WO2020179326A1 - 雲観測装置、雲観測方法、及びプログラム - Google Patents

雲観測装置、雲観測方法、及びプログラム Download PDF

Info

Publication number
WO2020179326A1
WO2020179326A1 PCT/JP2020/004220 JP2020004220W WO2020179326A1 WO 2020179326 A1 WO2020179326 A1 WO 2020179326A1 JP 2020004220 W JP2020004220 W JP 2020004220W WO 2020179326 A1 WO2020179326 A1 WO 2020179326A1
Authority
WO
WIPO (PCT)
Prior art keywords
cloud
image
observation device
sunshine
movement information
Prior art date
Application number
PCT/JP2020/004220
Other languages
English (en)
French (fr)
Inventor
祐弥 ▲高▼島
昌裕 箕輪
成皓 奥村
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to CN202080018880.9A priority Critical patent/CN113544548A/zh
Priority to JP2021503473A priority patent/JP7261861B2/ja
Priority to EP20767339.3A priority patent/EP3936902A4/en
Publication of WO2020179326A1 publication Critical patent/WO2020179326A1/ja
Priority to US17/466,284 priority patent/US11989907B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/12Sunshine duration recorders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W2203/00Real-time site-specific personalized weather information, e.g. nowcasting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30192Weather; Meteorology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/10Recognition assisted with metadata
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present disclosure relates to a cloud observation device, a cloud observation method, and a program.
  • Satellites are mainly used for conventional cloud observation. Since satellites observe clouds from the sky, it is not possible to obtain a detailed distribution of clouds near the ground. Therefore, it is not possible to grasp the amount of sunshine and the duration of sunshine on the ground.
  • Patent Document 1 images of the sky taken sequentially by a camera are acquired, a sun region and a cloud region are specified for each image, the moving direction and moving speed of clouds are calculated based on each image, and a predetermined image is determined. There is a statement that the position of the cloud after the time is predicted and the ratio of hiding the sun by the cloud is calculated.
  • Patent Document 1 has to calculate the moving locus of the cloud of interest until after a predetermined time has passed, and further to perform the predictive calculation of the moving locus of all clouds on the image, so that the calculation cost is low. Not low. Further, since the movement locus is calculated for each cloud, the prediction calculation method may be complicated in order to calculate the sunshine probabilities at a plurality of time points.
  • the present disclosure has focused on such issues, and an object thereof is to provide a cloud observation device, a cloud observation method, and a program capable of predicting the sunshine probability by a simple method and reducing calculation cost. It is to be.
  • the cloud observation device of the present disclosure is An image acquisition unit that acquires an image of the sky taken by the camera, A cloud extraction unit that extracts clouds in the image, A sun identification unit for identifying the sun position in the image, In the image, a determination area setting unit that sets a determination area based on the sun position, A sunshine calculation unit that calculates the sunshine probability after a predetermined time elapses based on the determination area and the extracted clouds, and Equipped with.
  • Block diagram showing the configuration of the cloud observation system of the first embodiment of the present disclosure Flow chart executed by the cloud observation device of the first embodiment Image showing an image of the sky taken by the camera Block diagram showing a modification of the first embodiment Explanatory drawing about the algorithm which recognizes the same cloud from the 1st image and the 2nd image in 1st Embodiment Explanatory drawing about the algorithm which recognizes the same cloud from the 1st image and the 2nd image in 1st Embodiment Explanatory drawing about the algorithm which recognizes the same cloud from the 1st image and the 2nd image in 1st Embodiment Explanatory drawing regarding calculation of determination area and sunshine probability superimposed on image The figure which shows the modification of the determination area
  • the cloud observation system 1 of the present embodiment includes a camera 10 that captures the sky and a computer 11 that processes an image of the sky captured by the camera 10.
  • the camera 10 may be any camera as long as it can photograph the sky.
  • an omnidirectional camera using a fisheye lens is installed facing upward in the vertical direction. Therefore, the center of the image obtained from the camera 10 is directly above (elevation angle 90 °), and the elevation angle becomes smaller toward the edge of the image from the center.
  • the cloud observation device 11 realized by the computer of the present embodiment processes an image taken by the camera 10 in the sky.
  • the cloud observation device 11 includes an image acquisition unit 12, a cloud extraction unit 13, a sun identification unit 14, a cloud movement information acquisition unit 15, and a determination area setting unit 16. , And a sunshine calculation unit 17.
  • These units 12 to 17 cooperate with each other in software and hardware by causing the processor 11b to execute a program stored in advance in the memory 11a in a computer 11 including a processor 11b such as a CPU, a memory 11a, and various interfaces. Will be realized.
  • the image acquisition unit 12 illustrated in FIG. 1 acquires images G1 and G2 in which the camera captures the sky.
  • the second image G2 is an image taken one minute before the first image G1.
  • the center of the image is directly above, and the clouds (C1, C2, C3) and the sun (S1) are shown.
  • the image acquisition unit 12 acquires a plurality of images in which the camera sequentially captures the sky.
  • the shooting timing is every one minute, but the timing is not limited to this, and may be a predetermined timing.
  • the predetermined timing can be changed variously, such as every few seconds, every few minutes, when a random length of time elapses, when one or more predetermined times are reached, and the like.
  • the image shown in FIG. 3 contains an RGB component and shows a blue sky, clouds (C1, C2, C3) and the sun (S1).
  • the cloud extraction unit 13 shown in FIG. 1 extracts clouds in the image.
  • the cloud extraction unit 13 identifies and extracts a pixel that is a cloud from a plurality of pixels constituting the image.
  • An algorithm for determining a cloud and a sky in this embodiment will be described.
  • the brightness value 255 is white and the brightness value 0 is black.
  • the brightness value of the blue component and the brightness value of the red component of the cloud are both 0 to 255, and the brightness value of the blue component of the sky is 0 to 255. It was found that the brightness of the red component is 0 or almost 0.
  • the difference between the brightness of the blue component and the brightness of the red component is large, it can be determined to be the sky, and when the difference between the two is small, it can be determined to be the cloud.
  • the cloud identification method is not limited to this, and various methods may be adopted.
  • the sun identifying unit 14 illustrated in FIG. 1 identifies the sun position in the image.
  • the first specific example for determining the sun utilizes the fact that the position of a pixel reflected in an image can be specified based on the position (latitude / longitude) of the camera and the date and time of imaging by using astronomy. That is, the sun identifying unit 14 determines the pixel that is the sun based on the camera position and the date and time when the image was captured.
  • the sun identification unit 14 is a region extending radially from the center point of the pixel group having the maximum brightness in the image, and the brightness gradually decreases as the distance from the center point increases. Then, it is determined that the area before the pulsation of the brightness starts is the sun.
  • the method of identifying the sun is not limited to this, and various methods may be adopted.
  • the cloud movement information acquisition unit 15 illustrated in FIG. 1 acquires cloud movement information in an image.
  • the cloud movement information acquired by the cloud movement information acquisition unit 15 of the present embodiment includes the cloud movement direction and the cloud movement speed, but is not limited to this. For example, if the cloud movement information includes at least the cloud movement direction, the cloud movement speed can be omitted.
  • the cloud movement information acquisition unit 15 calculates cloud movement information in each image based on a plurality of images that are sequentially captured. By doing so, cloud movement information (movement direction, movement speed) can be acquired only from the image. Specifically, the cloud movement information acquisition unit 15 calculates the cloud movement information of each of the clouds C1 to C3 by comparing the plurality of images G1 and G2. In FIG. 3, the moving directions of the clouds C1, C2, and C3 are indicated by arrows. The cloud movement speed can be expressed by the length of the arrow. The example of FIG. 3 shows that all the clouds C1, C2, and C3 are moving from west to east, so that the directions of the arrows indicating the moving directions are all the same, and the image illustrated in FIG.
  • the cloud moving direction of each cloud C1, C2, and C3 is indicated by the curvature according to the distance from the position right above (center of the image).
  • the auxiliary line is indicated by a dotted line for reference.
  • ⁇ Same cloud identification unit 18> In the embodiment shown in FIG. 1, the same cloud that identifies the cloud in the second image G2 taken before the first image G1 is identified from the clouds (C1, C2, C3) in the first image G1. It has a cloud identification unit 18.
  • the cloud C1 in the first image G1 is the corresponding cloud C1 in the second image G2
  • the cloud C2 in the first image G1 is the corresponding cloud C2 in the second image G2
  • the cloud C3 in is the corresponding cloud C3 in the second image G2.
  • the cloud movement information acquisition unit 15 determines the cloud movement information based on the position of the cloud (C1, C2, C3) in the first image G1 and the position of the corresponding cloud (C1, C2, C3) in the second image G2. (See the arrow in FIG. 3) is calculated.
  • the corresponding clouds are identified from the first image G1 and the second image G2, and the cloud movement information (movement direction, movement speed) is calculated based on the positions of the corresponding clouds. Therefore, the clouds can be processed only by image processing. Movement information can be acquired appropriately.
  • the same cloud identification unit 18 includes a set setting unit 18a, a set removal unit 18b, and an identification unit 18c.
  • the set setting unit 18a shown in FIG. 1 sets a plurality of sets in which the clouds in the first image and the clouds in the second image are combined in at least one-to-one, one-to-many, or many-to-one relationship.
  • FIG. 5 is an example in which a plurality of sets (P1 to P4) are set in which the clouds (C01, C02) in the first image G1 and the clouds (C03, C04, C05, C06) in the second image G2 are combined one-on-one. Shown. In the figure, the positions of the centers of gravity of each cloud are shown in circles, and the closest centers of gravity are combined. The figure shows four sets P1, P2, P3, P4. FIG.
  • FIG. 6 shows a cloud (C01, C02) in the first image G1 and a cloud (C03, C04, C05, C06) in the second image G2 for the plurality of sets (P1 to P4) shown in FIG. It is explanatory drawing for setting a plurality of sets which combined many-to-one.
  • a synthetic cloud C0A, C0B, C0C
  • the synthetic cloud C0A, C0B, C0C
  • a plurality of pairs (P5, P6, P7) with clouds (C01, C02) are generated.
  • the closest center of gravity positions are combined.
  • the set removing unit 18b shown in FIG. 1 is set to at least one of the moving distance between clouds, the amount of size change, the change in brightness, the change in saturation, and the change in hue so that one set is set for one cloud.
  • the set set based on the above is deleted.
  • the moving distance can be calculated by comparing the barycentric positions of the clouds in the first image G1 and the second image G2.
  • the size of the composite cloud can be calculated by the total area of the clouds from which the composite is created. For example, with respect to the set P7 shown in FIG. 6, the two clouds C03 and C05 forming the composite cloud C0C are too far from the center of gravity of the corresponding cloud C01, and thus may be deleted. Further, with regard to the set P3 shown in FIG.
  • the size change amount of the cloud C05 of the second image G2 and the cloud C01 of the first image G1 is large, it may be targeted for deletion.
  • the threshold value may be determined by a person, may be determined in advance by statistical processing, or a machine-learned model may be determined by teaching data.
  • the identification unit 18c illustrated in FIG. 1 identifies that the cloud of the first image G1 and the corresponding cloud of the second image G2 are the same cloud based on the remaining set.
  • the clouds corresponding to at least one of the moving distance between clouds, the size change amount, the luminance change, the saturation change, and the hue change are determined based on the index value.
  • the set P5 based on at least one of the moving distance between clouds, the size change amount, the brightness change, the saturation change, and the hue change, it is assumed that the set P5 most meets the conditions. It is determined that the clouds C03 and 04 in the two images G2 and the clouds C01 in the first image G1 are the same cloud.
  • the identification unit 18c needs to determine one set so that a plurality of sets are not set for one cloud, the evaluation value is the highest in consideration of the above index values comprehensively. Selecting a pair can be mentioned.
  • At least one of the pair removing unit 18b and the identifying unit 18c has at least one of a moving distance between clouds, a size change amount, a brightness change, a saturation change, and a hue change as an input value, and is to be deleted.
  • You may implement using the determination device which determines using the machine learning (For example, deep neural network (DNN)) which outputs the output value which shows whether it is a selection object.
  • DNN deep neural network
  • the set may be selected such that one set is set for one cloud based on one set.
  • the cloud movement information acquisition unit 15 shown in FIG. 1 calculates cloud movement information based on the cloud position in the first image G1 and the corresponding cloud position in the second image G2, as shown in FIG.
  • the cloud movement information can be calculated by comparing the barycentric position m1 of the cloud C01 in the first image G1 with the barycentric position m2 of the corresponding clouds C03 and C04 in the second image G2.
  • the cloud movement information can be calculated by comparing the barycentric position m3 of the cloud C02 in the first image G1 with the barycentric position m4 of the corresponding cloud C06 in the second image G2.
  • the cloud movement information acquisition unit 15 stores the position of the cloud in each image as time-series data, averages the cloud movement direction in each image, and calculates the cloud movement direction in the cloud movement information. It is preferable that the cloud moving speed in each image is averaged to calculate the cloud moving speed in the cloud moving information.
  • various moving averages such as simple moving average, weighted moving average, and exponential moving average can be used.
  • the determination area setting unit 16 shown in FIG. 1 sets the determination area Ar1 with the sun position S1 as the base point in the image.
  • the determination area Ar1 is wider on the upstream side (west) in the cloud movement direction D1 than on the downstream side (east) with the sun position S1 as the base point.
  • the base point of the sun position S1 may be the center or the circumference of the pixel or region indicating the sun, and what other points are based on the sun position S1.
  • the determination region Ar1 preferably has a region extending from the sun position S1 side toward the upstream side (west) in the cloud movement direction.
  • the upstream side (west) of the cloud movement direction D1 with the sun position S1 as the base point is the region where the possibility that the cloud will reach the sun over time is higher than the downstream side (east), and the prediction accuracy of the sunshine probability can be determined. This is to improve.
  • the determination area Ar1 has a width equal to or larger than a predetermined value in the direction D3 orthogonal to the direction D2 moving away from the sun position S1.
  • a predetermined value it is preferable that the width is 10 degrees or more about the virtual center line from the sun position S1 toward the upstream side D2 in the cloud movement direction D1. This is because the cloud moving direction may change with the passage of time, and if the determination region Ar1 has a width equal to or larger than a predetermined value, it is possible to cope with the possibility that the cloud moving direction changes. That is, if the width is wide, it is possible to cope with a large change in the cloud movement direction.
  • the length W1 of the determination area Ar1 in the direction D2 away from the sun position S1 is preferably set according to the cloud moving speed with the sun position S1 as the starting point.
  • the length W1 can be appropriately set according to the time width and cloud movement speed from the present to the future where the sunshine probability is expected. For example, when predicting after 10 minutes, if the cloud moving speed is fast, the length W1 needs to be set long, and conversely, if the cloud moving speed is slow, the length W1 needs to be set short.
  • the determination region Ar1 has a shape in which the width widens toward the direction D2 away from the sun position S1.
  • the sunshine calculation unit 17 illustrated in FIG. 1 calculates the sunshine probability after a predetermined time has elapsed, based on the determination area Ar1 and the extracted cloud. Specifically, as shown in FIG. 8, the sunshine calculation unit 17 calculates the sunshine probability after a lapse of a predetermined time based on the distance W2 from the extracted cloud to the sun position S1 and the cloud movement speed. In the example of FIG. 8, since the time for the cloud to reach the sun position S1 can be calculated based on the distance W2 and the cloud moving speed, it can be calculated that the cloud becomes cloudy after the calculated time elapses. Similarly, the time when the cloud passes through the sun position S1 can be calculated in the same manner.
  • the sunshine calculation unit 17 can calculate the sunshine probability after 1 minute based on the overlapping area of the determination region Ar2 corresponding to after 1 minute and the extracted cloud, for example.
  • the determination area Ar2 is an area having a predetermined radius centered on the sun position S1. If the overlapping area of the clouds occupying the determination region Ar2 is 100%, the solar radiation probability is 0%.
  • the sunshine probability after 2 minutes can be calculated based on the overlapping area of the corresponding determination region Ar3 after 2 minutes and the extracted cloud.
  • the sunshine probability with the passage of time can be calculated for each time series.
  • step ST100 the image acquisition unit 12 acquires the image G1 obtained by the camera 10 capturing the sky.
  • the cloud extraction unit 13 extracts clouds in the image.
  • the cloud movement information acquisition unit 15 acquires the cloud movement information including at least the cloud movement direction in the image.
  • the sun identification unit 14 identifies the position of the sun in the image.
  • the determination area setting unit 16 sets the determination area Ar1 based on the sun position S1 in the image.
  • the sunshine calculation unit 17 calculates the sunshine probability after a lapse of a predetermined time based on the determination area Ar1 and the extracted cloud.
  • the embodiment shown in FIG. 1 is configured to acquire cloud movement information from a plurality of images, but is not limited to this.
  • the cloud movement information acquisition unit 115 may be configured to acquire cloud movement information from a device 115a such as an external anemometer or meteorological server.
  • the determination region Ar1 has a shape that widens in the direction away from the sun position S1, but is not limited to this.
  • a shape having a constant width in the direction away from the sun position S1 may be used, as in the determination area Ar4 shown in FIG.
  • the shape may have no width in the direction D3 orthogonal to the direction D2 away from the sun position S1.
  • the phrase having no width means that the number of pixels constituting the width is one pixel.
  • the shape has a region Ar60 extending from the sun position S1 side toward the upstream side of the cloud movement direction D1 and a region Ar61 near the periphery centered on the sun position S1.
  • the shape extends from the sun position S1 side toward the upstream side in the cloud movement direction D1, but may have a shape avoiding the vicinity of the center of the sun position S1.
  • the determination region Ar8 shown in FIG. 13 may have a fan shape without considering the curvature of the fisheye lens, or the determination region Ar8 may be corrected in consideration of the curvature of the fisheye lens as in the determination region Ar9 in the figure. You may make it into the shape.
  • the cloud movement information acquisition unit 15 acquires a plurality of cloud movement information (cloud movement directions D1, D1'), and the determination area setting unit 16 acquires a plurality of cloud movement information (cloud movement directions). It is preferable that a plurality of determination regions Ar10 and Ar11 are set based on D1 and D1'), and the sunshine calculation unit 17 is configured to calculate the sunshine probability for each of the plurality of determination regions Ar10 and Ar11.
  • the determination region is set based on the cloud movement direction, and the sunshine probability is calculated based on whether or not the determination region and the extracted cloud overlap, but the present invention is not limited to this.
  • the determination area setting unit 16 sets the determination area Ar12 with the sun position S1 as a base point.
  • the determination region Ar12 shown in FIG. 15 has a circular shape centered on the sun position S1, but may have any shape as long as the sun position S1 is used as a base point. As shown in FIG.
  • the sunshine calculation unit 17 includes a weighting coefficient set in which the upstream side D2 in the cloud movement direction D1 is more important than the leeward side D1 with the sun position S1 as the base point, and the determination area Ar12.
  • the sunshine probability after a predetermined time has elapsed is calculated based on the extracted cloud.
  • the weighting coefficient is represented by a number, and the larger the weighting coefficient, the higher the importance.
  • a weighting factor (1.0 to 0.9) indicating that the degree of importance is high is set in the portion corresponding to the fan-shaped determination area Ar1 shown in FIG.
  • a weight coefficient (0.01) indicating that the degree of importance is low is set for the part. According to this configuration, it is possible to calculate the sunshine probability in the same meaning as the fan-shaped determination area Ar1 shown in FIG. Note that setting the determination region based on the cloud moving direction shown in FIGS. 1 to 14 and using the weighting factor can be used together.
  • the cloud observation device 11 of the present embodiment is An image acquisition unit 12 that acquires an image G1 of the sky captured by the camera; A cloud extraction unit 13 for extracting clouds in the image G1, A sun identifying unit 14 that identifies the sun position S1 in the image G1, A determination area setting unit 16 for setting determination areas (Ar1, Ar4 to 12) based on the sun position S1 in the image G1; The sunshine calculation unit 17 that calculates the sunshine probability after a predetermined time elapses based on the determination area and the extracted clouds, and Equipped with.
  • the cloud observation method of this embodiment is The camera acquires an image G1 of the sky (ST100), Extracting clouds in the image G1 (ST101), Specifying the sun position S1 in the image G1 (ST103), In the image G1, determination regions (Ar1, Ar4 to 12) having the sun position S1 as a base point are set (ST104), To calculate the sunshine probability after a predetermined time elapses based on the judgment area and the extracted clouds (ST105), including.
  • the sunshine probability after a lapse of a predetermined time is calculated based on the determination regions (Ar1, Ar4 to 12) set with the sun position S1 as the base point and the clouds, the position after the lapse of the predetermined time is predicted for each cloud.
  • the determination area (Ar1, Ar4 to 12) There is no need, and it suffices to determine whether or not a cloud exists in the determination area (Ar1, Ar4 to 12).
  • the cloud movement information acquisition unit (15, 115) that acquires the cloud movement information including at least the cloud movement direction D1 in the image G1 is provided, and the determination area setting unit 16 is It is preferable to set the determination regions (Ar1, Ar4 to 11) based on the cloud movement direction with the position S1 as the base point.
  • the determination regions (Ar1, Ar4 to 11) can be set in consideration of the cloud movement direction D1, and it is possible to improve the prediction accuracy of the sunshine probability.
  • the determination region setting unit 16 determines the determination region (Ar1, Ar4 to Ar4 to be wider) on the upstream side D2 in the cloud moving direction D1 than on the downstream side D1 with the sun position S1 as a base point. It is preferable to set 11).
  • the cloud is more likely to reach the sun over time on the upstream side D2 than on the downstream side D1 in the cloud movement direction with the sun position S1 as the base point. In this way, if there is a cloud, it is possible to set a region in which the cloud is likely to reach the sun over time in consideration of the cloud moving direction D1, and it is possible to improve the prediction accuracy of the sunshine probability. Become.
  • the cloud movement information includes the cloud movement speed, and the length W1 of the determination area Ar1 in the direction D2 moving away from the sun position S1 depends on the cloud movement speed starting from the sun position S1. It is preferable to set.
  • the length W1 can be set appropriately according to the time width and cloud movement speed from the present to the future where the sunshine probability is expected.
  • the cloud movement information includes the cloud movement speed
  • the sunshine calculation unit 17 elapses a predetermined time based on the distance from the extracted cloud to the sun position S1 and the cloud movement speed. It is preferable to calculate the later sunshine probability.
  • the sunshine calculation unit 17 preferably calculates the sunshine probability after a lapse of a predetermined time based on the overlapping area of the determination area Ar1 (Ar2, Ar3) and the extracted cloud. ..
  • the sunshine probability can be calculated from the ratio of the overlapping area to the judgment area.
  • the determination regions (Ar1, Ar4 to 11) have a region extending from the sun position S1 side toward the upstream side D2 in the cloud movement direction D1.
  • the upstream side D2 in the cloud movement direction D1 from the sun position S1 side sets a region in which the cloud is likely to reach the sun over time, so that the prediction accuracy of the sunshine probability can be improved. It will be possible.
  • the determination regions (Ar1, Ar4, Ar6 to 11) have a width equal to or larger than a predetermined value in the direction D3 orthogonal to the direction D2 away from the sun position S1. Is preferable.
  • the cloud moving direction D1 may change over time, and the cloud moving direction D1 may change when the determination regions (Ar1, Ar4, Ar6 to 11) have a width of a predetermined value or more. Therefore, it is possible to improve the prediction accuracy of the sunshine probability.
  • the determination regions (Ar1, Ar4, Ar6 to 11) have a shape that widens in the direction D2 away from the sun position S1.
  • the determination region (Ar1, Ar4, Ar6 to 11) is moved to the sun position S1.
  • the sunshine calculation unit 17 determines that the weighting coefficient is set such that the upstream side D2 of the cloud movement direction D1 with the sun position S1 as the base point is set to have a higher degree of importance than the downstream side D1. It is preferable to calculate the sunshine probability after a predetermined time elapses based on the region Ar12 and the extracted clouds.
  • the image acquisition unit 12 acquires a plurality of images G1 and G2 in which the camera sequentially captures the sky, and the cloud movement information acquisition unit 15 sequentially captures the images. It is preferable to calculate cloud movement information in each of the images G1 and G2 based on the plurality of images G1 and G2 that have been created.
  • the cloud movement information acquisition unit 15 includes the same cloud identification unit 18 that identifies the cloud (C01) corresponding to C04), and the cloud movement information acquisition unit 15 includes the position of the cloud (C01) in the first image G1 and the corresponding cloud (C01) in the second image G2. It is preferable to calculate the cloud movement information based on the positions of C03 and C04).
  • the clouds (C01, C02) in the first image G1 and the clouds (C03 to 06) in the second image G2 are one-to-one, one-to-many, or many-to-one.
  • a set setting unit 18a for setting a plurality of sets (P1 to P7) combined in at least one of the relationships, and Set removal is performed based on at least one of moving distance between clouds, size change amount, brightness change, saturation change amount, and hue change amount so that one set is set for one cloud.
  • Part 18b It is preferable to have an identification unit 18c that identifies that the cloud of the first image G1 and the corresponding cloud of the second image G2 are the same cloud based on the remaining set.
  • the cloud movement information is calculated by averaging at least the movement directions of the clouds in the image G1 (G2).
  • the cloud movement information is preferably calculated by a moving average over a plurality of images G1 and G2.
  • the cloud movement information acquisition unit 15 acquires a plurality of cloud movement information
  • the determination area setting unit 16 determines a plurality of determination areas Ar10 and Ar11 based on the plurality of cloud movement information. It is preferable that the sunshine calculation unit 17 calculates the sunshine probability for each of the determination regions Ar10 and Ar11.
  • the moving direction and speed may differ for each cloud depending on the altitude of the cloud, and it is possible to calculate the sunshine probability independently for clouds with different cloud movement information.
  • the cloud observation system 1 includes a camera 10 and the above-mentioned cloud observation device 11.
  • the program according to the present embodiment is a program that causes a computer to execute the above method.
  • the computer-readable temporary recording medium according to the present embodiment stores the above program.
  • the cloud observation system 101 the cloud observation device 111, and the cloud observation method according to the second embodiment of the present disclosure will be described.
  • the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the cloud observation device 111 of the second embodiment does not provide the sunshine calculation unit 17, but instead provides the superimposed image generation unit 19.
  • the superimposed image generation unit 19 generates an image in which the determination area Ar1 is superimposed on the image G1 (G2).
  • the generated image is displayed on the display provided in the cloud observation device 11 or transmitted to an external computer, and finally displayed on the display.
  • Each unit 12 to 17 shown in FIG. 2 is realized by executing a predetermined program by one or a processor, but each unit may be configured by a dedicated memory or a dedicated circuit.
  • the respective units 12 to 17 are mounted on the processor 11b of one computer 11, but the respective units 12 to 17 may be dispersed and mounted on a plurality of computers or a cloud. That is, it may be executed by a plurality of processors.
  • each of the above embodiments it is possible to adopt the structure adopted in each of the above embodiments in any other embodiment.
  • the units 12 to 17 are mounted for convenience of description, but some of them may be omitted arbitrarily.
  • an embodiment in which each part 12 to 14 is mounted can be mentioned.
  • All processes described herein may be embodied by software code modules executed by a computing system including one or more computers or processors and may be fully automated.
  • the code module can be stored on any type of non-transitory computer-readable medium or other computer storage device. Some or all of the methods may be embodied in dedicated computer hardware.
  • any particular action, event, or function of any of the algorithms described herein may be performed in different sequences and may be added, merged, or excluded altogether. (For example, not all described acts or events are required to execute an algorithm). Further, in certain embodiments, the actions or events may be executed in parallel rather than serially, eg, via multithreaded processing, interrupt processing, or through multiple processors or processor cores, or on other parallel architectures. Can be done. In addition, different tasks or processes can be performed by different machines and / or computing systems that can work together.
  • the various exemplary logic blocks and modules described in connection with the embodiments disclosed herein can be implemented or executed by a machine such as a processor.
  • the processor may be a microprocessor, but instead, the processor may be a controller, a microcontroller, or a state machine, or a combination thereof.
  • the processor can include electrical circuitry configured to process computer-executable instructions.
  • the processor comprises an application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable device that performs logical operations without processing computer-executable instructions.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a processor may also be a combination of computing devices, such as a combination of digital signal processors (digital signal processors) and microprocessors, multiple microprocessors, one or more microprocessors in combination with DSP cores, or any other thereof. It can be implemented as such a configuration. Although described primarily with respect to digital technology herein, the processor may also include primarily analog elements. For example, some or all of the signal processing algorithms described herein may be implemented by analog circuits or mixed analog and digital circuits.
  • a computing environment includes any type of computer system including, but not limited to, a microprocessor, mainframe computer, digital signal processor, portable computing device, device controller, or computing engine-based computer system within an apparatus. be able to.
  • conditional languages such as “capable”, “capable”, “possible”, or “possible” refer to particular features, elements and/or steps that a particular embodiment includes. Embodiments are understood in the sense of the context commonly used to convey what is not included. Thus, such conditional languages are generally any method in which features, elements and / or steps are required for one or more embodiments, or one or more embodiments are these features. It is not meant to necessarily include logic to determine whether an element and/or step is included in or executed by any particular embodiment.
  • a disjunctive language such as the phrase "at least one of X, Y, and Z" is an item, term, etc., any of X, Y, Z, or any combination thereof, unless otherwise specified. Understood in the context commonly used to indicate that it can be (eg X, Y, Z). Thus, such a disjunctive language generally requires at least one of X, at least one of Y, or at least one of Z, each of which has a particular embodiment. Does not mean.
  • Numerals such as “one” should generally be construed to include one or more described items unless specifically stated otherwise.
  • terms such as “one device configured to” are intended to include one or more listed devices.
  • Such one or more enumerated devices may also be collectively configured to perform the recited citations.
  • a processor configured to perform A, B, and C below refers to a first processor configured to perform A and a second processor configured to perform B and C.
  • a specific number enumeration of the introduced examples is explicitly recited, one of ordinary skill in the art will appreciate that such an enumeration will typically be at least the recited number (e.g., other modifiers).
  • the term “horizontal” as used herein, regardless of its orientation, is a plane parallel to the plane or surface of the floor of the area in which the described system is used, or description. Is defined as the plane in which the method is performed.
  • the term “floor” can be replaced with the terms “ground” or “water surface”.
  • the term “vertical/vertical” refers to the direction vertical/vertical to the defined horizontal line. Terms such as “upper”, “lower”, “lower”, “upper”, “side”, “higher”, “lower”, “upper”, “beyond”, and “lower” are defined for the horizontal plane. ing.
  • connection/coupling includes direct connection and/or connection having an intermediate structure between the two described components.
  • the numbers preceded by terms such as “approximately,” “about,” and “substantially” as used herein include the enumerated numbers, and further. Represents an amount near the stated amount that performs a desired function or achieves a desired result. For example, “approximately,” “about,” and “substantially” mean values less than 10% of the stated values, unless otherwise stated.
  • features of the embodiments in which the terms such as “approximately”, “about”, and “substantially” are previously disclosed perform the desired function as well. Or represents a feature with some variability in achieving that desired result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Image Analysis (AREA)

Abstract

計算コストの低減及び簡素な方法で日照確率を予測可能な雲観測装置を提供するために、雲観測装置(11)は、カメラが空を撮影した画像(G1)を取得する画像取得部(12)と、画像(G1)における雲を抽出する雲抽出部(13)と、画像(G1)における太陽位置(S1)を特定する太陽特定部(14)と、画像(G1)において、太陽位置(S1)を基点とする判定領域(Ar1、Ar4~12)を設定する判定領域設定部(16)と、判定領域と抽出された雲とに基づき所定時間経過後の日照確率を算出する日照算出部(17)と、を有する。

Description

雲観測装置、雲観測方法、及びプログラム
 本開示は、雲観測装置、雲観測方法、及びプログラムに関する。
 従来の雲観測には、主に衛星が使用されている。衛星は、上空から雲を観測するため、地上付近の雲の細やかな分布を得るのができない。そのため、地上の日照量及び日照時間を把握することもできない。
 衛星に代わる手段として、地上に設置した全天カメラを用いることが知られている。例えば特許文献1には、カメラで空を逐次撮影した画像を取得し、各画像について太陽領域と雲領域とを特定し、各画像に基づき雲の移動方向及び移動速度を算出し、画像における所定時間後の雲の位置を予測し、雲によって太陽が隠れる割合を算出する、との記載がある。
特開2014-11345号公報
 しかしながら、特許文献1に記載の方法は、注目した雲の所定時間経過後までの移動軌跡を算出し、更に、画像上の全ての雲について移動軌跡を予測演算しなければならないので、計算コストが低いとはいえない。また、雲毎に移動軌跡を算出するので、複数時点の日照確率を算出するためには、予測演算方法が複雑になるおそれがある。
 本開示は、このような課題に着目してなされたものであって、その目的は、計算コストの低減及び簡素な方法で日照確率を予測可能な雲観測装置、雲観測方法、及びプログラムを提供することである。
 本開示の雲観測装置は、
 カメラが空を撮影した画像を取得する画像取得部と、
 前記画像における雲を抽出する雲抽出部と、
 前記画像における太陽位置を特定する太陽特定部と、
 前記画像において、前記太陽位置を基点とする判定領域を設定する判定領域設定部と、
 前記判定領域と前記抽出された雲とに基づき所定時間経過後の日照確率を算出する日照算出部と、
を備える。
 このように、太陽位置を基点に設定された判定領域と雲に基づき所定時間経過後するので、雲毎に所定時間経過後の位置を予測する必要がなく、判定領域に雲が存在するか否かを判断するだけでよい。それでいて、判定領域における評価すべき領域を変更するだけで、複数の時点の日照確率を容易に算出可能となる。したがって、計算コストの低減及び簡素な方法で日照確率を算出可能となる。
本開示の第1実施形態の雲観測システムの構成を示すブロック図 第1実施形態の雲観測装置が実行するフローチャート カメラが空を撮影した画像を示す図 第1実施形態の変形例を示すブロック図 第1実施形態における第1画像及び第2画像から同一雲を認識するアルゴリズムに関する説明図 第1実施形態における第1画像及び第2画像から同一雲を認識するアルゴリズムに関する説明図 第1実施形態における第1画像及び第2画像から同一雲を認識するアルゴリズムに関する説明図 画像に重畳された判定領域及び日照確率の算出に関する説明図 第1実施形態における判定領域の変形例を示す図 第1実施形態における判定領域の変形例を示す図 第1実施形態における判定領域の変形例を示す図 第1実施形態における判定領域の変形例を示す図 第1実施形態における判定領域の変形例を示す図 第1実施形態における判定領域の変形例を示す図 第1実施形態における判定領域及び日照確率算出方法の変形例を示す図 第2実施形態の雲観測システムの構成を示すブロック図
 <第1実施形態>
 以下、本開示の第1実施形態を、図面を参照して説明する。
 [雲観測装置]
 図1に示すように、本実施形態の雲観測システム1は、空を撮影するカメラ10と、カメラ10が空を撮影した画像を処理するコンピュータ11と、を有する。カメラ10は空を撮影することができれば、どのようなカメラでもよい。本実施形態では、空の広範囲を1つのカメラで撮影するために、魚眼レンズを用いた全天カメラを鉛直方向上向きに向けて設置している。そのため、カメラ10から得られる画像は、中心が真上(仰角90°)となり、中心から画像の端に向かうにつれて仰角が小さくなる。
 本実施形態のコンピュータにより実現される雲観測装置11は、カメラ10が空を撮影した画像を処理する。具体的には、図1に示すように、雲観測装置11は、画像取得部12と、雲抽出部13と、太陽特定部14と、雲移動情報取得部15と、判定領域設定部16と、日照算出部17と、を有する。これら各部12~17は、CPUなどのプロセッサ11b、メモリ11a、各種インターフェイス等を備えたコンピュータ11においてプロセッサ11bが予めメモリ11aに記憶されているプログラムを実行することによりソフトウェア及びハードウェアが協働して実現される。
 <画像取得部12>
 図1に示す画像取得部12は、図3に示すように、カメラが空を撮影した画像G1、G2を取得する。図3の例では、第2画像G2は、第1画像G1の1分前に撮影された画像である。画像中央が真上であり、雲(C1、C2、C3)と太陽(S1)が写っている。本実施形態において画像取得部12は、カメラが空を逐次撮影した画像を複数取得する。本実施形態では撮影のタイミングは1分毎であるが、これに限定されず、所定タイミングであればよい。所定タイミングには、数秒毎、数分毎、ランダムな長さの時間が経過するごと、予め定められた1つ以上の時刻になったときなど、種々変更可能である。図3に示す画像は、RGB成分を含み、青色の空、雲(C1、C2、C3)及び太陽(S1)が写っている。
 <雲抽出部13>
 図1に示す雲抽出部13は、画像における雲を抽出する。雲抽出部13は、画像を構成する複数の画素から雲である画素を識別して抽出する。本実施形態における雲と空を判定するためのアルゴリズムについて説明する。輝度値255が白、輝度値0が黒とする。発明者らは研究の結果、雲の青色成分の輝度値及び赤色成分の輝度値は共に0~255の値になり、空の青色成分の輝度値は0~255の値になるが、空の赤色成分の輝度は0又はほぼ0になることが判明した。すなわち、青色成分の輝度と赤色成分の輝度の差が大きい場合には、空であり、両者の差が小さい場合には雲であると判定できる。本実施形態では、画像を構成する複数の画素について、画素の輝度に基づき雲であるかを判定する。具体的には、青色成分の輝度から赤色成分の輝度を引いた差値が所定閾値未満であれば、当該画素は雲であると判定し、前記差値が所定閾値以上であれば、当該画素は雲ではないと判定する。勿論、雲の識別方法は、これに限定されず、種々の方法を採用してもよい。
 <太陽特定部14>
 図1に示す太陽特定部14は、画像における太陽位置を特定する。太陽を判定するための第1の具体例は、天文学を利用すれば、カメラの位置(緯度経度)及び撮像した日時に基づき、画像に写り込む画素の位置が特定可能であることを利用する。すなわち、太陽特定部14は、カメラ位置及び撮像した日時に基づいて太陽である画素を判定する。太陽を判定するための第2の具体例は、太陽特定部14は、画像における輝度が最大となる画素群の中心点から放射状に広がる領域であって、中心点から離れるにつれて輝度が脈動なく漸減し且つ輝度の脈動が開始するまでの領域が太陽であると判定する。勿論、太陽の特定方法は、これに限定されず、種々の方法を採用してもよい。
 <雲移動情報取得部15>
 図1に示す雲移動情報取得部15は、画像における雲移動情報を取得する。本実施形態の雲移動情報取得部15が取得する雲移動情報には、雲移動方向及び雲移動速度が含まれるが、これに限定されない。例えば、雲移動情報に少なくとも雲移動方向が含まれていれば、雲移動速度は省略可能である。
 図1に示す実施形態では、雲移動情報取得部15は、逐次撮影された複数の画像に基づいて、各画像における雲移動情報を算出する。このようにすれば、画像のみで雲移動情報(移動方向、移動速度)を取得可能になる。具体的には、雲移動情報取得部15は、複数の画像G1、G2を比較することで各雲C1~C3の雲移動情報を算出する。図3は、各々の雲C1、C2、C3の移動方向を矢印で図示している。雲移動速度は、矢印の長さで表すことができる。図3の例では、いずれの雲C1、C2、C3も西から東へ移動していることを示しているので、移動方向を示す矢印の向きが全て同じになるところ、図3に例示する画像G1、G2は、魚眼レンズで撮影した画像であるので、各々の雲C1、C2、C3の雲移動方向は、真上(画像中心)からの離間距離に応じた曲率で示されることになる。図3の例では参考のために補助線を点線で示している。
 <同一雲識別部18>
 図1に示す実施形態では、第1画像G1における雲(C1、C2、C3)の中から、第1画像G1よりも前に撮影された第2画像G2における雲に対応する雲を識別する同一雲識別部18を有する。図3の例では、第1画像G1における雲C1が第2画像G2における対応する雲C1であり、第1画像G1における雲C2が第2画像G2における対応する雲C2であり、第1画像G1における雲C3が第2画像G2における対応する雲C3である、と識別する。そして雲移動情報取得部15は、第1画像G1における雲(C1、C2、C3)の位置と、第2画像G2における対応する雲(C1、C2、C3)の位置とに基づき、雲移動情報(図3の矢印参照)を算出する。このように、第1画像G1及び第2画像G2から対応する雲同士を識別し、対応する雲同士の位置に基づき雲移動情報(移動方向、移動速度)を算出するので、画像処理だけで雲移動情報を適切に取得可能となる。
 同一雲識別部の更に具体的な構成について説明する。図1に示すように、同一雲識別部18は、組設定部18aと、組除去部18bと、識別部18cと、を有する。
 図1に示す組設定部18aは、第1画像における雲と第2画像における雲とを、一対一、一対多又は多対1の少なくともいずれかの関係で組み合わせた組を複数設定する。図5は、第1画像G1における雲(C01、C02)と第2画像G2における雲(C03、C04、C05、C06)とを一対一で組み合わせた組(P1~P4)を複数設定した例を示している。同図では、各雲の重心位置を丸で示し、最も近い重心同士で組み合わせた例である。同図は、4つの組P1、P2、P3、P4を示す。図6は、図5に示す複数の組(P1~P4)に対して、更に、第1画像G1における雲(C01、C02)と第2画像G2における雲(C03、C04、C05、C06)とを多対一で組み合わせた組を複数設定するための説明図である。まず、図6に示すように、第2画像G2において2つの雲を合成した合成雲(C0A、C0B、C0C)を全パターン生成し、合成雲(C0A、C0B、C0C)と第1画像G1における雲(C01、C02)との組(P5、P6、P7)を複数生成する。ここでは、図5に示す一対一の組を生成する際と同様に、最も近い重心位置同士で組み合わせる。
 図1に示す組除去部18bは、1つの雲に対して1つの組が設定されるように、雲同士の移動距離、サイズ変化量、輝度変化、彩度変化、色相変化の少なくとも1つに基づき設定された組を削除する。移動距離は、第1画像G1と第2画像G2における雲の重心位置同士を比較すれば算出可能である。合成雲のサイズは、合成元の雲の面積の合計で算出可能である。例えば、図6に示す組P7について、合成雲C0Cを構成する2つの雲C03、C05は、対応する雲C01の重心位置から離れすぎているため、削除対象とすることが挙げられる。また、図6に示す組P3について、第2画像G2の雲C05と第1画像G1の雲C01のサイズ変化量が大きいため、削除対象とすることが挙げられる。具体的な一例としては、上記移動距離、サイズ変化量、輝度変化、彩度変化、色相変化についてそれぞれ閾値を予め設定しておき、閾値を条件として削除対象を決定することが挙げられる。閾値は、人が決定する場合や、統計的処理により事前に決定したり、教示データにより機械学習済みのモデルを決定したりすることが挙げられる。
 図1に示す識別部18cは、残った組に基づき、第1画像G1の雲と第2画像G2における対応する雲とが同一雲であると識別する。ここでも組除去部18bの判断基準と同様に、雲同士の移動距離、サイズ変化量、輝度変化、彩度変化、色相変化の少なくとも1つを指標値に基づき対応する雲同士を判定する。この説明では、図7に示すように、雲同士の移動距離、サイズ変化量、輝度変化、彩度変化、色相変化の少なくとも1つに基づき、組P5が最も条件に合致しているとして、第2画像G2における雲C03、04と第1画像G1における雲C01とが同一雲であると判定する。また、組P4が最も条件に合致しているとして、第2画像G2における雲C06と第1画像G1における雲C02とが対応関係にあると判定する。識別部18cは、一つの雲に対して複数の組が設定されることがないように、一つの組に決定する必要があるため、上記指標値を総合的に考慮して最も評価値が高い組を選択することが挙げられる。
 なお、組除去部18b及び識別部18cの少なくともいずれかを、雲同士の移動距離、サイズ変化量、輝度変化、彩度変化、色相変化の少なくとも1つを入力値とし、削除対象であるか又は選択対象であるかを示す出力値を出力する機械学習(例えば、ディープニューラルネットワーク(DNN))を用いて判定する判定器を用いて実装してもよい。また、組除去部18b及び識別部18cを設けずに、組設定部18aが設定した複数の組のうち、雲同士の移動距離、サイズ変化量、輝度変化、彩度変化、色相変化の少なくとも1つに基づいて1つの雲に対して1つの組が設定されるように、組を選択するように構成してもよい。
 図1に示す雲移動情報取得部15は、図7に示すように、第1画像G1における雲の位置と、第2画像G2における対応する雲の位置とに基づき、雲移動情報を算出する。図7の例では、第1画像G1における雲C01の重心位置m1と、第2画像G2における対応する雲C03、C04の重心位置m2との比較により雲移動情報を算出可能である。同様に第1画像G1における雲C02の重心位置m3と、第2画像G2における対応する雲C06の重心位置m4との比較により雲移動情報を算出可能である。雲移動情報取得部15は、各々の画像における雲の位置を時系列データとして記憶しておき、各画像における雲移動方向を平均して雲移動情報における雲移動方向を算出することが好ましい。各画像における雲移動速度を平均して雲移動情報における雲移動速度を算出することが好ましい。平均方法は、単純移動平均、荷重移動平均、指数移動平均などの各種の移動平均が利用可能である。
 <判定領域設定部16>
 図1に示す判定領域設定部16は、図8に示すように、画像において、太陽位置S1を基点とする判定領域Ar1を設定する。同図に示すように、判定領域Ar1は、太陽位置S1を基点として、雲移動方向D1の上流側の方(西)が下流側(東)よりも広いことが好ましい。太陽位置S1の基点とは、太陽を示す画素又は領域のうち、中心であっても良いし、円周上であっても良いし、その他、太陽位置S1を基準としていれば、どのような点であっても良い。また、図8に示すように、判定領域Ar1は、太陽位置S1側から雲移動方向の上流側(西)に向けて延びる領域を有することが好ましい。太陽位置S1を基点として雲移動方向D1の上流側の方(西)が、時間経過によって雲が太陽に到達する可能性が下流側(東)よりも高い領域であり、日照確率の予測精度を向上させるためである。
 図8に示すように、判定領域Ar1は、太陽位置S1から離れる方向D2に直交する方向D3に所定値以上の幅を有する。所定値としては太陽位置S1から雲移動方向D1の上流側D2に向かう仮想中心線を中心として10度以上の幅があれば好ましい。雲移動方向が時間経過に伴って変わる可能性があり、判定領域Ar1が所定値以上の幅を有していれば、雲移動方向が変化する可能性に対応できるからである。すなわち、幅が広ければ、雲移動方向の変化が大きくなっても対応できる。
 図8に示すように、判定領域Ar1の太陽位置S1から離れる方向D2の長さW1は、太陽位置S1を始点として雲移動速度に応じて設定されることが好ましい。現在から日照確率を予想したい将来までの時間幅と雲移動速度に応じて上記長さW1を適切に設定可能となる。例えば10分後まで予測する場合、雲移動速度が速ければ、上記長さW1を長く設定する必要があり、逆に雲移動速度が遅ければ、上記長さW1を短く設定する必要がある。
 図8に示すように、判定領域Ar1は、太陽位置S1から離れる方向D2に向かって幅が広がる形状である。雲が太陽位置に到達する距離が長いほど、すなわち太陽位置から離れるほど、雲の移動方向が変わる可能性が高くなるので、判定領域を太陽位置から離れる方向に向かって幅が広くなる形状にすることで、進路の変化確率に応じた領域を設定できる。
 <日照算出部17>
 図1に示す日照算出部17は、判定領域Ar1と、抽出された雲とに基づき所定時間経過後の日照確率を算出する。具体的には、図8に示すように、日照算出部17は、抽出された雲から太陽位置S1までの距離W2と、雲移動速度とに基づき所定時間経過後の日照確率を算出する。図8の例では、距離W2と雲移動速度に基づき雲が太陽位置S1に到達する時間が算出できるため、算出した時間経過後には曇となることが算出できる。同様に、雲が太陽位置S1を通りぬける時間も同様に算出できる。
 更に、日照算出部17は、図8に示すように、例えば1分後に対応する判定領域Ar2と、抽出された雲との重複面積に基づき1分後の日照確率を算出できる。判定領域Ar2は、太陽位置S1を中心とする所定半径の領域である。判定領域Ar2を占める雲の重複面積が100%であれば、日射確率が0%となる。例えば2分後に対応する判定領域Ar3と、抽出された雲との重複面積に基づき2分後の日照確率を算出できる。同図の例では、判定領域Ar3を占める雲の重複面積が100%ではなく、例えば80%であるので、日照確率が20%であると判定することができる。これら判定領域と雲の重複面積とに基づけば図8に示すように、時間経過に伴う日照確率を時系列毎に算出可能となる。
 [雲観測方法]
 上記システム1が実行する、雲観測方法について図2を参照しつつ説明する。
 まず、ステップST100において、画像取得部12が、カメラ10が空を撮影した画像G1を取得する。次のステップST101において、雲抽出部13が、画像において雲を抽出する。次のステップST102において、雲移動情報取得部15が、画像における、少なくとも雲移動方向を含む雲移動情報を取得する。次のステップST103において、太陽特定部14が、画像における太陽位置を特定する。次のステップST104において、判定領域設定部16が、画像において太陽位置S1を基点とする判定領域Ar1を設定する。次のステップST105において、日照算出部17が、判定領域Ar1と抽出された雲とに基づき所定時間経過後の日照確率を算出する。
 [変形例:雲移動情報取得部]
 図1に示す実施形態では、複数の画像から雲移動情報を取得するように構成されているが、これに限定されない。例えば、図4に示すように、外部の風速計、気象サーバなどの機器115aから雲移動情報を取得するように雲移動情報取得部115を構成してもよい。
 [変形例:判定領域]
 図8に示す実施形態では、判定領域Ar1は、太陽位置S1から離れる方向に向かって幅が広がる形状であるが、これに限定されない。例えば、図9に示す判定領域Ar4のように、太陽位置S1から離れる方向に向かって幅が一定である形状でもよい。また、図10に示す判定領域Ar5のように、太陽位置S1から離れる方向D2に直交する方向D3に幅を有さない形状であってもよい。幅を有さないとは、幅を構成する画素が1ピクセルであることを意味する。また、図11に示す判定領域Ar6のように、太陽位置S1側から雲移動方向D1の上流側に向けて延びる領域Ar60と、太陽位置S1を中心とする周囲近傍の領域Ar61と、を有する形状であってもよい。
また、図12に示す判定領域Ar7のように、太陽位置S1側から雲移動方向D1の上流側に向けて延びているが、太陽位置S1の中心近傍を避けた形状にしてもよい。また、図13に示す判定領域Ar8のように魚眼レンズの曲率を考慮せずに扇形状にしてもよいし、同図における判定領域Ar9のように、判定領域Ar8を魚眼レンズの曲率を考慮して補正した形状にしてもよい。
 [変形例:複数の判定領域]
 上記の例では、全ての雲が同程度の高度にあり、雲移動方向及び雲移動速度が同じであるとしているが、これに限定されない。例えば、雲の高度によって雲毎に移動方向及び速度が異なる場合がある。このような場合には、単一の判定領域ではなく、複数の判定領域を設けることが好ましい。すなわち、図14に示すように、雲移動情報取得部15は、雲移動情報(雲移動方向D1、D1')を複数取得し、判定領域設定部16は、複数の雲移動情報(雲移動方向D1、D1')に基づいて複数の判定領域Ar10、Ar11を設定し、日照算出部17は、複数の判定領域Ar10、Ar11毎に日照確率を算出するように構成することが好ましい。
 [重み係数による日照確率の算出]
 図1~14に示す実施形態では、雲移動方向に基づいて判定領域を設定し、判定領域と抽出された雲との重複の有無に基づき日照確率を算出しているが、これに限定されない。例えば、図15に示すように、判定領域設定部16は、判定領域Ar12を、太陽位置S1を基点として設定する。図15に示す判定領域Ar12は、太陽位置S1を中心とした円形であるが、太陽位置S1を基点としていれば、どのような形状でもよい。日照算出部17は、図15に示すように太陽位置S1を基点として雲移動方向D1の上流側D2の方が風下側D1よりも重要度が高く設定された重み係数と、判定領域Ar12と、抽出された雲とに基づき所定時間経過後の日照確率を算出する。図15では、重み係数を数字で表現しており、重み係数が大きければ重要度が高いことを意味する。図15の例では、図8に示す扇形状の判定領域Ar1に対応する部位に、重要度が高いことを示す重み係数(1.0~0.9)が設定されており、扇形状以外の部位には、重要度が低いことを示す重み係数(0.01)が設定されている。この構成によれば、図8に示す扇形状の判定領域Ar1と同じ意味で日照確率を算出することが可能となる。なお、図1~14に示す雲移動方向に基づき判定領域を設定することと、重み係数を用いることは併用可能である。
 以上のように、本実施形態の雲観測装置11は、
 カメラが空を撮影した画像G1を取得する画像取得部12と、
 画像G1における雲を抽出する雲抽出部13と、
 画像G1における太陽位置S1を特定する太陽特定部14と、
 画像G1において、太陽位置S1を基点とする判定領域(Ar1、Ar4~12)を設定する判定領域設定部16と、
 判定領域と抽出された雲とに基づき所定時間経過後の日照確率を算出する日照算出部17と、
を備える。
 本実施形態の雲観測方法は、
 カメラが空を撮影した画像G1を取得すること(ST100)、
 画像G1における雲を抽出すること(ST101)、
 画像G1における太陽位置S1を特定すること(ST103)、
 画像G1において、太陽位置S1を基点とする判定領域(Ar1、Ar4~12)を設定する(ST104)、
 判定領域と抽出された雲とに基づき所定時間経過後の日照確率を算出すること(ST105)、
を含む。
 このように、太陽位置S1を基点に設定された判定領域(Ar1、Ar4~12)と雲に基づき所定時間経過後の日照確率を算出するので、雲毎に所定時間経過後の位置を予測する必要がなく、判定領域(Ar1、Ar4~12)に雲が存在するか否かを判断するだけでよい。それでいて、判定領域(Ar1、Ar4~12)における評価すべき領域を変更するだけで、複数の時点の日照確率を容易に算出可能となる。したがって、計算コストの低減及び簡素な方法で日照確率を算出可能となる。
 図8~14に示す実施形態のように、画像G1における、少なくとも雲移動方向D1を含む雲移動情報を取得する雲移動情報取得部(15、115)を備え、判定領域設定部16は、太陽位置S1を基点として、雲移移動方向に基づいた判定領域(Ar1、Ar4~11)を設定することが好ましい。
 この構成によれば、雲移動方向D1を考慮して判定領域(Ar1、Ar4~11)を設定でき、日照確率の予測精度を向上させることが可能となる。
 図8~14に示す実施形態のように、判定領域設定部16は、太陽位置S1を基点として、雲移動方向D1の上流側D2の方が下流側D1よりも広い判定領域(Ar1、Ar4~11)を設定することが好ましい。
 太陽位置S1を基点として雲移動方向の下流側D1よりも上流側D2の方が、時間経過によって雲が太陽に到達する可能性が高い領域である。このようにすれば、雲が存在するとすれば時間経過により雲が太陽に到達する可能性が高い領域を雲移動方向D1を考慮して設定でき、日照確率の予測精度を向上させることが可能となる。
 図8に示す実施形態のように、雲移動情報は、雲移動速度を含み、判定領域Ar1の太陽位置S1から離れる方向D2の長さW1は、太陽位置S1を始点として雲移動速度に応じて設定されることが好ましい。
 このようにすれば、現在から日照確率を予想したい将来までの時間幅と雲移動速度に応じて上記長さW1を適切に設定可能となる。
 図8に示す実施形態のように、雲移動情報は、雲移動速度を含み、日照算出部17は、抽出された雲から太陽位置S1までの距離と、雲移動速度と、に基づき所定時間経過後の日照確率を算出することが好ましい。
 このようにすれば、曇るか晴れるかという程度で日照確率を算出可能となる。
 図8に示す実施形態のように、日照算出部17は、判定領域Ar1(Ar2、Ar3)と、抽出された雲、との重複面積に基づき所定時間経過後の日照確率を算出することが好ましい。
 このようにすれば、判定領域に対する重複面積の比により日照確率を算出可能となる。
 図8~14に示す実施形態のように、判定領域(Ar1、Ar4~11)は、太陽位置S1側から雲移動方向D1の上流側D2に向けて延びる領域を有することが好ましい。
 この構成によれば、太陽位置S1側から雲移動方向D1の上流側D2は、時間経過により雲が太陽に到達する可能性が高い領域を設定するので、日照確率の予測精度を向上させることが可能となる。
 図8~9及び図11~14に示す実施形態のように、判定領域(Ar1、Ar4、Ar6~11)は、太陽位置S1から離れる方向D2に直交する方向D3に所定値以上の幅を有することが好ましい。
 雲移動方向D1が時間経過に伴って変わる可能性があり、このように判定領域(Ar1、Ar4、Ar6~11)が所定値以上の幅を有することで、雲移動方向D1が変わる可能性に対応でき、日照確率の予測精度を向上させることが可能となる。
 図8~9及び図11~14に示す実施形態のように、判定領域(Ar1、Ar4、Ar6~11)は、太陽位置S1から離れる方向D2に向かって幅が広がる形状である。
 雲が太陽位置S1に到達する距離が長いほど、すなわち雲が太陽位置S1から離れるほど、雲移動方向が変わる可能性が高くなるので、判定領域(Ar1、Ar4、Ar6~11)を太陽位置S1から離れる方向D2に向かって幅が広くなる形状にすることで、進路の変化確率に応じた領域を設定でき、日照確率の予測精度を向上させることが可能となる。
 図15に示す実施形態のように、日照算出部17は、太陽位置S1を基点として雲移動方向D1の上流側D2の方が下流側D1よりも重要度が高く設定された重み係数と、判定領域Ar12と、抽出された雲と、に基づき所定時間経過後の日照確率を算出することが好ましい。
 このようにすれば、雲が存在するとすれば時間経過により雲が太陽に到達する可能性が高い領域を雲移動方向D1を考慮して設定でき、日照確率の予測精度を向上させることが可能となる。
 図1、図3、図5~7に示す実施形態のように、画像取得部12は、カメラが空を逐次撮影した画像G1、G2を複数取得し、雲移動情報取得部15は、逐次撮影された複数の画像G1、G2に基づいて、各画像G1、G2における雲移動情報を算出することが好ましい。
 この構成によれば、画像のみで雲移動情報を取得可能となる。
 図1、図5~7に示す実施形態のように、第1画像G1における雲(C01、C02)の中から、第1画像G1よりも前に撮影された第2画像G2における雲(C03、C04)に対応する雲(C01)を識別する同一雲識別部18を備え、雲移動情報取得部15は、第1画像G1における雲(C01)の位置と、第2画像G2における対応する雲(C03、C04)の位置とに基づき、雲移動情報を算出することが好ましい。
 この構成によれば、第1画像G1及び第2画像G2から対応する雲同士を識別するので、雲移動情報を適切に算出可能となる。
 図1、図5~7に示す実施形態のように、第1画像G1における雲(C01、C02)と第2画像G2における雲(C03~06)とを、一対一、一対多又は多対一の少なくともいずれかの関係で組み合わせた組(P1~P7)を複数設定する組設定部18aと、
 1つの雲に対して1つの組が設定されるように、雲同士の移動距離、サイズ変化量、輝度変化、彩度変化量、色相変化量の少なくとも1つに基づき、組を削除する組除去部18bと、
 残った組に基づき、第1画像G1の雲と第2画像G2における対応する雲とが同一雲であると識別する識別部18cと、を有することが好ましい。
 この構成によれば、時間経過に伴って雲が結合したり雲が分離したりしても、同一の雲として認識可能となる。
 図1及び図3に示す実施形態のように、雲移動情報は、画像G1(G2)における各々雲の少なくとも移動方向を平均して算出されることが好ましい。
 この構成によれば、個別の雲のみに着目することで生じる誤差を低減することが可能となる。
 図1及び図3に示す実施形態のように、雲移動情報は、複数の画像G1、G2にわたる移動平均により算出されることが好ましい。
 この構成によれば、異常値が混入したとしても、その影響を抑制することが可能となる。
 図14に示す実施形態のように、雲移動情報取得部15は、雲移動情報を複数取得し、判定領域設定部16は、複数の雲移動情報に基づいて、複数の判定領域Ar10、Ar11を設定し、日照算出部17は、複数の判定領域Ar10、Ar11毎に日照確率を算出することが好ましい。
 この構成によれば、雲の高度によって雲毎に移動方向及び速度が異なる場合があり、雲移動情報が異なる雲について独立して日照確率を算出可能となる。
 本実施形態に係る雲観測システム1は、カメラ10と、上記の雲観測装置11と、を備える。
 本実施形態に係るプログラムは、上記方法をコンピュータに実行させるプログラムである。また、本実施形態に係るコンピュータに読み取り可能な一時記録媒体は、上記プログラムを記憶している。
 以上、本開示の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本開示の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 例えば、特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現できる。特許請求の範囲、明細書、および図面中のフローに関して、便宜上「まず」、「次に」等を用いて説明したとしても、この順で実行することが必須であることを意味するものではない。
 <第2実施形態>
 本開示の第2実施形態の雲観測システム101、雲観測装置111及び雲観測方法について説明する。第1実施形態と同じ構成については同じ符号を付して説明を省略する。第2実施形態の雲観測装置111は、図16に示すように、日照算出部17を設けずに、代わりに重畳画像生成部19を設けている。重畳画像生成部19は、図8に示すように、画像G1(G2)に判定領域Ar1を重畳させた画像を生成する。生成された画像は、雲観測装置11に設けられたディスプレイに表示される又は外部のコンピュータに向けて送信され、最終的にディスプレイに表示される。
 この構成によれば、重畳画像には、雲(C1、C2)、太陽位置S1及び判定領域Ar1が描かれているので、重畳画像を見るだけで、所定時間経過後の日照確率を知ることが可能となる。
 図2に示す各部12~17は、所定プログラムを1又はプロセッサで実行することで実現しているが、各部を専用メモリや専用回路で構成してもよい。
 本実施形態のシステム1は、一つのコンピュータ11のプロセッサ11bに各部12~17が実装されているが、各部12~17を分散させて、複数のコンピュータやクラウドで実装してもよい。すなわち、複数のプロセッサで実行してもよい。
 上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。図1では、説明の便宜上、各部12~17を実装しているが、これらの一部を任意に省略することが可能である。例えば、各部12~14を実装する実施形態が挙げられる。
 各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本開示の趣旨を逸脱しない範囲で種々変形が可能である。
 11  雲観測装置
 12  画像取得部
 13  雲抽出部
 14  太陽特定部
 15、115 雲移動情報取得部
 16  判定領域設定部
 17  日照算出部
 18  同一雲識別部
 18a 組設定部
 18b 組除去部
 18c 識別部
 19  重畳画像生成部
 G1 画像(第1画像)
 G2 画像(第2画像)
用語
 必ずしも全ての目的または効果・利点が、本明細書中に記載される任意の特定の実施形態に則って達成され得るわけではない。従って、例えば当業者であれば、特定の実施形態は、本明細書中で教示または示唆されるような他の目的または効果・利点を必ずしも達成することなく、本明細書中で教示されるような1つまたは複数の効果・利点を達成または最適化するように動作するように構成され得ることを想到するであろう。
 本明細書中に記載される全ての処理は、1つまたは複数のコンピュータまたはプロセッサを含むコンピューティングシステムによって実行されるソフトウェアコードモジュールにより具現化され、完全に自動化され得る。コードモジュールは、任意のタイプの非一時的なコンピュータ可読媒体または他のコンピュータ記憶装置に記憶することができる。一部または全ての方法は、専用のコンピュータハードウェアで具現化され得る。
 本明細書中に記載されるもの以外でも、多くの他の変形例があることは、本開示から明らかである。例えば、実施形態に応じて、本明細書中に記載されるアルゴリズムのいずれかの特定の動作、イベント、または機能は、異なるシーケンスで実行することができ、追加、併合、または完全に除外することができる (例えば、記述された全ての行為または事象がアルゴリズムの実行に必要というわけではない)。さらに、特定の実施形態では、動作またはイベントは、例えば、マルチスレッド処理、割り込み処理、または複数のプロセッサまたはプロセッサコアを介して、または他の並列アーキテクチャ上で、逐次ではなく、並列に実行することができる。さらに、異なるタスクまたはプロセスは、一緒に機能し得る異なるマシンおよび/またはコンピューティングシステムによっても実行され得る。
 本明細書中に開示された実施形態に関連して説明された様々な例示的論理ブロックおよびモジュールは、プロセッサなどのマシンによって実施または実行することができる。プロセッサは、マイクロプロセッサであってもよいが、代替的に、プロセッサは、コントローラ、マイクロコントローラ、またはステートマシン、またはそれらの組み合わせなどであってもよい。プロセッサは、コンピュータ実行可能命令を処理するように構成された電気回路を含むことができる。別の実施形態では、プロセッサは、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはコンピュータ実行可能命令を処理することなく論理演算を実行する他のプログラマブルデバイスを含む。プロセッサはまた、コンピューティングデバイスの組み合わせ、例えば、デジタル信号プロセッサ(デジタル信号処理装置)とマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと組み合わせた1つ以上のマイクロプロセッサ、または任意の他のそのような構成として実装することができる。本明細書中では、主にデジタル技術に関して説明するが、プロセッサは、主にアナログ素子を含むこともできる。例えば、本明細書中に記載される信号処理アルゴリズムの一部または全部は、アナログ回路またはアナログとデジタルの混合回路により実装することができる。コンピューティング環境は、マイクロプロセッサ、メインフレームコンピュータ、デジタル信号プロセッサ、ポータブルコンピューティングデバイス、デバイスコントローラ、または装置内の計算エンジンに基づくコンピュータシステムを含むが、これらに限定されない任意のタイプのコンピュータシステムを含むことができる。
 特に明記しない限り、「できる」「できた」「だろう」または「可能性がある」などの条件付き言語は、特定の実施形態が特定の特徴、要素および/またはステップを含むが、他の実施形態は含まないことを伝達するために一般に使用される文脈内での意味で理解される。従って、このような条件付き言語は、一般に、特徴、要素および/またはステップが1つ以上の実施形態に必要とされる任意の方法であること、または1つ以上の実施形態が、これらの特徴、要素および/またはステップが任意の特定の実施形態に含まれるか、または実行されるかどうかを決定するための論理を必然的に含むことを意味するという訳ではない。
 語句「X、Y、Zの少なくとも1つ」のような選言的言語は、特に別段の記載がない限り、項目、用語等が X, Y, Z、のいずれか、又はそれらの任意の組み合わせであり得ることを示すために一般的に使用されている文脈で理解される(例: X、Y、Z)。従って、このような選言的言語は、一般的には、特定の実施形態がそれぞれ存在するXの少なくとも1つ、Yの少なくとも1つ、またはZの少なくとも1つ、の各々を必要とすることを意味するものではない。
 本明細書中に記載されかつ/または添付の図面に示されたフロー図における任意のプロセス記述、要素またはブロックは、プロセスにおける特定の論理機能または要素を実装するための1つ以上の実行可能命令を含む、潜在的にモジュール、セグメント、またはコードの一部を表すものとして理解されるべきである。代替の実施形態は、本明細書中に記載された実施形態の範囲内に含まれ、ここでは、要素または機能は、当業者に理解されるように、関連する機能性に応じて、実質的に同時にまたは逆の順序で、図示または説明されたものから削除、順不同で実行され得る。
 特に明示されていない限り、「一つ」のような数詞は、一般的に、1つ以上の記述された項目を含むと解釈されるべきである。従って、「~するように設定された一つのデバイス」などの語句は、1つ以上の列挙されたデバイスを含むことを意図している。このような1つまたは複数の列挙されたデバイスは、記載された引用を実行するように集合的に構成することもできる。例えば、「以下のA、BおよびCを実行するように構成されたプロセッサ」は、Aを実行するように構成された第1のプロセッサと、BおよびCを実行するように構成された第2のプロセッサとを含むことができる。加えて、導入された実施例の具体的な数の列挙が明示的に列挙されたとしても、当業者は、このような列挙が典型的には少なくとも列挙された数(例えば、他の修飾語を用いない「2つの列挙と」の単なる列挙は、通常、少なくとも2つの列挙、または2つ以上の列挙を意味する)を意味すると解釈されるべきである。
 一般に、本明細書中で使用される用語は、一般に、「非限定」用語(例えば、「~を含む」という用語は「それだけでなく、少なくとも~を含む」と解釈すべきであり、「~を持つ」という用語は「少なくとも~を持っている」と解釈すべきであり、「含む」という用語は「以下を含むが、これらに限定されない。」などと解釈すべきである。) を意図していると、当業者には判断される。
 説明の目的のために、本明細書中で使用される「水平」という用語は、その方向に関係なく、説明されるシステムが使用される領域の床の平面または表面に平行な平面、または説明される方法が実施される平面として定義される。「床」という用語は、「地面」または「水面」という用語と置き換えることができる。「垂直/鉛直」という用語は、定義された水平線に垂直/鉛直な方向を指します。「上側」「下側」「下」「上」「側面」「より高く」「より低く」「上の方に」「~を越えて」「下の」などの用語は水平面に対して定義されている。
 本明細書中で使用される用語の「付着する」、「接続する」、「対になる」及び他の関連用語は、別段の注記がない限り、取り外し可能、移動可能、固定、調節可能、及び/または、取り外し可能な接続または連結を含むと解釈されるべきである。接続/連結は、直接接続及び/または説明した2つの構成要素間の中間構造を有する接続を含む。
 特に明示されていない限り、本明細書中で使用される、「およそ」、「約」、および「実質的に」のような用語が先行する数は、列挙された数を含み、また、さらに所望の機能を実行するか、または所望の結果を達成する、記載された量に近い量を表す。例えば、「およそ」、「約」及び「実質的に」とは、特に明示されていない限り、記載された数値の10%未満の値をいう。本明細書中で使用されているように、「およそ」、「約」、および「実質的に」などの用語が先行して開示されている実施形態の特徴は、さらに所望の機能を実行するか、またはその特徴について所望の結果を達成するいくつかの可変性を有する特徴を表す。
 上述した実施形態には、多くの変形例および修正例を加えることができ、それらの要素は、他の許容可能な例の中にあるものとして理解されるべきである。そのような全ての修正および変形は、本開示の範囲内に含まれることを意図し、以下の請求の範囲によって保護される。

Claims (21)

  1.  カメラが空を撮影した画像を取得する画像取得部と、
     前記画像における雲を抽出する雲抽出部と、
     前記画像における太陽位置を特定する太陽特定部と、
     前記画像において、前記太陽位置を基点とする判定領域を設定する判定領域設定部と、
     前記判定領域と前記抽出された雲とに基づき所定時間経過後の日照確率を算出する日照算出部と、
    を備える、雲観測装置。
  2.  請求項1に記載の雲観測装置であって、
     前記画像における、少なくとも雲移動方向を含む雲移動情報を取得する雲移動情報取得部を備え、
     前記判定領域設定部は、前記太陽位置を基点として、前記雲移移動方向に基づいた判定領域を設定する、雲観測装置。
  3.  請求項2に記載の雲観測装置であって、
     前記判定領域設定部は、前記太陽位置を基点として、前記雲移動方向の上流側の方が下流側よりも広い判定領域を設定する、雲観測装置。
  4.  請求項2又は3に記載の雲観測装置であって、
     前記雲移動情報は、雲移動速度を含み、
     前記判定領域の前記太陽位置から離れる方向の長さは、前記太陽位置を始点として前記雲移動速度に応じて設定される、雲観測装置。
  5.  請求項2乃至請求項4のいずれか一項に記載の雲観測装置であって、
     前記雲移動情報は、雲移動速度を含み、
     前記日照算出部は、前記抽出された雲から前記太陽位置までの距離と、前記雲移動速度と、に基づき所定時間経過後の日照確率を算出する、雲観測装置。
  6.  請求項2乃至請求項5のいずれか一項に記載の雲観測装置であって、
     前記日照算出部は、前記判定領域と、前記抽出された雲、との重複面積に基づき所定時間経過後の日照確率を算出する、雲観測装置。
  7.  請求項2乃至請求項6のいずれか一項に記載の雲観測装置であって、
     前記判定領域は、前記太陽位置側から前記雲移動方向の上流側に向けて延びる領域を有する、雲観測装置。
  8.  請求項2乃至請求項7のいずれか一項に記載の雲観測装置であって、
     前記判定領域は、前記太陽位置から離れる方向に直交する方向に所定値以上の幅を有する、雲観測装置。
  9.  請求項1乃至請求項8のいずれか一項に記載の雲観測装置であって、
     前記判定領域は、前記太陽位置から離れる方向に向かって幅が広がる形状である、雲観測装置。
  10.  請求項1乃至請求項9のいずれか一項に記載の雲観測装置であって、
     前記画像における、少なくとも雲移動方向を含む雲移動情報を取得する雲移動情報取得部を備え、
     前記日照算出部は、前記太陽位置を基点として前記雲移動方向の上流側の方が下流側よりも重要度が高く設定された重み係数と、前記判定領域と、前記抽出された雲と、に基づき所定時間経過後の日照確率を算出する、雲観測装置。
  11.  請求項2乃至請求項10のいずれか一項に記載の雲観測装置であって、
     前記画像取得部は、カメラが空を逐次撮影した画像を複数取得し、
     前記雲移動情報取得部は、前記逐次撮影された複数の画像に基づいて、前記各画像における前記雲移動情報を算出する、雲観測装置。
  12.  請求項11に記載の雲観測装置であって、
     第1画像における雲の中から、前記第1画像よりも前に撮影された第2画像における雲に対応する雲を識別する同一雲識別部を備え、
     前記雲移動情報取得部は、前記第1画像における雲の位置と、前記第2画像における対応する雲の位置とに基づき、前記雲移動情報を算出する、雲観測装置。
  13.  請求項12に記載の雲観測装置であって、
     前記同一雲識別部は、
     前記第1画像における雲と前記第2画像における雲とを、一対一、一対多又は多対一の少なくともいずれかの関係で組み合わせた組を複数設定する組設定部と、
     1つの雲に対して1つの組が設定されるように、雲同士の移動距離、サイズ変化量、輝度変化、彩度変化量、色相変化量の少なくとも1つに基づき、組を削除する組除去部と、
     残った組に基づき、前記第1画像の雲と前記第2画像における対応する雲とが同一雲であると識別する識別部と、
     を有する、雲観測装置。
  14.  請求項11乃至請求項13のいずれか一項に記載の雲観測装置であって、
     前記雲移動情報は、前記画像における各々雲の少なくとも移動方向を平均して算出される、雲観測装置。
  15.  請求項14に記載の雲観測装置であって、
     前記雲移動情報は、複数の画像にわたる移動平均により算出される、雲観測装置。
  16.  請求項2乃至請求項15のいずれかに記載の雲観測装置であって、
     前記雲移動情報取得部は、前記雲移動情報を複数取得し、
     前記判定領域設定部は、前記複数の雲移動情報に基づいて、複数の前記判定領域を設定し、
     前記日照算出部は、前記複数の判定領域毎に日照確率を算出する、雲観測装置。
  17.  カメラが空を撮影した画像を取得すること、
     前記画像において雲を抽出すること、
     前記画像における太陽位置を特定すること、
     前記画像において、前記太陽位置を基点とする判定領域を設定すること、
     前記判定領域と前記抽出された雲とに基づき所定時間経過後の日照確率を算出すること、
    を含む、雲観測方法。
  18.  請求項17に記載の方法を1又は複数のプロセッサに実行させるプログラム。
  19.  カメラが空を撮影した画像を取得する画像取得部と、
     前記画像において雲を抽出する雲抽出部と、
     前記画像における、少なくとも雲移動方向を含む雲移動情報を取得する雲移動情報取得部と、
     前記画像における太陽位置を特定する太陽特定部と、
     前記画像において、前記太陽位置を基点として、前記雲移動方向に基づいた判定領域を設定する判定領域設定部と、
     前記画像に前記判定領域を重畳させた重畳画像を生成する重畳画像生成部と、
    を備える、雲観測装置。
  20.  カメラが空を撮影した画像を取得すること、
     前記画像において雲を抽出すること、
     前記画像における、少なくとも雲移動方向を含む雲移動情報を取得すること、
     前記画像における太陽位置を特定すること、
     前記画像において、前記太陽位置を基点として、前記雲移動方向に基づいた判定領域を設定すること、
     前記画像に前記判定領域を重畳させた重畳画像を生成すること、
     を含む、雲観測方法。
  21.  請求項20に記載の方法を1又は複数のプロセッサに実行させるプログラム。
PCT/JP2020/004220 2019-03-06 2020-02-05 雲観測装置、雲観測方法、及びプログラム WO2020179326A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080018880.9A CN113544548A (zh) 2019-03-06 2020-02-05 云观测装置、云观测方法及程序
JP2021503473A JP7261861B2 (ja) 2019-03-06 2020-02-05 雲観測装置、雲観測方法、及びプログラム
EP20767339.3A EP3936902A4 (en) 2019-03-06 2020-02-05 APPARATUS, METHOD AND PROGRAM FOR OBSERVING TURBIDITY
US17/466,284 US11989907B2 (en) 2019-03-06 2021-09-03 Cloud observation device, cloud observation method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-040866 2019-03-06
JP2019040866 2019-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/466,284 Continuation US11989907B2 (en) 2019-03-06 2021-09-03 Cloud observation device, cloud observation method, and program

Publications (1)

Publication Number Publication Date
WO2020179326A1 true WO2020179326A1 (ja) 2020-09-10

Family

ID=72338283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004220 WO2020179326A1 (ja) 2019-03-06 2020-02-05 雲観測装置、雲観測方法、及びプログラム

Country Status (5)

Country Link
US (1) US11989907B2 (ja)
EP (1) EP3936902A4 (ja)
JP (1) JP7261861B2 (ja)
CN (1) CN113544548A (ja)
WO (1) WO2020179326A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023091523A1 (en) * 2021-11-17 2023-05-25 Halio, Inc. Cloud forecasting for electrochromic devices
US11900617B2 (en) 2021-11-17 2024-02-13 Halio, Inc. Cloud forecasting for electrochromic devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261861B2 (ja) * 2019-03-06 2023-04-20 古野電気株式会社 雲観測装置、雲観測方法、及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220843A (ja) * 1985-03-29 1985-11-05 Hitachi Ltd 日射量の予測装置
US20100309330A1 (en) * 2009-06-08 2010-12-09 Adensis Gmbh Method and apparatus for forecasting shadowing for a photovoltaic system
JP2014011345A (ja) 2012-06-29 2014-01-20 Hitachi Information & Control Solutions Ltd 発電量予測装置、発電量予測方法、プログラム、および電力制御システム
WO2015104281A1 (en) * 2014-01-07 2015-07-16 Abb Technology Ag Solar irradiance forecasting

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335030A (ja) * 1995-04-07 1996-12-17 Hideo Matsushita 太陽の経路と地方時を含む日の出日の入り位置推測器
JP3377079B2 (ja) * 1997-07-09 2003-02-17 日本電信電話株式会社 流速推定装置
JP3345325B2 (ja) * 1997-06-30 2002-11-18 株式会社日立製作所 液位計測方法及びその装置と量水標
US11187035B2 (en) * 2004-05-06 2021-11-30 Mechoshade Systems, Llc Sky camera virtual horizon mask and tracking solar disc
US7417397B2 (en) * 2004-05-06 2008-08-26 Mechoshade Systems, Inc. Automated shade control method and system
CN101246545B (zh) * 2008-02-22 2010-07-07 华南师范大学 一种光学遥感图像去云的泊松方法
CN101344391B (zh) * 2008-07-18 2011-05-11 北京工业大学 基于全功能太阳罗盘的月球车位姿自主确定方法
JP2011214423A (ja) * 2010-03-31 2011-10-27 Jfe Engineering Corp 廃棄物処理廃熱および太陽熱の複合利用発電装置
US9069103B2 (en) * 2010-12-17 2015-06-30 Microsoft Technology Licensing, Llc Localized weather prediction through utilization of cameras
JP5648129B2 (ja) * 2011-09-02 2015-01-07 株式会社日立製作所 系統電圧安定化装置および安定化方法
CN103309359B (zh) * 2012-03-14 2018-11-09 亮源工业(以色列)有限公司 用于操作太阳能塔系统的方法和系统
US9007460B2 (en) * 2012-03-30 2015-04-14 General Electric Company Methods and systems for predicting cloud movement
JP5797599B2 (ja) * 2012-04-19 2015-10-21 株式会社日立パワーソリューションズ 発電量予測方法及びそのシステム
US20140083413A1 (en) * 2012-09-24 2014-03-27 Brightsource Industries (Israel) Ltd. Method and apparatus for mapping cloud shading on the ground in a large area
CN103019261B (zh) * 2012-12-27 2015-06-24 东方电气集团东方锅炉股份有限公司 双轴跟踪定日镜方位角标定和检测方法
WO2014109020A1 (ja) * 2013-01-09 2014-07-17 株式会社日立製作所 気象予測方法及び装置、並びに電力系統制御方法及び装置
CN103513295B (zh) * 2013-09-25 2016-01-27 青海中控太阳能发电有限公司 一种基于多相机实时拍摄与图像处理的天气监测系统与方法
WO2015157643A1 (en) * 2014-04-10 2015-10-15 Vega-Avila Rolando Solar energy forecasting
US10444406B2 (en) * 2014-04-17 2019-10-15 Siemens Aktiengesellschaft Short term cloud coverage prediction using ground-based all sky imaging
US20150302575A1 (en) * 2014-04-17 2015-10-22 Siemens Aktiengesellschaft Sun location prediction in image space with astronomical almanac-based calibration using ground based camera
CN103986534A (zh) * 2014-05-29 2014-08-13 国家电网公司 基于辐射计和测距仪的卫星信号通道环境监测系统及方法
WO2016054112A1 (en) * 2014-09-29 2016-04-07 View, Inc. Sunlight intensity or cloud detection with variable distance sensing
US10356317B2 (en) * 2014-10-30 2019-07-16 Technion Research & Development Foundation Limited Wide-scale terrestrial light-field imaging of the sky
JP2016103900A (ja) * 2014-11-28 2016-06-02 株式会社日立製作所 蓄電池システム
US10345483B2 (en) * 2015-06-10 2019-07-09 Escaype Observer-based meteorology and image identification
FR3047830B1 (fr) * 2016-02-12 2019-05-10 Compagnie Nationale Du Rhone Procede de determination de la direction de deplacement d'objets dans une scene
CN105791016A (zh) * 2016-03-09 2016-07-20 浪潮通信信息系统有限公司 一种基于流式计算的分布式故障管理告警处理系统
WO2017193153A1 (en) * 2016-05-11 2017-11-16 Commonwealth Scientific And Industrial Research Organisation Solar power forecasting
US10692013B2 (en) * 2016-06-07 2020-06-23 International Business Machines Corporation Solar irradiation modeling and forecasting using community based terrestrial sky imaging
US10007999B2 (en) * 2016-08-10 2018-06-26 International Business Machines Corporation Method of solar power prediction
US10303942B2 (en) * 2017-02-16 2019-05-28 Siemens Aktiengesellschaft Short term cloud forecast, improved cloud recognition and prediction and uncertainty index estimation
CN206684326U (zh) * 2017-04-12 2017-11-28 杭州电子科技大学 一种全天候的可见光气象观测成像装置
AU2018427962A1 (en) * 2018-06-14 2020-12-24 Siemens Aktiengesellschaft Predicting sun light irradiation intensity with neural network operations
WO2019244510A1 (ja) * 2018-06-19 2019-12-26 古野電気株式会社 雲観測装置、雲観測システム、雲観測方法、及びプログラム
JP7261861B2 (ja) * 2019-03-06 2023-04-20 古野電気株式会社 雲観測装置、雲観測方法、及びプログラム
WO2020241130A1 (ja) * 2019-05-29 2020-12-03 古野電気株式会社 情報処理システム、方法、及びプログラム
US11588437B2 (en) * 2019-11-04 2023-02-21 Siemens Aktiengesellschaft Automatic generation of reference curves for improved short term irradiation prediction in PV power generation
JP2021182672A (ja) * 2020-05-18 2021-11-25 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
JPWO2022034764A1 (ja) * 2020-08-12 2022-02-17
JP2023086449A (ja) * 2021-12-10 2023-06-22 株式会社東芝 情報処理装置、情報処理方法及びコンピュータプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220843A (ja) * 1985-03-29 1985-11-05 Hitachi Ltd 日射量の予測装置
US20100309330A1 (en) * 2009-06-08 2010-12-09 Adensis Gmbh Method and apparatus for forecasting shadowing for a photovoltaic system
JP2014011345A (ja) 2012-06-29 2014-01-20 Hitachi Information & Control Solutions Ltd 発電量予測装置、発電量予測方法、プログラム、および電力制御システム
WO2015104281A1 (en) * 2014-01-07 2015-07-16 Abb Technology Ag Solar irradiance forecasting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3936902A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023091523A1 (en) * 2021-11-17 2023-05-25 Halio, Inc. Cloud forecasting for electrochromic devices
US11900617B2 (en) 2021-11-17 2024-02-13 Halio, Inc. Cloud forecasting for electrochromic devices

Also Published As

Publication number Publication date
US11989907B2 (en) 2024-05-21
JPWO2020179326A1 (ja) 2020-09-10
JP7261861B2 (ja) 2023-04-20
EP3936902A1 (en) 2022-01-12
CN113544548A (zh) 2021-10-22
EP3936902A4 (en) 2023-03-01
US20210398312A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2020179326A1 (ja) 雲観測装置、雲観測方法、及びプログラム
US8175336B2 (en) Target tracker
US20190011263A1 (en) Method and apparatus for determining spacecraft attitude by tracking stars
JP6947927B2 (ja) 雲観測装置、雲観測システム、雲観測方法、及びプログラム
US8538075B2 (en) Classifying pixels for target tracking, apparatus and method
US8965107B1 (en) Feature reduction based on local densities for bundle adjustment of images
US20190279026A1 (en) Image generation apparatus and method for generating image
KR101324250B1 (ko) 영상 처리를 통한 광축 오차 보상 방법 및 시스템, 광축 오차 보상 기능이 구현된 줌 카메라
JP6500428B2 (ja) 動体検知装置、動体検知方法および動体検知プログラム
JP7419364B2 (ja) 情報処理システム、方法、及びプログラム
RU2618927C2 (ru) Способ обнаружения движущегося объекта
US20230177803A1 (en) Cloud observation system, cloud observation method, and computer-readable recording medium
JP2003329780A (ja) 夜間雲量測定方法および夜間雲量測定装置
JP2010283139A (ja) 発電量予測装置及び発電量予測方法
KR20200011727A (ko) 초분광 영상의 분광 밴드 선택 방법 및 이를 이용하는 분광 밴드 설정 장치
US20180150966A1 (en) System and method for estimating object size
JP6716769B1 (ja) 画像検査方法、画像検査装置、及び画像検査プログラム
CN113160236B (zh) 一种光伏电池阴影遮挡的图像识别方法
JP6301202B2 (ja) 撮影条件設定装置および撮影条件設定方法
JP5473836B2 (ja) 駐車検出装置、駐車検出方法および駐車検出プログラム
JP2005106744A (ja) 画像解析装置
US20230143999A1 (en) Visibility determination system, visibility determination method, and non-transitory computer-readable medium
JP2023069619A (ja) 雲位置算出システム、雲位置算出方法、及びプログラム
KR101579000B1 (ko) 프레임 그룹화를 이용한 이벤트 검출 방법 및 장치
EP3373573B1 (en) Image capturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020767339

Country of ref document: EP

Effective date: 20211006