WO2013031445A1 - 表面形状計測装置 - Google Patents

表面形状計測装置 Download PDF

Info

Publication number
WO2013031445A1
WO2013031445A1 PCT/JP2012/069076 JP2012069076W WO2013031445A1 WO 2013031445 A1 WO2013031445 A1 WO 2013031445A1 JP 2012069076 W JP2012069076 W JP 2012069076W WO 2013031445 A1 WO2013031445 A1 WO 2013031445A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
surface shape
spatial frequency
shape measuring
measuring apparatus
Prior art date
Application number
PCT/JP2012/069076
Other languages
English (en)
French (fr)
Inventor
昌昭 伊東
神宮 孝広
波多野 央
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US14/240,669 priority Critical patent/US9310190B2/en
Publication of WO2013031445A1 publication Critical patent/WO2013031445A1/ja
Priority to US15/054,372 priority patent/US20160178360A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing

Definitions

  • the present invention relates to a surface shape measuring apparatus for obtaining a surface shape.
  • the present invention relates to a surface shape measurement apparatus using a light scattering method, and more particularly to a measurement apparatus for microroughness such as a wafer surface in a semiconductor device manufacturing process.
  • Microroughness occurs in processes such as polishing, cleaning, film formation, and heat treatment. Therefore, to improve device performance and yield, measure the microroughness of the wafer surface for each process and manage process conditions appropriately. There is a need.
  • microroughness has a very small height from sub-nanometer order to nanometer order, generally three-dimensional coordinates are measured using an AFM (Atomic Force Microscope).
  • AFM Anamic Force Microscope
  • microroughness has a correlation with light scattering.
  • a microroughness measuring apparatus using the light scattering method is disclosed in, for example, US Pat. No. 7,286,218 (Patent Document 5).
  • the detection space of the detection optical system is associated with a spatial frequency region of microroughness, and microroughness evaluation can be performed for each spatial frequency region.
  • the number of spatial frequency regions is the same as the number of detection optical systems (6 in the embodiment), no consideration is given to the fact that the spatial frequency is coarse.
  • the step / terrace structure appearing on the epitaxially grown wafer has a sharp peak at a specific spatial frequency in a specific direction. For this reason, the scattered light intensity due to the step terrace structure has a peak in a specific narrow direction. In the prior art, no consideration is given to the point that the peak is buried in the scattered light intensity caused by the nearby spatial frequency components.
  • An object of the present invention is to provide a highly accurate surface shape measuring apparatus and method capable of measuring various microroughnesses on the entire surface of a wafer.
  • the present invention is characterized in that a spatial frequency spectrum related to the shape of the surface is continuously obtained.
  • the present invention provides a surface shape measuring apparatus that illuminates a surface of a sample, detects scattered light from the sample surface by a plurality of detection optical systems, and measures the shape of the sample surface from the plurality of detection signals.
  • the optical axis directions of the detection optical systems are different from each other, and a process of calculating a spatial frequency spectrum of the sample surface is included.
  • the present invention is characterized in that the illumination light is a spot beam, and the illumination light scans the sample surface by rotational movement and linear movement of the sample.
  • the present invention is characterized in that at least the optical axes of the two detection optical systems are in a plane parallel to the incident surface.
  • At least the optical axes of the two detection optical systems are in a plane parallel to the incident surface, and at least the optical axes of the two detection optical systems are in a plane perpendicular to the incident surface.
  • the present invention records a relationship between a spatial frequency spectrum of a known surface shape and a detection signal in advance in a library, compares the detection signal from the sample surface with the library, and calculates a spatial frequency spectrum of the sample surface. Including processing.
  • the present invention includes a process of calculating a sum of all detection signals of the detector and a process of calculating a ratio (signal ratio) between each detection signal and the sum of the detection signals.
  • the present invention includes a process of calculating a predetermined feature amount of the sample surface using the spatial frequency spectrum, and outputs a map of the feature amount in the entire sample surface or a predetermined region. .
  • the feature amount is at least a surface roughness in a predetermined spatial frequency region, a cutoff spatial frequency or a peak spatial frequency of the spatial frequency spectrum, or a thickness of a film forming the sample surface.
  • the present invention includes a process of calculating the height of the sample surface using the spatial frequency spectrum at a predetermined position on the sample surface, and outputting a three-dimensional shape at the predetermined position.
  • the present invention provides a surface shape measurement method for illuminating a surface of a sample, detecting scattered light from the sample surface by a plurality of detection optical systems, and measuring the shape of the sample surface from the plurality of detection signals.
  • the optical axis directions of the detection optical systems are different from each other, and a process of calculating a spatial frequency spectrum of the sample surface is included.
  • FIG. 6 is a diagram illustrating Example 2.
  • FIG. 6 is a diagram for explaining a third embodiment.
  • FIG. 1 Schematic configuration of the surface shape measuring device is shown in FIG.
  • Main components are a stage 2 on which the wafer 1 is mounted, a light source 3, an illumination optical system 4 having a lens, a mirror, etc., a detection optical system 51 to 55 having a lens, a mirror, etc. (53 to 55 are not shown), a light Detectors 61 to 65 (63 to 65 are not shown), a signal processing system 7, a control system 8, and an operation system 9.
  • the light of a predetermined wavelength emitted from the light source 3 is changed to a predetermined polarization by a polarization filter (not shown).
  • a spot beam of a predetermined size is formed by the illumination optical system 4, and the wafer 1 is illuminated at a predetermined incident angle. Since microroughness exists on the wafer surface, scattered light diverges. Scattered light is condensed on the photodetectors 61 to 65 by the detection optical systems 51 to 55, respectively. Since the directions of the optical axes of the detection optical systems are different from each other, the set of detection signals reflects the spatial distribution of scattered light intensity. That is, in the surface shape measuring apparatus of the present embodiment, a spatial distribution of scattered light can be obtained (201 in FIG. 2).
  • a detection optical system is arranged so as not to detect specularly reflected light from the wafer surface. The detection signal is converted into a digital signal by an AD converter (not shown) and transmitted to the signal processing system 7.
  • the signal processing system 7 there is a storage medium storing a library, and the relationship between the spatial frequency spectrum and the detection signal under the above optical conditions is recorded for many known microroughnesses.
  • the spatial frequency spectrum is obtained by two-dimensional Fourier transform of the height Z with respect to (X, Y) when the surface shape is expressed by three-dimensional coordinates (X, Y, Z), and square the amplitude. is there.
  • the transmitted detection signal is compared with the detection signal of the library, and the most similar spatial frequency spectrum is calculated (202 in FIG. 2).
  • the calculation of the spatial frequency spectrum will be described later.
  • the spatial frequency spectrum obtained in this way is continuous as shown in FIGS. 3, 6, and 10 described later.
  • a feature amount of microroughness is calculated using the spatial frequency spectrum (203 in FIG. 2) and transmitted to the control system 8. Note that the feature amount calculation will be described later.
  • FIG. 2 shows a flow of the above microroughness measurement.
  • a single wavelength light source such as a laser or a light emitting diode in the visible light region, the ultraviolet light region, and the far ultraviolet light region can be used. Further, a continuous wavelength light source such as a mercury lamp or a xenon lamp may be used. In this case, the single wavelength light suitable for the sample surface can be selected by the wavelength filter.
  • linearly polarized light such as s-polarized light and p-polarized light, circularly polarized light, and elliptically polarized light can be selected.
  • the size of the spot beam can be selected according to the spatial resolution of the output feature quantity.
  • the incident angle of the illumination light can be selected from oblique incidence and normal incidence.
  • the detection optical systems 51 to 55 of the above-described embodiments can use a refractive type composed of a lens, a reflective type composed of a mirror, a reflective / refractive type combining a mirror and a lens, and a diffractive type such as a Fresnel zone plate.
  • photodetectors 61 to 65 a photomultiplier tube, a multi-pixel photon counter, an avalanche photodiode array, or the like can be used.
  • the library of the above embodiment can be created using a test wafer.
  • a test wafer is produced by intentionally changing process conditions in processes such as polishing, cleaning, film formation, and heat treatment.
  • the microroughness is measured using AFM, and the spatial frequency spectrum of the surface shape is calculated.
  • the test wafer is mounted on the shape measuring apparatus of this embodiment, and an optical detection signal is acquired at the sampling position.
  • the relationship between the spatial frequency spectrum of the surface shape and the optical detection signal can be recorded for known microroughness.
  • the detection signal can be predicted by numerical simulation using the spatial frequency spectrum.
  • the spatial distribution of the scattered light is calculated using the BRDF method (Bidirectional ⁇ ⁇ Reflectance ⁇ Distribution Function) using the spatial frequency spectrum, the refractive index of the surface material, and the illumination conditions as input data. Then, the intensity of the scattered light collected by the detection optical system, that is, the detection signal can be predicted using the spatial distribution of the scattered light.
  • BRDF method Bidirectional ⁇ ⁇ Reflectance ⁇ Distribution Function
  • stage 2 of the above embodiment can be combined with rotational movement and linear movement, or with orthogonal linear movement.
  • microroughness is a set of roughnesses of various spatial frequencies, and the spatial frequency spectrum represents the magnitude of roughness for each spatial frequency.
  • FIG. 3 shows two spatial frequency spectra S1, S2 corresponding to differences in process conditions.
  • the spatial frequency spectrum S2 has a roughness up to a higher spatial frequency region than S1.
  • FIG. 4 shows the spatial distribution of the scattered light intensity due to the microroughness corresponding to the spatial frequency spectra S1 and S2 (projecting the distribution on the celestial sphere onto a plane parallel to the wafer surface).
  • the region where the scattered light is strong is located behind the direction of the illumination light as compared to S1. That is, when the spatial frequency spectrum of microroughness changes, the region where the scattered light is strong moves in a direction parallel to the incident surface (a plane including the normal of the surface of the wafer 1 and the principal ray of the illumination light).
  • the detection optical systems 51 to 55 of the present embodiment are arranged as shown in FIG.
  • FIG. 5 is an example of the arrangement of the detection optical system of the present embodiment (in FIG. 5, the aperture on the celestial sphere is projected onto a plane parallel to the surface of the wafer 1).
  • the centers of the detection apertures 101 to 105 of the detection optical systems 51 to 55, that is, the optical axis of the detection optical system are within the incident surface.
  • the projection line of the incident surface onto the wafer 1 passes through the projection images of the detection apertures 101 to 105 projected onto the wafer 1.
  • the spatial frequency spectrum of microroughness can often be fitted with a function including several parameters.
  • FIG. 6 shows a spatial frequency spectrum of the ABC type function. The calculation of the spatial frequency spectrum results in obtaining the parameters A, B, and C.
  • FIG. 7 shows a calculation flow of the spatial frequency spectrum of the ABC type function.
  • the sum of all detection signals of the detector is calculated (701).
  • the ratio of each detection signal and the sum of the detection signals that is, the signal ratio is calculated (702).
  • the signal ratio is compared with the signal ratio library, and parameters B and C are calculated (703).
  • the parameters B and C and the signal sum are compared with the signal sum library, and the parameter A is calculated (704).
  • the calculation of the above parameters can be performed by numerical calculation such as a least square method.
  • the data volume can be compressed by expressing the spatial frequency spectrum with the parameters, the spatial frequency spectrum data at all measurement positions can be stored.
  • the operator selects a feature amount to be noticed according to the process.
  • the feature amount is, for example, RMS roughness in a spatial frequency region of interest, a cut-off spatial frequency of a spatial frequency spectrum, a peak spatial frequency, or the like.
  • the RMS roughness is calculated by integrating the spatial frequency spectrum in the spatial frequency domain.
  • the spatial frequency region can be arbitrarily set.
  • FIG. 8 shows an example of a map of RMS roughness on the entire wafer surface. The RMS roughness map reveals whether the process conditions are appropriate.
  • the cut-off spatial frequency and peak spatial frequency are calculated by analyzing the spatial frequency spectrum.
  • the spatial frequency spectrum is calculated as a continuous function of the spatial frequency, it can be analyzed with a high spatial frequency resolution.
  • the cut-off spatial frequency map reveals how high the spatial frequency domain roughness exists.
  • the peak spatial frequency map reveals whether there is a microroughness of a specific direction and a specific spatial frequency, such as a step-and-terrace structure.
  • the operator refers to the feature amount map and designates a position of interest on the wafer.
  • the operator designates a spatial frequency region of interest.
  • the signal processing system performs inverse Fourier transform in the spatial frequency domain using the spatial frequency spectrum at the position, and calculates the three-dimensional shape and the coordinates (X, Y, Z) of the three-dimensional shape.
  • the spatial frequency region can be arbitrarily set.
  • the coordinate data is transmitted to the operation system, and the three-dimensional shape at the designated position is displayed.
  • FIG. 9 shows an example of the three-dimensional shape of the wafer surface. With such a display, the operator can visually recognize the microroughness.
  • the three-dimensional shape includes, for example, the surface particle size, but the phase of the surface particle size is random. Therefore, in obtaining a three-dimensional shape, it is also possible to generate a random number and perform inverse Fourier transform.
  • the Fourier inverse transform using this random number will be described in more detail. The following flow is used for inverse Fourier transform using random numbers. (1) The square root of the power spectrum is taken as amplitude A. (2) The phase ⁇ is generated with a random number. (3) Fourier transform is performed on the complex amplitude A * (cos ⁇ + i * sin ⁇ ).
  • the wafer surface may be a single layer structure or a multilayer structure.
  • the microroughness at the interface between the upper layer and the lower layer can also be measured.
  • the film thickness of the upper layer can also be measured.
  • Example 2 will be described.
  • the second embodiment is an embodiment in which the measurement accuracy is improved for anisotropic microroughness.
  • parts different from the first embodiment will be mainly described.
  • the step / terrace structure appearing on the epitaxially grown wafer has a specific spatial frequency in a specific direction.
  • FIG. 10 shows two spatial frequency spectra S3, S4 of the microroughness of the epitaxially grown wafer.
  • the spatial frequency spectrum S3 is the direction in which the step / terrace structure does not appear
  • the spatial frequency spectrum S4 is the direction in which the step / terrace structure appears.
  • a sharp peak 601 appears in the spatial frequency spectrum at a specific spatial frequency in a specific direction. This peak 601 corresponds to the step / terrace structure.
  • FIG. 11 shows an example of a detection optical system arrangement suitable for detecting the spatial distribution of scattered light due to such anisotropic microroughness (projecting the aperture on the celestial sphere onto a plane parallel to the wafer surface). ). That is, the surface shape measuring apparatus of the second embodiment has 13 detection optical systems and 13 photodetectors corresponding to them. Detection apertures 101 to 113 in FIG. 11 are detection apertures of the 13 detection optical systems.
  • the center of the detection apertures 101 to 105 of the second embodiment is within the incident surface. Further, the centers of the detection apertures 107 and 109 and the centers of the detection apertures 110 and 112 are respectively in a plane parallel to the incident surface. The centers of the detection apertures 103, 106, 108, 111, 113 are in a plane perpendicular to the incident surface. Further, the centers of the detection apertures 107 and 110 and the centers of the detection apertures 109 and 112 are respectively in a plane perpendicular to the incident surface.
  • the center of the detection apertures 101 to 105 is in the incident surface of the illumination optical system, and the center of the detection aperture 101 and the center of the detection aperture 105 are perpendicular to the incident surface.
  • the center of the detection aperture 102 and the center of the detection aperture 104 can be expressed as being symmetric with respect to a plane perpendicular to the incident surface.
  • the center of the detection aperture 106 and the center of the detection aperture 113 may be expressed as being in a plane perpendicular to the incident surface and symmetric with respect to the incident surface.
  • the center of the detection aperture 108 and the center of the detection aperture 111 may be expressed as being in a plane perpendicular to the incident surface and symmetric with respect to the incident surface.
  • the center of the detection aperture 107 and the center of the detection aperture 109 are in a first plane parallel to the incident surface, and can be expressed as being symmetric with respect to the vertical plane.
  • the center of the detection aperture 110 and the center of the detection aperture 112 are in a second plane parallel to the incident plane, and can be expressed as being symmetric with respect to the vertical plane.
  • the first surface and the second surface can be expressed as being symmetric with respect to the incident surface.
  • Such an arrangement of the detection optical system can sensitively detect changes in the scattered light distribution in various directions. As a result, it is possible to sensitively detect changes in the spatial frequency spectrum in various directions, and the measurement accuracy of anisotropic microroughness is improved.
  • Example 3 will be described.
  • the resolution of the spatial frequency is further improved in the first and second embodiments.
  • the point of illuminating the light 1201 on the surface of the wafer 1 is the same as in the first and second embodiments.
  • the detection optical system referred to in the first and second embodiments is replaced with a Fourier transform optical system 1202.
  • the Fourier transform optical system 1202 is detected by a Fourier transform lens 1205 that collects scattered light 1203 and 1204 from the wafer 1 and a two-dimensional sensor 1207 that detects parallel light 1206 collimated by the Fourier transform lens 1205. .
  • a charge coupled device (CCD), a time delay integration sensor (TDI), a multi-pixel photon counter, an avalanche photodiode array, or the like can be used.
  • the same processing as in the first and second embodiments is performed.
  • Example 3 since the intensity distribution of scattered light incident on the detection optical system can be detected, the spatial frequency resolution can be further improved. Therefore, it is effective for detecting a sharp peak in a specific direction, such as scattered light having a step-and-terrace structure.
  • the measurement apparatus of the present invention can measure the microroughness of the entire wafer surface with high accuracy and manage the process conditions appropriately for each semiconductor manufacturing process.
  • the measuring device of the present invention can be widely applied to the measurement of microroughness of a magnetic storage medium or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 従来技術では、散乱光の空間分布はマイクロラフネスの差異に応じて、前方/後方/側方と色々な方向に変化することについては、配慮がなされていない。特に、エピタキシャル成長ウェハに出現するステップ・テラス構造は散乱光分布に異方性が生じるが、従来技術では、この点に関する配慮がなされていない。 本発明は、試料表面に光を照明し、光軸の方向が互いに異なる複数の検出光学系により散乱光の空間分布を検出し、試料表面の空間周波数スペクトルを算出する処理を含むことを特徴とする。

Description

表面形状計測装置
 本発明は、表面の形状を得るための表面形状計測装置に関する。例えば、本発明は光散乱法を用いる表面形状計測装置に係り、特に、半導体デバイス製造工程におけるウェハ表面などのマイクロラフネスの計測装置に関する。
 半導体デバイスの微細化に伴い、ベアウェハや膜付ウェハの表面のマイクロラフネスが電気特性に及ぼす影響が、増大している。マイクロラフネスは、研磨、洗浄、成膜、熱処理などのプロセスで発生するので、デバイスの高性能化・歩留まり向上のため、プロセスごとにウェハ表面のマイクロラフネスを計測し、プロセス条件を適正に管理する必要がある。
 マイクロラフネスは、高さがサブナノメータオーダからナノメータオーダと非常に小さいので、一般にはAFM(原子間力顕微鏡)を用いて3次元座標を計測している。しかし、AFMは計測に長時間を要するので、ウェハ全面を計測するのは実質的に不可能である。
 一方、マイクロラフネスは光散乱と相関があることが、従来から知られている。光散乱法を用いるマイクロラフネス計測装置は、例えば米国特許公報7286218号明細書(特許文献5)に開示されている。
 その他の先行技術としては、特許文献1乃至4、6及び7が挙げられる。
特表平9-503299号公報 特開平7-333164号公報 特開2010-223770号公報 特表2007-500881号公報 米国特許第7286218号明細書 米国特許第5428442号明細書 特開2008-278515号公報
 特許文献5では、検出光学系の検出空間をマイクロラフネスの空間周波数領域に対応付けており、空間周波数領域ごとにマイクロラフネス評価が可能である。しかし、空間周波数領域の数は検出光学系の数(実施例は6個)と同じなので、空間周波数の刻みが粗いという点には配慮がなされていない。
 また、散乱光の空間分布はマイクロラフネスの差異に応じて、前方/後方/側方と色々な方向に変化するが、検出空間に入らない情報の変化については、配慮がなされていない。
 また、エピタキシャル成長ウェハに出現するステップ・テラス構造は、特定の方向の特定の空間周波数で鋭いピークを有する。このため、ステップ・テラス構造による散乱光強度は、特定の狭い方向にピークを生じる。従来技術では、上記ピークは近傍の空間周波数成分による散乱光強度に埋もれてしまうと言う点には配慮がなされていない。
 本発明の目的は、ウェハ全面で色々なマイクロラフネスの計測が可能な、高精度の表面形状計測装置とその方法を提供することにある。
 本発明は、表面の形状に関連する空間周波数スペクトルを連続的に得ることを特徴とする。
 本発明は、試料の表面に光を照明し、前記試料表面からの散乱光を複数の検出光学系により検出し、前記の複数の検出信号から前記試料表面の形状を計測する表面形状計測装置において、前記検出光学系の光軸の方向が互いに異なること、前記試料表面の空間周波数スペクトルを算出する処理を含むことを特徴とする。
 本発明は、前記照明光はスポットビームであり、前記試料の回転移動と直線移動により、前記照明光が前記試料表面を走査することを特徴とする。
 本発明は、少なくとも前記の2つの検出光学系の光軸は入射面に平行な面内にあることを特徴とする。
 本発明は、少なくとも前記の2つの検出光学系の光軸は入射面に平行な面内にあること、少なくとも前記の2つの検出光学系の光軸は入射面に垂直な面内にあることを特徴とする。
 本発明は、既知の表面形状の空間周波数スペクトルと検出信号との関係を予めライブラリに記録し、前記試料表面からの前記検出信号を前記ライブラリと比較し、前記試料表面の空間周波数スペクトルを算出する処理を含むことを特徴とする。
 本発明は、前記検出器の全ての検出信号の総和を計算する処理と、それぞれの検出信号と前記検出信号の総和との比(信号比率)を計算する処理とを含むことを特徴とする。
 本発明は、前記空間周波数スペクトルを用いて、前記試料表面の所定の特徴量を算出する処理を含み、前記試料表面の全体または所定の領域における前記特徴量のマップを出力することを特徴とする。
 本発明は、前記特徴量は少なくとも、所定の空間周波数領域における表面粗さ、または前記空間周波数スペクトルのカットオフ空間周波数またはピーク空間周波数、または前記試料表面を形成する膜の厚さであることを特徴とする。
 本発明は、前記試料表面の所定の位置で、前記空間周波数スペクトルを用いて前記試料表面の高さを算出する処理を含み、前記所定位置の3次元形状を出力することを特徴とする。
 本発明は、試料の表面に光を照明し、前記試料表面からの散乱光を複数の検出光学系により検出し、前記の複数の検出信号から前記試料表面の形状を計測する表面形状計測方法において、前記検出光学系の光軸の方向が互いに異なること、前記試料表面の空間周波数スペクトルを算出する処理を含むことを特徴とする。
 本発明によれば、従来よりも詳しい表面の形状を得ることができる。
実施例1の表面形状計測装置の構成を示す図である。 実施例1の表面形状計測のフローを示す図である。 マイクロラフネスの空間周波数スペクトルの一例を示す図である。 マイクロラフネスによる散乱光の空間分布の一例を示す図である。 実施例1の検出光学系の配置を示す図である。 ABC型関数の空間周波数スペクトルを示す図である。 ABC型関数の空間周波数スペクトルを算出するフローを示す図である。 ウェハ全面におけるRMS粗さのマップの一例を示す図である。 マイクロラフネスの3次元形状の一例を示す図である。 異方性のマイクロラフネスの空間周波数スペクトルの一例を示す図である。 実施例2を説明する図である。 実施例3を説明する図である。
 以下、図面を用いて説明する。
 本発明の一実施例として、半導体デバイス製造におけるウェハ表面のマイクロラフネスの表面形状計測装置について説明する。
 表面形状計測装置の概略構成を図1に示す。主な構成要素は、ウェハ1を搭載するステージ2、光源3、レンズ、ミラー等を有する照明光学系4、レンズ、ミラー等を有する検出光学系51~55(53~55は図示しない)、光検出器61~65(63~65は図示しない)、信号処理系7、制御系8、および操作系9である。
 次に図2を用いて本実施例での表面形状の計測フローについて説明する。
 光源3から放射される所定の波長の光を、偏光フィルタ(図示しない)により所定の偏光とする。照明光学系4により所定のサイズのスポットビームを形成し、所定の入射角でウェハ1を照明する。ウェハ表面にはマイクロラフネスが存在するので、散乱光が発散する。検出光学系51~55により、散乱光をそれぞれ光検出器61~65に集光する。検出光学系の光軸の方向は互いに異なるので、検出信号の集合は散乱光強度の空間分布を反映している。つまり、本実施例の表面形状計測装置では、散乱光の空間分布を得ることができる(図2の201)。なお、ウェハ表面からの正反射光は検出しないように、検出光学系を配置している。検出信号をAD変換器(図示しない)によりデジタル信号に変換し、信号処理系7に伝送する。
 信号処理系7の内部にはライブラリを保存した記憶媒体があり、多数の既知のマイクロラフネスについて、空間周波数スペクトルと前記の光学条件における検出信号との関係が、記録されている。ここで、空間周波数スペクトルとは、表面形状を3次元座標(X,Y,Z)で表現するとき、高さZを(X,Y)に関して2次元フーリエ変換し、その振幅を二乗したものである。そして、伝送された検出信号をライブラリの検出信号と比較し、最も類似している空間周波数スペクトルを算出する(図2の202)。空間周波数スペクトルの算出については後述するが、このように得た空間周波数スペクトルは後述する図3、図6、図10のように連続的なものとなる。次に、空間周波数スペクトルを用いてマイクロラフネスの特徴量を算出し(図2の203)、制御系8に伝送する。なお、特徴量の算出については、後述する。
 このように局所的にマイクロラフネスを計測しながら、スポットビームがウェハ全面または所定の領域を走査するように、ステージを移動する。そして、ウェハ全面または所定の領域の走査終了後(図2の204)、特徴量のマップを操作系9に表示する(図2の205)。図2は、以上のマイクロラフネス計測のフローを示す。
 前記実施例の光源3は、可視光領域、紫外光領域、および遠紫外光領域のレーザや発光ダイオードなどの単一波長光源を使用できる。また、水銀ランプやキセノンランプなどの連続波長光源を使用しても良い。この場合、波長フィルタにより、試料表面に応じて適切な単一波長光を選択できる。
 また、前記実施例の照明光の偏光は、s偏光やp偏光などの直線偏光、円偏光、楕円偏光を選択できる。スポットビームのサイズは、出力する特徴量の空間分解能に応じて選択できる。照明光の入射角は、斜入射と直入射を選択できる。
 また、前記実施例の検出光学系51~55は、レンズから成る屈折型、ミラーから成る反射型、ミラーとレンズを組み合わせた反射・屈折型、およびフレネルゾーンプレートなどの回折型を使用できる。
 また、光検出器61~65としては、光電子増倍管、マルチピクセルフォトンカウンタ、アバランシェフォトダイオードアレイ等が使用できる。
 また、前記実施例のライブラリは、テストウェハを用いて作成できる。テストウェハとは、研磨、洗浄、成膜、熱処理などのプロセスにおいて、プロセス条件を意図的に変えて作製したものである。テストウェハ表面のサンプリング位置で、AFMを用いてマイクロラフネスを計測し、表面形状の空間周波数スペクトルを算出する。そして、テストウェハを本実施例の形状計測装置に搭載し、前記サンプリング位置で光学的な検出信号を取得する。このように、既知のマイクロラフネスについて、表面形状の空間周波数スペクトルと光学的な検出信号との関係を記録できる。また、前記の空間周波数スペクトルを用いて、数値シミュレーションにより検出信号を予測することもできる。空間周波数スペクトルと表面材料の屈折率、および照明条件を入力データとし、BRDF法(Bidirectional Reflectance Distribution Function)を用いて、散乱光の空間分布を計算する。そして、散乱光の空間分布を用いて、検出光学系が集光する散乱光の強度、すなわち検出信号を予測できる。
 また、前記実施例のステージ2は、回転移動と直線移動の組み合わせ、または直交する直線移動の組み合わせが可能である。
 次に、本発明の計測装置により、マイクロラフネスの計測精度が向上することを説明する。一般に、マイクロラフネスは色々な空間周波数の粗さの集合であり、空間周波数スペクトルは空間周波数ごとの粗さの大きさを表わしている。図3は、プロセス条件の差異に対応する2つの空間周波数スペクトルS1、S2を示す。空間周波数スペクトルS2はS1に比べて、高い空間周波数領域まで粗さが存在している。
 図4は、空間周波数スペクトルS1、S2に対応するマイクロラフネスによる散乱光強度の空間分布を示す(天球面上の分布をウェハ表面に平行な平面に投影)。空間周波数スペクトルS2はS1に比べて、散乱光の強い領域が照明光の方向に対して後方に寄っていることが分かる。つまり、マイクロラフネスの空間周波数スペクトルが変化すると、散乱光の強い領域は入射面(ウェハ1表面の法線と照明光の主光線とを含む平面)に平行な方向に移動するのである。
 このような散乱光分布の変化を検出するために、本実施例の検出光学系51~55は、図5のように配置される。図5は、本実施例の検出光学系配置の一例である(図5では、天球面上の開口をウェハ1表面に平行な平面に投影している)。検出光学系51~55の各検出開口101~105の中心、すなわち検出光学系の光軸は、入射面内にある。これは、他の表現としては、入射面のウェハ1への投影線は、ウェハ1に投影される検出開口101~105の投影像を、通過すると表現することもできる。このような配置によって、散乱光の強い領域が入射面に平行な方向に移動すると、散乱光分布の変化を敏感に検出できる。その結果、空間周波数スペクトルの変化を敏感に捉えることが可能となり、マイクロラフネスの計測精度が向上する。
 次に、マイクロラフネスの空間周波数スペクトルの算出について説明する。一般に、マイクロラフネスの空間周波数スペクトルは、いくつかのパラメータを含む関数でフィッティングできることが多い。典型的なフィッティング関数は、式(1)のABC型関数である。
  P=A/(1+(Bf)2)C/2     …(1)
 ここで、Pはパワー、fは空間周波数であり、Aは低空間周波数側のパワー、Bはカットオフ、Cはスペクトルの傾きに関係する。図6は、ABC型関数の空間周波数スペクトルを示している。空間周波数スペクトルの算出は、パラメータA、B、Cを求めることに帰着する。
 図7は、ABC型関数の空間周波数スペクトルの算出フローを示す。まず、検出器の全ての検出信号の総和を計算する(701)。次に、それぞれの検出信号と検出信号の総和との比、すなわち信号比率を計算する(702)。そして、信号比率を信号比率ライブラリと比較し、パラメータB、Cを算出する(703)。最後に、パラメータB、Cと信号総和を信号総和ライブラリと比較し、パラメータAを算出する(704)。上記のパラメータの算出は、最小二乗法などの数値計算により行うことができる。このように、空間周波数スペクトルをパラメータで表現することにより、データ容量を圧縮できるので、全測定位置の空間周波数スペクトルデータを保存できる。
 次に、マイクロラフネスの特徴量の算出と出力について説明する。オペレータは、プロセスに応じて注目する特徴量を選択する。特徴量は例えば、注目する空間周波数領域におけるRMS粗さ、空間周波数スペクトルのカットオフ空間周波数やピーク空間周波数などである。RMS粗さは、空間周波数スペクトルを当該空間周波数領域で積分して算出する。本実施例では、空間周波数の連続関数として空間周波数スペクトルを算出しているので、当該空間周波数領域は任意に設定できる。図8は、ウェハ全面におけるRMS粗さのマップの一例を示す。RMS粗さのマップにより、プロセス条件が適正か否かが判明する。また、カットオフ空間周波数やピーク空間周波数は、空間周波数スペクトルの解析により算出する。本実施例では、空間周波数の連続関数として空間周波数スペクトルを算出しているので、高い空間周波数分解能にて解析できる。カットオフ空間周波数のマップにより、どのくらい高い空間周波数領域の粗さが存在しているかが判明する。また、ピーク空間周波数のマップにより、ステップ・テラス構造のような、特定方向かつ特定空間周波数のマイクロラフネスが存在するか否かが判明する。
 次に、マイクロラフネスの3次元形状の算出と出力について説明する。オペレータは、前記の特徴量のマップを参照して、ウェハ上の注目する位置を指定する。また、オペレータは、注目する空間周波数領域を指定する。信号処理系は、当該位置の空間周波数スペクトルを用いて、当該空間周波数領域でフーリエ逆変換を行い、3次元形状、及び3次元形状の座標(X,Y,Z)を算出する。本実施例では、空間周波数の連続関数として空間周波数スペクトルを算出しているので、当該空間周波数領域は任意に設定できる。座標データは操作系に伝送され、指定位置の3次元形状が表示される。図9は、ウェハ表面の3次元形状の一例を示す。このような表示により、オペレータはマイクロラフネスを視覚的に認識できる。
 ここで、3次元形状には例えば表面の粒径が含まれるわけであるが、表面の粒径の位相はランダムである。そこで、3次元形状を得るに当たっては、乱数を発生させてフーリエ逆変換することも可能である。この乱数を用いたフーリエ逆変換についてより詳細に説明する。乱数を用いたフーリエ逆変換に当たっては、以下のフローを用いる。
(1)パワースペクトルの平方根を取って、振幅Aとする。
(2)位相Φを乱数で発生させる。
(3)複素振幅A*(cosΦ+i*sinΦ)をフーリエ逆変換する。
 なお、ウェハ表面は、単層構造でも多層構造でも良い。多層構造で上層が透明の場合、上層と下層との界面のマイクロラフネスも計測できる。また、多層構造で上層が透明の場合、上層の膜厚も計測できる。
 次に実施例2について説明する。実施例2は、異方性のマイクロラフネスについても計測精度が向上する実施例である。実施例2では、実施例1と異なる部分について主に説明する。
 エピタキシャル成長ウェハに出現するステップ・テラス構造は、特定の方向に特定の空間周波数を有している。図10は、エピタキシャル成長ウェハのマイクロラフネスの2つの空間周波数スペクトルS3、S4を示す。空間周波数スペクトルS3はステップ・テラス構造の出現しない方向であり、空間周波数スペクトルS4はステップ・テラス構造の出現する方向である。ステップ・テラス構造では、特定の方向の特定の空間周波数において、空間周波数スペクトルに鋭い特異なピーク601が出現している。このピーク601がステップ・テラス構造に対応したものである。
 このような異方性のマイクロラフネスによる散乱光の空間分布を検出するのに適した検出光学系配置の一実施例を図11に示す(天球面上の開口をウェハ表面に平行な平面に投影)。つまり、本実施例2の表面形状計測装置は、13個の検出光学系、それらに対応した13個の光検出器を有する。図11の検出開口101~113は、13個の検出光学系それぞれの検出開口である。
 本実施例2の検出開口101~105の中心、すなわち検出光学系の光軸は、入射面内にある。また、検出開口107と109の中心、検出開口110と112の中心は、それぞれ入射面に平行な面内にある。また、検出開口103、106、108、111、113の中心は、入射面に垂直な平面内にある。また、検出開口107と110の中心、検出開口109と112の中心は、それぞれ入射面に垂直な面内にある。
 これは、他の表現としては、検出開口101~105の中心は、前記照明光学系の入射面内にあり、かつ検出開口101の中心と検出開口105の中心とは入射面に垂直な面に関して対称であり、検出開口102の中心と検出開口104の中心とは前記入射面に垂直な面に関して対称であると表現することができる。また、検出開口106の中心、及び検出開口113の中心は、入射面に垂直な面内にあり、かつ前記入射面に関して対称であると表現することもできる。また、検出開口108の中心、及び検出開口111の中心は、入射面に垂直な面内にあり、かつ前記入射面に関して対称であると表現することもできる。さらに、検出開口107の中心、及び検出開口109の中心は、前記入射面に対して平行な第1の面内にあり、前記垂直な面に関して対称であると表現することができる。さらに、検出開口110の中心、及び検出開口112の中心は、前記入射面に対して平行な第2の面内にあり、前記垂直な面に関して対称であると表現することができる。そして、この第1の面、及び第2の面は、前記入射面に関して対称であると表現することができる。
 このような検出光学系配置により、色々な方向の散乱光分布の変化を敏感に検出できる。その結果、色々な方向の空間周波数スペクトルの変化を敏感に捉えることが可能となり、異方性のマイクロラフネスの計測精度が向上する。
 次に、実施例3について説明する。実施例3は、実施例1、及び実施例2において、さらに空間周波数の分解能を向上させるものである。
 ウェハ1の表面に対して光1201を照明する点は、実施例1、及び実施例2と同様である。本実施例3では、実施例1、及び実施例2で言及した検出光学系をフーリエ変換光学系1202に置き換えるものである。フーリエ変換光学系1202は、ウェハ1からの散乱光1203、1204を集光するフーリエ変換レンズ1205、フーリエ変換レンズ1205によって平行化された平行光1206を検出する2次元センサ1207によって検出するものである。2次元センサとしては、電荷結合素子(CCD)、時間遅延積分センサ(TDI)、マルチピクセルフォトンカウンタ、アバランシェフォトダイオードアレイ等を使用できる。
 実施例3では、2次元センサ1207によって光を検出した後は、実施例1、及び2と同様の処理が施される。
 実施例3では、検出光学系に入射する散乱光の強度分布を検出できるので、さらに空間周波数分解能を向上させることができる。このため、ステップ・テラス構造の散乱光のような、特定方向の鋭いピークを検出するのに有効である。
 本発明の計測装置により、半導体製造のプロセスごとに、ウェハ表面全体のマイクロラフネスを高精度で計測し、プロセス条件を適正に管理できる。
 また、本発明の計測装置は、磁気記憶媒体などのマイクロラフネスの計測にも広く適用可能である。
1 ウェハ
2 ステージ
3 光源
4 照明光学系
7 信号処理系
8 制御系
9 操作系
51~55 検出光学系
61~65 光検出器

Claims (9)

  1.  試料の表面形状を得るための表面形状計測装置において、
     光を前記試料に照明する照明光学系と、
     前記試料からの散乱光を検出する複数の検出光学系と、
     前記複数の検出光学系の検出信号とライブラリとを用いて前記試料の連続的な空間周波数スペクトルを得る処理部と、を有することを特徴とする表面形状計測装置。
  2.  請求項1に記載の表面形状計測装置において、
     前記ライブラリは、
     既知のマイクロラフネスについて、表面形状の空間周波数スペクトルと光学的な検出信号との関係を記録したものであることを特徴とする表面形状計測装置。
  3.  請求項1に記載の表面形状計測装置において、
     前記複数の検出光学系の光軸は、前記試料の入射面内にあることを特徴とする表面形状計測装置。
  4.  請求項1に記載の表面形状計測装置において、
     前記処理部は、
     前記複数の検出光学系それぞれの検出信号の総和と前記検出信号との比を得て、
     前記比と前記ライブラリとを用いて前記空間周波数スペクトルを得ることを特徴とする表面形状計測装置。
  5.  請求項1に記載の表面形状計測装置において、
     前記複数の検出光学系の第1の検出開口の中心、及び第2の検出開口の中心は、前記照明光学系の入射面内にあり、かつ前記入射面に垂直な面に関して対称であり、
     前記複数の検出光学系の第3の検出開口の中心、及び前記第4の検出開口の中心は、前記垂直な平面内にあり、かつ前記入射面に関して対称であり、
     前記複数の検出光学系の第5の検出開口の中心、及び第6の検出開口の中心は、前記入射面に対して平行な第1の面内にあり、前記垂直な面に関して対称であり、
     前記複数の検出光学系の第7の検出開口の中心、及び第8の検出開口の中心は、前記入射面に対して平行な第2の面内にあり、前記垂直な面に関して対称であり、さらに、前記第1の面と前記第2の面とは前記入射面に関して対称であることを特徴とする表面形状計測装置。
  6.  請求項1に記載の表面形状計測装置において、
     前記複数の検出光学系は、フーリエ変換光学系を含むことを特徴とする表面形状計測装置。
  7.  請求項1に記載の表面形状計測装置において、
     前記処理部は、
     前記空間周波数スペクトルの中の所定の空間周波数領域における表面粗さ、前記空間周波数スペクトルのカットオフ空間周波数、ピーク空間周波数、及び前記試料表面を形成する膜の厚さのうち少なくとも1つを得ることを特徴とする表面形状計測装置。
  8.  請求項1に記載の表面形状計測装置において、
     前記処理部は、
     前記空間周波数スペクトルに対してフーリエ逆変換を行うことを特徴とする表面形状計測装置。
  9.  請求項8に記載の表面形状計測装置において、
     前記処理部は、
     乱数を用いて前記フーリエ逆変換を行うことを特徴とする表面形状計測装置。
PCT/JP2012/069076 2011-08-31 2012-07-27 表面形状計測装置 WO2013031445A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/240,669 US9310190B2 (en) 2011-08-31 2012-07-27 Surface shape measuring apparatus
US15/054,372 US20160178360A1 (en) 2011-08-31 2016-02-26 Surface shape measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011188164A JP5581282B2 (ja) 2011-08-31 2011-08-31 表面形状計測装置
JP2011-188164 2011-08-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/240,669 A-371-Of-International US9310190B2 (en) 2011-08-31 2012-07-27 Surface shape measuring apparatus
US15/054,372 Continuation US20160178360A1 (en) 2011-08-31 2016-02-26 Surface shape measuring apparatus

Publications (1)

Publication Number Publication Date
WO2013031445A1 true WO2013031445A1 (ja) 2013-03-07

Family

ID=47755949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069076 WO2013031445A1 (ja) 2011-08-31 2012-07-27 表面形状計測装置

Country Status (3)

Country Link
US (2) US9310190B2 (ja)
JP (1) JP5581282B2 (ja)
WO (1) WO2013031445A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118543A1 (ja) * 2012-02-09 2013-08-15 株式会社 日立ハイテクノロジーズ 表面計測装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043813B2 (ja) * 2013-01-23 2016-12-14 株式会社日立ハイテクノロジーズ 表面計測装置
JP6101176B2 (ja) * 2013-08-30 2017-03-22 富士フイルム株式会社 光学特性測定装置及び光学特性測定方法
CN113048921A (zh) * 2021-03-24 2021-06-29 长江存储科技有限责任公司 一种晶圆表面粗糙度的测量方法和测量系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031224A (ja) * 1998-07-08 2000-01-28 Shin Etsu Handotai Co Ltd 半導体ウエーハの評価方法
JP2002257518A (ja) * 2001-03-05 2002-09-11 Yuzo Mori 光散乱法による表面の複合評価システム
JP2006278515A (ja) * 2005-03-28 2006-10-12 Shin Etsu Handotai Co Ltd 半導体ウエーハの評価方法及び製造方法
JP2008058239A (ja) * 2006-09-01 2008-03-13 Hitachi High-Technologies Corp 表面検査方法、及び表面検査装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897608A (ja) * 1981-12-05 1983-06-10 Nippon Paint Co Ltd 表面性状測定方法および装置
US4806774A (en) * 1987-06-08 1989-02-21 Insystems, Inc. Inspection system for array of microcircuit dies having redundant circuit patterns
US5428442A (en) * 1993-09-30 1995-06-27 Optical Specialties, Inc. Inspection system with in-lens, off-axis illuminator
JP3398472B2 (ja) 1994-06-14 2003-04-21 株式会社日立製作所 検査方法および検査装置
JPH08178857A (ja) * 1994-12-21 1996-07-12 Nikon Corp 大型基板用異物検査装置
US5877860A (en) * 1996-05-13 1999-03-02 Boxer Cross, Inc. System and method for measuring the microroughness of a surface of a substrate
JP3519698B2 (ja) * 2001-04-20 2004-04-19 照明 與語 3次元形状測定方法
US7106454B2 (en) * 2003-03-06 2006-09-12 Zygo Corporation Profiling complex surface structures using scanning interferometry
US7057806B2 (en) 2003-05-09 2006-06-06 3M Innovative Properties Company Scanning laser microscope with wavefront sensor
US7605913B2 (en) * 2004-12-19 2009-10-20 Kla-Tencor Corporation System and method for inspecting a workpiece surface by analyzing scattered light in a front quartersphere region above the workpiece
US7184139B2 (en) * 2005-01-13 2007-02-27 Komag, Inc. Test head for optically inspecting workpieces
WO2007137261A2 (en) * 2006-05-22 2007-11-29 Kla-Tencor Technologies Corporation Methods and systems for detecting pinholes in a film formed on a wafer or for monitoring a thermal process tool
WO2009064405A1 (en) * 2007-11-12 2009-05-22 Analog Devices, Inc. Methods and apparatus for generating and processing transmitter signals
JP5624714B2 (ja) * 2008-05-23 2014-11-12 株式会社日立ハイテクノロジーズ 基板表面の検査方法及び検査装置
JP4542174B2 (ja) 2008-06-02 2010-09-08 日立オートモティブシステムズ株式会社 画像処理カメラシステム及び画像処理カメラ制御方法
JP5357509B2 (ja) * 2008-10-31 2013-12-04 株式会社日立ハイテクノロジーズ 検査装置、検査方法および検査装置の校正システム
JP2010223770A (ja) 2009-03-24 2010-10-07 Olympus Corp 散乱体内部観察装置および散乱体内部観察方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031224A (ja) * 1998-07-08 2000-01-28 Shin Etsu Handotai Co Ltd 半導体ウエーハの評価方法
JP2002257518A (ja) * 2001-03-05 2002-09-11 Yuzo Mori 光散乱法による表面の複合評価システム
JP2006278515A (ja) * 2005-03-28 2006-10-12 Shin Etsu Handotai Co Ltd 半導体ウエーハの評価方法及び製造方法
JP2008058239A (ja) * 2006-09-01 2008-03-13 Hitachi High-Technologies Corp 表面検査方法、及び表面検査装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118543A1 (ja) * 2012-02-09 2013-08-15 株式会社 日立ハイテクノロジーズ 表面計測装置

Also Published As

Publication number Publication date
JP5581282B2 (ja) 2014-08-27
JP2013050371A (ja) 2013-03-14
US9310190B2 (en) 2016-04-12
US20160178360A1 (en) 2016-06-23
US20140198321A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP5624714B2 (ja) 基板表面の検査方法及び検査装置
JP5222954B2 (ja) 偏光スキャンを利用した干渉計
JP5676419B2 (ja) 欠陥検査方法およびその装置
CN110987817B (zh) 基于大数值孔径物镜整合暗场观察的椭偏仪及测量方法
JP4716148B1 (ja) 検査装置並びに欠陥分類方法及び欠陥検出方法
JP6043813B2 (ja) 表面計測装置
KR20150025745A (ko) 광소자-회전형 뮬러-행렬 타원계측기 및 이를 이용한 시료의 뮬러-행렬 측정 방법
US10054423B2 (en) Optical method and system for critical dimensions and thickness characterization
TW201825864A (zh) 用於圖案化半導體特徵之特徵化的掃描白光干涉測量系統
US20160178360A1 (en) Surface shape measuring apparatus
US9366625B2 (en) Surface measurement device
WO2004072629A1 (en) System and method for inspection of silicon wafers
Blunt White Light Interferometry–a production worthy technique for measuring surface roughness on semiconductor wafers
CN107923735B (zh) 用于推导物体表面的形貌的方法和设备
JP4844694B2 (ja) 検査装置及び欠陥分類方法
JP2014186035A (ja) 欠陥検査方法および欠陥検査装置
TW201229495A (en) Optical measuring system with illumination provided through a viod in a collecting lens
Abdelsalam et al. Highly accurate film thickness measurement based on automatic fringe analysis
TWI388817B (zh) Method and device for measuring the defect of the CCD object by the critical angle method
TWI495841B (zh) High - resolution Reflective Three - dimensional Photoelectric Microscope
JP2022162306A (ja) 表面形状計測装置および表面形状計測方法
WO2024034067A1 (ja) 試料表面品質管理装置
JP5472575B2 (ja) 対向面内所定位置における対向面間距離測定装置及び方法、及びそれらを用いた高平面度加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14240669

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827381

Country of ref document: EP

Kind code of ref document: A1