WO2013030968A1 - 半導体素子用平角状アルミニウム、金、またはパラジウム若しくは白金被覆銅リボン - Google Patents

半導体素子用平角状アルミニウム、金、またはパラジウム若しくは白金被覆銅リボン Download PDF

Info

Publication number
WO2013030968A1
WO2013030968A1 PCT/JP2011/069696 JP2011069696W WO2013030968A1 WO 2013030968 A1 WO2013030968 A1 WO 2013030968A1 JP 2011069696 W JP2011069696 W JP 2011069696W WO 2013030968 A1 WO2013030968 A1 WO 2013030968A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
ribbon
copper
gold
palladium
Prior art date
Application number
PCT/JP2011/069696
Other languages
English (en)
French (fr)
Inventor
道孝 三上
中島 伸一郎
照夫 菊池
英行 秋元
寛 松尾
兼一 宮崎
Original Assignee
田中電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中電子工業株式会社 filed Critical 田中電子工業株式会社
Priority to PCT/JP2011/069696 priority Critical patent/WO2013030968A1/ja
Publication of WO2013030968A1 publication Critical patent/WO2013030968A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45025Plural core members
    • H01L2224/4503Stacked arrangements
    • H01L2224/45033Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent

Definitions

  • the present invention relates to a rectangular aluminum, gold, palladium, or platinum-coated copper ribbon for joining a semiconductor element and a substrate-side lead portion by ultrasonic bonding at multiple locations in an electronic component and a semiconductor package, and connecting them in a loop shape.
  • the present invention relates to a rectangular aluminum, gold, palladium, or platinum-coated copper ribbon for connecting a power semiconductor element and a substrate-side lead portion.
  • an aluminum pad mainly made of aluminum or an alloy thereof is used in the case of a flat aluminum coated copper ribbon, and a purity of 99.99% by mass is mainly used in the case of a flat gold coated copper ribbon.
  • An aluminum pad made of aluminum metal or 0.5 to 1.2 mass% silicon, 0.2 to 0.7 mass% copper, or an alloy such as aluminum-copper-silicon combined with these is made of flat palladium.
  • aluminum metal with a purity of 99.99% by mass or 0.5 to 1.2% by mass of silicon, 0.2 to 0.7% by mass of copper, or a combination thereof Aluminum pads made of an alloy such as aluminum-copper-silicon are used.
  • the substrate-side lead of the flat rectangular aluminum-coated copper ribbon has iron alloy, copper alloy, copper alloy with noble metal plating such as gold or silver and nickel plating, iron alloy, or ceramic with a lead made of these.
  • the lead on the nickel-coated substrate side of the flat gold-coated copper ribbon is made of a copper alloy or iron alloy with a nickel coating layer formed by electroplating and sputtering, or a ceramic equipped with a lead made of these is flat palladium.
  • the nickel-coated substrate-side lead of the platinum-coated copper ribbon is mainly made of a copper alloy or iron alloy with a nickel coating layer formed by electroplating and sputtering, or a ceramic equipped with a lead composed of these. Yes.
  • a flat aluminum ribbon is a flat gold coated copper ribbon, or a flat palladium or platinum coated copper ribbon.
  • a rectangular copper ribbon is used.
  • a cemented carbide tool is pressed on the aluminum or copper ribbon and bonded by the load and the energy of ultrasonic vibration.
  • the effect of applying ultrasonic waves is to increase the bonding area to promote deformation of the aluminum ribbon or copper ribbon, and to destroy and remove the oxide film of about 1 nanometer (nm) naturally formed on the aluminum ribbon.
  • Exposing metal atoms such as aluminum to the lower surface, generating plastic flow at the interface between the opposing aluminum and nickel bonding pads and the aluminum ribbon, or destroying and removing the oxide film naturally formed on the copper ribbon As a result, metal atoms such as copper are exposed on the lower surface, plastic flow is generated at the interface between the first bond surface of aluminum and the second bond surface of nickel and the copper ribbon surface, and the newly formed surfaces that adhere to each other are gradually increased. The other is to bond them between atoms.
  • the substrate-side lead connected to the electrode pad of such a semiconductor element has a different material as described above. For this reason, even by ultrasonic bonding that does not involve a metallurgical melting process, these different types of intermetallic compounds are generated at these bonding interfaces, so that strong and reliable bonding cannot always be achieved.
  • the aluminum electrode pad of such a semiconductor element and the lead on the nickel-coated substrate side connected thereto are as described above. , Each material is different.
  • the clad ribbon of a flat aluminum coated copper ribbon is formed by ultrasonic bonding (first bond) of an aluminum pad with an aluminum layer on the aluminum clad side, and then joining the lead frame side with a lead tip such as Kovar. Since it is a harder metal material, after the first bond, it was necessary to draw a loop and twist it to rotate, or reverse the direction to make a second bond. Also, as the material constituting the ribbon, the copper alloy is hard and the aluminum is soft, so if the ribbon is bent or twisted during loop formation, peeling occurs from the interface of the clad ribbon due to the difference in hardness between the copper alloy and aluminum. .
  • Heat treatment was also considered to strengthen this clad interface, but when heat-treated, a brittle intermetallic compound layer of copper and aluminum was formed at the interface between copper and aluminum, and the adhesion strength of the clad interface was lowered, resulting in the result On the contrary, the interface is easily peeled off.
  • an intermediate between the copper alloy and aluminum is used.
  • a diffusion preventing layer such as nickel, titanium, tungsten, or chromium is also provided.
  • the formation of these intermediate layers has the effect of suppressing the peeling of the clad interface during loop formation.
  • each of the copper alloy layer, nickel intermediate layer and aluminum layer is unique. Therefore, it has been found that it is difficult to suppress peeling of the clad interface, and on the contrary, it has been found that the variation in bonding strength increases.
  • Patent Document 2 Japanese Patent Laid-Open No. 2007-324603 (Patent Document 2 to be described later) has been proposed in response to such a demand, and has a high conductivity by clad with or covering aluminum with a highly conductive copper as a core material. And the ultrasonic bonding property to the aluminum pad.
  • the present invention in the case of a rectangular aluminum-coated copper ribbon, it is said that highly reliable bonding by ultrasonic bonding can be achieved by coating the inner copper layer with the outer aluminum. According to it, high conductivity is achieved by the inner copper, whereas an aluminum coating layer with a thickness of less than 1/10, practically an aluminum coating layer with a thickness of 1 to 200 nm, preferably about 20 to 25 nm. Therefore, excellent ultrasonic bonding to the aluminum pad can be achieved.
  • ultrasonic bonding is performed using such an aluminum-coated copper ribbon, high electrical conductivity can be achieved by the copper core material, but the bonding strength of ultrasonic bonding varies, and chip cracking occurs on the semiconductor element side. Thus, the bonding reliability was not sufficient.
  • such a large capacity composite ribbon is a power source for semiconductors that require heat resistance of 100 to 150 ° C, especially for air conditioners, solar power generation systems, hybrid cars and electric cars.
  • the operating conditions of the semiconductor elements are higher than those of normal semiconductor elements.
  • a composite ribbon used for a power semiconductor used for a vehicle needs to withstand a junction temperature of usually 100 to 150 ° C. at the maximum.
  • internal oxidation of the ribbon material is cited as an issue, and improvement in oxidation resistance of the ribbon material is required, such as covering the ribbon surface with a stable film.
  • a bonding pad mounted on a semiconductor element aluminum metal having a purity of 99.99% by mass or silicon of 0.5 to 1.2% by mass or 0.2 to An aluminum pad made of 0.7 mass% copper or an alloy such as aluminum-copper-silicon combined with these is used.
  • a copper alloy or an iron alloy in which a nickel coating layer is formed by electroplating and sputtering, or a ceramic on which a lead composed of these is mounted is mainly used.
  • a rectangular copper ribbon is used to connect the aluminum pad and the nickel-coated lead frame by ultrasonic bonding.
  • a flat copper ribbon bonding method is a method in which a cemented carbide tool is pressed onto a copper ribbon and bonded by the load and energy of ultrasonic vibration.
  • the effect of applying ultrasonic waves is to increase the bonding area to promote the deformation of the copper ribbon, and to destroy and remove the oxide film naturally formed on the copper ribbon surface, thereby exposing metal atoms such as copper to the lower surface.
  • plastic flow is generated at the interface between the first bond surface of aluminum and the second bond surface of nickel and the copper ribbon surface facing each other, and the new surfaces that are in close contact with each other are gradually increased, and the two are bonded between atoms.
  • the aluminum electrode pad of such a semiconductor element and the lead on the nickel-coated substrate side connected thereto are made of different materials as described above. For this reason, even by ultrasonic bonding that does not involve a metallurgical melting process, strong and reliable bonding cannot always be achieved at these bonding interfaces due to the presence of a deteriorated layer due to oxidation or sulfuration of the copper ribbon surface.
  • a bonding wire using thermocompression-bonded balls in which gold is electroplated on a copper material and then continuously drawn a plurality of times to coat gold with a thickness of 2.5 ⁇ m and 0.8 ⁇ m.
  • the bonding wire is bonded to one semiconductor element side electrode, which is an aluminum pad and the other is a dissimilar metal such as a lead frame.
  • the metal surface of the gold-coated copper ribbon is bonded to a lead frame such as Kovar or the like coated with an aluminum pad and nickel electroplating or cladding.
  • this gold-coated copper ribbon with a thick gold coating could not be second bonded well with the lead on the nickel-coated substrate side because gold has poor bondability with nickel.
  • Patent Document 2 can also be regarded as proposed in response to such a request, and by coating gold with copper having high conductivity as a core material, both high conductivity and ultrasonic bonding to an aluminum pad are achieved. It is a thing. According to this invention, it is said that highly reliable joining by ultrasonic bonding can be achieved by coating the copper layer inside the wire with the outside gold.
  • ultrasonic bonding using a gold-coated copper ribbon for high-temperature semiconductor elements such as power semiconductors forms a loop after the first bond and then a second bond. After bonding, the gold-coated copper ribbon is cut with a cutter.
  • the above-mentioned gold-coated copper ribbon has a problem of bonding reliability. It is used for high-temperature semiconductors that require heat resistance of 130 to 175 ° C, especially power semiconductors such as air conditioners, solar power generation systems, hybrid cars, and electric cars. High capacity gold coated copper ribbon.
  • a gold-coated copper ribbon used for a power semiconductor used for in-vehicle needs to withstand a junction temperature of usually about 150 to 175 ° C. at the maximum.
  • high temperature oxidation when the gold coated copper ribbon is ultrasonically bonded is also an issue, and measures such as covering the bonding surface of the gold coated copper ribbon with a stable film can be used. Improvement in oxidation resistance is required. In such a mounting environment, it is important to ensure the bonding strength between the gold-coated copper ribbon, the aluminum pad electrode portion, and the nickel-coated substrate side lead.
  • a bonding pad mounted on a semiconductor element aluminum metal having a purity of 99.99% by mass or silicon having a purity of 0.5 to 1.2% by mass or 0.002% is preferable.
  • An aluminum pad made of an alloy such as 2 to 0.7% by mass of copper or a combination of aluminum-copper-silicon is used.
  • a copper alloy or iron alloy in which nickel is formed by electroplating and sputtering, or ceramics on which a lead made of these is mounted is mainly used.
  • a rectangular copper ribbon is used to connect the aluminum pad and the nickel-coated lead frame by ultrasonic bonding.
  • the bonding method of the rectangular copper ribbon is to press the carbide tool on the copper ribbon and bond by the load and the energy of ultrasonic vibration.
  • the effect of applying ultrasonic waves is to expose the metal atoms such as copper to the lower surface by expanding the bonding area to promote deformation of the copper ribbon and destroying / removing the oxide film naturally formed on the copper ribbon.
  • plastic flow is generated at the interfaces between the first bond surface of aluminum and the second bond surface of nickel and the copper ribbon surface facing each other, and the new surfaces that are in close contact with each other are gradually increased to bond them together.
  • the aluminum electrode pad of such a semiconductor element and the lead on the nickel-coated substrate connected to the same are made of different materials as described above. For this reason, even by ultrasonic bonding that does not involve a metallurgical melting process, strong and reliable bonding cannot always be achieved at these bonding interfaces due to the presence of a deteriorated layer due to oxidation or sulfuration of the copper ribbon surface.
  • a wedge bonding technique for bonding wires That is, a bonding wire obtained by electroplating palladium on a copper fine wire at 0.3 ⁇ m (Japanese Utility Model Laid-Open No.
  • Patent Document 5 Japanese Patent Laid-Open No. Sho 62
  • a bonding wire obtained by chemical vapor deposition of palladium or platinum at 0.1 ⁇ m Japanese Patent Laid-Open No. Sho 62. It is conceivable to apply the wedge bonding technique described in Japanese Patent No. 097360 and Patent Document 6) described later.
  • a wedge bonding technique is applied to a bonding wire (Japanese Patent Laid-Open No. 2004-014884, which will be described later) that is drawn after electroplating of palladium with 0.8 ⁇ m. It can be applied.
  • the bonding ribbon has an electrode on the side of one semiconductor element to be bonded and an aluminum pad, and the other is a dissimilar metal such as a lead frame.
  • the metal surface of the palladium or platinum-coated copper ribbon is bonded to a lead frame such as Kovar or the like coated with electroplating or cladding of an aluminum pad and nickel.
  • the coated copper ribbon has a ribbon width of several hundred ⁇ m to several tens of mm, and the ribbon thickness is about 1 mm or less, and the width and thickness are less than the bonding wire. More than an order of magnitude increases and the palladium or platinum coating becomes thicker. If this coated copper ribbon is to be ultrasonically bonded directly to an aluminum electrode pad, the aluminum pad is excessively heated, and the aluminum pad is broken by an excessive pressing force against the aluminum pad.
  • the palladium or platinum-coated layer is thinned in order to overcome such wetting and spreading of the second bond joint while preventing copper oxidation and sulfidation. It can also be considered.
  • Japanese Patent Laid-Open No. 2007-012776 Patent Document 8 to be described later
  • the bonding wire is drawn and heat-treated so that the outer skin layer has a thickness of 0.016 ⁇ m or 0.007 ⁇ m.
  • the outer palladium or the like is thinned, there is a possibility of solving the problem of wetting and spreading of the bondability in the second bond. Further, it is said that highly reliable joining by ultrasonic bonding can be achieved by providing a diffusion layer by heat treatment.
  • the above-described palladium or platinum-coated copper ribbon has a problem of bonding reliability because of high temperature semiconductors that require heat resistance of 130 to 175 ° C., particularly air conditioners, solar It is a large-capacity palladium or platinum-coated copper ribbon used in power semiconductors such as photovoltaic power generation systems, hybrid vehicles, and electric vehicles.
  • palladium or platinum-coated copper ribbons used for power semiconductors used in vehicles need to withstand a junction temperature of usually about 150 to 175 ° C. at the maximum.
  • ultrasonic bonding using the composite ribbon for power semiconductor elements as described above forms a loop after the first bond to form a second bond, and in some cases, further After the final bond, the composite ribbon was cut with a cutter.
  • the thickness of the aluminum coating layer is increased to prevent chip cracking during the first bond, the difference in hardness between copper and aluminum is too large. Interfacial peeling of the coating layer occurs due to the bending action applied to the ribbon.
  • the copper ribbon provided with the aluminum coating layer draws a loop from the first bond and performs the second bonding to perform the second bonding. Prevents peeling, and prevents excessive plastic flow of the aluminum coating layer during ultrasonic bonding and the accompanying peeling of the aluminum coating layer and chip damage, improves joint reliability, improves conductivity and improves internal oxidation. Prevention is the subject of the present invention.
  • the present invention provides a first semiconductor element pad in which a gold-coated copper ribbon provided with a gold coating layer having a somewhat large shape is made of an aluminum metal or alloy. Even if bonding is performed by ultrasonic bonding at multiple locations with a bond, a loop is drawn from the first bond, and bonding is performed by ultrasonic bonding at multiple locations with a second bond on the nickel-coated substrate, cracks etc. occur in the aluminum pad during the first bonding. The problem is to ensure sufficient bonding strength even during the second bonding.
  • the palladium or platinum-coated copper ribbon provided with a palladium or platinum coating layer having a certain shape is made of an aluminum metal or alloy. Even if the first bond of the semiconductor element pad is bonded by ultrasonic bonding at multiple points, a loop is drawn from the first bond, and the second bond of the nickel-coated substrate is bonded by ultrasonic bonding at multiple points. It is an object of the present invention to ensure sufficient bonding strength without causing cracks or the like in the aluminum pad and without wetting and spreading beyond the ribbon width even during the second bonding.
  • the present inventors paid attention to the purity and hardness of the aluminum coating layer and the copper core tape as a means for solving the above problems.
  • the excessive plastic flow of the aluminum layer at the joint when ultrasonically bonding the aluminum-coated bonding wire is due to the large difference in hardness between these coating layers and the core material, and in contrast to this, aluminum What can be solved by increasing the hardness of the coating layer and decreasing the balance of the hardness of the corresponding core material and decreasing the difference in hardness between the two, and for that purpose It was found that the material of the aluminum coating layer and the film forming conditions are important.
  • the aluminum-coated ribbon used for a power semiconductor used in an environment of 100 to 150 ° C. of the present invention is ultrasonically bonded between a pad of a semiconductor element and a substrate at a number of locations.
  • the aluminum coating layer is made of aluminum having a Vickers hardness of 30 Hv or more and a purity of 99.9% by mass or more.
  • the copper core tape is made of copper having a Vickers hardness of 70 Hv or less and a purity of 99.9% by mass or more.
  • This aluminum coating layer is made of aluminum having a purity of 99.9% by mass or more, Vickers hardness of 30Hv or more, laminated in an atomic or cluster form in a vacuum A polycrystalline structure with.
  • the aluminum coating layer in the present invention has a high purity of 99.9% by mass or more, but the hardness is higher than the bulk hardness of aluminum of the same purity. It has become.
  • high-purity aluminum has a hardness of about 17 Hv in the annealed bulk, but the hardness of the aluminum coating layer clarified in the present invention is significantly higher than these.
  • the aluminum coating layer formed on the surface of the coated bonding ribbon of the invention has a Vickers hardness of 30 Hv or more by being composed of a polycrystalline structure formed by deposition under a vacuum condition in which an inert gas is present.
  • Non-Patent Document 1 Non-Patent Document 2
  • the aluminum polycrystalline film deposited in vacuum tends to have a larger crystal size as the purity of aluminum is increased to 99.99 mass% and further to 99.99 mass%.
  • this vacuum-deposited aluminum polycrystalline film retains high internal strain, which is the cause of hardness, and the crystal structure also has a crystal grain size of
  • the heat treatment causes the irregular small crystal grains in the aluminum coating layer to disappear and only large crystal grains to grow and remain, and the hardness of the aluminum coating layer can be stabilized.
  • the heat treatment for a long time and at a high temperature causes the compound at the aluminum / copper interface to grow, and if the compound reaches 1 ⁇ m or more, peeling occurs at the interface. Therefore, the above-described crystal structure should be reduced so as not to grow such a compound. It is important to perform the heat treatment under the conditions to be maintained.
  • the effect of this heat treatment also tends to increase as the purity of aluminum increases to 99.99% by mass and further to 99.99% by mass.
  • the heat treatment is preferable because the sputtered aluminum particles have a large strain.
  • the aluminum coating layer obtained by the present invention has an effect of preventing chip damage during bonding of a copper core tape by using this aluminum polycrystalline film as a cushion of impact force.
  • an oxide film of about 1 nanometer (nm) is naturally formed on the surface of the aluminum coating layer. For this reason, it is not necessary to coat the surface of the aluminum-coated copper ribbon with a lubricant film in order to improve the sliding between the cemented carbide tool and the aluminum ribbon during bonding.
  • the aluminum oxide film on the surface of the coating layer is dense and stable, and therefore has the effect of preventing oxygen from entering the aluminum coating layer and suppressing the growth of the oxide film. is there. This is supported by the fact that a new aluminum oxide is not formed at the bonding interface between aluminum and copper of the aluminum ribbon in a high temperature storage test after mounting.
  • the copper core tape By setting the copper core tape to a Vickers hardness of 70 Hv or less, more preferably 60 Hv or less with respect to the above-described hardness of the aluminum coating layer, it is possible to suppress interfacial peeling during loop formation.
  • the aluminum coating layer has a thickness of 0.1 to 50 ⁇ m, preferably 0.1 to 10 ⁇ m, relative to the hardness of the aluminum coating layer and copper, and the aluminum coating layer When the thickness is in the above range, the above hardness is most effective.
  • the thickness of the aluminum coating layer is thin, and in the thickness that is considered to be a suitable range in Patent Document 2, even if the aluminum layer has the above hardness, Since the hardness cannot be maintained due to the concentration of energy during ultrasonic bonding, plastic flow occurs and is excluded from the bonding interface. Thus, by preventing excessive plastic flow and peeling of the aluminum coating layer during bonding, chip damage is prevented and stable bonding strength is secured to the pads on the chip side. Moreover, making the copper core tape a copper having a purity of 99.9% by mass or more has an effect of further improving the above effect. The purity of copper and the type of copper alloy can be appropriately selected according to the purpose of the semiconductor to be used.
  • the aluminum-coated ribbon for a semiconductor device of the present invention is an aluminum coating for connecting a semiconductor device pad and a substrate in a loop shape by ultrasonic bonding at many locations.
  • the copper core tape is made of copper having a Vickers hardness of 70 Hv or less and a purity of 99.9% by mass or more
  • the aluminum coating layer is It is characterized by being made of aluminum having a purity of 99.9% by mass or more and having a Vickers hardness of 30 Hv or more, which is formed in a vacuum atmosphere of an inert gas and has many strains introduced.
  • the aluminum ribbon for semiconductor of the present invention is an aluminum coating layer made of aluminum with a purity of 99.9% by mass or more having a Vickers hardness of 30 Hv or more in which many strains are introduced. Is preferably heat-treated. This heat treatment is preferably applied to a sputtered aluminum polycrystalline film having a purity of 99.99% by mass or less because the lower the purity of aluminum, the greater the distortion and the variation of crystal grains.
  • the aluminum-coated copper ribbon for semiconductor of the present invention is a method for forming a polycrystalline structure deposited in vacuum, not for bonding by rolling or pressing, for forming the coating layer and the diffusion prevention layer in the present invention. Therefore, a method of stacking atomic or cluster-like aluminum particles by a sputtering method such as magnetron sputtering is most suitable.
  • a diffusion layer is provided between the copper core material and the aluminum coating layer in order to prevent formation of intermetallic compounds due to diffusion between aluminum and copper in the aluminum coated copper ribbon. It is effective to form, and the anti-diffusion layer can be used to vacuum gold, silver, palladium, platinum and other platinum group metals, etc., which are solid solution with copper, in addition to known nickel, zinc or titanium, tungsten, chromium. Although it can be deposited, even if the diffusion barrier layer is hard, it is extremely thin with respect to the total film thickness of the aluminum coating layer and the copper core tape, and is only a film thickness on the order of several mass% at the maximum. The influence of the hardness of the diffusion preventing layer can be ignored.
  • the present inventors have used a fine granular crystal structure as a gold coating layer as a means for solving the above problems. That is, in the first bond with the aluminum pad electrode part, it is common to press a large number of protruding carbide tools against the gold-coated copper ribbon and ultrasonically bond many points of the gold-coated copper ribbon to the aluminum pad at once. However, at this time, it is considered that the copper core tape is deformed to cause work hardening and to cause cracks in the aluminum pad.
  • the inventors of the present invention have increased the apparent thickness of the gold coating layer by making the gold coating layer into a structure in which fine granular crystals are laminated, and the effect of work hardening of the copper core tape is influenced by the cushion effect. It was weakened so that cracks and the like were not generated in the aluminum pad.
  • the gold-coated ribbon used for a semiconductor that can be used in an environment of 130 to 175 ° C. of the present invention is a first bond of a semiconductor element pad made of an aluminum metal or alloy.
  • a rectangular ribbon composed of a gold coating layer and a copper core tape for joining the second bond of the nickel-coated substrate and the second bond by ultrasonic bonding at multiple points, and connecting the first bond and the second bond in a loop shape
  • the copper core tape is made of copper having a Vickers hardness of 70 Hv or less and a purity of 99.9% by mass or more
  • the gold coating layer has a purity of 99 which is magnetron sputtered in a rare gas atmosphere such as argon gas or neon gas. It is characterized by a fine granular crystal structure composed of 9% by mass or more of gold.
  • the gold coating layer in the present invention is magnetron sputtered while having a high purity of 99.9% by mass or more, and thus the hardness is 99.99% by mass or more. It is higher (100 to 150 Hv) than the heat-treated gold bulk hardness (50 Hv at 10 g load).
  • the gold coating layer formed on the surface of the gold-coated copper ribbon of the present invention is composed of a fine polycrystalline structure formed by depositing under a low-pressure condition in which a rare gas is interposed, thereby causing many internal strains. This is probably due to the accumulation of The cause of this distortion may be due to impurities in the gold evaporation source or oxygen or moisture remaining in the vacuum apparatus.
  • the gold-coated layer of the gold-coated copper ribbon of the present invention uses gold having a purity of 99.9% by mass or more, so that the copper core material can be bonded to copper.
  • the gold film itself is dense and stable, it has an effect of preventing oxygen from entering the interface of the aluminum pad via the gold coating layer and suppressing oxidation of aluminum. This is a high temperature storage test after mounting, and even when the gold coating layer diffuses and disappears into the copper core material, new aluminum oxide is formed at the bonding interface between aluminum and copper in the aluminum pad. This is supported by the lack of
  • an aluminum pad at the first bond is obtained by setting the copper core tape to a Vickers hardness of 70 Hv or less, more preferably 60 Hv or less with respect to the hardness of the gold coating layer. It is possible to suppress chip damage.
  • the thickness of the gold coating layer is 50 nm or more and 500 nm or less, preferably in the range of 100 to 400 nm, and magnetron sputtered with respect to the hardness of the copper core tape coated with gold. When the thickness of the gold coating layer is in the above range, the hardness of the copper core tape is most effective.
  • the thickness of the gold coating layer is thin, and the thickness of the gold coating that is within the preferred range in Patent Document 2 is strongly influenced by the surface properties of the copper core tape as a base, and magnetron sputtering. Even if the gold coating is applied, the surface properties of the copper core tape appear as they are, and the crystal structure cannot be controlled. In addition, such a gold coating cannot maintain its crystal structure due to energy concentration during ultrasonic bonding, so that the influence of work hardening of the copper core tape is directly transmitted to the aluminum pad.
  • the effect of work hardening at the time of bonding of the copper core material tape is suppressed, so that the chip at the time of the first bond In addition to preventing damage, it ensures stable bonding strength to the aluminum pad electrode on the chip side.
  • the copper core material at the time of the second bond is directly ultrasonically bonded to the nickel coating layer, thereby ensuring a stable bonding strength of the second bond. Further, increasing the purity of the copper core tape from copper having a purity of 99.9% by mass or more to copper having a purity of 99.99% by mass or more or copper having a purity of 99.999% by mass or more further improves the above effect. effective.
  • the purity of copper and the kind of a trace additive element can be appropriately selected according to the purpose of the semiconductor to be used. It should be noted that the use of higher purity copper, such as copper with a purity of 99.99% by mass or more, and copper with a purity of 99.999% by mass or more, is effective at the time of loop formation or between the first bond and the second bond. There is also an effect of reducing work hardening at the time of joining, which is preferable in high-temperature semiconductor applications. Further, due to such high purity, it becomes difficult to peel off from the bonding interface even when a steep loop is drawn during loop formation.
  • the gold-coated copper ribbon for a high-temperature semiconductor element of the present invention connects a semiconductor element pad and a nickel-coated substrate in a loop shape by ultrasonic bonding at many locations.
  • a rectangular gold-coated copper ribbon comprising a gold coating layer and a copper core material tape, wherein the copper core tape is made of copper having a Vickers hardness of 70 Hv or less and a purity of 99.9% by mass or more, and the gold coating layer Is characterized in that it is formed by magnetron sputtering in a low-pressure atmosphere of a rare gas and has many strains introduced.
  • a diffusion prevention layer is provided between the copper core material and the gold coating layer in order to prevent the disappearance of the gold film due to the diffusion of gold inside the gold-coated copper ribbon.
  • the diffusion prevention layer can be magnetron sputtered with palladium, platinum, and other platinum group metals that are completely dissolved in copper. Can do.
  • This diffusion prevention layer is extremely thin with respect to the gold coating layer even if it is hardened by magnetron sputtering, and at most, the film thickness is only several tens of mass% or less with respect to the gold coating layer. The influence of the hardness of the diffusion preventing layer can be ignored.
  • the present inventors have used a fine granular crystal structure for the palladium or platinum-coated layer.
  • the super hard tool from which multiple points are projected is pressed against palladium or platinum-coated copper ribbon, and the multiple points of palladium or platinum-coated copper ribbon are ultrasonically bonded to the aluminum pad at once.
  • the copper core tape is deformed to cause work hardening and to cause cracks in the aluminum pad.
  • the inventors of the present invention have an apparent palladium or platinum coating layer thickness by forming a structure in which fine granular crystals are directly laminated on a copper core tape without diffusing the palladium or platinum coating layer with the copper core material.
  • the thickness was increased and the effect of work hardening of the copper core tape was weakened by the cushioning effect, so that the aluminum pad was not cracked.
  • the amount of the palladium or platinum-coated layer according to the present invention is slight.
  • copper of the copper core and nickel of the nickel coating layer are directly ultrasonically bonded, but the palladium or platinum coating layer is broken by the bonding load and ultrasonic waves, or the heat at this time Therefore, the palladium or platinum coating layer does not spread beyond the ribbon width by spreading into the copper core material or nickel in the coating layer.
  • the palladium or platinum-coated ribbon used for a semiconductor that can be used in an environment of 130 to 175 ° C. of the present invention is a semiconductor element pad made of an aluminum metal or alloy.
  • the copper core tape is made of copper having a Vickers hardness of 70 Hv or less and a purity of 99.9% by mass or more
  • the palladium or platinum coating layer is a rare gas atmosphere such as argon gas or neon gas.
  • the palladium or platinum-coated layer in the present invention is magnetron sputtered while having a high purity of 99.9% by mass or more, so the hardness is 99. It is about 3 times higher (around 150 Hv) than the hardness of the heat treated palladium or platinum bulk of 99% by mass or more (50 Hv at 10 g load). This is because the palladium or platinum coating layer directly formed on the surface of the palladium or platinum-coated copper ribbon of the present invention consists of a fine polycrystalline structure formed by depositing under a low pressure condition in which a rare gas is interposed. This is probably because a lot of internal distortion is accumulated.
  • the cause of this distortion may be due to impurities of the palladium or platinum source, or oxygen or moisture remaining in the vacuum apparatus.
  • impurities of the palladium or platinum source or oxygen or moisture remaining in the vacuum apparatus.
  • magnetron sputtering high energy is added to the palladium or platinum particles to be sputtered, and a rare gas to be used, such as argon or residual water molecules, is involved. A small polycrystalline film is formed.
  • the hardness of the palladium or platinum coating layer tends to decrease as the purity of palladium or platinum increases from 99.95 mass% to 99.99 mass%.
  • the palladium or platinum coating layer of the palladium or platinum-coated copper ribbon of the present invention uses palladium or platinum having a purity of 99.9% by mass or more (preferably Since the purity is 99.95% by mass or more, and more preferably the purity is 99.99% by mass or more, the copper core material has good bondability with copper, and the palladium film or the platinum film itself is dense and stable. This has the effect of preventing oxygen from the inside of the core material from entering the interface of the aluminum pad via the palladium or platinum coating layer and suppressing oxidation of aluminum. This is a high-temperature storage test after mounting. Even if the palladium or platinum coating layer diffuses into the copper core and disappears, new aluminum oxide is formed at the aluminum / copper joint interface of the aluminum pad. It is supported by not being done.
  • the first bond is obtained by setting the copper core tape to a Vickers hardness of 70 Hv or less, more preferably 60 Hv or less with respect to the hardness of the palladium or platinum coating layer. It is possible to suppress chip damage of the aluminum pad at the time.
  • the thickness of the palladium or platinum coating layer is 50 nm or more and 500 nm or less, preferably in the range of 100 to 400 nm, When the thickness of the magnetron-sputtered palladium or platinum coating layer is in the above range, the hardness of the copper core tape is most effective.
  • the thickness of the palladium or platinum coating layer is thin, and the thickness of the palladium or platinum coating film is within the preferred range in the above-mentioned Patent Document 3 (3), the surface property of the copper core tape as a base is changed. The influence of the work hardening of the copper core tape is transmitted to the aluminum pad as it is, and the aluminum pad electrode is destroyed.
  • the effect of work hardening of the copper core tape is suppressed, so that the chip at the time of the first bond In addition to preventing damage, it ensures stable bonding strength to the aluminum pad electrode on the chip side.
  • the copper core material at the time of the second bond is directly ultrasonically bonded to the nickel coating layer, thereby ensuring a stable bonding strength of the second bond. Further, increasing the purity of the copper core tape from copper having a purity of 99.9% by mass or more to copper having a purity of 99.99% by mass or more or copper having a purity of 99.999% by mass or more further improves the above effect. effective.
  • the purity of copper and the kind of trace additive elements can be appropriately selected according to the purpose of the semiconductor used. It should be noted that the use of higher purity copper, such as copper with a purity of 99.99% by mass or more, and copper with a purity of 99.999% by mass or more, is effective at the time of loop formation or between the first bond and the second bond. There is also an effect of reducing work hardening at the time of joining, and it is preferable in high-temperature semiconductor applications except for high cost. Further, due to such high purity, it becomes difficult to peel off from the bonding interface even when a steep loop is drawn during loop formation.
  • the palladium or platinum-coated copper ribbon for high-temperature semiconductor elements of the present invention is looped between a semiconductor element pad and a nickel-coated substrate by ultrasonic bonding at a number of locations.
  • the copper core tape has a Vickers hardness of 70 Hv or less and a purity of 99.9% by mass or more.
  • the palladium or platinum coating layer is formed by magnetron sputtering on the copper core material tape at room temperature in a low pressure atmosphere of a rare gas, and is made of a material in which many strains are introduced. .
  • the aluminum coating layer obtained by the present invention has a high purity of 99.9% by mass or more, has a Vickers hardness of 30 Hv or more, and has a bulk hardness. It is characterized in that the hardness difference from the copper core material is reduced.
  • a soft copper having a Vickers hardness of 70 Hv or less and a purity of 99.9% by mass or more performance as an aluminum ribbon for power semiconductors can be exhibited.
  • the gold coating layer obtained by the present invention has a high purity of 99.9% by mass or more and a Vickers hardness of at least twice that of bulk gold. In addition, the effect of work hardening of the copper core material is reduced.
  • a gold coating layer by combining such a gold coating layer with a soft copper having a Vickers hardness of 70 Hv or less and a purity of 99.9% by mass or more, performance as a gold-coated copper ribbon for high-temperature semiconductors can be exhibited. it can.
  • many points of the gold-coated copper ribbon are ultrasonically bonded to an aluminum pad with a carbide tool to form a first bond, and then a gold-coated copper ribbon is formed in a loop shape with the carbide tool, and then many of the gold-coated copper ribbons are formed.
  • the part is ultrasonically bonded to a nickel-coated lead frame or the like with a carbide tool and connected as a second bond.
  • the palladium or platinum coating layer obtained in the present invention is twice as high as bulk palladium or platinum while having a high purity of 99.9% by mass or more. It has the above Vickers hardness and is characterized by reducing the influence of work hardening of the copper core material.
  • a palladium or platinum coating layer by directly combining such a palladium or platinum coating layer with a soft copper having a Vickers hardness of 70 Hv or less and a purity of 99.9% by mass or more, performance as a palladium or platinum-coated copper ribbon for high-temperature semiconductors is achieved. Can be demonstrated.
  • a number of places of palladium or platinum-coated copper ribbon are ultrasonically bonded to an aluminum pad with a carbide tool to form a first bond, and then palladium or platinum with a carbide tool.
  • a typical ultrasonic bonding process in which a coated copper ribbon is formed in a loop shape, and then a large number of palladium or platinum coated copper ribbons are ultrasonically bonded to a nickel-coated lead frame or the like with a carbide tool to form a second bond.
  • chip cracking during the first bonding is suppressed, variation in bonding strength during the first bonding and the second bonding is small, and stable bonding can be achieved.
  • even if the bonded palladium or platinum-coated copper ribbon is left in a high-temperature environment, it is possible to prevent oxygen from entering the copper core tape interface from the surface of the palladium or platinum-coated layer.
  • FIG. 1 is a structural photograph of the aluminum coating layer of the flat rectangular aluminum-coated copper ribbon of the present invention.
  • FIG. 2 is a structural photograph of an aluminum layer of a comparative example of a flat rectangular aluminum-coated copper ribbon.
  • FIG. 3 is a sectional view of a flat rectangular aluminum-coated copper ribbon.
  • FIG. 4 is a diagram showing a state in which a pad of a semiconductor element and a lead frame are connected by ultrasonic bonding using a conventional aluminum clad ribbon with respect to a flat rectangular aluminum-coated copper ribbon.
  • FIG. 5 is a structural photograph (objective lens X20) of the flat gold-coated copper ribbon according to the present invention as seen from above the gold coating layer by a laser microscope.
  • FIG. 1 is a structural photograph of the aluminum coating layer of the flat rectangular aluminum-coated copper ribbon of the present invention.
  • FIG. 2 is a structural photograph of an aluminum layer of a comparative example of a flat rectangular aluminum-coated copper ribbon.
  • FIG. 6 is a structure photograph (objective lens X150) of the gold coating layer of the flat gold-coated copper ribbon of the present invention.
  • FIG. 7 is a structure photograph (objective lens X20) seen from the top of the gold coating layer of the rectangular gold-coated copper ribbon of the comparative example.
  • FIG. 8 is a structure photograph objective lens X150) seen from above of the gold coating layer of the rectangular gold-coated copper ribbon of the comparative example.
  • FIG. 9 is a structural photograph (10,000 times) viewed from the top of the gold coating layer of the flat gold-coated copper ribbon of the present invention.
  • FIG. 10 is a cross-sectional view of a rectangular gold-coated copper ribbon of the present invention.
  • FIG. 11 is a diagram showing a state in which a pad of a semiconductor element and a lead frame are connected by ultrasonic bonding using a conventional gold (bulk) clad ribbon to a rectangular gold-coated copper ribbon.
  • FIG. 12 is a micrograph of the structure of the rectangular palladium-coated copper ribbon of the present invention as viewed from above the palladium coating layer.
  • FIG. 13 is a structural photograph of the palladium layer of the flat rectangular palladium-coated copper ribbon of the comparative example.
  • FIG. 14 is an enlarged structure photograph of the flat rectangular palladium-coated copper ribbon of the present invention as seen from above (average particle diameter: 0.05 to 0.3 ⁇ m).
  • FIG. 15 is a cross-sectional view of a rectangular palladium-coated copper ribbon.
  • FIG. 16 is a diagram showing a state in which a pad of a semiconductor element and a lead frame are connected by ultrasonic bonding using a conventional palladium clad ribbon with respect to a flat palladium-coated copper ribbon.
  • the purity of the copper core tape is 99.9% by mass or more in any of the flat ribbon-shaped aluminum-coated copper ribbon, the flat rectangular gold-coated copper ribbon, and the bonding ribbon of the present invention including the flat rectangular palladium or platinum-coated copper ribbon. Is preferred. This is to reduce the work hardening during loop deformation as much as possible, increase the bonding speed, and increase the number of connections per unit time.
  • the purity and type of the copper core tape is appropriately determined depending on the semiconductor and lead frame used, but in order to avoid work hardening of the copper core tape and mixing of impurities during bonding, the purity is as high as 99.995% by mass or more. It is desirable that
  • the purity of the aluminum coating layer is preferably 99.9 or higher. This is to prevent the trace elements contained in the aluminum metal that causes chip damage from precipitating and aggregating in the aluminum coating layer to form locally highly hard portions in the coating layer. Further, when a semiconductor is used at a high temperature for a long period of time, it prevents the accumulation and oxidation of trace elements that occur at the bonding interface between the aluminum coating layer and the pad of the semiconductor element, and ensures bonding reliability.
  • the hardness of the copper core tape of the present invention is preferably not more than twice the hardness of the aluminum coating layer. This is to make it difficult to peel off from the copper / aluminum interface even if a sharper loop is drawn. Furthermore, it is for suppressing the excessive deformation
  • the aluminum coating layer having a purity of 99.9% by mass or more should be deposited by sputtering under an inert atmosphere such as nitrogen gas, argon gas or helium gas. Is preferred. Moreover, it is preferable that the aluminum coating layer having a purity of 99.9% by mass or more is obtained by vacuum-depositing an aluminum metal source having a purity of 99.9% by mass or more by direct current magnetron sputtering.
  • the polycrystalline structure film can be formed using sputtering such as ion beam sputtering or direct current sputtering, or an ion plating method.
  • the most preferable method for forming an aluminum coating film in the present invention is magnetron sputtering. Ion plating has a difficulty in obtaining a uniform and stable film.
  • the thickness of the aluminum coating film is preferably 50 ⁇ m or less from the viewpoint of resistance to peeling from the copper core tape during loop formation. Furthermore, when the aluminum film thickness is too thin, less than 0.1 ⁇ m, the coating film is pushed out of the joint part by plastic flow due to the load and ultrasonic waves applied to the joint part, and copper is exposed to the joint surface, Since it causes chip damage, 0.1 ⁇ m or more is preferable. More preferably, the region is within a range of 0.1 to 10 ⁇ m, and in this region, the balance between the chip damage resistance and the adhesion strength of the coating film is most excellent.
  • the purity of the copper core tape is preferably 99.99% by mass or more. This is to reduce the work hardening during loop deformation as much as possible, increase the bonding speed, and increase the number of connections per unit time.
  • the purity and type of the copper core tape is appropriately determined depending on the semiconductor and lead frame used, but in order to avoid work hardening of the copper core tape and mixing of impurities during bonding, the purity is as high as 99.995% by mass or more. Is more desirable.
  • the hardness of the gold coating layer of the present invention is preferably at least twice that of the gold bulk. This is to avoid chip damage of the aluminum pad due to copper work hardening of the copper core tape at the joint.
  • the gold coating layer having a purity of 99.9% by mass or more is preferably deposited by sputtering in a rare gas atmosphere such as argon gas or helium (He) gas.
  • the thickness of the gold-coated layer is from the viewpoint of ultrasonically bonding with a nickel-coated lead frame or the like and connecting as a second bond, in order to avoid poor bonding with nickel, It is preferable that it is 500 nm or less. Furthermore, if the gold film thickness is too thin, less than 50 nm, a fine grained gold crystal structure cannot be formed, causing chip damage of the first bond. More preferably, it is a region of 100 to 400 nm, and in this region, the balance between the chip damage resistance and the adhesion strength of the coating film is most excellent.
  • the purity of the copper core tape is preferably 99.99% by mass or more. This is to reduce the work hardening during loop deformation as much as possible, increase the bonding speed, and increase the number of connections per unit time.
  • the purity and type of the copper core tape is appropriately determined depending on the semiconductor and lead frame used, but in order to avoid work hardening of the copper core tape and mixing of impurities during bonding, the purity is as high as 99.995% by mass or more. Is more desirable.
  • the purity of the palladium or platinum coating layer is preferably 99.99% by mass rather than 99.9% by mass. This is because trace elements contained in palladium or platinum metal that cause chip damage are deposited and aggregated on the surface of palladium or platinum particles that have been magnetron sputtered, and there are locally high hardness portions on the palladium or platinum coating layer. This is to avoid the formation.
  • semiconductors are used at high temperatures for a long time, accumulation of trace elements and oxidation that occur at the bonding interface between the palladium or platinum coating layer or copper core material and the aluminum pad of the semiconductor element are prevented, and bonding reliability is ensured. It is to do.
  • the hardness of the palladium or platinum coating layer of the present invention is preferably at least twice that of palladium or platinum bulk, and more preferably at least three times. More preferred. This is to avoid chip damage of the aluminum pad due to copper work hardening of the copper core tape at the joint.
  • the palladium or platinum coating layer having a purity of 99.9% by mass or more is preferably deposited by magnetron sputtering in a rare gas atmosphere such as argon gas or helium (He) gas.
  • the thickness of the palladium or platinum-coated layer is determined so that the thickness of the palladium or platinum-coated layer is wet spread with nickel from the viewpoint of ultrasonic bonding to a nickel-coated lead frame or the like and connecting as a second bond. Is preferably 500 nm or less. Furthermore, when the palladium or platinum film thickness is too thin, less than 50 nm, a fine granular palladium or platinum crystal structure cannot be formed, causing chip damage of the first bond. More preferably, it is a region of 100 to 400 nm, and in this region, the balance between the chip damage resistance and the adhesion strength of the coating film is most excellent.
  • Example 1 [Preparation of copper tape in the case of flat rectangular aluminum-coated copper ribbon] A copper sheet having a purity of 99.999% by mass was rolled to produce a copper tape having a width of 2.0 mm and a thickness of 0.15 mm. Next, when the rolled tape was fully annealed, the Vickers hardness was changed from 70 Hv to 55 Hv. This fully annealed tape was used as the copper core tape “X” of the present invention in Examples and Comparative Examples.
  • a nickel foil having a purity of 99.9% by mass and 0.5 ⁇ m was formed on this copper plate by sputtering to produce a copper core tape “Y” having a width of 2.0 mm and a thickness of 0.15 mm.
  • a copper tape having a purity of 99.9999% by mass was fully annealed, the Vickers hardness decreased to 55-50 Hv.
  • a substance X target having a purity of 99.9% by mass or more and an aluminum target having a purity of 99.9% by mass or more serving as an intermediate layer are arranged in the sputtering apparatus so that the pressure becomes 1 ⁇ 10 ⁇ 1 Pa to 1 ⁇ 10 ⁇ 0 Pa. It was filled with argon gas having a purity of 99.99% by mass or more. Thereafter, an intermediate layer was continuously formed on a rectangular copper core tape separated by 10 cm by sputtering to form a film having a predetermined shape. Thereafter, an aluminum coating layer was deposited and formed at the same pressure to form a layer made of a dense crystal structure having a predetermined thickness.
  • FIG. 1-A The aluminum-coated copper ribbon of sample number 2 was immersed in 50% by mass hydrofluoric acid for 40 seconds. And the surface of the aluminum film after immersion was observed with the laser microscope (FIG. 1-A, FIG. 1-B).
  • a copper plate material having the same composition as that of the sample No. 2 aluminum and a film thickness of 50 ⁇ m was clad rolled into a 99.999 mass% pure copper plate, and this ribbon was converted into 50 mass% hydrofluoric acid.
  • FIGS. 2-A and 2-B show the surface of the aluminum film observed with a laser microscope when immersed for 2 seconds. As is clear from these FIG. 1 and FIG.
  • the loop length of the bonding ribbon is 50 mm
  • the loop height is 30 mm
  • the conditions are set such that the sliding resistance received from the ribbon, the path and the tool is larger than the normal conditions. .
  • the joint strength was measured from the side of the joint using the DAGE universal bond tester PC4000 type from the side of the ribbon. When the amount of aluminum protruding from the ribbon was observed, the aluminum-coated copper ribbon of the present invention had a smaller amount of protrusion than that of the clad except for the aluminum-coated copper ribbon of Sample No. 11.
  • the purity of the aluminum coating layer is important, and the evaporation sources A to C within the scope of the present invention are all joined with the purity coating layer.
  • all of the comparative sample Nos. 1 to 13 in which the coating layer of the evaporation source D having lower purity was formed had poor reliability. It can be seen that the bonding strength is also inferior.
  • the hardness of the aluminum coating layer is also in the range of Hv 40 to 45 in the examples of the present invention, and good results are obtained in the bonding strength and the bonding reliability.
  • Example 2 Examples of the rectangular gold-coated copper ribbon of the present invention will be described below.
  • a copper plate material having a purity of 99.9% by mass was rolled to produce a copper tape having a width of 2.0 mm and a thickness of 0.15 mm.
  • the Vickers hardness was changed from 70 Hv to 55 Hv.
  • This fully annealed tape was used as the copper core tape “X1” of the present invention in Examples and Comparative Examples.
  • copper core tapes “X2”, “X3”, and “X4” of the present invention were obtained by copper flat rolling with a purity of 99.99% by mass, a purity of 99.999% by mass, and a purity of 99.9999% by mass. .
  • a copper foil tape having a width of 2.0 mm and a thickness of 0.15 mm is formed by sputtering a copper foil having a purity of 99.9% by mass and a 0.5 ⁇ m purity palladium foil. “Y” was prepared. When a copper tape having a purity of 99.99 to 99.9999% by mass was fully annealed, the Vickers hardness was 55 to 50 Hv.
  • a target of substance X having a purity of 99.9% by mass or more and a gold target having a purity of 99.9% by mass or more serving as an intermediate layer are arranged in the sputtering apparatus, and the purity is 99.99% by mass so that the sputtering pressure becomes 0.7 Pa. % Or more argon gas.
  • an intermediate layer was continuously formed on a rectangular copper core tape separated by 100 mm by sputtering to form a film having a predetermined shape.
  • a gold coating layer was deposited and formed under the same pressure to form a layer composed of a dense crystal structure having a predetermined thickness. Since the sputtering time is short, the surface temperature of the copper core tape is approximately room temperature.
  • the thickness of the gold coating layer measured above is larger than the thickness of the gold coating layer of the present invention, the above-mentioned thickness is necessary for Hv measurement, and there is a difference in the history of formation of these coating layers. Therefore, the above measured value holds even for the thickness of the gold coating layer within the range of the present invention.
  • the magnetron sputtered film of the present invention has individual grain boundaries of gold and is present independently. I understand that. This is probably because a trace amount of elements precipitated at the gold grain boundaries to form compartments. Examples 6 and 7 show comparative examples of the structures of these gold-coated copper ribbons.
  • the purity of the gold coating layer is important, and all of the coating layers having the purity of the evaporation sources A to C within the scope of the present invention have good results in bonding strength and bonding reliability.
  • all of the comparative sample Nos. 13 to 18 in which the coating layer of the evaporation source D having a lower purity was formed had poor reliability and the bonding strength was also inferior. Recognize.
  • the hardness of the gold coating layer as it is magnetron sputtered is in the range of Hv 100 to 150 in the examples of the present invention, and good results are obtained in the bonding strength and the bonding reliability.
  • Examples of the rectangular palladium or platinum-coated copper ribbon of the present invention will be described below.
  • [Preparation of copper tape of flat palladium or platinum-coated copper ribbon] A copper sheet having a purity of 99.9% by mass was rolled to produce a copper tape having a width of 2.0 mm and a thickness of 0.15 mm. Next, when the rolled tape was fully annealed, the Vickers hardness was changed from 70 Hv to 55 Hv. This fully annealed tape was used as the copper core tape of the present invention. 1 to 3, 40 to 42, and comparative sample Nos. Used for 1-3, 7-9, 13-15.
  • samples obtained by performing copper flat rolling with a purity of 99.99% by mass, a purity of 99.999% by mass, and a purity of 99.9999% by mass were used as the copper core material tape of the present invention.
  • a platinum foil having a purity of 99.9% by mass and 0.5 ⁇ m is formed on this copper plate by sputtering, and copper platinum having a width of 2.0 mm and a thickness of 0.15 mm.
  • a coated core tape was prepared.
  • a palladium foil having a purity of 99.9% by mass and 0.5 ⁇ m was formed on this copper plate by sputtering to produce a copper palladium-coated core material tape having a width of 2.0 mm and a thickness of 0.15 mm.
  • a target of substance X having a purity of 99.9% by mass or more and an palladium or platinum target having a purity of 99.9% by mass or more serving as an intermediate layer are disposed, and the purity of 99.9% is achieved so that the sputtering pressure is 0.7 Pa. It was filled with 99% by mass or more of argon gas. Thereafter, an intermediate layer was continuously formed on a flat rectangular copper (Cu) core tape in a room temperature state separated by 100 mm by sputtering to form a film having a predetermined shape.
  • Cu copper
  • a palladium (Pd) or platinum (Pt) coating layer was deposited and formed at the same pressure to form a layer composed of a dense crystal structure having a predetermined thickness. Since the sputtering time was short, no temperature increase of the copper (Cu) core tape was observed.
  • an intermediate layer was continuously formed on a rectangular copper core tape at room temperature to form a film having a predetermined shape. Thereafter, a palladium or platinum coating layer was deposited and formed under the same pressure to form a layer composed of a dense crystal structure having a predetermined thickness. Since the sputtering time was short, no increase in the temperature of the copper core tape was observed.
  • the magnetron sputtered film of the present invention has individual grain boundaries of palladium or platinum that are divided into spherical shapes and exist independently. I understand that. This is probably because a trace amount of elements precipitated at the grain boundaries of palladium or platinum to form compartments.
  • the loop length of the palladium or platinum-coated copper ribbon is 50 mm and the loop height is 30 mm, and the sliding resistance received from the ribbon, the path, and the tool is larger than normal conditions.
  • the structure and thickness of the palladium or platinum coating layer are important, and the evaporation source within the range of the present invention is 99.9% by mass to 99%.
  • a granular structure having a purity of 9999% by mass and a coating layer having a thickness within the range of the present invention has obtained good results in bonding strength and bonding reliability in both the first bond and the second bond.
  • Sample No. As shown in 1 to 13, even if the palladium or platinum coating layer has the same purity, the coating layer has a palladium or platinum thickness exceeding the range of the present invention (Comparative Example No. 7). 9 and No. 10 to 12), or when the palladium or platinum coating layer is thinner than the scope of the present invention (Sample Nos. 1 to 3 and No. 4 to 6), all have poor bonding strength, and It can be seen that the bonding reliability is poor.
  • the rectangular aluminum-coated copper ribbon, rectangular gold-coated copper ribbon, and rectangular palladium or platinum-coated copper ribbon of the present invention exhibit high reliability in rapidly developing areas such as for vehicle mounting and power semiconductor devices. It is expected to contribute to industrial development mainly in these development fields. Further, the rectangular aluminum-coated copper ribbon, rectangular gold-coated copper ribbon, and rectangular palladium or platinum-coated copper ribbon of the present invention are high-temperature semiconductors that require a heat-resistant temperature of 130 to 175 ° C. and a large capacity, particularly air conditioners, solar cells. By being adopted in power semiconductors such as photovoltaic power generation systems, hybrid vehicles, and electric vehicles, it is expected to spread in these new applications and contribute to the development of this field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Wire Bonding (AREA)

Abstract

【課題】 半導体の素子パッドと基板側のリード間を接続するボンディングリボンにおいて、超音波接合性、高導電容量、ループ特性を向上する。 【解決手段】 リボンを銅芯材をアルミニウム被覆層で構成し、銅芯材を70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅として導電性とループ形成性を付与し、被覆層を純度99.9質量%以上のアルミニウムをアルゴンガスまたはヘリウムガス等の不活性雰囲気下で析出することによって、30Hv以上のビッカース硬さをもつ緻密な微細結晶組織として、芯材と被覆層との硬さの差を小さくして、アルミニウムパッドの損傷を防止するとともに、接合性を向上する。 不活性雰囲気中で析出したアルミニウム微細結晶組織は、硬さがアルミニウムバルクよりも高く、ループ時の切断や剥がれを生じない。

Description

半導体素子用平角状アルミニウム、金、またはパラジウム若しくは白金被覆銅リボン
 本発明は、電子部品および半導体パッケージ内において半導体素子と基板側リード部とを多数箇所の超音波接合によって接合し、ループ状に接続するための平角状アルミニウム、金、またはパラジウム若しくは白金被覆銅リボン、特にパワー半導体素子と基板側リード部とを接続するための平角状アルミニウム、金、またはパラジウム若しくは白金被覆銅リボンに関する。
 半導体素子に搭載されたボンディングパッドとして、平角状アルミニウム被覆銅リボンの場合には主にアルミニウムやその合金からなるアルミニウムパッドが、平角状金被覆銅リボンの場合には主に純度99.99質量%のアルミニウム金属またはそれに0.5~1.2質量%のシリコンや0.2~0.7質量%の銅またはこれらを組み合わせたアルミニウム-銅-シリコンなどの合金からなるアルミニウムパッドが、平角状パラジウムまたは白金被覆銅リボンの場合には主に純度99.99質量%のアルミニウム金属またはそれに0.5~1.2質量%のシリコンや0.2~0.7質量%の銅または、これらを組み合わせたアルミニウム-銅-シリコンなどの合金からなるアルミニウムパッドが、それぞれ使用される。
 また、平角状アルミニウム被覆銅リボンの基板側リードには、鉄合金や銅合金または金や銀等の貴金属メッキおよびニッケルメッキがされた銅合金、鉄合金、あるいは、これらからなるリードを搭載したセラミックスが、平角状金被覆銅リボンのニッケル被覆基板側リードには、電気メッキおよびスパッタによりニッケル被覆層が形成された銅合金や鉄合金、あるいは、これらからなるリードを搭載したセラミックスが、平角状パラジウムまたは白金被覆銅リボンのニッケル被覆基板側リードには、電気メッキおよびスパッタによりニッケル被覆層が形成された銅合金や鉄合金、あるいは、これらからなるリードを搭載したセラミックスが、それぞれ主に使用されている。このアルミニウムパッドとニッケル被覆リードフレーム等を超音波接合によって接続するのに、平角状アルミニウム被覆銅リボンの場合には平角状アルミニウムリボンが、平角状金被覆銅リボン、または平角状パラジウムまたは白金被覆銅リボンの場合には平角状銅リボンが使用される。
 平角状アルミニウムリボンまたは平角状銅リボンのボンディング方法は、アルミニウムまたは銅のリボンの上に超硬ツールを押しつけ、その荷重および超音波振動のエネルギーにより接合するものである。
 超音波印加の効果は、アルミニウムリボンまたは銅リボンの変形を助長するための接合面積の拡大と、アルミニウムリボンに自然に形成された1ナノメートル(nm)程度の酸化膜を破壊・除去することにより、アルミニウム等の金属原子を下面に露出させ、対向するアルミニウムやニッケル等のボンディングパッドとアルミニウムリボンとの界面に塑性流動を発生させ、あるいは、銅リボンに自然に形成された酸化膜を破壊・除去することにより、銅等の金属原子を下面に露出させ、対向するアルミニウムの第一ボンド面およびニッケルの第二ボンド面と銅リボン面との界面に塑性流動を発生させ、互いに密着する新生面を漸増させながら、両者を原子間結合させることにある。
 平角状アルミニウム被覆銅リボンの場合には、このような半導体素子の電極パッドと接続する基板側のリードとは、上記したように、それぞれ材質が異なる。このため、冶金的な溶融過程を伴わない超音波接合によってもこれらの接合界面ではこれら異種の金属間化合物が生成したりして、必ずしも強固な、信頼性の高い接合は達成できない。また、平角状金被覆銅リボン、または平角状パラジウムまたは白金被覆銅リボンの場合には、このような半導体素子のアルミニウム電極パッドおよびこれと接続するニッケル被覆基板側のリードとは、上記したように、それぞれ材質が異なる。このため、冶金的な溶融過程を伴わない超音波接合によってもこれらの接合界面では、銅リボン表面の酸化や硫化による変質層の存在により、必ずしも強固な、信頼性の高い接合は達成できない。
 しかし、平角状アルミニウム被覆銅リボンのクラッドリボンは、アルミニウムクラッド側のアルミニウム層でアルミニウムパッドを超音波接合(第一ボンド)した後、リードフレーム側に接合する場合には、リード先端はコバールなどのより硬い金属材料であるため、第一ボンド後、ループを描いて捻って回転させ、あるいは方向を反転させて第二ボンドする必要があった。
 また、リボンを構成する材料として、銅合金が硬くアルミニウムが柔らかいため、ループ形成時にリボンが曲げ、あるいは捻られると銅合金とアルミニウムとの固さの違いから、クラッドリボンの界面から剥がれが発生した。このクラッド界面を強化するため熱処理することも考えられたが、熱処理すると銅とアルミニウムの境界面に銅とアルミニウムの脆弱な金属間化合物層が生成し、クラッド界面の密着強度を低下させ、その結果、却って同界面が剥がれやすくさせてしまう。
 平角状アルミニウム被覆銅リボンの場合には、このような被覆層界面や接合界面で銅、アルミニウムの相互拡散による金属間化合物が形成されることを防止するため、銅合金とアルミニウムとの間に中間層としてニッケル、あるいはチタン、タングステン、クロムなどの拡散防止層を設けることも行われている。
 しかし、これら中間層の形成は、ループ形成時におけるクラッド界面の剥がれを抑制する効果はあるが、超音波が印加された接合部においては、銅合金層、ニッケル中間層およびアルミニウム層のそれぞれに独自の塑性流動が発生するため、クラッド界面の剥がれを抑制することは困難であり、かえって、接合強度のばらつきが大きくなることがわかった。
 また、平角状アルミニウム被覆銅リボンの場合には、これらのパワー半導体素子に適用されるこれらの平角状ボンディングリボンにおいても、半導体素子の微細化、高密度化が進むにつれて、電流の高密度化が求められ、一方では半導体素子上のパッド電極はアルミニウムであるため、これらのアルミニウムパッドに対する超音波ボンディングにおける高い接合信頼性が要求される。
 特開2007-324603号公報(後述の特許文献2)は、そのような要求に応えて提案されたものであって、導電性の高い銅を芯材としてアルミニウムをクラッド、または被覆して高い導電性と、アルミニウムパッドに対する超音波接合性とを両立させたものである。
 この発明によれば、平角状アルミニウム被覆銅リボンの場合には、ワイヤ内側の銅層に対して、外側のアルミニウムで被覆することによって信頼性の高い超音波ボンディングによる接合が達成できるとしている。それによれば、内側の銅によって高い導電性を達成し、それに対して1/10よりも小さい厚さのアルミニウム被覆層、実用上厚さ1~200nm、有利には約20~25nmのアルミニウム被覆層によって、アルミニウムパッドに対する優れた超音波接合が達せいできるとしている。
 しかしながら、このようなアルミニウム被覆銅リボンによって超音波接合する場合、銅芯材によって高い導電性は達成できるが、超音波接合の接合強度にはバラツキが表れ、さらに半導体素子側でチップ割れが発生するなど、接合信頼性は十分とはいえないものであった。
 平角状アルミニウム被覆銅リボンの場合には、このような大容量の複合リボンは、100~150℃の耐熱温度を必要とする半導体、特にエアコン、太陽光発電システム、ハイブリッド車や電気自動車などのパワー半導体に採用され、その半導体素子の動作条件は通常の半導体素子よりも高温度となる。例えば、車載用に使用されるパワー半導体に用いられる複合リボンは、最大で通常100~150℃の接合部温度に耐える必要がある。このような高温環境下においては、リボン材料の内部酸化も課題として挙げられ、リボン表面を安定な皮膜で覆うなどの、リボン材料の耐酸化性向上が求められる。
 このような実装環境下では、複合リボンとアルミニウムパッド電極部との接合強度の確保が重要となり、特許文献2の第0016段落に記載されているように、「外側の層が内側の層を全周にわたって取り囲んで被覆している」こととなる。
 平角状アルミニウム被覆銅リボンの場合には、半導体素子に搭載されたボンディングパッドとして、主に純度99.99質量%のアルミニウム金属またはそれに0.5~1.2質量%のシリコンや0.2~0.7質量%の銅または、これらを組み合わせたアルミニウム-銅-シリコンなどの合金からなるアルミニウムパッドが使用される。
 また、ニッケル被覆基板側リードには、電気メッキおよびスパッタによりニッケル被覆層が形成された銅合金や鉄合金、あるいは、これらからなるリードを搭載したセラミックスが主に使用されている。このアルミニウムパッドとニッケル被覆リードフレーム等を超音波接合によって接続するのに、平角状銅リボンが使用される。平角状銅リボンのボンディング方法は、銅リボンの上に超硬ツールを押しつけ、その荷重および超音波振動のエネルギーにより接合するものである。超音波印加の効果は、銅リボンの変形を助長するための接合面積の拡大と、銅リボン表面に自然に形成された酸化膜を破壊・除去することにより、銅等の金属原子を下面に露出させ、対向するアルミニウムの第一ボンド面およびニッケルの第二ボンド面と銅リボン面との界面に塑性流動を発生させ、互いに密着する新生面を漸増させながら、両者を原子間結合させることにある。
 また、平角状金被覆銅リボンの場合には、このような半導体素子のアルミニウム電極パッドおよびこれと接続するニッケル被覆基板側のリードとは、上記したように、それぞれ材質が異なる。このため冶金的な溶融過程を伴わない超音波接合によっても、これらの接合界面では、銅リボン表面の酸化や硫化による変質層の存在により、必ずしも強固な、信頼性の高い接合は達成できない。
 これらの解決策として、銅素材に金の電気メッキをし、その後複数回連続伸線して金を2.5μm及び0.8μm被覆した熱圧着ボールによるボンディングワイヤが提案されている(特開昭59-155161号公報および特開2004-006740号公報、後述の特許文献3及び特許文献4)。これらのボンディングワイヤの技術をボンディングリボンの超音波接合に適用すると、ボンディングワイヤの場合は接合する一方の半導体素子側の電極がアルミニウムパッドであり、他方がリードフレームなどの異種金属であるため、ボンディングリボンの場合も、アルミニウムパッドとニッケルの電気メッキやクラッドが被覆されたコバール等のリードフレームに対して金被覆銅リボンの金属面を接合するものとなる。
 しかし、この金被膜の厚い金被覆銅リボンは、金がニッケルとの接合性が悪いため、ニッケル被覆基板側のリードとうまく第二ボンドすることができなかった。
 このため平角状金被覆銅リボンの場合には、銅の酸化および硫化を防止しつつ、このような第二ボンドの接合性の悪さを克服するため、金被覆層を薄くすることも行われている。
 特許文献2は、そのような要求に応えて提案されたものとみることもでき、導電性の高い銅を芯材として金を被覆して高い導電性とアルミニウムパッドに対する超音波接合性を両立させたものである。
 この発明によれば、ワイヤ内側の銅層に対して、外側の金で被覆することによって信頼性の高い超音波ボンディングによる接合が達成できるとしている。それによれば、内側の銅によって高い導電性を達成し、それに対して1/10よりも小さい厚さの金被覆層、実用上厚さ1~200nm、有利には約20~25nmの金被覆層によって、アルミニウムパッドに対する優れた超音波接合が達成できるとしている。
 また、平角状金被覆銅リボンの場合には、このような金被覆銅リボンによって一ヶ所で一気に超音波接合する場合、銅が加工硬化をしなければ、銅芯材によって高い導電性は達成しうる。
 しかしながら、金被覆銅リボンの多数箇所をアルミニウムパッドへ同時に超音波接合する場合、接合時に発生する熱によって接合箇所における銅は変形し、銅の加工硬化によってアルミニウムパッドにクラック等が入りやすくなる。また、その接合界面には銅とアルミニウムとの金属間化合物ができやすくなり、結果として接合強度にはバラツキが表れる。さらに高温放置すると、接合界面のボイド等からアルミニウムの酸化膜が発達して接合界面における金被覆銅リボンの接合強度が低下し、高温接合信頼性は十分とはいえないものであった。
 なお、パワー半導体等の高温半導体素子用金被覆銅リボンを用いた超音波接合は、第一ボンド後ループを形成して第二ボンドをし、場合によっては更にそれ以上の複数ボンドを行い、最終ボンド後にカッターで金被覆銅リボンを切断するものである。
 上記の金被覆銅リボンで接合信頼性が問題となるのは、130~175℃の耐熱温度を必要とする高温半導体、特にエアコン、太陽光発電システム、ハイブリッド車や電気自動車などのパワー半導体に採用される大容量の金被覆銅リボンである。例えば、車載用に使用されるパワー半導体に用いられる金被覆銅リボンは、最大で通常150~175℃程度の接合部温度に耐える必要がある。このような高温環境下においては、金被覆銅リボンを超音波接合した場合の高温酸化も課題として挙げられ、金被覆銅リボンの接合表面を安定な皮膜で覆うなどの措置により、金被覆銅リボンの耐酸化性向上が求められる。
 このような実装環境下では、金被覆銅リボンとアルミニウムパッド電極部およびニッケル被覆基板側リードの接合強度の確保が重要となる。
 また、平角状金被覆銅リボンの場合には、半導体素子に搭載されたボンディングパッドとして、主に純度99.99質量%のアルミニウム金属またはそれに0.5~1.2質量%のシリコンや0.2~0.7質量%の銅または、これらを組み合わせたアルミニウム-銅-シリコンなどの合金からなるアルミニウムパッドが使用される。
 また、ニッケル被覆基板側リードには、電気メッキおよびスパッタによりニッケルが形成された銅合金や鉄合金、あるいは、これらからなるリードを搭載したセラミックスが主に使用されている。このアルミニウムパッドとニッケル被覆リードフレーム等を超音波接合によって接続するのに、平角状銅リボンが使用される。
 また、平角状金被覆銅リボンの場合には、平角状銅リボンのボンディング方法は、銅リボンの上に超硬ツールを押しつけ、その荷重および超音波振動のエネルギーにより接合するものである。超音波印加の効果は、銅リボンの変形を助長するための接合面積の拡大と、銅リボンに自然に形成された酸化膜を破壊・除去することにより、銅等の金属原子を下面に露出させ、対向するアルミニウムの第一ボンド面およびニッケルの第二ボンド面と銅リボン面との界面に塑性流動を発生させ、互いに密着する新生面を漸増させながら、両者を原子間結合させることにある。
 平角状パラジウムまたは白金被覆銅リボンの場合には、このような半導体素子のアルミニウム電極パッドおよびこれと接続するニッケル被覆基板側のリードとは、上記したように、それぞれ材質が異なる。このため冶金的な溶融過程を伴わない超音波接合によっても、これらの接合界面では、銅リボン表面の酸化や硫化による変質層の存在により、必ずしも強固な、信頼性の高い接合は達成できない。
 これらの解決策として、ボンディングワイヤのウェッジ接合技術を応用することが考えられる。すなわち、銅極細線にパラジウムを0.3μm電気メッキしたボンディングワイヤ(実開昭60-160554号公報、後述の特許文献5)やパラジウムまたは白金を0.1μm化学蒸着したボンディングワイヤ(特開昭62-097360号公報、後述の特許文献6)のウェッジ接合技術を応用することが考えられる。
 あるいは、平角状パラジウムまたは白金被覆銅リボンの場合には、パラジウムを0.8μm電気メッキした後伸線したボンディングワイヤ(特開2004-014884号公報、後述の特許文献7)について、ウェッジ接合技術を応用することが考えられる。このボンディングワイヤの技術をボンディングリボンの超音波接合に適用すると、ボンディングワイヤの場合は接合する一方の半導体素子側の電極がアルミニウムパッドであり、他方がリードフレームなどの異種金属であるため、ボンディングリボンの場合も、アルミニウムパッドとニッケルの電気メッキやクラッドが被覆されたコバール等のリードフレームに対してパラジウムまたは白金被覆銅リボンの金属面を接合するものとなる。
 ところが、平角状パラジウムまたは白金被覆銅リボンの場合には、この被覆銅リボンは、リボン幅が数百μmから十数mmあり、リボン厚さが1mm程度以下とボンディングワイヤよりも幅や厚さが一桁以上も大きくなり、パラジウム被膜または白金被膜が厚くなる。この被覆銅リボンを直接アルミニウム電極パッドに超音波接合しようとすると、アルミニウムパッドが過度に加熱されるとともに、アルミニウムパッドに対する過大な押圧力によってアルミニウムパッドが割れてしまうという課題があった。一方、パラジウムまたは白金はニッケルとの濡れ性が良いため、リードフレーム側でウェッジ接合すると、ニッケル被覆基板側のリード上を高純度のパラジウムや白金が濡れ拡がり、リボン幅内でうまく第二ボンドすることができなかった。
 このため、平角状パラジウムまたは白金被覆銅リボンの場合には、銅の酸化および硫化を防止しつつ、このような第二ボンドの接合部の濡れ拡がりを克服するため、パラジウムまたは白金被覆層を薄くすることも考えられうる。特開2007-012776号公報(後述の特許文献8)は、そのような要求に応えて提案されたものとみることもでき、導電性の高い銅を芯材としてパラジウムまたは白金を電気メッキした後、伸線・熱処理をして外皮層が0.016μmまたは0.007μmにしたボンディングワイヤである。この発明によれば、外側のパラジウム等を薄くするため、第二ボンドにおける接合性の濡れ拡がりの課題を解決する可能性がある。また、熱処理による拡散層を設けることによって信頼性の高い超音波ボンディングによる接合が達成できるとしている。
 しかしながら、平角状パラジウムまたは白金被覆銅リボンの場合には、パラジウムまたは白金被覆銅リボンの多数箇所をアルミニウムパッドへ同時に超音波接合する場合、外皮層が薄いため接合時に発生する熱によって接合箇所における銅は変形し、銅の加工硬化の影響が直接アルミニウム電極パッドに伝わるため、アルミニウムパッドにクラック等が入りやすくなる。また、電極パッドの接合界面には銅とアルミニウムとの金属間化合物ができやすくなり、高温環境下で使用すると結果として接合強度にはバラツキが表れる。さらに高温放置すると、接合界面のボイド等からアルミニウムの酸化膜が発達して接合界面におけるパラジウムまたは白金被覆銅リボンの接合強度がなくなり、高温接合信頼性は十分とはいえないものとなる。
 なお、パワー半導体等の高温半導体素子用パラジウムまたは白金被覆銅リボンを用いた超音波接合は、第一ボンド後ループを形成して第二ボンドをし、場合によっては更にそれ以上の複数ボンドを行い、最終ボンド後にカッターでパラジウムまたは白金被覆銅リボンを切断するものである。
 平角状パラジウムまたは白金被覆銅リボンの場合には、上記のパラジウムまたは白金被覆銅リボンで接合信頼性が問題となるのは、130~175℃の耐熱温度を必要とする高温半導体、特にエアコン、太陽光発電システム、ハイブリッド車や電気自動車などのパワー半導体に採用される大容量のパラジウムまたは白金被覆銅リボンである。例えば、車載用に使用されるパワー半導体に用いられるパラジウムまたは白金被覆銅リボンは、最大で通常150~175℃程度の接合部温度に耐える必要がある。このような高温環境下においては、パラジウムまたは白金被覆銅リボンを超音波接合した場合の高温酸化も課題として挙げられ、パラジウムまたは白金被覆銅リボンの接合表面を安定な皮膜で覆うなどの、パラジウムまたは白金被覆銅リボンの耐酸化性向上が求められる。
 このような実装環境下では、パラジウムまたは白金被覆銅リボンとアルミニウムパッド電極部およびニッケル被覆基板側リードの接合強度の確保が重要となる。
特公昭60-22827号公報 特開2007-324603号公報 特開昭59-155161号公報 特開2004-006740号公報 実開昭60-160554号公報 特開昭62-097360号公報 特開2004-014884号公報 特開2007-012776号公報
金属表面技術、Vol.38, No.9, 1987,「対向ターゲット式スパッタによるAl薄膜の特性」PP450~453, 平田 豊明、ほか。 理学電機ジャーナル、29(2)、1998、 「SiO2/Si基板上の多結晶Al、Cuスパッタ膜の放射光を用いたマイクロラウエ回折」、安阿弥繁、ほか。
 平角状アルミニウム被覆銅リボンの場合には、前述のようなパワー半導体素子用複合リボンを用いた超音波接合は、第一ボンド後ループを形成して第二ボンドをし、場合によっては更にそれ以上の複数ボンドを行い、最終ボンド後にカッターで複合リボンを切断していた。
 ところが、これまでの複合リボンでは、アルミニウム被覆層の厚さを厚くして第一ボンド時のチップ割れを防ごうとすると、銅とアルミニウムの硬さの差が大きすぎるため、ループ形成時の複合リボンに加わる屈曲動作により被覆層の界面剥がれが発生する。
 逆に、平角状アルミニウム被覆銅リボンの場合には、アルミニウム被覆層の厚さを薄くすると、接合時における超硬ツールの荷重と印加される超音波のエネルギーによって、軟質なアルミニウム被覆層のみで塑性流動が選択的に発生し、アルミニウム被覆層が接合界面から押し出される。また、ボンディング条件によっては、アルミニウム被覆層が銅から剥がれる場合もある。これらの現象により、結果的にアルミニウムで被覆されていた銅の界面が露出することになる。従って、ボンディング時の荷重と超音波エネルギーが露出された銅の界面からアルミニウムパッドへ直接伝達されるため、アルミニウムパッド電極側の半導体素子にチップダメージが生じていた。
 また、平角状アルミニウム被覆銅リボンの場合には、アルミニウム被覆層を形成するため電気メッキされたアルミニウムの場合、他のアルカリ元素イオン等の巻き込みにより多結晶構造とならず、また、硬度のばらつきが大きく、超硬ツールで超音波接合されたアルミニウムパッド電極との接合強度が不安定となる。また、硬度のばらつきは、局所的な応力集中を発生させ、チップダメージの要因となる。さらに、接合強度のばらつきは、接合状態のばらつきが大きいことを示しており、長期間の接合部信頼性に欠ける結果となっていた。
 そこで、これらに対処するため、平角状アルミニウム被覆銅リボンの場合には、アルミニウム被覆層を設けた銅リボンが第一ボンドからループを描いて第二ボンドする超音波ボンディング時において、アルミニウム被覆層の剥離を防止し、また、超音波ボンディング時のアルミニウム被覆層の過度の塑性流動やそれに伴うアルミニウム被覆層の剥離やチップダメージを防止すると共に接合信頼性を向上し、導電性の向上および内部酸化の防止を本発明の課題とする。
 本発明は、平角状金被覆銅リボンの場合には、上記問題を解決するため、ある程度形状の大きな金被覆層を設けた金被覆銅リボンがアルミニウムの金属または合金からなる半導体素子パッドの第一ボンドで多数箇所の超音波接合によってボンディングし、第一ボンドからループを描いてニッケル被覆基板の第二ボンドで多数箇所の超音波接合によってボンディングしても、第一ボンド時にアルミニウムパッドにクラック等が生じることがなく、第二ボンド時においても十分な接合強度を確保することを課題とする。
 本発明は、平角状パラジウムまたは白金被覆銅リボンの場合には、上記課題を解決するため、ある程度形状の大きなパラジウムまたは白金被覆層を設けたパラジウムまたは白金被覆銅リボンがアルミニウムの金属または合金からなる半導体素子パッドの第一ボンドで多数箇所の超音波接合によってボンディングし、第一ボンドからループを描いてニッケル被覆基板の第二ボンドで多数箇所の超音波接合によってボンディングしても、第一ボンド時にアルミニウムパッドにクラック等が生じることがなく、第二ボンド時においてもリボン幅を超えてぬれ拡がることがなく十分な接合強度を確保することを本発明の課題とする。
 平角状アルミニウム被覆銅リボンの場合には、上記課題を解決するための手段として、本発明者らはアルミニウム被覆層および銅芯材テープの純度と硬さに着目した。
 アルミニウム被覆ボンディングワイヤを超音波接合する際の接合部におけるアルミニウム層の過度の塑性流動は、これらの被覆層と芯材との硬さの差が大きいことに起因しており、これに対してアルミニウム被覆層の硬さを高くすること、およびこれと対応する芯材の銅の硬さを低くして、両者の硬さの差を小さくしてバランスさせることによって、解決できること、また、そのためにはアルミニウム被覆層の素材とその成膜条件が重要であることを見出した。
 平角状アルミニウム被覆銅リボンの場合には、本発明の100~150℃の環境下で用いられるパワー半導体に使用するアルミニウム被覆リボンは、半導体素子のパッドと基板とのあいだを多数箇所の超音波接合によってループ状に接続するためのアルミニウム被覆層および銅芯材テープからなる平角状アルミニウム被覆リボンにおいて、前記アルミニウム被覆層は、30Hv以上のビッカース硬さをもつ純度99.9質量%以上のアルミニウムからなり、前記銅芯材テープは70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅からなることを特徴とする、このアルミニウム被覆層は、純度99.9質量%以上のアルミニウムからなり、真空中で原子状ないしクラスター状に積層形成された、30Hv以上のビッカース硬さをもつ多結晶構造である。
 平角状アルミニウム被覆銅リボンの場合には、本発明におけるアルミニウム被覆層は、純度99.9質量%以上の高純度でありながら、硬さは同等の純度のアルミニウムのバルクの硬さよりも高いものとなっている。
 一般に高純度のアルミニウムは、アニールされたバルクにおいて、略17Hv程度の硬度であるが、本発明において解明されたアルミニウム被覆層の硬さはこれらよりも著しく高いものとなっており、これは、本発明の被覆ボンディングリボンの表面に形成されるアルミニウム被覆層が、不活性ガスが介在する真空条件下で堆積して形成された多結晶組織からなることにより、30Hv以上のビッカース硬さを発現する。
 平角状アルミニウム被覆銅リボンの場合には、その原因として、これらの条件下で形成されたアルミニウム層の真空析出時に多くの歪みが導入されているためと考えられる。歪みの原因は、アルミニウム源の不純物に起因したり、真空装置中に残留する酸素や水分などに起因したりする。特に、スパッタリングする場合には、蒸着されるアルミニウム粒子に高エネルギーが付加されるとともに、使用する不活性ガス、例えばアルゴンや残留する酸素イオンや水素イオン等が巻き込まれ、緻密で結晶粒の小さい多結晶膜を形成する(非特許文献1および非特許文献2)。この真空析出されたアルミニウム多結晶膜は、アルミニウムの純度が99.99質量%、さらに99.99質量%へと高くなるほど結晶サイズは大きくなる傾向にある。
 平角状アルミニウム被覆銅リボンの場合には、この真空析出されたアルミニウム多結晶膜は、硬さをもたらす原因ともなった、高い内部歪を保持しており、また、結晶組織もその結晶粒のサイズがそろわず、硬さや性質にもバラツキがあるため、加熱処理によって、転移を再配列させて歪んだ結晶粒を回復させることが望ましい。具体的には、加熱処理により、アルミニウム被覆層中の不ぞろいな小さな結晶粒を消失させて大きな結晶粒だけを成長させて残すことになり、アルミニウム被覆層の硬さを安定させることができる。ただし、長時間および高温での加熱処理は、アルミニウム/銅界面の化合物を成長させ、化合物が1μm以上になると界面で剥がれが生じる、したがって、このような化合物を成長させないよう、上記の結晶組織を維持する条件で熱処理を行うことが重要となる。
 平角状アルミニウム被覆銅リボンの場合には、この加熱処理の効果もアルミニウムの純度が99.99質量%、さらに99.99質量%へと高くなるほど大きくなる傾向にある。特に、スパッタされたアルミニウム粒子にはひずみが大きいのでこの加熱処理が好ましい。本発明で得られるアルミニウム被覆層は、このアルミニウム多結晶膜が衝撃力のクッションとなって銅芯材テープのボンディング時におけるチップダメージを防ぐ効果がある。
 なお、本発明の純度99.99質量%以上のアルミニウム被覆銅リボンを形成後に大気中にさらすと、アルミニウム被覆層の表面には1ナノメートル(nm)程度の酸化膜が自然に形成される。このためボンディング時に超硬ツールとアルミニウムリボンとのすべりを良くするため、アルミニウム被覆銅リボンの表面にさらに潤滑剤の膜を被覆する必要もない。
 また、平角状アルミニウム被覆銅リボンの場合には、被覆層表面のアルミニウム酸化膜は、緻密で安定であるため、アルミニウム被覆層内部への酸素の進入を防ぎ、酸化膜の成長を抑制させる効果がある。このことは実装後の高温放置試験で、アルミニウムリボンのアルミニウムと銅との接合界面に新たなアルミニウム酸化物が形成されないことから裏付けられる。
 アルミニウム被覆層の上記の硬さに対して銅芯材テープを70Hv以下、より好ましくは60Hv以下のビッカース硬さとすることにより、ループ形成の界面剥がれを抑制することが可能となる。
 また、上記のアルミニウム被覆層および銅の硬さに対して、前記アルミニウム被覆層の厚さが、0.1以上50μm以下であり、好ましくは0.1~10μmの範囲であって、アルミニウム被覆層の厚さが上記の範囲にあることによって、上記の硬さが最も効果を発揮する。
 平角状アルミニウム被覆銅リボンの場合には、アルミニウム被覆層の厚さが薄く、前記の特許文献2で好適範囲とされているような厚さでは、上記の硬さのアルミニウム層であっても、超音波接合の際のエネルギーの集中を受けて、その硬さを維持できないため、塑性流動を生じてしまい、接合界面から排除されてしまうのである。
 このように、ボンディング時におけるアルミニウム被覆層の過度な塑性流動や、剥がれを防止することで、チップダメージを防ぐとともに、チップ側のパッドに対して安定した接合強度を確保する。また、銅芯材テープを純度99.9質量%以上の銅とすることは、上記効果をさらに向上させる効果がある。銅の純度や銅合金の種類は、使用する半導体の目的に応じて適宜選択することができる。
 なお、平角状アルミニウム被覆銅リボンの場合には、純度99.99質量%以上の銅、更には純度99.999質量%以上の銅のように、より高純度の銅を使用することは、ループ形成時や接合時における加工硬化を低減させる効果もあり、パワー半導体において好ましい。また、このような高純度化により、ループ形成時においては、急峻なループを描いても接合界面からはく離しにくくなる。また、接合時においては、チップダメージを防ぐ効果がある。
 また、平角状アルミニウム被覆銅リボンの場合には、本発明の半導体素子用アルミニウム被覆リボンは、半導体の素子パッドと基板とのあいだを多数箇所の超音波接合によってループ状に接続するためのアルミニウム被覆層、拡散防止層および銅芯材テープからなる平角状アルミニウムリボンにおいて、前記銅芯材テープは70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅からなり、前記アルミニウム被覆層は、不活性ガスの真空雰囲気中で形成され、多くの歪みが導入された30Hv以上のビッカース硬さをもつ純度99.9質量%以上アルミニウムからなることを特徴とする。
 また、平角状アルミニウム被覆銅リボンの場合には、本発明の半導体用アルミニウムリボンは、多くの歪みが導入された30Hv以上のビッカース硬さをもつ純度99.9質量%以上アルミニウムからなるアルミニウム被覆層が熱処理されたものであることが好ましい。この熱処理は、アルミニウムの純度が低いほど歪みが多くなり、結晶粒がばらつくので、特に純度99.99質量%以下のスパッタされたアルミニウム多結晶膜に適用することが好適である。
 また、本発明の半導体用アルミニウム被覆銅リボンは、本発明における被覆層と拡散防止層形成には、圧延やプレス等による貼り合せ加工ではなく、真空中で析出させた多結晶構造を形成する方法であり、マグネトロンスパッタリングなどのスパッタ法による、原子状ないしクラスター状のアルミニウム粒子を積層形成させる方法が最も適している。
 平角状アルミニウム被覆銅リボンの場合には、アルミニウム被覆銅リボン内のアルミニウムと銅との間の拡散による金属間化合物の生成を防止するため、銅芯材とアルミニウム被覆層との間に拡散層を形成することは有効であって、拡散防止層は既知のニッケル、亜鉛あるいはチタン、タングステン、クロムに加え、銅と全率固溶である金、銀、パラジウム、白金およびその他白金族金属などを真空析出させることができるが、拡散防止層が硬くてもアルミニウム被覆層および銅芯材テープの合計膜厚に対してきわめて薄く、最大でも数質量%オーダーの膜厚に過ぎないので、第一ボンド時に拡散防止層の硬さの影響は無視することができる。
 平角状金被覆銅リボンの場合には、上記課題を解決するための手段として、本発明者らは金被覆層として微細な粒状の結晶組織を利用した。
 すなわち、アルミニウムパッド電極部との第一ボンドでは、多数の突出した形状の超硬ツールを金被覆銅リボンに押し付けて金被覆銅リボンの多数箇所をアルミニウムパッドへ一気に超音波接合するのが一般的であるが、この時銅芯材テープが変形されて加工硬化を起こしアルミニウムパッドにクラック等をもたらすものと思われる。本発明者らは金被覆層を微細な粒状結晶を積層させた組織構造にすることで、見かけの金被覆層の厚さを厚くし、そのクッション効果によって銅芯材テープの加工硬化の影響を弱めてアルミニウムパッドにクラック等が生じないようにした。
 また、平角状金被覆銅リボンの場合には、超音波接合時に発生する接合に寄与しない熱を金被覆層の粒状組織に吸収させて金被覆層をバルク組織に戻すことによって、接合部近傍の発熱を大きくして銅の加工硬化の影響を弱めることにした。
 また、第二ボンドでも、超硬ツールにより金被覆銅リボンの多数箇所を一気に超音波接合するが、この場合は、第一ボンドのようにニッケル被覆層にクラック等が発生するような課題はない。そのため超音波接合の発熱量および超硬ツールの加圧力を大きくすることができ、金被覆層の厚さは実質的に薄く無視することができる。すなわち、金被覆層はボンディング時の荷重と超音波により破壊されるか、または、このときの熱により銅芯材内部へと拡散するため、銅芯材の銅とニッケル被覆層のニッケルとが直接超音波接合される。
 平角状金被覆銅リボンの場合には、本発明の130~175℃の環境下においても使用可能である半導体に使用する金被覆リボンは、アルミニウムの金属または合金からなる半導体素子パッドの第一ボンドおよびニッケル被覆基板の第二ボンドを多数箇所の超音波接合によって接合し、第一ボンドと第二ボンドとのあいだをループ状に接続するための金被覆層および銅芯材テープからなる平角状リボンにおいて、前記銅芯材テープは70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅からなり、前記金被覆層はアルゴンガスやネオンガス等の希ガス雰囲気下でマグネトロンスパッタされた純度99.9質量%以上の金からなる微細な粒状の結晶組織であることを特徴とする。
 平角状金被覆銅リボンの場合には、本発明における金被覆層は、純度99.9質量%以上の高純度でありながら、マグネトロンスパッタされているので、硬さは純度99.99質量%以上の熱処理した金バルクの硬さ(10g加重で50Hv)よりも2倍以上高いもの(100~150Hv)となっている。
 これは、本発明の金被覆銅リボンの表面に形成される金被覆層が、希ガスが介在する低圧条件下で堆積して形成された微細な多結晶組織からなることにより、多くの内部歪みが蓄積されているためと考えられる。この歪みの原因は、金蒸発源の不純物に起因したり、真空装置中に残留する酸素や水分などに起因したりする。特に、マグネトロンスパッタリングの場合には、スパッタされる金粒子に高エネルギーが付加されるとともに、使用する希ガス、例えばアルゴンや残留する水分子等が巻き込まれ、特定の条件下で緻密で結晶粒の小さい多結晶膜を形成する。この金被覆層の硬さは、金の純度が99.9質量%から99.99質量%へと高くなるほど低くなる傾向にある。
 なお、平角状金被覆銅リボンの場合には、本発明の金被覆銅リボンの金被覆層は、純度99.9質量%以上の金を用いているので、銅芯材の銅との接合性もよく、金膜自体も緻密で安定であるため、銅芯材内部からの酸素が金被覆層を経由してアルミニウムパッドの界面に進入するのを防ぎ、アルミニウムの酸化を抑制させる効果がある。このことは実装後の高温放置試験で、金被覆層が銅芯材へ拡散して消失した箇所であっても、アルミニウムパッドのアルミニウムと銅との接合界面に新たなアルミニウム酸化物が形成されていないことから裏付けられる。
 平角状金被覆銅リボンの場合には、金被覆層の上記の硬さに対して銅芯材テープを70Hv以下、より好ましくは60Hv以下のビッカース硬さとすることにより、第一ボンド時におけるアルミニウムパッドのチップダメージを抑制することが可能となる。
 また、上記の金が被覆された銅芯材テープの硬さに対して、前記金被覆層の厚さは、50nm以上500nm以下であり、好ましくは100~400nmの範囲であり、マグネトロンスパッタされた金被覆層の厚さが上記の範囲にあることによって、銅芯材テープの硬さが最も効果を発揮する。
 なお、金被覆層の厚さが薄く、前記の特許文献2で好適範囲とされているような金被膜の厚さでは、下地となる銅芯材テープの表面性状の影響を強く受け、マグネトロンスパッタされた金被膜であっても、銅芯材テープの表面性状がそのまま現れて結晶組織を制御することができない。また、このような金被膜では、超音波接合の際のエネルギーの集中を受けてその結晶組織を維持できないため、銅芯材テープの加工硬化の影響がそのままアルミニウムパッドに伝わってしまう。
 このように、平角状金被覆銅リボンの場合には、芯材表面に金被覆層を設けることによって銅芯材テープのボンディング時における加工硬化による影響を抑止することで、第一ボンド時におけるチップダメージを防ぐとともに、チップ側のアルミニウムパッド電極に対して安定した接合強度を確保する。また、第二ボンド時における銅芯材がニッケル被覆層と直接超音波接合されることで、第二ボンドの安定した接合強度を確保する。また、銅芯材テープを純度99.9質量%以上の銅から純度99.99質量%以上の銅ないし純度99.999質量%以上の銅へと純度を高めることは、上記効果をさらに向上させる効果がある。
 平角状金被覆銅リボンの場合には、銅の純度や微量添加元素の種類は、使用する半導体の目的に応じて適宜選択することができる。なお、純度99.99質量%以上の銅、更には純度99.999質量%以上の銅のように、より高純度の銅を使用することは、ループ形成時や第一ボンドと第二ボンドの接合時における加工硬化を低減させる効果もあり、高温半導体用途において好ましい。また、このような高純度化により、ループ形成時においては、急峻なループを描いても接合界面からはく離しにくくなる。
 また、平角状金被覆銅リボンの場合には、本発明の高温半導体素子用金被覆銅リボンは、半導体の素子パッドとニッケル被覆基板とのあいだを多数箇所の超音波接合によってループ状に接続するための金被覆層および銅芯材テープからなる平角状金被覆銅リボンにおいて、前記銅芯材テープは70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅からなり、前記金被覆層は、希ガスの低圧雰囲気中でマグネトロンスパッタリングによって形成され、多くの歪みが導入されたものからなることを特徴とする。
 平角状金被覆銅リボンの場合には、金被覆銅リボン内の金の銅内部への間の拡散による金皮膜の消失を防止するため、銅芯材と金被覆層との間に拡散防止層を形成することは有効であって、拡散防止層は既知のニッケル、亜鉛あるいはチタン、タングステン、クロムに加え、銅と全率固溶であるパラジウム、白金およびその他白金族金属などをマグネトロンスパッタさせることができる。この拡散防止層は、マグネトロンスパッタによって硬くなっても、金被覆層に対してもきわめて薄く、最大でも金被覆層に対して数十質量%オーダー以下の膜厚に過ぎないので、第一ボンド時に拡散防止層の硬さの影響は無視することができる。
 上記課題を解決するための手段として、平角状パラジウムまたは白金被覆銅リボンの場合には、本発明者らはパラジウムまたは白金被覆層を微細な粒状の結晶組織を利用した。
 すなわち、アルミニウムパッド電極部との第一ボンドでは、多数箇所が突出された超硬ツールをパラジウムまたは白金被覆銅リボンに押し付けてパラジウムまたは白金被覆銅リボンの多数箇所をアルミニウムパッドへ一気に超音波接合するのが一般的なものであるが、この時銅芯材テープが変形されて加工硬化を起こしアルミニウムパッドにクラック等をもたらすものと思われる。本発明者らはパラジウムまたは白金被覆層を銅芯材と拡散させることなく銅芯材テープ上に微細な粒状結晶を直接積層させた組織構造にすることで、見かけのパラジウムまたは白金被覆層の厚さを厚くしそのクッション効果によって銅芯材テープの加工硬化の影響を弱めてアルミニウムパッドにクラック等が生じないようにした。
 また、平角状パラジウムまたは白金被覆銅リボンの場合には、超音波接合時に発生する接合に寄与しない熱をパラジウムまたは白金被覆層の粒状組織に吸収させてパラジウムまたは白金被覆層をバルク組織に戻すことによって、接合近傍の発熱を大きくして銅の加工硬化の影響を弱めることにした。
 また、第二ボンドでも、超硬ツールによりパラジウムまたは白金被覆銅リボンの多数箇所を一気に超音波接合するが、この場合は、第一ボンドのようにニッケル被覆層にクラック等が発生するような課題はない。そのため超音波接合の発熱量および超硬ツールの加圧力を大きくすることができるが、パラジウムまたは白金被覆層の厚さは実質的に薄く、パラジウムまたは白金被覆層が濡れ拡がることはない。
 すなわち、平角状パラジウムまたは白金被覆銅リボンの場合には、本発明に係るパラジウムまたは白金被覆層の溶け出し量がわずかである。このため、銅芯材の銅とニッケル被覆層のニッケルとが直接超音波接合されるが、パラジウムまたは白金被覆層は、ボンディング時の荷重と超音波により破壊されるか、または、このときの熱により銅芯材内部あるいは被覆層のニッケル内部へと拡散してパラジウムまたは白金被覆層がリボン幅を超えて濡れ広がることはない。
 平角状パラジウムまたは白金被覆銅リボンの場合には、本発明の130~175℃の環境下においても使用可能である半導体に使用するパラジウムまたは白金被覆リボンは、アルミニウムの金属または合金からなる半導体素子パッドの第一ボンドおよびニッケル被覆基板の第二ボンドを多数箇所の超音波接合によって接合し、第一ボンドと第二ボンドとのあいだをループ状に接続するためのパラジウムまたは白金被覆層および銅芯材テープからなる平角状リボンにおいて、前記銅芯材テープは70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅からなり、前記パラジウムまたは白金被覆層はアルゴンガスやネオンガス等の希ガス雰囲気下で、室温に保持された前記銅芯材テープ上に、マグネトロンスパッタされた50~500nm厚の純度99.9質量%以上のパラジウムまたは白金からなる微細な粒状の結晶組織であることを特徴とする。
 平角状パラジウムまたは白金被覆銅リボンの場合には、本発明におけるパラジウムまたは白金被覆層は、純度99.9質量%以上の高純度でありながら、マグネトロンスパッタされているので、硬さは純度99.99質量%以上の熱処理したパラジウムまたは白金バルクの硬さ(10g加重でいずれも50Hv)よりも3倍程度高いもの(150Hv前後)となっている。
 これは、本発明のパラジウムまたは白金被覆銅リボンの表面に直接形成されるパラジウムまたは白金被覆層が、希ガスが介在する低圧条件下で堆積して形成された微細な多結晶組織からなることにより、多くの内部歪みが蓄積されているためと考えられる。この歪みの原因は、パラジウムまたは白金源の不純物に起因したり、真空装置中に残留する酸素や水分などに起因したりする。特に、マグネトロンスパッタリングにおいては、スパッタされるパラジウムまたは白金粒子に高エネルギーが付加されるとともに、使用する希ガス、例えばアルゴンや残留する水分子等が巻き込まれ、特定の条件下で緻密で結晶粒の小さい多結晶膜を形成する。このパラジウムまたは白金被覆層の硬さは、パラジウムまたは白金の純度が99.95質量%から99.99質量%へと高くなるほど低くなる傾向にある。
 なお、平角状パラジウムまたは白金被覆銅リボンの場合には、本発明のパラジウムまたは白金被覆銅リボンのパラジウムまたは白金被覆層は、純度99.9質量%以上のパラジウムまたは白金を用いている(好ましくは純度99.95質量%以上、より好ましくは純度99.99質量%以上である)ので、銅芯材の銅との接合性もよく、パラジウム膜または白金膜自体も緻密で安定であるため、銅芯材内部からの酸素がパラジウムまたは白金被覆層を経由してアルミニウムパッドの界面に進入するのを防ぎ、アルミニウムの酸化を抑制させる効果がある。このことは実装後の高温放置試験で、パラジウムまたは白金被覆層が銅芯材へ拡散して消失した箇所であっても、アルミニウムパッドのアルミニウムと銅との接合界面に新たなアルミニウム酸化物が形成されていないことから裏付けられる。
 平角状パラジウムまたは白金被覆銅リボンの場合には、パラジウムまたは白金被覆層の上記の硬さに対して銅芯材テープを70Hv以下、より好ましくは60Hv以下のビッカース硬さとすることにより、第一ボンド時におけるアルミニウムパッドのチップダメージを抑制することが可能となる。また、上記のパラジウムまたは白金が被覆された銅芯材テープの硬さに対して、前記パラジウムまたは白金被覆層の厚さは、50nm以上500nm以下であり、好ましくは100~400nmの範囲であり、マグネトロンスパッタされたパラジウムまたは白金被覆層の厚さが上記の範囲にあることによって、銅芯材テープの硬さが最も効果を発揮する。
 なお、パラジウムまたは白金被覆層の厚さが薄く、前記の特許文献3(3)で好適範囲とされているようなパラジウムまたは白金被膜の厚さでは、下地となる銅芯材テープの表面性状の影響を強く受け、銅芯材テープの加工硬化の影響がそのままアルミニウムパッドに伝わってアルミニウムパッド電極を破壊してしまう。
 このように、平角状パラジウムまたは白金被覆銅リボンの場合には、ボンディング時におけるパラジウムまたは白金被覆層を設けることによって銅芯材テープの加工硬化による影響を抑止することで、第一ボンド時におけるチップダメージを防ぐとともに、チップ側のアルミニウムパッド電極に対して安定した接合強度を確保する。また、第二ボンド時における銅芯材がニッケル被覆層と直接超音波接合されることで、第二ボンドの安定した接合強度を確保する。
 また、銅芯材テープを純度99.9質量%以上の銅から純度99.99質量%以上の銅ないし純度99.999質量%以上の銅へと純度を高めることは、上記効果をさらに向上させる効果がある。
 平角状パラジウムまたは白金被覆銅リボンの場合には、銅の純度や微量添加元素の種類は、使用する半導体の目的に応じて適宜選択することができる。なお、純度99.99質量%以上の銅、更には純度99.999質量%以上の銅のように、より高純度の銅を使用することは、ループ形成時や第一ボンドと第二ボンドの接合時における加工硬化を低減させる効果もあり、コスト高の点を除けば高温半導体用途において好ましい。また、このような高純度化により、ループ形成時においては、急峻なループを描いても接合界面からはく離しにくくなる。
 また、平角状パラジウムまたは白金被覆銅リボンの場合には、本発明の高温半導体素子用パラジウムまたは白金被覆銅リボンは、半導体の素子パッドとニッケル被覆基板とのあいだを多数箇所の超音波接合によってループ状に接続するためのパラジウムまたは白金被覆層および銅芯材テープからなる平角状パラジウムまたは白金被覆銅リボンにおいて、前記銅芯材テープは70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅からなり、前記パラジウムまたは白金被覆層は、希ガスの低圧雰囲気中で室温の前記銅芯材テープに対してマグネトロンスパッタリングによって形成され、多くの歪みが導入されたものからなることを特徴とする。
 平角状パラジウムまたは白金被覆銅リボンの場合には、パラジウムまたは白金被覆銅リボン内のパラジウムまたは白金の銅内部への拡散によるパラジウム皮膜または白金皮膜における歪みの消失を防止するため、室温で直接マグネトロンスパッタ形成することが有効である。また、ループ形成時に急峻なループを描いても、純度99.9質量%以上の高純度のパラジウムまたは白金と純度99.9質量%以上の高純度の銅との密着強度が確保されており、超音波ボンディング時にそのCu/Pd・Pt界面が剥がれることもない。
 平角状アルミニウム被覆銅リボンの場合には、本発明で得られるアルミニウム被覆層は、純度99.9質量%以上の高純度でありながら、30Hv以上のビッカース硬さをもち、硬さがバルクの金属の硬さより高く、銅芯材との硬度差を小さくしたことを特徴とする。本発明ではこのようなアルミニウム被覆層を軟質の70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅とを組み合わせることによって、パワー半導体用アルミニウムリボンとしての性能を発揮することができる。
 すなわち、アルミニウムリボンの多数箇所を超硬ツールによってアルミニウムパッドと超音波接合して第一ボンドとし、その後超硬ツールによってアルミニウムリボンをループ状に形成し、その後アルミニウムリボンの多数箇所を超硬ツールによってリードフレーム等と超音波接合して第二ボンドとして接続する、代表的な超音波ボンディング工程において、第一ボンド時のチップ割れを抑制し、第一ボンド時および第二ボンド時の接合強度のバラツキが小さく、安定してボンディングできる。
 また、平角状アルミニウム被覆銅リボンの場合には、ループ形成時に急峻なループを描いても、純度99.9質量%以上の高純度のアルミニウムと純度99.9質量%以上の高純度の銅との密着強度が確保されており、超音波ボンディング時にその銅/アルミニウム界面が剥がれることもない。
 さらに、ボンディングされたアルミニウムリボンを高温環境に放置しても、アルミニウム被覆層の表面には、緻密で安定な酸化膜が均一に形成されているので、リボン内部への酸素の進入を防ぐことが可能となる。
 平角状金被覆銅リボンの場合には、本発明で得られる金被覆層は、純度99.9質量%以上の高純度でありながら、バルクの金の硬さよりも2倍以上のビッカース硬さをもち、銅芯材の加工硬化による影響を小さくしたことを特徴とする。本発明ではこのような金被覆層を軟質の70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅とを組み合わせることによって、高温半導体用金被覆銅リボンとしての性能を発揮することができる。
 すなわち、金被覆銅リボンの多数箇所を超硬ツールによってアルミニウムパッドと超音波接合して第一ボンドとし、その後超硬ツールによって金被覆銅リボンをループ状に形成し、その後金被覆銅リボンの多数箇所を超硬ツールによってニッケル被覆リードフレーム等と超音波接合して第二ボンドとして接続する。
 平角状金被覆銅リボンの場合には、代表的な超音波ボンディング工程において、第一ボンド時のチップ割れを抑制し、第一ボンド時および第二ボンド時の接合強度のバラツキが小さく、安定してボンディングできる。また、ループ形成時に急峻なループを描いても、純度99.9質量%以上の高純度の金と純度99.9質量%以上の高純度の銅との密着強度が確保されており、超音波ボンディング時にその銅/金界面が剥がれることもない。さらに、ボンディングされた金被覆銅リボンを高温環境に放置しても、金被覆層の表面から銅芯材テープ界面への酸素の進入を防ぐことが可能となる。
 平角状パラジウムまたは白金被覆銅リボンの場合には、本発明で得られるパラジウムまたは白金被覆層は、純度99.9質量%以上の高純度でありながら、バルクのパラジウムまたは白金の硬さよりも2倍以上のビッカース硬さをもち、銅芯材の加工硬化の影響を小さくしたことを特徴とする。本発明ではこのようなパラジウムまたは白金被覆層を軟質の70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅とを直接組み合わせることによって、高温半導体用パラジウムまたは白金被覆銅リボンとしての性能を発揮することができる。
 すなわち、平角状パラジウムまたは白金被覆銅リボンの場合には、パラジウムまたは白金被覆銅リボンの多数箇所を超硬ツールによってアルミニウムパッドと超音波接合して第一ボンドとし、その後超硬ツールによってパラジウムまたは白金被覆銅リボンをループ状に形成し、その後パラジウムまたは白金被覆銅リボンの多数箇所を超硬ツールによってニッケル被覆リードフレーム等と超音波接合して第二ボンドとして接続する、代表的な超音波ボンディング工程において、第一ボンド時のチップ割れを抑制し、第一ボンド時および第二ボンド時の接合強度のバラツキが小さく、安定してボンディングできる。
 さらに、ボンディングされたパラジウムまたは白金被覆銅リボンを高温環境に放置しても、パラジウムまたは白金被覆層の表面から銅芯材テープ界面への酸素の進入を防ぐことが可能となる。
図1は、本発明の平角状アルミニウム被覆銅リボンのアルミニウム被覆層の組織写真である。 図2は、平角状アルミニウム被覆銅リボンの比較例のアルミニウム層の組織写真である。 図3は、平角状アルミニウム被覆銅リボンの断面図である。 図4は、平角状アルミニウム被覆銅リボンに対する従来のアルミニウムクラッドリボンにより、半導体素子のパッドとリードフレームを超音波接合によって接続した状態を示す図である。 図5は、本発明の平角状金被覆銅リボンの金被覆層の上からみたレーザ顕微鏡による組織写真(対物レンズX20)である。 図6は、同じく本発明の平角状金被覆銅リボンの金被覆層の組織写真(対物レンズX150)である。 図7は、比較例の平角状金被覆銅リボンの金被覆層の上から見た組織写真(対物レンズX20)である。 図8は、比較例の平角状金被覆銅リボンの金被覆層の同じく上から見た組織写真対物レンズX150)である。 図9は、本発明の平角状金被覆銅リボンの金被覆層の上からみた組織写真(10、000倍)である。 図10は、本発明の平角状金被覆銅リボンの断面図である。 図11は、平角状金被覆銅リボンに対する従来の金(バルク)クラッドリボンにより、半導体素子のパッドとリードフレームを超音波接合によって接続した状態を示す図である。 図12は、本発明の平角状パラジウム被覆銅リボンのパラジウム被覆層の上方からみた組織写真である。 図13は、比較例の平角状パラジウム被覆銅リボンのパラジウム層の組織写真である。 図14は、本発明の平角状パラジウム被覆銅リボンのパラジウム被覆層の上方からみた拡大組織写真である(平均粒径:0.05~0.3μm)。 図15は、平角状パラジウム被覆銅リボンの断面図である。 図16は、平角状パラジウム被覆銅リボンに対する従来のパラジウムクラッドリボンにより、半導体素子のパッドとリードフレームを超音波接合によって接続した状態を示す図である。
 平角状アルミニウム被覆銅リボン、平角状金被覆銅リボン,および平角状パラジウムまたは白金被覆銅リボンのいずれの本発明のボンディングリボンにおいても、銅芯材テープの純度は99.9質量%以上であることが好ましい。ループ変形時の加工硬化をできるだけ少なくし、ボンディングスピードを速め、単位時間当たりの接続個数を多くするためである。銅芯材テープの純度や種類は使用する半導体やリードフレーム等によって適宜定まるが、ボンディング時における銅芯材テープの加工硬化および不純物の混入を避けるため、純度99.995質量%以上とできるだけ高純度であることが望ましい。
 平角状アルミニウム被覆銅リボンの場合には、アルミニウム被覆層の純度は99.9以上であることが好ましい。これは、チップダメージの原因となるアルミニウム金属中に含まれる微量元素がアルミニウム被覆層に析出・凝集して被覆層に局部的に硬度の高い箇所が形成されるのを回避するためである。また、長期間高温度で半導体が使用された場合、アルミニウム被覆層と半導体素子のパッドの接合界面において生じる、微量元素の集積や酸化を防ぎ、接合信頼性を確保するためである。
 本発明の銅芯材テープの硬さは、アルミニウム被覆層の硬さの2倍以下であることが好ましい。より急峻なループを描いても銅/アルミニウム界面からはく離しにくくするためである。
 さらに、接合部におけるアルミニウム被覆層の過度な変形および剥離を抑制し、安定した接合強度の確保とチップダメージを回避するためである。
 また、平角状アルミニウム被覆銅リボンの場合には、純度99.9質量%以上のアルミニウム被覆層は、窒素ガス、アルゴンガスまたはヘリウムガス等の不活性雰囲気下でスパッタにより析出されたものであることが好ましい。
 また、純度99.9質量%以上のアルミニウム被覆層は、純度99.9質量%以上のアルミニウム金属源を、直流マグネトロンスパッタリングによって真空析出されたものであることが好ましい。その他、イオンビームスパッタリングや直流スパッタリングなどのスパッタリングや、イオンプレーティング方法などを用いて多結晶構造膜を形成することができる。
 平角状アルミニウム被覆銅リボンの場合には、銅芯材テープ上にアルミニウムを被覆する場合、析出するアルミニウムの純度を確保すること、並びに、膜厚および膜質の均一性、芯材テープの角部分への析出しやすさ、銅芯材テープの裏面へのつきまわり性などにおいては、マグネトロンスパッタよりも化学蒸着法のほうが優れている。しかし、本発明の課題となる、形成されるアルミニウム被覆膜が適度に硬質であり、かつ、多結晶化することにおいては、多くの歪みを導入可能であるマグネトロンスパッタの方が優れている。従って、本発明における、最も好ましいアルミニウム被覆膜の形成方法は、マグネトロンスパッタである。なお、イオンプレーティングは均質な安定した膜が得にくい難点がある。
 また、平角状アルミニウム被覆銅リボンの場合には、アルミニウム被覆膜の厚さは、ループ形成時における銅芯材テープとの耐剥がれ性の点から、50μm以下であることが好ましい。さらに、アルミニウム膜厚が0.1μm未満と薄すぎる場合、接合部に印加される荷重と超音波により、被覆膜が塑性流動により接合部の外に押し出され、接合面に銅が露出し、チップダメージの原因となることから、0.1μm以上が好ましい。より好ましくは0.1~10μm以内の領域であり、本領域において、耐チップダメージ性と被覆膜の密着強度のバランスが最も優れている。
 本発明の平角状金被覆銅リボンにおいて、銅芯材テープの純度は99.99質量%以上であることが好ましい。ループ変形時の加工硬化をできるだけ少なくし、ボンディングスピードを速め、単位時間当たりの接続個数を多くするためである。銅芯材テープの純度や種類は使用する半導体やリードフレーム等によって適宜定まるが、ボンディング時における銅芯材テープの加工硬化および不純物の混入を避けるため、純度99.995質量%以上とできるだけ高純度であることがより望ましい。
 平角状金被覆銅リボンの場合には、本発明の金被覆層の硬さは、金バルクの硬さの2倍以上であることが好ましい。接合部における銅芯材テープの銅の加工硬化によるアルミニウムパッドのチップダメージを回避するためである。
 また、純度99.9質量%以上の金被覆層は、アルゴンガスやヘリウム(He)ガス等の希ガス雰囲気下でスパッタにより析出されたものであることが好ましい。
 平角状金被覆銅リボンの場合には、銅芯材テープ上に金を被覆する場合、析出する金の純度を確保すること、並びに、膜厚および膜質の均一性、芯材テープの角部分への析出しやすさ、銅芯材テープの裏面へのつきまわり性などにおいては、マグネトロンスパッタよりも化学蒸着法のほうが優れている。しかし、本発明の課題となる、形成される金被覆膜が適度に硬質であり、かつ、多結晶化することにおいては、多くの歪みを導入可能であるマグネトロンスパッタの方が優れているので、本発明においてはマグネトロンスパッタを採用した。
 また、平角状金被覆銅リボンの場合には、金被覆層の厚さは、ニッケル被覆リードフレーム等と超音波接合して第二ボンドとして接続する観点から、ニッケルとの接合不良を避けるため、500nm以下であることが好ましい。さらに、金膜厚が50nm未満と薄すぎる場合、微細な粒状の金結晶組織が形成できず第一ボンドのチップダメージの原因となることから、50nm以上が好ましい。より好ましくは100~400nmの領域であり、本領域において、耐チップダメージ性と被覆膜の密着強度のバランスが最も優れている。
 本発明の平角状パラジウムまたは白金被覆銅リボンにおいて、銅芯材テープの純度は99.99質量%以上であることが好ましい。ループ変形時の加工硬化をできるだけ少なくし、ボンディングスピードを速め、単位時間当たりの接続個数を多くするためである。銅芯材テープの純度や種類は使用する半導体やリードフレーム等によって適宜定まるが、ボンディング時における銅芯材テープの加工硬化および不純物の混入を避けるため、純度99.995質量%以上とできるだけ高純度であることがより望ましい。
 平角状パラジウムまたは白金被覆銅リボンの場合には、パラジウムまたは白金被覆層の純度は99.9質量%よりも99.99質量%であることが好ましい。これは、チップダメージの原因となるパラジウムまたは白金金属中に含まれる微量元素がマグネトロンスパッタされたパラジウムまたは白金粒子の表面に析出・凝集してパラジウムまたは白金被覆層に局部的に硬度の高い箇所が形成されるのを回避するためである。また、長期間高温度で半導体が使用された場合、パラジウムまたは白金被覆層ないし銅芯材と半導体素子のアルミニウムパッドとの接合界面において生じる、微量元素の集積や酸化を防ぎ、接合信頼性を確保するためである。
 平角状パラジウムまたは白金被覆銅リボンの場合には、本発明のパラジウムまたは白金被覆層の硬さは、パラジウムまたは白金バルクの硬さの2倍以上であることが好ましく、3倍以上であることがより好ましい。接合部における銅芯材テープの銅の加工硬化によるアルミニウムパッドのチップダメージを回避するためである。
 また、純度99.9質量%以上のパラジウムまたは白金被覆層は、アルゴンガスやヘリウム(He)ガス等の希ガス雰囲気下でマグネトロンスパッタにより析出されたものであることが好ましい。
 平角状パラジウムまたは白金被覆銅リボンの場合には、銅芯材テープ上にパラジウムまたは白金を被覆する場合、析出するパラジウムまたは白金の純度を確保すること、並びに、膜厚および膜質の均一性、芯材テープの角部分への析出しやすさ、銅芯材テープの裏面へのつきまわり性などにおいては、マグネトロンスパッタよりも化学蒸着法のほうが優れている。しかし、本発明の課題となる、形成されるパラジウムまたは白金被覆膜が適度に硬質であり、かつ、多結晶化することにおいては、多くの歪みを導入可能であるマグネトロンスパッタの方が優れているので、本発明においてはマグネトロンスパッタを採用した。
 また、平角状パラジウムまたは白金被覆銅リボンの場合には、パラジウムまたは白金被覆層の厚さは、ニッケル被覆リードフレーム等と超音波接合して第二ボンドとして接続する観点から、ニッケルとの濡れ拡がりを防止するため、500nm以下であることが好ましい。さらに、パラジウムまたは白金膜厚が50nm未満と薄すぎる場合、微細な粒状のパラジウムまたは白金結晶組織が形成できず第一ボンドのチップダメージの原因となることから、50nm以上が好ましい。より好ましくは、100~400nmの領域であり、本領域において、耐チップダメージ性と被覆膜の密着強度のバランスが最も優れている。
 以下、本発明の平角状アルミニウム被覆銅リボンの場合の実施例を説明する。
[実施例1]
〔平角状アルミニウム被覆銅リボンの場合の銅テープの作製〕
 純度99.999質量%の銅板材を圧延加工して、幅2.0mm 厚さ0.15mmの銅テープを作製した。次いで、圧延加工したテープをフル・アニールしたところ、ビッカース硬さが70Hvから55Hvになった。このフル・アニールしたテープを本発明の銅芯材テープ「X」として実施例と比較例に使用した。
 また、この銅板材に純度99.9質量%、0.5μmのニッケル箔をスパッタにより成膜し、幅2.0mm、厚さ0.15mmの銅芯材テープ「Y」を作製した。
 なお、同様にして、純度99.9999質量%の銅テープをフル・アニールすると、ビッカース硬さは55~50Hvまで低下した。
〔平角状アルミニウム被覆銅リボンの場合のアルミニウム蒸発源の作製〕
 純度99.999質量%のアルミニウムを準備し、これにマグネシウム(Mg)を20質量ppm添加して溶解鋳造したものを蒸発源「A」、マグネシウムを20質量ppm、ニッケルを20質量ppm、シリコンを20質量ppm、および銅を20質量ppm添加したもの(後述する組織写真の組成)を蒸発源「B」、マグネシウムを250質量ppm、ニッケルを200質量ppm、シリコンを200質量ppm、および銅300ppm添加したものを蒸発源「C」、並びに比較例としてマグネシウムを2000質量ppm添加したものを蒸発源「D」とした。これらの組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
〔平角状アルミニウム被覆銅リボンの場合のアルミニウム被覆リボンの作製〕
 マグネトロン・スパッタリング装置にアルゴンガスを流入し、真空度0.7Paに保った。
 次いで、スパッタ電力を1.0kWにしてアルミニウムを蒸発源を加熱した。蒸発したアルミニウム粒子は、直線距離で50mm離れた室温の銅芯材テープに、下記の表2に示す所定の膜厚で被着させ、アルミニウム被覆リボンを作製した。また、拡散防止層(中間層)は次のようにして作成した。スパッタリング装置内に中間層となる純度99.9質量%以上の物質Xのターゲットと純度99.9質量%以上のアルミニウムターゲットを配置し、圧力が1X10-1Pa~1X10-0Paになるように純度99.99質量%以上のアルゴンガスで充填した。その後、スパッタリングにより10cm離れた平角状銅芯材テープへ連続的に中間層の成膜を行い、所定形状の膜厚を形成した。その後、同一圧力でアルミニウム被覆層の堆積・成膜を行い、所定形状の膜厚の緻密な結晶組織からなる層を形成した。
〔平角状アルミニウム被覆銅リボンの場合の硬さ測定〕
 試料番号1~39のアルミニウム被覆銅リボンの硬さをマイクロビッカース硬さ計で測定したところ、いずれも40~45Hvであった。次に、試料番号2のアルミニウムリボンをフル・アニールしたところ、ビッカース硬さは17Hvであった。
 他のアルミニウムリボンも同様な傾向を示した。このことから、本発明のスパッタ被膜は著しく硬度が高くなっていることが解る。
〔平角状アルミニウム被覆銅リボンの場合の内部組織の測定〕
 試料番号2のアルミニウム被覆銅リボンを50質量%フッ酸にて40秒間浸漬した。
 そして、浸漬後のアルミニウム膜の表面をレーザー顕微鏡で観察した(図1―A、図1―B)。これに対して、比較例として試料番号2のアルミニウムと同一の組成で膜厚が50μmのものを純度99.999質量%の銅板材にクラッド圧延加工し、このリボンを50質量%フッ酸に4秒間浸漬したときのアルミニウム膜の表面をレーザー顕微鏡で観察したものを図2-A,図2-Bに示す。
 これらの図1および図2から明らかなとおり、本発明のスパッター膜はアルミニウムの個々の粒界が球状に区画され、独立して存在していることがわかる。これは微量の元素がアルミニウムの粒界に析出して区画を形成したものと思われる。
 これらのアルミニウム被覆銅リボンの構成について、実施例を表2、比較例を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
〔平角状アルミニウム被覆銅リボンの場合の捻回試験〕
 実施例と比較例のアルミニウム被覆銅リボンについて、約1mの試料の一端を固定し、他端を毎分1回転で右回転15回した後、逆に左回転15回してアルミニウムと銅またはニッケルとの境界面を観察した。
 実施例のアルミニウム被覆銅リボンのいずれにも境界面のはがれは生じていなかった。このことから、本発明にアルミニウム被覆層の剥がれ抑制特性は優れていることがわかる。これに対して、アルミニウム被覆層の厚さが60μmの比較例の18~21のものは、アルミニウム被覆層の純度にかかわらず剥がれが発生した(表5参照。)。
〔平角状アルミニウム被覆銅リボンの場合の接合強度試験〕
 試料番号1~13のアルミニウムリボンを純度99.99質量%のアルミニウム板(厚さ2mm)および1μmのニッケルメッキを施した純度99.95質量%の銅基板(厚さ2mm)上に超音波ボンディングした。装置は、オーソダイン社(Orthodyne
Elecronics Co.)製全自動リボンボンダー3600R型にて、80kHzの周波数で、荷重および超音波負荷条件については、潰れ幅が1.01~1.05倍になる条件で全サンプルについて同一条件でボンディングを実施した。
 また、平角状アルミニウム被覆銅リボンの場合、ボンディングリボンのループ長は50mmで、ループ高さは30mmとし、通常条件よりもリボンや経路やツールから受ける摺動抵抗が大きくなるような条件に設定した。そして、各試料ともn=40個で超音波ボンディングした場合にボンディング中に発生したワイヤ切断回数を調べた。その判定結果を表3に併記した、接合強度は、リボン側面よりDAGE万能ボンドテスターPC4000型にて接合部側面からのシェア強度測定を実施した。なお、リボンからはみ出したアルミニウムの量を観察したところ、試料番号11のアルミニウム被覆銅リボンを除き、本発明のアルミニウム被覆銅リボンはクラッドのものよりもはみ出し量が少なかった。
〔平角状アルミニウム被覆銅リボンの場合の接合信頼性試験〕
 実施例および比較例のアルミニウム被覆銅リボンについての信頼性試験として、ボンディング済の基板を150℃X1000時間に暴露した後のシェア強度を測定した。
 そして信頼性試験後の強度を試験実施前のシェア強度で除した値を信頼性試験後の強度比と定義し、これによって評価した。
 また、判定は、信頼性試験後の強度比を基にし、信頼性試験後の強度比が0.9以上のものを二重丸(◎)で表記し、0.7以上0.9未満のものを一重丸(○)で表記し、0.7未満のものをバツ(X)印で表記した。これらの結果を実施例について表4および比較例について表5に示す。
 平角状アルミニウム被覆銅リボンの場合の表4および表5から明らかなようにアルミニウム被覆層の純度が重要であって、本発明範囲の蒸発源A~Cを純度の被覆層のものはいずれも接合強度および接合信頼性において良好な結果を得たが、それよりも純度の低い蒸発源Dの被覆層を形成した比較例の試料番号1~13のものはすべて信頼性が不良であり、また、接合強度においても劣っていることがわかる。
 また、アルミニウム被覆層の硬さについても、本発明実施例のものは、Hv40~45の範囲にあり、接合強度および接合信頼性において良好な結果を得ている。
 これに対して、平角状アルミニウム被覆銅リボンの場合の比較例のものは硬さが本発明範囲にあっても、被覆層のアルミニウムの純度が本発明範囲を超えて高いもの(比較例1~13、17,21)は前記したように接合強度および接合信頼性において劣り、アルミニウム被覆層の厚さが本発明範囲より薄く(試料番号14~17)ても、あるいは厚くても(試料番号18~21)、良い結果が得られない。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
[実施例2]
 以下、本発明の平角状金被覆銅リボンの場合の実施例を説明する。
〔平角状金被覆銅リボンの場合の銅テープの作製〕
 純度99.9質量%の銅板材を圧延加工して、幅2.0mm 厚さ0.15mmの銅テープを作製した。次いで、圧延加工したテープをフル・アニールしたところ、ビッカース硬さが70Hvから55Hvになった。このフル・アニールしたテープを本発明の銅芯材テープ「X1」として実施例と比較例に使用した。また、純度99.99質量%、純度99.999質量%、および純度99.9999質量%の銅平圧延したものを本発明の銅芯材テープ「X2」、「X3」、「X4」とした。
 また、平角状金被覆銅リボンの場合、この銅板材に純度99.9質量%、0.5μmのパラジウム箔をスパッタにより成膜し、幅2.0mm、厚さ0.15mmの銅芯材テープ「Y」を作製した。
 なお、純度99.99~99.9999質量%の銅テープをフル・アニールすると、ビッカース硬さは何れも55~50Hvであった。
〔平角状金被覆銅リボンの場合の金蒸発源の作製〕
 純度99.9質量%の金を蒸発源「A」、純度99.99質量%の金を蒸発源「B」、純度99.999質量%の金を蒸発源「C」、とした。また、本発明の純度を外れる2Nのものを「D」とした。これらの組成を表6及び表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
〔平角状金被覆銅リボンの場合の金被覆銅リボンの作製〕
 マグネトロン・スパッタリング装置にアルゴンガスを流入し、真空度0.7Paに保った。次いで、スパッタ電力を1.0kWにして金蒸発源を加熱した。蒸発した金粒子は、直線距離で100mm離れた室温の銅芯材テープに、表6、および表7に示す所定の膜厚で被着させ、金被覆リボンを作製した。また、拡散防止層(中間層)は次のようにして作成した。スパッタリング装置内に中間層となる純度99.9質量%以上の物質Xのターゲットと純度99.9質量%以上の金ターゲットを配置し、スパッタリング圧力が0.7Paになるように純度99.99質量%以上のアルゴンガスで充填した。その後、スパッタリングにより100mm離れた平角状銅芯材テープへ連続的に中間層の成膜を行い、所定形状の膜厚を形成した。その後、同一圧力で金被覆層の堆積・成膜を行い、所定形状の膜厚の緻密な結晶組織からなる層を形成した。
 スパッタ時間が短いため、銅芯材テープの表面温度はほぼ室温である。
〔平角状金被覆銅リボンの場合の硬さ測定〕
 金被覆銅リボンについて、膜厚10、5、3μmのマグネトロンスパッタしたままの金被覆層の硬さをマイクロビッカース硬さ計で測定したところ、いずれも100~150Hv(読取値)であった。このことから、膜厚によらずHv硬度は殆ど変わらないことがわかった。従って、本発明のマグネトロンスパッタにより形成される被膜は著しく硬度が高く、かつ膜厚が小さくても高い値を維持することが解る。
 上記で測定した金被覆層の厚さは本発明の金被覆層の厚さよりも大きいが、Hv測定には、上記の厚さが必要であり、また、これらの被覆層形成の履歴に差異はないから、本発明範囲の金被覆層の厚さにおいても上記測定値が成り立つ。
〔平角状金被覆銅リボンの場合の内部組織の測定〕
 試料番号2の調質処理済の金被覆銅リボンを薄い王水液にて数秒間浸漬した。そして、浸漬後の金膜の表面をレーザー顕微鏡で観察した(図5、図6)。さらに、スパッタ表面を拡大(10,000倍)したスパッタ面(写真)を図9に示す。
 これに対して、比較例として試料番号2の金と同一の組成で膜厚が50μmのものを純度99.999質量%の銅板材にクラッド圧延加工した、金被覆銅リボンを同様に浸漬したときの金膜の表面をレーザー顕微鏡で観察したものを図7及び図8に示す。
 平角状金被覆銅リボンの場合、これらの図5、図6および図9から明らかなとおり、本発明のマグネトロンスパッタ膜は金の個々の粒界が球状に区画され、独立して存在していることがわかる。これは微量の元素が金の粒界に析出して区画を形成したものと思われる。
 これらの金被覆銅リボンの構成について、実施例を表6、比較例を表7に示す。
〔平角状金被覆銅リボンの場合の接合強度試験〕
 試料番号1~54および比較例の試料番号1~18の金被覆銅リボンを純度99.99質量%のアルミニウム板(厚さ2mm)および5μmのニッケル電気メッキを施した純度99.95質量%の銅基板(厚さ2mm)上に超音波ボンディングした。ボンディング装置は、オーソダイン社(Orthodye
Electronics Co.)製全自動リボンボンダー3600R型にて、80kHzの周波数で、荷重および超音波負荷条件については、潰れ幅が1.01~1.05倍になる条件で、全サンプルについて同一条件で、超音波ボンディングを実施した。
 また、金被覆銅リボンのループ長は50mmで、ループ高さは30mmとし、通常条件よりもリボンや経路やツールから受ける摺動抵抗が大きくなるような条件に設定した。
 そして、各試料とも接合個数:n=40個で超音波ボンディングした場合についてボンディング中に発生したワイヤ切断回数を調べたが、これらの条件下ではいずれもワイヤ切断は発生しなかった。
〔平角状金被覆銅リボンの場合の高温接合信頼性試験〕
 接合強度は、金被覆銅リボンの側面より、デイジイ社製のDAGE万能ボンドテスターPC4000型にて接合部側面からのシェア強度測定を実施した。
実施例および比較例の金被覆銅リボンについての信頼性試験として、ボンディング済のニッケル被覆基板を175℃X500時間に暴露した後のシェア強度を測定した。
 そして信頼性試験後の強度を試験実施前のシェア強度で除した値を信頼性試験後の強度比と定義し、これによって評価した。
 また、判定は、信頼性試験後の強度比を基にし、信頼性試験後の強度比が0.9以上のものを二重丸(◎)で表記し、0.7以上0.9未満のものを一重丸(○)で表記し、0.7未満のものをバツ(X)印で表記した。これらの結果を実施例について表8および比較例について表9に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表8および表9から明らかなように金被覆層の純度が重要であって、本発明範囲の蒸発源A~Cの純度の被覆層のものはいずれも接合強度および接合信頼性において良好な結果を得たが、それよりも純度の低い蒸発源Dの被覆層を形成した比較例の試料番号13~18のものはすべて信頼性が不良であり、また、接合強度においても劣っていることがわかる。
 また、金被覆層のマグネトロンスパッタしたままの硬さについても、本発明実施例のものは、Hv100~150の範囲にあり、接合強度および接合信頼性において良好な結果を得ている。
 これに対して、比較例のものは硬さが本発明範囲にあっても、被覆層の金の純度が本発明範囲を外れるもの(比較例13~18)は前記したように接合強度および接合信頼性において劣り、金被覆層の厚さが本発明範囲より薄く(試料番号1~6)ても、あるいは厚くても(試料番号7~12)、良い結果が得られない。
[実施例3]
 以下、本発明の平角状パラジウムまたは白金被覆銅リボンの実施例を説明する。
〔平角状パラジウムまたは白金被覆銅リボンの銅テープの作製〕
 純度99.9質量%の銅板材を圧延加工して、幅2.0mm、厚さ0.15mmの銅テープを作製した。次いで、圧延加工したテープをフル・アニールしたところ、ビッカース硬さが70Hvから55Hvになった。このフル・アニールしたテープを本発明の銅芯材テープとして実施例試料No.1~3、40~42、と比較例試料No.1~3、7~9、13~15に使用した。また、純度99.99質量%、純度99.999質量%、および純度99.9999質量%の銅平圧延したものをそれぞれ本発明の銅芯材テープとして試料No.4~6、16~18、22~24、28~30、34~36、43~45、及び試料No.7~9、46~48に使用し、さらに、純度99.9999質量%の銅平圧延したものを実施例試料No.10~15、19~21、25~27、31~33、37~39、49~54、及び比較例試料No.4~6、10~12、16~18にそれぞれ使用した。
 また、平角状パラジウムまたは白金被覆銅リボンの場合、この銅板材に純度99.9質量%、0.5μmの白金箔をスパッタにより成膜し、幅2.0mm、厚さ0.15mmの銅白金被覆芯材テープを作製した。同様にして、この銅板材に純度99.9質量%、0.5μmのパラジウム箔をスパッタにより成膜し、幅2.0mm、厚さ0.15mmの銅パラジウム被覆芯材テープを作製した。
 なお、純度99.99質量%、99.9999質量%および99.9999質量%の銅テープをフル・アニールすると、ビッカース硬さは何れも55~50Hvの範囲であった。
〔平角状パラジウムまたは白金被覆銅リボンの場合のパラジウムまたは白金蒸発源の作製〕
 純度99.9質量%のパラジウムまたは白金をそれぞれ蒸発源として、純度99.99質量%のパラジウムまたは白金をそれぞれ蒸発源として、さらに純度99.995質量%のパラジウムまたは白金をそれぞれ蒸発源とした。これらの構成を表10~表12に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
〔平角状パラジウムまたは白金被覆銅リボンのパラジウムまたは白金被覆銅リボンの作製〕
 マグネトロン・スパッタリング装置にアルゴンガスを流入し、真空度0.7Paに保った。
 次いで、スパッタ電力を1.0kWにしてパラジウムまたは白金蒸発源を加熱した。蒸発したパラジウムまたは白金粒子は、直線距離で100mm離れた室温の銅芯材テープに、表10~表12に示す所定の膜厚で被着させ、パラジウムまたは白金被覆リボンを作製した。また、拡散防止層(中間層)は次のようにして作成した。スパッタリング装置内に中間層となる純度99.9質量%以上の物質Xのターゲットと純度99.9質量%以上のパラジウムまたは白金ターゲットを配置し、スパッタリング圧力が0.7Paになるように純度99.99質量%以上のアルゴンガスで充填した。その後、スパッタリングにより100mm離れた室温状態の平角状銅(Cu)芯材テープへ連続的に中間層の成膜を行い、所定形状の膜厚を形成した。その後、同一圧力でパラジウム(Pd)または白金(Pt)被覆層の堆積・成膜を行い、所定形状の膜厚の緻密な結晶組織からなる層を形成した。このスパッタ時間は短いので、銅(Cu)芯材テープの温度上昇は観測されなかった。
 平角状パラジウムまたは白金被覆銅リボンの場合、室温状態の平角状銅芯材テープへ連続的に中間層の成膜を行い、所定形状の膜厚を形成した。その後、同一圧力でパラジウムまたは白金被覆層の堆積・成膜を行い、所定形状の膜厚の緻密な結晶組織からなる層を形成した。このスパッタ時間は短いので、銅芯材テープの温度上昇は観測されなかった。
〔平角状パラジウムまたは白金被覆銅リボンの硬さ測定〕
 パラジウムまたは白金被覆銅リボンについて、膜厚10、5、3μmのマグネトロンスパッタしたままのパラジウムまたは白金被覆層の硬さをマイクロビッカース硬さ計で測定したところ、いずれも150±20Hv(読取値)であった。このことから、膜厚によらずHv硬度は殆ど変わらないことがわかった。従って、本発明のマグネトロンスパッタにより形成される被膜は著しく硬度が高く、かつ膜厚が小さくても高い値を維持することが解る。
〔平角状パラジウムまたは白金被覆銅リボンの内部組織の測定〕
 試料番号2の調質処理済のパラジウム被覆銅リボンを薄い硝酸液または王水液にて数秒間浸漬した。そして、浸漬後のパラジウム膜の表面をレーザー顕微鏡で観察した(図12)。
 これに対して、比較例として試料番号2のパラジウムと同一の組成で膜厚が50μmのものを純度99.999質量%の銅板材にクラッド圧延加工したパラジウム被覆銅リボンを同様に浸漬したときのパラジウム膜の表面をレーザー顕微鏡で観察したものを図13に示す。さらに、その試料の膜表面の組織拡大図を図14に示す。
 平角状パラジウムまたは白金被覆銅リボンの場合、これらの図12および図14から明らかなとおり、本発明のマグネトロンスパッタ膜はパラジウムまたは白金の個々の粒界が球状に区画され、独立して存在していることがわかる。これは微量の元素がパラジウムまたは白金の粒界に析出して区画を形成したものと思われる。
〔平角状パラジウムまたは白金被覆銅リボンの場合の接合強度試験〕
 試料番号1~13のパラジウムまたは白金被覆銅リボンを純度99.99質量%のアルミニウム板(厚さ2mm)および5μmのニッケル電気メッキを施した純度99.95質量%の銅基板(厚さ2m)上に超音波ボンディングした。装置は、オーソダイン社(Orthodye
Electronics Co.)製全自動リボンボンダー3600R型にて、80kHzの周波数で、荷重および超音波負荷条件については、潰れ幅が1.01~1.05倍になる条件で、全サンプルについて同一条件で、超音波ボンディングを実施した。
 また、平角状パラジウムまたは白金被覆銅リボンの場合、パラジウムまたは白金被覆銅リボンのループ長は50mmで、ループ高さは30mmとし、通常条件よりもリボンや経路やツールから受ける摺動抵抗が大きくなるような条件に設定した。そして、各試料ともn=40個で超音波ボンディングした場合にボンディング中に発生したワイヤ切断回数を調べた。その判定結果を表10~12に併記した、接合強度は、パラジウムまたは白金被覆銅リボンの側面より、デイジイ社製のDAGE万能ボンドテスターPC4000型にて接合部側面からのシェア強度測定を実施した。
〔平角状パラジウムまたは白金被覆銅リボンの高温接合信頼性試験〕
 実施例および比較例のパラジウムまたは白金被覆銅リボンについての信頼性試験として、ボンディング済のニッケル被覆基板を175℃X500時間に暴露した後のシェア強度を測定した。そして信頼性試験後の強度を試験実施前のシェア強度で除した値を信頼性試験後の強度比と定義し、これらによって評価した。
 また、判定は、信頼性試験後の強度比を基にし、信頼性試験後の強度比が0.9以上のものを二重丸(◎)で表記し、0.7以上0.9未満のものを一重丸(○)で表記し、0.7未満のものをバツ(X)印で表記した。これらの結果を実施例について表10,表11および比較例について表12に示す。
 平角状パラジウムまたは白金被覆銅リボンの場合、表10~表12から明らかなようにパラジウムまたは白金被覆層の組織と厚さが重要であって、本発明範囲の蒸発源99.9質量%~99.9999質量%の純度の粒状組織であって本発明範囲の厚さの被覆層のものは第一ボンド及び第二ボンドのいずれにおいても接合強度および接合信頼性において良好な結果を得ている。
 これに対して、比較例の試料No.1~13に示されているように、それと同等の純度のパラジウムまたは白金被覆層であっても、被覆層のパラジウムまたは白金の厚さが本発明範囲を超えて厚いもの(比較例No.7~9、及びNo.10~12)、或いは、パラジウムまたは白金被覆層の厚さが本発明範囲より薄い場合(試料番号1~3、及びNo.4~6)、すべて接合強度が劣り、また接合信頼性が不良であることがわかる。
 また、平角状パラジウムまたは白金被覆銅リボンの場合、パラジウムまたは白金被覆層の厚さが、硬さや被覆層の厚さが本発明範囲であっても(200nm、300nm)、その被覆層がマグネトロンスパッタによるものではなく、本発明の特徴とする粒状組織を備えていない比較例No.13~18のものは、その接合強度が低く、接合信頼性も著しく劣ったものとなっている。
 1  ボンディングリボン
 2  被覆層
 3  銅芯材
 4  アルミニウムパッド
 5  リード
 本発明の平角状アルミニウム被覆銅リボン、平角状金被覆銅リボンおよび平角状パラジウムまたは白金被覆銅リボンは、車両搭載用、パワー半導体デバイスなどの急速に発展しつつある領域において高い信頼性を発揮して適用できるものであり、これらの発展分野を中心に産業発展に寄与することが期待される。
 また、本発明の平角状アルミニウム被覆銅リボン、平角状金被覆銅リボンおよび平角状パラジウムまたは白金被覆銅リボンは、130~175℃の耐熱温度と大容量を必要とする高温半導体、特にエアコン、太陽光発電システム、ハイブリッド車や電気自動車などのパワー半導体に採用されることによって、これらの新たな用途において普及し、当該分野の発展に寄与することが期待される。

Claims (23)

  1.  半導体素子パッドと基板との間を多数箇所の超音波接合によって接合し、ループ状に接続するためのアルミニウム被覆層および銅芯材テープからなる平角状リボンにおいて、前記銅芯材テープは70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅からなり、前記アルミニウム被覆層はアルゴンガスまたはヘリウムガス等の不活性雰囲気下で原子状ないしクラスター状で真空析出した緻密な微細結晶組織からなり、30Hv以上のビッカース硬さをもつ純度99.9質量%以上のアルミニウムからなることを特徴とする半導体素子用アルミニウム被覆銅リボン。
  2.  前記アルミニウム被覆層の厚さが、0.1μm以上50μm以下であり、好ましくは0.1~10μm以内である請求項1に記載の半導体素子用アルミニウム被覆銅リボン。
  3.  前記銅芯材テープの純度が99.99質量%以上である請求項1に記載の半導体素子用アルミニウム被覆銅リボン。
  4.  前記アルミニウム被覆層の純度が99.99質量%以上以上である請求項1に記載の半導体素子用アルミニウム被覆銅リボン。
  5.  前記銅芯材テープの硬さがアルミニウム被覆層の硬さの2倍以下である請求項1に記載の半導体素子用アルミニウム被覆銅リボン。
  6.  前記純度99.99質量%以上のアルミニウムがマグネトロンスパッタによって析出されたものである請求項1に記載の半導体素子用アルミニウム被覆銅リボン。
  7.  アルミニウムの金属または合金からなる半導体素子パッドの第一ボンドおよびニッケル被覆基板の第二ボンドを多数箇所の超音波接合によって接合し、第一ボンドと第二ボンドとのあいだをループ状に接続するための金被覆層および銅芯材テープからなる平角状リボンにおいて、前記銅芯材テープは70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅からなり、前記金被覆層はアルゴンガス等の希ガス雰囲気下でマグネトロンスパッタされた純度99.9質量%以上の金からなる微細な粒状の結晶組織であることを特徴とする半導体素子用金被覆銅リボン。
  8.  前記粒状の結晶組織の結晶粒の線密度が上方向から見て1μmあたり10~100個である請求項7に記載の半導体素子用金被覆銅リボン。
  9.  前記粒状の結晶組織の結晶粒の線密度が上方向から見て1μmあたり10~50個である請求項7に記載の半導体素子用金被覆銅リボン。
  10.  前記銅芯材テープの純度が99.9質量以上である請求項7に記載の半導体素子用金被覆銅リボン。
  11.  前記金被覆層の純度が99.99質量%以上である請求項7に記載の半導体素子用金被覆銅リボン。
  12.  前記金被覆層の純度が99.999質量%以上である請求項7に記載の半導体素子用金被覆銅リボン。
  13.  前記金被覆層の厚さが、50~500nmである請求項7に記載の半導体素子用金被覆銅リボン。
  14.  前記金被覆銅リボンの形状が、幅0.5~10mmおよび厚さ0.05~1mmである請求項7に記載の半導体素子用金被覆銅リボン。
  15.  前記半導体素子パッドが、0.5~1.5質量%シリコンまたは0.2~0.7質量%銅を含むアルミニウム合金である請求項7に記載の半導体素子用金被覆銅リボン。
  16.  アルミニウムの金属または合金からなる半導体素子パッドの第一ボンドおよびニッケル被覆基板の第二ボンドを多数箇所の超音波接合によって接合し、第一ボンドと第二ボンドとのあいだをループ状に接続するためのパラジウムまたは白金被覆層および銅芯材テープからなる平角状リボンにおいて、前記銅芯材テープは70Hv以下のビッカース硬さをもつ純度99.9質量%以上の銅からなり、前記パラジウムまたは白金被覆層は希ガス雰囲気下で、室温に保持された前記銅芯材テープ上に、マグネトロンスパッタされた50~500nm厚の純度99.9質量%以上のパラジウムまたは白金からなる微細な粒状の結晶組織であることを特徴とする半導体素子用パラジウムまたは白金被覆銅リボン。
  17.   前記粒状の結晶組織が上方向から見て1μmあたり10~100個である請求項16に記載の半導体素子用パラジウムまたは白金被覆銅リボン。
  18.  前記粒状の結晶組織が上方向から見て1μmあたり10~50個である請求項16に記載の半導体素子用パラジウムまたは白金被覆銅リボン。
  19.  前記銅芯材テープの純度が99.9質量%以上である請求項16に記載の半導体素子用パラジウムまたは白金被覆銅リボン。
  20.  前記パラジウムまたは白金被覆層の純度が99.99質量%以上である請求項16に記載の半導体素子用パラジウムまたは白金被覆銅リボン。
  21.  前記パラジウムまたは白金被覆層の純度が99.995質量%以上である請求項16に記載の半導体素子用パラジウムまたは白金被覆銅リボン。
  22.  前記パラジウムまたは白金被覆銅リボンの形状が、幅0.5~10mmおよび厚さ0.05~1mmである請求項16に記載の半導体素子用パラジウムまたは白金被覆銅リボン。
  23.  前記半導体素子パッドが、0.5~1.5質量%シリコンまたは0.2~0.7質量%銅を含むアルミニウム合金である請求項16に記載の半導体素子用パラジウムまたは白金被覆銅リボン。
PCT/JP2011/069696 2011-08-31 2011-08-31 半導体素子用平角状アルミニウム、金、またはパラジウム若しくは白金被覆銅リボン WO2013030968A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069696 WO2013030968A1 (ja) 2011-08-31 2011-08-31 半導体素子用平角状アルミニウム、金、またはパラジウム若しくは白金被覆銅リボン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069696 WO2013030968A1 (ja) 2011-08-31 2011-08-31 半導体素子用平角状アルミニウム、金、またはパラジウム若しくは白金被覆銅リボン

Publications (1)

Publication Number Publication Date
WO2013030968A1 true WO2013030968A1 (ja) 2013-03-07

Family

ID=47755520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069696 WO2013030968A1 (ja) 2011-08-31 2011-08-31 半導体素子用平角状アルミニウム、金、またはパラジウム若しくは白金被覆銅リボン

Country Status (1)

Country Link
WO (1) WO2013030968A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336043A (ja) * 2003-05-02 2004-11-25 Orthodyne Electronics Corp リボンボンディング
WO2007125939A1 (ja) * 2006-04-27 2007-11-08 Neomax Materials Co., Ltd. 配線接続用クラッド材及びそのクラッド材から加工された配線接続部材
JP2008117825A (ja) * 2006-11-01 2008-05-22 Toshiba Corp パワー半導体デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336043A (ja) * 2003-05-02 2004-11-25 Orthodyne Electronics Corp リボンボンディング
WO2007125939A1 (ja) * 2006-04-27 2007-11-08 Neomax Materials Co., Ltd. 配線接続用クラッド材及びそのクラッド材から加工された配線接続部材
JP2008117825A (ja) * 2006-11-01 2008-05-22 Toshiba Corp パワー半導体デバイス

Similar Documents

Publication Publication Date Title
JP4212641B1 (ja) 超音波ボンディング用アルミニウムリボン
US8609993B2 (en) Power module substrate, power module, and method for manufacturing power module substrate
WO2012049893A1 (ja) 高温半導体素子用平角状銀(Ag)クラッド銅リボン
WO2009148168A1 (ja) パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
WO2011155379A1 (ja) アルミニウム銅クラッド材
JP5773344B2 (ja) 半導体装置及び半導体装置用接合材
JP4700681B2 (ja) Si回路ダイ、Si回路ダイを製作する方法およびSi回路ダイをヒートシンクに取り付ける方法並びに回路パッケージと電力モジュール
JP2016048782A (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
US9236166B2 (en) Core-jacket bonding wire
TW201336599A (zh) 銀-鈀合金表面鍍金屬薄膜之複合線材及其製造方法
JP4579705B2 (ja) クラッド材とその製造方法
JP2016048781A (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
TWI599664B (zh) 用於功率模組封裝之金屬帶材
KR102040278B1 (ko) 무연솔더 합금 조성물 및 그 제조방법, 무연솔더 합금 조성물을 이용한 부재 간의 접합방법
JP2011192840A (ja) 半導体素子用平角状アルミニウム被覆銅リボン
WO2019116946A1 (ja) クラッド材およびその製造方法
KR102040280B1 (ko) 무연솔더 합금 조성물 및 그 제조방법, 무연솔더 합금 조성물을 이용한 부재 간의 접합방법
JP6433245B2 (ja) 熱電素子および熱電モジュール
JPH0250432A (ja) 半導体装置
WO2013030968A1 (ja) 半導体素子用平角状アルミニウム、金、またはパラジウム若しくは白金被覆銅リボン
JPWO2020158660A1 (ja) はんだ接合部
JP5519419B2 (ja) 高温半導体素子用平角状パラジウム(Pd)又は白金(Pt)被覆銅リボン
JP5203906B2 (ja) Bi含有はんだ箔の製造方法、Bi含有はんだ箔、接合体、及びパワー半導体モジュール
JP2017136628A (ja) In系クラッド材
WO2012032629A1 (ja) 超音波ボンディング用アルミニウムリボン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP