movement path from the installation position to the transfer position area.
  • the measurement apparatus 250 measures the position of the semiconductor substrate 102 with respect to the installation table 203 with respect to the installation table 203 that is moving, for example, using a detection function such as a sensor.
  • This measurement result is transmitted to a control device (not shown) for controlling the arrangement of the transfer position, and is considered for the arrangement at the transfer position.
  • the configuration thereof and the position on the movement route are not limited.
  • each semiconductor substrate 102 is bonded to the insulating substrate 101 (step S46 in FIG. 24).
  • the processes in steps S45 to S46 may be performed in the same manner as the processes in steps S14 to S15 in FIG. In this way, the bonding process is completed, and the insulating substrate 101 onto which the plurality of semiconductor substrates 102 are transferred can be obtained.
  • the bonding methods of Examples 1 to 4 are characterized in that the arrangement of the semiconductor substrate 102 can be optimized when the semiconductor substrate 102 is installed and when the semiconductor substrate 102 is bonded. .
  • the means for detecting the distance to the adjacent semiconductor substrate 102 is not particularly limited, and an optimum means / configuration can be adopted.
  • the distance from the object adjacent to the stage 200 (stage 230) can be taken.
  • By providing a distance measuring function capable of measuring the distance it is possible to realize a configuration for detecting the distance to the adjacent semiconductor substrate 102.
  • FIG. 26 is a diagram illustrating an example of a state in which the stage 200 including the detection unit 261 for measuring the position of the adjacent semiconductor substrate 102 is moved to a predetermined position
  • FIG. View (b) is a plan view.
  • the stage 200 includes a horizontal plate 260 and a detection unit 261.
  • the horizontal plate 260 is provided on each of the four side surfaces of the lower base 201, and the horizontal plate 260 on each side surface is disposed at one end of the side surface in the left-right direction.
  • the horizontal plate 260 has a length that exceeds the outline of the semiconductor substrate 102 in plan view.
  • the detection unit 261 is provided on the upper surface of each horizontal plate 260, and the detection unit 261 on each upper surface is disposed at a position so as not to overlap with the installed semiconductor substrate 102.
  • the detection unit 261 detects a distance from an adjacent object, and includes, for example, an optical sensor. By detecting the distance to an adjacent object, the presence or absence of a nearby object can be detected.
  • each stage 200 on which the semiconductor substrate 102 is installed is moved and placed at the transfer position, each stage is moved.
  • the semiconductor substrate 102 installed on the opposite stage 200 approaches the detection unit 261 of 200. Thereby, the edge part of the adjacent semiconductor substrate 102 can be detected by the detection part 261, and a board
  • the method of directly detecting the adjacent semiconductor substrate 102 has good accuracy, but the structure is slightly complicated. Therefore, as in the fourth embodiment, when the installation deviation is found by measuring the position of the semiconductor substrate 102 with respect to the installation table 203 in advance by the measurement device 250, the difference between the adjacent stage 200 and the adjacent stage 200 is determined. By measuring the distance, the distance between the semiconductor substrates 102 can be optimized.
  • FIG. 27 is a diagram illustrating an example of a state in which the stage 200 including the detection unit 262 for measuring the position of the adjacent stage 200 is moved to a predetermined position, and (a) is a side view. , (B) is a plan view.
  • the stage 200 includes a detection unit 262.
  • the detection unit 262 is provided on each of two continuous side surfaces of the lower base 201, and the detection unit 262 on each side surface is disposed on one end side in the left-right direction of the side surface.
  • the detection unit 261 detects a distance from an adjacent object, and includes, for example, an optical sensor.
  • each stage 200 on which the semiconductor substrate 102 is placed is moved and placed at the transfer position (see, for example, step S44 in FIG. 24), as shown in FIG.
  • the distance to the adjacent stage 200 can be measured by the detection unit 262 of each stage 200 (arrow G). Therefore, the distance between the semiconductor substrates 102 can be optimized by reducing the distance between the stages in consideration of the information on the installation deviation acquired in advance. According to this configuration, it is only necessary to measure the distance to the adjacent stage 200, and the structure of the stage 200 can be simplified and the number of detection units 262 can be reduced.
  • the first substrate may be an insulating substrate
  • the second substrate may be a semiconductor substrate
  • the first substrate can be a glass substrate
  • the second substrate can be a single crystal silicon wafer.
  • the support base is provided with a position adjustment function capable of moving in a narrower moving range with higher accuracy than the movement in the second arrangement step, ascending and At least one of a height adjustment function capable of descending, a rotation function capable of rotating in the left-right direction, and an inclination adjustment function capable of changing the inclination of the upper surface of the support base is added. It is preferable that
  • the position of the second substrate can be controlled with higher accuracy, the utilization efficiency of the first substrate can be further increased. Further, the final fine adjustment is performed by the above function, so that the movement of the support base can be performed at a high speed, and the adjustment time can be shortened. Thus, throughput can be improved.
  • the support base has a distance measuring function capable of measuring a distance from an adjacent object.
  • the first substrate may be an insulating substrate
  • the second substrate may be a semiconductor substrate
  • the first substrate can be a glass substrate
  • the second substrate can be a single crystal silicon wafer.
  • the support base on which the second substrate is installed at the installation position is the first outside the first region before the second substrate is installed. It is preferable to wait in two areas and to sequentially send out the second substrate to the installation position when the second substrate is installed.
  • At least the number of the second substrates to be bonded to the first substrate is provided in the second region when the installation / placement process is started. It is preferable that the stand is waiting.
  • the support table in the installation and placement step, is moved during the period from the installation of the second substrate to the support table until reaching the first region. It is preferable to measure the position of the second substrate with respect to and to arrange the first substrate in consideration of the measurement result.
  • the support base is provided with a position adjustment function capable of moving in a narrower moving range with higher accuracy than the movement in the installation movement process, and ascending and descending. At least one of a height adjustment function that can be performed, a rotation function that can be rotated in the left-right direction, and an inclination adjustment function that can change the inclination of the upper surface of the support base is added. It is preferable.
  • the support base has a distance measuring function capable of measuring a distance from an adjacent object.
  • the present invention can be suitably used in the field relating to a method for manufacturing a semiconductor device such as an SOI substrate, which has a structure in which a plurality of small substrates are bonded to a large substrate. Further, the present invention can also be applied to a method in which a large number of small substrates and covers are attached to a large substrate on which elements are formed, such as organic EL and MEMS.

Abstract

This semiconductor device manufacturing method includes: a step (S12) of disposing, at intervals larger than those at bonding, second substrates on supporting tables; a step (S13) of disposing the supporting tables at bonding positions by moving the supporting tables; and a step (S15) of pushing up the second substrates from the supporting tables, and bonding the second substrates to a first substrate held above the second substrates. Consequently, the intervals at which the second substrates are bonded on the first substrate can be made smaller than the conventional intervals, and use efficiency of the first substrate is improved.

Description

半導体装置の製造方法、および接合方法Semiconductor device manufacturing method and bonding method
 本発明は、複数の小型基板が大型基板に接合された構造を有する、特にSOI(Silicon on Insulator)基板などの半導体装置の製造方法、および接合方法に関するものである。 The present invention relates to a method for manufacturing a semiconductor device such as an SOI (Silicon-on-Insulator) substrate having a structure in which a plurality of small substrates are bonded to a large substrate, and a bonding method.
 現在、液晶表示装置において、低温ポリシリコン(p-Si)が、中小型の液晶パネル用の薄膜トランジスタ(Thin Film Transistor:TFT)として主流になっている。但し、低温ポリシリコンは結晶粒径が小さいため、特性のバラツキが大きい。バラツキを小さくするためには、結晶粒界の無い単結晶を形成すればよいが、通常の成膜方法で大型基板上に単結晶シリコン(c-Si)を形成することは不可能である。そこで、大型のガラス基板上に、単結晶シリコンウエハーを転写する技術が提案されている(例えば、非特許文献1,2参照)。 Currently, in a liquid crystal display device, low-temperature polysilicon (p-Si) has become the mainstream as a thin film transistor (Thin Film Transistor: TFT) for a small and medium size liquid crystal panel. However, since the low temperature polysilicon has a small crystal grain size, the variation in characteristics is large. In order to reduce the variation, a single crystal without a crystal grain boundary may be formed, but it is impossible to form single crystal silicon (c-Si) on a large substrate by a normal film formation method. Therefore, techniques for transferring a single crystal silicon wafer onto a large glass substrate have been proposed (see, for example, Non-Patent Documents 1 and 2).
 ここで、単結晶シリコンウエハーは、大型のガラス基板と比べて数倍小さい。このため、ガラス基板に上記ウエハーを複数枚貼り付ける際、一枚ずつ貼り付けていたのでは、時間がかかる。そこで、効率的に貼り付け作業を行うために、治具に上記ウエハーを全て並べた後、一気にガラス基板に貼り合わせる接合方法が提案されている(例えば、特許文献1参照)。 Here, single crystal silicon wafers are several times smaller than large glass substrates. For this reason, when a plurality of wafers are attached to the glass substrate, it takes time if they are attached one by one. Therefore, in order to efficiently perform the bonding operation, a bonding method has been proposed in which all the wafers are arranged on a jig and then bonded to a glass substrate at once (for example, see Patent Document 1).
 特許文献1に記載の接合方法について説明する。ここでは、絶縁性のベース基板(ガラス基板)上に複数の半導体基板(単結晶シリコンウエハー)が接合されてなるSOI基板の作製工程を示して説明する。図28の(A)~(C)は、特許文献1に記載のSOI基板の作製工程を示す図である。図29の(A)・(B)は、図28のSOI基板の作製工程にて用いる第1の基板支持台551(治具)の構成を示す図である。 The joining method described in Patent Document 1 will be described. Here, a manufacturing process of an SOI substrate in which a plurality of semiconductor substrates (single crystal silicon wafers) are bonded to an insulating base substrate (glass substrate) will be described. 28A to 28C are diagrams showing a manufacturing process of an SOI substrate described in Patent Document 1. FIG. FIGS. 29A and 29B are views showing the configuration of the first substrate support 551 (jig) used in the SOI substrate manufacturing process of FIG.
 まず、図28の(A)に示すように、第1の基板支持台551に複数の半導体基板502を設置し、第2の基板支持台561にベース基板501を設置する。そして、各半導体基板502の表面とベース基板501の表面とが所定の間隔をもって対向するように、第1の基板支持台551の上方に第2の基板支持台561を配置した後、全ての半導体基板502を帯電させる。なお、半導体基板502のみに帯電させる構成に限らず、半導体基板502とベース基板501とが互いに異なる極性となれば、ベース基板501のみ、または、両方に帯電させることもできる。 First, as shown in FIG. 28A, a plurality of semiconductor substrates 502 are installed on the first substrate support base 551, and the base substrate 501 is installed on the second substrate support base 561. Then, after the second substrate support base 561 is disposed above the first substrate support base 551 so that the surface of each semiconductor substrate 502 and the surface of the base substrate 501 face each other with a predetermined interval, all the semiconductors The substrate 502 is charged. Note that the structure is not limited to charging only the semiconductor substrate 502. If the semiconductor substrate 502 and the base substrate 501 have different polarities, only the base substrate 501 or both can be charged.
 続いて、図28の(B)に示すように、第1の基板支持台551の下方に設けられた複数のリフトピン553を上昇させることによって、各半導体基板502を上昇させる。これにより、各半導体基板502の表面とベース基板501の表面との間隔を狭くする。 Subsequently, as shown in FIG. 28B, the plurality of lift pins 553 provided below the first substrate support base 551 are raised to raise each semiconductor substrate 502. As a result, the distance between the surface of each semiconductor substrate 502 and the surface of the base substrate 501 is reduced.
 各半導体基板502の表面とベース基板501の表面との間隔がある程度まで狭くなると、静電気によって両者が引き合い、各半導体基板502がリフトピン553から離れて、ベース基板501の表面に接触する。その後、図28の(C)に示すように、各半導体基板502に対しリフトピン553の1つを上昇させて、各半導体基板502に圧力を加えることにより、ベース基板501の表面に各半導体基板502を接合させる。 When the distance between the surface of each semiconductor substrate 502 and the surface of the base substrate 501 is narrowed to some extent, the two attract each other due to static electricity, and each semiconductor substrate 502 is separated from the lift pins 553 and contacts the surface of the base substrate 501. Thereafter, as shown in FIG. 28C, one of the lift pins 553 is raised with respect to each semiconductor substrate 502, and pressure is applied to each semiconductor substrate 502, whereby each semiconductor substrate 502 is applied to the surface of the base substrate 501. Are joined.
 こうして、複数の半導体基板502を、一気にベース基板501に貼り付けることが可能となっている。また、静電気を利用してベース基板501に半導体基板502を接触させているので、厚さが異なる複数の半導体基板502をベース基板501に接合させる場合であっても、効率良く貼り合わせを行うことが可能となっている。 Thus, a plurality of semiconductor substrates 502 can be attached to the base substrate 501 at once. In addition, since the semiconductor substrate 502 is brought into contact with the base substrate 501 using static electricity, even when a plurality of semiconductor substrates 502 having different thicknesses are bonded to the base substrate 501, bonding is performed efficiently. Is possible.
日本国公開特許公報「特開2009-231819号公報(2009年10月8日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2009-231819 (published on Oct. 8, 2009)”
 しかしながら、特許文献1に記載の接合方法では、ベース基板501に接合された半導体基板502間の隙間が大きいという問題がある。特許文献1に記載の接合方法において、各半導体基板502は、通常、図30に示すように、搬送ロボット600を用いて第1の基板支持台551の対応する凹状の基板配置部552に順次設置される。しかし、各半導体基板502を隣接するように並べる作業においては、搬送ロボット600の精度などによって、各半導体基板502をギリギリまで詰めて並べることは難しい。このため、搬送でのずれや、搬送時のウエハー間の干渉などを考慮したマージン(図30のQ)を、隣接する基板配置部552の間に予め取っておく必要がある。マージンがないと、図31に示すように、設置した半導体基板502と、次に搬送されてくる半導体基板502’とが衝突するなどのトラブルが発生してしまう。また、静電気を利用した引き合いによりベース基板501に各半導体基板502を接触させているため、この点を考慮したマージンも必要となる。 However, the bonding method described in Patent Document 1 has a problem that a gap between the semiconductor substrates 502 bonded to the base substrate 501 is large. In the bonding method described in Patent Document 1, each semiconductor substrate 502 is normally sequentially installed on the corresponding concave substrate placement portion 552 of the first substrate support 551 using the transfer robot 600, as shown in FIG. Is done. However, in the operation of arranging the semiconductor substrates 502 so as to be adjacent to each other, it is difficult to arrange the semiconductor substrates 502 as close as possible due to the accuracy of the transfer robot 600 or the like. Therefore, it is necessary to reserve a margin (Q in FIG. 30) in consideration of deviation in conveyance and interference between wafers during conveyance in advance between adjacent substrate placement portions 552. If there is no margin, as shown in FIG. 31, troubles such as collision between the installed semiconductor substrate 502 and the next transported semiconductor substrate 502 'occur. Further, since each semiconductor substrate 502 is brought into contact with the base substrate 501 by an inquiry utilizing static electricity, a margin in consideration of this point is also necessary.
 よって、十分なマージン(数mm程度)を確保するように基板配置部552の位置が設計され、この基板配置部552の位置に従って半導体基板502の配置位置が固定された第1の基板支持台551を用いて貼り合わせを行っているため、図32に示すように、接合後のベース基板501上には、半導体基板502が転写されていない大きな隙間(図32のP)が必ず発生してしまう。貼り付ける半導体基板502はできるだけ大きくし、半導体基板502間の隙間はできるだけ小さくした方が、作製できるSOI基板の大きさや数を増やすことができるので、上記問題はベース基板501の利用効率を低下させる要因となっている。 Therefore, the position of the substrate placement portion 552 is designed to ensure a sufficient margin (about several mm), and the placement position of the semiconductor substrate 502 is fixed according to the position of the substrate placement portion 552. As shown in FIG. 32, a large gap (P in FIG. 32) where the semiconductor substrate 502 is not transferred is surely generated on the base substrate 501 after bonding. . Since the size and number of SOI substrates that can be manufactured can be increased if the semiconductor substrate 502 to be attached is made as large as possible and the gap between the semiconductor substrates 502 is made as small as possible, the above problem reduces the utilization efficiency of the base substrate 501. It is a factor.
 また、特許文献1に記載の接合方法では、半導体基板502を配置する領域(基板配置部552の位置およびサイズ)が決まった第1の基板支持台551(治具)を用いているため、異なるサイズの他の半導体基板に第1の基板支持台551を共用することができない。よって、作製するSOI基板を最適化するために半導体基板のサイズを変えた場合には、第1の基板支持台そのものを取り替える必要がある。 Further, the bonding method described in Patent Document 1 uses the first substrate support base 551 (jig) in which the region (position and size of the substrate placement portion 552) where the semiconductor substrate 502 is placed is different. The first substrate support 551 cannot be shared with other semiconductor substrates of the size. Therefore, when the size of the semiconductor substrate is changed in order to optimize the SOI substrate to be manufactured, it is necessary to replace the first substrate support itself.
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、第1基板(ガラス基板などの絶縁性基板)に複数の第2基板(単結晶シリコンウエハーなどの半導体基板)が接合された構造の作製において、第1基板に接合された第2基板間の隙間を従来よりも小さくすることができ、第1基板の利用効率を向上することができる半導体装置の製造方法、および接合方法を提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a first substrate (an insulating substrate such as a glass substrate) and a plurality of second substrates (a semiconductor substrate such as a single crystal silicon wafer). In the production of the structure in which the first substrate is bonded, the gap between the second substrates bonded to the first substrate can be made smaller than before, and the semiconductor device manufacturing method that can improve the utilization efficiency of the first substrate, And providing a joining method.
 本発明の半導体装置の製造方法は、上記課題を解決するために、
 第1基板と、上記第1基板よりも小さい第2基板とにより構成され、上記第1基板上に複数の上記第2基板が接合された構造を有する半導体装置の製造方法であって、
 上記第1基板上に上記複数の第2基板を接合する接合工程を含み、
 上記接合工程は、
 独立して移動可能な複数の支持台を互いに離間して配置する第1配置工程と、
 上記各支持台の上面に第2基板をそれぞれ設置する設置工程と、
 上記第2基板が設置された各支持台を移動させて、該各第2基板の間隔が第1間隔となるように、該各支持台を配置する第2配置工程と、
 上記各第2基板を、上記各支持台から押し上げて、該各第2基板の上方に保持されている第1基板に貼り合わせる貼り合わせ工程とを含み、
 上記支持台の上面は、上記第2基板の上記支持台への設置面よりも小さく、
 上記第1配置工程では、上記設置工程を完了したときの上記各第2基板の間隔が上記第1間隔よりも大きい第2間隔となるように、上記複数の支持台を配置することを特徴としている。
In order to solve the above problems, a method for manufacturing a semiconductor device of the present invention provides
A method for manufacturing a semiconductor device comprising a first substrate and a second substrate smaller than the first substrate, wherein the plurality of second substrates are joined to the first substrate,
A bonding step of bonding the plurality of second substrates on the first substrate;
The joining process
A first arrangement step of arranging a plurality of independently movable support bases apart from each other;
An installation step of installing a second substrate on the upper surface of each support;
A second disposing step of disposing each support base by moving each support base on which the second substrate is disposed so that the distance between the second substrates is the first distance;
A bonding step in which the second substrates are pushed up from the support bases and bonded to the first substrates held above the second substrates,
The upper surface of the support table is smaller than the installation surface of the second substrate on the support table,
In the first arrangement step, the plurality of support bases are arranged so that the interval between the second substrates when the installation step is completed is a second interval larger than the first interval. Yes.
 上記の構成によれば、第2基板を設置する支持台が、それぞれ独立して移動することができる。よって、第2基板の設置時と第2基板の貼り合わせ時とで、それぞれ、第2基板の配置を最適化することが可能となる。 According to the above configuration, the support bases on which the second substrate is installed can move independently. Therefore, it is possible to optimize the arrangement of the second substrate when the second substrate is installed and when the second substrate is bonded.
 つまりは、第2基板の設置時には、設置した各第2基板の間隔が貼り合わせ時の第1間隔よりも大きい第2間隔となるように、支持台を配置することで、搬送でのずれが生じても、第2基板同士が衝突するなどの当該ずれに起因する問題を排除することが可能となる。 In other words, when the second substrate is installed, the support table is arranged so that the interval between the installed second substrates is a second interval larger than the first interval at the time of bonding, so that the deviation in the conveyance can be prevented. Even if it occurs, it is possible to eliminate a problem caused by the shift such as collision between the second substrates.
 そして、設置後に、各支持台を移動させて、各第2基板の間隔を第1間隔となるように配置することで、支持台に対する第2基板の設置位置(設置ずれの有無)に関係なく、各第2基板を第1間隔で配置させることが可能となる。つまりは、設置後に第2基板の配置を精度良く調整することが可能となるので、設置時に設置ずれが生じても、支持台で第2基板の位置を修正することができる。 Then, after the installation, the support bases are moved so that the intervals between the second substrates are set to the first intervals, regardless of the installation position of the second substrate with respect to the support base (presence of installation deviation). The second substrates can be arranged at the first interval. In other words, since the placement of the second substrate can be adjusted with high accuracy after installation, the position of the second substrate can be corrected by the support stand even if the placement shift occurs during installation.
 よって、第1間隔である第2基板の間隔をギリギリまで接近させることが可能となる。ゆえに、第2基板の貼り合わせ時には、第2基板の間隔を、従来のように搬送系のマージンを考慮した間隔ではなく、極小の間隔とすることが可能となる。 Therefore, the interval between the second substrates, which is the first interval, can be brought close to the limit. Therefore, at the time of bonding the second substrate, the interval between the second substrates can be set to a minimum interval instead of the interval considering the margin of the transfer system as in the prior art.
 したがって、第1基板に接合された第2基板間の隙間を従来よりも小さくすることができ、第1基板の利用効率を向上することが可能となる。換言すると、第1基板に接合された第2基板間の隙間を最小にすることができるため、第1基板の利用効率を最大まで高めることができる。 Therefore, the gap between the second substrates joined to the first substrate can be made smaller than before, and the utilization efficiency of the first substrate can be improved. In other words, since the gap between the second substrates joined to the first substrate can be minimized, the utilization efficiency of the first substrate can be increased to the maximum.
 また、本発明の半導体装置の製造方法は、上記課題を解決するために、
 第1基板と、上記第1基板よりも小さい第2基板とにより構成され、上記第1基板上に複数の上記第2基板が接合された構造を有する半導体装置の製造方法であって、
 上記第1基板上に上記複数の第2基板を接合する接合工程を含み、
 上記接合工程は、
 設置用位置において、独立して移動可能な支持台の上面に第2基板を設置した後、該第2基板が設置された支持台を第1領域に移動させる設置移動処理を複数回繰り返して、上記第1領域に、上記第2基板が設置された各支持台を、該各第2基板の間隔が第1間隔となるように配置する設置配置工程と、
 上記各第2基板を、上記各支持台から押し上げて、該各第2基板の上方に保持されている第1基板に貼り合わせる貼り合わせ工程とを含み、
 上記支持台の上面は、上記第2基板の上記支持台への設置面よりも小さく、
 上記設置用位置は、上記第1領域外の固定された位置であることを特徴としている。
Moreover, in order to solve the above problems, a method for manufacturing a semiconductor device of the present invention provides
A method for manufacturing a semiconductor device comprising a first substrate and a second substrate smaller than the first substrate, wherein the plurality of second substrates are joined to the first substrate,
A bonding step of bonding the plurality of second substrates on the first substrate;
The joining process
After installing the second substrate on the upper surface of the support table that can be moved independently at the installation position, the installation movement process for moving the support table on which the second substrate is installed to the first region is repeated a plurality of times, An installation arrangement step of arranging each support on which the second substrate is installed in the first region such that the interval between the second substrates is the first interval;
A bonding step in which the second substrates are pushed up from the support bases and bonded to the first substrates held above the second substrates,
The upper surface of the support table is smaller than the installation surface of the second substrate on the support table,
The installation position is a fixed position outside the first region.
 上記の構成によれば、第2基板を設置する支持台が、それぞれ独立して移動することができる。よって、第2基板の設置時と第2基板の貼り合わせ時とで、それぞれ、第2基板の配置を最適化することが可能となる。 According to the above configuration, the support bases on which the second substrate is installed can move independently. Therefore, it is possible to optimize the arrangement of the second substrate when the second substrate is installed and when the second substrate is bonded.
 つまりは、第2基板の設置時には、貼り合わせ時の位置とは異なる固定された位置にて、支持台に第2基板を1つずつ設置することで、第2基板同士が衝突するなどの搬送でのずれに起因する問題を排除することが可能となる。また、設置のための搬送にかかる稼働域が狭くなるので、支持台に対する第2基板の設置位置の精度を上げることが可能となる。 In other words, when the second substrate is installed, the second substrates are installed one by one on the support base at a fixed position different from the position at the time of bonding, and the second substrates collide with each other. Therefore, it is possible to eliminate the problem caused by the deviation. In addition, since the operating area for conveyance for installation is narrowed, it is possible to increase the accuracy of the installation position of the second substrate with respect to the support base.
 そして、設置後に、各支持台を移動させて、各第2基板の間隔を第1間隔となるように配置することで、第2基板の設置ずれの有無に関係なく、各第2基板を第1間隔で配置させることが可能となる。つまりは、設置後に第2基板の配置を精度良く調整することが可能となるので、設置時に設置ずれが生じても、支持台で第2基板の位置を修正することができる。 Then, after the installation, each support base is moved so that the intervals between the second substrates are the same as the first interval. It is possible to arrange them at one interval. In other words, since the placement of the second substrate can be adjusted with high accuracy after installation, the position of the second substrate can be corrected by the support stand even if the placement shift occurs during installation.
 よって、第1間隔である第2基板の間隔をギリギリまで接近させることが可能となる。ゆえに、第2基板の貼り合わせ時には、第2基板の間隔を、従来のように搬送系のマージンを考慮した間隔ではなく、極小の間隔とすることが可能となる。 Therefore, the interval between the second substrates, which is the first interval, can be brought close to the limit. Therefore, at the time of bonding the second substrate, the interval between the second substrates can be set to a minimum interval instead of the interval considering the margin of the transfer system as in the prior art.
 したがって、第1基板に接合された第2基板間の隙間を従来よりも小さくすることができ、第1基板の利用効率を向上することが可能となる。換言すると、第1基板に接合された第2基板間の隙間を最小にすることができるため、第1基板の利用効率を最大まで高めることができる。 Therefore, the gap between the second substrates joined to the first substrate can be made smaller than before, and the utilization efficiency of the first substrate can be improved. In other words, since the gap between the second substrates joined to the first substrate can be minimized, the utilization efficiency of the first substrate can be increased to the maximum.
 また、本発明の接合方法は、上記課題を解決するために、
 第1基板上に、上記第1基板よりも小さい第2基板を複数接合する接合方法であって、
 接合用の位置とは異なる別の位置において、複数の第2基板のそれぞれを、独立して移動可能な複数の支持台のそれぞれの、上記第2基板の上記第1基板への接合面よりも小さい上面に設置する設置工程と、
 上記第2基板が設置された各支持台を、移動させて、接合用の位置に配置する配置工程と、
 上記各第2基板を、上記各支持台から押し上げて、該各第2基板の上方に保持されている第1基板に貼り合わせる貼り合わせ工程とを含むことを特徴としている。
Moreover, in order to solve the above-mentioned problem, the bonding method of the present invention
A bonding method for bonding a plurality of second substrates smaller than the first substrate on the first substrate,
At a position different from the position for bonding, each of the plurality of second substrates is moved more independently than the bonding surface of each of the plurality of support bases that can be moved independently of the second substrate to the first substrate. An installation process to install on a small upper surface;
An arrangement step of moving each support base on which the second substrate is installed and arranging it at a position for bonding;
A bonding step in which the second substrates are pushed up from the support bases and bonded to the first substrate held above the second substrates.
 上記の構成によれば、第2基板を設置する支持台が、それぞれ独立して移動することができる。よって、第2基板の設置時と第2基板の貼り合わせ時とで、それぞれ、第2基板の配置を最適化することが可能となる。 According to the above configuration, the support bases on which the second substrate is installed can move independently. Therefore, it is possible to optimize the arrangement of the second substrate when the second substrate is installed and when the second substrate is bonded.
 つまりは、第2基板の設置時には、接合用の位置とは異なる別の位置、例えば、以前に設置した第2基板が十分に離れたところにある位置にて第2基板を支持台に配置することで、第2基板同士が衝突するなどの設置時の搬送でのずれに起因する問題を排除することが可能となる。 In other words, when the second substrate is installed, the second substrate is arranged on the support base at a position different from the bonding position, for example, at a position where the previously installed second substrate is sufficiently away. Thus, it is possible to eliminate a problem caused by a shift in conveyance at the time of installation such as collision between the second substrates.
 そして、設置後に、各支持台を移動させて、接合用の位置に配置することで、支持台に対する第2基板の設置位置(設置ずれの有無)に関係なく、各第2基板を詰めて配置させることが可能となる。つまりは、設置後に第2基板の配置を精度良く調整することが可能となるので、設置時に設置ずれが生じても、支持台で第2基板の位置を修正することができる。 Then, after the installation, each support base is moved and arranged at a position for bonding, so that each second board is packed and arranged regardless of the installation position of the second board with respect to the support base (presence of installation deviation). It becomes possible to make it. In other words, since the placement of the second substrate can be adjusted with high accuracy after installation, the position of the second substrate can be corrected by the support stand even if the placement shift occurs during installation.
 よって、第2基板の間隔をギリギリまで接近させることが可能となる。ゆえに、第2基板の貼り合わせ時には、第2基板の間隔を、従来のように搬送系のマージンを考慮した間隔ではなく、極小の間隔とすることが可能となる。 Therefore, the interval between the second substrates can be made as close as possible. Therefore, at the time of bonding the second substrate, the interval between the second substrates can be set to a minimum interval instead of the interval considering the margin of the transfer system as in the prior art.
 したがって、第1基板に接合された第2基板間の隙間を従来よりも小さくすることができ、第1基板の利用効率を向上することが可能となる。換言すると、第1基板に接合された第2基板間の隙間を最小にすることができるため、第1基板の利用効率を最大まで高めることができる。 Therefore, the gap between the second substrates joined to the first substrate can be made smaller than before, and the utilization efficiency of the first substrate can be improved. In other words, since the gap between the second substrates joined to the first substrate can be minimized, the utilization efficiency of the first substrate can be increased to the maximum.
 以上のように、本発明の半導体装置の製造方法は、貼り合わせ時とは異なる位置で支持台上に第2基板を設置した後に、該支持台を移動させて、貼り合わせ用の位置に配置している。それゆえ、第1基板に接合された第2基板間の隙間を従来よりも小さくすることができ、第1基板の利用効率を向上することができるという効果を奏する。 As described above, in the method for manufacturing a semiconductor device according to the present invention, after the second substrate is installed on the support base at a position different from that at the time of bonding, the support base is moved and disposed at the position for bonding. is doing. Therefore, the gap between the second substrates joined to the first substrate can be made smaller than before, and the use efficiency of the first substrate can be improved.
本発明の一実施形態であるSOI基板の構成を示す図であり、(a)は平面視、(b)は側面視である。It is a figure which shows the structure of the SOI substrate which is one Embodiment of this invention, (a) is a planar view, (b) is a side view. 実施例1の接合方法を示すフローチャートである。3 is a flowchart illustrating a joining method according to the first embodiment. 半導体基板用の治具であるステージの一構成例を示す図である。It is a figure which shows one structural example of the stage which is a jig | tool for semiconductor substrates. 接合工程におけるステージの配置を示す図であり、(a)・(b)は設置用位置(平面視および側面視)を示し、(c)・(d)は転写用位置(平面視および側面視)を示す。It is a figure which shows arrangement | positioning of the stage in a joining process, (a) * (b) shows the position for installation (plan view and side view), (c) * (d) is the position for transfer (plan view and side view) ). 各ステージを設置用位置にそれぞれ配置したときの様子を示す図であり、(a)は平面視、(b)は側面視である。It is a figure which shows a mode when each stage is each arrange | positioned in the position for installation, (a) is a planar view, (b) is a side view. 各ステージに半導体基板をそれぞれ設置する様子を示す図であり、(a)は平面視、(b)は側面視である。It is a figure which shows a mode that a semiconductor substrate is each installed in each stage, (a) is a planar view, (b) is a side view. 半導体基板が設置された各ステージを移動させて転写用位置にそれぞれ配置する様子を示す図であり、(a)は平面視、(b)は側面視である。It is a figure which shows a mode that each stage with which the semiconductor substrate was installed is moved and arrange | positioned in the position for transcription | transfer, respectively, (a) is a planar view, (b) is a side view. 絶縁性基板を半導体基板の上方に配置する様子を示す図であり、(a)は平面視、(b)は側面視である。It is a figure which shows a mode that an insulating substrate is arrange | positioned above a semiconductor substrate, (a) is planar view, (b) is a side view. 各ステージのピンを上昇したときの様子を示す図である。It is a figure which shows a mode when the pin of each stage is raised. 各半導体基板が絶縁性基板に貼り合わせられるときの様子を示す図である。It is a figure which shows a mode when each semiconductor substrate is bonded together to an insulating substrate. (a)・(b)は実施例1の接合方法による効果を示す図である。(A) * (b) is a figure which shows the effect by the joining method of Example 1. FIG. 実施例2の接合方法を示すフローチャートである。5 is a flowchart showing a joining method of Example 2. 半導体基板用の治具であるステージの他の構成例を示す図である。It is a figure which shows the other structural example of the stage which is a jig | tool for semiconductor substrates. 半導体基板が設置された各ステージを移動させて、転写用位置にそれぞれ配置する様子を示す図である。It is a figure which shows a mode that each stage in which the semiconductor substrate was installed is moved, and each is arrange | positioned in the position for transcription | transfer. (a)・(b)は微調節を行う様子を示す図である。(A) * (b) is a figure which shows a mode that fine adjustment is performed. 設置時に、半導体基板に回転方向のずれが生じている場合の様子を示す図である。It is a figure which shows a mode when the shift | offset | difference of the rotation direction has arisen in the semiconductor substrate at the time of installation. 貼り合わせ時に、各半導体基板の厚みが異なっている場合の様子を示す図である。It is a figure which shows a mode when the thickness of each semiconductor substrate differs at the time of bonding. 貼り合わせ時に、絶縁性基板が平坦でない場合の様子を示す図である。It is a figure which shows a mode when an insulating board | substrate is not flat at the time of bonding. 実施例3の接合方法を示すフローチャートである。10 is a flowchart showing a joining method of Example 3. 実施例1・2の搬送・設置の様子を示す図である。It is a figure which shows the mode of conveyance and installation of Example 1-2. 実施例3の搬送・設置・移動の様子を示す図である。It is a figure which shows the mode of conveyance of the Example 3, installation, and a movement. (a)・(b)は実施例3の接合方法の一例による効果を示す図である。(A) * (b) is a figure which shows the effect by an example of the joining method of Example 3. FIG. 実施例3の接合方法の一例による効果を示す図である。It is a figure which shows the effect by an example of the joining method of Example 3. 実施例4の接合方法を示すフローチャートである。10 is a flowchart showing a joining method of Example 4. 実施例4の搬送・設置・移動の様子を示す図である。It is a figure which shows the mode of conveyance of the Example 4, installation, and a movement. 距離測定機能を備えたステージを用いて、所定の位置に移動させている様子の一例を示す図であり、(a)は側面視、(b)は平面視である。It is a figure which shows an example of a mode that it is moved to the predetermined position using the stage provided with the distance measurement function, (a) is a side view, (b) is a plan view. 距離測定機能を備えたステージを用いて、所定の位置に移動させている様子の他の例を示す図であり、(a)は側面視、(b)は平面視である。It is a figure which shows the other example of a mode that it is moving to the predetermined position using the stage provided with the distance measurement function, (a) is a side view, (b) is a planar view. (A)~(C)は、従来のSOI基板の作製工程を示す図である。(A) to (C) are diagrams showing a conventional SOI substrate manufacturing process. (A)・(B)は、図28のSOI基板の作製工程にて用いる第1の基板支持台の構成を示す図である。FIGS. 29A and 29B are views showing a configuration of a first substrate support used in the manufacturing process of the SOI substrate of FIG. 図28のSOI基板の作製工程の搬送・設置の様子を示す図である。It is a figure which shows the mode of conveyance and installation of the manufacturing process of the SOI substrate of FIG. 搬送・設置時に半導体基板間のマージンがないときの様子を示す図である。It is a figure which shows a mode when there is no margin between semiconductor substrates at the time of conveyance and installation. 従来のSOI基板の構成を示す図である。It is a figure which shows the structure of the conventional SOI substrate.
 本発明の一実施形態について図面に基づいて説明すれば、以下の通りである。本実施の形態では、液晶表示装置のアクティブマトリクス基板として用いられるSOI基板の製造方法、特に、絶縁性基板への複数の半導体基板の接合方法について説明する。但し、本実施形態に係る接合方法は、SOI基板に限るものではなく、大型基板(第1基板)上に複数の小型基板(第2基板)が接合された構造を有する半導体装置にも適用することができ、例えば、有機ELやMEMSなどにおいて、素子が形成されたガラス基板に、素子を水分などから保護するためのガラスやメタルキャップを接合する工程などに適用することができる。 An embodiment of the present invention will be described below with reference to the drawings. In this embodiment, a method for manufacturing an SOI substrate used as an active matrix substrate of a liquid crystal display device, particularly a method for bonding a plurality of semiconductor substrates to an insulating substrate will be described. However, the bonding method according to the present embodiment is not limited to the SOI substrate, but can be applied to a semiconductor device having a structure in which a plurality of small substrates (second substrates) are bonded to a large substrate (first substrate). For example, in organic EL, MEMS, and the like, it can be applied to a process of bonding glass or a metal cap for protecting an element from moisture or the like to a glass substrate on which the element is formed.
 (SOI基板の構成)
 図1は、SOI基板100の一構成例を示す図であり、(a)は平面視、(b)は側面視である。図1に示すように、SOI基板100(半導体装置)は、1つの絶縁性基板101(第1基板)と、複数の半導体基板102(第2基板)とを備えている。
(Configuration of SOI substrate)
FIGS. 1A and 1B are diagrams showing a configuration example of an SOI substrate 100, where FIG. 1A is a plan view and FIG. 1B is a side view. As shown in FIG. 1, the SOI substrate 100 (semiconductor device) includes one insulating substrate 101 (first substrate) and a plurality of semiconductor substrates 102 (second substrates).
 絶縁性基板101は、例えばガラス基板である。絶縁性基板101は平面視矩形の形状を有しており、その表面および裏面は大面積となっている。なお、この大面積とは、例えば、液晶表示装置の表示部よりも大きく、液晶表示装置の筺体に内蔵される程度の大きさの面積である。 The insulating substrate 101 is, for example, a glass substrate. The insulating substrate 101 has a rectangular shape in plan view, and the front surface and the back surface have a large area. The large area is, for example, an area that is larger than the display unit of the liquid crystal display device and is large enough to be incorporated in the housing of the liquid crystal display device.
 半導体基板102は、例えば単結晶シリコンウエハーである。半導体基板102は平面視矩形の形状を有しており、その表面および裏面は小面積となっている。なお、この小面積とは、絶縁性基板101の表面よりも数倍小さい面積である。 The semiconductor substrate 102 is, for example, a single crystal silicon wafer. The semiconductor substrate 102 has a rectangular shape in plan view, and the front surface and the back surface have a small area. The small area is an area several times smaller than the surface of the insulating substrate 101.
 SOI基板100は、絶縁性基板101の表面に複数の半導体基板102が接合された構造を有している。そして、複数の半導体基板102は、タイル状(行列状)に配置されている。なお、図1では、9つの半導体基板102が3×3の行列状の配置で接合された形態を示しているが、接合される半導体基板102の数は、絶縁性基板101と半導体基板102とのサイズに応じて決まるものであり、9つに限定されるわけではない。また、絶縁性基板101の形状は矩形に限らず、半導体基板102の形状も、隙間が生じにくく敷き詰められるような形状であればよい。 The SOI substrate 100 has a structure in which a plurality of semiconductor substrates 102 are bonded to the surface of an insulating substrate 101. The plurality of semiconductor substrates 102 are arranged in a tile shape (matrix shape). Note that FIG. 1 illustrates a configuration in which nine semiconductor substrates 102 are bonded in a 3 × 3 matrix arrangement, but the number of semiconductor substrates 102 to be bonded is the number of insulating substrates 101, semiconductor substrates 102, and the like. It is determined according to the size of the, and is not limited to nine. In addition, the shape of the insulating substrate 101 is not limited to a rectangle, and the shape of the semiconductor substrate 102 may be any shape as long as a gap is not easily formed.
 ここで、注目すべきは、SOI基板100の製造工程に含まれる、絶縁性基板101への複数の半導体基板102の接合工程(接合方法、特に貼り合わせ方法)である。よって以下では、接合工程の詳細について説明する。なお、SOI基板100は、上述の構成以外にSOI基板100として従来一般的な構成を備えていてもよいし、また、SOI基板100の製造工程には、接合工程以外に従来一般的な工程を備えていてもよいが、説明の便宜上省略する。 Here, what should be noted is the bonding process (bonding method, particularly bonding method) of the plurality of semiconductor substrates 102 to the insulating substrate 101 included in the manufacturing process of the SOI substrate 100. Therefore, below, the detail of a joining process is demonstrated. The SOI substrate 100 may have a conventional general configuration as the SOI substrate 100 in addition to the above-described configuration, and the manufacturing process of the SOI substrate 100 includes a conventional general process in addition to the bonding process. Although it may be provided, it is omitted for convenience of explanation.
 なお、以下各実施例の説明では、主に、他の実施例との相違点について説明するものとし、他の実施例で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を適宜省略する。 In the following description of each embodiment, differences from the other embodiments will be mainly described, and the same reference numerals are given to components having the same functions as the respective components described in the other embodiments. The description is omitted as appropriate.
 (実施例1)
 図2は、実施例1の接合方法を示すフローチャートである。本実施例の接合方法は、図2に示すステップS11~S15を含み、これらステップの実施において接合用の治具を用いている。
(Example 1)
FIG. 2 is a flowchart illustrating the bonding method according to the first embodiment. The joining method of the present embodiment includes steps S11 to S15 shown in FIG. 2, and a joining jig is used in the implementation of these steps.
 (1-1)治具の構成
 上記治具として、少なくとも、半導体基板用の治具、および、絶縁性基板用の治具を用いる。
(1-1) Configuration of Jig As the jig, at least a jig for a semiconductor substrate and a jig for an insulating substrate are used.
 図3は、半導体基板用の治具であるステージ200の一構成例を示す図である。図3に示すように、ステージ200は、下台201と、下台201の上面に設けられた支柱202と、支柱202により支持された設置台203(支持台)と、下台201の上面から突出しているピン204と、下台201の下面に設けられた移動部205とを備えている。 FIG. 3 is a diagram illustrating a configuration example of a stage 200 that is a jig for a semiconductor substrate. As shown in FIG. 3, the stage 200 protrudes from the lower table 201, the support column 202 provided on the upper surface of the lower table 201, the installation table 203 (support table) supported by the support column 202, and the upper surface of the lower table 201. A pin 204 and a moving unit 205 provided on the lower surface of the lower base 201 are provided.
 設置台203は、半導体基板102が設置される台である。設置台203は平面視矩形の形状を有しており、その表面(上面)および裏面は、設置される半導体基板102の裏面(設置台203への設置面)よりも小さいサイズを有している。支柱202は、下台201の上面の中心に配置されている。ピン204は4つ設けられており、下台201の上面の支柱202の周囲であって4隅にそれぞれ配置されている。ピン204は、上昇および下降することが可能に構成されている。設置台203には、上昇したピン204が貫通することができる開口部(図示せず)が形成されている。ピン204は、下降完了時に先端が設置台203の下方に位置し、上昇完了時に先端が設置台203の上方に位置するような長さを有している。移動部205によって、ステージ200は移動することができる。 The installation table 203 is a table on which the semiconductor substrate 102 is installed. The installation table 203 has a rectangular shape in plan view, and the front surface (upper surface) and the back surface thereof are smaller than the back surface (installation surface on the installation table 203) of the semiconductor substrate 102 to be installed. . The support column 202 is disposed at the center of the upper surface of the lower base 201. Four pins 204 are provided, and are arranged at four corners around the column 202 on the upper surface of the lower base 201. The pin 204 is configured to be able to rise and fall. The installation base 203 is formed with an opening (not shown) through which the raised pin 204 can pass. The pin 204 has a length such that the tip is positioned below the installation table 203 when the lowering is completed, and the tip is positioned above the installation table 203 when the lifting is completed. The stage 200 can be moved by the moving unit 205.
 絶縁性基板用の治具である保持台は、後述の図8に示すように、絶縁性基板101を下向きの状態で保持するための台である。この保持台は、絶縁性基板101に半導体基板102を貼り合わせるときに絶縁性基板101を保持可能であれば、その形状および保持機構は問わない。 The holding table, which is a jig for the insulating substrate, is a table for holding the insulating substrate 101 in a downward state as shown in FIG. The holding table may have any shape and holding mechanism as long as the insulating substrate 101 can be held when the semiconductor substrate 102 is bonded to the insulating substrate 101.
 (1-2)ステージの配置
 接合工程において、ステージ200は、特に、「設置用位置」と、「転写用位置」とに位置するように配置される。図4は、接合工程におけるステージ200の配置を示す図であり、(a)・(b)は設置用位置(平面視および側面視)を示し、(c)・(d)は転写用位置(平面視および側面視)を示す。
(1-2) Stage Arrangement In the joining step, the stage 200 is particularly arranged so as to be positioned at the “installation position” and the “transfer position”. FIGS. 4A and 4B are diagrams showing the arrangement of the stage 200 in the joining process, where FIGS. 4A and 4B show installation positions (plan view and side view), and FIGS. (Plan view and side view).
 設置用位置は、ステージ200の設置台203上に半導体基板102を設置するときの位置である。設置用位置においては、各ステージ200は、行列状(ここでは3×3)であって、互いに離間して配置される。具体的には、各ステージ200は、設置完了時の、半導体基板102と該半導体基板102に隣接する別の半導体基板102との間隔がa(第2間隔)となるように配置される。 The installation position is a position when the semiconductor substrate 102 is installed on the installation table 203 of the stage 200. In the installation position, the stages 200 are arranged in a matrix (here, 3 × 3) and are separated from each other. Specifically, each stage 200 is arranged such that the distance between the semiconductor substrate 102 and another semiconductor substrate 102 adjacent to the semiconductor substrate 102 when the installation is completed is a (second interval).
 転写用位置は、絶縁性基板101に半導体基板102を貼り合わせるときの位置である。転写用位置においては、各ステージ200は、行列状(ここでは3×3)であって、半導体基板102と該半導体基板102に隣接する別の半導体基板102との間隔がb(第1間隔)となるように配置される。 The transfer position is a position when the semiconductor substrate 102 is bonded to the insulating substrate 101. At the transfer position, each stage 200 has a matrix shape (3 × 3 in this case), and the interval between the semiconductor substrate 102 and another semiconductor substrate 102 adjacent to the semiconductor substrate 102 is b (first interval). It is arranged to be.
 間隔aは、間隔bよりも十分に大きい値である。間隔aは、半導体基板102がステージ200の設置台203上に正確に配置されたと想定して、そこから搬送系のずれを考慮して定められる。間隔bは、非常に小さい値である。転写用位置において間隔bで隣接する各半導体基板102は、近接している(ぎりぎりまで近づけられている)。 Interval a is a value sufficiently larger than interval b. The interval a is determined in consideration of the deviation of the transport system from the assumption that the semiconductor substrate 102 is accurately arranged on the installation base 203 of the stage 200. The interval b is a very small value. The semiconductor substrates 102 adjacent to each other at the interval b at the transfer position are close to each other (closely close to each other).
 (1-3)接合方法
 実施例1の接合方法について具体的に説明する。
(1-3) Joining Method The joining method of Example 1 will be specifically described.
 まず、図5に示すように、各ステージ200を、設置用位置にそれぞれ配置する(図2のステップS11)。例えば、制御装置(図示せず)の命令により各ステージ200を移動させることで、設置用位置に配置することができる。 First, as shown in FIG. 5, each stage 200 is arranged at an installation position (step S11 in FIG. 2). For example, each stage 200 can be moved according to a command from a control device (not shown) so that it can be placed at the installation position.
 続いて、図6に示すように、各ステージ200の設置台203の上面に、半導体基板102をそれぞれ設置する(図2のステップS12)。具体的には、搬送ロボット210を用いて、1つの半導体基板102を、対応するステージ200に向けて搬送し、該ステージ200の設置台203の上面に設置するという作業を、1つずつ行う。搬送ロボット210は、半導体基板102を載置させて搬送するアームを有している。この設置では、搬送ロボット210の設置位置から遠い位置にあるステージ200、すなわち奥にあるステージ200から順番に、半導体基板102を設置していくことが好ましい。これにより、9つのステージ全てに、半導体基板102が設置される。 Subsequently, as shown in FIG. 6, the semiconductor substrate 102 is installed on the upper surface of the installation table 203 of each stage 200 (step S12 in FIG. 2). Specifically, using the transfer robot 210, one semiconductor substrate 102 is transferred toward the corresponding stage 200, and installed on the upper surface of the installation table 203 of the stage 200, one by one. The transfer robot 210 has an arm for mounting and transferring the semiconductor substrate 102. In this installation, it is preferable to install the semiconductor substrate 102 in order from the stage 200 far from the installation position of the transfer robot 210, that is, the stage 200 in the back. Thereby, the semiconductor substrate 102 is installed in all nine stages.
 なお、ステージ200のピン204は、半導体基板102の設置後に、設置台203の上面よりも下方に位置していればよく、半導体基板102の設置前は、いずれの位置にいても構わない。 Note that the pins 204 of the stage 200 may be located below the upper surface of the installation table 203 after the semiconductor substrate 102 is installed, and may be in any position before the semiconductor substrate 102 is installed.
 続いて、図7に示すように、半導体基板102が設置された各ステージ200を移動させて、転写用位置にそれぞれ配置する(図2のステップS13)。具体的には、中心に位置するステージ200以外の各ステージ200を、中心に位置するステージ200に集まるように移動させて、各ステージ200を転写用位置にそれぞれ配置する。なお、上記の中心に集まるような移動は効率的であるが、これに限らず、転写用位置(各半導体基板102の間隔が間隔b)となればよい。 Subsequently, as shown in FIG. 7, each stage 200 on which the semiconductor substrate 102 is installed is moved and placed at the transfer position (step S13 in FIG. 2). Specifically, each stage 200 other than the stage 200 located at the center is moved so as to gather on the stage 200 located at the center, and each stage 200 is arranged at the transfer position. In addition, although the movement which gathers to said center is efficient, not only this but the transfer position (the space | interval of each semiconductor substrate 102 should just become a space | interval b).
 続いて、図8に示すように、絶縁性基板101を、半導体基板102の上方に配置する(図2のステップS14)。具体的には、まず、絶縁性基板101を、保持台220に、絶縁性基板101の表面(接合面)が保持台220と反対側に向くように設置し、保持させる。そして、この保持台220を、絶縁性基板101を下向きの状態で、半導体基板102の上方であって、かつ全ての半導体基板102と重なる位置に移動させる。これにより、絶縁性基板101が、半導体基板102の上方に配置される。 Subsequently, as shown in FIG. 8, the insulating substrate 101 is disposed above the semiconductor substrate 102 (step S14 in FIG. 2). Specifically, first, the insulating substrate 101 is placed and held on the holding table 220 such that the surface (bonding surface) of the insulating substrate 101 faces away from the holding table 220. Then, the holding table 220 is moved to a position above the semiconductor substrate 102 and overlapping with all the semiconductor substrates 102 with the insulating substrate 101 facing downward. Thereby, the insulating substrate 101 is disposed above the semiconductor substrate 102.
 続いて、絶縁性基板101に、各半導体基板102を貼り合わせる(図2のステップS15)。具体的には、まず、図9に示すように、各ステージ200の全てのピン204を一斉に上昇させる(突き上げる)ことによって、各半導体基板102を、各設置台203から上方に一斉に押し上げ、絶縁性基板101に密着させる。例えば、制御装置(図示せず)の命令によりピン204を上昇させることができる。なお、「一斉に」とは、厳密に一斉でなくてもよく、多少ずれていてもよい。また、この押し上げ時に半導体基板102が最適に絶縁性基板101に密着するように、半導体基板102の押し上げ量、すなわちピン204の上昇量は、最適に設定されている。そして、各半導体基板102と絶縁性基板101とを密着させた後、図10に示すように、ピン204を下降させる(引き下げる)。これにより、各半導体基板102が絶縁性基板101に貼り合わせられる(接合される)。 Subsequently, each semiconductor substrate 102 is bonded to the insulating substrate 101 (step S15 in FIG. 2). Specifically, first, as shown in FIG. 9, by raising all the pins 204 of each stage 200 all at once (pushing up), each semiconductor substrate 102 is pushed up from each installation base 203 all at once, Adhere to the insulating substrate 101. For example, the pin 204 can be raised by a command from a controller (not shown). Note that “all at once” does not have to be strictly all at once, and may be slightly shifted. In addition, the amount by which the semiconductor substrate 102 is pushed up, that is, the amount by which the pin 204 is raised, is optimally set so that the semiconductor substrate 102 is in close contact with the insulating substrate 101 at the time of this pushing up. Then, after the semiconductor substrates 102 and the insulating substrate 101 are brought into close contact with each other, the pins 204 are lowered (lowered) as shown in FIG. Thereby, each semiconductor substrate 102 is bonded (bonded) to the insulating substrate 101.
 なお、上記貼り合わせは、両者を密着させることで行うことができ、剥がれにくい。この理由は、ピン204によって圧力を加えた部分から、半導体基板102上に形成された酸化膜と、絶縁性基板101(ガラス基板)とが接合しはじめ、自発的に接合が形成され全面に及ぶためである。この接合は、ファンデルワールス力や水素結合が作用しており、加熱処理を伴わず、常温で行うことができる。 In addition, the said bonding can be performed by sticking both together and it is hard to peel off. This is because the oxide film formed on the semiconductor substrate 102 and the insulating substrate 101 (glass substrate) start to join from the portion where pressure is applied by the pins 204, and the bond is spontaneously formed and covers the entire surface. Because. This bonding can be performed at room temperature without van der Waals force or hydrogen bonding and without heat treatment.
 このようにして、接合工程は終了となり、複数の半導体基板102が転写された絶縁性基板101を得ることができる。以降、適宜後処理を実施して、SOI基板100が作製される。 In this way, the bonding process is completed, and the insulating substrate 101 onto which the plurality of semiconductor substrates 102 are transferred can be obtained. Thereafter, post processing is appropriately performed to manufacture the SOI substrate 100.
 (1-4)効果について
 実施例1の接合方法によれば、絶縁性基板101に接合された半導体基板102間の隙間を、従来と比較して非常に小さくすることができる。
(1-4) Effects According to the bonding method of the first embodiment, the gap between the semiconductor substrates 102 bonded to the insulating substrate 101 can be made extremely small as compared with the conventional case.
 つまりは、従来では、図30,31を参照して上述したように、半導体基板を一体型の治具(第1の基板支持台551)に並べることから、半導体基板同士が衝突するなどのトラブルを避けるために、搬送でのズレを考慮したマージン(図30のQ)を確保する必要があった。このため、絶縁性基板上には、半導体基板間の隙間が大きく生じており、基板の利用効率が低下していた(図32参照)。 That is, conventionally, as described above with reference to FIGS. 30 and 31, since the semiconductor substrates are arranged on an integrated jig (first substrate support 551), troubles such as collision of the semiconductor substrates occur. In order to avoid this, it is necessary to secure a margin (Q in FIG. 30) in consideration of the deviation in conveyance. For this reason, a gap between the semiconductor substrates is largely formed on the insulating substrate, and the utilization efficiency of the substrate is reduced (see FIG. 32).
 これに対し、本実施例では、半導体基板102を設置するステージ200(設置台203)が、それぞれ独立して移動することができる。よって、半導体基板102の設置時と半導体基板102の貼り合わせ時とで、それぞれ、半導体基板102の配置を最適化することが可能となる。 On the other hand, in the present embodiment, the stage 200 (installation table 203) on which the semiconductor substrate 102 is installed can move independently. Therefore, the placement of the semiconductor substrate 102 can be optimized when the semiconductor substrate 102 is installed and when the semiconductor substrate 102 is bonded.
 詳述すると、半導体基板102の設置時には、設置した各半導体基板102の間隔が貼り合わせ時の間隔bよりも十分に大きい間隔aとなるように、ステージ200を配置することで、搬送でのずれが生じても、半導体基板同士が衝突するなどの当該ずれに起因する問題を排除することが可能となる(図11の(a)参照)。なお、図11の(a)において、点線Eは、正しく配置されたときの半導体基板102の輪郭を示している。 More specifically, when the semiconductor substrate 102 is installed, the stage 200 is arranged so that the interval between the installed semiconductor substrates 102 is sufficiently larger than the interval b at the time of bonding. Even if this occurs, it is possible to eliminate a problem caused by the shift such as collision between the semiconductor substrates (see FIG. 11A). In FIG. 11A, a dotted line E indicates the outline of the semiconductor substrate 102 when correctly arranged.
 そして、設置後に、各ステージ200を移動させて、各半導体基板102の間隔を間隔bとなるように配置することで、設置台203に対する半導体基板102の設置位置(設置ずれの有無)に関係なく、各半導体基板102を間隔bで配置させることが可能となる(図11の(b)参照)。つまりは、設置後に半導体基板102の配置(間隔)を精度良く調整することが可能となるので、設置時に設置ずれが生じても、ステージ200で半導体基板102の位置を修正することができる。 Then, after the installation, each stage 200 is moved so that the intervals between the semiconductor substrates 102 are set to be the interval b, so that the semiconductor substrate 102 is installed with respect to the installation table 203 regardless of the installation position (presence or absence of installation deviation). Thus, the semiconductor substrates 102 can be arranged at intervals b (see FIG. 11B). That is, since the arrangement (interval) of the semiconductor substrate 102 can be accurately adjusted after installation, the position of the semiconductor substrate 102 can be corrected by the stage 200 even if the installation is displaced during installation.
 よって、間隔bである半導体基板102の間隔をギリギリまで接近させることが可能となる。ゆえに、半導体基板102の貼り合わせ時には、半導体基板102の間隔を、従来のように搬送系のマージンを考慮した間隔ではなく、極小の間隔とすることが可能となる。 Therefore, the interval of the semiconductor substrates 102, which is the interval b, can be brought close to the limit. Therefore, at the time of bonding the semiconductor substrate 102, it is possible to set the interval between the semiconductor substrates 102 to a minimum interval rather than the interval considering the margin of the transfer system as in the conventional case.
 したがって、本実施例では、図1の(a)と図32とを比較すると明らかなように、絶縁性基板101に接合された半導体基板102の間隔を従来よりも小さくすることができ、絶縁性基板101の利用効率を向上することが可能となる。換言すると、絶縁性基板101に接合された半導体基板102間の隙間を最小にすることができるため、絶縁性基板101の利用効率を最大まで高めることができる。 Therefore, in this embodiment, as is apparent from a comparison between FIG. 1A and FIG. 32, the interval between the semiconductor substrates 102 bonded to the insulating substrate 101 can be made smaller than before, and the insulating property can be reduced. The utilization efficiency of the substrate 101 can be improved. In other words, since the gap between the semiconductor substrates 102 bonded to the insulating substrate 101 can be minimized, the utilization efficiency of the insulating substrate 101 can be increased to the maximum.
 また、従来では、半導体基板用の治具として、半導体基板を配置する領域が決まった一体型の治具を用いているため、異なるサイズの他の半導体基板で治具を共用することができず、設計に応じて半導体基板のサイズを変えた場合には、治具そのものを取り替える必要があった。 In addition, conventionally, as a jig for a semiconductor substrate, an integrated jig in which a region for arranging the semiconductor substrate is determined is used, so that the jig cannot be shared by other semiconductor substrates of different sizes. When the size of the semiconductor substrate was changed according to the design, it was necessary to replace the jig itself.
 これに対し、本実施例によれば、半導体基板用の治具として、独立して移動可能な個別の治具(ステージ200)を用いているため、半導体基板102に応じて治具の移動や個数を自由に変更することができる。よって、治具を共用することができるので、半導体基板102のサイズや枚数の変更にも柔軟に対応することが可能となっている。 On the other hand, according to the present embodiment, an independent movable jig (stage 200) is used as a jig for the semiconductor substrate. The number can be changed freely. Therefore, since a jig can be shared, it is possible to flexibly cope with changes in the size and number of semiconductor substrates 102.
 (実施例2)
 図12は、実施例2の接合方法を示すフローチャートである。本実施例の接合方法は、図12に示すステップS21~S26を含み、これらステップの実施において接合用の治具を用いている。
(Example 2)
FIG. 12 is a flowchart illustrating the joining method according to the second embodiment. The joining method of this embodiment includes steps S21 to S26 shown in FIG. 12, and a joining jig is used in carrying out these steps.
 (2-1)治具の構成
 上記治具として、少なくとも、半導体基板用の治具、および、絶縁性基板用の治具を用いる。そして、本実施例では、実施例1と比較して、半導体基板用の治具の構成が異なっている。
(2-1) Jig Configuration As the jig, at least a jig for a semiconductor substrate and a jig for an insulating substrate are used. In this embodiment, the configuration of the semiconductor substrate jig is different from that in the first embodiment.
 図13は、半導体基板用の治具であるステージ230の一構成例を示す図である。図13では、半導体基板102を設置したときの様子を示している。図13に示すように、ステージ230は、下台231と、下台231の上面に設けられた支柱232と、支柱232により支持された設置台233(支持台)と、下台231の上面から突出しているピン236と、下台231の下面に設けられた移動部237とを備えている。 FIG. 13 is a diagram showing a configuration example of the stage 230 which is a jig for a semiconductor substrate. FIG. 13 shows a state when the semiconductor substrate 102 is installed. As shown in FIG. 13, the stage 230 protrudes from the lower base 231, the support 232 provided on the upper surface of the lower base 231, the installation base 233 (support base) supported by the support 232, and the upper surface of the lower base 231. A pin 236 and a moving part 237 provided on the lower surface of the lower base 231 are provided.
 ここで、図13に示すように、ステージ230が配置のために移動することができる移動可能領域Nに対し、平行な方向をx方向・y方向(図示貫通方向がy方向)とし、垂直な方向をz方向とする。なお、xy方向は左右方向、z方向は上下方向ともいう。 Here, as shown in FIG. 13, with respect to the movable region N in which the stage 230 can move for placement, the parallel direction is the x direction / y direction (the through direction in the drawing is the y direction), and the vertical direction Let the direction be the z direction. The xy direction is also referred to as the left-right direction, and the z direction is also referred to as the up-down direction.
 下台231は、高精度(高精密)で、xy方向に少し移動することが可能な機構を有している。下台231の移動範囲は、移動部237の移動範囲(移動可能領域N)よりも狭い。これにより、設置台233の位置、すなわち設置台233に設置された半導体基板102の位置は、移動部237の移動による調節に加えて、さらに微調節することが可能となっている。 The lower base 231 has a mechanism that can move a little in the xy direction with high accuracy (high precision). The moving range of the lower base 231 is narrower than the moving range of the moving unit 237 (movable region N). As a result, the position of the installation table 233, that is, the position of the semiconductor substrate 102 installed on the installation table 233 can be further finely adjusted in addition to the adjustment by the movement of the moving unit 237.
 設置台233は、固定部234および傾き調整部235により構成されている。傾き調整部235の上面に、半導体基板102が設置される。設置台233は、設置される半導体基板102の裏面(傾き調整部235への設置面)よりも小さいサイズを有している。傾き調整部235は、その上面の傾きを変えることが可能であり、これによって、設置台233に設置された半導体基板102の傾きを調節することが可能となっている。 The installation base 233 includes a fixing unit 234 and an inclination adjusting unit 235. The semiconductor substrate 102 is installed on the upper surface of the inclination adjusting unit 235. The installation table 233 has a size smaller than the back surface of the semiconductor substrate 102 to be installed (installation surface to the tilt adjustment unit 235). The inclination adjusting unit 235 can change the inclination of the upper surface thereof, and thereby the inclination of the semiconductor substrate 102 installed on the installation table 233 can be adjusted.
 支柱232は、下台231の上面の中心に配置されている。支柱232は、z方向に昇降することが可能な機構、および、xy方向に回転することが可能な機構を有している。これにより、設置台233に設置された半導体基板102の高さおよび回転方向の位置を調節することが可能となっている。 The support column 232 is disposed at the center of the upper surface of the lower base 231. The support column 232 has a mechanism that can move up and down in the z direction and a mechanism that can rotate in the xy direction. Thereby, it is possible to adjust the height and position of the rotation direction of the semiconductor substrate 102 installed on the installation table 233.
 ピン236は4つ設けられており、下台231の上面の支柱232の周囲であって4隅にそれぞれ配置されている。ピン236は、上昇および下降することが可能に構成されている。設置台233には、上昇したピン236が貫通することができる開口部(図示せず)が形成されている。ピン236は、下降完了時に先端が設置台233の下方に位置し、上昇完了時に先端が設置台233の上方に位置するような長さを有している。 Four pins 236 are provided, and are arranged around the columns 232 on the upper surface of the lower base 231 and at the four corners, respectively. The pin 236 is configured to be able to ascend and descend. The installation base 233 is formed with an opening (not shown) through which the raised pin 236 can pass. The pin 236 has such a length that the tip is positioned below the installation table 233 when the lowering is completed and the tip is positioned above the installation table 233 when the lifting is completed.
 移動部237は、高速で広い稼働範囲(移動可能領域N)を移動することができる。移動部237によって、ステージ230は移動することができる。 The moving unit 237 can move over a wide operating range (movable area N) at high speed. The stage 230 can be moved by the moving unit 237.
 このように、ステージ230(特に設置台233)には、設置台233に設置された半導体基板102の設置位置を360°方向に調節することが可能な調節機能(位置調節機能、高さ調節機能、回転機能、および傾き補正機能)が付加されている。 As described above, the stage 230 (particularly the installation table 233) has an adjustment function (position adjustment function, height adjustment function) that can adjust the installation position of the semiconductor substrate 102 installed on the installation table 233 in the 360 ° direction. , Rotation function, and tilt correction function).
 (2-2)接合方法
 実施例2の接合方法について具体的に説明する。なお、本実施例は、実施例1と比較して、図2のステップS13の工程が異なっている。
(2-2) Joining Method The joining method of Example 2 will be specifically described. Note that the present embodiment is different from the first embodiment in the process of step S13 in FIG.
 まず、各ステージ230を、設置用位置にそれぞれ配置する(図12のステップS21)。そして、各ステージ230の設置台233の上面に、半導体基板102をそれぞれ設置する(図12のステップS22)。ここまでの処理は、上述した図2のステップS11~S12の処理と同じである。これにより、9つのステージ全てに、半導体基板102が設置される。 First, each stage 230 is arranged at an installation position (step S21 in FIG. 12). Then, the semiconductor substrate 102 is installed on the upper surface of the installation table 233 of each stage 230 (step S22 in FIG. 12). The processing so far is the same as the processing in steps S11 to S12 in FIG. Thereby, the semiconductor substrate 102 is installed in all nine stages.
 続いて、図14に示すように、半導体基板102が設置された各ステージ230を移動させて、転写用位置にそれぞれ配置する(図12のステップS23)。具体的には、中心に位置するステージ230以外の各ステージ230を、中心に位置するステージ230に集まるように移動させて、各ステージ230を転写用位置にそれぞれ配置する。このとき、各ステージ230は高速に移動することを重視し、正確に転写用位置に位置する必要はない。 Subsequently, as shown in FIG. 14, each stage 230 on which the semiconductor substrate 102 is placed is moved and placed at the transfer position (step S23 in FIG. 12). Specifically, each stage 230 other than the stage 230 located at the center is moved so as to gather on the stage 230 located at the center, and each stage 230 is arranged at the transfer position. At this time, each stage 230 places importance on high-speed movement, and does not need to be accurately positioned at the transfer position.
 続いて、図15に示すように、半導体基板102が設置された各ステージ230が、転写用位置に正確に位置するように、微調節を行う(図12のステップS24)。具体的には、各ステージ230の調節機能を使用して、転写用位置におおよそに配置された状態(図15の(a))から、各半導体基板102の間隔が間隔bとなるように調整する(図15の(b))。このとき、各ステージ230は、精密に移動することを重視し、高速で移動する必要はない。 Subsequently, as shown in FIG. 15, fine adjustment is performed so that each stage 230 on which the semiconductor substrate 102 is placed is accurately positioned at the transfer position (step S24 in FIG. 12). Specifically, the adjustment function of each stage 230 is used to adjust the interval between the semiconductor substrates 102 from the state of being roughly arranged at the transfer position (FIG. 15A) to be the interval b. (FIG. 15B). At this time, each stage 230 places importance on precise movement and does not need to move at high speed.
 続いて、絶縁性基板101を、半導体基板102の上方に配置する(図12のステップS25)。その後、絶縁性基板101に、各半導体基板102を貼り合わせる(図12のステップS26)。このステップS25~S26の処理は、上述した図2のステップS14~S15の処理と同様に実施すればよい。このようにして、接合工程は終了となり、複数の半導体基板102が転写された絶縁性基板101を得ることができる。 Subsequently, the insulating substrate 101 is disposed above the semiconductor substrate 102 (step S25 in FIG. 12). Thereafter, each semiconductor substrate 102 is bonded to the insulating substrate 101 (step S26 in FIG. 12). The processing in steps S25 to S26 may be performed in the same manner as the processing in steps S14 to S15 in FIG. In this way, the bonding process is completed, and the insulating substrate 101 onto which the plurality of semiconductor substrates 102 are transferred can be obtained.
 (2-3)効果について
 実施例2の接合方法によれば、半導体基板102の位置を、さらに精度良く制御することができるので、絶縁性基板101の利用効率をさらに高めることができる。
(2-3) Effect According to the bonding method of the second embodiment, the position of the semiconductor substrate 102 can be controlled with higher accuracy, so that the utilization efficiency of the insulating substrate 101 can be further increased.
 ここで、上記実施例1では、2次元平面でのステージ200の移動(xy方向の移動)によって、半導体基板102の位置を調整していたが、必要に応じてスループットの向上が望まれることがある。スループットを上げるためには、調整時間を短縮する必要があり、ステージ200の移動速度を上げる必要がある。しかし、そうすると位置精度が低下してしまう。特に移動距離が長いと、精度を出すのが難しい。 Here, in the first embodiment, the position of the semiconductor substrate 102 is adjusted by the movement of the stage 200 in the two-dimensional plane (movement in the xy direction). However, it is desirable to improve the throughput as necessary. is there. In order to increase the throughput, it is necessary to shorten the adjustment time, and it is necessary to increase the moving speed of the stage 200. However, if it does so, position accuracy will fall. In particular, when the moving distance is long, it is difficult to obtain accuracy.
 そこで、実施例2では、長距離を移動する機構だけではなく、360°方向に精密に調節可能な機構を、各ステージ230が備えることによって、高精度の配置を可能とし、上記の低精度という問題を解消している。 Therefore, in the second embodiment, each stage 230 includes not only a mechanism that moves a long distance but also a mechanism that can be precisely adjusted in the 360 ° direction, thereby enabling high-accuracy placement, which is referred to as the above-described low accuracy. The problem has been solved.
 また、長距離の移動を高速にすることができるので、調整時間を短縮することが可能となる。よって、実施例2では、ステージ230を備えることによって、調整時間の短縮と正確な制御を両立することが可能となり、スループットを向上することが可能となる。 Also, since long-distance movement can be performed at high speed, adjustment time can be shortened. Therefore, in the second embodiment, the provision of the stage 230 makes it possible to achieve both shortening of the adjustment time and accurate control, and improve the throughput.
 なお、ステージ230(特に設置台233)には、上述の各調節機能(位置調節機能、高さ調節機能、回転機能、および傾き補正機能)を全て付加する必要はなく、所望する効能に応じて、各調節機能のうち少なくとも1つが付加されていればよい。 The stage 230 (especially the installation base 233) does not need to have all the above-mentioned adjustment functions (position adjustment function, height adjustment function, rotation function, and tilt correction function), and depends on the desired effect. It is sufficient that at least one of the adjustment functions is added.
 図16は、設置時に、半導体基板102に回転方向のずれが生じている場合の様子を示す図である。通常、設置した半導体基板102に回転方向のずれが生じている場合、この半導体基板102と、次に搬送されてくる半導体基板102とが衝突する可能性がある。これに対し、ステージ230に回転機能(支柱232の回転機構)が付加されている場合は、ステージ230の設置台233を回転させることで、半導体基板102の回転ずれを補正することができる。 FIG. 16 is a diagram illustrating a state in which the semiconductor substrate 102 is displaced in the rotational direction during installation. In general, when the installed semiconductor substrate 102 is displaced in the rotational direction, there is a possibility that the semiconductor substrate 102 and the semiconductor substrate 102 transported next collide with each other. On the other hand, when the rotation function (rotation mechanism of the support column 232) is added to the stage 230, the rotation shift of the semiconductor substrate 102 can be corrected by rotating the installation base 233 of the stage 230.
 図17は、貼り合わせ時に、各半導体基板102の厚みが異なっている場合の様子を示す図である。通常、貼り合わせる各半導体基板102の厚みにばらつきがある場合、絶縁性基板101への密着度に差が生じ、貼り付けられない半導体基板102が発生する可能性がある。これに対し、ステージ230に高さ調節機能(支柱232の上下機構)が付加されている場合は、各半導体基板102の接触面の高さを揃えることが可能となり、最適に圧着することが可能となる。 FIG. 17 is a diagram showing a state where the thicknesses of the semiconductor substrates 102 are different at the time of bonding. In general, when the thickness of each semiconductor substrate 102 to be bonded varies, the degree of adhesion to the insulating substrate 101 may vary, and a semiconductor substrate 102 that cannot be bonded may be generated. On the other hand, when the height adjustment function (the vertical mechanism of the support column 232) is added to the stage 230, the contact surfaces of the respective semiconductor substrates 102 can be made to have the same height and can be optimally crimped. It becomes.
 図18は、貼り合わせ時に、絶縁性基板101が平坦でない場合の様子を示す図である。通常、半導体基板102であるシリコンウエハーは非常に平坦であるが、絶縁性基板101であるガラス基板は傾きやうねりを持つ場合がある。この場合、半導体基板102を貼り付けられない可能性がある。これに対し、ステージ230に傾き調節機能(傾き調整部235の傾き補正機構)が付加されている場合は、絶縁性基板101の傾きなどに合わせて、半導体基板102の傾きを調節することが可能となり、好適に貼り合わせることが可能となる。 FIG. 18 is a diagram illustrating a state where the insulating substrate 101 is not flat at the time of bonding. Normally, a silicon wafer that is the semiconductor substrate 102 is very flat, but a glass substrate that is the insulating substrate 101 may have an inclination or a swell. In this case, there is a possibility that the semiconductor substrate 102 cannot be attached. On the other hand, when the tilt adjustment function (tilt correction mechanism of the tilt adjusting unit 235) is added to the stage 230, the tilt of the semiconductor substrate 102 can be adjusted in accordance with the tilt of the insulating substrate 101 or the like. Thus, it is possible to suitably bond them together.
 (実施例3)
 図19は、実施例3の接合方法を示すフローチャートである。本実施例の接合方法は、図19に示すステップS31~S35を含み、これらステップの実施において接合用の治具を用いている。この治具としては、実施例1または実施例2と同一のものを用いればよく、ここでは実施例1と同一のものを用いることとする。
(Example 3)
FIG. 19 is a flowchart illustrating the joining method according to the third embodiment. The joining method of this embodiment includes steps S31 to S35 shown in FIG. 19, and a jig for joining is used in carrying out these steps. As this jig, the same one as in Example 1 or Example 2 may be used, and here, the same one as in Example 1 is used.
 (3-1)ステージの配置
 注目すべき点は、上記実施例1および実施例2では、「設置用位置」・「転写用位置」が、間隔aと間隔bとの差程度の比較的近い位置、すなわち1つの領域にあったが、実施例3では、「転写用位置」が設けられた領域(第1領域)があり、この領域外に「設置用位置」が設けられている点である。
(3-1) Stage Arrangement It should be noted that in the first and second embodiments, the “installation position” and the “transfer position” are relatively close to the difference between the interval a and the interval b. In the third embodiment, there is an area (first area) where the “transfer position” is provided, and the “installation position” is provided outside this area. is there.
 つまり、上記実施例1および実施例2では、図20に示すように、「設置用位置」は、「転写用位置」が少し拡大したような位置であり、同じ領域に設けられていた。しかし、この構成によれば、搬送ロボット210の稼働域(接合するための半導体基板102が用意されている格納部240から、設置用位置までを含む領域)は、ある程度広くなければならない。また、半導体基板102を置く位置も、ステージ毎に異なる(複数箇所存在する)。そのため、半導体基板102の設置ずれも起こりやすく、実施例2のような微調節機構が必要になることがある。 That is, in the first and second embodiments, as shown in FIG. 20, the “installation position” is a position where the “transfer position” is slightly enlarged, and is provided in the same region. However, according to this configuration, the operating area of the transfer robot 210 (the area including the storage portion 240 where the semiconductor substrate 102 for bonding is prepared and the installation position) must be wide to some extent. Further, the position where the semiconductor substrate 102 is placed is also different for each stage (there are a plurality of locations). For this reason, misalignment of the semiconductor substrate 102 is likely to occur, and a fine adjustment mechanism as in the second embodiment may be required.
 これに対し、実施例3では、図21に示すように、「設置用位置」は、「転写用位置」が設けられた領域外であって、1つの箇所に固定された位置である。ゆえに、半導体基板102を置く位置は1ヶ所であり、搬送ロボット210の稼働域は狭くなっている。 On the other hand, in Example 3, as shown in FIG. 21, the “installation position” is outside the region where the “transfer position” is provided and is a position fixed at one place. Therefore, there is only one position where the semiconductor substrate 102 is placed, and the operating area of the transfer robot 210 is narrow.
 (3-2)接合方法
 実施例3の接合方法について具体的に説明する。
(3-2) Joining Method The joining method of Example 3 will be specifically described.
 まず、設置に際して、設置用位置および転写用位置とも異なる別の場所(第2領域)で、複数のステージ200が予め準備されている。設置を開始すると、この場所で待機しているステージ200が、設置用位置に順次送り出される(図19のステップS31)。 First, at the time of installation, a plurality of stages 200 are prepared in advance in another place (second region) different from the installation position and the transfer position. When the installation is started, the stage 200 waiting in this place is sequentially sent out to the installation position (step S31 in FIG. 19).
 設置用位置において、順次送り出されてくるステージ200に対し、半導体基板102を設置する(図19のステップS32)。具体的には、搬送ロボット210を用いて、設置用位置に到達したステージ200に、1つの半導体基板102を設置するという作業を、繰り返し行う。設置用位置は1箇所に固定されているので、精度良く設置することが可能となっている。 At the installation position, the semiconductor substrate 102 is installed on the stage 200 that is sequentially sent out (step S32 in FIG. 19). Specifically, the operation of installing one semiconductor substrate 102 on the stage 200 that has reached the installation position using the transfer robot 210 is repeatedly performed. Since the installation position is fixed at one place, it can be installed with high accuracy.
 設置後、半導体基板102が設置されたステージ200を移動させて、転写用位置にそれぞれ配置する(図19のステップS33)。具体的には、移動してくる半導体基板102が設置されたステージ200を、順番に、転写用位置に配置する。 After installation, the stage 200 on which the semiconductor substrate 102 is installed is moved and placed at the transfer position (step S33 in FIG. 19). Specifically, the stage 200 on which the moving semiconductor substrate 102 is placed is sequentially arranged at the transfer position.
 こうして、ステップS31~S33の処理(設置移動処理)を、貼り合わせる全ての半導体基板102に対し繰り返し行うことにより、転写用位置への配置を完了する。 Thus, by repeating the processing (installation movement processing) of steps S31 to S33 for all the semiconductor substrates 102 to be bonded together, the arrangement at the transfer position is completed.
 その後、絶縁性基板101を、半導体基板102の上方に配置する(図19のステップS34)。そして、絶縁性基板101に、各半導体基板102を貼り合わせる(図19のステップS35)。このステップS34~S35の処理は、上述した図2のステップS14~S15の処理と同様に実施すればよい。このようにして、接合工程は終了となり、複数の半導体基板102が転写された絶縁性基板101を得ることができる。 Thereafter, the insulating substrate 101 is disposed above the semiconductor substrate 102 (step S34 in FIG. 19). Then, each semiconductor substrate 102 is bonded to the insulating substrate 101 (step S35 in FIG. 19). The processes in steps S34 to S35 may be performed in the same manner as the processes in steps S14 to S15 in FIG. In this way, the bonding process is completed, and the insulating substrate 101 onto which the plurality of semiconductor substrates 102 are transferred can be obtained.
 (3-3)効果について
 実施例3の接合方法によれば、半導体基板102の設置時には、貼り合わせ時の位置とは異なる固定された位置にて、ステージ200の設置台203に半導体基板102を1つずつ設置するので、半導体基板同士が衝突するなどの搬送でのずれに起因する問題を排除することが可能となる。また、搬送ロボット210の稼働域(設置のための搬送にかかる稼働域)が狭くなるので、設置台203に対する半導体基板102の設置位置の精度を上げることが可能となる。
(3-3) Effect According to the bonding method of the third embodiment, when the semiconductor substrate 102 is installed, the semiconductor substrate 102 is placed on the installation base 203 of the stage 200 at a fixed position different from the position at the time of bonding. Since it is installed one by one, it is possible to eliminate problems caused by deviations in conveyance such as semiconductor substrates colliding with each other. In addition, since the operation area of the transfer robot 210 (operation area for transfer for installation) is narrowed, it is possible to increase the accuracy of the installation position of the semiconductor substrate 102 with respect to the installation table 203.
 そして、設置後に、各ステージ200を移動させて、各半導体基板102の間隔を間隔bとなるように配置することで、設置台203に対する半導体基板102の設置位置(設置ずれの有無)に関係なく、各半導体基板102を間隔bで配置させることが可能となる。よって、間隔bである半導体基板102の間隔をギリギリまで接近させることが可能となる。 Then, after the installation, each stage 200 is moved so that the intervals between the semiconductor substrates 102 are set to be the interval b, so that the semiconductor substrate 102 is installed with respect to the installation table 203 regardless of the installation position (presence or absence of installation deviation). The semiconductor substrates 102 can be arranged at intervals b. Therefore, the interval of the semiconductor substrates 102 which is the interval b can be brought close to the limit.
 したがって、本実施例では、絶縁性基板101に接合された半導体基板102の間隔を従来よりも小さくすることができ、絶縁性基板101の利用効率を向上することが可能となる。 Therefore, in this embodiment, the interval between the semiconductor substrates 102 bonded to the insulating substrate 101 can be made smaller than before, and the utilization efficiency of the insulating substrate 101 can be improved.
 なお、本実施例においては、ステージ200の数を余裕を持って準備しておくことが好ましい。これにより、図22の(a)・(b)に示すように、SOI基板100の接合工程にてステージ200が余っても、別のSOI基板の接合工程において、サイズが小さくなった半導体基板102aを貼り合わせるために、より多くのステージ200が必要になった場合に、柔軟に対応することができる。 In this embodiment, it is preferable to prepare the number of stages 200 with a margin. Thereby, as shown in FIGS. 22A and 22B, even if the stage 200 is left in the bonding process of the SOI substrate 100, the semiconductor substrate 102a whose size is reduced in the bonding process of another SOI substrate. When a larger number of stages 200 are required to bond the two, it is possible to flexibly cope with them.
 また、本実施例では、図23に示すように、貼り合わせ処理の間、余ったステージ200に半導体基板102を配置し、待機させておくことが望ましい。これにより、次の処理時間を短縮することが可能となり、スループットを向上することが可能となる。 Further, in this embodiment, as shown in FIG. 23, it is desirable to place the semiconductor substrate 102 on the surplus stage 200 and wait for the bonding process. As a result, the next processing time can be shortened, and the throughput can be improved.
 また、本実施例では、複数の搬送ロボット210を用いて、並列に処理してもよい。具体的には、複数の搬送ロボット210のそれぞれが、対応する設置用位置(固定位置)にて設置を行い、各設置用位置から、半導体基板102が設置されたステージ200を移動させて、転写用位置にそれぞれ配置することができる。このように、設置箇所を複数設け、設置処理を並列して行うことによって、スループットを向上することが可能となる。 In this embodiment, the plurality of transfer robots 210 may be used for parallel processing. Specifically, each of the plurality of transfer robots 210 performs installation at a corresponding installation position (fixed position), and moves the stage 200 on which the semiconductor substrate 102 is installed from each installation position to perform transfer. It can be arranged at each position. In this way, by providing a plurality of installation locations and performing the installation process in parallel, it is possible to improve the throughput.
 (実施例4)
 図24は、実施例4の接合方法を示すフローチャートである。本実施例の接合方法は、図24に示すステップS41~S46を含み、これらステップの実施において接合用の治具を用いている。この治具としては、実施例1または実施例2と同一のものを用いればよく、ここでは、実施例1と同一のものを用いることとする。
(Example 4)
FIG. 24 is a flowchart illustrating the joining method according to the fourth embodiment. The joining method of this embodiment includes steps S41 to S46 shown in FIG. 24, and a jig for joining is used in carrying out these steps. As this jig, the same one as in Example 1 or Example 2 may be used, and here, the same one as in Example 1 is used.
 (4-1)接合方法
 実施例4の接合方法について具体的に説明する。なお、本実施例は、実施例3の接合方法に加えて、半導体基板102の設置位置を測定する処理が追加されている。
(4-1) Joining Method The joining method of Example 4 will be specifically described. In this embodiment, in addition to the bonding method of the third embodiment, a process for measuring the installation position of the semiconductor substrate 102 is added.
 まず、待機しているステージ200を設置用位置に順次送り出して(図24のステップS41)、設置用位置において、順次送り出されてくるステージ200に対し、半導体基板102を設置した(図24のステップS42)後、半導体基板102が設置されたステージ200を、転写用位置に移動させて、転写用位置にそれぞれ配置する(図24のステップS44)。 First, the standby stage 200 is sequentially sent to the installation position (step S41 in FIG. 24), and the semiconductor substrate 102 is installed on the stage 200 that is sequentially sent out at the installation position (step in FIG. 24). (S42) After that, the stage 200 on which the semiconductor substrate 102 is placed is moved to the transfer position and placed at the transfer position (step S44 in FIG. 24).
 そして、ステップS42とステップS44との間に、すなわち、ステージ200に半導体基板102を設置した後から転写用位置に到達するまでの移動中に、設置台203に対する半導体基板102の位置を測定する(図24のステップS43)。なお、ステップS41~42,44の処理は、上述した図19のステップS31~S33の処理と同じである。 Then, the position of the semiconductor substrate 102 with respect to the installation table 203 is measured between Step S42 and Step S44, that is, during the movement from the installation of the semiconductor substrate 102 to the stage 200 to the transfer position. Step S43 in FIG. Note that the processing in steps S41 to S42, 44 is the same as the processing in steps S31 to S33 in FIG.
 具体的には、図25に示すように、設置用位置から転写用位置の領域に到達するまでの移動経路付近に、測定装置250が設けられている。測定装置250は、例えばセンサなどの検出機能を用いて、移動している設置台203に対し、設置台203に対する半導体基板102の位置を測定する。この測定結果は、転写用位置の配置を制御する制御装置(図示せず)などに送信され、転写用位置への配置に考慮される。なお、測定装置250は、測定を行うことができれば、その構成や、上記移動経路のどこに配置するかは問わない。 Specifically, as shown in FIG. 25, a measuring device 250 is provided in the vicinity of the movement path from the installation position to the transfer position area. The measurement apparatus 250 measures the position of the semiconductor substrate 102 with respect to the installation table 203 with respect to the installation table 203 that is moving, for example, using a detection function such as a sensor. This measurement result is transmitted to a control device (not shown) for controlling the arrangement of the transfer position, and is considered for the arrangement at the transfer position. As long as the measurement device 250 can perform the measurement, the configuration thereof and the position on the movement route are not limited.
 こうして、ステップS41~S44の処理(設置移動処理)を、貼り合わせる全ての半導体基板102に対し繰り返し行うことによって、より精度良く、転写用位置への配置を行うことができる。 In this way, by repeatedly performing the processing of steps S41 to S44 (installation movement processing) for all the semiconductor substrates 102 to be bonded together, it is possible to arrange the transfer positions with higher accuracy.
 続いて、絶縁性基板101を、半導体基板102の上方に配置した(図24のステップS45)後、絶縁性基板101に、各半導体基板102を貼り合わせる(図24のステップS46)。このステップS45~S46の処理は、上述した図2のステップS14~S15の処理と同様に実施すればよい。このようにして、接合工程は終了となり、複数の半導体基板102が転写された絶縁性基板101を得ることができる。 Subsequently, after the insulating substrate 101 is disposed above the semiconductor substrate 102 (step S45 in FIG. 24), each semiconductor substrate 102 is bonded to the insulating substrate 101 (step S46 in FIG. 24). The processes in steps S45 to S46 may be performed in the same manner as the processes in steps S14 to S15 in FIG. In this way, the bonding process is completed, and the insulating substrate 101 onto which the plurality of semiconductor substrates 102 are transferred can be obtained.
 (4-2)効果について
 実施例4の接合方法によれば、設置台203に対する半導体基板102の位置を測定し、この測定結果を考慮して、転写用位置への配置を行うことで、さらに配置精度を高めることができる。
(4-2) Effects According to the bonding method of the fourth embodiment, the position of the semiconductor substrate 102 with respect to the installation table 203 is measured, and the measurement result is taken into consideration, and the transfer position is further arranged. Arrangement accuracy can be increased.
 (ステージの距離測定機能について)
 以上のように、実施例1~4の接合方法では、半導体基板102の設置時と、半導体基板102の貼り合わせ時とで、それぞれ、半導体基板102の配置を最適化できることが特徴となっている。
(Stage distance measurement function)
As described above, the bonding methods of Examples 1 to 4 are characterized in that the arrangement of the semiconductor substrate 102 can be optimized when the semiconductor substrate 102 is installed and when the semiconductor substrate 102 is bonded. .
 ここで、隣接する半導体基板102との距離を検出する手段は、特に限定されず、最適な手段・構成をとることができるが、例えば、ステージ200(ステージ230)に、隣接する物体との距離を測定することが可能な距離測定機能を具備させることで、隣接する半導体基板102との距離を検出する構成を実現することができる。 Here, the means for detecting the distance to the adjacent semiconductor substrate 102 is not particularly limited, and an optimum means / configuration can be adopted. For example, the distance from the object adjacent to the stage 200 (stage 230) can be taken. By providing a distance measuring function capable of measuring the distance, it is possible to realize a configuration for detecting the distance to the adjacent semiconductor substrate 102.
 図26は、隣接する半導体基板102の位置を測定するための検出部261を備えたステージ200を用いて、所定の位置に移動させている様子の一例を示す図であり、(a)は側面視、(b)は平面視である。 FIG. 26 is a diagram illustrating an example of a state in which the stage 200 including the detection unit 261 for measuring the position of the adjacent semiconductor substrate 102 is moved to a predetermined position, and FIG. View (b) is a plan view.
 ステージ200は、横板260および検出部261を備えている。横板260は、下台201の4つの側面にそれぞれ設けられており、各側面における横板260は、該側面の左右方向の一端に配置されている。横板260は、平面視において、設置された半導体基板102の輪郭を超えるような長さを有している。検出部261は、各横板260の上面にそれぞれ設けられており、各上面における検出部261は、設置された半導体基板102と重ならないような位置に配置されている。検出部261は、隣接する物体との距離を検知するものであり、例えば光センサーなどにより構成される。隣接する物体との距離を検知することで、近接物体の有無を検知することができる。 The stage 200 includes a horizontal plate 260 and a detection unit 261. The horizontal plate 260 is provided on each of the four side surfaces of the lower base 201, and the horizontal plate 260 on each side surface is disposed at one end of the side surface in the left-right direction. The horizontal plate 260 has a length that exceeds the outline of the semiconductor substrate 102 in plan view. The detection unit 261 is provided on the upper surface of each horizontal plate 260, and the detection unit 261 on each upper surface is disposed at a position so as not to overlap with the installed semiconductor substrate 102. The detection unit 261 detects a distance from an adjacent object, and includes, for example, an optical sensor. By detecting the distance to an adjacent object, the presence or absence of a nearby object can be detected.
 半導体基板102が設置された各ステージ200を移動させて、転写用位置にそれぞれ配置する期間(例えば、図2のステップS13)において、図26に示すように2つのステージ200が接近すると、各ステージ200の検出部261の上方に、相対するステージ200に設置された半導体基板102が近づいてくる。これにより、検出部261によって、隣接する半導体基板102の端部を検出することができ、この検出結果から、基板間隔を割り出すことができる(矢印F)。 When two stages 200 approach each other as shown in FIG. 26 in a period (for example, step S13 in FIG. 2) in which each stage 200 on which the semiconductor substrate 102 is installed is moved and placed at the transfer position, each stage is moved. The semiconductor substrate 102 installed on the opposite stage 200 approaches the detection unit 261 of 200. Thereby, the edge part of the adjacent semiconductor substrate 102 can be detected by the detection part 261, and a board | substrate space | interval can be calculated | required from this detection result (arrow F).
 但し、上記のように、隣接する半導体基板102を直接検知する方法は、精度は良いが、構造が少し複雑になる。それゆえ、実施例4のように、事前に、測定装置250で設置台203に対する半導体基板102の位置を測定することにより、設置ずれが判明している場合には、隣接するステージ200のとの間隔を測定することで、半導体基板102の間隔を最適にすることもできる。 However, as described above, the method of directly detecting the adjacent semiconductor substrate 102 has good accuracy, but the structure is slightly complicated. Therefore, as in the fourth embodiment, when the installation deviation is found by measuring the position of the semiconductor substrate 102 with respect to the installation table 203 in advance by the measurement device 250, the difference between the adjacent stage 200 and the adjacent stage 200 is determined. By measuring the distance, the distance between the semiconductor substrates 102 can be optimized.
 図27は、隣接するステージ200の位置を測定するための検出部262を備えたステージ200を用いて、所定の位置に移動させている様子の一例を示す図であり、(a)は側面視、(b)は平面視である。 FIG. 27 is a diagram illustrating an example of a state in which the stage 200 including the detection unit 262 for measuring the position of the adjacent stage 200 is moved to a predetermined position, and (a) is a side view. , (B) is a plan view.
 ステージ200は、検出部262を備えている。検出部262は、下台201の連続する2つの側面にそれぞれ設けられており、各側面における検出部262は、該側面の左右方向の一端側に配置されている。検出部261は、隣接する物体との距離を検知するものであり、例えば光センサーなどにより構成される。 The stage 200 includes a detection unit 262. The detection unit 262 is provided on each of two continuous side surfaces of the lower base 201, and the detection unit 262 on each side surface is disposed on one end side in the left-right direction of the side surface. The detection unit 261 detects a distance from an adjacent object, and includes, for example, an optical sensor.
 半導体基板102が設置された各ステージ200を移動させて、転写用位置にそれぞれ配置する期間(例えば、図24のステップS44)において、図27に示すように、接近してくる隣接するステージ200に対し、各ステージ200の検出部262により、隣接するステージ200までの距離を測定することができる(矢印G)。よって、事前に取得した設置ずれの情報を考慮して、ステージ間の距離を縮めることで、半導体基板102の間隔を最適にすることができる。この構成によれば、隣接するステージ200との距離を測定するだけでよく、また、ステージ200の構造を簡略化し、検出部262の数を減らすことが可能となる。 In the period (for example, step S44 in FIG. 24) in which each stage 200 on which the semiconductor substrate 102 is placed is moved and placed at the transfer position (see, for example, step S44 in FIG. 24), as shown in FIG. On the other hand, the distance to the adjacent stage 200 can be measured by the detection unit 262 of each stage 200 (arrow G). Therefore, the distance between the semiconductor substrates 102 can be optimized by reducing the distance between the stages in consideration of the information on the installation deviation acquired in advance. According to this configuration, it is only necessary to measure the distance to the adjacent stage 200, and the structure of the stage 200 can be simplified and the number of detection units 262 can be reduced.
 本実施の形態に係る半導体装置の製造方法では、上記第1基板は絶縁性基板であり、上記第2基板は半導体基板である構成とすることができる。 In the semiconductor device manufacturing method according to the present embodiment, the first substrate may be an insulating substrate, and the second substrate may be a semiconductor substrate.
 また、本実施の形態に係る半導体装置の製造方法では、上記第1基板はガラス基板であり、上記第2基板は単結晶シリコンウエハーである構成とすることができる。 Further, in the method of manufacturing a semiconductor device according to the present embodiment, the first substrate can be a glass substrate, and the second substrate can be a single crystal silicon wafer.
 また、本実施の形態に係る半導体装置の製造方法では、上記支持台には、上記第2配置工程での移動よりも高精度かつ狭い移動範囲で移動することが可能な位置調節機能、上昇および下降することが可能な高さ調節機能、左右方向に回転することが可能な回転機能、および、該支持台の上面の傾きを変えることが可能な傾き調節機能のうち、少なくとも1つの機能が付加されていることが好ましい。 Further, in the method of manufacturing a semiconductor device according to the present embodiment, the support base is provided with a position adjustment function capable of moving in a narrower moving range with higher accuracy than the movement in the second arrangement step, ascending and At least one of a height adjustment function capable of descending, a rotation function capable of rotating in the left-right direction, and an inclination adjustment function capable of changing the inclination of the upper surface of the support base is added. It is preferable that
 上記の構成によれば、第2基板の位置を、さらに精度良く制御することができるので、第1基板の利用効率をさらに高めることが可能となる。また、最終的な微調節は上記機能により行うことで、支持台の移動を高速にすることが可能となり、調整時間を短縮することが可能となる。よって、スループットを向上することが可能となる。 According to the above configuration, since the position of the second substrate can be controlled with higher accuracy, the utilization efficiency of the first substrate can be further increased. Further, the final fine adjustment is performed by the above function, so that the movement of the support base can be performed at a high speed, and the adjustment time can be shortened. Thus, throughput can be improved.
 また、本実施の形態に係る半導体装置の製造方法では、上記支持台は、隣接する物体との距離を測定することが可能な距離測定機能を備えていることが好ましい。 Further, in the method for manufacturing a semiconductor device according to the present embodiment, it is preferable that the support base has a distance measuring function capable of measuring a distance from an adjacent object.
 
 また、本実施の形態に係る半導体装置の製造方法では、上記第1基板は絶縁性基板であり、上記第2基板は半導体基板である構成とすることができる。

In the method for manufacturing a semiconductor device according to the present embodiment, the first substrate may be an insulating substrate, and the second substrate may be a semiconductor substrate.
 また、本実施の形態に係る半導体装置の製造方法では、上記第1基板はガラス基板であり、上記第2基板は単結晶シリコンウエハーである構成とすることができる。 Further, in the method of manufacturing a semiconductor device according to the present embodiment, the first substrate can be a glass substrate, and the second substrate can be a single crystal silicon wafer.
 また、本実施の形態に係る半導体装置の製造方法では、上記設置用位置において上記第2基板が設置される上記支持台は、上記第2基板が設置される前は上記第1領域外の第2領域で待機しており、上記第2基板の設置に際して上記設置用位置に順次送り出されていることが好ましい。 Further, in the method of manufacturing a semiconductor device according to the present embodiment, the support base on which the second substrate is installed at the installation position is the first outside the first region before the second substrate is installed. It is preferable to wait in two areas and to sequentially send out the second substrate to the installation position when the second substrate is installed.
 また、本実施の形態に係る半導体装置の製造方法では、上記設置配置工程を開始する時の上記第2領域には、少なくとも上記第1基板に貼り合わせる上記第2基板の数と同数の上記支持台が待機していることが好ましい。 Further, in the method of manufacturing a semiconductor device according to the present embodiment, at least the number of the second substrates to be bonded to the first substrate is provided in the second region when the installation / placement process is started. It is preferable that the stand is waiting.
 また、本実施の形態に係る半導体装置の製造方法では、上記設置配置工程では、上記支持台に上記第2基板を設置した後から上記第1領域に到達するまでの移動中に、上記支持台に対する上記第2基板の位置を測定し、この測定結果を考慮して上記第1領域での配置を行うことが好ましい。 Further, in the method for manufacturing a semiconductor device according to the present embodiment, in the installation and placement step, the support table is moved during the period from the installation of the second substrate to the support table until reaching the first region. It is preferable to measure the position of the second substrate with respect to and to arrange the first substrate in consideration of the measurement result.
 上記の構成によれば、支持台に対する第2基板の位置を測定した結果を考慮して、第1領域での配置を行うことにより、さらに配置精度を高めることが可能となる。 According to the above configuration, it is possible to further increase the placement accuracy by performing the placement in the first region in consideration of the result of measuring the position of the second substrate with respect to the support base.
 また、本実施の形態に係る半導体装置の製造方法では、上記支持台には、上記設置移動処理での移動よりも高精度かつ狭い移動範囲で移動することが可能な位置調節機能、上昇および下降することが可能な高さ調節機能、左右方向に回転することが可能な回転機能、および、該支持台の上面の傾きを変えることが可能な傾き調節機能のうち、少なくとも1つの機能が付加されていることが好ましい。 Further, in the method of manufacturing a semiconductor device according to the present embodiment, the support base is provided with a position adjustment function capable of moving in a narrower moving range with higher accuracy than the movement in the installation movement process, and ascending and descending. At least one of a height adjustment function that can be performed, a rotation function that can be rotated in the left-right direction, and an inclination adjustment function that can change the inclination of the upper surface of the support base is added. It is preferable.
 また、本実施の形態に係る半導体装置の製造方法では、上記支持台は、隣接する物体との距離を測定することが可能な距離測定機能を備えていることが好ましい。 Further, in the method for manufacturing a semiconductor device according to the present embodiment, it is preferable that the support base has a distance measuring function capable of measuring a distance from an adjacent object.
 本発明は上述した実施形態および各実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments and examples, and various modifications can be made within the scope shown in the claims, and obtained by appropriately combining technical means disclosed in different examples. Such embodiments are also included in the technical scope of the present invention.
 本発明は、複数の小型基板が大型基板に接合された構造を有する、特にSOI基板などの半導体装置の製造方法に関する分野に好適に用いることができる。また、有機ELやMEMSなどのように、素子が形成された大型の基板に、素子を覆うように小型の基板やカバーを多数貼り合わせる方法にも適用することができる。 The present invention can be suitably used in the field relating to a method for manufacturing a semiconductor device such as an SOI substrate, which has a structure in which a plurality of small substrates are bonded to a large substrate. Further, the present invention can also be applied to a method in which a large number of small substrates and covers are attached to a large substrate on which elements are formed, such as organic EL and MEMS.
 100 SOI基板(半導体装置)
 101 絶縁性基板(第1基板)
 102 半導体基板(第2基板)
 200 ステージ
 203 設置台(支持台)
 220 保持台
 230 ステージ
 233 設置台(支持台)
 250 測定装置
100 SOI substrate (semiconductor device)
101 Insulating substrate (first substrate)
102 Semiconductor substrate (second substrate)
200 stage 203 installation stand (support stand)
220 Holding stand 230 Stage 233 Installation stand (support stand)
250 measuring device

Claims (14)

  1.  第1基板と、上記第1基板よりも小さい第2基板とにより構成され、上記第1基板上に複数の上記第2基板が接合された構造を有する半導体装置の製造方法であって、
     上記第1基板上に上記複数の第2基板を接合する接合工程を含み、
     上記接合工程は、
     独立して移動可能な複数の支持台を互いに離間して配置する第1配置工程と、
     上記各支持台の上面に第2基板をそれぞれ設置する設置工程と、
     上記第2基板が設置された各支持台を移動させて、該各第2基板の間隔が第1間隔となるように、該各支持台を配置する第2配置工程と、
     上記各第2基板を、上記各支持台から押し上げて、該各第2基板の上方に保持されている第1基板に貼り合わせる貼り合わせ工程とを含み、
     上記支持台の上面は、上記第2基板の上記支持台への設置面よりも小さく、
     上記第1配置工程では、上記設置工程を完了したときの上記各第2基板の間隔が上記第1間隔よりも大きい第2間隔となるように、上記複数の支持台を配置することを特徴とする半導体装置の製造方法。
    A method for manufacturing a semiconductor device comprising a first substrate and a second substrate smaller than the first substrate, wherein the plurality of second substrates are joined to the first substrate,
    A bonding step of bonding the plurality of second substrates on the first substrate;
    The joining process
    A first arrangement step of arranging a plurality of independently movable support bases apart from each other;
    An installation step of installing a second substrate on the upper surface of each support;
    A second disposing step of disposing each support base by moving each support base on which the second substrate is disposed so that the distance between the second substrates is the first distance;
    A bonding step in which the second substrates are pushed up from the support bases and bonded to the first substrates held above the second substrates,
    The upper surface of the support table is smaller than the installation surface of the second substrate on the support table,
    In the first arrangement step, the plurality of support bases are arranged such that the interval between the second substrates when the installation step is completed is a second interval larger than the first interval. A method for manufacturing a semiconductor device.
  2.  上記第1基板は絶縁性基板であり、上記第2基板は半導体基板であることを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the first substrate is an insulating substrate and the second substrate is a semiconductor substrate.
  3.  上記第1基板はガラス基板であり、上記第2基板は単結晶シリコンウエハーであることを特徴とする請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the first substrate is a glass substrate, and the second substrate is a single crystal silicon wafer.
  4.  上記支持台には、上記第2配置工程での移動よりも高精度かつ狭い移動範囲で移動することが可能な位置調節機能、上昇および下降することが可能な高さ調節機能、左右方向に回転することが可能な回転機能、および、該支持台の上面の傾きを変えることが可能な傾き調節機能のうち、少なくとも1つの機能が付加されていることを特徴とする請求項1~3のいずれか1項に記載の半導体装置の製造方法。 The support base has a position adjustment function capable of moving in a narrower movement range with higher accuracy than the movement in the second arrangement step, a height adjustment function capable of moving up and down, and rotating in the left-right direction. The rotation function that can be performed and the tilt adjustment function that can change the tilt of the upper surface of the support base are added with at least one function. A method for manufacturing a semiconductor device according to claim 1.
  5.  上記支持台は、隣接する物体との距離を測定することが可能な距離測定機能を備えていることを特徴とする請求項1~4のいずれか1項に記載の半導体装置の製造方法。 5. The method of manufacturing a semiconductor device according to claim 1, wherein the support base has a distance measuring function capable of measuring a distance to an adjacent object.
  6.  第1基板と、上記第1基板よりも小さい第2基板とにより構成され、上記第1基板上に複数の上記第2基板が接合された構造を有する半導体装置の製造方法であって、
     上記第1基板上に上記複数の第2基板を接合する接合工程を含み、
     上記接合工程は、
     設置用位置において、独立して移動可能な支持台の上面に第2基板を設置した後、該第2基板が設置された支持台を第1領域に移動させる設置移動処理を複数回繰り返して、上記第1領域に、上記第2基板が設置された各支持台を、該各第2基板の間隔が第1間隔となるように配置する設置配置工程と、
     上記各第2基板を、上記各支持台から押し上げて、該各第2基板の上方に保持されている第1基板に貼り合わせる貼り合わせ工程とを含み、
     上記支持台の上面は、上記第2基板の上記支持台への設置面よりも小さく、
     上記設置用位置は、上記第1領域外の固定された位置であることを特徴とする半導体装置の製造方法。
    A method for manufacturing a semiconductor device comprising a first substrate and a second substrate smaller than the first substrate, wherein the plurality of second substrates are joined to the first substrate,
    A bonding step of bonding the plurality of second substrates on the first substrate;
    The joining process
    After installing the second substrate on the upper surface of the support table that can be moved independently at the installation position, the installation movement process for moving the support table on which the second substrate is installed to the first region is repeated a plurality of times, An installation arrangement step of arranging each support on which the second substrate is installed in the first region such that the interval between the second substrates is the first interval;
    A bonding step in which the second substrates are pushed up from the support bases and bonded to the first substrates held above the second substrates,
    The upper surface of the support table is smaller than the installation surface of the second substrate on the support table,
    The method for manufacturing a semiconductor device, wherein the installation position is a fixed position outside the first region.
  7.  上記第1基板は絶縁性基板であり、上記第2基板は半導体基板であることを特徴とする請求項6に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 6, wherein the first substrate is an insulating substrate, and the second substrate is a semiconductor substrate.
  8.  上記第1基板はガラス基板であり、上記第2基板は単結晶シリコンウエハーであることを特徴とする請求項6に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 6, wherein the first substrate is a glass substrate, and the second substrate is a single crystal silicon wafer.
  9.  上記設置用位置において上記第2基板が設置される上記支持台は、上記第2基板が設置される前は上記第1領域外の第2領域で待機しており、上記第2基板の設置に際して上記設置用位置に順次送り出されていることを特徴とする請求項6~8のいずれか1項に記載の半導体装置の製造方法。 The support base on which the second substrate is installed at the installation position stands by in a second region outside the first region before the second substrate is installed. 9. The method of manufacturing a semiconductor device according to claim 6, wherein the semiconductor device is sequentially sent to the installation position.
  10.  上記設置配置工程を開始する時の上記第2領域には、少なくとも上記第1基板に貼り合わせる上記第2基板の数と同数の上記支持台が待機していることを特徴とする請求項9に記載の半導体装置の製造方法。 The number of the support bases at least equal to the number of the second substrates to be bonded to the first substrate is waiting in the second region when the installation and placement process is started. The manufacturing method of the semiconductor device of description.
  11.  上記設置配置工程では、上記支持台に上記第2基板を設置した後から上記第1領域に到達するまでの移動中に、上記支持台に対する上記第2基板の位置を測定し、この測定結果を考慮して上記第1領域での配置を行うことを特徴とする請求項6~10のいずれか1項に記載の半導体装置の製造方法。 In the installation / arrangement step, the position of the second substrate relative to the support base is measured during the movement from the installation of the second substrate on the support base to the arrival of the first region. 11. The method for manufacturing a semiconductor device according to claim 6, wherein the arrangement in the first region is performed in consideration of the above.
  12.  上記支持台には、上記設置移動処理での移動よりも高精度かつ狭い移動範囲で移動することが可能な位置調節機能、上昇および下降することが可能な高さ調節機能、左右方向に回転することが可能な回転機能、および、該支持台の上面の傾きを変えることが可能な傾き調節機能のうち、少なくとも1つの機能が付加されていることを特徴とする請求項6~11のいずれか1項に記載の半導体装置の製造方法。 The support base has a position adjustment function capable of moving within a narrower movement range with higher accuracy than the movement in the installation movement process, a height adjustment function capable of moving up and down, and rotating in the left-right direction. 12. A rotation function capable of rotating, and a tilt adjustment function capable of changing a tilt of the upper surface of the support base, wherein at least one function is added. 2. A method for manufacturing a semiconductor device according to item 1.
  13.  上記支持台は、隣接する物体との距離を測定することが可能な距離測定機能を備えていることを特徴とする請求項6~12のいずれか1項に記載の半導体装置の製造方法。 13. The method of manufacturing a semiconductor device according to claim 6, wherein the support base has a distance measuring function capable of measuring a distance from an adjacent object.
  14.  第1基板上に、上記第1基板よりも小さい第2基板を複数接合する接合方法であって、
     接合用の位置とは異なる別の位置において、複数の第2基板のそれぞれを、独立して移動可能な複数の支持台のそれぞれの、上記第2基板の上記第1基板への接合面よりも小さい上面に設置する設置工程と、
     上記第2基板が設置された各支持台を、移動させて、接合用の位置に配置する配置工程と、
     上記各第2基板を、上記各支持台から押し上げて、該各第2基板の上方に保持されている第1基板に貼り合わせる貼り合わせ工程とを含むことを特徴とする接合方法。
    A bonding method for bonding a plurality of second substrates smaller than the first substrate on the first substrate,
    At a position different from the position for bonding, each of the plurality of second substrates is moved more independently than the bonding surface of each of the plurality of support bases that can be moved independently of the second substrate to the first substrate. An installation process to install on a small upper surface;
    An arrangement step of moving each support base on which the second substrate is installed and arranging it at a position for bonding;
    And a bonding step of pressing each of the second substrates up from each of the support bases and bonding the second substrate to the first substrate held above each of the second substrates.
PCT/JP2012/069765 2011-09-01 2012-08-02 Semiconductor device manufacturing method and bonding method WO2013031480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011191112 2011-09-01
JP2011-191112 2011-09-01

Publications (1)

Publication Number Publication Date
WO2013031480A1 true WO2013031480A1 (en) 2013-03-07

Family

ID=47755982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069765 WO2013031480A1 (en) 2011-09-01 2012-08-02 Semiconductor device manufacturing method and bonding method

Country Status (1)

Country Link
WO (1) WO2013031480A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194375A (en) * 2008-01-16 2009-08-27 Semiconductor Energy Lab Co Ltd Manufacturing method and manufacturing apparatus of semiconductor substrate
JP2009231819A (en) * 2008-02-26 2009-10-08 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194375A (en) * 2008-01-16 2009-08-27 Semiconductor Energy Lab Co Ltd Manufacturing method and manufacturing apparatus of semiconductor substrate
JP2009231819A (en) * 2008-02-26 2009-10-08 Semiconductor Energy Lab Co Ltd Method of manufacturing soi substrate

Similar Documents

Publication Publication Date Title
CN109560036B (en) Method for semiconductor manufacturing and wafer stage
JP2013187393A (en) Bonding device and bonding method
TW202129806A (en) Stacking apparatus and stacking method
US20120258414A1 (en) Substrate support instrument, and vertical heat treatment apparatus and driving method thereof
TWI743614B (en) Substrate processing device and substrate processing method
TW201801136A (en) Substrate bonding device and substrate bonding method
KR20140137873A (en) Align equipment of glass and mask
EP3062333B1 (en) Normal temperature bonding device
WO2013031480A1 (en) Semiconductor device manufacturing method and bonding method
JP6851282B2 (en) Wafer transfer mechanism, wafer prober and transfer position adjustment method for wafer transfer mechanism
JP2011192676A (en) Substrate processing apparatus, method of manufacturing multilayer semiconductor device, and multilayer semiconductor device
KR101394312B1 (en) Wafer alignment apparatus
JP2013008804A (en) Substrate bonding device, substrate bonding method, and method of manufacturing bonded semiconductor device
JP5386217B2 (en) Display panel transfer device and display panel module assembly device
JP2014187314A (en) Semiconductor device manufacturing method
JP5630020B2 (en) Substrate overlay apparatus and overlay method
JP6135113B2 (en) Substrate pasting device, substrate pasting method, and substrate pasting program
TW201939659A (en) Substrate processing device and substrate processing method
JP2009206315A (en) Substrate mounting device to table
WO2011040116A1 (en) Bonding apparatus and bonding method
JP5560590B2 (en) Substrate bonding equipment
KR102476987B1 (en) Wafer stage device with adjustable height using ball screw
KR101382267B1 (en) Automatic flatness controllable bonding tool and method of automatic flatness control therefor
JP5479701B2 (en) Display panel module assembly equipment
TWI792447B (en) Alignment mechanism and alignment method of bonding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP