WO2013030897A1 - 系統電圧安定化装置および安定化方法 - Google Patents

系統電圧安定化装置および安定化方法 Download PDF

Info

Publication number
WO2013030897A1
WO2013030897A1 PCT/JP2011/004925 JP2011004925W WO2013030897A1 WO 2013030897 A1 WO2013030897 A1 WO 2013030897A1 JP 2011004925 W JP2011004925 W JP 2011004925W WO 2013030897 A1 WO2013030897 A1 WO 2013030897A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
switch
power generation
weather
Prior art date
Application number
PCT/JP2011/004925
Other languages
English (en)
French (fr)
Inventor
犬塚 達基
小林 秀行
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to EP11871692.7A priority Critical patent/EP2752953B1/en
Priority to US14/240,100 priority patent/US9537314B2/en
Priority to JP2013530883A priority patent/JP5648129B2/ja
Priority to CN201180072396.5A priority patent/CN103703643B/zh
Priority to PCT/JP2011/004925 priority patent/WO2013030897A1/ja
Publication of WO2013030897A1 publication Critical patent/WO2013030897A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a system stabilization device and a system stabilization method, and in particular, system stabilization suitable for realizing stabilization of system voltage in a power system connected to a distributed power source such as a solar power generation or a wind power generation apparatus.
  • the present invention relates to an apparatus and a system stabilization method.
  • PV photovoltaic power generation
  • These are often referred to as distributed power sources or distributed power sources because they are often geographically dispersed compared to existing centralized power sources such as thermal power generation, hydroelectric power generation, and nuclear power generation.
  • a consumer purchases and uses power supplied from a centralized power supply via a power system, but a consumer with a distributed power supply can use the power generated by the self-consumption for self-consumption.
  • the shortage can be purchased (power purchase), and the surplus power can be supplied to the power system (power sale) to recover the purchase cost of the distributed power source.
  • the power system is composed of a complex combination of many power supplies, loads, and the impedance of the system itself. While each has fluctuation factors, it is an important issue to provide a stable power supply to consumers.
  • the fluctuation of the system voltage may cause an excessive voltage or current to be applied to the equipment that constitutes the power system, resulting in a decrease in device characteristics or a shortened life.
  • it can be an unstable factor in the operation of equipment owned by consumers. Therefore, for example, in the low voltage distribution system, there is a system voltage range regulation of 101 ⁇ 6V.
  • voltage stabilization techniques have been developed for the purpose of maintaining stable operation of the system itself and the connected devices and suppressing voltage fluctuation due to a load or the like.
  • voltage control devices such as an on-load tap switching transformer (LRT), a step voltage controller (SVR), and a static reactive power compensator (SVC) are known.
  • distributed power supplies have different characteristics from existing centralized power supplies.
  • the amount of power generated by distributed power sources that use these natural energies varies depending on weather conditions such as solar radiation and wind direction.
  • the voltage of the power system decreases as it goes to the end, but the voltage at the end of the system may increase when surplus power is supplied to the power system by the distributed power source. Combined with these characteristics, the system voltage will vary depending on weather conditions.
  • a typical technique for suppressing deviation from the allowable voltage range in a power system connected to a distributed power supply In the technique described in Patent Document 1, fluctuations in the system voltage based on weather prediction are predicted, and voltage control is performed by supplying reactive power to the PV device (PCS). In the technique described in Patent Document 2, a system voltage distribution is estimated based on future weather information, and whether or not power supply by the voltage regulator is possible is determined. In the technique described in Patent Document 3, switching by a switch is performed when there is a voltage increase due to a reverse power flow caused by PV power generation.
  • PV solar power generation
  • the amount of solar radiation reaching the PV equipment varies depending on seasonal changes in the elevation angle of the sun, weather such as sunny or rainy weather, cloud shadows, etc. .
  • the angle between the sun and the PV device can be calculated using latitude and longitude.
  • Predictive information announced by the Japan Meteorological Agency can be used for weather changes for a certain period.
  • a change in solar radiation amount that is, a change in power generation amount
  • the amount of solar radiation can be measured using a pyranometer.
  • An object of the present invention is to provide a system voltage stabilizing device and a stabilization method capable of stabilizing the system voltage.
  • an input unit for inputting weather forecast information, and a system so as to suppress voltage fluctuation of the system affected by the weather fluctuation based on the weather forecast information and system configuration information.
  • a command calculation unit for obtaining an opening / closing command for connecting / disconnecting each switch is provided.
  • the occurrence of voltage fluctuation itself can be suppressed by reconfiguring the system so as to reduce the fluctuation before the fluctuation occurs based on the weather forecast information.
  • strain using a switch The figure explaining the fluctuation
  • FIG. 1 illustrates an electric power system to which the present invention is applied.
  • the power system is put into practical use as a system configuration such as a tree type, a mesh type, and a loop type.
  • an ideal mesh type power distribution system is shown as an example in FIG. I will explain.
  • the present invention can be applied to the other system configurations described above.
  • the power distribution system for example, at the time of an accident, in order to isolate the faulty part and continue the power supply to the part without the fault, a plurality of routes are operated so as to be connected at appropriate points.
  • a switch is arranged at each node (n11 to n55) in FIG. 1 (1), and the connection point is switched on and off so that the influence at the time of the failure does not reach a wide range.
  • each node (n11 to n55) is provided with a switch (not shown) for connecting / disconnecting to / from four nodes, top, bottom, left and right.
  • a switch is provided in the node n22 between the upper node n12, the lower node n32, the right node n21, and the left node n23, and connection / disconnection is performed by each switch.
  • a distribution substation (not shown) is connected above and to the left of the distribution system shown as a whole, and power is supplied from the distribution substation.
  • the arbitrary nodes include, as voltage control devices, a load tap switching transformer (LRT), a step voltage control device (SVR), and a static reactive power compensation device.
  • a voltage control device such as (SVC) is provided.
  • the power distribution system is a mesh type, and a switch capable of switching an arbitrary connection is connected to an intersection of the mesh.
  • distributed power sources such as solar power generation and wind power generation are connected to a power distribution system connected by a switch.
  • SVR is an adjustment transformer with a tap that adjusts the voltage of the distribution line. By switching the tap of the adjustment transformer, the SVR adjusts the distribution line voltage so that it falls within the dead zone including the appropriate reference value. Voltage adjustment by tap switching is performed step by step in minutes.
  • the static reactive power compensator SVC includes a reactive current generator that generates an arbitrary reactive current, a voltage detector that detects a distribution line voltage, a current detector that detects an output current of the reactive power generator, a voltage
  • the reactive current injected into the distribution line is controlled so that the distribution line voltage is maintained at the reference value, thereby instantaneously maintaining the distribution line voltage at the reference value. Adjust to.
  • the principle of voltage stabilization by reactive power described above can be explained as follows.
  • the reactance component and resistance component of distribution line impedance are set as x and r, respectively, and the distribution line voltage at the installation point of SVC is Vi,
  • the power factor angle is ⁇ , the following equations (1) and (2) are established.
  • the generation of reactive current is based on the SVG (Static Var Generator) method, in which a self-excited inverter constructed using a self-extinguishing element such as IGBT or GTO is connected to the distribution line via a reactor and outputs reactive power to the distribution line.
  • SVG Static Var Generator
  • a circuit that connects a reactor to the primary side of the output transformer via a thyristor and controls the reactive reactive current of the reactor by the thyristor is configured, and a phase advance capacitor in parallel with the circuit composed of the thyristor and the reactor
  • a TCR (Thyristor Controlled Reactor) system in which is connected is proposed. Since either system is an operation by a semiconductor element, it has sufficiently fast response characteristics.
  • the distribution system and the voltage distribution from the distribution substation to the consumer including the terminal photovoltaic power generation device (PV device) are not shown in any of the nodes (n11 to n58) shown in FIG.
  • voltage control devices SVR and SVC are connected for the purpose of suppressing voltage fluctuation, and the voltage drops as it goes to the end, but the voltage is raised by SVC and reactive power is controlled by SVR. Voltage adjustment. For example, since a low voltage distribution system in Japan has an allowable range of 101 ⁇ 6V, voltage control is provided with a voltage control device so that the voltage does not exceed the allowable range of 101 ⁇ 6V.
  • the switch can be operated manually in addition to remote operation by transmitting a drive signal from a remote location.
  • the switch is also used to temporarily disconnect the maintenance facility (construction site) of the system equipment.
  • FIG. 3 shows a conceptual diagram of the basic configuration of the system voltage stabilizing device 101.
  • a drive signal for a switch provided in the power system is output.
  • variation of the system voltage caused by the distributed power supply is suppressed, and a stable system operation is realized. That is, the system voltage is stabilized by generating a drive signal for the switch connected to the system from the weather prediction information and the power system information.
  • FIG. 4 (1) shows a specific configuration example of the system voltage stabilizing device 101.
  • the system reconfiguration signal generator 11 outputs the calculated drive signal of the switch 13 based on the weather forecast information and the system configuration information.
  • the PV predicted power generation amount generation unit 10 predicts the power generation amount based on the weather prediction information, and the drive signal generation unit 12 of the voltage control devices 14 and 15 controls the voltage control devices 14 and 15 based on the weather prediction. Output a signal.
  • the drive signal of the switch 13 is calculated based on information such as the moving direction of the clouds included in the weather prediction information. Further, in order to calculate the control signals of the voltage control devices 14 and 15, the predicted power generation amount of the PV device is calculated based on the amount of solar radiation included in the weather prediction information.
  • the information of the system reconfiguration by the switch 13 and the information related to the current system configuration are obtained, and the control signals of the voltage control devices 14 and 15 are calculated.
  • different voltage control devices 1 and voltage control devices 2 can be operated in combination, such as SVR and SVC.
  • a drive signal generation unit 17 for the voltage control device is provided, and a predicted voltage distribution in the system is calculated using a method such as power flow calculation in the middle of the calculation.
  • the calculation method of the control signal of the voltage control device is not limited to a special method.
  • the PV predicted power generation amount generation unit 10 predicts and calculates the power generation amount of the PV generator installed in any node (n11 to n58) in FIG. 1 from the weather prediction information.
  • the weather prediction information is weather information such as solar radiation, wind direction, and wind speed over the prediction period from the present time, and other prediction methods may be used as the prediction method.
  • the system information includes a geographical line, a connection location of the power control devices 14 and 15, a connection location of the switch 13, a connection location of a distributed power source (such as a PV device), and the like.
  • the switch 13 is a switch installed at a relay point, a connection point, or the like of the power system.
  • the switch 13 functions to disconnect a faulty part in the event of a system failure and also functions to connect to another system.
  • the system reconfiguration signal generator 11 generates a drive signal for the switch 13 from the weather prediction information and the power system information so that the system voltage does not deviate from the allowable range or the deviation amount is minimized, Perform reconfiguration.
  • the voltage control device drive signal creation unit 12 is connected to the system reconfiguration by the switch 13 and the voltage control devices 14 and 15 such as LRT, SVR, and SVC based on the PV predicted power generation amount according to the weather prediction information. By controlling in advance, the effect of stabilization can be enhanced.
  • the system reconfiguration signal generation unit 11 calculates the system reconfiguration based on the power generation amount calculated by the PV predicted power generation amount generation unit 10 and the system configuration information from the distribution system 16, and opens / closes the switch 13. A system reconfiguration signal that is a command signal is transmitted.
  • the switch 13 is controlled to open or close.
  • the drive signal generation unit 12 of the voltage control device transmits a control signal to the voltage control device 14 and the voltage control device 15.
  • the voltage control device such as SVC or SVR and the voltage control device are operated so as to maintain the system voltage within a predetermined range.
  • This system reconfiguration signal is a combination of open / close command signals for the switch 13.
  • a voltage control device such as SVR or SVC may be generated as a system reconfiguration signal.
  • the purpose of generating the system reconfiguration signal is to change the system configuration so that the fluctuation of the system voltage caused by the fluctuation of the power generation amount of the distributed power supply is reduced.
  • the change in the amount of solar radiation changes the power generation amount of the PV device.
  • system voltage changes with the electric power supply from a PV apparatus to an electric power system. If the PV device and the power system are connected at a short distance, it can be considered that the PV device is almost on the power system.
  • solar radiation can be regarded as a distribution signal that has geographical spread under the influence of the sun and clouds. From this, the geographical relationship between solar radiation and power system, both of which are regional, is an important factor.
  • the system reconfiguration signal is generated so as to reconfigure the geographical arrangement of the power system based on the change in the amount of solar radiation, whereby the voltage fluctuation of the power system can be suppressed.
  • Such reconfiguration can be realized using a switch as described above.
  • PV devices are installed on the roofs of customers and supply surplus power to the distribution system.
  • installation location of the PV device and the connection location of the distribution system are geographically the same position.
  • moving direction, speed, and shape of the cloud are constant, and the change in the solar radiation on the ground is synchronized with the movement of the cloud.
  • Weather forecast information is input to the system reconfiguration signal creation unit 11.
  • the weather in a certain area is indicated by the amount of solar radiation, wind power, wind direction, and the like, and the forecast information published by the Japan Meteorological Agency can be used as the weather forecast information.
  • the amount of solar radiation can be used as data by image analysis of satellite photographs and all sky camera images.
  • a pirometer and an anemometer may be installed independently, and the system reconfiguration signal generation unit 11 may analyze the information.
  • the amount of solar radiation varies with various temporal measures, such as the altitude of the sun over the year, the altitude and azimuth of the sun over the day, and the blocking of solar radiation by clouds during the day.
  • the change in the solar radiation due to the movement of the clouds shows detailed characteristics in terms of geographical and temporal. For example, changes in solar radiation due to cloud movement may be halved or doubled in seconds.
  • Such a change in solar radiation may be predicted by analyzing a cloud-captured image taken by a camera, or analyzing measurement data of a solar radiation meter installed on the ground. For example, by disposing multiple solarimeters in a geographically dispersed manner and finding changes in solar radiation due to cloud movement from those measurement data, short-term prediction information for changes in solar radiation due to cloud movement is created. be able to.
  • the weather prediction information is obtained or generated and used, but these specific prediction methods are not limited and various alternative methods may be used. In the following description, the weather forecast information related to the amount of solar radiation and the PV equipment that generates power by solar radiation will be specifically described. Similarly, it is of course possible to apply to weather forecast information related to wind direction and wind speed and wind power generation.
  • the system reconfiguration signal creation unit 11 finds a drive signal for the switch 13 that connects the distribution systems with the aim of moderating fluctuations in the PV power generation amount due to changes in solar radiation based on weather forecast information.
  • This problem can be solved as an optimization problem by preparing some evaluation function and minimizing (or maximizing) this evaluation function. It does not limit the solution of the optimization problem.
  • the drive signal for the switch 13 is calculated by applying the evaluation function to the combinations of opening / closing of all the switches 13 shown in FIG.
  • the present invention does not limit the format of the evaluation function, an example is shown below.
  • a power system distributed system
  • the mesh grid points are called nodes, and the connection direction of the system at the nodes is selected by a switch. If all the switches are turned on, the wiring is completely meshed, and if the horizontal or vertical switches are turned on, the wiring is parallel. Between nodes, there is a PV generator as a distributed power source, and if the amount of solar radiation is strong, power is sold.
  • the operation (on / off) of the switch is determined using an evaluation function, many methods are found in the formulation depending on how to take variables even for the same purpose.
  • the evaluation function can be replaced with a different expression format for almost the same purpose.
  • the system voltage can be stabilized by using a voltage control device (SVR, SVC, etc.) to control the voltage distribution to be within a specified range.
  • the voltage distribution of such a voltage system can be represented by a graph with the voltage on the vertical axis and the direction in which the node extends on the horizontal axis.
  • FIG. 10 (1) is a form extending continuously in the node connection direction horizontal direction
  • FIG. 11 (1) is the vertical direction and horizontal direction in order.
  • a form extending in an oblique direction is shown.
  • the cloud flow is in any direction
  • the four directions (a), (b), (c), and (d) are shown as representatives.
  • there are many variations such as a configuration in which the inter-node connection is formed in an oblique direction, a configuration in which the voltage control device is combined, and the description is omitted here.
  • the distance that the cloud that causes the change in solar radiation between the nodes moves between the nodes is a numerical value that varies depending on the system connection and the direction of the clouds.
  • the distance that the cloud flows between nodes of the system is used as an evaluation function. Since the longer the distance that the cloud flows, the longer it takes to move, so the voltage fluctuation per hour becomes smaller.
  • Fig. 10 (2) is an evaluation function plot of Fig. 10 (1).
  • the broken line plot in the figure shows the case where the grid connection is in the vertical direction.
  • the vertical axis indicates the value of the evaluation function.
  • the horizontal axis distinguishes the moving direction of the clouds by (a), (b), (c), and (d). Since the moving direction of the cloud is not limited to four directions, (a), (b), (c), and (d) are continuously connected.
  • the cloud flow direction (a) and the node extending direction are orthogonal, the minimum value is zero.
  • the cloud flow direction (a) is parallel to the node extending direction, the maximum value is 1.
  • the other directions can be calculated in the same way. In the case of this system configuration, since the difference between the maximum value and the minimum value is large, the evaluation value varies greatly when the direction of the cloud is shifted.
  • Fig. 11 (2) is an evaluation function plot of Fig. 11 (1).
  • the broken line plot in the figure shows the case where the grid connection is in the opposite oblique direction.
  • the cloud flow is in the middle of (a) and (b)
  • the other directions can be calculated in the same way.
  • the voltage stability changes by switching the extending direction of the node depending on the direction in which the clouds flow.
  • the present invention is characterized in that voltage stability is controlled by switching the connection direction of the nodes of the system by utilizing the relationship between such weather conditions and the system voltage.
  • FIG. 12 summarizes the above results and displays the relationship between system reconfiguration and voltage stabilization.
  • the distance between nodes is used as an index, but information relating to a large number of nodes may be statistically processed and used.
  • the actual power system node position is a complex combination and the connection direction may be limited. In such a case, some statistical processing may be used.
  • the present invention is based on the principle of obtaining an optimal solution based on the evaluation function, but it includes a local optimal solution.
  • the local solution is simply a solution in a case where a possible range of the solution is limited.
  • Many exploratory solutions for optimal solutions cannot search for all possible solutions within a practical time.
  • the Taboo method which is known as one of the optimum solution search methods, is characterized by providing a procedure for avoiding becoming a local solution, but it may still be a local solution due to search time constraints and the like.
  • this example can also be interpreted as an optimal solution obtained within a given search time.
  • an error is included in the numerical value used to calculate the evaluation function, this corresponds to a case where it is difficult to correctly measure the characteristics of the power system. Will fade. From these practical viewpoints, the present invention is not limited to the optimal solution and does not prevent the use of the local solution.
  • nodes (n11, n55) in the combination are connected to the open / close combinations of all switches.
  • the voltage variation in the group is used as an evaluation function.
  • the system reconfiguration signal creation unit 11 obtains an open / close signal in the switch 13 by using a solution whose evaluation function is minimum (or maximum) as a solution.
  • FIG. 5 illustrates the distribution of PV devices, but a PV device distributed in two dimensions can be replaced with a distribution on a one-dimensional coordinate axis taken in the moving direction of the cloud, as shown in FIG. Even when the PV devices are arranged at equal intervals on the power distribution system, the intervals between the PV devices may differ when viewed from the cloud moving direction, and the average interval between the PV devices varies depending on the cloud moving direction.
  • the system reconfiguration signal generator 11 performs grouping so that the average interval formed by each node (n11 to n55) is the largest in each group to which the nodes (n11 to n55) are connected.
  • the open / close signal to the switch 13 is calculated so that the evaluation result of the evaluation function becomes the smallest (or the largest).
  • the system reconfiguration signal generation unit 11 can calculate the location of the distributed power supply as a phase, as shown in FIG.
  • FIG. 1 In the two power distribution systems, a case where PV devices are connected at equal intervals in the moving direction of the clouds is illustrated.
  • the arrangement of PV devices in both distribution systems is in the same phase means that voltage fluctuations due to changes in solar radiation are at the same timing in both distribution systems.
  • the phase of the arrangement of the two PV devices is deviated, the voltage fluctuations of both are at different timings.
  • the voltage fluctuation has a smooth slope. For example, a brute force combination problem can be solved so that the evaluation function is minimized (or maximum) by using the phase shift of the distributed power sources provided in the connected distribution systems as an evaluation function.
  • the system reconfiguration signal creation unit 11 obtains an open / close signal from the switch 13 by using a solution whose evaluation function is minimum (or maximum) as a solution.
  • a solution method for obtaining a solution can be solved by using some existing optimization method.
  • the present invention does not limit the types of optimization techniques.
  • the power supply by a distributed power source in a certain region varies geographically and temporally depending on the weather. For example, when clouds flow in, solar power generation is performed in areas where there are no clouds, and solar power generation decreases in areas where solar radiation is blocked by the clouds. Clouds move while generating, disappearing, and deforming, but only the movement of clouds is considered as being within a relatively small area.
  • FIG. 6 schematically shows changes in photovoltaic power generation due to cloud movement (inflow).
  • (1) in the figure, in the distribution system in which PV devices are arranged in parallel with the moving direction of the clouds, the PV devices are gradually covered with clouds, and the output of solar power generation gradually decreases (ramp function).
  • (2) in the distribution system in which PV devices are arranged orthogonally to the moving direction of the clouds, clouds are simultaneously applied to all the PV devices, and the output of solar power generation decreases in a step function.
  • the characteristics of the voltage of the distribution system receiving the supply of generated power differ depending on the positional relationship between the cloud and the PV device.
  • the voltage stabilization effect is obtained when the system is configured so that PV devices are arranged in parallel with the moving direction of the clouds as much as possible.
  • the connection point between the power distribution system and the PV device changes the relationship between the cloud moving direction and the arrangement of the PV devices described above by changing the electrical and mechanical. That is, in the combination of the nodes (n11 to n55) obtained above, it is determined whether or not a step function is generated in each group. If a step function is generated, the node (n11 to n55) The combination is excluded and the combination of the nodes (n11 to n55) is calculated again. With this result, an open / close control signal is transmitted to the switch 13.
  • the switch 13 is reconfigured as shown in FIG. 1 (2) or (3).
  • the operation of the voltage control device drive signal generator 12 will be described.
  • stabilization of the system voltage can be realized by calculating the drive signal of the switch 13 based on the weather forecast information.
  • the control since the control is based on prediction information, it is inevitable that a prediction error occurs.
  • the switch 13 in order to utilize weather prediction information such as a short-term change in solar radiation and a change in wind speed, the switch 13 needs to operate at high speed. Therefore, further voltage stabilization can be realized by combining the reconfiguration of the system using the switch based on the weather prediction information with the driving of the voltage control device based on the weather prediction information.
  • the method of controlling voltage control apparatuses, such as SVR and SVC, with prediction weather information is illustrated.
  • FIG. 8 shows changes in solar radiation prediction information and system voltage.
  • FIG. 8 (1) shows the change in the amount of solar radiation during the prediction period. The beginning of the prediction period is cloudy, then after two clear weather periods, it returns to cloudy at the end of the prediction period.
  • FIG. 8 (2) shows the amount of photovoltaic power generation, which is synchronized with the change in solar radiation during the forecast period.
  • FIG. 8 (3) shows a change in system voltage due to solar power generation, and is synchronized with a change in solar radiation during the prediction period. In order to stabilize this voltage, voltage control by SVR and SVC is performed. (4) in the figure indicates the low frequency component of the predicted system voltage.
  • the drive signal generator 12 of the voltage control device of this embodiment performs a step operation so as to compensate for this low frequency component. It should be noted here that when the voltage waveform in the prediction period is decomposed into frequency components, the low frequency components have changed before the system voltage fluctuates. Then, as shown in FIG. 8 (5), the SVC is operated so as to compensate the residual, that is, the difference between the SVR response and FIG. 8 (3) (in other words, the high-frequency component of the system voltage). Thus, the voltage control device drive signal creation unit 12 starts an operation for compensating for the fluctuation before the actual voltage fluctuation occurs. As a result, it is possible to reduce a compensation error when an actual fluctuation occurs. By repeating such control every time new information is input, system stabilization can be realized.
  • FIG. 9 shows changes in solar radiation prediction information and system voltage when the system is reconfigured using a switch.
  • the fluctuation of the system voltage is moderated by the system reconfiguration using the switch. If the voltage fluctuation is moderate, the burden of voltage control by SVR and SVC is reduced. This is an advantage that the cost for voltage control devices such as SVR and SVC can be reduced.
  • Fig. 7 schematically shows the distribution system and voltage distribution from the distribution substation to the consumer with the terminal PV equipment. It is assumed that a voltage control device 1 and a voltage control device 2 (14, 15) SVR and SVC are connected to the system for the purpose of suppressing voltage fluctuation. In a system where a distributed power source such as a PV device is not connected, the voltage often decreases as it goes to the end. On the other hand, a system that receives power supply from a distributed power source is a so-called reverse power flow. The terminal voltage increases. The amount of power generated by the distributed power supply varies depending on the weather, and the distribution of the system voltage connected to the distributed power supply varies under the influence of the weather.
  • the voltage of the system is required to be within a certain allowable range for stable operation of the system facility capacity, the connected load facility, and the like. For example, 101 ⁇ 6V is acceptable for low voltage distribution systems in Japan.
  • voltage control is generally performed using voltage control devices 14 and 15. The same applies to the high-voltage distribution system.
  • (1) shows the system voltage distribution when the state changes from cloudy to clear. Even when the voltage that was within the allowable range when it was cloudy became clear and the amount of power generation increased, this example shows that the voltage is within the allowable range due to the influence of solar power generation.
  • (2) in the figure shows an operation that falls within an allowable range due to a voltage drop due to SVR.
  • Example 2 will be described.
  • the second embodiment only the calculation related to the evaluation function is different, and the other configuration is the same as that of the first embodiment. Therefore, only the difference will be described. That is, description of other different parts is omitted.
  • the evaluation result is calculated using the evaluation function for the calculation of the voltage distribution by the power flow calculation of the power system.
  • the power flow tidal current calculation uses what is known as a general method of system analysis.
  • the prediction distribution generator 12 of the predicted voltage distribution of the system voltage in FIG. 9 (2) obtains the voltage distribution by calculating the power flow based on the information on the system configuration including the switch 13 and the amount of power generated by the distributed power source.
  • a combination of the power generation amount of the distributed power source based on the weather forecast information and the switch 13 that reduces the voltage fluctuation is taken in to calculate the voltage distribution.
  • the evaluation result is calculated using the magnitude of the voltage fluctuation as an evaluation function.
  • the response characteristic is determined by the positional relationship of the PV device with the moving direction of the cloud, and is a step function response if orthogonal, and a ramp function response if parallel.
  • the amplitude of each response is determined by the amount of power generated by the connected PV device. That the response is a step function includes a high frequency component, which is not preferable for stabilizing the system.
  • the effect of connection by a switch is to alleviate the slope of voltage fluctuations by combining power distribution systems having these response characteristics. The effect of the combination varies depending on the position of the connection point, but the major tendency is as follows.
  • the on / off combination of the switch 13 is the group of the nodes (n11 to n55) combined with the slope of the response signal as an index, the sum of the indices in the order of the response signal, and the response signal as an evaluation function. Is selected so that the evaluation function becomes minimum (or maximum). Similar to the above method, such a combination problem can be solved as a brute force combination problem, for example. Alternatively, it can be solved as an optimization problem using an existing optimization method.
  • the combination of on / off switches that makes this evaluation function the smallest (or largest) can be set as a combination problem in the same way as in the embodiment method, and can be solved as a brute force combination problem, for example. Alternatively, it can be solved as an optimization problem using an existing optimization method.
  • the evaluation function of the first embodiment and the evaluation function of the second embodiment are combined.
  • the combination of the switches 13 is obtained by using them as a new evaluation function that is weighted and summed. Also good.
  • Example 3 will be described.
  • the third embodiment only differences from the first and second embodiments will be described. That is, since it is the same as Example 1 and 2 of another structure, description is abbreviate
  • the on / off drive signal of the switch 13 can be calculated in advance in a tabular form, or in real time if the calculation function is high.
  • a change in the amount of solar radiation on the ground is predicted based on weather forecast information relating to the moving direction of the cloud, the size and shape of the cloud, the azimuth and altitude of the sun, and the like.
  • the switch is driven so that the number of connection points is increased during the reconfiguration of the system, and then the switch is driven so as to realize the target system configuration.
  • the voltage fluctuation can be suppressed by increasing the number of connection points by the switch in the middle stage.
  • the time required for this intermediate stage is not particularly limited, but is preferably a short time.
  • the system is reconfigured during the time when the weather is stable and the influence of voltage fluctuation due to weather fluctuation is small. For solar power generation, it is nighttime, and for wind power generation, it can be a time zone with a low wind speed. Similarly, a time zone in which the fluctuation of the load connected to the system is small may be selected.
  • the present invention does not limit the constituent means of the switch.
  • Mechanical switch means or switch means using a semiconductor element may be used.
  • a switch is often used to isolate a faulty part, but a new switch for the purpose of system reconfiguration may be configured.
  • a visual display means may be provided so that this on / off operation is performed manually by a human, and the manual operation of the switch by the human may be guided based on this means.
  • the target system can be reconfigured by performing the ordered guidance display without misunderstanding. If a switch using a semiconductor element is used, the time required for system reconfiguration can be shortened and the number of times of switching can be assured, so that more frequent switching is possible. Since restrictions on the time zone for performing the reconfiguration are reduced and the time required for the intermediate stage of the reconfiguration can be shortened, the system voltage can be stabilized by constantly reconfiguring the dynamic system.
  • the present invention does not limit the unit of time implied by this dynamic system reconfiguration.
  • a switch drive signal is generated in units of one day if long and in milliseconds if short.
  • the type of weather prediction information used at this time is not limited. Weather forecast information obtained from multiple information sources may be used in combination. For example, when there is prediction information that the amount of solar radiation changes greatly in a few seconds, the change in the system voltage is suppressed by increasing the number of connection points of the system prior to the actual change in the amount of solar radiation. When the change in the amount of solar radiation is over, the system is prepared for failure by reducing the number of connection points. In this way, the voltage stabilization function that is conventionally realized by the voltage control device can be realized by the system reconfiguration by the switch.
  • the switch is an on / off switch means
  • the switch may have a reactance or capacitance function.
  • an on-function may be realized by electromagnetic induction coupling of a transformer or electrostatic coupling of a capacitor, and further, a switching function by a semiconductor element may be combined with these reactance and capacitance.
  • the present invention is characterized in that a drive signal for voltage stabilization is generated based on weather forecast information.
  • the evaluation function for generating the switch drive signal may have many variations other than those described in the above embodiments. For example, it is possible to incorporate into the evaluation function, for example, a reduction in the number of times of switching of the switch, a decrease in voltage fluctuation at the time of switching of the switch, a spillover range of the failure when a failure occurs. Further, it is possible to combine fluctuations in the load on the customer side.
  • the weather forecast information may be any signal related to weather, even if it is not directly related to weather.
  • the weather conditions and system voltage are linked by many factors. For example, the amount of solar radiation, sunshine duration, PV power generation, PCS (power conditioner), AMI measurement data (electric power purchase) are related operations. Any factor can be used as weather-related information.
  • the weather situation may be collected as some sensor information not related to electric power. For example, information related to the weather collected by a monitoring camera, a streetlight automatic flashing device, a portable terminal mounted sensor, or the like may be used. . Further, for example, information from the Japan Meteorological Agency or a weather service company that distributes weather information may be used without knowing the means and method for collecting weather conditions. As described above, the weather prediction information may not be explicitly associated with the weather.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 分散電源を備える電力系統は、気象に依存する分散電源の発電量により、系統電圧の変動が引き起こされる。 気象予測情報と電力系統情報から、系統が備える開閉器の駆動信号を生成して、系統の構成を切り替えることで系統電圧の安定化を実現する。

Description

系統電圧安定化装置および安定化方法
 本発明は、系統安定化装置及び系統安定化方法に係り、特に、太陽光発電あるいは風力発電装置等の分散電源が接続された電力系統において、系統電圧の安定化の実現に好適な系統安定化装置及び系統安定化方法に関する。
 低炭素社会を目指して太陽光発電(PV)、風力発電などの自然エネルギーにより発電を行う機器の大量導入が見込まれている。これらは、既存の火力発電、水力発電、原子力発電などの集中型電源に比べて、地理的に分散して設置されることが多いことから、分散型電源、あるいは分散電源と呼ばれる。一般に需要家は、集中型電源が供給する電力を電力系統を経由して購入して利用するが、分散型電源を備える需要家は、自家発電した電力を自己消費に利用することができる。そして不足分は購入(買電)して、余剰電力は電力系統に供給(売電)することで、分散型電源の購入費用の回収に充てることができる。
 電力系統は、多くの電源、負荷、系統自体のインピーダンスなどが複雑に組み合わされて構成される。それぞれが変動要因を持つなかで、需要家に安定した電力供給を行うことが重要な課題である。系統電圧が変動することは、電力系統を構成する設備機器に過大な電圧あるいは電流がかかり機器特性の低下あるいは寿命短縮等の要因になりうる。また需要家が保有する機器の動作の不安定要因になりうる。そこで例えば配電の低圧系統では101±6Vの系統電圧範囲規定がある。従来から、系統自体および連系する機器の安定した動作を維持して、負荷等による電圧変動を抑えることを目的に電圧安定化技術が開発されてきている。例えば、負荷時タップ切替変圧器(LRT)、ステップ電圧制御装置(SVR)と、静止型無効電力補償装置(SVC)などの電圧制御機器が知られている。
 しかし分散型電源は、既存の集中型電源とは異なる特性を持つ。まず、これらの自然エネルギーを利用する分散電源の発電量は日射量、風向風力などの気象条件により変動する。また、一般に電力系統は末端に行くほど電圧が低下するが、分散電源により余剰電力を電力系統へ供給することで系統の末端側の電圧が上昇することがある。これらの特性が組み合わされて、系統電圧が気象条件によって変動することになる。
 分散電源が接続された電力系統において、電圧の許容範囲からの逸脱を抑える代表的な技術を示す。特許文献1の記載の技術では、気象予測に基づく系統電圧の変動を予測し、PV機器(PCS)の無効電力供給による電圧制御を行う。特許文献2に記載の技術では、将来の気象情報に基づいて系統電圧分布を推測し、電圧調整装置による電力供給の可否を判断する。特許文献3に記載の技術では、PV発電による逆潮流による電圧上昇がある場合に開閉器による切り替えを行う。
特開2010-259154号公報 特開2010-233352号公報 特開2008-199703号公報
 しかしながら、これらの従来技術は、分散電源が短期的に電圧変動することを想定していない。系統電圧の変動を、何らかのセンサで検知して、検知結果に基づいて電圧制御機器の制御信号を生成するならば、実際に電圧制御装置が動作するまでの時間遅れが発生する。それまでの期間は電圧変動が残ることになり、十分な安定化の効果が得られない。
 例えば太陽光発電(PV)は、太陽からの日射によって発電が行われるが、PV機器に届く日射量は、季節による太陽の仰角の変化、晴天・雨天などの天候、雲の影などにより変動する。これらのうち、太陽とPV機器が相対する角度は緯度経度などを用いて算出できることが知られている。ある程度の期間の天候変化は、気象庁が発表する予測情報を利用することができる。しかし例えば風によって移動する雲による日射量変化(つまり発電量の変化)はランダムであり、また秒単位に変化することがある。
日射量は日射計を用いて測定できる。
 しかし地理的な広がりを持つ気象状況によって変動する分散電源と、地理的な広がりを持ち配線される電力系統の関係を考慮しておらず、その結果として、系統電圧の安定化ができない。
 このような分散電源の導入は、系統安定化の観点(運用会社)からは、系統状態を変動させる要因になる。一方の分散電源の観点(需要家)からは、系統状態の変動は、余剰電力を系統へ供給(売電)する際の妨げの要因になる。これは、両者の連系点に置いて、系統状態(電圧など)に応じて分散電源の出力状態(電圧など)を合わせ込む必要があり、その合わせ込みが不十分な場合には余剰電力の売電が期待通りに行われないことになる。
 本発明の目的は系統電圧の安定化が可能な系統電圧安定化装置および安定化方法を提供することにある。
 上記目的を達成するために、本発明では、気象予測情報を入力する入力部と、前記気象予測情報と系統構成情報に基づいて前記気象変動に影響される系統の電圧変動を抑制するように系統の各開閉器を接続/遮断するための開閉指令を求める指令演算部を有するように構成した。
 本発明により、気象予測情報に基づいて、変動が生起する前に変動を低減するように系統を再構成することで、電圧変動の発生自体を抑えることができる。
開閉器を用いた系統の再構成を説明する図。 分散電源を備える系統電圧の変動を説明する図。 系統電圧の安定化装置を示す図。 系統電圧の安定化装置の構成例を示す図。 開閉器を用いた系統の連結を説明する図。 雲の移動方向とPV機器の配置を示す図。 系統電圧の安定化方法を示す図。 気象予測情報に基づく電圧安定化を説明する図。 気象予測情報に基づく電圧安定化を説明する図。 雲の向きと系統構成との位置関係を説明する図。 雲の向きと系統構成との位置関係を説明する図。 系統再構成に基づく電圧安定化を説明する図。
 以下、図面等を用いて、本発明の実施形態について説明する。
 図1に本発明が適用される電力系統を説明する。電力系統は、樹枝型、メッシュ型、ループ型などの系統構成として実用化されているが、本実施例では、図1(1)に示されるように、理想的なメッシュ型の配電系統を例にして説明する。もちろん、前述の他の系統構成にも適用可能である。配電系統では、例えば、事故時に、障害個所を切り離し、かつ、障害の無い個所への電力供給を継続するために、複数の経路を適宜な個所で連結できるようにして運用する。図1(1)の各ノード(n11~n55)に、開閉器を配置して、障害発生時の影響が広範囲に及ばないよう、連結点はオンオフが切り換えられる。
 図1において、各ノード(n11~n55)は、上下左右の4つのノードとの間に接続/切り離しするための開閉器(図示せず)が設けられる。例えば、ノードn22には、上ノードn12、下ノードn32、右ノードn21、左ノードn23との間に開閉器が設けられており、各々の開閉器により、接続/切り離しがなされる。
 図1において、全体として示される配電系統の上方及び左方には、図示しない配電変電所が接続されており、配電変電所からの電力が供給される。さらに、任意のノード(n11~n55)には、図2に示すように、電圧制御機器として、負荷時タップ切替変圧器(LRT)、ステップ電圧制御装置(SVR)と、静止型無効電力補償装置(SVC)などの電圧制御機器が設けられている。
 分散電源を備える電力系統の系統電圧の安定化のため、気象情報に基づいて、開閉器の駆動により系統構成の変更を行うものであり、図1(1)に示すように、ある地域内の配電系統がメッシュ型であり、メッシュの交点部分に任意の接続を切り替えられる開閉器が接続されている。そして、任意のノード(n11~n55)には、開閉器で繋がれる配電系統に太陽光発電、風力発電などの分散電源が連結されている。
 ここで、分散電源の発電量の変動に、最も抑制効果のある開閉器の動作の組み合わせとしては、図中(1)に示すように全ての開閉器をオンにして完全なメッシュ型の系統構成とする方法がある。一般に電力系統は、それ自体にインダクタンス、キャパシタンス、抵抗の特性を備えることから、電圧変動を抑えて平均化する効果、いわゆるならし効果がある。完全メッシュ型にすることは、電圧変動を全てのメッシュの要素で分担することであり、ならし効果が大きく働くことになる。しかし前記したように、何らかの理由で障害が発生したとき、その障害の影響が全てに波及する。また、障害の影響が全てに波及するということは、障害の発生個所を見出すことが難しくなることでもある。このように、ならし効果が高まる反面、系統の信頼性を低下させることになる。
 SVRは、配電線の電圧を調整するタップ付きの調整用変圧器であり、調整用変圧器のタップを切り換えることにより、配電線電圧を適正な基準値を含む不感帯内に収めるように調整する。タップ切り換えによる電圧調整は分単位でステップ状に行われる。
 静止形の無効電力補償装置SVCは、任意の無効電流を発生する無効電流発生部と、配電線電圧を検出する電圧検出部と、無効電力発生部の出力電流を検出する電流検出部と、電圧検出部の出力と電流検出部の出力とを入力として、配電線電圧を基準値に保つように配電線に注入する無効電流を制御することにより、配電線の電圧を基準値に保つように瞬時に調整する。上記で述べた、無効電力による電圧安定化の原理は、次のように説明できる。変電所を電圧Vsの電圧源とし、SVCを無効電流Iqを出力する電流源として、配電線インピーダンスのリアクタンス分及び抵抗分をそれぞれx及びrとおき、SVCの設置点の配電線電圧をVi、力率角をθとおくと、下記の(1)(2)式が成立する。
  Vi=Vs-(r+jx)×Iq(cosθ+jsinθ)    …(1)
 SVCは無効電流を出力するため、cosθ=0、sinθ=1(進み無効電流を出力する場合を正)とおくと、
  Vi=Vs-(r+jx)×jIq=Vs+(x-jr)Iq
                              …(2)
 SVCが出力する無効電流の極性及び大きさを変えることにより、SVCの設置点の配電線電圧Viを任意の値に調整することができる。無効電流の発生は、配電線にリアクトルを介してIGBTやGTO等の自己消弧素子を用いて構成した自励式インバータを接続して配電線に無効電力を出力するSVG(Static Var Generator)方式のものや、出力変圧器の一次側にサイリスタを介してリアクトルを接続してサイリスタによりリアクトルの遅れ無効電流を制御する回路を構成するとともに、サイリスタとリアクトルとからなる回路に対して並列に進相コンデンサを接続したTCR(Thyristor Controlled Reactor)方式のものなどが提案されている。いずれの方式も半導体素子による動作であることから、十分に早い応答特性を備える。
 このように、配電変電所から、末端の太陽光発電機器(PV機器)を備える需要家までの配電系統と電圧分布については、図1に示される任意のノード(n11~n58)においては、図2に示されるように、電圧変動を抑えることを目的に、電圧制御機器SVR、SVCが接続され、末端にいくほど電圧は低下するところ、SVCで電圧が持ち上げられ、SVRで無効電力が制御されて電圧調整がなされる。例えば国内の低圧配電系統は101±6Vが許容範囲とされていので、電圧制御機器を備えて電圧制御することで、電圧が101±6Vが許容範囲外れないようにしている。
 開閉器は、遠隔地点から駆動信号を伝送して遠隔操作する方法のほか、手動で操作することもある。また開閉器は、系統設備の保守管理の個所(工事個所)を、一時的に切り離すためにも使われる。
 図3に系統電圧安定化装置101の基本構成概念図を示す。気象予測情報、および分散電源を備える電力系統の構成に関わる情報を入力として、電力系統に備わる開閉器の駆動信号を出力する。これにより、分散電源が要因となる系統電圧の変動を抑えて、安定した系統の運用を実現する。すなわち、気象予測情報と電力系統情報から、系統に接続された開閉器の駆動信号を生成することで系統電圧の安定化を実現する。
 図4(1)に、系統電圧安定化装置101の具体的な構成例を示す。系統再構成信号の作成部11は、気象予測情報と系統構成情報に基づいて、算出した開閉器13の駆動信号を出力する。PV予測発電量の作成部10は気象予測情報に基づいて発電量を予測し、電圧制御機器14,15の駆動信号の生成部12は、気象予測に基づいて、電圧制御機器14、15の制御信号を出力する。開閉器13の駆動信号は、気象予測情報に含まれる雲の移動方向などの情報に基づいて算出する。また電圧制御機器14、15の制御信号を算出するため、気象予測情報に含まれる日射量の大きさに基づいてPV機器の予測発電量を算出する。さらに、開閉器13による系統の再構成の情報、および現在の系統構成に関わる情報を入手して、電圧制御機器14、15の制御信号を算出する。電圧制御機器14、15としては、SVRとSVCのように、異なる電圧制御機器1と電圧制御機器2を組み合わせて動作させることができる。また図4(2)に示すように、電圧制御機器の駆動信号の生成部17を設けて、計算途中で、潮流計算などの手法を利用して系統内の予測電圧分布を算出して、この算出結果を利用して、系統再構成信号の作成部11及び電圧制御機器駆動信号の作成部17が演算するように構成しても良い。特に、電圧制御機器の制御信号の算出方法を特別なものに限定するものではない。
 図4において、PV予測発電量の作成部10は、気象予測情報から、図1における任意のノード(n11~n58)に設置されるPV発電機の発電量を予測演算する。ここで気象予測情報は、日射、風向、風速などの、現時点から予測期間に渡る気象情報であり、その予測方法は他の予測方法を用いても良い。系統情報は、地理的な線路、電力制御機器14、15の接続箇所、開閉器13の接続箇所、分散電源(PV機器等)の接続箇所などを含む。開閉器13は、電力系統の中継点、連結点などに設置されるスイッチであり、例えば系統事故時に障害個所を切り離すように機能するほか、別の系統と連結するように機能する。系統再構成信号の作成部11は、系統電圧が許容範囲から逸脱しない、あるいは逸脱量が最小になるように、気象予測情報と電力系統情報から、開閉器13の駆動信号を生成して、系統の再構成を行う。また、電圧制御機器駆動信号の作成部12は、開閉器13による系統再構成に併せて、気象予測情報に応じたPV予測発電量に基づいてLRT、SVR、SVCなどの電圧制御機器14、15を事前に制御することで、安定化の効果を高めることができる。系統再構成信号の作成部11は、PV予測発電量の作成部10の演算した発電量、及び配電系統16から系統構成情報に基づいて、系統再構成を演算し、開閉器13に開/閉の指令信号である系統再構成信号を送信する。
 これによって、開閉器13が開あるいは閉に制御される。また、電圧制御機器の駆動信号の作成部12は、電圧制御機器14及び電圧制御機器15に制御信号を送信する。これによって、SVC或はSVR等の電圧制御機器及び電圧制御機器を系統電圧を所定範囲に維持するように操作される。
 次に、具体的な系統再構成信号の作成部11の動作について説明する。系統再構成信号は、以下に説明するような評価関数を用意して、評価関数が最も小さく(あるいは大きく)なるようにして、系統再構成信号を作成する。この系統再構成信号は、開閉器13については開/閉の指令信号の組み合わせとなる。このとき併せて、SVR、SVCなどの電圧制御機器の動作を、系統再構成信号として生成しても良い。
 系統再構成信号の生成の目的は、分散電源の発電量の変動によって生じる、系統電圧の変動が小さくなるように、系統構成を変更することである。太陽光発電の場合は、日射量の変化がPV装置の発電量を変化させる。そしてPV装置から電力系統への電力供給によって系統電圧が変化する。ここでPV装置と電力系統が短距離で接続されているとすれば、ほぼ電力系統上にPV装置があるとみなせる。一方の日射は、太陽と雲の影響を受けて地理的な広がりを持つ分布信号と見なせる。これより、共に地域的な広がりを持つ日射と電力系統の、両者の地理的な関係が重要な要因になる。簡単には、日射量の変化方向と、電力系統の延びる方向が並行するならば、日射の変化が、系統に繋がるPV装置に徐々に影響していくから、PV発電量の変化が小さくなりやすい。一方、両者の方向が直交するならば、系統に繋がるPV装置にまとまって影響するから、日射の変化がPV発電量の変化が大きくなりやすい。こうして系統再構成の信号は、日射量の変化に基づいて、電力系統の地理的な配置を再構成するように生成することで、電力系統の電圧変動を抑制することができる。このような再構成は、前記したように開閉器を利用して実現できる。
 風力発電の場合は、風速と風向は地理的な相関を持って変化するので、電力系統との地理的な関係を利用して、系統の再構成によって電力系統の電圧変動を抑制することができる。
 PV機器は需要家の屋根に設置され、その余剰電力を配電系統に供給している。ここでは簡単のため、PV機器の設置個所と、配電系統との接続箇所が、地理的に同一位置であるとする。また雲の移動方向、速度、形状は一定であり、地上の日射の変化は雲の動きに同期しているとする。
 系統再構成信号の作成部11には、気象予測情報が入力される。ここで、ある地域の気象は日射量、風力、風向などで示されるものであり、気象予測情報は、例えば気象庁が公開する予測情報を利用できる。そのほか、例えば日射量であれば、衛星写真の画像解析、全天カメラ画像の解析、によりデータとして利用できる。さらには、独自に日射計、風速計を設置して、それらの情報を系統再構成信号の作成部11で解析するように構成してもよい。日射量は、年間に渡る太陽の高度、一日に渡る太陽の高度と方位角、一日のなかの雲による日射の遮断、などの様々な時間的な尺度で変化する。
 雲の動きによる日射の変化は、地理的および時間的に細かな特性を示す。例えば、雲の移動による日射の変化は、数秒で半減あるいは倍増することがある。このような日射の変化を、カメラによる雲の撮影画像の解析、あるいは地上に設置する日射計の測定データの解析などで、予測を行っても良い。例えば、複数の日射計を地域的に分散して配置して、それらの計測データから雲の移動による日射の変化を見出すことで、雲の動きによる日射量の変化の短期的な予測情報を作り出すことができる。気象予測情報を入手あるいは生成して利用するが、これらの具体的な予測方法を限定せず種々の代替的方法を用いても良い。以下の説明では、日射量に関わる気象予測情報と、日射によって発電するPV機器について具体的な説明を行う。また同様にして風向と風速に関わる気象予測情報と風力発電についても適用することが可能なのはもちろんである。
 系統再構成信号の作成部11は、気象予測情報に基づいて、日射の変化によるPV発電量の変動を緩やかにすることを目的にして、配電系統を連結する開閉器13の駆動信号を見出す。この問題は、何らかの評価関数を用意して、この評価関数が最小(あるいは最大)になるような最適化問題として解くことができる。最適化問題の解法を限定するものではない。こうして、図1に示される全ての開閉器13の開/閉の組み合わせに対して、評価関数を適用して、開閉器13の駆動信号を算出する。
 本発明は評価関数の形式を限定するものではないが以下に例を示す。ある地域内に図1に示したメッシュ状に配置された電力系統(配電系統)を考える。前記したようにメッシュの格子点をノードと呼び、ノードにおける系統の接続方向を開閉器で選択する。全ての開閉器をオンにすれば完全なメッシュ状の配線となり、水平あるいは垂直方向の開閉器をオンにすれば並行した配線となる。ノード間には分散電源としてPV発電機があり、日射量が強ければ売電が行われる。この開閉器の動作(オン・オフ)を評価関数を用いて決めるとき、同じ目的であっても変数の取り方によって定式化に多数の方法が見出される。これは系統電圧に関連する要因が多くあるので、関連する要因への置き換えができるためである。
(1)まず基本的な課題は、分散電源が導入された系統の電圧安定化であるから、系統電圧を変数に取る評価関数が妥当である。
(2)ある程度の電圧変動は、適宜な電圧制御機器でローカルに補正できる場合が有る。例えば緩やかな電圧変動であればSVRの利用が考えられる。急激な電圧変動にはSVCの利用が考えられるが、この場合は補正範囲が限られるうえ比較的高価である。そこで評価関数として、短期的な日射量の変化によって生じる短期的な系統電圧変化の大きさを変数に取ることができる。この短期的な変化は、例えば系統電圧の高周波成分、あるいは微分値、などで表わされる。
(3)短期的な日射量の変化は、雲の流れによる日射の遮蔽が主な要因であることが多い。雲は風によって移動するが、風向と風速は急激に変わることは少ない。これより短期的な雲の流れは、風の流れに置き換えることができる。こうして風の流れと系統電圧の変動を関連付けることができる。このとき電圧変化は、風の方向とノードの延びる方向が直交するとき最も急激になる。そこで、雲の流れる方向とノードの延びる方向を評価関数に取り込むことができる。
(4)上記(3)の風の方向とノードの延びる方向の関係は、風の方向に計るノード間距離に換算できる。つまり、風の方向に計るノード間距離が短く分布するほど、電圧変動が急激になる。これより、風の方向に計るノード間距離を評価関数にしても良い。
 このように評価関数は、ほぼ同じ目的でありながら異なる表現形式に置き換えが出来る。
 説明を簡易にするため、正方格子上にノードが並ぶ系統構成を用意する。ここでノードは、開閉器を用いて四方向の系統接続を任意に設定できるとする。分散電源として、ノード間に同数の太陽光発電装置(PV装置)が配置され、系統に連系されているとする。PV装置は、日射を受けて発電し、連系する系統に電力供給を行うことで、系統電圧の上昇が引き起こされるとする。日射の変化がない場合は、PV装置の発電量は一定になり、PV装置から電力供給を受ける系統の電圧も定常状態になる。このとき電圧制御装置(SVR、SVCなど)を用いて、電圧分布を規定範囲内に収めるように制御することで、系統電圧を安定化できる。このような電圧系統の電圧分布は、電圧を縦軸、ノードが延びる方向を横軸にとるグラフで表すことができる。ところで雲の流れがある場合、日射量は雲による遮蔽によって時間的に変化することがある。PV発電量は日射量に応じて変化し、系統電圧の変動を引き起こす。このとき、雲の流れる方向と速度などの気象条件と、ノードの接続状態、によって系統電圧は影響を受けることになる。ここで系統のノード接続は、縦方向と横方向の組み合わせであるとして、図10(1)はノード接続方向横方向へ連続して延びる形態、図11(1)は縦方向と横方向を順番に繰り返すことで斜め方向に延びる形態を示している。雲の流れは、任意方向であるが、代表として(a)(b)(c)(d)の4方向を示している。上記以外にも、ノード間接続を斜め方向に作る形態、電圧制御装置を組み合わせる形態、などの多くのバリエーションがあるが、ここでは説明を省いている。
 例えば、図10(1)の系統接続と雲の方向(b)の組み合わせの場合、両者は直交して、この系統にある全てのノードを一瞬にして(=距離0)雲の流れは乗り越えることができる。言いかえると、雲の流れによって変化する日射量の変化が系統全体を瞬間的に覆うので、PV発電量が瞬時に変化して、系統電圧の瞬時的な変動を引き起こすことになる。一方、雲の方向が(a)の場合、両者は直交して、両者は並行なので、ノード間の距離と、雲の流れる距離は同じである。言いかえれば、PV発電量は徐々に変化するので、系統電圧の変動も徐々に起きることになる。この変化が緩やかであるほど、電圧制御機器などを利用した電圧安定化の効果も得やすい。また徐々に進む日射量の変化、あるいは系統電圧の変化を、何らかの手段で採取して電圧制御のための予測信号として利用する場合にも、時間的な余裕が得られやすいことになる。
 このように、ノード間に日射の変化をもたらす雲がノード間を移動する距離(換算すれば移動時間)は、系統接続と雲の方向によって変化する数値になる。ここで、系統のノード間あたり、雲の流れる距離を評価関数とする。雲が流れる距離が大きいほど移動に時間がかかるわけだから、時間当たりの電圧変動は小さくなるので、この評価関数は電圧の安定度に相当する。式で表せば、
  評価関数=雲が流れる距離/ノード間距離
となる。
 図10(2)は、図10(1)の評価関数プロットである。図中の破線プロットは、系統接続が縦方向の場合を示す。縦軸は、評価関数の値を示している。横軸は雲の移動方向を(a)(b)(c)(d)で区別している。なお雲の移動方向は4方向に限らない任意方向なので、(a)(b)(c)(d)を連続してつないでいる。雲の流れ方向(a)とノードの延びる方向が直交する場合は最小値0になる。雲の流れ方向(a)とノードの延びる方向が並行する場合は最大値1になる。他の方向も同様に計算できる。この系統構成の場合、最大値と最小値の差が大きいので、雲の方向がずれると、評価値も大きく変動する。
 図11(2)は、図11(1)の評価関数プロットである。図中の破線プロットは、系統接続が逆の斜め方向の場合を示す。雲の流れ方向(a)に雲が1進むとき、ノードの延びる方向は縦と横のジグザグだからノード間距離は2となり、0.5(=1/2)になる。雲の流れが(a)と(b)の中間にあるとき、ノード間距離は同じく2でありながら、雲は正方格子の斜め線1.41(=ルート2)進むので、1.41/2=約0.7となる。他の方向も同様に計算できる。この系統構成の場合、最大値と最小値の差が小さいので、雲の方向がずれても、評価値の変動は小さい。前記したように、この評価関数は電圧安定度に相当するから、大きな数値であるほど、雲の流れによる系統電圧の変動が小さいことになる。言いかえれば、雲の流れる方向によって、ノードの延びる方向を切り替えることで、電圧安定性が変化することが分かる。本発明は、このような気象条件と系統電圧との関連を利用して、系統のノードの接続方向を切り替えることによって、電圧の安定性を制御することを特徴とする。
 図12は、上記の結果をまとめて、系統再構成と電圧安定化の関係を表示している。雲の方向に従い、プロットの上端(図中の太線)にある系統の接続形態を選ぶことで、電圧安定性を高める系統再構成の制御を実現することができる。例えば風の方向が(a)であれば、もっとも高い数値を示す図10(1)に示す横方向への系統接続を選択する。風の方向が(a)と(b)の中間であれば、もっとも高い数値を示す図11(1)に示す斜め方向への系統接続を選択する。上記は正方格子のノードが並ぶ例を説明したが、任意の系統構成において同様の評価関数を用意することで、系統再構成の制御信号を生成できる。
 また上記はノード間距離を指標として用いたが、多数のノードに関わる情報を統計的に処理して利用しても良い。
 評価関数に電圧制御機器などによる電圧制御特性、PV等の分散電源の配置箇所、などを変数として導入できることは言うまでもない。また気象等の計測データには誤差(ノイズ)が含まれることがあるので、何らかのフィルタ処理を組み合わせても良い。
 現実の電力系統のノード位置は複雑な組み合わせであり、かつ接続方向が限られている場合がある。このような場合は、何らかの統計的な処理を利用しても良い。
 本発明は、評価関数に基づく最適解を求めることを原理とするが、ここには局所的な最適解を含むものとする。局所解とは、簡単には、解が取り得る範囲を限定した場合の解である。最適解の探索的解法の多くは、実用的な時間内に取り得る全ての解を探索することができない。例えば最適解の探索手法の一つとして知られているTaboo法は、局所解となることを避ける手順を備えることを特徴としているが、それでも探索時間の制約などから局所解となる場合がある。しかしこの例は、与えられた探索時間のなかで得られる最適解と解釈することもできる。また別の例として、評価関数の算出に用いる数値に誤差が含まれるとき、これは電力系統の特性を正しく測定することが困難な場合に相当するが、数値の大きさを厳密に比較する根拠は薄れることになる。これらの実用的な観点から、本発明は、最適解に限ることなく、局所解の利用を妨げるものではない。
 すでに算出されているPV予測発電量の作成部10による予測発電量を用いて、全ての開閉器の開/閉の組みせに対して、その組み合わせにおけるノード(n11、n55)が接続されて形成されるグループで、そのグループにおける電圧変動を評価関数とするのである。そして、その評価関数が最小(あるいは最大)になったものを解として、系統再構成信号の作成部11は、開閉器13に開/閉信号を得る。
 開/閉信号の生成について、具体的な例を図を用いて説明する。図5にPV機器の分布を例示するが、2次元に分布するPV機器は、雲の移動方向にとる一次元座標軸上の分布に置き換えることができ、同図5(1)に示すように、PV機器が配電系統上で均等間隔に並ぶ場合でも、雲の移動方向から見るとPV機器の間隔が異なる場合があり、PV機器の平均間隔が、雲の移動方向により異なる値になる。
 すなわち、系統再構成信号の作成部11は、ノード(n11~n55)が接続された各グループにおいて、各ノード(n11~n55)が形成する平均間隔が最も大きくなるようにグループ分けをするように、評価関数を用いて、評価関数の評価結果が最も小さくなるように(あるいは、最も大きくなるように)、開閉器13への開/閉信号を演算する。
 上記において、系統再構成信号の作成部11は、平均間隔の代わりに、同図(2)に示すように、分散電源の配置箇所を、位相として捉えて演算することができる。二つの配電系統において、雲の移動方向に均等間隔でPV機器が接続されている場合を例示する。両者の配電系統のPV機器の配置が同じ位相であるというのは、日射の変化による電圧変動が両者の配電系統で同じタイミングになることを指す。一方、両者のPV機器の配置の位相がずれているならば、両者の電圧変動は異なるタイミングになる。このように、位相が異なる分散電源を備える配電系統を連結するとき、電圧変動は滑らかな傾きになる。連結する配電系統に備わる分散電源の位相のずれを評価関数として、この評価関数が最小(あるいは最大)になるように、例えば総当たりの組み合わせ問題として解くことができる。
 すなわち、全ての開閉器の開/閉の組み合わせに対して、その組み合わせにおけるノード(n11~n55)が接続されて形成されるかグループで、そのグループにおける分散電源の位相ずれを評価関数とするのである。そして、その評価関数が最小(あるいは最大)になったものを解として、系統再構成信号の作成部11は、開閉器13に開/閉信号を求める。
 なお、解を得るための解法手法としてはなんらかの既存の最適化手法を利用して解くことができる。本発明は最適化手法の種類を限定するものではない。
 次に、上記で得られた解について制限を与える再演算で行う。ある地域内の分散電源による電力供給は、気象により、地理的および時間的な変動がある。例えば雲が流入してくるとき、雲が無い地域は太陽光発電が行われ、雲により日射が遮断される地域は太陽光発電が減少する。雲は、生成、消滅、変形などしながら移動するが、比較的に狭い地域内であるとして、雲の移動だけを取り上げる。
 図6は、雲の移動(流入)による太陽光発電の変化を、模式的に示している。図中(1)に示すように雲の移動方向と平行してPV機器が並ぶ配電系統では、徐々にPV機器に雲がかかり太陽光発電の出力が徐々(ランプ関数的)に減少する。一方(2)に示すように雲の移動方向と直交してPV機器が並ぶ配電系統では、全てのPV機器に同時に雲がかかり、太陽光発電の出力がステップ関数的に減少する。
 このように、発電電力の供給を受ける配電系統の電圧は、雲とPV機器の位置関係によって特性が異なることが分かる。なるべく、雲の移動方向と平行してPV機器が並ぶように系統が構成されていることが、電圧安定化の効果が得られることになる。配電系統とPV機器の接続点は電気的および機械的を変えることによって、上記で述べた雲の移動方向とPV機器の並びの関係を変えるものである。すなわち、上記で得られたノード(n11~n55)の組み合わせにおいて、各グループにおいて、ステップ関数が発生するか否かを判定し、ステップ関数が発生した場合には、このノード(n11~n55)の組み合わせを除外して、再度ノード(n11~n55)の組み合わせの演算を行う。この結果をもって、開閉器13に開/閉の制御信号を送信する。
 このような結果、図1(2)あるいは(3)を示すような開閉器13の再構成が成される。
 次に、電圧制御機器駆動信号の作成部12の動作を説明する。上記のように、気象予測情報に基づく開閉器13の駆動信号の算出により、系統電圧の安定化を実現できる。しかし、あくまでも予測情報に基づく制御であるので、予測誤差が発生することは避けられない。また短期的な日射量の変化、風速の変化などの気象予測情報を活用するには開閉器13の高速動作が必要になる。そこで、気象予測情報に基づく開閉器を用いた系統の再構成に、気象予測情報に基づく電圧制御機器の駆動を組み合わせることで、さらなる電圧の安定化を実現することができる。以下に、SVR、SVC等の電圧制御機器を、予測気象情報で制御する方法を例示する。
 また、比較例を説明する。図8は、日射予測情報と系統電圧の変化を示している。図8(1)は予測期間の日射量の変化を示す。予測期間の始めは曇天で、その後2回の晴天期間を経て、予測期間の終端で曇天に戻っている。図8(2)は太陽光発電の発電量であり、予測期間の日射の変化に同期している。図8(3)は太陽光発電による系統電圧の変化であり、予測期間の日射の変化に同期している。この電圧を安定化するため、SVRとSVCによる電圧制御を行うとする。図中(4)は予測される系統電圧の低周波成分を示す。
 本実施例の電圧制御機器の駆動信号の作成部12は、この低周波成分を補償するようステップ動作をさせる。ここで注目するのは、予測期間内の電圧波形を周波数成分に分解するとき、低周波成分は、系統電圧の変動が起きる前から変化していることである。そして、図8(5)に示すように、残差、すなわちSVRの応答と図8(3)との差分(さらに言い換えれば系統電圧の高周波成分)を補償するようにSVCを動作させる。このように、電圧制御機器駆動信号の作成部12は、実際の電圧変動が起きる前に、変動を補償するための動作を開始する。これにより、実際に変動が起きた時の補償の誤差を低減することができる。このような制御を、新たな情報を入力する毎に繰り返して行うことで、系統の安定化を実現できる。
 図9は、開閉器を用いて系統再構成したときの、日射予測情報と系統電圧の変化を示している。前記した図8と比べて図中の(1)から(5)において、図中(3)に示すように、開閉器を用いた系統再構成により系統電圧の変動は緩やかになっている。電圧変動が緩やかであれば、SVR、SVCによる電圧制御の負担は減ることになる。これは、SVR、SVC等の電圧制御機器にかかるコストを低減できるメリットになる。
 分散電源と気象情報の関わりについて説明したが、分散電源として、日射量と太陽光発電の関わりを主体に説明するが、同様に風(風向、風速)と風力発電の関係、川と水車の関係、などに適用できる。
 本実施例の時間経過に対する動作を図を用いて説明する。
 図7に、配電変電所から、末端のPV機器を備える需要家までの配電系統と電圧分布を模式的に示している。系統には、電圧変動を抑えることを目的に、電圧制御機器1、電圧制御機器2(14,15)SVR、SVCが接続されているとする。PV機器等の分散電源が接続されていない系統では、末端にいくほど電圧は低下することが多いが、これに対して、分散電源からの電力供給を受ける系統は、いわゆる逆潮流となるため、末端の電圧が上昇する。分散電源の発電量は気象による変動があり、分散電源が接続する系統電圧分布は気象の影響を受けて変動することになる。系統の電圧は、系統設備容量、接続されている負荷設備、などの安定動作のため、一定の許容範囲内に収めることが求められている。例えば国内の低圧配電系統は101±6Vが許容範囲とされている。これを守るため、電圧制御機器14,15を備えて電圧制御することが一般的に行われている。これは高圧配電系統も同様である。図中(1)は、曇りが晴れに状態が変った場合における系統電圧分布を示している。曇りのとき許容範囲内にあった電圧が晴れになって発電量が増えた場合でも、本実施例では、太陽光発電の影響で許容範囲内の電圧になっていることを示す。図中(2)は、SVRによる電圧低下により、許容範囲内に収める動作を示している。図中(3)は、天気が晴れから曇りに変わった場合でも、本実施例では、許容範囲の電圧になっていることを示す。この例に示すように、分散電源を備える系統電圧は、気象によって大きく変動することになるが、本実施例では、許容範囲に維持が可能となっている。すなわち、図1(2)(3)に示すように、気象予測情報に基づいて、実際の電圧変動が起きる前に、雲の移動方向と平行してPV機器が並ぶように開閉器を駆動するので、日射量の変動がもたらす系統電圧の変動を抑える効果が得られる。これは、SVR、SVC等の電圧制御機器にかかるコストを低減できるメリットになる。
 次に、実施例2を説明する。実施例2では、評価関数に係る演算が異なるのみで、他の構成は実施例1と同じであるので、相違点のみを説明する。すなわち、他の異なる部分の説明は省略する。
 開閉器13のオンオフに係り、電力系統の潮流計算による電圧分布の算出について評価関数を用いて評価結果を演算する。電力系統の潮流計算は、系統解析の一般的な手法として知られているものを用いる。図9(2)における系統電圧の予測電圧の予測分布の作成部12は、開閉器13を含む系統構成の情報と、分散電源による発電量に基づいて潮流計算することで、電圧分布を求める。このような潮流計算に、気象予測情報に基づく分散電源の発電量と、電圧変動が少なくなる開閉器13の組み合わせを取り入れて、電圧分布を算出する。そして、電圧変動の大きさを評価関数として、評価結果を演算する。
 PV機器を備える一つの配電系統について、雲の移動による日射量の変化に対応する応答特性をモデル化することができる。応答特性は、雲の移動方向とのPV機器の位置関係により定まり、直交していればステップ関数の応答であり、並行であればランプ関数の応答で表わされる。それぞれの応答の振幅は、接続するPV機器の発電量により定まる。応答がステップ関数ということは、高周波成分を含むことであり、系統の安定化には好ましくない。開閉器による連結の効果は、これらの応答特性を持つ配電系統を組み合わせることで電圧変動の傾きを緩和することである。連結点の位置によって組み合わせの効果は変わるが、大きな傾向は次のようになる。二つのステップ関数を持つ系統を、同一ライン上で連結するとき、振幅が足しあわされた同じステップ関数の応答になる。ステップ関数とランプ関数の系統の連結は、中間的なランプ関数の応答になる。開閉器13のオンオフの組み合わせは、各ノード(n11~n55)に組み合わされたグループで応答信号の傾きを指標として、その応答信号の順に係る指標の総和をとって、評価関数として、その応答信号が緩やかになって、評価関数が最小(あるいは最大)となるものを、選択することになる。前記方法と同じように、このような組み合わせの問題は、例えば総当たりの組み合わせ問題として解くことができる。あるいは、なんらかの最適化問題として、既存の最適化手法を利用して解くことができる。
 このように、この評価関数が最も小さく(あるいは最大)なるような開閉器のオンオフの組み合わせを、実施例方法と同じように組み合わせ問題として設定し、例えば総当たりの組み合わせ問題として解くことができる。あるいは、なんらかの最適化問題として、既存の最適化手法を利用して解くことができる。
 なお、評価関数として、実施例1の評価関数と実施例2の評価関数を組み合わせ、例えば、それらに重み付けをつけて和とした新たな評価関数として用いて開閉器13の組み合わせを得るようにしても良い。
 次に、実施例3を説明する。実施例3では、実施例1及び2との相違点のみを説明する。すなわち、他の構成の実施例1及び2と同じであるので説明は省略する。
 開閉器13のオンオフの駆動信号の算出は、事前に計算した結果を表形式でまとめておくことができるほか、計算機能力が高ければリアルタイムに計算しても良い。前者の事前計算の場合は、雲の移動方向、雲の大きさと形状、太陽の方位角と高度、などに関する気象予測情報に基づいて、地上の日射量の変化を予測しておくことになる。
 今までの説明は、電力系統の単相/3相の区別をすること無く説明してきたが、いずれにも適用できることは言うまでもない。また3相の電力系統(UVW)の場合には、相関電圧が均衡するように、開閉器13の駆動信号を生成することができる。
 開閉器13を駆動して系統を再構成する途中段階において、再構成による電圧変動が起こる場合がある。この再構成の途中段階における電圧変動は小さいことが望ましい。現時点の系統構成から、目標とする系統構成に至るまでに、複数の途中段階の系統構成を経るように開閉器を駆動する。この途中段階では、定常状態よりも系統間の連結点を増やすことによる変動抑圧の効果(いわゆる、ならし効果)を実現する。前記したメッシュ型の系統を例にとれば、現時点の系統構成から目標とする系統構成に至るまでに、全ての開閉器をオンにする完全メッシュ型の構成を経由することで、再構成の途中段階における電圧変動を抑えることができる。ただし定常的に完全メッシュ型とすることは、前記したように障害発生の問題があり望ましくないことは前記したとおりである。現実の電力系統においては、系統の再構成の途中段階では連結点が増えるように開閉器を駆動して、そのあとで、目標とする系統構成を実現するように開閉器を駆動する。このように途中段階では開閉器による連結点が増えるようにすることで、電圧変動を抑えることができる。この途中段階に要する時間は特に制約するものではないが、短時間にすることが望ましい。また、気象変動による電圧変動の影響の少ない、気象が安定している時間帯に系統再構成を行う。太陽光発電に関しては夜間であり、風力発電に関しては風速の小さな凪の時間帯とすることができる。また同様に、系統につながる負荷の変動が小さな時間帯を選ぶようにしても良い。
 本発明は開閉器の構成手段を限定するものではない。機械的なスイッチ手段、半導体素子を用いるスイッチ手段、であって良い。従来は、開閉器を障害個所の切り離しなどに使うことが多かったのに対して、系統の再構成を目的にした新たな開閉器を構成しても良い。具体的には、開閉動作を短時間に行い、繰り返し開閉の耐用回数が大きく、遠隔操作が容易であり、スイッチング素子等の保守が不要であり、計量で安価で有ることが望ましい。また、これまでの説明は、開閉器を電気的あるいは電子的にオンオフするための駆動信号を生成する構成を説明してきた。あるいは、このオンオフを人間の手動操作で行わせるため視覚的に表示する手段を備えて、これに基づいて人間による開閉器の手動操作をガイダンスするように構成してもよい。複数の開閉器のオンオフを時間的な順序をもって駆動するとき、順序付けをしたガイダンス表示を誤解の無いように行うことで、目標とする系統の再構成を実現することができる。半導体素子を用いた開閉器を利用するならば、系統再構成の所要時間を短縮できて、開閉回数の耐用もあるので、もっと頻繁な切り替えが可能になる。再構成を行う時間帯の制約も減り、前記した再構成の途中段階の所要時間も短縮できるので、定常的に動的な系統の再構成をして系統電圧の安定化を実現できる。本発明は、この動的な系統の再構成が意味する時間の単位を限定するものではない。長ければ一日を単位、短ければミリ秒を単位にして、開閉器の駆動信号を生成する。このときに利用する気象予測情報の種類を限定するものではない。複数の情報源から入手した気象予測情報を組み合わせて利用して良い。例えば日射量が数秒で大きく変化するという予測情報がある場合に、実際の日射量の変化に先だって系統の連結点を増加させることで、系統電圧の変動を抑制する。日射量の変化が終わった時点で系統の連結点を減らすことで障害に備えた系統構成に戻す。こうして、従来は電圧制御機器によって実現していた電圧安定化の機能を、開閉器による系統再構成により実現できることになる。
 開閉器はオンオフのスイッチ手段であるとして説明をしてきたが、開閉器にリアクタンスあるいはキャパシタンスの機能を持たせても良い。例えば、トランスの電磁誘導結合、あるいはコンデンサの静電結合でオン機能を実現しても良い、さらに、これらのリアクタンス、キャパシタンスに半導体素子によるスイッチング機能を組み合わせても良い。いずれの場合も、本発明は、気象予測情報に基づいて電圧安定化のための駆動信号を生成することを特徴とする。
 開閉器の駆動信号を生成するための評価関数は、前記した実施例に記述した以外にも多くのバリエーションがあって良い。例えば、開閉器の切り替え回数を少なくすること、開閉器の切り替え時の電圧変動を小さくすること、障害発生時の障害の波及範囲、などを評価関数に取り込むことができる。また、需要家側の負荷の変動を組み合わせることができる。
 現実の電力系統は、理想的なメッシュ型の構成になっていることは少ない。また開閉器の設置個所、設置個数、連結する系統、および遠隔操作の可否などに限定がある場合がある。しかしながら、これから分散電源が普及していくことは、低炭素社会に向けた社会的要請として周知のことである。そのとき、系統電圧に影響を与えることも技術的な課題として周知である。本発明は、開閉器を用いて系統を再構成することで電圧変動を緩和するという新たな概念を提示するものであり、これからの設備計画として組み込んでいくならば、現状における上記の課題は解消できていくことになる。例えば新たな街並みを構築する段階から、多数の分散型電源の有効活用と安定化を考慮した電力系統を目指して系統再構成を容易とするための設備機器を導入することで、本発明の特徴を十分に活かすことができる。
 このように十分に実用的な解決策と将来的な計画を提示するものであり、その利用効果は大きい。
 本発明の実施において気象予測情報は、直接的に気象に関わる信号でなくても、気象に関わる任意の信号を利用できる。気象状況と系統電圧は多くの要因で繋がれ、例えば日射量、日照時間、PV発電量、PCS(パワーコンディショナー)、AMI計測データ(売電買電)などは関連のある動作をしているので、いずれかの要因も気象に関わる情報として利用できる。また気象状況は、電力に関わらない何らかのセンサ情報として採取される場合があり、例えば監視カメラ、街灯の自動点滅装置、携帯端末搭載センサ、などで採取した気象に関連する情報を利用しても良い。また、気象状況を採取する手段と方法に関知することなく、例えば気象情報を配信する気象庁あるいは気象サービス会社等からの情報を利用しても良い。このように気象予測情報は、明示的に気象と関連付けられない場合があっても良い。
 また既に日射量変動の影響を受けて変動を起こした地域の系統状態を採取して、まだ日射量変動の影響を受けていない地域の系統安定化に利用しても良い。これは日射量などの気象状況は地域的・時間的に連続する場合が多いことから、隣接する地域の結果情報を利用して、該当地域の予測情報として利用することができることを利用する。
 このように、電圧制御機器を、気象予測情報に基づいて電圧余裕が増加するように事前に制御することで、系統の再構成と併せて電圧変動を抑える効果が得られる。
 また太陽光発電などの分散電源を備える需要家にとっては、系統の安定化が向上するように制御することで、余剰電力の売電の機会を増加させること効果が得られる。
 以上の実施例は本願発明の内容の具体例を示すものであり、本願発明がこれらの実施例に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。
10 PV予測発電量の作成部
11 系統再構成信号の作成部
12 電圧制御機器駆動信号の作成部
13 開閉器
101 本発明の系統電圧の安定化装置
201 本発明の系統電圧の安定化方法

Claims (9)

  1.  気象予測情報を入力する入力部と、前記気象予測情報と系統構成情報に基づいて前記気流変動に影響される系統の電圧変動を抑制するように系統の各開閉器を接続/遮断するための開閉指令を求める指令演算部を有することを特徴とする系統電圧安定化装置。
  2.  請求項1において、前記気象情報に基づいて自然エネルギー発電装置の発電量を推測する発電量推測部を有し、
     前記開閉指令は、前記系統構成情報と共に前記推測された発電量に基づいて演算さえることを特徴とする系統安定化装置。
  3.  請求項1において、前記開閉指令から開閉器の駆動信号を生成する駆動信号生成部を有することを特徴とする系統電力安定化装置。
  4.  請求項1において、前記自然エネルギー発電装置は、太陽光発電あるいは/および風力発電であることを特徴とする系統電力安定化装置。
  5.  請求項1において、前記気象予測情報は、太陽光発電を備える電力系統においては日射量、風力発電を備える電力系統においては風速を含むことを特徴とする系統電力安定化装置。
  6.  請求項1において、前記系統構成情報は、分散電源の接続点、系統の線路、電圧制御機器の種類、を含むことを特徴とする系統電力安定化装置。
  7.  請求項3において、記載の開閉器の駆動信号は、気象予測情報に基づく分散電源の発電量の変動が電力系統の電圧変動に与える影響が最小になるように生成することを特徴とする系統電力安定化装置。
  8.  請求項3において、現時点の系統構成から再構成する系統構成に至るまでに、複数段階の系統構成を経るように開閉器の駆動信号を生成する系統電力安定化装置。
  9.  気象予測情報を入力し、前記気象情報と前記推測発電量と系統構成情報に基づいて気象変動に影響される系統の電圧変動を抑制するように系統の各開閉器を接続/遮断するための開閉指令を求める系統電圧安定化方法。
PCT/JP2011/004925 2011-09-02 2011-09-02 系統電圧安定化装置および安定化方法 WO2013030897A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11871692.7A EP2752953B1 (en) 2011-09-02 2011-09-02 Power system voltage stabilizer and stabilization method
US14/240,100 US9537314B2 (en) 2011-09-02 2011-09-02 Power system voltage stabilizer and stabilization method
JP2013530883A JP5648129B2 (ja) 2011-09-02 2011-09-02 系統電圧安定化装置および安定化方法
CN201180072396.5A CN103703643B (zh) 2011-09-02 2011-09-02 系统电压稳定化装置以及稳定化方法
PCT/JP2011/004925 WO2013030897A1 (ja) 2011-09-02 2011-09-02 系統電圧安定化装置および安定化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004925 WO2013030897A1 (ja) 2011-09-02 2011-09-02 系統電圧安定化装置および安定化方法

Publications (1)

Publication Number Publication Date
WO2013030897A1 true WO2013030897A1 (ja) 2013-03-07

Family

ID=47755455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004925 WO2013030897A1 (ja) 2011-09-02 2011-09-02 系統電圧安定化装置および安定化方法

Country Status (5)

Country Link
US (1) US9537314B2 (ja)
EP (1) EP2752953B1 (ja)
JP (1) JP5648129B2 (ja)
CN (1) CN103703643B (ja)
WO (1) WO2013030897A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042128A (ja) * 2013-08-23 2015-03-02 中国電力株式会社 電圧調整装置
JP2015204687A (ja) * 2014-04-14 2015-11-16 中国電力株式会社 分散型電源出力予測システム
WO2016002339A1 (ja) * 2014-06-30 2016-01-07 株式会社日立製作所 電圧安定度監視装置および方法
JP2016116290A (ja) * 2014-12-12 2016-06-23 富士電機株式会社 負荷余裕計算装置、負荷余裕計算方法、及びプログラム
WO2016147453A1 (ja) * 2015-03-13 2016-09-22 日本電気株式会社 管理装置、電力系統システム、発電量の制御方法、及びプログラム
KR20220157851A (ko) * 2021-05-21 2022-11-29 성균관대학교산학협력단 배전 계통 최적화 시스템 및 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480533B1 (ko) * 2013-06-28 2015-01-08 한국전력공사 분산전원 전력계통 연계 운전장치 및 방법
JP6363391B2 (ja) * 2014-05-16 2018-07-25 株式会社東芝 電圧調整装置
WO2015196482A1 (en) * 2014-06-27 2015-12-30 Abb Technology Ltd Method and device of determining reference output power for energy storage system in wind power generation system
WO2020179326A1 (ja) * 2019-03-06 2020-09-10 古野電気株式会社 雲観測装置、雲観測方法、及びプログラム
DE102019115993A1 (de) * 2019-06-12 2020-12-17 Wobben Properties Gmbh Verfahren zum Stabilisieren eines elektrischen Versorgungsnetzes
US11695299B2 (en) * 2020-10-01 2023-07-04 Tianjin University Quick-response voltage control method of distribution system considering multiple participants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110809A (ja) * 2005-10-12 2007-04-26 Tokyo Electric Power Co Inc:The 分散型電源を配電ネットワークに連系する際の条件を決定する支援システム及び支援方法
JP2008199703A (ja) 2007-02-08 2008-08-28 Kansai Electric Power Co Inc:The 低圧配電系統
JP2010233352A (ja) 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The 電力供給システムおよび分散型発電装置の制御装置
JP2010259154A (ja) 2009-04-21 2010-11-11 Mitsubishi Electric Corp 電源制御装置および無効電力制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3722963B2 (ja) * 1997-10-03 2005-11-30 三菱電機株式会社 電力変換装置
US6925361B1 (en) 1999-11-30 2005-08-02 Orion Engineering Corp. Distributed energy neural network integration system
JP4600235B2 (ja) 2005-09-29 2010-12-15 株式会社日立製作所 コジェネレーション設備制御システム及びコジェネレーション設備制御方法
JP5194458B2 (ja) * 2007-01-24 2013-05-08 株式会社明電舎 太陽光発電システムの制御方法と太陽光発電システムの発電量予測装置
US9263895B2 (en) * 2007-12-21 2016-02-16 Sunpower Corporation Distributed energy conversion systems
US8295989B2 (en) 2009-02-03 2012-10-23 ETM Electromatic, Inc. Local power tracking for dynamic power management in weather-sensitive power systems
CN101630840B (zh) * 2009-08-12 2011-06-08 电子科技大学 微电网能量智能控制系统
US20100138063A1 (en) * 2009-08-28 2010-06-03 General Electric Company Systems and methods for interfacing renewable power sources to a power grid
JP5492501B2 (ja) * 2009-09-09 2014-05-14 中国電力株式会社 電力供給制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110809A (ja) * 2005-10-12 2007-04-26 Tokyo Electric Power Co Inc:The 分散型電源を配電ネットワークに連系する際の条件を決定する支援システム及び支援方法
JP2008199703A (ja) 2007-02-08 2008-08-28 Kansai Electric Power Co Inc:The 低圧配電系統
JP2010233352A (ja) 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The 電力供給システムおよび分散型発電装置の制御装置
JP2010259154A (ja) 2009-04-21 2010-11-11 Mitsubishi Electric Corp 電源制御装置および無効電力制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752953A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042128A (ja) * 2013-08-23 2015-03-02 中国電力株式会社 電圧調整装置
JP2015204687A (ja) * 2014-04-14 2015-11-16 中国電力株式会社 分散型電源出力予測システム
WO2016002339A1 (ja) * 2014-06-30 2016-01-07 株式会社日立製作所 電圧安定度監視装置および方法
JPWO2016002339A1 (ja) * 2014-06-30 2017-04-27 株式会社日立製作所 電圧安定度監視装置および方法
EP3163706A4 (en) * 2014-06-30 2018-02-28 Hitachi, Ltd. Voltage stability monitoring device and method
JP2016116290A (ja) * 2014-12-12 2016-06-23 富士電機株式会社 負荷余裕計算装置、負荷余裕計算方法、及びプログラム
WO2016147453A1 (ja) * 2015-03-13 2016-09-22 日本電気株式会社 管理装置、電力系統システム、発電量の制御方法、及びプログラム
JPWO2016147453A1 (ja) * 2015-03-13 2018-01-18 日本電気株式会社 管理装置、電力系統システム、発電量の制御方法、及びプログラム
KR20220157851A (ko) * 2021-05-21 2022-11-29 성균관대학교산학협력단 배전 계통 최적화 시스템 및 방법
KR102620315B1 (ko) * 2021-05-21 2024-01-02 성균관대학교산학협력단 배전 계통 최적화 시스템 및 방법

Also Published As

Publication number Publication date
EP2752953A1 (en) 2014-07-09
CN103703643B (zh) 2017-12-19
JPWO2013030897A1 (ja) 2015-03-23
CN103703643A (zh) 2014-04-02
EP2752953B1 (en) 2017-11-22
JP5648129B2 (ja) 2015-01-07
EP2752953A4 (en) 2015-09-09
US9537314B2 (en) 2017-01-03
US20140191581A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5648129B2 (ja) 系統電圧安定化装置および安定化方法
Chen et al. Forecasting-based power ramp-rate control strategies for utility-scale PV systems
US10404072B2 (en) Method and apparatus for bidirectional storage and renewable power converter
US9118215B2 (en) High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems for said systems
US9627889B2 (en) High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems
Eltawil et al. Grid-connected photovoltaic power systems: Technical and potential problems—A review
US9350166B2 (en) High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems for said systems
KR101980821B1 (ko) 전력 변환기 및 그 제어 방법
Mansouri et al. Photovoltaic power plants in electrical distribution networks: a review on their impact and solutions
Peiris et al. An adaptive protection scheme for small scale microgrids based on fault current level
Krein et al. Active management of photovoltaic system variability with power electronics
Gevorgian et al. Photovoltaic plant and battery energy storage system integration at NREL's Flatirons campus
Shirek et al. Solar plant modeling impacts on distribution systems PV case study
JP2013255375A (ja) 配電系統の電圧調整装置、電圧調整方法および電力制御システム
Abobakr et al. Performance analysis of a small-scale grid-connected photovoltaic system: a real case study in Egypt
Peng General application of smart inverters in distribution and smart grid
Agalgaonkar Control and operation of power distribution system for optimal accommodation of PV generation
Asano et al. Application of dynamic v ar controllers for increasing solar hosting capacity in distribution grids
Arzani Enhancing Real-Time Operations of Photovoltaic Systems in Smart Grids
Phiri Impact of solar photovoltaics on the system stability of the Zambia national grid
河野俊介 Studies on Voltage Control for Distribution Networks with Disconnecting/Connecting Photovoltaic Systems
Saadat On series-connected renewable generator capable of providing power quality enhancement
McHenry et al. Why do electricity policy and competitive markets fail to use advanced PV systems to
Moor Impacts of increased levels of wind penetration on the Electric Power System of the Åland Islands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013530883

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14240100

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011871692

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE