WO2013029480A1 - 微型涡轮喷气发动机或涡轮增压器的启动发电装置 - Google Patents

微型涡轮喷气发动机或涡轮增压器的启动发电装置 Download PDF

Info

Publication number
WO2013029480A1
WO2013029480A1 PCT/CN2012/080413 CN2012080413W WO2013029480A1 WO 2013029480 A1 WO2013029480 A1 WO 2013029480A1 CN 2012080413 W CN2012080413 W CN 2012080413W WO 2013029480 A1 WO2013029480 A1 WO 2013029480A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet rotor
turbocharger
micro
impeller
Prior art date
Application number
PCT/CN2012/080413
Other languages
English (en)
French (fr)
Inventor
佟宪良
Original Assignee
Tong Xianliang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tong Xianliang filed Critical Tong Xianliang
Publication of WO2013029480A1 publication Critical patent/WO2013029480A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
    • F02C7/275Mechanical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/80Size or power range of the machines
    • F05D2250/82Micromachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a starter power generating device for starting a power generating device, particularly a micro turbojet engine or an engine turbocharger. Background technique
  • the start-up of the micro turbojet engine mainly uses a dedicated brushed starter motor, including a permanent magnet rotor, a stator, a stator coil, a shaft and a bearing, etc., which are usually installed in front of the turbojet.
  • the starting current is large, the power supply capacity is large, and it is only used during the starting process.
  • the starting motor is no longer working, and the air intake is hindered by the installation in front of the engine impeller.
  • Turbojet combustion efficiency In addition, the turbocharger of the existing engine is powered by the exhaust gas discharged from the engine, and the turbine is driven to push the impeller into the engine to improve the combustion efficiency of the engine, but only after the engine is started. It only starts to work, and the turbocharger is unpowered before the engine starts. It can't be compressed.
  • the turbocharger does not work during the engine start, especially when the diesel engine starts at low temperature.
  • Providing assistance Furthermore, hybrid vehicles have not yet utilized engine exhaust gas to generate self-charging devices.
  • the present invention discloses a start-up power generation device for a micro turbojet engine or a turbocharger, which aims to provide a device which is simple in structure, improved in energy efficiency, and also serves as both start-up and power generation.
  • the technical solution adopted by the invention is: based on the existing principle of the brushless motor including the permanent magnet rotor and the stator coil, using the rotating shaft and the impeller of the micro turbojet engine or the turbocharger original machine, the permanent magnet rotor of the motor and The stator coil is mounted on the inner side of the impeller that rotates with the rotary shaft of the micro turbojet engine or the turbocharger, and the permanent magnet rotor is fixedly connected with the rotating shaft of the micro turbojet engine or the turbocharger, and rotates with the rotating shaft to rotate the stator coil.
  • Fixed on the compressor rear cover of the microturbine engine or the turbocharger, the permanent magnet rotor and the stator coil and the impeller are coaxially mounted on the rotating shaft;
  • the permanent magnet rotor may be a rotor of a disc structure, and the stator coil may be a disc stator coil;
  • the permanent magnet rotor may be fixed on the magnetizer and embedded in the impeller together;
  • the disc stator coil is fixed on the stator mounting substrate, and the stator mounting substrate is fixed on the diffuser of the micro turbojet engine Or the turbocharger on the rear cover of the compressor;
  • a compressor may be disposed on the compressor rear cover of the micro turbojet engine or the compressor rear cover of the turbocharger, and the permanent magnet rotor is disposed in a rotatable groove therein.
  • the permanent magnet rotor is placed in the groove and fixed to the rotating shaft.
  • the starting power generating device includes an automatic switching device that automatically switches from a starting operation to a power generating operation.
  • the present invention changes the installation position of the existing micro turbojet starter motor, the overall length of the engine is shortened, and the motor no longer blocks the entry of air, increases the combustion efficiency of the turbojet engine, increases the thrust-to-weight ratio, and reduces the space occupation.
  • the motor mounting position is concealed and is not easily damaged.
  • the motor permanent magnet rotor may be a disc structure
  • the stator coil may be a disc stator coil. It can also obtain forced air cooling, which increases power generation efficiency and prolongs life.
  • the motor is mounted on the rotating shaft of the original machine, the bearing of the original machine is used, the motor bearing is omitted, and the structure is simple and reliable, thus solving the high speed motor bearing. A problem that is fragile.
  • the motor of the invention doubles as the starting motor and the generator, and the motor after starting becomes a generator and a machine, which solves the problem that the previous motor is no longer working and wastes resources after starting the motor; the application of the brushless permanent magnet DC motor can be reduced
  • the starting current reduces the capacity of the starting power supply of the turbojet engine system, reduces the weight of the battery, thereby increasing the thrust-to-weight ratio, improving the energy efficiency, and the power after power generation is sufficient, so that the radar detection of the turbojet missile can be further and can Early warning and unmanned aircraft have longer battery life.
  • the electric and power generating functions are added to the engine, so that the turbocharger has power before the engine is started, and the turbocharger can compress the air into the engine when starting, and the starting is no longer difficult.
  • the turbocharger has power before the engine is started, and the turbocharger can compress the air into the engine when starting, and the starting is no longer difficult.
  • the diesel engine is cold, the energy efficiency is improved and the emission standard is also increased.
  • the invention is also particularly suitable for the energy recovery self-charging of the exhaust gas of the hybrid vehicle engine, and the motor power generation can charge the battery by using the exhaust gas of the turbocharger engine, thereby increasing the mileage of the electric vehicle and improving the energy efficiency. Energy conservation and emission reduction have important promotional value.
  • 1 is a schematic axial cross-sectional view showing an installation method of the present invention
  • Figure 2 is a schematic axial cross-sectional view showing another mounting mode of the present invention.
  • FIG. 3 is a schematic diagram of the startup power generation circuit of the present invention.
  • Figure 4 is a schematic illustration of a preferred embodiment of the present invention made on the basis of the embodiment shown in Figure 2. detailed description
  • the permanent magnet rotor and the stator coil of the motor are mounted inside the impeller 1 on the micro turbojet engine or the turbocharger, and the permanent magnet rotor 3 and the magnetizer 2 are simultaneously fixed to On the inner side of the impeller 1, a groove corresponding to the shape of the permanent magnet rotor 3 may be opened inside the impeller 1, and the permanent magnet rotor 3 and the magnetizer 2 are placed in the groove to be embedded in the impeller 1;
  • the disc stator coil 4 is Fixed to the stator mounting substrate 5, and then the stator mounting substrate 5, or the stator coil can be directly fixed to the diffuser of the turbojet engine or the turbocharger compressor rear cover 6 without using the substrate, the disc stator coil 4
  • the impeller 1, the permanent magnet rotor 3 and the disc stator coil 4 are coaxially mounted with the original machine shaft 7 as a shaft, and are fastened with the lock nut 8 on the original machine, so that the stator coil 4 and the permanent
  • the permanent magnet rotor 3 can also be installed on the diffuser of the micro turbojet engine or the concave cover provided on the compressor rear cover 6 of the turbocharger.
  • the groove is adapted to the shape of the permanent magnet rotor, the permanent magnet rotor is placed therein to be rotatable, the permanent magnet rotor is placed in the groove and fixed to the rotating shaft; and the guide is attached to the impeller 1
  • the magnet 2, the other is the same as the aforementioned embodiment.
  • the stator coils La, Lb, and Lc are connected to the circuit, and the relay J1 is pulled in and off, so that the switching contact switches Jl-0, Jl-1, Jl-2, and J1-3 are turned on.
  • the power generation circuit which converts the motor between the starting and generating states.
  • Jl-1, Jl-2, J1-3 turn on the drive circuit, supply power to the coils La, Lc, Lb, the motor is in the electric running state, active rotation, micro-turbo jet launch , the engine or the engine turbocharger is started; after the engine is started, the start button switch AN is released, the relay J1 is disconnected, the changeover contact switch J1-0 is reset, the power supply circuit of the brushless DC motor driver is disconnected, and the contact switch is switched at the same time.
  • Jl-1, Jl-2, J1-3 are also reset, so that the stator coils La, Lb, Lc are connected to the rectifier regulator U, the engine starts to generate power, the number of revolutions of the impeller is increased, and the motor is turned into a power generating operation state, passive Rotating, simultaneously generating power, the power generation circuit starts to work. Since the engine speed is greater than the starting speed after the engine is started, the power generation voltage is also greater than the power supply voltage. Through the rectifier voltage regulator circuit, the circuit output DC charges the battery through the diode D, and simultaneously supplies power. System power supply.
  • a permanent magnet rotor 3 is provided on the magnetizer 2 of the impeller 1, which corresponds to the permanent magnet rotor 3 on the magnetizer 2 of the rear cover 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种微型涡轮喷气发动机或涡轮增压器的启动发电装置,其将永磁转子(3)和定子线圈(4)设置于微型涡轮喷气发动机或涡轮增压器的随转轴转动的叶轮(1)内侧,永磁转子(3)随转轴(7)转动,定子线圈(4)固定在微型涡轮喷气发动机的扩压器或涡轮增压器的后盖板(6)上,永磁转子(3)、定子线圈(4)、叶轮(1)与转轴(7)同轴安装。该装置结构简单可靠,不易损坏,节约了资源,提高了能效。

Description

微型涡轮喷气发动机或涡轮增压器的启动发电装置 技术领域
本发明涉及一种启动发电装置, 特别是微型涡轮喷气发动机或发动机涡轮 增压器的启动发电装置。 背景技术
目前, 微型涡轮喷气发动机的启动主要采用专用有刷的启动电动机, 包括 了永磁转子、 定子、 定子线圈、 轴及轴承等, 通常安装于涡轮喷气发动机前面。 发明内容
但在使用中存在如下问题: 启动电流大、 对电源容量要求大、 只在启动过 程中使用, 发动机启动后, 启动电动机就不再工作, 并因安装在发动机叶轮前 面从而阻碍空气的吸入, 影响了涡喷燃烧效率; 另外, 现有发动机的涡轮增压 器是利用发动机排出的废气为动力, 推动涡轮带动叶轮将空气压进发动机, 以 达到提高发动机燃烧效率的目的, 但只在发动机启动后才开始工作, 而在发动 机起动前涡轮增压器是没有动力的, 起不到压气作用, 在发动机启动过程中涡 轮增压器并不起作用, 特别是柴油发动机低温启动时, 不能对启动过程提供帮 助; 再者, 目前混合动力汽车还没有利用发动机废气发电自充电装置。
为了解决上述的问题, 本发明公开了一种微型涡轮喷气发动机或涡轮增压 器的启动发电装置, 旨在提供一种结构简单、 提高能效、 兼作启动和发电的装 置。
本发明采用的技术方案是: 在现有包括永磁转子和定子线圈的无刷电机原 理基础上, 利用微型涡轮喷气发动机或涡轮增压器原机的转轴及叶轮, 将电机 的永磁转子和定子线圈的安装位置, 设置于微型涡轮喷气发动机或涡轮增压器 随转轴转动的叶轮内侧, 将永磁转子与微型涡轮喷气发动机或涡轮增压器的转 轴固定连接并随转轴转动, 将定子线圈固定在微型涡轮喷气发动机的扩压器或 涡轮增压器的压气机后盖板上, 所述永磁转子和定子线圈与叶轮以转轴同轴安 装;
将永磁转子固定在该叶轮上, 与叶轮一同随轴转动; , 进一歩, 在所述叶轮内侧设有与永磁转子形状相适应的凹槽, 永磁转子置 于该凹槽, 从而使永磁转子嵌入叶轮内固定;
进一歩的, 所述永磁转子可为盘式结构的转子, 所述定子线圈可为盘式定 子线圈;
再进一歩还可, 将所述永磁转子固定在导磁体上, 并一同嵌入叶轮内; 所 述盘式定子线圈固定在定子安装基板, 该定子安装基板固定在微型涡轮喷气发 动机的扩压器或涡轮增压器的压气机后盖板上;
另外还可, 在所述微型涡轮喷气发动机的扩压器或涡轮增压器的压气机后 盖板上设置与所述永磁转子形状相适应、 永磁转子置于其中可转动的凹槽, 将 所述永磁转子置于该凹槽内并与转轴固定。
最好, 该启动发电装置包括从启动工作自动转换为发电工作的自动转换装 置。
由于本发明改变现有微型涡喷启动机电机的安装位置, 整体缩短了发动机 长度, 且电机不再阻挡空气的进入、 使涡喷发动机燃烧效率增加、 提高了推重 比、 减少了空间占用。 电机安装位置隐蔽, 不易损坏, 在此位置, 电机永磁转 子可为盘式结构, 所述定子线圈可为盘式定子线圈。 还能得到强制风冷, 从而 发电效率增加、 寿命延长; 再加上电机安装在原机的转轴上, 利用了原机的轴 承, 省去了电机轴承, 结构简单可靠, 因而也解决了高速电机轴承易损坏的难 题。 本发明的电机兼作启动电机和发电机, 启动后的电动机变成了发电机一机 两用, 解决了以前电机启动后就不再工作浪费资源的不足; 无刷永磁直流电机 的应用可降低启动电流, 减小了涡喷发动机系统的启动电源的容量, 减少了蓄 电池重量, 从而增加了推重比, 提高了能效, 且发电后的电力充沛, 可使涡喷 导弹的雷达探测更远、 能够提前预警、 无人飞机续航能力更远。
本发明应用在涡轮增压器上时, 为发动机增加了电动和发电功能, 使发动 机起动前涡轮增压器就有动力, 启动时涡轮增压器可将空气压缩进入发动机, 启动不再困难, 特别是柴油发动机低温时, 提高了能效, 还可提高排放的标准。 本发明也特别适合应用于混合动力汽车发动机废气的能量回收自充电, 利用涡 轮增压器发动机废气的推动, 电机发电可给蓄电池充电, 这样就可增加电动汽 车的行驶里程, 提高了能效, 对于节能减排就有了重要的推广价值。 , 图 1是本发明的一种安装方式轴向剖视示意图;
图 2是本发明的另一种安装方式轴向剖视示意图;
图中标记分别表示: 1一叶轮, 2—导磁体, 3—永磁转子, 4一盘式定子线 圈, 5—定子安装基板, 6—涡喷发动机的扩压器或涡轮增压器压气机后盖板, 7 一转轴, 8—锁紧螺母;
图 3是本发明的启动发电电路原理图; 以及
图 4是在图 2所示实施例的基础上做出的本发明的优选实施例的示意图。 具体实施方式
下面, 结合附图和具体实施例对本发明作进一歩的说明。
在本发明实施中, 如附图 1 所示, 电机的永磁转子、 定子线圈安装在微型 涡喷发动机或涡轮增压器上的叶轮 1 内侧, 将永磁转子 3与导磁体 2同时固定 到叶轮 1 内侧, 也可在叶轮 1 内侧开设与永磁转子 3形状相适应的凹槽, 再将 永磁转子 3与导磁体 2置于该凹槽内嵌入叶轮 1固定; 将盘式定子线圈 4固定 到定子安装基板 5上, 再将定子安装基板 5, 也可不用基板直接将定子线圈固定 到涡喷发动机的扩压器或涡轮增压器压气机后盖板 6上, 盘式定子线圈 4与永 磁转子 3相对应, 将叶轮 1、永磁转子 3和盘式定子线圈 4以原机转轴 7为轴同 轴安装, 用原机上的锁紧螺母 8紧固, 使得定子线圈 4与永磁转子 3彼此有必 要的间隙地设置。
本发明的永磁转子另一种安装方式, 如图 2所示, 永磁转子 3还可安装在 微型涡轮喷气发动机的扩压器或涡轮增压器的压气机后盖板 6上设置的凹槽内, 该凹槽与所述永磁转子形状相适应、 永磁转子置于其中可转动, 将所述永磁转 子置于该凹槽内并与转轴固定; 同时在叶轮 1上加装导磁体 2, 其它与前述的实 施例相同。
如图 3, 将定子线圈 La、 Lb、 Lc接入电路中, 由继电器 J1吸合、 断开, 使 转换触点开关 Jl-0、 Jl-1、 Jl-2、 J1-3接通驱动电路或发电电路, 使电机在启动、 发电两种工作状态之间转换。 使用时, 闭合电源开关 K, 按动启动按钮开关 AN 导通, 继电器 J1工作吸合, 使转换触点开关 J1-0闭合, 接通电源给无刷直流电 机驱动器 B供电, 同时转换触点开关 Jl-1、 Jl-2、 J1-3接通驱动电路, 为线圈 La、 Lc、 Lb供电, 电机处于电动运行工作状态, 主动转动, 微型涡轮喷气发动 , 机或发动机涡轮增压器启动; 发动机启动后放开启动按钮开关 AN, 继电器 J1断 开, 转换触点开关 J1-0复位, 断开无刷直流电机驱动器的供电电路, 同时转换 触点开关 Jl-1、 Jl-2、 J1-3也复位, 使定子线圈 La、 Lb、 Lc接通整流稳压器 U, 发动机启动产生动力, 叶轮的转数提高, 电机转为发电运行工作状态, 被动转 动, 同时发出电力, 发电电路开始工作, 由于发动机启动后发电机的转速大于 启动转速, 发电电压也大于供电电压, 通过整流稳压电路, 电路输出直流通过 二极管 D给蓄电池充电, 同时给用电系统供电。
如图 4所示, 在叶轮 1的导磁体 2上设置了永磁转子 3, 该永磁转子 3与后 盖板 6的导磁体 2上的永磁转子 3对应。
以上所述仅为本发明的较佳可行实施例, 并非因此局限本发明的专利范围, 故凡是运用本发明说明书及附图内容所作的等效结构变化, 均包含于本发明的 保护范围。

Claims

WO 2013/029480 权 利 要 求 书 PCT/CN2012/080413
1. 一种微型涡轮喷气发动机或涡轮增压器的启动发电装置, 包括永磁转子 和定子线圈, 其特征在于, 所述永磁转子设置于微型涡轮喷气发动机或涡轮增 压器的叶轮内侧, 并随转轴转动, 所述定子线圈固定在微型涡轮喷气发动机的 扩压器或涡轮增压器的压气机后盖板上, 所述永磁转子和定子线圈与叶轮同轴 安装。
2. 根据权利要求 1所述的微型涡轮喷气发动机或涡轮增压器的启动发电装 置, 其特征在于, 所述永磁转子固定在叶轮上, 随转轴转动。
3. 根据权利要求 2所述的微型涡轮喷气发动机或涡轮增压器的启动发电装 置, 其特征在于, 所述叶轮内侧设有与永磁转子形状相适应的凹槽, 所述永磁 转子固定在导磁体上置于凹槽嵌入叶轮内。
4. 根据权利要求 1、 2或 3所述的微型涡轮喷气发动机或涡轮增压器的启 动发电装置, 其特征在于, 所述永磁转子可为盘式结构,所述定子线圈可为盘式 定子线圈。
5. 根据权利要求 4所述的微型涡轮喷气发动机或涡轮增压器的启动发电装 置, 其特征在于, 将所述永磁转子固定在导磁体上并嵌入叶轮内; 所述盘式定 子线圈固定在定子安装基板, 该定子安装基板固定在微型涡轮喷气发动机的扩 压器或涡轮增压器的压气机后盖板上。
6. 根据权利要求 1所述的微型涡轮喷气发动机或涡轮增压器的启动发电装 置, 其特征在于, 所述微型涡轮喷气发动机的扩压器或涡轮增压器的压气机后 盖板上设置与所述永磁转子形状相适应、 永磁转子置于其中可转动的凹槽, 将 所述永磁转子置于该凹槽内并与转轴固定。
7. 根据权利要求 1所述的微型涡轮喷气发动机或涡轮增压器的启动发电装 置, 其特征在于, 该启动发电装置包括从启动工作自动转换为发电工作的自动 转换装置。
PCT/CN2012/080413 2011-08-26 2012-08-21 微型涡轮喷气发动机或涡轮增压器的启动发电装置 WO2013029480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110247204.1 2011-08-26
CN201110247204.1A CN102691529B (zh) 2011-08-26 2011-08-26 微型涡轮喷气发动机或涡轮增压器的启动发电装置

Publications (1)

Publication Number Publication Date
WO2013029480A1 true WO2013029480A1 (zh) 2013-03-07

Family

ID=46857246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080413 WO2013029480A1 (zh) 2011-08-26 2012-08-21 微型涡轮喷气发动机或涡轮增压器的启动发电装置

Country Status (2)

Country Link
CN (1) CN102691529B (zh)
WO (1) WO2013029480A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105952538A (zh) * 2016-04-22 2016-09-21 山东元动力科技有限公司 一种微型涡喷发动机
CN105952539A (zh) * 2016-04-22 2016-09-21 山东元动力科技有限公司 一种微型涡喷发动机
CN105952537A (zh) * 2016-04-22 2016-09-21 山东元动力科技有限公司 一种微型涡喷发动机
CN109113803A (zh) * 2018-11-09 2019-01-01 上海尚实能源科技有限公司 用于涡轮发动机的转子启动结构
CN112653272A (zh) * 2020-12-11 2021-04-13 清华大学 一种航空涡轮发动机的压气机与启发一体化电机集成
CN115419504A (zh) * 2022-08-30 2022-12-02 哈尔滨工程大学 一种非同轴电机外置式电辅助涡轮增压器系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298627A (ja) * 1989-05-12 1990-12-11 Hitachi Ltd ターボチヤージヤジエネレータ
EP1074699A2 (en) * 1999-08-02 2001-02-07 Isuzu Ceramics Research Institute Co., Ltd. Turbine-generator system
CN1444324A (zh) * 2002-03-07 2003-09-24 福建省仙游电机总厂 废气涡轮增压发电机
CN101004144A (zh) * 2007-01-09 2007-07-25 山东理工大学 车辆废气涡轮驱动爪极式永磁发电机
CN102355087A (zh) * 2011-09-30 2012-02-15 山东理工大学 废气涡轮驱动的盘式双转子永磁发电机
CN202328366U (zh) * 2011-08-29 2012-07-11 佟宪良 可再生电能的涡轮燃烧器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251723A (ja) * 1985-08-29 1987-03-06 Isuzu Motors Ltd 超高速電動−発電機
JPH02241339A (ja) * 1989-03-14 1990-09-26 Hitachi Ltd ターボチャージヤ直結回転機用永久磁石回転子
AU6567998A (en) * 1998-03-19 1999-10-11 Light Engineering Corporation Electric motor or generator
JP3879412B2 (ja) * 2001-02-28 2007-02-14 株式会社日立製作所 発電システム
JP4595758B2 (ja) * 2005-09-09 2010-12-08 トヨタ自動車株式会社 ターボチャージャ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298627A (ja) * 1989-05-12 1990-12-11 Hitachi Ltd ターボチヤージヤジエネレータ
EP1074699A2 (en) * 1999-08-02 2001-02-07 Isuzu Ceramics Research Institute Co., Ltd. Turbine-generator system
CN1444324A (zh) * 2002-03-07 2003-09-24 福建省仙游电机总厂 废气涡轮增压发电机
CN101004144A (zh) * 2007-01-09 2007-07-25 山东理工大学 车辆废气涡轮驱动爪极式永磁发电机
CN202328366U (zh) * 2011-08-29 2012-07-11 佟宪良 可再生电能的涡轮燃烧器
CN102355087A (zh) * 2011-09-30 2012-02-15 山东理工大学 废气涡轮驱动的盘式双转子永磁发电机

Also Published As

Publication number Publication date
CN102691529B (zh) 2015-08-05
CN102691529A (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
WO2013029480A1 (zh) 微型涡轮喷气发动机或涡轮增压器的启动发电装置
US4485310A (en) Combination of a compression or expansion turbine engine and an electric motor
KR900007817B1 (ko) 터어보 콤파운드 내연기관
JPH03115739A (ja) 回転電機付ターボチャージャ
US20120285166A1 (en) Hybrid powertrain system
WO2009158701A1 (en) Integrated combustion and electric hybrid engines and methods of making and use
WO2014127298A1 (en) Turbo recharger
EP3014085B1 (en) Charging apparatus for a combustion engine
US10122240B2 (en) Electricity generation device with low power consumption
JP5508778B2 (ja) インバータ装置一体型回転電機装置
EP3035502A1 (en) Driver apparatus of vehicle
JPS6293430A (ja) タ−ボコンパウンドエンジン
CN106787436B (zh) 一种飞轮式发电机
JPH04342828A (ja) 回転電機付ターボチャージャの制御装置
TWI269834B (en) Compound power device of engine
KR20100003001A (ko) 하이브리드 자동차의 터보 차저
JP6298233B2 (ja) モータ制御方法及びモータ制御システム
EP3182561B1 (en) Electricity generation device with low power consumption
CN216278173U (zh) 一种涡轮高速发电喷气装置
CN112160830B (zh) 一种电动可调涡轮增压器及其控制方法
CN2580132Y (zh) 混合动力单向飞轮
CN206559159U (zh) 一种起动机定子机壳
JPWO2016147215A1 (ja) 車両の駆動装置およびその車両
CN202150786U (zh) 一种永磁无刷发电机
RU2283963C2 (ru) Газотурбинный двигатель с электростартером

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828461

Country of ref document: EP

Kind code of ref document: A1