WO2013031229A1 - エアフィルタ用濾材、エアフィルタユニット及びエアフィルタ用濾材の製造方法 - Google Patents
エアフィルタ用濾材、エアフィルタユニット及びエアフィルタ用濾材の製造方法 Download PDFInfo
- Publication number
- WO2013031229A1 WO2013031229A1 PCT/JP2012/005501 JP2012005501W WO2013031229A1 WO 2013031229 A1 WO2013031229 A1 WO 2013031229A1 JP 2012005501 W JP2012005501 W JP 2012005501W WO 2013031229 A1 WO2013031229 A1 WO 2013031229A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- filter medium
- air
- air filter
- collection layer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/10—Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/56—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
- B01D46/62—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1692—Other shaped material, e.g. perforated or porous sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/52—Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
- B01D46/521—Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
- B01D46/523—Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material with means for maintaining spacing between the pleats or folds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M17/00—Producing multi-layer textile fabrics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/0604—Arrangement of the fibres in the filtering material
- B01D2239/0627—Spun-bonded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/065—More than one layer present in the filtering material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/065—More than one layer present in the filtering material
- B01D2239/0654—Support layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/065—More than one layer present in the filtering material
- B01D2239/0668—The layers being joined by heat or melt-bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/12—Special parameters characterising the filtering material
- B01D2239/1233—Fibre diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2265/00—Casings, housings or mounting for filters specially adapted for separating dispersed particles from gases or vapours
- B01D2265/06—Details of supporting structures for filtering material, e.g. cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2275/00—Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
- B01D2275/10—Multiple layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/20—All layers being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0253—Polyolefin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/12—Conjugate fibres, e.g. core/sheath or side-by-side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
Definitions
- the present invention relates to an air filter medium that collects dust in an air stream, an air filter unit, and a method for manufacturing the air filter medium.
- PTFE porous film made of polytetrafluoroethylene (hereinafter referred to as PTFE) is used as a dust collection filter.
- PTFE porous membranes have higher dust collection efficiency when compared with glass fiber filter media at the same pressure loss.
- HEPA filters High Efficiency Particulate Air Filter
- ULPA filters Ultra low Penetration Air Filter
- the PTFE porous membrane has a dense fiber structure compared to the conventionally used glass fiber filter media, it is quickly clogged with dust and has a large dust collection load like an outside air treatment unit. When used in an environment, the pressure loss of the air filter unit increases in a short time.
- the filter medium for air filter includes a PTFE porous membrane and a fiber breathable porous material, the fiber breathable porous material is disposed on the upstream side of the gas flow of the porous membrane, and the fiber breathable
- the porous material has a fiber diameter in the range of 1 to 15 ⁇ m, a porosity of 70% or more, and a basis weight of 60 g / m 2 or more.
- a filter medium for a filter which is a filter medium for a turbine and in which an increase in pressure loss is suppressed, is also known (Patent Document 2).
- the filter medium includes a polytetrafluoroethylene porous membrane and a breathable support material, and the fiber diameter of the breathable support material is in the range of 0.2 ⁇ m to 15 ⁇ m.
- the above-mentioned known filter medium can suppress an increase in pressure loss as a characteristic of the filter medium, but when used in an air filter unit, it cannot necessarily suppress a pressure loss in the air filter unit as desired.
- the filter medium used in the air filter unit has a zigzag shape that is pleated and folded into a mountain fold and a valley fold. Therefore, in addition to the pressure loss of the filter medium itself, the pressure loss due to the structure of the air filter unit ( (Structural resistance) is also added, and it is difficult to reduce the pressure loss in the air filter unit.
- the filter media having a fiber diameter of 0.2 ⁇ m or more and 15 ⁇ m or less of the breathable support material has a wide fiber diameter range, and in this range, the breathable support material is small.
- the inner fibers have a dense structure, and the pressure loss of the breathable support material may increase.
- the fiber-permeable porous material having a fiber diameter of 1 to 15 ⁇ m has a thickness of the fiber-permeable porous material in order to obtain dust collection efficiency in a region where the fiber diameter is large. It may be necessary to increase the basis weight. When an air filter unit using such a filter medium is manufactured, pressure loss cannot be reduced.
- the present invention suppresses the pressure loss in the air filter unit and can suppress the pressure loss due to the structure of the air filter unit, the air filter unit using the filter medium, and further the filter medium.
- An object is to provide a manufacturing method.
- One embodiment of the present invention is a filter medium for an air filter that collects dust in an airflow.
- the air filter media is A pre-collection layer that collects some of the dust in the airflow;
- a main collection layer composed of a polytetrafluoroethylene porous film that is disposed on the downstream side of the air flow with respect to the pre-collection layer and collects dust that has passed through the pre-collection layer;
- a breathable cover layer that is disposed at the position of the outermost layer on the upstream side of the air flow and allows dust in the air flow to pass therethrough, while suppressing the deformation of the surface of the air filter medium against external pressure.
- the air filter unit is A zigzag processed filter medium obtained by pleating the filter medium for air filter, In order to maintain the zigzag shape of the processed filter medium, a shape holding part disposed in a peak or valley of the processed filter medium, And a frame for holding the processed filter medium in which the zigzag shape is held.
- Yet another embodiment of the present invention is a method for producing the filter medium for an air filter.
- the method is Laminating a member to be the air-permeable support layer and a member to be the main collection layer to obtain a first laminate, Laminating a member to be the breathable cover layer and a member to be the pre-collecting layer to obtain a second laminate, Laminating so that the member used as the main collection layer of the 1st layered product and the member used as the pre collection layer of the 2nd layered product may be located inside.
- the air filter unit using the filter material, and the manufacturing method of the filter material, pressure loss due to the structure of the air filter unit can be suppressed, and the pressure loss is reduced in the air filter unit.
- a suppressed air filter unit can be provided.
- the air filter unit has a life similar to that of a conventionally used glass fiber filter medium even if a PTFE multinomial membrane is used for the main collection layer.
- (A), (b) is a figure explaining the structure of the air filter unit of this embodiment using the filter medium for air filters of this embodiment. It is sectional drawing which shows the layer structure of the filter medium used for the air filter unit of this embodiment.
- (A) is a figure explaining the contact of the filter medium of this embodiment, and a shape holding member
- (b) is a figure explaining the contact of the conventional filter medium and a shape holding member.
- (A) is a figure explaining arrangement
- (b) is sectional drawing of the filter medium and spacer in (a). It is a perspective view explaining the filter medium of the modification 3 of this embodiment. It is an expanded view of the filter medium of the modification 3 of this embodiment.
- the filter medium for an air filter of the present invention an air filter unit using the filter medium, and a method for manufacturing the filter medium will be described in detail.
- FIGS. 1A and 1B are diagrams illustrating an outline of a configuration of an air filter unit of the present embodiment using the air filter medium of the present embodiment.
- FIG. 1A shows a perspective view of a filter pack used in the air filter unit.
- the air filter pack includes an air filter medium (hereinafter simply referred to as a filter medium) 10 and a shape holding member 12.
- the filter medium 10 is a processed filter medium having a zigzag shape in which a sheet-shaped filter medium is pleated to fold and fold so that peaks and valleys are formed.
- the shape holding member 12 is a separator that is inserted into each trough of the processed filter medium in order to hold the zigzag shape of the processed filter medium.
- the filter medium 10 is corrugated by corrugating a thin plate, and is disposed in the valley of the processed filter medium.
- the filter medium 10 maintains a zigzag shape.
- the distance D between the tops of adjacent mountain folds or the bottoms of valley folds is, for example, 5 to 10 mm, and the width of the processed air filter pack (in the x direction in FIG. 1A) The length is 10 to 20 pleats per 100 mm (the number of mountain folds or valley folds).
- FIG. 1B shows a perspective view of the air filter unit 15.
- the ceiling surface of the air filter unit 15 is omitted, and a part of the filter medium 10 that is a processed filter medium inside is shown.
- the air filter unit 15 is configured by holding the processed filter medium in which the shape holding member 12 (not shown in FIG. 1B) is disposed, on a frame body 14 formed by combining plate materials.
- FIG. 2 is a cross-sectional view showing the layer configuration of the filter medium 10 used in the air filter unit 15.
- the filter medium 10 is an air filter filter medium that collects dust in the airflow, and includes a pre-collection layer 20, a main collection layer 22, a breathable cover layer 24, and a breathable support layer 26.
- the filter medium 10 is arranged so that the airflow flows from the upper side to the lower side in FIG. That is, in the filter medium 10, the air-permeable cover layer 24 is located on the outermost layer of the filter medium 10 on the upstream side of the airflow. Therefore, the breathable cover layer 24, the pre-trapping layer 20, the main trapping layer 22, and the breathable support layer 26 are laminated in this order from the upstream side of the airflow.
- the pre-collecting layer 20 is provided on the upstream side of the air flow of the main collecting layer 22 and collects a part of the dust in the air current before collecting the dust by the main collecting layer 22.
- the material and structure of the pre-collecting layer 20 are not particularly limited.
- a nonwoven fabric manufactured by a melt blown method or a nonwoven fabric manufactured by an electrospinning method is used.
- the fiber material include polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), polyacrylonitrile (PAN), polyvinylidene fluoride (PVdF), Examples include polyvinyl alcohol (PVA) and polyurethane (PU).
- the average fiber diameter of the fiber material is, for example, 0.1 to 5 ⁇ m, preferably 0.5 to 2 ⁇ m, and the basis weight is, for example, 5 to 50 g / m 2 . If the fiber diameter is too small, the fiber interval becomes dense and clogging of the pre-collecting layer 20 itself cannot be ignored. If it is too large, the collection efficiency per unit fiber is lowered, so that the pre-collecting layer 20 described later is used. In order to obtain the required collection efficiency, the basis weight and thickness are increased, and the structural resistance is increased.
- the geometric standard deviation indicating the spread of the fiber diameter distribution is, for example, 2.5 or less, and preferably 2.0 or less.
- the pressure loss of the pre-collection layer 20 is preferably 80 Pa or less in order to keep the pressure loss of the entire filter medium 10 to about 1 ⁇ 2 of the HEPA filter medium using conventional glass fibers.
- the dust collection efficiency of the pre-collection layer 20 is 50% or more in a static-removed state, and the upper limit of the collection efficiency of the pre-collection layer 20 is preferably 99%.
- the thickness of the pre collection layer 20 shall be less than 0.4 mm, for example.
- the thickness of the pre-collection layer 20 is 0.4 mm or more, the pressure loss resulting from the structure of the air filter unit 15 increases.
- the material, fiber diameter, and basis weight of the fiber material of the pre-collecting layer 20 are selected so as to have such characteristics.
- the main collection layer 22 is disposed on the downstream side of the airflow with respect to the pre-collection layer 20 and collects dust that has passed through the pre-collection layer 20.
- the main collection layer 22 is made of a PTFE porous film.
- the PTFE porous membrane is produced from a PTFE fine powder mixed with a liquid lubricant in a predetermined ratio or more. For example, PTFE fine powder is mixed with 5 to 50% by mass of a liquid lubricant at 20 ° C. per 1 kg of PTFE fine powder to obtain a mixture. Further, the obtained mixture is rolled, and then the liquid lubricant is removed to obtain a green tape. Further, the obtained green tape is stretched to obtain a porous film.
- the green tape is stretched 3 times to 20 times in the longitudinal direction, and then stretched 10 times to 50 times in the width direction orthogonal to the longitudinal direction, whereby the green tape is 80 in total area magnification.
- the film is stretched by a factor of 800 to 800. Thereafter, heat setting is performed to obtain a PTFE porous membrane.
- the above production method is an example, and the production method of the PTFE porous membrane is not limited.
- the filling rate of the PTFE porous membrane is, for example, 8% or less, preferably 3% or more and 8% or less, the average fiber diameter of the fibers constituting the PTFE porous membrane is, for example, 0.1 ⁇ m or less, and the film thickness of the PTFE porous membrane is For example, it is 50 ⁇ m or less.
- the air-permeable cover layer 24 is disposed at the position of the outermost layer of the filter medium 10 on the upstream side of the airflow, and allows the dust in the airflow to pass therethrough, while suppressing deformation of the surface of the filter medium 10 against external pressure.
- the pressure loss of the breathable cover layer 24 is preferably 10 Pa or less at a flow rate of 5.3 cm / sec from the point of suppressing the pressure loss of the filter medium 10, and the pressure loss is 5 Pa or less. Therefore, it is more preferably 0 or substantially 0.
- the dust collection efficiency of the air-permeable cover layer 24 with a particle diameter of 0.3 ⁇ m is 5% or less, and is substantially 0 or substantially 0.
- the air-permeable cover layer 24 does not have a function as a filter that collects dust, and allows the dust to pass therethrough.
- the thickness of such a breathable cover layer 24 is preferably 0.3 mm or less from the viewpoint of suppressing deformation of the surface of the filter medium 10 without excessively increasing the thickness of the filter medium 10.
- a spunbond nonwoven fabric is preferably used.
- PP, PE, PET or the like is used as the fiber material of the spunbonded nonwoven fabric, and the fiber material is not particularly limited.
- the average fiber diameter of the fiber material is, for example, 10 to 30 ⁇ m.
- the basis weight is, for example, 5 to 20 g / m 2 .
- FIG. 3A is a view for explaining the contact between the filter medium 10 and the shape holding member 12.
- FIG.3 (b) is a figure explaining the contact in case there is no breathable cover layer in a filter medium.
- the breathable cover layer 24 comes into contact with the shape holding member 12 as shown in FIG. 3A when the shape holding member 12 comes into contact with the filter medium 10 as shown in FIG. At this time, a portion of the surface of the filter medium 10 in contact with the shape holding member 12 is locally deformed and recessed, but the region around the contact portion tends to rise due to reaction.
- the breathable cover layer 24 suppresses the movement to rise.
- the filter medium surface (pre-collection layer surface) as shown in FIG. Due to the deformation, the area A around the contact portion rises.
- the airflow flowing through the air filter unit 15 flows in a narrow space surrounded by the shape holding member 12 and the filter medium 10 in a direction perpendicular to the paper surface shown in FIG.
- the cross-sectional area (flow-path cross-sectional area in which an airflow flows) of the airflow path enclosed by the shape holding member 12 and the filter medium 10 becomes slightly small. For this reason, the flow velocity of the airflow increases.
- the breathable cover layer 24 of the present embodiment suppresses pressure loss (structural resistance) due to the structure of the air filter unit 15 by suppressing deformation of the surface of the filter medium 10 against external pressure.
- the air-permeable support layer 26 is disposed on the downstream side of the air flow with respect to the main collection layer 22 and supports the main collection layer 24. From the viewpoint of suppressing the pressure loss of the filter medium 10, the pressure loss of the air-permeable support layer 26 is preferably 10 Pa or less at a flow rate of air flow of 5.3 cm / second, and is substantially 0 or substantially. 0 is preferred.
- the material and structure of the air permeable support layer 26 are not particularly limited, for example, felt, nonwoven fabric, woven fabric, mesh (mesh sheet), and other materials can be used. However, a non-woven fabric having heat-fusibility is preferable from the viewpoint of strength, catchability, flexibility, and workability.
- the nonwoven fabric may be a composite fiber having a core / sheath structure in which some or all of the fibers constituting the nonwoven fabric have a melting point higher than that of the sheath component.
- the material is not particularly limited, and polyolefin (PE, PP, etc.), polyamide, polyester (PET, etc.), aromatic polyamide, or a composite material thereof can be used.
- the core / sheath includes PET / PE, or a combination of high-melting polyester / low-melting polyester.
- the bending rigidity is 30 gf / mm or more, and the air permeable support layer 26 suppresses deformation due to the air flow of the main collection layer 22. Is preferable.
- the main trapping layer 22 has a large pressure loss, is extremely thin and has low rigidity, and thus is easily deformed by the air current. When there is no air-permeable support layer 22, the stress and strain to be deformed of the main collection layer 22 work with the pre-collection layer 20, and eventually cause an interlaminar fracture of the pre-collection layer 20. There is.
- bending rigidity is 30 g weight / mm or more.
- the upper limit of the bending rigidity of the laminate of the main trapping layer 22 and the air-permeable support layer 26 is not particularly limited, but is preferably substantially 2000 g weight / mm or less.
- the pressure loss of the main trapping layer 22 is the largest among the breathable cover layer 24, the pre-trapping layer 20, and the main trapping layer 22.
- the pre-collecting layer 20 is large, and the pressure loss of the breathable cover layer 24 is the smallest.
- the pressure loss of the air filter cover 24 is 10 Pa or less, the pressure loss of the pre-collection layer 20 is 80 Pa or less, and the pressure loss of the main collection layer 22 is 100 Pa or less.
- the air filter unit 15 can be suitably used as a HEPA filter or a ULPA filter within this range.
- the collection efficiency of the main collection layer 22 is the largest among the air-permeable cover layer 24, the pre-collection layer 20, and the main collection layer 22,
- the pre-collecting layer 20 is large.
- the collection efficiency of the breathable cover layer 24 is zero or substantially zero.
- the collection efficiency of dust having a particle diameter of 0.3 ⁇ m in the pre-collection layer 20 is 50% or more in the static elimination state of the pre-collection layer 20, and the collection of dust having a particle diameter of 0.3 ⁇ m in the main collection layer 22. It is preferable that the efficiency is 99.9% or more from the viewpoint that the collection efficiency of dust having a particle diameter of 0.3 ⁇ m in the filter medium 10 is 99.95% or more.
- the air filter unit 15 is preferably used. It can be used for a HEPA filter.
- the breathable cover layer 24 and the pre-collecting layer 20 can be bonded using, for example, ultrasonic heat fusion, adhesion using a reactive adhesive, thermal lamination using a hot melt resin, or the like.
- the main collection layer 22 and the air-permeable support layer 26 are made of, for example, an anchor effect by melting a part of the air-permeable support layer 26 by heating, or by melting a hot-melt resin, or a reactive adhesive. It is possible to join by utilizing adhesion such as.
- the pre-collecting layer 20 and the main collecting layer 22 can be bonded using, for example, a heat laminate using a hot melt resin, or utilizing adhesion such as a reactive adhesive. .
- a member to be the breathable support layer 26 and a member to be the main trapping layer 22 are prepared, respectively, by melting a part of the breathable support layer 26 by heating, by melting a hot melt resin, or reactive.
- the first laminated body is obtained by bonding the member to be the air-permeable support layer 26 and the member to be the main trapping layer 22 using adhesion such as an adhesive.
- a member to be the air-permeable cover layer 24 and a member to be the pre-collecting layer 20 are prepared, and ultrasonic heat fusion, adhesion using a reactive adhesive, heat lamination using a hot melt resin, and the like are used.
- the member used as the air permeable cover layer 24 and the member used as the pre collection layer 20 are joined, and a 2nd laminated body is obtained.
- the member to be the main collection layer 22 of the first laminated body and the member to be the pre-collection layer 20 of the second laminated body are arranged so as to be located on the inner side, thermal lamination or reactive adhesion
- the member which becomes the main collection layer 22 and the member which becomes the pre-collection layer 20 are joined using adhesion of an agent or the like to obtain the filter medium 10.
- the reason why the first laminated body and the second laminated body are separately produced to produce the filter medium 10 is to accurately laminate the main collection layer 22 having extremely low rigidity on the filter medium 10, and at the time of production. This is to improve the workability of the lamination of the main collection layer 22.
- the air-permeable support layer 26 is provided on the downstream side of the air flow with respect to the main trapping layer 22, but the filter medium of Modification 1 is shown in FIG. 4.
- a breathable support layer 26 is provided on the downstream side of the air flow of the main trapping layer 22, and a breathable support layer 28 is also provided on the upstream side of the air flow with respect to the main trapping layer 22. That is, in the filter medium 10, the air-permeable cover layer 24, the pre-collecting layer 20, the air-permeable support layer 28, the main collection layer 22, and the air-permeable support layer 26 are laminated in this order from the upstream side of the airflow.
- the breathable support layer 28 may have the same configuration as the breathable support layer 26 or may have a different configuration.
- the pressure loss of the air-permeable support layer 28 is 10 Pa or less under the condition that the flow velocity of the air flow is 5.3 cm / sec. There is no particular limitation.
- the main collection layer 22 is more reliably supported than the filter medium 10 shown in FIG. 2, and the interlaminar breakdown is more reliably suppressed between the pre-collection layer 20. Can do.
- FIG. 5A is a diagram illustrating the arrangement of the spacers 34 provided on the filter medium 10.
- FIG. 5B is a cross-sectional view of the filter medium 10 and the spacers 32 and 34 in FIG. In FIG. 5A, the zigzag shape of the filter medium 10 is shown in a slightly opened state.
- the spacers 32 and 34 are provided so as to cover part of the crests on the opposite surfaces of the filter medium 10 and maintain a zigzag shape. Also in the spacers 32 and 34, the breathable cover layer 24 can suppress the structural resistance in the air filter unit by suppressing the deformation of the surface of the filter medium 10 against the pressure from the spacers 32 and 34.
- the filter medium 10 As the shape maintaining member 12 of the filter medium 10, as shown in FIG. 1A, a separator that has been corrugated by corrugating a thin plate is used. 12, the filter medium 10 itself has an embossed protrusion as shown in FIG. 6, and the embossed protrusion has a shape holding function for holding the zigzag shape of the filter medium 10 when folded.
- the embossed protrusion is a shape holding portion that is disposed in a peak portion or a valley portion of the filter medium 10 in order to hold the zigzag shape of the filter medium 10.
- FIG. 6 is a diagram illustrating the shape of the filter medium 10 according to the third modification
- FIG. 7 is a diagram illustrating the arrangement of the emboss protrusions when the zigzag filter medium 10 according to the third modification is developed.
- Such an embossing protrusion is produced by an apparatus using a roll-like embossing die or a flat-plate-like embossing die.
- dot-like embossed protrusions 1A to 1E are provided on the front and back surfaces of the filter medium 10, and the filter medium 10 is folded into a mountain fold and a valley fold as shown in FIG.
- the protrusions 1A to 1E are brought into contact with each other to maintain the zigzag shape of the filter medium 10. As shown in FIG.
- the embossing protrusions 1A to 1E are formed on both sides of the filter medium 10 so that the interval between the adjacent filter mediums 10 can be maintained when folded.
- the embossed protrusion protruding to the front side is a convex protrusion
- the embossing protrusion protruding to the opposite side is a concave protrusion. That is, the concave protrusion when viewed from one surface of the filter medium 10 becomes a convex protrusion when viewed from the other surface.
- the breathable cover layer 24 suppresses deformation of the surface of the filter medium 10 against the pressure received from the embossed protrusions of the adjacent filter medium 10 when folded, thereby suppressing structural resistance in the filter unit. be able to.
- the contour shape of the embossed protrusions 1A to 1E can be selected from various shapes such as a rectangular parallelepiped, a cube, a prism, a cylinder, a hemisphere, a ball band, a truncated pyramid, a cone, a pyramid, and a truncated cone. Further, the embossing protrusions 1A to 1E facing each other do not necessarily have the same contour shape.
- the height of the embossing protrusions 1A to 1E is preferably 0.1 mm to 5.0 mm, and more preferably 0.2 mm to 3.5 mm.
- the filter medium 10 having the PTFE porous membrane may be damaged during embossing.
- the height is lower than 0.5 mm, it is difficult to maintain the interval between the filter media 10 and the structural resistance of the air filter unit increases.
- the number of the embossed protrusions 1A to 1E is not particularly limited as is the case with the shape and dimensions.
- the height of the embossing projections 1A to 1E is the lowest at the deepest part (the bottom of the valley) of the folded valley, and the embossing projections 1A to 1E are gradually increased to increase the embossing. Unreasonable force does not act on the protrusions 1A to 1E, and the shape of the filter medium 10 can be stably held in a zigzag shape.
- the embossing protrusions 1A to 1E are such that the height of the embossing protrusions 1E that are convex protrusions is the lowest, the height of the embossing protrusions 1A is the highest, and the height gradually changes therebetween. Is formed.
- the filter medium for the air filter having the layer configuration shown in FIG. 10 is most preferably used in an air filter unit 15 that uses a separator as the shape-retaining member 12 as shown in FIGS. 1A and 1B in that the effect of the present embodiment is exhibited.
- a test sample similar to the test sample used for the pressure loss of the filter medium 10 is set in the filter medium holder, and the air flow is adjusted so that the air filter medium permeation rate is 5.3 cm / sec.
- PSL Polystyrene Latex particles having a diameter of 0.3 ⁇ m were introduced upstream, and the concentrations of PSL particles upstream and downstream of the test sample were measured using a light scattering particle counter. The collection efficiency was determined.
- Collection efficiency (%) [1 ⁇ (concentration of downstream PSL particles / concentration of upstream PSL particles)] ⁇ 100
- IPA isopropyl alcohol
- the surface of the test sample was photographed with a scanning electron microscope (SEM) at 1000 to 5,000 times, and two orthogonal lines were drawn on the photographed image, and the thickness of the image of the fiber that intersected with these lines was measured as fiber. Measured as diameter. The measured number of fibers was 200 or more. About the fiber diameter obtained in this way, the logarithm normal plot was taken by taking the fiber diameter on the horizontal axis and the cumulative frequency on the vertical axis, and the value at which the cumulative frequency was 50% was taken as the average fiber diameter.
- geometric standard deviation representing the fiber diameter distribution was calculated from the following formula by reading the fiber diameter with a cumulative frequency of 50% and the fiber diameter with a cumulative frequency of 84% from the result of the logarithmic normal plot.
- Geometric standard deviation [-] cumulative frequency 84% fiber diameter / cumulative frequency 50% fiber diameter
- the filter medium 10 is pleated to produce a processed filter medium having a zigzag shape of 610 mm ⁇ 610 mm ⁇ 290 mm (height ⁇ width ⁇ depth), and the shape holding material 12 is sandwiched between valleys of the processed filter medium In this state, the processed filter medium is held by the separator which is the shape holding member 12 to produce an air filter unit 15.
- the produced air filter unit 15 is set in a rectangular duct, the air flow is adjusted so that the air volume becomes 56 m 3 / min, and the pressure is measured using a manometer on the upstream side and the downstream side of the air filter unit 15; The pressure difference between the upstream and downstream was obtained as the pressure loss of the air filter unit 15.
- the collection efficiency of the air filter unit 15 is similar to the measurement of the pressure loss of the air filter unit 15 by setting the air filter unit 15 in a rectangular duct and adjusting the air flow so that the air volume becomes 56 m 3 / min.
- PSL particles having a diameter of 0.3 ⁇ m are introduced on the upstream side of the air filter unit 15, and the concentrations of the PSL particles on the upstream side and the downstream side of the air filter unit 15 are measured using a light scattering type particle counter.
- the collection efficiency of the air filter unit 15 was determined according to the same formula as the collection efficiency.
- the life of the air filter unit is the dust collected per unit area of the filter medium when the pressure loss rises by 250 Pa from the initial pressure loss when ventilated at the rated airflow (for example, 56 m 3 / min) in the actual environment. Expressed in quantity (g / m 2 ).
- the fiber structure is denser than that of conventionally used glass fiber filter media. For this reason, PTFE multi-membranes are quickly clogged with dust, and when used in an environment with a large dust collection load such as an outside air processing unit, the pressure loss of the air filter unit increases in a short time. Cheap.
- the amount of dust (g / m 2 ) collected per unit area of the filter medium is used as a life index.
- Example 1 Provides main trapping layer 22 (PTFE porous membrane) Hydrocarbon oil (Idemitsu Kosan Co., Ltd.) as an extruded liquid lubricant per kg of PTFE fine powder having an average molecular weight of 6.5 million ("Polyflon fine powder F106" manufactured by Daikin Industries, Ltd.) 33.5% by mass of “IP Solvent 2028” manufactured at 20 ° C. was added and mixed. Next, the obtained mixture was extruded using a paste extrusion apparatus to obtain a round bar-shaped molded body. This round bar-shaped molded body was formed into a film by a calendar roll heated to 70 ° C. to obtain a PTFE film.
- PTFE porous membrane Hydrocarbon oil (Idemitsu Kosan Co., Ltd.) as an extruded liquid lubricant per kg of PTFE fine powder having an average molecular weight of 6.5 million (“Polyflon fine powder F106" manufactured by Daikin Industries, Ltd.) 33.5% by
- This film was passed through a hot air drying oven at 250 ° C. to evaporate and remove the hydrocarbon oil to obtain a strip-shaped unsintered PTFE film having an average thickness of 200 ⁇ m and an average width of 150 mm.
- the unsintered PTFE film was stretched in the longitudinal direction at a stretch ratio of 5 times.
- the stretching temperature was 250 ° C.
- the stretched unfired film was stretched at a stretch ratio of 32 times in the width direction using a tenter capable of continuously clipping, and heat-set.
- the stretching temperature at this time was 290 ° C., and the heat setting temperature was 390 ° C.
- This obtained the main collection layer 22 which is a PTFE porous film (a filling rate is 4.0%, an average fiber diameter is 0.053 micrometer, thickness is 10 micrometers).
- -Breathable support layers 26, 28 As the breathable support layers 26 and 28 shown in FIG. 4, a spunbonded nonwoven fabric (average fiber diameter of 24 ⁇ m, basis weight of 40 g / m 2 , thickness of 0, made of core / sheath structure using PET as a core and PE as a sheath) 20 mm).
- the above-mentioned spunbonded nonwoven fabric was bonded to both surfaces of the obtained PTFE porous film as the main trapping layer 22 by heat fusion using a laminating apparatus to obtain a PTFE laminate.
- the pressure loss and dust collection efficiency of the PTFE laminate thus obtained were 80 Pa and 99.99%. This pressure loss and collection efficiency are characteristics of a substantially PTFE porous membrane.
- -Breathable cover layer 24 As the breathable cover layer 24, a spunbonded nonwoven fabric (weight per unit area: 10 g / m 2 , thickness: 0.15 mm) made of PP which is a continuous fiber having an average fiber diameter of 20 ⁇ m was used.
- Pre-collection layer 20 As the pre-collecting layer 20, a melt blown nonwoven fabric (weight per unit area: 15 g / m 2 , thickness: 0.30 mm) made of PP having an average fiber diameter of 1.2 ⁇ m was used. The spunbond nonwoven fabric as the breathable cover layer 24 and the melt blown nonwoven fabric as the pre-collecting layer 20 were heated at 110 ° C. using 2 g / m 2 of ethylene-vinyl acetate copolymer (EVA) hot melt adhesive. Lamination was performed to obtain a PP laminate (thickness 0.3 mm). According to the measurement method described above, the pressure loss and the dust collection efficiency of the PP laminate thus obtained were 60 Pa and 60%.
- EVA ethylene-vinyl acetate copolymer
- This pressure loss and collection efficiency are characteristics of a substantially meltblown nonwoven fabric.
- PTFE laminate and PP laminate were heat laminated at 110 ° C. using 2 g / m 2 of EVA hot melt adhesive to obtain a filter medium 10 having the layer structure shown in FIG.
- the thickness of the filter medium 10 was 0.64 mm. According to the measurement method described above, the pressure loss of the filter medium 10 and the dust collection efficiency were 140 Pa and 99.995%. There was no increase in pressure loss due to thermal lamination. This pressure loss and collection efficiency are characteristics of the pre-collection layer 20 and the main collection layer 22.
- the produced filter medium 10 was pleated so as to be fold-folded and valley-folded every 260 mm with a rotary folding machine, and a processed filter medium having a zigzag shape as shown in FIG. Then, the separator which corrugated the aluminum plate was inserted in the recessed part of the filter medium 10, and the filter pack of 590 mm long x 590 mm wide was obtained. The number of pleats at this time was 79.
- the obtained filter pack was fixed to an aluminum frame 14 having an outer dimension of 610 mm ⁇ 610 mm (length ⁇ width), an inner dimension of 580 mm ⁇ 580 mm (length ⁇ width), and a depth of 290 mm.
- An air filter unit 15 was obtained by sealing the periphery of the filter pack with the frame body 14 with a urethane adhesive.
- the filter medium used for Sample 2 has a main collection layer 22 (PTFE porous film), a breathable support layer 26, 28, a pre-collection layer 20, and a breathable cover layer 24 as in the layer configuration shown in FIG. .
- the air filter unit 15 of the sample 2 is different from the air filter unit 15 of the sample 1 in that the pre-collection layer 20 of the filter medium 10 has a melt blown nonwoven fabric (weight per unit of 10 g) made of PP which is a fiber having an average fiber diameter of 0.9 ⁇ m. / M 2 , thickness 0.29 mm).
- the rest is the same as Sample 1.
- the pressure loss and dust collection efficiency of the filter medium 10 used in Sample 2 were 175 Pa and 99.998%, and the thickness of the filter medium 10 was 0.62 mm.
- the filter medium used for Sample 3 has a main collection layer 22 (PTFE porous film), a breathable support layer 26, 28, a pre-collection layer 20, and a breathable cover layer 24 as in the layer configuration shown in FIG. .
- the air filter unit 15 of the sample 3 is different from the air filter unit 15 of the sample 1 in that the pre-collection layer 20 has a melt blown nonwoven fabric (weight per unit area: 30 g / m 2) made of PP which is a fiber having an average fiber diameter of 2.0 ⁇ m. , Thickness 0.40 mm).
- the rest is the same as Sample 1.
- the pressure loss and dust collection efficiency of the filter medium 10 used in Sample 3 were 165 Pa and 99.993%, and the thickness of the filter medium 10 was 0.72 mm.
- the filter medium used for Sample 4 has the same layer configuration as the layer configuration shown in FIG. 4 (main collection layer 22 (PTFE porous membrane), air-permeable support layers 26 and 28, and pre-collection layer 20).
- the air filter unit of sample 4 is different from the air filter unit 15 of sample 1 in that the breathable cover layer 24 is not provided in sample 4.
- the rest is the same as Sample 1.
- the pressure loss and dust collection efficiency of the filter medium used in Sample 4 were 140 Pa and 99.995%, and the thickness of the filter medium was 0.62 mm.
- the filter medium used for Sample 5 has the same layer configuration as the layer configuration shown in FIG. 4 (main collection layer 22 (PTFE porous membrane), air-permeable support layers 26 and 28, and pre-collection layer 20).
- the air filter unit of sample 5 is different from the air filter unit of sample 1 in that in sample 5, the air-permeable cover layer 24 is not provided on the filter medium, and the average fiber diameter in the pre-collecting layer is the same as in sample 3.
- the rest is the same as Sample 3.
- the pressure loss and dust collection efficiency of the filter medium used in Sample 5 were 165 Pa and 99.993%, and the thickness of the filter medium was 0.72 mm.
- the pressure loss and dust collection efficiency in the air filter unit were measured using such sample filter media. Furthermore, the structural resistance in each sample was calculated from the measurement result of the pressure loss using the above-described formula of the structural resistance of the air filter unit. The results are shown in Tables 1 and 2 below.
- Sample 1 and Sample 4 The difference between Sample 1 and Sample 4 is the presence or absence of the breathable cover layer 24. It can be seen that the sample 1 having the breathable cover layer 24 has a greatly reduced structural resistance compared to the sample 4 having no breathable cover layer 24. Similarly, sample 3 and sample 5 both have an average fiber diameter of the pre-collection layer 20 of 2.0 ⁇ m, but sample 3 has a breathable cover layer 24 and sample 5 has a breathable cover layer. Do not have 24. Even in this case, the structural resistance of the sample 3 having the breathable cover layer 24 is greatly reduced as compared with the structural resistance of the sample 5 not having the breathable cover layer 24. From this, it can be seen that the breathable cover layer 24 reduces pressure loss (structural resistance) due to the structure of the air filter unit 15.
- the structural resistance of sample 2 is low as in sample 1, but the pressure loss in air filter unit 15 is large. This is due to an increase in pressure loss in the filter medium 10 because the average fiber diameter of the pre-collecting layer 20 is reduced. For this reason, in order to suppress the pressure loss of the air filter unit 15, it is important to reduce the pressure loss of the pre-collecting layer 20 together with the structural resistance. For this reason, the pressure loss of the pre collection layer 20 can be suppressed by making the average fiber diameter in the pre collection layer 20 into 1 micrometer or more and less than 2 micrometers. Actually, the pressure loss in the air filter unit 15 of the sample 1 in which the average fiber diameter in the pre-collecting layer 20 is 1 ⁇ m or more and less than 2 ⁇ m is reduced with respect to the sample 2.
- sample 3 in order to maintain the collection efficiency in the filter medium 10 at substantially the same value as in sample 1, the basis weight in the pre-collection layer 20 is increased and the thickness of the filter medium 10 is increased. For this reason, the structural resistance of the samples 1 and 2 and the comparative sample 3 is also high. However, this structural resistance is reduced compared to the sample 5 having the same pre-collecting layer 20 structure without the breathable cover layer 24.
- the structural resistance in the air filter unit in addition to the pressure loss due to the filter medium.
- the structural resistance can be reduced by providing a breathable cover layer at a position on the upstream side of the pre-collecting layer, particularly on the most upstream side of the filter medium.
- the air filter medium, the air filter unit, and the method for producing the air filter filter medium of the present invention have been described in detail.
- the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. Of course, improvements and changes may be made.
- Air filter medium 12 Shape holding member 14 Frame 15 Air filter unit 20 Pre-collection layer 22 Main collection layer 24 Breathable cover layers 26 and 28 Breathable support layers 32 and 34 Spacers 1A, 1B, 1C, 1D, 1E Embossed protrusion
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Filtering Materials (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Nonwoven Fabrics (AREA)
Abstract
気流中の塵を捕集するエアフィルタユニット用濾材は、気流中の塵の一部を捕集するプレ捕集層と、前記プレ捕集層に対して気流の下流側に配置され、前記プレ捕集層を通過した塵を捕集するポリテトラフルオロエチレン多孔膜からなる主捕集層と、気流の上流側の最表層の位置に配置され、気流中の塵を通過させる一方、外部からの押圧に対する前記エアフィルタ用濾材の表面の変形を抑制する通気性カバー層と、を含む。濾材の製造では、前記通気性支持層となる部材と前記主捕集層となるフィルムを積層して第1積層体を得、別途、前記通気性カバー層となる部材と前記プレ捕集層となる部材とを積層して第2積層体を得る。前記第1積層体の前記主捕集層と前記第2積層体の前記プレ捕集層とが内側に位置するように積層する。
Description
本発明は、気流中の塵を捕集するエアフィルタ用濾材、エアフィルタユニット及びエアフィルタ用濾材の製造方法に関する。
半導体装置や液晶表示装置の製造は、高清浄空間において行われる。この高清浄空間を作るために、例えばポリテトラフルオロエチレン(以下、PTFEという)からなる多孔膜(以下、PTFE多孔膜という)が集塵フィルタとして用いられている。PTFE多孔膜は、ガラス繊維製濾材に比べて同じ圧力損失で比較したとき塵の捕集効率が高いことから、特に、HEPAフィルタ(High Efficiency Particulate Air Filter)やULPAフィルタ(Ultra low Penetration Air Filter)に好適に用いられている。
一方において、PTFE多孔膜は、従来より用いられてきたガラス繊維濾材に比べて繊維構造が密となっているため、塵による目詰まりが早く、外気処理ユニットのように塵の捕集負荷の大きな環境で用いられる場合、短時間でエアフィルタユニットの圧力損失が増大する。
上記問題に対して、捕獲した塵による目詰まりを防ぎ、圧力損失の増大を抑制できるエアフィルタ用濾材が知られている(特許文献1)。当該エアフィルタ用濾材は、PTFE多孔質膜と繊維製通気性多孔材とを含み、前記多孔質膜の気体の流れの上流側に前記繊維製通気性多孔材が配置され、前記繊維製通気性多孔材は、その繊維径が1~15μmの範囲にあり、その気孔率が70%以上、その目付け量が60g/m2以上である。
また、フィルター用濾材であって圧力損失の増大が抑制されたタービン用吸気フィルタ濾材も知られている(特許文献2)。当該濾材は、ポリテトラフルオロエチレン多孔質膜と通気性支持材とを含み、前記通気性支持材の繊維径が0.2μm以上15μm以下の範囲にある。
しかし、上述の公知の濾材は、濾材の特性として圧力損失の増大を抑制することができるが、エアフィルタユニットに用いたとき、必ずしも望まれるようなエアフィルタユニットにおける圧力損失を抑制することができない場合がある。具体的には、エアフィルタユニットに用いられる濾材は、プリーツ加工されて山折り、谷折りに折り畳んだジグザグ形状を有するため、濾材そのもの圧力損失の他にエアフィルタユニットの構造に起因した圧力損失(構造抵抗)も加わり、エアフィルタユニットにおける圧力損失を低下させることは難しい。
また、上述の公知の濾材のうち、通気性支持材の繊維径が0.2μm以上15μm以下の濾材では、繊維径の範囲が広く、この範囲のうち繊維径が小さい領域では、通気性支持材内の繊維が密な構造となり、通気性支持材の圧力損失が上昇する場合がある。また、上述の公知の濾材のうち、繊維径が1~15μmの繊維製通気性多孔材では、繊維径が大きい領域では、塵の捕集効率を得るために繊維製通気性多孔材の厚さ及び目付けを大きくすることが必要となる場合がある。このような濾材を用いたエアフィルタユニットを作製すると、圧力損失を低下させることはできない。
そこで、本発明は、エアフィルタユニットにおける圧力損失を抑制し、エアフィルタユニットの構造に起因した圧力損失を抑制することができるエアフィルタ用濾材およびその濾材を用いたエアフィルタユニット、さらには濾材の製造方法を提供することを目的とする。
本発明の一態様は、気流中の塵を捕集するエアフィルタ用濾材である。
当該エアフィルタ用濾材は、
気流中の塵の一部を捕集するプレ捕集層と、
前記プレ捕集層に対して気流の下流側に配置され、前記プレ捕集層を通過した塵を捕集するポリテトラフルオロエチレン多孔膜からなる主捕集層と、
気流の上流側の最表層の位置に配置され、気流中の塵を通過させる一方、外部からの押圧に対する前記エアフィルタ用濾材の表面の変形を抑制する通気性カバー層と、を含む。
当該エアフィルタ用濾材は、
気流中の塵の一部を捕集するプレ捕集層と、
前記プレ捕集層に対して気流の下流側に配置され、前記プレ捕集層を通過した塵を捕集するポリテトラフルオロエチレン多孔膜からなる主捕集層と、
気流の上流側の最表層の位置に配置され、気流中の塵を通過させる一方、外部からの押圧に対する前記エアフィルタ用濾材の表面の変形を抑制する通気性カバー層と、を含む。
本発明の他の一態様は、エアフィルタユニットである。
前記エアフィルタユニットは、
前記エアフィルタ用濾材をプリーツ加工したジグザグ形状の加工済み濾材と、
前記加工済み濾材のジグザグ形状を保持するために、前記加工済み濾材の山部または谷部に配置した形状保持部と、
ジグザグ形状が保持された前記加工済み濾材を保持する枠体と、を備える。
前記エアフィルタユニットは、
前記エアフィルタ用濾材をプリーツ加工したジグザグ形状の加工済み濾材と、
前記加工済み濾材のジグザグ形状を保持するために、前記加工済み濾材の山部または谷部に配置した形状保持部と、
ジグザグ形状が保持された前記加工済み濾材を保持する枠体と、を備える。
本発明のさらに他の一態様は、前記エアフィルタ用濾材の製造方法である。
当該方法は、
前記通気性支持層となる部材と前記主捕集層となる部材を積層して第1積層体を得る工程と、
前記通気性カバー層となる部材と前記プレ捕集層となる部材を積層して第2積層体を得る工程と、
前記第1積層体の前記主捕集層となる部材と前記第2積層体の前記プレ捕集層となる部材とが内側に位置するように積層する工程、とを含む。
当該方法は、
前記通気性支持層となる部材と前記主捕集層となる部材を積層して第1積層体を得る工程と、
前記通気性カバー層となる部材と前記プレ捕集層となる部材を積層して第2積層体を得る工程と、
前記第1積層体の前記主捕集層となる部材と前記第2積層体の前記プレ捕集層となる部材とが内側に位置するように積層する工程、とを含む。
上記エアフィルタ用濾材およびその濾材を用いたエアフィルタユニット、さらにはその濾材の製造方法によれば、エアフィルタユニットの構造に起因した圧力損失を抑制することができ、エアフィルタユニットにおいて圧力損失を抑制したエアフィルタユニットを提供することができる。さらに、上記エアフィルタユニットは、主捕集層にPTFE多項膜を用いても、従来用いられているガラス繊維濾材と同程度の寿命を有する。
以下、本発明のエアフィルタ用濾材およびその濾材を用いたエアフィルタユニット、さらにはその濾材の製造方法について詳細に説明する。
[エアフィルタユニット]
図1(a),(b)は、本実施形態のエアフィルタ用濾材を用いた本実施形態のエアフィルタユニットの構成の概略を説明する図である。図1(a)には、エアフィルタユニットに用いるフィルタパックの斜視図が示されている。
エアフィルタパックは、エアフィルタ用濾材(以下、単に濾材という)10と、形状保持部材12と、を有する。濾材10は、シート状の濾材をプリーツ加工して山部、谷部ができるように山折り、谷折りを行ったジグザグ形状の加工済み濾材になっている。形状保持部材12は、上記加工済み濾材のジグザグ形状を保持するために、上記加工済み濾材の各谷部に挿入されるセパレータである。図1(a)に示す形状保持部材12は、薄板をコルゲート加工することによって波形状となっており、上記加工済み濾材の谷部に配置される。これにより濾材10はジグザグ形状を保持している。ジグザグ形状の加工済み濾材において、隣接する山折りの頂部同士あるいは谷折りの底部同士の間隔Dは例えば5~10mmであり、加工済みエアフィルタパックの幅(図1(a)中のx方向の長さ)100mm当たり10~20個のプリーツ数(山折りあるいは谷折りの数)となっている。
図1(a),(b)は、本実施形態のエアフィルタ用濾材を用いた本実施形態のエアフィルタユニットの構成の概略を説明する図である。図1(a)には、エアフィルタユニットに用いるフィルタパックの斜視図が示されている。
エアフィルタパックは、エアフィルタ用濾材(以下、単に濾材という)10と、形状保持部材12と、を有する。濾材10は、シート状の濾材をプリーツ加工して山部、谷部ができるように山折り、谷折りを行ったジグザグ形状の加工済み濾材になっている。形状保持部材12は、上記加工済み濾材のジグザグ形状を保持するために、上記加工済み濾材の各谷部に挿入されるセパレータである。図1(a)に示す形状保持部材12は、薄板をコルゲート加工することによって波形状となっており、上記加工済み濾材の谷部に配置される。これにより濾材10はジグザグ形状を保持している。ジグザグ形状の加工済み濾材において、隣接する山折りの頂部同士あるいは谷折りの底部同士の間隔Dは例えば5~10mmであり、加工済みエアフィルタパックの幅(図1(a)中のx方向の長さ)100mm当たり10~20個のプリーツ数(山折りあるいは谷折りの数)となっている。
図1(b)には、エアフィルタユニット15の斜視図が示されている。図中、エアフィルタユニット15の天井面を省略して内部にある加工済み濾材である濾材10の一部が見えるように示されている。エアフィルタユニット15は、図1(b)には図示されない形状保持部材12を配置した上記加工済み濾材が、板材を組み合わせて作った枠体14に保持されて構成される。
[濾材]
図2は、エアフィルタユニット15に用いる濾材10の層構成を示す断面図である。濾材10は、気流中の塵を捕集するエアフィルタ用濾材であり、プレ捕集層20と、主捕集層22と、通気性カバー層24と、通気性支持層26と、を含む。なお、濾材10は、気流が図2中上方から下方に向けて流れるように配置される。すなわち、濾材10において、通気性カバー層24は気流の上流側の濾材10の最表層に位置する。したがって、気流の上流側から通気性カバー層24、プレ捕集層20、主捕集層22、及び通気性支持層26がこの順に積層されている。
図2は、エアフィルタユニット15に用いる濾材10の層構成を示す断面図である。濾材10は、気流中の塵を捕集するエアフィルタ用濾材であり、プレ捕集層20と、主捕集層22と、通気性カバー層24と、通気性支持層26と、を含む。なお、濾材10は、気流が図2中上方から下方に向けて流れるように配置される。すなわち、濾材10において、通気性カバー層24は気流の上流側の濾材10の最表層に位置する。したがって、気流の上流側から通気性カバー層24、プレ捕集層20、主捕集層22、及び通気性支持層26がこの順に積層されている。
プレ捕集層20は、主捕集層22の気流の上流側に設けられ、主捕集層22による塵の捕集の前に気流中の塵の一部を捕集する。
プレ捕集層20の材質、構造は特に制限されないが、例えば、メルトブローン法で製造された不織布やエレクトロスピニング法で製造された不織布が用いられる。繊維材料の材質は、例えばポリエチレン(PE)の他、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアミド(PA)、ポリアクリロニトリル(PAN)、ポリフッ化ビリニデン(PVdF)、ポリビニルアルコール(PVA)、ポリウレタン(PU)等が挙げられる。繊維材料の平均繊維径は、例えば0.1~5μmであり、好ましくは0.5~2μmであり、目付けは例えば5~50g/m2である。繊維径は、小さすぎれば繊維間隔が密になりプレ捕集層20の自体の目詰まりも無視できなくなり、また大きければ単位繊維あたりの捕集効率が低下するので後述するプレ捕集層20に必要な捕集効率を得るためには目付、厚みが大きくなってしまい構造抵抗が大きくなってしまうので好ましくない。繊維径分布の広がりを示す幾何標準偏差は例えば2.5以下であり、好ましく2.0以下である。幾何標準偏差が大きすぎると、単位繊維あたりの捕集効率が低い繊維の割合が増え、後述するプレ捕集層に必要な捕集効率を得るためには目付、厚みを大きくする必要が出てくるためである。
プレ捕集層20の圧力損失は、濾材10全体の圧力損失を、従来のガラス繊維を用いたHEPA用濾材の1/2程度に留めるために、80Pa以下であることが好ましい。また、プレ捕集層20の塵の捕集効率は、除電された状態で50%以上であることが好ましく、プレ捕集層20の捕集効率の上限は99%であることが好ましい。プレ捕集層20の捕集効率が低すぎると、主捕集層22への捕集負荷が高くなってしまい塵による目詰まりが起きる。一方、プレ捕集層20の捕集効率が高すぎるとプレ捕集層20自体の目詰まりが無視できなくなる。
また、プレ捕集層20の厚さは、例えば0.4mm未満とすることが好ましい。プレ捕集層20の厚さが0.4mm以上である場合、エアフィルタユニット15の構造に起因した圧力損失が増大する。このような特性を有するように、プレ捕集層20の繊維材料の材質、繊維径、目付けが選択される。
プレ捕集層20の材質、構造は特に制限されないが、例えば、メルトブローン法で製造された不織布やエレクトロスピニング法で製造された不織布が用いられる。繊維材料の材質は、例えばポリエチレン(PE)の他、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアミド(PA)、ポリアクリロニトリル(PAN)、ポリフッ化ビリニデン(PVdF)、ポリビニルアルコール(PVA)、ポリウレタン(PU)等が挙げられる。繊維材料の平均繊維径は、例えば0.1~5μmであり、好ましくは0.5~2μmであり、目付けは例えば5~50g/m2である。繊維径は、小さすぎれば繊維間隔が密になりプレ捕集層20の自体の目詰まりも無視できなくなり、また大きければ単位繊維あたりの捕集効率が低下するので後述するプレ捕集層20に必要な捕集効率を得るためには目付、厚みが大きくなってしまい構造抵抗が大きくなってしまうので好ましくない。繊維径分布の広がりを示す幾何標準偏差は例えば2.5以下であり、好ましく2.0以下である。幾何標準偏差が大きすぎると、単位繊維あたりの捕集効率が低い繊維の割合が増え、後述するプレ捕集層に必要な捕集効率を得るためには目付、厚みを大きくする必要が出てくるためである。
プレ捕集層20の圧力損失は、濾材10全体の圧力損失を、従来のガラス繊維を用いたHEPA用濾材の1/2程度に留めるために、80Pa以下であることが好ましい。また、プレ捕集層20の塵の捕集効率は、除電された状態で50%以上であることが好ましく、プレ捕集層20の捕集効率の上限は99%であることが好ましい。プレ捕集層20の捕集効率が低すぎると、主捕集層22への捕集負荷が高くなってしまい塵による目詰まりが起きる。一方、プレ捕集層20の捕集効率が高すぎるとプレ捕集層20自体の目詰まりが無視できなくなる。
また、プレ捕集層20の厚さは、例えば0.4mm未満とすることが好ましい。プレ捕集層20の厚さが0.4mm以上である場合、エアフィルタユニット15の構造に起因した圧力損失が増大する。このような特性を有するように、プレ捕集層20の繊維材料の材質、繊維径、目付けが選択される。
主捕集層22は、プレ捕集層20に対して気流の下流側に配置され、プレ捕集層20を通過した塵を捕集する。主捕集層22は、PTFE多孔膜からなる。
PTFE多孔膜は、PTFEファインパウダーを所定の割合以上の液状潤滑剤と混合したものからPTFE多孔膜を作製する。例えば、PTFEファインパウダーに、PTFEファインパウダー1kg当たり20℃において5~50質量%の液状潤滑剤を混合して混合体を得る。さらに、得られた混合体を圧延し次いで液状潤滑剤を除去して未焼成テープを得る。さらに、得られた未焼成テープを延伸して多孔膜を得る。このとき、未焼成テープを長手方向に3倍以上20倍以下に延伸した後、長手方向と直交する幅方向に10倍以上50倍以下に延伸することにより、未焼成テープを総面積倍率で80倍以上800倍以下に延伸する。この後、熱固定を行ってPTFE多孔膜が得られる。上記作製方法は、一例であり、PTFE多孔膜の作製方法は限定されない。
PTFE多孔膜の充填率は例えば8%以下、好ましくは3%以上8%以下であり、PTFE多孔膜を構成する繊維の平均繊維径は例えば0.1μm以下であり、PTFE多孔膜の膜厚は例えば50μm以下である。
PTFE多孔膜は、PTFEファインパウダーを所定の割合以上の液状潤滑剤と混合したものからPTFE多孔膜を作製する。例えば、PTFEファインパウダーに、PTFEファインパウダー1kg当たり20℃において5~50質量%の液状潤滑剤を混合して混合体を得る。さらに、得られた混合体を圧延し次いで液状潤滑剤を除去して未焼成テープを得る。さらに、得られた未焼成テープを延伸して多孔膜を得る。このとき、未焼成テープを長手方向に3倍以上20倍以下に延伸した後、長手方向と直交する幅方向に10倍以上50倍以下に延伸することにより、未焼成テープを総面積倍率で80倍以上800倍以下に延伸する。この後、熱固定を行ってPTFE多孔膜が得られる。上記作製方法は、一例であり、PTFE多孔膜の作製方法は限定されない。
PTFE多孔膜の充填率は例えば8%以下、好ましくは3%以上8%以下であり、PTFE多孔膜を構成する繊維の平均繊維径は例えば0.1μm以下であり、PTFE多孔膜の膜厚は例えば50μm以下である。
通気性カバー層24は、気流の上流側の、濾材10の最表層の位置に配置され、気流中の塵を通過させる一方、外部からの押圧に対する濾材10表面の変形を抑制する。通気性カバー層24の圧力損失は、濾材10の圧力損失を抑制する点から、気流の流速が5.3cm/秒の条件において10Pa以下であることが好ましく、圧力損失は5Pa以下であり、実質的に0あるいは略0であることがより好ましい。通気性カバー層24の粒子径0.3μmの塵の捕集効率は5%以下であり、実質的に0あるいは略0である。すなわち、通気性カバー層24は、塵を捕集するフィルタとしての機能を有さず、塵を通過させる。このような通気性カバー層24の厚さは、0.3mm以下であることが、濾材10の厚さを余分に厚くせず、濾材10表面の変形を抑制する点で好ましい。
通気性カバー層24は、例えば、スパンボンド不織布が好適に用いられる。スパンボンド不織布の繊維材料には、例えばPP,PE,PET等が用いられ、繊維材料は特に制限されない。繊維材料の平均繊維径は例えば10~30μmである。目付けは例えば5~20g/m2である。
通気性カバー層24は、例えば、スパンボンド不織布が好適に用いられる。スパンボンド不織布の繊維材料には、例えばPP,PE,PET等が用いられ、繊維材料は特に制限されない。繊維材料の平均繊維径は例えば10~30μmである。目付けは例えば5~20g/m2である。
図3(a)は、濾材10と形状保持部材12の接触を説明する図である。図3(b)は、濾材に通気性カバー層がない場合における接触を説明する図である。
通気性カバー層24は、図1(a)に示すように形状保持部材12が濾材10と接触するとき、図3(a)に示すように形状保持部材12と接触する。このとき、形状保持部材12と接触した濾材10の表面の部分が局部的に変形し凹むが、接触した部分の周りの領域は、反動で盛り上がろうとする。この盛り上がろうとする動きを通気性カバー層24は抑制する。一方、本実施形態のような通気性カバー層24がなく、プレ捕集層が最表層に位置する従来の濾材では、図3(b)に示すように、濾材表面(プレ捕集層表面)の変形により、接触部分の周りの領域Aが盛り上がる。このとき、エアフィルタユニット15に流れる気流は、形状保持部材12と濾材10とで囲まれる狭い空間を図3(a)に示す紙面に対して垂直方向に流れる。このため、図1(a)に示すように形状保持部材12と濾材10とで囲まれた気流の流路の断面積(気流の流れる流路断面積)は僅かに小さくなる。このため、気流の流速は上昇する。また、形状保持部材12と濾材10とで囲まれた気流の流路の断面積が僅かに小さくなるので、気流が流れる流路のサイズ(等価直径)も小さくなる。このため、気流の流路から受ける抵抗は、周知の配管抵抗(流体の流速の2乗に比例し、配管のサイズ(等価直径)に反比例する)に従って増大する。この抵抗の増大が、エアフィルタユニット15の構造に起因した圧力損失の増大につながる。すなわち、本実施形態の通気性カバー層24は、外部からの押圧に対する濾材10表面の変形を抑制することにより、エアフィルタユニット15の構造に起因した圧力損失(構造抵抗)を抑制する。
通気性カバー層24は、図1(a)に示すように形状保持部材12が濾材10と接触するとき、図3(a)に示すように形状保持部材12と接触する。このとき、形状保持部材12と接触した濾材10の表面の部分が局部的に変形し凹むが、接触した部分の周りの領域は、反動で盛り上がろうとする。この盛り上がろうとする動きを通気性カバー層24は抑制する。一方、本実施形態のような通気性カバー層24がなく、プレ捕集層が最表層に位置する従来の濾材では、図3(b)に示すように、濾材表面(プレ捕集層表面)の変形により、接触部分の周りの領域Aが盛り上がる。このとき、エアフィルタユニット15に流れる気流は、形状保持部材12と濾材10とで囲まれる狭い空間を図3(a)に示す紙面に対して垂直方向に流れる。このため、図1(a)に示すように形状保持部材12と濾材10とで囲まれた気流の流路の断面積(気流の流れる流路断面積)は僅かに小さくなる。このため、気流の流速は上昇する。また、形状保持部材12と濾材10とで囲まれた気流の流路の断面積が僅かに小さくなるので、気流が流れる流路のサイズ(等価直径)も小さくなる。このため、気流の流路から受ける抵抗は、周知の配管抵抗(流体の流速の2乗に比例し、配管のサイズ(等価直径)に反比例する)に従って増大する。この抵抗の増大が、エアフィルタユニット15の構造に起因した圧力損失の増大につながる。すなわち、本実施形態の通気性カバー層24は、外部からの押圧に対する濾材10表面の変形を抑制することにより、エアフィルタユニット15の構造に起因した圧力損失(構造抵抗)を抑制する。
通気性支持層26は、主捕集層22に対して気流の下流側に配置され、主捕集層24を支持する。通気性支持層26の圧力損失は、濾材10の圧力損失を抑制する点から、気流の流速が5.3cm/秒の条件において圧力損失は10Pa以下であることが好ましく、実質的に0あるいは略0であることが好ましい。
通気性支持層26の材質及び構造は、特に限定されないが、例えば、フェルト、不織布、織布、メッシュ(網目状シート)、その他の材料を用いることができる。ただし、強度、捕集性、柔軟性、作業性の点からは熱融着性を有する不織布が好ましい。さらに、不織布は、これを構成する一部または全部の繊維が芯/鞘構造の複合繊維であってもよく、この場合は、芯成分が鞘成分よりも融点が高いとよい。材質についても特に制限されず、ポリオレフィン(PE、PP等)、ポリアミド、ポリエステル(PET等)、芳香族ポリアミド、またはこれらの複合材などを用いることができる。芯鞘構造の複合繊維の場合、例えば、芯/鞘が、PET/PE、あるいは、高融点ポリエステル/低融点ポリエステルの組み合わせが挙げられる。
また、主捕集層22と通気性支持層26の積層体において、曲げ剛性が30g重/mm以上であることが、主捕集層22の気流による変形を通気性支持層26により抑制する点で好ましい。主捕集層22は、圧力損失が大きく、極めて薄く剛性が低いので気流に対する変形を受けやすい。通気性支持層22がない場合、主捕集層22の変形しようとする応力及び歪みがプレ捕集層20との間で働き、最終的にプレ捕集層20の層間破壊を引き起こしてしまう場合がある。このため、主捕集層22と通気性支持層26の積層体において、曲げ剛性が30g重/mm以上であることが好ましい。主捕集層22と通気性支持層26の積層体の曲げ剛性の上限は特に制限されないが、実質的に2000g重/mm以下であることが好ましい。
通気性支持層26の材質及び構造は、特に限定されないが、例えば、フェルト、不織布、織布、メッシュ(網目状シート)、その他の材料を用いることができる。ただし、強度、捕集性、柔軟性、作業性の点からは熱融着性を有する不織布が好ましい。さらに、不織布は、これを構成する一部または全部の繊維が芯/鞘構造の複合繊維であってもよく、この場合は、芯成分が鞘成分よりも融点が高いとよい。材質についても特に制限されず、ポリオレフィン(PE、PP等)、ポリアミド、ポリエステル(PET等)、芳香族ポリアミド、またはこれらの複合材などを用いることができる。芯鞘構造の複合繊維の場合、例えば、芯/鞘が、PET/PE、あるいは、高融点ポリエステル/低融点ポリエステルの組み合わせが挙げられる。
また、主捕集層22と通気性支持層26の積層体において、曲げ剛性が30g重/mm以上であることが、主捕集層22の気流による変形を通気性支持層26により抑制する点で好ましい。主捕集層22は、圧力損失が大きく、極めて薄く剛性が低いので気流に対する変形を受けやすい。通気性支持層22がない場合、主捕集層22の変形しようとする応力及び歪みがプレ捕集層20との間で働き、最終的にプレ捕集層20の層間破壊を引き起こしてしまう場合がある。このため、主捕集層22と通気性支持層26の積層体において、曲げ剛性が30g重/mm以上であることが好ましい。主捕集層22と通気性支持層26の積層体の曲げ剛性の上限は特に制限されないが、実質的に2000g重/mm以下であることが好ましい。
以上の濾材10において、気流の流速が5.3cm/秒であるとき、通気性カバー層24、プレ捕集層20及び主捕集層22の中で主捕集層22の圧力損失が最も大きく、次に、プレ捕集層20が大きく、通気性カバー層24の圧力損失が最も小さい。通気性カバー層24の圧力損失は10Pa以下であり、プレ捕集層20の圧力損失は80Pa以下であり、主捕集層22の圧力損失は100Pa以下であることが、濾材10における圧力損失を190Pa以下にする点で好ましく、この範囲において、エアフィルタユニット15を好適にHEPAフィルタあるいはULPAフィルタに用いることができる。
また、粒子径0.3μmの塵の捕集効率に関して、通気性カバー層24、プレ捕集層20及び主捕集層22の中で主捕集層22の捕集効率が最も大きく、次に、プレ捕集層20が大きい。通気性カバー層24の捕集効率は0あるいは略0である。プレ捕集層20における粒子径0.3μmの塵の捕集効率は、プレ捕集層20の除電状態で50%以上であり、主捕集層22における粒子径0.3μmの塵の捕集効率が、99.9%以上であることが、濾材10において粒子径0.3μmの塵の捕集効率が99.95%以上となる点で好ましく、この範囲において、エアフィルタユニット15を好適にHEPAフィルタに用いることができる。
また、粒子径0.3μmの塵の捕集効率に関して、通気性カバー層24、プレ捕集層20及び主捕集層22の中で主捕集層22の捕集効率が最も大きく、次に、プレ捕集層20が大きい。通気性カバー層24の捕集効率は0あるいは略0である。プレ捕集層20における粒子径0.3μmの塵の捕集効率は、プレ捕集層20の除電状態で50%以上であり、主捕集層22における粒子径0.3μmの塵の捕集効率が、99.9%以上であることが、濾材10において粒子径0.3μmの塵の捕集効率が99.95%以上となる点で好ましく、この範囲において、エアフィルタユニット15を好適にHEPAフィルタに用いることができる。
なお、通気性カバー層24とプレ捕集層20とは、例えば、超音波熱融着、反応性接着剤を用いた接着、ホットメルト樹脂を用いた熱ラミネート等を用いて接合することができる。
主捕集層22と通気性支持層26は、例えば、加熱による通気性支持層26の一部の溶融により、あるいはホットメルト樹脂の溶融により、アンカー効果を利用して、あるいは、反応性接着剤等の接着を利用して、接合することができる。
また、プレ捕集層20と主捕集層22とは、例えば、ホットメルト樹脂を用いた熱ラミネートを使用して、あるいは、反応性接着剤等の接着を利用して、接合することができる。
主捕集層22と通気性支持層26は、例えば、加熱による通気性支持層26の一部の溶融により、あるいはホットメルト樹脂の溶融により、アンカー効果を利用して、あるいは、反応性接着剤等の接着を利用して、接合することができる。
また、プレ捕集層20と主捕集層22とは、例えば、ホットメルト樹脂を用いた熱ラミネートを使用して、あるいは、反応性接着剤等の接着を利用して、接合することができる。
[濾材の製造方法]
次に、濾材10の製造方法を説明する。
まず、通気性支持層26となる部材と主捕集層22となる部材をそれぞれ用意し、加熱による通気性支持層26の一部の溶融により、あるいはホットメルト樹脂の溶融により、あるいは、反応性接着剤等の接着を利用して、通気性支持層26となる部材と主捕集層22となる部材とを接合して、第1積層体を得る。
一方、通気性カバー層24となる部材とプレ捕集層20となる部材をそれぞれ用意し、超音波熱融着、反応性接着剤を用いた接着、ホットメルト樹脂を用いた熱ラミネート等と利用して、通気性カバー層24となる部材とプレ捕集層20となる部材を接合して第2積層体を得る。
最後に、上記第1積層体の主捕集層22となる部材と上記第2積層体のプレ捕集層20となる部材とが内側に位置するように配置して、熱ラミネートあるいは反応性接着剤等の接着を利用して、主捕集層22となる部材とプレ捕集層20となる部材とを接合して、濾材10を得る。
このように、第1積層体と第2積層体を別々に作製して濾材10を製造するのは、極めて剛性の低い主捕集層22を精度よく濾材10に積層するためであり、製造時の主捕集層22の積層の作業性を向上させるためである。
次に、濾材10の製造方法を説明する。
まず、通気性支持層26となる部材と主捕集層22となる部材をそれぞれ用意し、加熱による通気性支持層26の一部の溶融により、あるいはホットメルト樹脂の溶融により、あるいは、反応性接着剤等の接着を利用して、通気性支持層26となる部材と主捕集層22となる部材とを接合して、第1積層体を得る。
一方、通気性カバー層24となる部材とプレ捕集層20となる部材をそれぞれ用意し、超音波熱融着、反応性接着剤を用いた接着、ホットメルト樹脂を用いた熱ラミネート等と利用して、通気性カバー層24となる部材とプレ捕集層20となる部材を接合して第2積層体を得る。
最後に、上記第1積層体の主捕集層22となる部材と上記第2積層体のプレ捕集層20となる部材とが内側に位置するように配置して、熱ラミネートあるいは反応性接着剤等の接着を利用して、主捕集層22となる部材とプレ捕集層20となる部材とを接合して、濾材10を得る。
このように、第1積層体と第2積層体を別々に作製して濾材10を製造するのは、極めて剛性の低い主捕集層22を精度よく濾材10に積層するためであり、製造時の主捕集層22の積層の作業性を向上させるためである。
(変形例1)
本実施形態の濾材10では、図2に示すように、主捕集層22に対して気流の下流側に通気性支持層26が設けられているが、変形例1の濾材は、図4に示すように、主捕集層22の気流の下流側に通気性支持層26が設けられる他、主捕集層22に対して気流の上流側にも通気性支持層28が設けられている。すなわち、濾材10は、気流の上流側から、通気性カバー層24、プレ捕集層20、通気性支持層28、主捕集層22、及び通気性支持層26がこの順に積層されている。通気性支持層28は、通気性支持層26と同様の構成を有してもよいし、異なる構成を有してもよい。通気性支持層28の圧力損失は、気流の流速が5.3cm/秒の条件において10Pa以下であり、実質的に0あるいは略0に近い限りにおいて、通気性支持層28の材質及び構造は、特に制限されない。
通気性支持層28を設けることにより、主捕集層22を図2に示す濾材10に比べてより確実に支持し、プレ捕集層20との間で、層間破壊をより確実に抑制することができる。
また、変形例1においても、気流の最上流側の濾材10の最表層に、通気性カバー層20が設けられているので、形状保持部材12の押圧に対する濾材10表面の変形を抑制することにより、エアフィルタユニット15における構造抵抗を抑制することができる。
本実施形態の濾材10では、図2に示すように、主捕集層22に対して気流の下流側に通気性支持層26が設けられているが、変形例1の濾材は、図4に示すように、主捕集層22の気流の下流側に通気性支持層26が設けられる他、主捕集層22に対して気流の上流側にも通気性支持層28が設けられている。すなわち、濾材10は、気流の上流側から、通気性カバー層24、プレ捕集層20、通気性支持層28、主捕集層22、及び通気性支持層26がこの順に積層されている。通気性支持層28は、通気性支持層26と同様の構成を有してもよいし、異なる構成を有してもよい。通気性支持層28の圧力損失は、気流の流速が5.3cm/秒の条件において10Pa以下であり、実質的に0あるいは略0に近い限りにおいて、通気性支持層28の材質及び構造は、特に制限されない。
通気性支持層28を設けることにより、主捕集層22を図2に示す濾材10に比べてより確実に支持し、プレ捕集層20との間で、層間破壊をより確実に抑制することができる。
また、変形例1においても、気流の最上流側の濾材10の最表層に、通気性カバー層20が設けられているので、形状保持部材12の押圧に対する濾材10表面の変形を抑制することにより、エアフィルタユニット15における構造抵抗を抑制することができる。
(変形例2)
本実施形態では、濾材10の形状保持部材12として、図1(a)に示すように、薄板をコルゲート加工することによって波形状となったセパレータが用いられるが、変形例2では、図5(a),(b)に示すように、形状保持部材12として、ジグザグ形状の濾材10の山部及び谷部にホットメルト樹脂を用いたスペーサ32,34が用いられる。図5(a)は、濾材10に設けられるスペーサ34の配置を説明する図である。図5(b)は、図5(a)中の濾材10とスペーサ32,34の断面図である。図5(a)では、濾材10のジグザグ形状が少し開いた状態で図示されている。スペーサ32,34は互いに濾材10の反対側の面の山部の一部を覆うように設けられており、ジグザグ形状を保持する。このスペーサ32,34においても、通気性カバー層24は、スペーサ32,34からの押圧に対する濾材10表面の変形を抑制することにより、エアフィルタユニットにおける構造抵抗を抑制することができる。
本実施形態では、濾材10の形状保持部材12として、図1(a)に示すように、薄板をコルゲート加工することによって波形状となったセパレータが用いられるが、変形例2では、図5(a),(b)に示すように、形状保持部材12として、ジグザグ形状の濾材10の山部及び谷部にホットメルト樹脂を用いたスペーサ32,34が用いられる。図5(a)は、濾材10に設けられるスペーサ34の配置を説明する図である。図5(b)は、図5(a)中の濾材10とスペーサ32,34の断面図である。図5(a)では、濾材10のジグザグ形状が少し開いた状態で図示されている。スペーサ32,34は互いに濾材10の反対側の面の山部の一部を覆うように設けられており、ジグザグ形状を保持する。このスペーサ32,34においても、通気性カバー層24は、スペーサ32,34からの押圧に対する濾材10表面の変形を抑制することにより、エアフィルタユニットにおける構造抵抗を抑制することができる。
(変形例3)
本実施形態では、濾材10の形状保持部材12として、図1(a)に示すように、薄板をコルゲート加工することによって波形状となったセパレータが用いられるが、変形例3では、形状保持部材12が用いられず、濾材10自体が、図6に示すようにエンボス突起部を有し、畳み込まれたときエンボス突起部が濾材10のジグザグ形状を保持する形状保持機能を有する。すなわち、エンボス突起は、濾材10のジグザグ形状を保持するために、濾材10の山部または谷部に配置した形状保持部である。
本実施形態では、濾材10の形状保持部材12として、図1(a)に示すように、薄板をコルゲート加工することによって波形状となったセパレータが用いられるが、変形例3では、形状保持部材12が用いられず、濾材10自体が、図6に示すようにエンボス突起部を有し、畳み込まれたときエンボス突起部が濾材10のジグザグ形状を保持する形状保持機能を有する。すなわち、エンボス突起は、濾材10のジグザグ形状を保持するために、濾材10の山部または谷部に配置した形状保持部である。
図6は、変形例3の濾材10の形状を示す図であり、図7は、変形例3のジグザグ形状の濾材10を展開したときのエンボス突起部の配置を示す図である。このようなエンボス突起部は、ロール状エンボス型あるいは平板状エンボス型を用いた装置で作製される。
具体的には、濾材10の表裏面にドット状のエンボス突起部1A~1Eが設けられ、濾材10が図6に示すように山折り、谷折りに折り畳まれるとともに、畳まれた際に向かい合うエンボス突起部1A~1E同士を接触させて濾材10のジグザグ形状を保持する。
エンボス突起部1A~1Eは、図6に示すように、折り畳んだときに隣接する濾材10の間隔を保持できるように濾材10の両側の面に形成されている。ここで、濾材10に対して、手前側に突出したエンボス突起部は凸突起、その逆側に突出したエンボス突起部を凹突起となる。すなわち、濾材10のある一方の面から見た場合の凹突起は、他方の面から見れば凸突起となる。
このような濾材10においても、折り畳んだときに隣接する濾材10のエンボス突起から受ける押圧に対して、通気性カバー層24が濾材10表面の変形を抑制するので、フィルタユニットにおける構造抵抗を抑制することができる。
具体的には、濾材10の表裏面にドット状のエンボス突起部1A~1Eが設けられ、濾材10が図6に示すように山折り、谷折りに折り畳まれるとともに、畳まれた際に向かい合うエンボス突起部1A~1E同士を接触させて濾材10のジグザグ形状を保持する。
エンボス突起部1A~1Eは、図6に示すように、折り畳んだときに隣接する濾材10の間隔を保持できるように濾材10の両側の面に形成されている。ここで、濾材10に対して、手前側に突出したエンボス突起部は凸突起、その逆側に突出したエンボス突起部を凹突起となる。すなわち、濾材10のある一方の面から見た場合の凹突起は、他方の面から見れば凸突起となる。
このような濾材10においても、折り畳んだときに隣接する濾材10のエンボス突起から受ける押圧に対して、通気性カバー層24が濾材10表面の変形を抑制するので、フィルタユニットにおける構造抵抗を抑制することができる。
なお、エンボス突起部1A~1Eの輪郭形状は、例えば直方体、立方体、角柱、円柱、半球、球帯、角錘台、円錐、角錐、切頭円錐など種々の形状から選択することができる。また、向かい合うエンボス突起部1A~1Eは必ずしも同じ輪郭形状を有さなくてもよい。
エンボス突起部1A~1Eの高さは0.1mm~5.0mmであることが好ましく、0.2mm~3.5mmであることがさらに好ましい。高さが5.0mmより高い場合、エンボス加工時にPTFE多孔膜を有する濾材10が破損するおそれがある。また高さが0.5mmより低い場合、濾材10の間隔保持が困難になるとともに、エアフィルタユニットにおける構造抵抗が増大する。また、エンボス突起部1A~1Eの配置個数は、形状、寸法と同様に特に制限されない。
エンボス突起部1A~1Eの高さは0.1mm~5.0mmであることが好ましく、0.2mm~3.5mmであることがさらに好ましい。高さが5.0mmより高い場合、エンボス加工時にPTFE多孔膜を有する濾材10が破損するおそれがある。また高さが0.5mmより低い場合、濾材10の間隔保持が困難になるとともに、エアフィルタユニットにおける構造抵抗が増大する。また、エンボス突起部1A~1Eの配置個数は、形状、寸法と同様に特に制限されない。
また、エンボス突起部1A~1Eの高さは、折り畳まれた谷部の一番奥の部分(谷底部)では最も低く、徐々にエンボス突起部1A~1Eの高さを高くすることにより、エンボス突起部1A~1Eに無理な力が作用せず、濾材10の形状をジグザグ形状に安定して保持することができる。図6に示す例では、凸突起であるエンボス突起部1Eの高さが最も低く、エンボス突起部1Aの高さが最も高く、その間で高さが徐々に変化するようにエンボス突起部1A~1Eが形成されている。
以上、図1(a),(b)に示すセパレータを用いた実施形態の他に、変形例2、3に示す形態について説明したが、図2あるいは図4に示す層構成のエアフィルタ用濾材10は、図1(a),(b)に示すような、セパレータを形状保持部材12として用いるエアフィルタユニット15に用いることが、本実施形態の効果を発揮する点で最も好ましい。
以上、図1(a),(b)に示すセパレータを用いた実施形態の他に、変形例2、3に示す形態について説明したが、図2あるいは図4に示す層構成のエアフィルタ用濾材10は、図1(a),(b)に示すような、セパレータを形状保持部材12として用いるエアフィルタユニット15に用いることが、本実施形態の効果を発揮する点で最も好ましい。
[濾材、エアフィルタユニットの特性]
本実施形態において用いる濾材およびエアフィルタユニットの特性について説明する。
(濾材の圧力損失)
濾材10から有効面積を100cm2とした円形状の試験サンプルを取り出し、円筒形状のフィルタ濾材ホルダに試験サンプルをセットし、空気の濾材通過速度が5.3cm/秒になるように空気の流れを調整し、試験サンプルの上流側及び下流側でマノメータを用いて圧力を測定し、上下流間の圧力の差を濾材10の圧力損失として得た。
本実施形態において用いる濾材およびエアフィルタユニットの特性について説明する。
(濾材の圧力損失)
濾材10から有効面積を100cm2とした円形状の試験サンプルを取り出し、円筒形状のフィルタ濾材ホルダに試験サンプルをセットし、空気の濾材通過速度が5.3cm/秒になるように空気の流れを調整し、試験サンプルの上流側及び下流側でマノメータを用いて圧力を測定し、上下流間の圧力の差を濾材10の圧力損失として得た。
(濾材の捕集効率)
濾材10の圧力損失に用いた試験サンプルと同様の試験サンプルを、フィルタ濾材ホルダにセットし、空気の濾材透過速度が5.3cm/秒になるように空気の流れを調整し、この空気流れの上流側に直径0.3μmのPSL(Polystyrene Latex)粒子を導入し、試験サンプルの上流側と下流側のPSL粒子の濃度を、光散乱式粒子計数器を用いて測定し、下記式に従って濾材10の捕集効率を求めた。
捕集効率(%)=[1-(下流側のPSL粒子の濃度/上流側のPSL粒子の濃度)]×100
プレ捕集層20の捕集効率は、試験サンプルの帯電による捕集効率上昇の影響を排除するために、試験サンプルをIPA(イソプロピルアルコール)蒸気に1日曝して除電状態を作った。
濾材10の圧力損失に用いた試験サンプルと同様の試験サンプルを、フィルタ濾材ホルダにセットし、空気の濾材透過速度が5.3cm/秒になるように空気の流れを調整し、この空気流れの上流側に直径0.3μmのPSL(Polystyrene Latex)粒子を導入し、試験サンプルの上流側と下流側のPSL粒子の濃度を、光散乱式粒子計数器を用いて測定し、下記式に従って濾材10の捕集効率を求めた。
捕集効率(%)=[1-(下流側のPSL粒子の濃度/上流側のPSL粒子の濃度)]×100
プレ捕集層20の捕集効率は、試験サンプルの帯電による捕集効率上昇の影響を排除するために、試験サンプルをIPA(イソプロピルアルコール)蒸気に1日曝して除電状態を作った。
(厚さ)
ダイヤルシックネスゲージを用い、試験サンプルに10mmφで2.5Nの荷重をかけたときの厚さの値を読み取った。
ダイヤルシックネスゲージを用い、試験サンプルに10mmφで2.5Nの荷重をかけたときの厚さの値を読み取った。
(平均繊維径及び幾何標準偏差)
試験サンプルの表面を走査型電子顕微鏡(SEM)で1000~5000倍で撮影し、撮影した1画像上で直交した2本の線を引き、これらの線と交わった繊維の像の太さを繊維径として測定した。測定した繊維数は200本以上とした。こうして得られた繊維径について、横軸に繊維径、縦軸に累積頻度を採って対数正規プロットし、累積頻度が50%となる値を平均繊維径とした。繊維径の分布を表す幾何標準偏差は、上述の対数正規プロットの結果から、累積頻度50%の繊維径と累積頻度84%の繊維径を読み取り下記式より算出した。
幾何標準偏差[-]=累積頻度84%繊維径/累積頻度50%繊維径
試験サンプルの表面を走査型電子顕微鏡(SEM)で1000~5000倍で撮影し、撮影した1画像上で直交した2本の線を引き、これらの線と交わった繊維の像の太さを繊維径として測定した。測定した繊維数は200本以上とした。こうして得られた繊維径について、横軸に繊維径、縦軸に累積頻度を採って対数正規プロットし、累積頻度が50%となる値を平均繊維径とした。繊維径の分布を表す幾何標準偏差は、上述の対数正規プロットの結果から、累積頻度50%の繊維径と累積頻度84%の繊維径を読み取り下記式より算出した。
幾何標準偏差[-]=累積頻度84%繊維径/累積頻度50%繊維径
(曲げ剛性)
濾材10からサイズ150mm×20mmの長尺状の試験サンプルを切り出し、この試験サンプルの長手方向の一端から40mmの範囲の領域を押さえ代にして水平の台から水平方向に突出させて静置した。このときの突出長さ110mmを測定長さとして、水平の台から自重により垂れ下がった垂直方向の変位を測定し、下記式により曲げ剛性を算出した。
曲げ剛性[g重・mm]=濾材10の目付け×(測定長さ)4/8/変位
濾材10からサイズ150mm×20mmの長尺状の試験サンプルを切り出し、この試験サンプルの長手方向の一端から40mmの範囲の領域を押さえ代にして水平の台から水平方向に突出させて静置した。このときの突出長さ110mmを測定長さとして、水平の台から自重により垂れ下がった垂直方向の変位を測定し、下記式により曲げ剛性を算出した。
曲げ剛性[g重・mm]=濾材10の目付け×(測定長さ)4/8/変位
(エアフィルタユニットの圧力損失)
濾材10を用いてプリーツ加工をして、610mm×610mm×290mm(高さ×幅×奥行き)のジグザグ形状の加工済み濾材を作製し、形状保持材12を加工済み濾材の谷部に挟んで形状を保持し、この状態で加工済み濾材を形状保持部材12であるセパレータで保持させてエアフィルタユニット15を作製した。
作製したエアフィルタユニット15を矩形ダクトにセットし、風量を56m3/分となるように空気の流れを調整し、エアフィルタユニット15の上流側及び下流側でマノメータを用いて圧力を測定し、上下流間の圧力の差をエアフィルタユニット15の圧力損失として得た。
濾材10を用いてプリーツ加工をして、610mm×610mm×290mm(高さ×幅×奥行き)のジグザグ形状の加工済み濾材を作製し、形状保持材12を加工済み濾材の谷部に挟んで形状を保持し、この状態で加工済み濾材を形状保持部材12であるセパレータで保持させてエアフィルタユニット15を作製した。
作製したエアフィルタユニット15を矩形ダクトにセットし、風量を56m3/分となるように空気の流れを調整し、エアフィルタユニット15の上流側及び下流側でマノメータを用いて圧力を測定し、上下流間の圧力の差をエアフィルタユニット15の圧力損失として得た。
(エアフィルタユニットの捕集効率)
エアフィルタユニット15の捕集効率は、エアフィルタユニットの圧力損失の測定と同様に、エアフィルタユニット15を矩形ダクトにセットし、風量を56m3/分となるように空気の流れを調整し、エアフィルタユニット15の上流側に直径0.3μmのPSL粒子を導入し、エアフィルタユニット15の上流側と下流側のPSL粒子の濃度を、光散乱式粒子計数器を用いて測定し、濾材の捕集効率と同様の式に従ってエアフィルタユニット15の捕集効率を求めた。
エアフィルタユニット15の捕集効率は、エアフィルタユニットの圧力損失の測定と同様に、エアフィルタユニット15を矩形ダクトにセットし、風量を56m3/分となるように空気の流れを調整し、エアフィルタユニット15の上流側に直径0.3μmのPSL粒子を導入し、エアフィルタユニット15の上流側と下流側のPSL粒子の濃度を、光散乱式粒子計数器を用いて測定し、濾材の捕集効率と同様の式に従ってエアフィルタユニット15の捕集効率を求めた。
(エアフィルタユニットの構造に起因した圧力損失)
上記エアフィルタユニット15の圧力損失と濾材10の圧力損失とから下記式に従ってエアフィルタユニット15の構造に起因した圧力損失(構造抵抗)を算出した。エアフィルタユニット15の圧力損失の測定時、エアフィルタユニット15における空気の濾材通過速度は4cm/秒であった。したがって、下記式に示すように、濾材10における圧力損失を空気の濾材通過速度を用いて補正をしている。
エアフィルタユニットの構造抵抗 =
エアフィルタユニット15における圧力損失
-濾材10における圧力損失×(4.0/5.3)
上記エアフィルタユニット15の圧力損失と濾材10の圧力損失とから下記式に従ってエアフィルタユニット15の構造に起因した圧力損失(構造抵抗)を算出した。エアフィルタユニット15の圧力損失の測定時、エアフィルタユニット15における空気の濾材通過速度は4cm/秒であった。したがって、下記式に示すように、濾材10における圧力損失を空気の濾材通過速度を用いて補正をしている。
エアフィルタユニットの構造抵抗 =
エアフィルタユニット15における圧力損失
-濾材10における圧力損失×(4.0/5.3)
(エアフィルタユニットにおける寿命)
エアフィルタユニットにおける寿命とは、実環境下、定格風量(例えば56m3/分)で通風した際、初期の圧力損失から250Pa分圧力損失が上昇したときに、濾材単位面積あたりに捕集する塵埃量(g/m2)で表す。本実施形態では、主捕集層22にPTFE多項膜を用いるため、従来より用いられてきたガラス繊維濾材に比べて繊維構造が密となっている。このため、PTFE多項膜では、塵による目詰まりが早く、外気処理ユニットのように塵の捕集負荷の大きな環境で用いられる場合、短時間でエアフィルタユニットの圧力損失が増大することが問題となりやすい。したがって、初期の圧力損失から250Pa分圧力損失が上昇したときに、濾材単位面積あたりに捕集する塵埃量(g/m2)を寿命の指標として用いる。塵埃量(g/m2)が多い程寿命が長いことを表す。塵埃量が10(g/m2)以上であることは、従来より用いられてきたガラス繊維濾材と同程度の寿命であることを意味し、エアフィルタユニットとしての寿命が優れていることを表す。
エアフィルタユニットにおける寿命とは、実環境下、定格風量(例えば56m3/分)で通風した際、初期の圧力損失から250Pa分圧力損失が上昇したときに、濾材単位面積あたりに捕集する塵埃量(g/m2)で表す。本実施形態では、主捕集層22にPTFE多項膜を用いるため、従来より用いられてきたガラス繊維濾材に比べて繊維構造が密となっている。このため、PTFE多項膜では、塵による目詰まりが早く、外気処理ユニットのように塵の捕集負荷の大きな環境で用いられる場合、短時間でエアフィルタユニットの圧力損失が増大することが問題となりやすい。したがって、初期の圧力損失から250Pa分圧力損失が上昇したときに、濾材単位面積あたりに捕集する塵埃量(g/m2)を寿命の指標として用いる。塵埃量(g/m2)が多い程寿命が長いことを表す。塵埃量が10(g/m2)以上であることは、従来より用いられてきたガラス繊維濾材と同程度の寿命であることを意味し、エアフィルタユニットとしての寿命が優れていることを表す。
[実施例]
以下、本実施形態の効果を調べるために、以下に示す濾材を用いたフィルタユニットを作製した(サンプル1~5)。
以下、本実施形態の効果を調べるために、以下に示す濾材を用いたフィルタユニットを作製した(サンプル1~5)。
(サンプル1)
・主捕集層22(PTFE多孔膜)の作製
平均分子量650万のPTFEファインパウダー(ダイキン工業株式会社製「ポリフロンファインパウダーF106」)1kg当たり押出液状潤滑剤として炭化水素油(出光興産株式会社製「IPソルベント2028」)を20℃において33.5質量%加えて混合した。次に、得られた混合物をペースト押出装置を用いて押し出して丸棒形状の成形体を得た。この丸棒形状の成型体を70℃に加熱したカレンダーロールによりフィルム状に成形しPTFEフィルムを得た。このフィルムを250℃の熱風乾燥炉に通して炭化水素油を蒸発除去し、平均厚さ200μm、平均幅150mmの帯状の未焼成PTFEフィルムを得た。次に、未焼成PTFEフィルムを長手方向に延伸倍率5倍で延伸した。延伸温度は250℃であった。次に、延伸した未焼成フィルムを連続クリップできるテンターを用いて幅方向に延伸倍率32倍で延伸し、熱固定を行った。このときの延伸温度は290℃、熱固定温度は390℃であった。これにより、PTFE多孔膜(充填率が4.0%、平均繊維径が0.053μm、厚さ10μm)である主捕集層22を得た。
・主捕集層22(PTFE多孔膜)の作製
平均分子量650万のPTFEファインパウダー(ダイキン工業株式会社製「ポリフロンファインパウダーF106」)1kg当たり押出液状潤滑剤として炭化水素油(出光興産株式会社製「IPソルベント2028」)を20℃において33.5質量%加えて混合した。次に、得られた混合物をペースト押出装置を用いて押し出して丸棒形状の成形体を得た。この丸棒形状の成型体を70℃に加熱したカレンダーロールによりフィルム状に成形しPTFEフィルムを得た。このフィルムを250℃の熱風乾燥炉に通して炭化水素油を蒸発除去し、平均厚さ200μm、平均幅150mmの帯状の未焼成PTFEフィルムを得た。次に、未焼成PTFEフィルムを長手方向に延伸倍率5倍で延伸した。延伸温度は250℃であった。次に、延伸した未焼成フィルムを連続クリップできるテンターを用いて幅方向に延伸倍率32倍で延伸し、熱固定を行った。このときの延伸温度は290℃、熱固定温度は390℃であった。これにより、PTFE多孔膜(充填率が4.0%、平均繊維径が0.053μm、厚さ10μm)である主捕集層22を得た。
・通気性支持層26,28
図4に示す通気性支持層26,28として、PETを芯に、PEを鞘に用いた芯/鞘構造の繊維からなるスパンボンド不織布(平均繊維径24μm、目付け40g/m2、厚さ0.20mm)を用いた。得られた主捕集層22であるPTFE多孔膜の両面に、上記スパンボンド不織布を、ラミネート装置を用いて熱融着により接合して、PTFE積層体を得た。こうして得られたPTFE積層体の圧力損失と塵の捕集効率は、上述した測定方法によれば、80Paと99.99%であった。この圧力損失及び捕集効率は、略PTFE多孔膜の特性である。
図4に示す通気性支持層26,28として、PETを芯に、PEを鞘に用いた芯/鞘構造の繊維からなるスパンボンド不織布(平均繊維径24μm、目付け40g/m2、厚さ0.20mm)を用いた。得られた主捕集層22であるPTFE多孔膜の両面に、上記スパンボンド不織布を、ラミネート装置を用いて熱融着により接合して、PTFE積層体を得た。こうして得られたPTFE積層体の圧力損失と塵の捕集効率は、上述した測定方法によれば、80Paと99.99%であった。この圧力損失及び捕集効率は、略PTFE多孔膜の特性である。
・通気性カバー層24
通気性カバー層24として、平均繊維径が20μmの連続繊維であるPPからなるスパンボンド不織布(目付け10g/m2、厚さ0.15mm)を用いた。
通気性カバー層24として、平均繊維径が20μmの連続繊維であるPPからなるスパンボンド不織布(目付け10g/m2、厚さ0.15mm)を用いた。
・プレ捕集層20
プレ捕集層20として、平均繊維径が1.2μmの繊維であるPPからなるメルトブローン不織布(目付け15g/m2、厚さ0.30mm)を用いた。上記通気性カバー層24であるスパンボンド不織布とプレ捕集層20であるメルトブローン不織布を、エチレン-酢酸ビニル共重合体(EVA)ホットメルト接着剤を2g/m2使用して、110℃で熱ラミネートを行い、PP積層体(厚さ0.3mm)を得た。こうして得られたPP積層体の圧力損失と塵の捕集効率は、上述した測定方法によれば、60Paと60%であった。この圧力損失及び捕集効率は、略メルトブローン不織布の特性である。
最後に、PTFE積層体とPP積層体とを、EVAホットメルト接着剤を2g/m2使用して、110℃で熱ラミネートを行い、図4に示す層構成を有する濾材10を得た。濾材10の厚さは0.64mmであった。
濾材10の圧力損失と塵の捕集効率は、上述した測定方法によれば、140Paと99.995%であった。熱ラミネートによる圧力損失の上昇はなかった。この圧力損失及び捕集効率は、略プレ捕集層20と主捕集層22による特性である。
プレ捕集層20として、平均繊維径が1.2μmの繊維であるPPからなるメルトブローン不織布(目付け15g/m2、厚さ0.30mm)を用いた。上記通気性カバー層24であるスパンボンド不織布とプレ捕集層20であるメルトブローン不織布を、エチレン-酢酸ビニル共重合体(EVA)ホットメルト接着剤を2g/m2使用して、110℃で熱ラミネートを行い、PP積層体(厚さ0.3mm)を得た。こうして得られたPP積層体の圧力損失と塵の捕集効率は、上述した測定方法によれば、60Paと60%であった。この圧力損失及び捕集効率は、略メルトブローン不織布の特性である。
最後に、PTFE積層体とPP積層体とを、EVAホットメルト接着剤を2g/m2使用して、110℃で熱ラミネートを行い、図4に示す層構成を有する濾材10を得た。濾材10の厚さは0.64mmであった。
濾材10の圧力損失と塵の捕集効率は、上述した測定方法によれば、140Paと99.995%であった。熱ラミネートによる圧力損失の上昇はなかった。この圧力損失及び捕集効率は、略プレ捕集層20と主捕集層22による特性である。
作製した濾材10を、ロータリ式折り機で260mm毎に山折り、谷折りになるようにプリーツ加工を行い、図1(a)に示すようなジグザグ形状の加工済み濾材をつくった。この後、アルミニウム板をコルゲート加工したセパレータを濾材10の凹部に挿入し、縦590mm×横590mmのフィルタパックを得た。このときのプリーツ数は79であった。
得られたフィルタパックを外寸610mm×610mm(縦×横)、内寸580mm×580mm(縦×横)、奥行き290mmのアルミニウム製の枠体14に固定した。フィルタパックの周囲をウレタン接着剤で枠体14と接着してシールして、エアフィルタユニット15を得た。
得られたフィルタパックを外寸610mm×610mm(縦×横)、内寸580mm×580mm(縦×横)、奥行き290mmのアルミニウム製の枠体14に固定した。フィルタパックの周囲をウレタン接着剤で枠体14と接着してシールして、エアフィルタユニット15を得た。
(サンプル2)
サンプル2に用いた濾材は、図4に示す層構成のように、主捕集層22(PTFE多孔膜)、通気性支持層26,28、プレ捕集層20及び通気性カバー層24を有する。サンプル2のエアフィルタユニット15において、サンプル1のエアフィルタユニット15と異なる点は、濾材10のプレ捕集層20に、平均繊維径が0.9μmの繊維であるPPからなるメルトブローン不織布(目付け10g/m2、厚さ0.29mm)を用いた点である。これ以外は、サンプル1と同じである。サンプル2に用いた濾材10の圧力損失及び塵の捕集効率は、175Pa及び99.998%であり、濾材10の厚さは0.62mmであった。
サンプル2に用いた濾材は、図4に示す層構成のように、主捕集層22(PTFE多孔膜)、通気性支持層26,28、プレ捕集層20及び通気性カバー層24を有する。サンプル2のエアフィルタユニット15において、サンプル1のエアフィルタユニット15と異なる点は、濾材10のプレ捕集層20に、平均繊維径が0.9μmの繊維であるPPからなるメルトブローン不織布(目付け10g/m2、厚さ0.29mm)を用いた点である。これ以外は、サンプル1と同じである。サンプル2に用いた濾材10の圧力損失及び塵の捕集効率は、175Pa及び99.998%であり、濾材10の厚さは0.62mmであった。
(サンプル3)
サンプル3に用いた濾材は、図4に示す層構成のように、主捕集層22(PTFE多孔膜)、通気性支持層26,28、プレ捕集層20及び通気性カバー層24を有する。サンプル3のエアフィルタユニット15において、サンプル1のエアフィルタユニット15と異なる点は、プレ捕集層20に、平均繊維径が2.0μmの繊維であるPPからなるメルトブローン不織布(目付け30g/m2、厚さ0.40mm)を用いた点である。これ以外は、サンプル1と同じである。サンプル3に用いた濾材10の圧力損失及び塵の捕集効率は、165Pa及び99.993%であり、濾材10の厚さは0.72mmであった。
サンプル3に用いた濾材は、図4に示す層構成のように、主捕集層22(PTFE多孔膜)、通気性支持層26,28、プレ捕集層20及び通気性カバー層24を有する。サンプル3のエアフィルタユニット15において、サンプル1のエアフィルタユニット15と異なる点は、プレ捕集層20に、平均繊維径が2.0μmの繊維であるPPからなるメルトブローン不織布(目付け30g/m2、厚さ0.40mm)を用いた点である。これ以外は、サンプル1と同じである。サンプル3に用いた濾材10の圧力損失及び塵の捕集効率は、165Pa及び99.993%であり、濾材10の厚さは0.72mmであった。
(サンプル4)
サンプル4に用いた濾材は、図4に示す層構成(主捕集層22(PTFE多孔膜)、通気性支持層26,28、及びプレ捕集層20)と同様の層構成を有する。サンプル4のエアフィルタユニットにおいて、サンプル1のエアフィルタユニット15と異なる点は、サンプル4では、通気性カバー層24が設けられなかった点である。これ以外はサンプル1と同じである。サンプル4に用いた濾材の圧力損失及び塵の捕集効率は、140Pa及び99.995%であり、濾材の厚さは0.62mmであった。
サンプル4に用いた濾材は、図4に示す層構成(主捕集層22(PTFE多孔膜)、通気性支持層26,28、及びプレ捕集層20)と同様の層構成を有する。サンプル4のエアフィルタユニットにおいて、サンプル1のエアフィルタユニット15と異なる点は、サンプル4では、通気性カバー層24が設けられなかった点である。これ以外はサンプル1と同じである。サンプル4に用いた濾材の圧力損失及び塵の捕集効率は、140Pa及び99.995%であり、濾材の厚さは0.62mmであった。
(サンプル5)
サンプル5に用いた濾材は、図4に示す層構成(主捕集層22(PTFE多孔膜)、通気性支持層26,28、及びプレ捕集層20)と同様の層構成を有する。サンプル5のエアフィルタユニットにおいて、サンプル1のエアフィルタユニットと異なる点は、サンプル5では、濾材に通気性カバー層24が設けられず、プレ捕集層に、サンプル3と同様に、平均繊維径が2.0μmの繊維であるPPからなるメルトブローン不織布(目付け30g/m2、厚さ0.40mm)を用いた点である。これ以外は、サンプル3と同じである。サンプル5に用いた濾材の圧力損失及び塵の捕集効率は、165Pa及び99.993%であり、濾材の厚さは0.72mmであった。
サンプル5に用いた濾材は、図4に示す層構成(主捕集層22(PTFE多孔膜)、通気性支持層26,28、及びプレ捕集層20)と同様の層構成を有する。サンプル5のエアフィルタユニットにおいて、サンプル1のエアフィルタユニットと異なる点は、サンプル5では、濾材に通気性カバー層24が設けられず、プレ捕集層に、サンプル3と同様に、平均繊維径が2.0μmの繊維であるPPからなるメルトブローン不織布(目付け30g/m2、厚さ0.40mm)を用いた点である。これ以外は、サンプル3と同じである。サンプル5に用いた濾材の圧力損失及び塵の捕集効率は、165Pa及び99.993%であり、濾材の厚さは0.72mmであった。
このようなサンプルの濾材を用いてエアフィルタユニットにおける圧力損失および塵の捕集効率を測定した。さらに、圧力損失の測定結果から、上述したエアフィルタユニットの構造抵抗の式を用いて各サンプルにおける構造抵抗を算出した。下記表1,2にその結果を示す。
サンプル1とサンプル4とは、通気性カバー層24の有り、無しの違いである。通気性カバー層24の有るサンプル1は、通気性カバー層24の無いサンプル4対比、構造抵抗が大きく低減していることがわかる。また、同様に、サンプル3及びサンプル5は、いずれもプレ捕集層20の平均繊維径が2.0μmであるが、サンプル3は通気性カバー層24を有し、サンプル5は通気性カバー層24を有さない。この場合においても、通気性カバー層24を有するサンプル3の構造抵抗は、通気性カバー層24を有さないサンプル5の構造抵抗対比、大きく低減する。これより、通気性カバー層24は、エアフィルタユニット15における構造に起因した圧力損失(構造抵抗)を低減することがわかる。
なお、サンプル2の構造抵抗はサンプル1と同様に低いが、エアフィルタユニット15における圧力損失は大きい。これは、プレ捕集層20の平均繊維径が細くなったため、濾材10における圧力損失が増大したことに起因する。このため、エアフィルタユニット15の圧力損失を抑制するためには、構造抵抗とともに、プレ捕集層20の圧力損失を低下させることが重要である。このため、プレ捕集層20における平均繊維径を1μm以上2μm未満とすることにより、プレ捕集層20の圧力損失を抑制することができる。実際、プレ捕集層20における平均繊維径を1μm以上2μm未満とするサンプル1のエアフィルタユニット15における圧力損失は、サンプル2に対して低減する。
サンプル3では、濾材10における捕集効率をサンプル1と略同様の値に維持するためにプレ捕集層20における目付けを高くし濾材10の厚さが厚くなっている。このため、サンプル1,2対比サンプル3の構造抵抗も高くなっている。しかし、この構造抵抗は、通気性カバー層24を有さない同じプレ捕集層20の構造を有するサンプル5対比、低減している。
また、表1より、サンプル1~5のいずれにおいても、初期の圧力損失から250Pa分圧力損失が上昇したときに、濾材単位面積あたりに捕集する塵埃量(g/m2)が、いずれも10(g/m2)以上であり、PTFE多孔膜の代わりに用いられた従来のガラス繊維濾材を有するエアフィルタユニットと略同じ寿命を有することがわかる。
なお、サンプル2の構造抵抗はサンプル1と同様に低いが、エアフィルタユニット15における圧力損失は大きい。これは、プレ捕集層20の平均繊維径が細くなったため、濾材10における圧力損失が増大したことに起因する。このため、エアフィルタユニット15の圧力損失を抑制するためには、構造抵抗とともに、プレ捕集層20の圧力損失を低下させることが重要である。このため、プレ捕集層20における平均繊維径を1μm以上2μm未満とすることにより、プレ捕集層20の圧力損失を抑制することができる。実際、プレ捕集層20における平均繊維径を1μm以上2μm未満とするサンプル1のエアフィルタユニット15における圧力損失は、サンプル2に対して低減する。
サンプル3では、濾材10における捕集効率をサンプル1と略同様の値に維持するためにプレ捕集層20における目付けを高くし濾材10の厚さが厚くなっている。このため、サンプル1,2対比サンプル3の構造抵抗も高くなっている。しかし、この構造抵抗は、通気性カバー層24を有さない同じプレ捕集層20の構造を有するサンプル5対比、低減している。
また、表1より、サンプル1~5のいずれにおいても、初期の圧力損失から250Pa分圧力損失が上昇したときに、濾材単位面積あたりに捕集する塵埃量(g/m2)が、いずれも10(g/m2)以上であり、PTFE多孔膜の代わりに用いられた従来のガラス繊維濾材を有するエアフィルタユニットと略同じ寿命を有することがわかる。
以上のように、エアフィルタユニットにおける圧力損失を低減するためには、濾材による圧力損失の他に、エアフィルタユニットにおける構造抵抗を低減することが重要である。このとき、実施例に示すように、プレ捕集層の気流上流側、特に濾材の最上流側の位置に通気性カバー層を設けることで、構造抵抗を低減することができる。
以上、本発明のエアフィルタ用濾材、エアフィルタユニット及びエアフィルタ用濾材の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
10 エアフィルタ用濾材
12 形状保持部材
14 枠体
15 エアフィルタユニット
20 プレ捕集層
22 主捕集層
24 通気性カバー層
26,28 通気性支持層
32,34 スペーサ
1A,1B,1C,1D,1E エンボス突起部
12 形状保持部材
14 枠体
15 エアフィルタユニット
20 プレ捕集層
22 主捕集層
24 通気性カバー層
26,28 通気性支持層
32,34 スペーサ
1A,1B,1C,1D,1E エンボス突起部
Claims (14)
- 気流中の塵を捕集するエアフィルタ用濾材であって、
気流中の塵の一部を捕集するプレ捕集層と、
前記プレ捕集層に対して気流の下流側に配置され、前記プレ捕集層を通過した塵を捕集するポリテトラフルオロエチレン多孔膜からなる主捕集層と、
気流の上流側の最表層の位置に配置され、気流中の塵を通過させる一方、外部からの押圧に対する前記エアフィルタ用濾材の表面の変形を抑制する通気性カバー層と、を含むことを特徴とするエアフィルタ用濾材。 - 前記通気性カバー層は、スパンボンド不織布により構成される、請求項1に記載のエアフィルタ用濾材。
- 前記通気性カバー層は、前記プレ捕集層に隣接している、請求項1または2に記載のエアフィルタ用濾材。
- 気流の流速が5.3cm/秒であるとき、前記通気性カバー層の圧力損失は10Pa以下であり、前記プレ捕集層の圧力損失は80Pa以下であり、前記主捕集層の圧力損失は100Pa以下である、請求項1~3のいずれか1項に記載のエアフィルタ用濾材。
- 前記通気性カバー層の厚さは、0.3mm以下である、請求項1~4のいずれか1項に記載のエアフィルタ用濾材。
- 前記プレ捕集層における粒子径0.3μmの塵の捕集効率が、前記プレ捕集層の除電状態で50%以上であり、前記主捕集層における粒子径0.3μmの塵の捕集効率が、99.9%以上である、請求項1~5のいずれか1項に記載のエアフィルタ用濾材。
- 前記プレ捕集層は、メルトブローン法あるいはエレクトロスピニング法で製造された繊維材料で構成されている、請求項1~6のいずれか1項に記載のエアフィルタ用濾材。
- 前記プレ捕集層の前記繊維材料の平均繊維径は、1μm以上2μm未満である、請求項7に記載のエアフィルタ用濾材。
- 前記プレ捕集層の厚さは、0.4mm未満である、請求項1~8のいずれか1項に記載のエアフィルタ用濾材。
- さらに、前記主捕集層に対して気流の下流側に配置され、前記主捕集層を支持する通気性支持層を含む、請求項1~9のいずれか1項に記載のエアフィルタ用濾材。
- 前記主捕集層と前記通気性支持層の積層体において、曲げ剛性が30g重/mm以上である、請求項10に記載のエアフィルタ用濾材。
- 前記通気性支持層は、スパンボンド不織布により構成される、請求項11に記載のエアフィルタ用濾材。
- 気流中の塵を捕集するエアフィルタ用濾材であって、気流中の塵の一部を捕集するプレ捕集層と、前記プレ捕集層に対して気流の下流側に配置され、前記プレ捕集層を通過した塵を捕集するポリテトラフルオロエチレン多孔膜からなる主捕集層と、気流の上流側の最表層の位置に配置され、気流中の塵を通過させる一方、外部からの押圧に対する前記エアフィルタ用濾材の表面の変形を抑制する通気性カバー層と、を含むエアフィルタ用濾材をプリーツ加工したジグザグ形状の加工済み濾材と、
前記加工済み濾材のジグザグ形状を保持するために、前記加工済み濾材の谷部または山部に配置した形状保持部と、
ジグザグ形状が保持された前記加工済み濾材を保持する枠体と、を備えることを特徴とするエアフィルタユニット。 - 気流中の塵を捕集するエアフィルタ用濾材であって、気流中の塵の一部を捕集するプレ捕集層と、前記プレ捕集層に対して気流の下流側に配置され、前記プレ捕集層を通過した塵を捕集するポリテトラフルオロエチレン多孔膜からなる主捕集層と、気流の上流側の最表層の位置に配置され、気流中の塵を通過させる一方、外部からの押圧に対する前記エアフィルタ用濾材の表面の変形を抑制する通気性カバー層と、前記主捕集層に対して気流の下流側に配置され、前記主捕集層を支持する通気性支持層を含むエアフィルタ用濾材の製造方法であって、
前記通気性支持層となる部材と前記主捕集層となる部材を積層して第1積層体を得る工程と、
前記通気性カバー層となる部材と前記プレ捕集層となる部材を積層して第2積層体を得る工程と、
前記第1積層体の前記主捕集層となる部材と前記第2積層体の前記プレ捕集層となる部材とが内側に位置するように積層する工程、とを含むことを特徴とするエアフィルタ用濾材の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12826828.1A EP2752230B1 (en) | 2011-08-31 | 2012-08-30 | Filter medium for air filter, air filter unit, and method for producing filter medium for air filter |
CN201280041375.1A CN103764251B (zh) | 2011-08-31 | 2012-08-30 | 空气过滤器用滤材、空气过滤器单元以及空气过滤器用滤材的制造方法 |
US14/241,015 US20140165517A1 (en) | 2011-08-31 | 2012-08-30 | Filter medium for air filter, air filter unit, and method for producing filter medium for air filter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-190196 | 2011-08-31 | ||
JP2011190196 | 2011-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013031229A1 true WO2013031229A1 (ja) | 2013-03-07 |
Family
ID=47755757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/005501 WO2013031229A1 (ja) | 2011-08-31 | 2012-08-30 | エアフィルタ用濾材、エアフィルタユニット及びエアフィルタ用濾材の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140165517A1 (ja) |
EP (1) | EP2752230B1 (ja) |
JP (1) | JP5472405B2 (ja) |
CN (1) | CN103764251B (ja) |
WO (1) | WO2013031229A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104056491A (zh) * | 2013-03-21 | 2014-09-24 | 日东电工株式会社 | 过滤器滤材和过滤器滤材的制造方法 |
CN104069685A (zh) * | 2013-03-29 | 2014-10-01 | 日东电工株式会社 | 过滤器滤材和过滤器滤材的制作方法 |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014064995A (ja) * | 2012-09-26 | 2014-04-17 | Japan Vilene Co Ltd | フィルタエレメント |
JP6209393B2 (ja) * | 2013-08-21 | 2017-10-04 | 日東電工株式会社 | フィルター濾材 |
JP5835389B2 (ja) * | 2014-03-26 | 2015-12-24 | ダイキン工業株式会社 | エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法 |
CN105214383B (zh) * | 2014-05-30 | 2019-09-27 | 日本无机株式会社 | 滤材及其褶皱加工方法、和空气净化器用空气过滤器 |
JP6115596B2 (ja) | 2014-12-26 | 2017-04-19 | ダイキン工業株式会社 | エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法 |
WO2016119080A1 (en) * | 2015-01-29 | 2016-08-04 | 3M Innovative Properties Company | Conformable pleated air filter with bridging filaments |
KR101878355B1 (ko) * | 2015-06-01 | 2018-07-16 | 주식회사 아모그린텍 | 기체필터 |
CN104971630A (zh) * | 2015-06-19 | 2015-10-14 | 深圳市星源材质科技股份有限公司 | 一种聚烯烃空气过滤复合膜及其制备方法 |
AU2016308653B2 (en) * | 2015-08-17 | 2022-03-17 | Parker-Hannifin Corporation | Filter media packs, methods of making and filter media presses |
US11278833B2 (en) | 2015-08-17 | 2022-03-22 | Parker-Hamilton Corporation | Filter media packs, methods of making, and ultrasonic cutting or welding |
WO2017034813A1 (en) * | 2015-08-21 | 2017-03-02 | Cummins Filtration Ip, Inc. | Variable efficiency filtration media |
CN106552458A (zh) * | 2015-09-18 | 2017-04-05 | 东丽纤维研究所(中国)有限公司 | 一种导电过滤材料及其生产方法和用途 |
JP6372507B2 (ja) * | 2016-03-11 | 2018-08-15 | ダイキン工業株式会社 | エアフィルタ用濾材、エアフィルタユニット、およびエアフィルタ用濾材の製造方法 |
CN105774149B (zh) * | 2016-03-25 | 2017-10-17 | 重庆再升净化设备有限公司 | 一种可用于气液分离的复合过滤材料 |
CN105605763A (zh) * | 2016-03-29 | 2016-05-25 | 江苏深氧环保科技有限公司 | 一种空调用过滤材料及其制备方法 |
KR101720109B1 (ko) * | 2016-06-17 | 2017-03-27 | (주)크린앤사이언스 | 습식 부직포를 포함하는 복합 필터 여재 및 그 제조방법 |
JP6673230B2 (ja) | 2017-01-12 | 2020-03-25 | ダイキン工業株式会社 | エアフィルタ濾材 |
JP2019010867A (ja) | 2017-06-30 | 2019-01-24 | キヤノン株式会社 | 多孔質体及びその製造方法、インクジェット記録方法、並びにインクジェット記録装置 |
CN107564600B (zh) * | 2017-09-29 | 2019-06-21 | 湖州森德高新材料有限公司 | 一种基于低阻聚四氟乙烯的核电厂空气净化装置 |
AU2019263091B2 (en) * | 2018-05-03 | 2024-09-12 | Cummins Filtration Ip, Inc. | Composite filter media with multiple fiber structures including nanofibers |
WO2020067182A1 (ja) * | 2018-09-28 | 2020-04-02 | ダイキン工業株式会社 | エアフィルタ濾材、フィルタパック、エアフィルタユニット、およびこれらの製造方法 |
CN112805078A (zh) * | 2018-09-28 | 2021-05-14 | 大金工业株式会社 | 空气过滤器滤材、过滤包、空气过滤器单元以及制造方法 |
EP3998115A4 (en) * | 2019-07-11 | 2023-03-22 | Asahi Kasei Medical Co., Ltd. | BLOOD TREATMENT FILTERS |
JP7397279B2 (ja) * | 2019-08-09 | 2023-12-13 | ダイキン工業株式会社 | エアフィルタユニット |
CN110613978B (zh) * | 2019-08-23 | 2023-12-01 | 杭州加淼科技有限公司 | 气相滤材及过滤单元 |
CN110733212B (zh) * | 2019-10-31 | 2021-06-01 | 南通市辉鑫玻璃纤维有限公司 | 一种玻璃纤维膜及其制备方法 |
JP7393198B2 (ja) * | 2019-12-20 | 2023-12-06 | 日本無機株式会社 | フィルタパック、及びエアフィルタ |
DE112021005099T5 (de) | 2020-09-28 | 2023-08-03 | Nitto Denko Corporation | Luftfiltermedium, plisseefilterelement und luftfiltereinheit |
KR20230079108A (ko) | 2020-09-28 | 2023-06-05 | 닛토덴코 가부시키가이샤 | 에어 필터 여과재, 필터 플리츠 팩 및 에어 필터 유닛 |
KR20230078711A (ko) | 2020-09-28 | 2023-06-02 | 닛토덴코 가부시키가이샤 | 에어 필터 여과재, 필터 플리츠 팩 및 에어 필터 유닛 |
CN113828063A (zh) * | 2021-10-20 | 2021-12-24 | 湖北真福医药有限公司 | 一种抗静电过滤材料及切向流压缩空气过滤装置 |
WO2023085909A1 (ko) * | 2021-11-15 | 2023-05-19 | 주식회사 마이크로원 | Ptfe 멤브레인 다층구조를 갖는 캐빈필터 유닛 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000300921A (ja) | 1999-04-21 | 2000-10-31 | Nitto Denko Corp | エアフィルタ濾材およびそれを用いたエアフィルタユニット |
JP2002370009A (ja) | 2001-06-13 | 2002-12-24 | Nitto Denko Corp | タービン用吸気フィルタ濾材およびその使用方法 |
JP2004097998A (ja) * | 2002-09-11 | 2004-04-02 | Nitto Denko Corp | 集塵機用フィルターおよびその製造方法 |
JP2005279554A (ja) * | 2004-03-30 | 2005-10-13 | Nitto Denko Corp | エアフィルタユニット |
JP2006150275A (ja) * | 2004-11-30 | 2006-06-15 | Nitto Denko Corp | フィルタ濾材の製造方法 |
JP2009501438A (ja) * | 2005-07-14 | 2009-01-15 | ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツング | 電子部品冷却用ファン冷却ユニット |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW438679B (en) * | 1996-08-09 | 2001-06-07 | Daikin Ind Ltd | Filter medium and air filter unit using the same |
TW406101B (en) * | 1997-01-20 | 2000-09-21 | Daikin Inpustries Ltd | Filter medium and air filter unit using the same |
JP2000079332A (ja) * | 1998-07-08 | 2000-03-21 | Nitto Denko Corp | エアフィルタ用ろ材 |
JP2000176262A (ja) * | 1998-12-11 | 2000-06-27 | Daikin Ind Ltd | 多孔性材料、エアフィルター濾材、エアフィルターユニットおよびエアフィルター濾材用支持材料 |
WO2002089956A1 (en) * | 2001-05-02 | 2002-11-14 | Hollingsworth & Vose Company | Filter media with enhanced stiffness and increased dust holding capacity |
US6808553B2 (en) * | 2001-06-13 | 2004-10-26 | Nitto Denko Corporation | Filter medium for turbine and methods of using and producing the same |
CN101163533B (zh) * | 2005-04-26 | 2011-06-22 | 日东电工株式会社 | 过滤器滤材及其制造方法和使用方法以及过滤器组件 |
CN101861195A (zh) * | 2007-11-14 | 2010-10-13 | 日东电工株式会社 | 过滤器滤材及其制造方法和过滤器单元 |
US20120186452A1 (en) * | 2011-01-26 | 2012-07-26 | Alan Smithies | Multiple Layer HEPA Filter and Method of Manufacture |
-
2012
- 2012-08-30 CN CN201280041375.1A patent/CN103764251B/zh active Active
- 2012-08-30 US US14/241,015 patent/US20140165517A1/en not_active Abandoned
- 2012-08-30 JP JP2012189882A patent/JP5472405B2/ja active Active
- 2012-08-30 WO PCT/JP2012/005501 patent/WO2013031229A1/ja active Application Filing
- 2012-08-30 EP EP12826828.1A patent/EP2752230B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000300921A (ja) | 1999-04-21 | 2000-10-31 | Nitto Denko Corp | エアフィルタ濾材およびそれを用いたエアフィルタユニット |
JP2002370009A (ja) | 2001-06-13 | 2002-12-24 | Nitto Denko Corp | タービン用吸気フィルタ濾材およびその使用方法 |
JP2004097998A (ja) * | 2002-09-11 | 2004-04-02 | Nitto Denko Corp | 集塵機用フィルターおよびその製造方法 |
JP2005279554A (ja) * | 2004-03-30 | 2005-10-13 | Nitto Denko Corp | エアフィルタユニット |
JP2006150275A (ja) * | 2004-11-30 | 2006-06-15 | Nitto Denko Corp | フィルタ濾材の製造方法 |
JP2009501438A (ja) * | 2005-07-14 | 2009-01-15 | ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツング | 電子部品冷却用ファン冷却ユニット |
Non-Patent Citations (1)
Title |
---|
See also references of EP2752230A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104056491A (zh) * | 2013-03-21 | 2014-09-24 | 日东电工株式会社 | 过滤器滤材和过滤器滤材的制造方法 |
CN104056491B (zh) * | 2013-03-21 | 2017-09-01 | 日东电工株式会社 | 过滤器滤材和过滤器滤材的制造方法 |
CN104069685A (zh) * | 2013-03-29 | 2014-10-01 | 日东电工株式会社 | 过滤器滤材和过滤器滤材的制作方法 |
TWI644715B (zh) * | 2013-03-29 | 2018-12-21 | 日商日東電工股份有限公司 | 過濾器濾材及過濾器濾材之製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2752230A1 (en) | 2014-07-09 |
CN103764251B (zh) | 2015-07-22 |
EP2752230A4 (en) | 2015-08-05 |
EP2752230B1 (en) | 2016-12-21 |
US20140165517A1 (en) | 2014-06-19 |
JP2013063424A (ja) | 2013-04-11 |
JP5472405B2 (ja) | 2014-04-16 |
CN103764251A (zh) | 2014-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5472405B2 (ja) | エアフィルタ用濾材、エアフィルタユニット及びエアフィルタ用濾材の製造方法 | |
JP5966282B2 (ja) | エアフィルタ用濾材及びエアフィルタユニット | |
JP5333550B2 (ja) | エアフィルタ用濾材及びエアフィルタユニット | |
KR102683099B1 (ko) | 에어 필터 여과재, 에어 필터 팩 및 에어 필터 유닛 | |
JP6292920B2 (ja) | エアフィルタ濾材の製造方法、エアフィルタ濾材及びエアフィルタパック | |
US11406927B2 (en) | Air filter medium, air filter pack, and air filter unit | |
US11427690B2 (en) | Air filter medium, air filter pack, and air filter unit | |
JP5784458B2 (ja) | エアフィルタ濾材 | |
JP2000079332A (ja) | エアフィルタ用ろ材 | |
JP6399069B2 (ja) | エアフィルタ濾材、エアフィルタパック、およびエアフィルタユニット | |
TWI601567B (zh) | 過濾濾材及過濾單元 | |
JP2008055407A (ja) | ポリテトラフルオロエチレン多孔質膜の製造方法およびエアフィルタ濾材 | |
TW201420167A (zh) | 過濾器濾材及過濾器濾材之製造裝置 | |
JP2003200013A (ja) | エアフィルタ濾材、それを用いたエアフィルタパック及びエアフィルタユニット並びにエアフィルタ濾材の製造方法 | |
JP7527781B2 (ja) | フィルタプリーツパック及びエアフィルタユニット | |
JP2006026531A (ja) | エアフィルタ濾材およびそれを用いたエアフィルタユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12826828 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14241015 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012826828 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012826828 Country of ref document: EP |