WO2013029435A1 - 优质热水的快速制备方法及装置 - Google Patents

优质热水的快速制备方法及装置 Download PDF

Info

Publication number
WO2013029435A1
WO2013029435A1 PCT/CN2012/078667 CN2012078667W WO2013029435A1 WO 2013029435 A1 WO2013029435 A1 WO 2013029435A1 CN 2012078667 W CN2012078667 W CN 2012078667W WO 2013029435 A1 WO2013029435 A1 WO 2013029435A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heating
temperature
heater
pipeline heater
Prior art date
Application number
PCT/CN2012/078667
Other languages
English (en)
French (fr)
Inventor
陈晓明
陈成择
Original Assignee
Chen Xiaoming
Chen Chengze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2012/072140 external-priority patent/WO2013029364A1/zh
Application filed by Chen Xiaoming, Chen Chengze filed Critical Chen Xiaoming
Priority to CN201280023660.0A priority Critical patent/CN103547195B/zh
Priority to US14/241,438 priority patent/US9572454B2/en
Publication of WO2013029435A1 publication Critical patent/WO2013029435A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/54Water boiling vessels in beverage making machines
    • A47J31/542Continuous-flow heaters
    • A47J31/545Control or safety devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating

Definitions

  • the invention relates to a method for preparing hot water and a device used therein, in particular to a method and a device for rapidly preparing high-quality hot water.
  • Patent application number CN201010207530.5 'Pipe electric heating speed water machine' provides a kind in 3 ⁇ 5 Can be burned in seconds 95 ⁇ 99 °C hot water, and how much to burn, energy saving, time saving, but this water machine still has shortcomings, because the feedback temperature information of the pipeline heater NTC thermistor thermal response speed is slower, greater than 1 second will cause difficulty in information lag control.
  • the water inlet water temperature also varies greatly with different seasons and different regions. Due to the lag of the temperature control link, the water temperature at the outlet of the extremely high water machine is unstable, and even the water temperature is too high to spray steam. Easy to burn people will also affect the service life of the equipment. At the same time, due to the destruction of the water source, the small water molecules are destroyed, and the oxygen content is lowered. It is difficult to use the water to make high-quality mellow tea.
  • Patent application No. CN201110009740.8 A tea making machine using a heating tube method is a problem for solving the problem that the water in the heating pipe is easily burned over the head, causing overheating vaporization and splashing of the person and the damaged equipment due to boiling, and satisfying the problem at the water outlet.
  • Temperature requirement The method for heating water and the tea maker using the hot water of the degree, but it is still set according to the temperature of the outlet water outlet to set a predetermined heating temperature for each of the heating pipes, and is heated by each heating pipe to make the water temperature The predetermined heating temperature is reached.
  • the method of manufacturing the segmented pipe heater is complicated. Each section of the heating body has a constant high temperature, and the hysteresis of the NTC thermistor is still not compensated. Therefore, the boiling water process cannot be accurately controlled, and the quality of the hot water cannot be obtained. Guarantee.
  • the technical problem to be solved by the present invention is to provide a rapid preparation method and device for high-quality hot water by overcoming the above-mentioned deficiencies of the prior art, so that the pipeline heater works in a slow heating zone, and the temperature of the pipeline heater can be completely eradicated.
  • the original water molecular group structure is less damaged, and the outlet temperature is always kept at the target water temperature.
  • the technical solution adopted by the present invention to solve the above problems is as follows:
  • the rapid heating method for the high-quality hot water is based on the heating temperature rise curve of the pipeline heater used, the flow rate setting value L1 of the electromagnetic pump, and the ordinate temperature T is the target water temperature Tm.
  • the difference from the inlet water temperature T J , the abscissa is the heating time t, and the temperature rise curve at different electric powers P1, P2, P3, P4, ...
  • the inlet water temperature sensor is used to measure the water temperature of the electromagnetic pump inlet water, and according to the set target water temperature and the temperature rise curve according to the setting, the main control board selects the electric power of the corresponding target water temperature region to prepare for heating;
  • the main control board starts the electromagnetic pump, the water of the L1 flow flows out of the straight drinking water tank, enters the pipeline heater, and the main control board uses the steps a a heating curve of the selected electric power pair is heated. At this time, the water of the L1 flow is slowly heated according to the temperature rise curve in the nonlinear heating K zone of the pipe heater, thereby avoiding the S In the rapid heating linear heating zone of the zone, the tea water close to the target water temperature can be obtained from the water outlet;
  • the heating element sensor provides information for automatically adjusting the electric power according to the above heating curve, if the pipeline heater works in steps a
  • the selected water power to the target water temperature between the heating curve, the water temperature in the pipeline heater or the water temperature of the pipeline heater outlet is higher than the target water temperature, and the main control board automatically makes the heating curve to the direction of the medium heating low of the electric power.
  • the main control board automatically switches the heating curve to the direction of the heating curve in which the electric power is medium to high, so that the water temperature of the outlet of the pipeline heater reaches the target water temperature Tm;
  • the main control board calculates the number of electric drive pulses of the electromagnetic pump according to the required water output, starts counting when the water is discharged, stops heating when the number of pulses is reached, and delays After 2 seconds, turn off the electromagnetic pump, stop the water supply, or press the running key to stop the heating before reaching the pulse number, and delay the electromagnetic pump for 2 seconds, and stop the water in advance.
  • the device for producing high-quality hot water by the above method comprises an operation button panel mounted on the surface of the casing, a main control board installed in the casing, a pipe heater fixed with a heating element temperature sensor, a water pipe, a power source, an electromagnetic pump,
  • the utility model comprises a direct drinking water tank with safety protection, wherein the water inlet of the pipeline heater is connected with a water pipe installed with an inlet water temperature sensor through an electromagnetic pump, the water pipe is connected with the direct drinking water tank, and the water outlet of the pipeline heater is installed with the water outlet.
  • the water sensor head of the temperature sensor is connected, and the signal input end of the main control board is respectively connected with the inlet and outlet water temperature sensor and the heating element temperature sensor, and the electric power output end of the main control board is respectively connected with the electromagnetic pump and the pipeline heater. .
  • the heating temperature rise curve of the above-mentioned pipeline heater at a constant flow rate is determined as follows: Under the set pipeline heater flow rate L1, the time at the different heating power of the pipeline heater is measured and plotted. Temperature rise curve related to temperature, wherein the ordinate temperature T is the difference between the water temperature Tm of the pipe heater outlet and the inlet temperature T J of the pipeline heater, and the abscissa is the heating time t, and the heating curve is obtained under different heating powers.
  • the fast warming section constitutes the S zone
  • the slow warming section constitutes the K zone.
  • the heating time measured in the above K zone is preferably t 2 , which not only meets the actual need of water intake during rapid water preparation, but also saves the measurement cost and time of the heating curve of the pipeline heater, and can also be greater than t 2 .
  • the temperature difference between the two adjacent temperature rise curves in the K zone is preferably in the range of 3 to 7 ° This reduces the response to the water temperature sensing speed and makes the water temperature control smoother.
  • the rapid preparation method of high quality hot water comprises the following steps:
  • the temperature difference is calculated, and then the temperature difference and the set flow rate are found from the temperature rise curve of the pipeline heater to find the corresponding nonlinear heating zone in the slow temperature rise.
  • the adjacent heating power pair of the pipeline heater corresponding to any time point in the zone, and selecting the adjacent heating power to heat the water in the pipeline heater;
  • step b then enter the pipeline heater with the set flow of water, while using step a
  • the heating power of one of the selected adjacent heating power pairs is heated, and the water entering the pipeline heater is slowly heated in the nonlinear K zone of the pipeline heater, and the water of the target water temperature is obtained from the water outlet;
  • step c) first in step a) Measuring the temperature of the water in the pipeline heater, calculating the heating time under the set heating power according to the difference between the temperature and the target water temperature and the volume of the water in the pipeline heater, and subtracting a certain amount according to the heating time to obtain the actual heating Time, then according to the actual heating time to set the heating power to heat the water in the pipeline heater, and then press step b ) heating.
  • step d If the effluent temperature requirement is more accurate, include step d ): If the water temperature of the outlet of the pipeline heater is higher than the target water temperature during heating, select the step a) the adjacent heating power selected in the pair is heated to a lower heating power, and if the water temperature of the outlet of the pipeline heater is lower than the target water temperature, the higher heating power of the adjacent heating power is selected to be heated, so that The water temperature at the outlet of the duct heater is always near the target water temperature.
  • the adjacent heating power pair of the pipeline heater in the above step a) is preferably in the slow heating nonlinear heating zone K Corresponding at any point in the zone.
  • the above steps c The temperature of the water in the measuring pipe heater can be directly measured by a temperature sensor.
  • the relationship between the temperature of the heating element in the pipe heater and the water temperature of the pipe heater outlet can also be measured experimentally, and the pipe heater is taken out.
  • the water temperature of the nozzle approximates the temperature of the water in the pipeline heater, and is then converted into the temperature of the water in the pipeline heater according to the measured temperature of the heating element in the pipeline heater.
  • the above steps c The set power is preferably half of the rated power of the pipeline heater, so that the water temperature in the pipeline heater is close to the temperature corresponding to the end of the rapid heating section.
  • the amount of subtraction from the pipe is preferably half of the ratio of the length of the pipe heater to the flow rate to ensure that the temperature of the water in the pipe heater is still in the rapid temperature rise zone before the pipe heater is heated rapidly until the water flow begins to flow. It can ensure the steady rise of water temperature after the flow of water.
  • the inventors have also found that since the heating temperature rise curve of the pipe heater is obtained under specific conditions, it is affected by various factors, and the specific analysis is as follows.
  • a pipe heater can be thought of as having a water inlet port GA, a water outlet port GB, and a black box for electrical power P in input port GC, see Figure 6.
  • the input electric power P in is discretized to obtain P 1 , P 2 , P 3 ... P n .
  • the specific heat capacity c only changes slightly with the change of water quality.
  • the specific heat capacity C is a constant value, and the specific heat capacity C of the water is 4.18 joules; the water flow rate is given by the pump selection. It is well controlled and can be regarded as a constant value throughout the running process; the selected P i value controlled by the circuit can be regarded as a constant value throughout the running process.
  • Equation 1 The reason for the influence of the ⁇ i value is as follows for the example of a pipe heater using a thick film resistor as a heating element:
  • P i ⁇ is the thick film resistance electrothermal conversion loss power P i Z of the pipeline heater, the heat conduction surface conduction of the pipeline heater - the convection and radiation thermal power P i F and the heat capacity loss power P determined by the pipe heater body structure
  • the change in ambient temperature conditions such as an increase in the temperature of the air near the heat dissipating surface of the duct heater, causes P i F to decrease, causing ⁇ i to rise.
  • the heat capacity loss power P i B of the pipe heater body structure is proportional to the body temperature rise value of the heating body.
  • P i B &gt When the body temperature of the heating body is from low to high, P i B > 0, ⁇ i is decreased, and when the body temperature of the heating body is high to low, P i B < 0 causes ⁇ i to increase.
  • T 2c 88.5°C
  • the outlet target temperature value of 97 °C falls on the above P 1 and P 2 composition.
  • the heating of the heating power is outside the nonlinear K-zone of the curve.
  • T 1c - T 2c 6 ° C
  • T 1c - T R 84.1 ⁇ T 1
  • T 2c - T R 78.5 ⁇ T 2
  • the heating and heating power of the correlation P 1 and P 2 are shifted downward.
  • the interval T 1c - T 2c 5.6 ° C, and the correlation between P 1 and P 2 is small.
  • T 1c - T R 89.9 ° C > T 1
  • T 2c - T R 83.5 ° C > T 2
  • the heating heating power of the composition of P 1 and P 2 is shifted upward.
  • the interval T 1c - T 2c 6.4 ° C, and the associated intervals of P 1 and P 2 become large.
  • the grid internal resistance R s , the grid nominal voltage V o and the load resistor R l also have an effect on the selected power P i constant value, as explained below.
  • the schematic diagram of the pipeline heater connected to the grid is as follows.
  • R s is the internal resistance of the power transformer and the equivalent line loss resistance of the power transformer to the customer.
  • R s varies with the amount of power used. The typical value is ohms.
  • R s 2 ohms
  • R l is the pipe heater. Thick film resistors, resistance can be divided into two states, cold resistance at room temperature and thermal resistance after heating.
  • V o , R l and R s affect the magnitude of the heating power P i and:
  • P 1 2200w
  • P 2 1925w
  • the heating operation time t >t 1 the target water temperature value of 97 °C falls on the heating of the above P l and P 2 components.
  • the power vs. curve is in the nonlinear K zone.
  • ⁇ P 1 makes the maximum water temperature T 1c at the water outlet port GB between 94.4 and 99.6 °C; ⁇ P 2 makes the maximum water temperature T 2c at the outlet port GB between 88.6 and 93.4 °C. .
  • T 1c - T R 89.6°C > T 1
  • the study found that the heating curve of the pipeline heater measured at a specific water flow rate and selected power P i is affected by the environmental conditions of the pipeline and will move up and down along the T axis and the adjacent heating power P i-1 and The temperature T interval between P i becomes larger or smaller, so the heating curve of the pipe heater measured under certain experimental conditions will change under the original experimental conditions, even the temperature rise curve obtained under the original experimental conditions.
  • the maximum heating temperature does not reach the target value, so the original heating method needs to be improved.
  • the temperature rise curve of the relationship between the time and the temperature of the pipeline heater at different heating power P i is measured and plotted, wherein the ordinate temperature T is the water temperature T c of the pipeline heater outlet port and the pipeline heater enters the water.
  • the temperature rise value between the port water temperature T R and the abscissa is the heating time t.
  • the rapid heating section of the heating curve of each different P i heating power constitutes the S zone, and the slow heating zone forms the K zone, and the maximum power of the pipe heater is determined.
  • heating time t 2 the maximum temperature rise when the flow rate value L j TH j, the composition of the series heating curves at different flow rates.
  • the maximum temperature rise value TH j described above is 96 ° C to meet all the requirements of use.
  • Step b) is set to L j water flow into the pipe heater, and then the water flow L j corresponding heating pipe heating heater heating the captured variable curve T, find the slow heating in the heating zone nonlinear region K An adjacent heating power pair of the pipe heater corresponding to any point in time, and heating with a heating power of one of the selected pairs of adjacent heating powers;
  • y is compared with the set target water temperature maximum allowable deviation value C p .
  • > C p the deviation value y is added to the original compensation value x to obtain a new compensation value x, and then Step a), step b); when the deviation value
  • step d) is added in step b): firstly measuring the temperature T sh of the water in the pipeline heater, and according to the difference between the target water temperature T cm and T sh and the pipeline
  • the volume of water in the heater is calculated by setting the heating time under the heating power, and subtracting a certain amount according to the heating time to obtain the actual heating time, and then heating the water in the pipeline heater by setting the heating power according to the actual heating time.
  • step e) during the heating of step b) If the water temperature of the outlet port of the pipeline heater is higher than the target water temperature, then the adjacent heating power selected in step b) is selected to heat the lower heating power, if the water temperature of the outlet of the pipeline heater is lower than the target water temperature, Then choose The selected adjacent heating power is used to heat the higher heating power so that the water temperature of the pipe heater outlet is always near the target water temperature.
  • the inlet temperature sensor is added, and the inlet temperature sensor is installed in the water inlet.
  • a corresponding rapid preparation device for high-quality hot water which comprises a water inlet, a water outlet, a controller, an outlet water temperature sensor, a pipeline heater, a metering pump, and the inlet of the pipeline heater passes through a metering pump.
  • the water outlet of the pipeline heater Connected to the water inlet, the water outlet of the pipeline heater is connected to the water outlet with the outlet water temperature sensor ;
  • the signal input end of the controller is connected to the outlet water temperature sensor, and the electric power output end of the controller is respectively connected with the heating body of the metering pump and the pipeline heater, and controls the startup of the metering pump and the pipeline heating according to the set conditions.
  • the heater is controlled by the controller in accordance with the steps in the rapid preparation method of the above-described high-quality hot water.
  • the above preparation device saves the installation cost of the water inlet temperature sensor and reduces the failure rate of the device.
  • a water temperature sensor is added to the pipe heater
  • the temperature sensor is connected to the signal input end of the controller, and the controller controls according to the steps in the above rapid preparation method.
  • the inlet water temperature sensor is added to the water inlet, and the inlet water temperature sensor is connected to the signal input end of the controller, and the controller controls according to the steps in the above rapid preparation method.
  • the above water inlet can be a water pipe, a water tank or the like.
  • the above water outlet can be a water pipe, a water tank or the like.
  • the production unit is placed within the housing and the controller is operated by an operating button panel on the surface of the housing.
  • the above metering pump is preferably an electromagnetic pump to facilitate control and accurate quantification of water flow.
  • the invention avoids the fact that the pipeline heater always operates in a controllable slow heating zone K, thereby avoiding When the existing pipeline heater heats water, due to the temperature uncertainty caused by the hysteresis of the temperature sensor during its rapid heating period, The heating is fast, convenient and controllable. At the same time, according to the change of the water temperature during the heating process, the heating power of one of the selected adjacent powers is selected to heat the water, and the water temperature rises smoothly, and the effluent water temperature control precision is high. Also, since the water in the pipe heater is heated first, and new water is added to the pipe heater for heating, the lower temperature water is directly contacted with the heated higher temperature heating body to generate water and heat exchanger exchange.
  • the temperature of the surface is drastically changed, and the control method of the adjacent power pair is selected. Eliminate the phenomenon that the heating of the existing heating of the existing pipeline heater is too high to burn the water and destroy the water molecules of the water, so that the quality of the original high-quality water does not change, and the taste can be tasted well. Water can also guarantee good health.
  • FIG. 1 is an external view of a rapid preparation apparatus for high quality hot water.
  • Figure 2 is a schematic view showing the structure of a magnetized water processor according to an embodiment of the present invention.
  • Fig. 3 is a schematic view showing the structure of an embodiment of the present invention.
  • FIG. 4 is a block diagram of a control circuit of a main control board according to an embodiment of the present invention.
  • Figure 5 is a graph showing the temperature rise of a pipeline heater at different electric powers at a flow rate L1 according to an embodiment of the present invention.
  • the heating temperature rise curve of the pipe heater 4 is measured as follows:
  • the temperature rise curve of P2, P3, P4... forms a linear heating zone S zone with rapid heating and a nonlinear heating zone K zone with slow temperature rise.
  • the main control board uses the inlet water temperature sensor 2 to measure the water temperature of the influent water, and then according to the set target water temperature and the heating curve according to the basis, the main control board selects the influent flow rate
  • the electrical power of L1 and the corresponding target water temperature zone is prepared for heating;
  • the main control board starts the electromagnetic pump 3, the water of the L1 flow flows out of the direct drinking water tank 1 and enters the pipeline heater 4 At the same time, the main control board uses a heating curve of the selected electric power pair in step 1 to heat the water outlet in the pipeline heater. At this time, the water of the L1 flow is nonlinearly heated in the pipeline heater. The zone is slowly heated according to the temperature rise curve, thereby avoiding the rapid heating linear heating zone in the S zone, and the tea water close to the target water temperature Tm can be obtained from the water outlet;
  • the heating element sensor 5 According to the above heating curve, information for automatically adjusting electric power is provided. If the pipeline heater operates between the two electric power heating curve regions P1 and P2, the water temperature in the duct heater 4 is higher than the target water temperature Tm. The main control board automatically switches the heating curve to the direction of the low temperature rising temperature curve P2, if the water temperature in the pipeline heater 4 is lower than the target water temperature Tm The main control board automatically switches to the heating curve P1 direction of the electric power to the middle of the heating curve, so that the water temperature of the pipe inlet water reaches the target water temperature Tm;
  • the main control board calculates the number of electric drive pulses of the electromagnetic pump according to the required water output, starts counting when the water is discharged, stops heating when the number of pulses is reached, and delays 2 After the second time, turn off the electromagnetic pump, stop the water supply, or press the running key to stop the heating before reaching the pulse number, and delay the electromagnetic pump after 2 seconds delay to stop the water in advance;
  • the pipe heater effluent flows through the magnetic field of the magnetized water processor through the water pipe, and then flows into the water pipe head, and the gas mixed in the inner space of the water pipe head and the air pipe improves the freshness of the water, and the effluent water temperature is determined by the effluent temperature sensor. It is measured, and the main control board calculates, tracks, and compensates for the long-term heating work characteristic drift of the pipeline heater and the fresh air injection to cause the water temperature to drop.
  • the above step b) determines the time of heating at half the electric power of the rated power of the duct heater 4, and is reduced by the value 2
  • the actual heating time is determined in seconds, and the main control panel opens the pipe heater. 4 The heating is performed according to the actual heating time, so that the water temperature in the pipe heater is close to the target water temperature Tg.
  • step d) it is better to use the outlet water temperature sensor 2 to detect the water temperature of the outlet of the pipeline heater 4 at any time, if the water temperature is higher than the target water temperature Tg, the main control board automatically selects P2 with low heating power for heating. If the water temperature of the outlet of the pipe heater 4 is lower than the target water temperature Tg, the main control board automatically selects the P1 with high heating power. Heating is performed so that the water temperature of the pipe feeder outlet reaches the target water temperature Tg.
  • the above step f) is for better improving the quality of the hot water, and may be omitted.
  • Fig. 1 and Fig. 3 The device used for the production of brewed tea by the above method is shown in Fig. 1 and Fig. 3, which includes the main control board 12 connected to the operation button panel 1 and the power supply.
  • the pipeline heater 4 the electromagnetic pump 3, the direct drinking water tank 11 composition
  • the water inlet of the pipeline heater 4 passes the electromagnetic pump 3 and the water pipe with the inlet water temperature sensor 2 installed 14 Connection, water pipe and direct drinking water tank 11 connection
  • the water outlet of the pipeline heater 4 is connected with the water pipe head 7 to which the outlet water temperature sensor 8 is fixed
  • the signal input end of the main control board 12 is respectively connected with the inlet and outlet water temperature sensors. 2, 8
  • the heating element temperature sensor 5 on the pipeline heater is connected, and the electric power output end of the main control board 12 is connected to the electromagnetic pump 3 and the pipeline heater 4, respectively.
  • Pipeline heater 4 is a commercially available pipe speed heater, model HY-1, power 2200W, measured with Figure 5
  • the temperature rise curve at different electric powers shown the heating element temperature sensor 5 is a NTC resistance sensor, and the thermal response speed is 1 to 3
  • the second is closely attached to the pipe heater heating body installation, the installation of the pipe heater ensures that the water inlet is below the water outlet, the inlet water temperature sensor 2 is installed in the pipe joint 14-1 cavity, and the pipe joint 14-1 It is fixed on the side wall of the straight drinking water tank with screws.
  • the CPU of the main control board 12 is STC12C5A32S2, and the RF card reading and writing module 13 is connected to the upper drinking water tank.
  • the safety protection 11-1 is installed inside the liquid level switch and anti-drying, and the water pipe 14 is a food grade silicone tube.
  • the magnetized water processor 6 is connected to the outlet of the pipeline heater, and the air outlet tube is connected to the outlet end of the magnetized water processor. Install vertically.
  • a magnetized water processor and an air guide tube with a micro-pump can further improve the freshness and oxygen content of hot water, so that it can be used with high-quality tea and coffee to ensure and improve the brewing quality of tea and coffee. Relax and enjoy life after working hard.
  • Water pipe 14 by pipe joint 14-1 and water pipes 14-2, 14-3, 14-4 In the three-stage composition, both ends of the electromagnetic pump and the pipeline heater have joints 18 connected to the water pipe 14.
  • the magnetized water processor 6 is embedded with N and S two neodymium iron boron magnets in the upper and lower grooves of the H-shaped bobbin 6-1 through the through hole in the middle. 6-2 composition, as shown in Figure 2.
  • the upper end inlet port of the water pipe head 7 7-1 is connected to the air pipe 9 , and the air pipe 9 is connected to the outlet of the micro air pump 10 , and the micro air pump 10 It is connected to the electric power output of the main control board 12.
  • Water pipe head 7 One side wall sensing port 7-4 fixed water temperature sensor 8 , the lower end is water outlet 7-2, water pipe head 7 has water inlet interface on the other side wall 7-3 Connected to the water pipe 14-4 at the outlet end of the magnetized water processor 6.
  • the air entering the water pipe from the air pipe and the magnetized water entering the magnetized water processor are mixed in the water pipe head, and the water outlet from the lower end 7-2 Outflow for use.
  • One end of the water pipe 14-2 is directly connected to the pipe joint 14-1, and the other end is connected to the water inlet port 18 of the electromagnetic pump 3.
  • the water outlet port 18 of the electromagnetic pump 3 and the pipe heater inlet port 18 are connected with a water pipe 14-3.
  • Elastic connection, the pipe heater outlet joint 18 is elastically connected to one end of the water pipe 14-4, and the other end of the water pipe 14-4 is connected from the intermediate through hole of the skeleton 6-1 to the water pipe head 7 to which the outlet water temperature sensor 8 is installed;
  • the signal input terminals of the control board 12 are respectively connected to the inlet and outlet water temperature sensors 2, 8.
  • the heating element temperature sensor 5 on the pipeline heater is connected, and the electric power output end of the main control board 12 is respectively connected to the electromagnetic pump 3 and the pipeline heater 4.
  • the water cup containing the tea leaves is placed under the water outlet 7-2 of the lower end of the water pipe head 7 of the device.
  • the display screen 1-1 on the operation button panel 1 displays the set water temperature and the amount of water, if the display shows The water temperature is 80 degrees and the water volume is 100ml. It is not necessary to press the temperature key 1-6 to directly change the water temperature. Press the mode key 1-2 to change the water volume. Set the water temperature to 95 degrees and the water volume to 150ml.
  • the main control board is based on a ), b), c), d), e) step work, from the water outlet 7-2, the water temperature and water provided by the RF card are used for tea, and the button panel display 1-1 is also operated. There are digital display of temperature and water volume.
  • the device has a very fast water outlet temperature between room temperature and 98 degrees.
  • the water produced by heating can be brewed with 95 degrees of water, 65 degrees of water, or directly used as drinking water, but the drinking water tank 11
  • the water should be of high quality direct drinking water or bottled water that complies with national standards17.
  • the present invention it is possible to obtain the brewing green tea and the Longjing tea which are required by the tea art. ⁇ 85 degrees water, brewing black tea and red cannon 90 to 98 degrees water.
  • the experimental temperature rise curve of Hy-1 pipe heater is shown in Figure 8.
  • the ambient temperature during measurement is 25 °C
  • the supply voltage V o is 220V AC
  • the internal resistance R s of the grid is 2 ⁇
  • the thick film resistance of the pipeline heater P l is 20 ⁇ .
  • the specific heat capacity C 4.18 joules
  • the measured base water temperature is 15 °C
  • input the given power P 6 1512.5w
  • P 5 1650 w
  • P 4 1787.5w
  • T 5 48 °C
  • T 4 55 °C.
  • ⁇ 6 ′′ 0.886
  • ⁇ 5 ′′ 0.867
  • the deviation direction is an increase in the value of ⁇ i .
  • T i ′′ T i • ⁇ i ′′ / ⁇ i
  • T 6 ′′ 46.6 ° C
  • T 4 ′′ 56.9°C.
  • the corresponding adjacent power pairs are P 6 and P 5
  • T cm 62.5 ° C
  • T R 15 ° C
  • the temperature rise characteristics of the Hy-1 pipe heater are shown in Figure 5.
  • TH 1 87 °C
  • the ambient temperature is 25 °C
  • the supply voltage V o is 220 V
  • the internal resistance R s is 2 ⁇
  • the thick film of the pipeline heater The resistance R l is 20 ⁇
  • the flow rate L 1 5.5 ml/s
  • the specific heat capacity C 4.18 joules
  • the base water temperature is 10 °C.
  • T R 25°C
  • T cm 85°C
  • x 0
  • the temperature control accuracy of the pipeline heater C p is 2 °C
  • the actual inlet water temperature is 10 °C.
  • a heating curve of a pipe heater can be used.
  • the ordinate temperature T is between the water temperature T c of the pipeline heater outlet port and the water temperature T R of the pipeline heater inlet port
  • the heating value, the abscissa is the heating time t
  • the rapid heating section of the heating curve of each different P i heating power constitutes the S zone
  • the slow heating zone constitutes the K zone
  • the maximum power of the pipeline heater the heating time t 2 , the maximum temperature rise when the flow rate value TH j L j, the composition of the series heating curves at different flow rates.
  • the maximum temperature rise temperature becomes 68 degrees or less, it can be controlled as shown in Figure 5 above, or can be controlled as described above using Figure 8, so that the temperature rise curve of the pipe heater can be selected with two different flow rates. One of them is controlled.
  • the heating temperature rise curve of the above pipeline heater is controlled to expand the selection range between the outlet water temperature and the outlet water flow, so that the device can be adapted to the user's needs as much as possible, such as high temperature and small flow, low temperature and high flow water supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Apparatus For Making Beverages (AREA)
  • Resistance Heating (AREA)

Abstract

一种优质热水的快速制备方法及装置,该优质热水的快速制备方法包括如下步骤:步骤a)根据T=Tcm-TR+x公式计算出升温变量T,TR、x为预设常数,并在管道加热器(4)系列升温曲线中寻找满足T≤THj的相应流量Lj,THj为流量Lj时的最高升温值;步骤b)以设定流量Lj的水进入管道加热器(4),再由水流量Lj对应的管道加热器(4)的加热升温曲线对捕捉升温变量T,找到相应的处于慢速升温非线性加热区Κ区内的任一时间点所对应的管道加热器(4)的相邻加热功率对,并用选定的相邻加热功率对的其中之一的加热功率进行加热;步骤c)测量步骤b)中管道加热器(4)出水端口(GB)处水温Tc;当t≥t1时,计算出出水端口(GB)处目标水温Tcm和出水端口(GB)处水温之间的偏差值y=Tcm-Tc。,同时将y和已设定的目标水温最大允许偏差值Cp进行比较,当偏差值|y|>Cp时,将偏差值y再加原始补偿值x得到新的补偿值x,再进行步骤a)、步骤b);当偏差值|y|<Cp时,继续进行步骤b)。

Description

优质热水的快速制备方法及装置 技术领域
本发明涉及一种热水的制作方法及所用设备,特别涉及一种优质热水的快速制备方法及装置。
背景技术
随着人们生活水平的不断提高,迫切需要快速得到优质的热水用于提高生活品质,如用优质的热水冲泡茶叶、咖啡等,这种优质热水既要快速得到,又要防止原始水的烧老、原始分子团结构的破坏,保持原有水的优异质量。
专利申请号 CN201010207530.5 '管道电热极速开水机'提供了一种在 3 ~ 5 秒钟内就可烧出 95 ~99℃的热水,并且需要多少就烧多少,节能、节时,但此开水机还存在不足之处,因管道加热器用的反馈温度信息的NTC热敏电阻的热响应速度慢,在大于1秒时会造成信息滞后控温困难。水源进水温度还随着不同季节和不同地区环境变化有着很大的差异,由于控温环节的滞后,从而造成极速开水机出水口水温不稳定,甚至会发生水温过高喷蒸汽的现象,不仅易烫伤人还会影响设备的使用寿命。同时因烧过头的水源其小水分子团遭破坏,含氧量降低,用此水是难于泡出优质醇香的茶。
专利申请号CN201110009740.8一种利用加热管方法的泡茶机'就为解决加热管道中的水容易烧过头,因沸腾产生过热汽化飞溅烫伤人和损坏设备的问题,满足在出水口处获得所要求温 道加热水的方法及使用该度的热水用的泡茶机,但它仍是依据出水口出水的温度为所述各段加热管道设置预定加热温度,并由各段加热管道加热使水温度达到预定的加热温度,这个方法制造分段管道加热器工艺复杂,每一段加热体为恒定高温,NTC热敏电阻滞后性仍然没有补偿,因此烧水过程仍无法精确控制,热水的质量无法得到保证。
技术问题
本发明所要解决的技术问题是克服现有技术的上述不足而提供一种优质热水的快速制备方法及装置,使管道加热器工作在慢速升温区,能彻底根除管道加热器升温过高,使原水分子团结构少受破坏,并始终保持出水口温度稳定在目标水温。
技术解决方案
本发明解决上述问题所采用的技术方案为: 优质热水的快速制备方法依据的升温曲线是所用管道加热器的加热升温曲线,电磁泵的流量设定值 L1 ,纵坐标温度 T 为目标水温 Tm 与进水温度 TJ 间的差值,横坐标为加热时间 t ,绘出在不同电功率 P1 、P2 、P3 、 P4 …… 时的升温曲线,形成快速升温线性加热区 S 区和慢速升温非线性加热区 K 区; K 区一直延伸到 t2 , t2= 单次出水总量 / 电磁泵设定流量 L1 ,上下两条相邻升温曲线也称电功率对在 K 区所围区域为目标水温的加热区域;
优质热水的快速制备方法 的步骤:
a ) 用进水温度传感器测量电磁泵进水的水温,再根据设置目标水温和依据的升温曲线,主控板选择相应的目标水温区域的电功率对给加热作准备;
b )启动进水前的加热,用管道加热器上的发热体传感器测量管道加热器内发热体的温度,由主控板换算成管道加热器内水的温度并计算与目标水温间的差值,确定设定电功率加热的限时数值,并且按上述数值打开管道加热器限时加热,使管道加热器内的水体温度达到目标水温 Tm 附近区域;
c )主控板启动电磁泵, L1 流量的水从直饮水箱中流出,进入管道加热器,同时主控板用步骤 a )选定的电功率对中的一条升温曲线进行加热,这时 L1 流量的水就在管道加热器的非线性加热 K 区按照升温曲线进行缓慢升温,从而避开了 S 区的快速升温线性加热区,从出水口就可得到接近目标水温的泡茶水;
d )在加热过程中,发热体传感器根据上述升温曲线提供自动调节电功率的信息,若管道加热器工作在步骤 a )选定的电功率对升温曲线间的目标水温,管道加热器内的水温或管道加热器出水口的水温高于目标水温,主控板使升温曲线自动向电功率对中低的那条升温曲线方向切换,若管道加热器内的水温或管道加热器出水口的水温 低于目标水温,主控板使升温曲线自动向电功率对中高的那条升温曲线方向切换,使管道加热器出水口水温达到目标水温 Tm ;
e )主控板根据所需出水量计算电磁泵的电驱动脉冲数,在出水时开始计数,到达脉冲数时停止加热,并延时 2 秒后关闭电磁泵,停止出水,或在到达脉冲数前再按动运行键停止加热,并延时 2 秒后关闭电磁泵,提前停止出水。
用上述方法生产优质热水的所用装置,包括安装在壳体表面上的操作按钮面板,安装在壳体内的主控板、固定有发热体温度传感器的管道加热器、水管、电源、电磁泵、带有安全保护的直饮水箱组成,所述的管道加热器的入水口通过电磁泵与安装有进水温度传感器的水管连接,水管与直饮水箱连接,管道加热器的出水口与安装有出水温度传感器的水管头连接,主控板的信号输入端分别与所述的进、出水温度传感器、发热体温度传感器连接,主控板的电功率输出端分别与所述的电磁泵、管道加热器连接。
抛开具体的进水设备和控制设备,上述管道加热器恒定流量时加热升温曲线确定方法如下:在设定的管道加热器流量 L1 下,测量并绘出在管道加热器不同加热功率时的时间与温度之间关系的升温曲线,其中纵坐标温度 T 为管道加热器出水口水温 Tm 与管道加热器进水温度 TJ 间的差值,横坐标为加热时间 t ,各个不同加热功率下升温曲线的快速升温段构成 S 区,慢速升温段构成 K 区。
上述 K 区测量的加热时间最好为 t2 ,这样既满足水快速制备时取水量的实际需要,又可以节省管道加热器加热升温曲线的测量成本和时间,也可大于 t2
上述在 K 区内的二条相邻升温曲线之间的温差变化范围最好在 3 ~ 7 °,这样能降低对水温度传感速度的响应速度的要求并使水温控制更加平稳。
由此对上述方法进行改进,优质热水的快速制备方法 ,包括以下步骤:
a )、根据进水水温和设定的出水目标水温计算出温差,再由温差、设定的流量从管道加热器的升温曲线中找到相应的处于慢速升温非线性加热区 K 区内的任一时间点所对应的管道加热器的相邻加热功率对,并选择该相邻加热功率对预备对管道加热器内的水进行加热;
b )、再以设定流量的水进入管道加热器,同时用步骤 a 选定的相邻加热功率对的其中之一的加热功率进行加热,进入管道加热器内的水就会在管道加热器的非线性 K 区内缓慢升温,从出水口得到目标水温的水;
还包括步骤 c )、在步骤a )中先 测量管道加热器内水的温度,根据该温度与目标水温间的差值和管道加热器内水的容积计算在设定加热功率下的加热时间,并按该加热时间减去一定量得到实际加热时间,然后按实际加热时间以设定加热功率对管道加热器内的水进行加热,再按步骤b )加热。
若出水温度要求 较精确,还包括步骤 d ):加热过程中,若管道加热器出水口水温高于目标水温,则选择步骤 a)中选定的相邻加热功率对中较低加热功率进行加热,若管道加热器出水口水温低于目标水温,则选择所述相邻加热功率对中较高的加热功率进行加热,使管道加热器出水口水温一直在目标水温附近。
上述步骤 a )中管道加热器的相邻加热功率对最好是处于慢速升温非线性加热区 K 区内的任一时间点所对应的。
上述步骤 c )中测量管道加热器内水的温度可直接用温度传感器测量,也可用实验方法测量管道加热器内发热体的温度与管道加热器出水口的水温度之间的关系,并将管道加热器出水口的水温度近似于管道加热器内水的温度,然后根据测量的管道加热器内发热体温度换算成管道加热器内水的温度。
上述步骤 c )中设定功率最好为管道加热器额定功率的一半,这样保证管道加热器内的水温度接近快速升温段末端对应的温度 。
上述步骤c )中所述减去一定量最好为管道加热器长度与流量之比的一半,以保证管道加热器快速加热后至水流开始流动前管道加热器内水的温度仍在快速升温区内,也可以保证水流流动后水温的平稳上升。
本发明人还发现,由于管道加热器的加热升温曲线是在特定条件下得到的,受多种因素影响,具体分析如下。
一个管道加热器可视为有一个入水端口 GA ,出水端口 GB ,以及电功率 P in 输入端口 GC 的黑盒子,见图6。给定水流量 L 的水从入水端口 GA 沿管道流向出水端口 GB 的过程中,在管道加热器内电加热元件作用下逐步升温,在出水端口 GB 处获得升温热水。
根据能量守恒定律,出水端口 GB 处水温 T c 及入水端口 GA 处水温 T R 有恒等式: C × L×( T c - T R )=η× P in 式中, C 为水的比热容, L为给定水流量, η 为管道加热器在给定电功率 P in 时的电热转换效率。
将输入电功率 P in 离散化,得 P 1 、 P 2 、 P 3 …P n ,升温过程中可以视每个 P i 对应各自的常数值, 由此公式 1 相应变 为: T ic - T R = η i × P i/ (C × L )( i=1 , 2 , 3 , …n ),式中,T ic 是选定功率P i 时管道加热器水的出口温度,η i 是选定功率P i 时管道加热器的电热转换效率。
上式中:比热容 c 只随水质的变化略有变化,升温中可以视比热容 C 是一常数值,水的比热容 C 取 4.18 焦耳; 通过泵的选型使给定水流量 L 得到良好的控制,在整个运行过程中,可以视为常数值; 通过电路控制选定的 P i 值,在整个运行过程中,可以视为常数值。
当上述 C ×L×( T c - T R )=η× P in 恒等式中 T c =T ic , η=η i 时,可得公式 2 :( T ic - T R )/( T jc - T R ) = η iP i jP j i ≠j
但使用环境条件的变化影响着公式 1 中 η i 值的大小。现以厚膜电阻做加热元件的管道加热器为例列举影响 η i 值的原因:
η i 是有效热功率 P il 和输入电功率 P i 之比 , η i = P il/P i
管道加热器输入电功率 P i = P il + P i Σ,其中 P il 是转换为水的热量的有效功率, P i Σ 是总的耗散功率。
P i Σ 是由管道加热器的厚膜电阻电热转换损耗功率 P i Z ,管道加热器的散热面传导-对流及辐射的热功率 P i F 和由管道加热体本体结构决定的热容量损耗功率 P i B 组成的总的损耗功率, 公式 3 P i Σ = P i Z + P i F + P i B , 其中 P i Z 随着厚膜电阻使用时间增加逐步缓慢增加, P i F 热功率随着使用环境温度条件的变化而变化,如管道加热器的散热面附近空气的温度的升高使 P i F 下降,使 η i 上升。
管道加热器本体结构热容量损耗功率 P i B 和加热体的体温度升高值成正比。当加热体的体温度由低到高时 P i B >0 ,使 η i 减少,当加热体的体温度由高到低时, P i B <0 使 η i 增加。
由于 d T ic/dη i > 0 ,在给定功率 P i 时,耗散功率 P i Σ 的增加或减少会造成 η i 值的减少或增加导致出水端口升温值的减少或增加。
当公式 1 写为 T ic - T R = η i × P i/(4.18 × L ) 时,我们发现 η i 的变化能使实验中得到的 P i 加热升温曲线沿 T 纵轴上下移动,同时使 P i-1 和 P i 的间隔变大或变小现象得到解释。这个计算公式对检测得到的每一条 P i 加热升温曲线都适用。
例如:测试条件为测量时的环境温度是 25 ℃ ,供电电压 V o 交流 220V ,电网内阻 R s 取 2 Ω ,管道加热器的厚膜电阻 P l 取 20 Ω ,入水口水温 T R =10℃ , L = L 1 =5.5ml/s 。当 P l = 2200w , P 2 =1925w 时, t 2 时刻的 T c - T R 的对应值为 T 1 = 87 ℃ , T 2 = 81 ℃ ,根据 T 1c - T R = η 1 × P l/( 4.18 × L ) =87℃ , T 2c - T R = η 2 × P 2/( 4.18 × L ) =81℃ ,计算得对应 η i 值为 η 1 =0.91. η 2 =0.96. 当加热运行时间 t > t 1 后,目标水温值 97 ℃ 就落在上述 P 1 , P 2 组成的加热升温功率对曲线非线性 K 区内。
假设当 P i Σ 的变化使 η i 的变化为 3% 时,当 P 1 =2200w 时,根据 T 1c - T R = η 1 × P l/(4.18 × L) ,得到 T 1 =[84.1,89.9] ℃ 。当 P 2 =1925w 时 ,根据 T 2c - T R = η 2 × P 2/(4.18 × L ),得到 T 2 =[78.5,83.5] ℃; 因为入水口水温 T R =10℃ ,所以 T 1c 处于 94.1-99.9℃ 之间, T 2c 处于 88.5-93.5℃ 之间。
在上述例子里如果 P i Σ 增加使 η i 减小 0.03 ,导致出水口最高水温为 T 1c =94.1℃, T 2c =88.5℃ ,出口目标温度 值 97 ℃ 就落在上述 P 1、P 2 组成的加热升温功率对曲线非线性 K 区之外。
当 Δη i =0 时, T 1 =87℃ , T 2 =81℃ ,相关 P 1 和 P 2 间隔 T 1c - T 2c =6℃ 。当 Δη i =-0.03 时, T 1c - T R =84.1< T 1 , T 2c - T R =78.5< T 2 , 相关 P 1 , P 2 组成的加热升温功率对曲线下移。间隔 T 1c - T 2c =5.6℃ ,相关 P 1 和 P 2 间隔变小。当 Δη i = +0.03 时, T 1c - T R =89.9℃ > T 1 , T 2c - T R =83.5℃ >T 2 , 相关 P 1 , P 2 组成的加热升温功率对曲线上移。间隔 T 1c - T 2c =6.4℃ ,相关的 P 1 和 P 2间隔变大。
还有电网内阻 R s 、电网标称电压 V o 及负载电阻 R l 对选定功率 P i 常数值也会发生影响,说明如下。
当管道加热器接入电网使用时, 出于成本的考虑,大多数情况下不能过滤电网环境条件的改变对选定功率 P i 常数值的影响,例如,管道加热器接入电网的电路示意图如图7。 图中 R s 为电力变压器内阻和电力变压器到用户端的等效线路损耗电阻 , R s 随用电量大小变化,典型值为欧姆数量级,如 R s =2 欧姆, R l 为管道加热器的厚膜电阻,阻值可分为两种状态,室温时冷电阻和加电升温后的热电阻。
对于 Hy-1 管道加热器其测试得到室温时冷电阻 R l =20 Ω 或加电升温后的热电阻 R l =21 Ω ( P i =2200W , 15s 后), V o 为地区电网标称电压。
输入管道加热器的电功率 P i =Vi 2/2 R 1) =( V o R 12/(2R 1 (R 1 +R s2)。
上述 V o , R l 及 R s 的变化影响加热功率 P i 值的大小,并且:
由于 d P i/d R s < 0 ,R s 增加导致 P i 的减少, R s 减少导致 P i 的增加。
由于 d P i/d R l > 0 , R l 增加使 P i 增加, R l 减少使 P i 减少。
由于 d P i/dV o > 0 , V o增加使 P i 增加, V o减少使 P i 减少。
显然,公式 1 T ic - T R = η i × P i/(4.18 × L )中 P i 的变化与升温值 T 大小成正比。
现就 V o , R s , R l 变化的原因使 P i 变化为 3%时对 P i 的影响举例说明:
例如:测试条件为测量时的环境温度是 25 ℃ ,供电电压 V o 交流 220V ,电网内阻 R s 取 2 Ω ,管道加热器的厚膜电阻 R l 取 20 Ω , T R =10℃ , L=L 1 =5.5ml/s 。当 P 1 =2200w , P 2 =1925w 时,有 V o , R s , R l 符合测试条件引起的 Δ P i =0 时, 图5 中 t 2 时刻的 T 1c - T R 的出水端口 GB 处升温值 T 1 = 87 ℃ , T 2 = 81 ℃ 为测试温度值,根据 T 1c - T R = η 1 × P l/(4.18 × L )=87 ℃ , T 2c - T R = η 2 × P 2/(4.18 × L) =81℃ 计算得 η 1 =0.9, η 2 = 0.96. 当加热运行时间 t >t 1 后,目标水温值 97 ℃ 就落在上述 P l、 P 2 组成的加热升温功率对曲线非线性 K 区内。
假设 V o 、 R s、R l 改变导致不符合测试条件引起的 Δ P 1 ≤2200×3%=66W 、Δ P 2 ≤1925×3%=57.8W 时 ,根据公式 1 和公式 2 , 当 P 1 =2200w 时, 由T 1c - T R = η 1 × P l/(4.18 × L )得到出水口温度范围T= [84.4,89.6] ℃; 当 P 2 =1925w 时 ,由T 2c - T R = η 2 × P 2/(4.18 × L 0 )得到出水口温度范围 T =[78.6,83.4] ℃。
若入水口水温 T R =10℃ 时, Δ P 1 使出水端口 GB 处最高水温 T 1c 处于 94.4 -99.6 ℃之间; Δ P 2 使出水端口 GB 处最高水温 T 2c处于 88.6 -93.4 ℃之间。
上述例子中当 V o、R s 、R l 的变化使 P i 减少3% ,使 P 1 减少66W 、P 2 减少57.8W ,导致出水端口GB 处对应的最高水温 T 1c =94.39℃ , T 2c =88.6℃ ,目标水温 97 ℃ 就落在上述P 1 , P 2 组成的加热升温功率对曲线非线性 K 区之外。
当 Δ P i =0 时,升温值 T 1 =87℃ , T 2 =81℃ ,相关的P 1 和P 2 间隔 T 1c - T 2C =97-91=6℃ 。
当 Δ P 1 =+66w , Δ P 2 =+57.8w 时, T 1c - T R =89.6℃ > T 1 , T 2c - T R =83.4℃ >T 2 ,相关的 P 1 , P 2 组成的加热升温功率对曲线上移,间隔 T 1c - T 2C =99.6-93.4=6.2℃ ,相关P 1 和P 2 间隔变大。 当 Δ P 1 =-66w , Δ P 2 =-57.8w 时, T 1c - T R =84.4℃ < T 1 , T 2c - T R =78.6℃ < T 2 ,相关P 1 和P 2 组成的加热升温功率对曲线下移,间隔 T 1c - T 2C =94.4-88.6=5.8℃ ,相关P 1 和P 2 的间隔变小。
综上所述,研究发现管道加热器其在特定水流量、选定功率 P i 下测定的加热升温曲线受使用环境条件的影响会发生沿 T轴上下移动及相邻加热功率P i-1 和 P i 间的温度T 间隔变大或变小的现象,所以在一定实验条件下测得的 管道加热器加热升温曲线在使用条件下,其原先实验条件下得到的升温曲线会发生变化,甚至其最高加热温度不能达到目标值,因此对原加热方法需要进行改进。
由此,管道加热器的加热升温曲线增加不同流量下的测定值,改变成如下:分别取管道加热器水流量 L j ( j=0 ,1,2,3,..n ),在 设 定 水流量 L j 时, 测量并绘出管道加热器在不同加热功率 P i 时的时间与温度之间关系的升温曲线,其中纵坐标温度T 为管道加热器出水端口水温 T c 与管道加热器 入水端口 水温 T R 间的升温值,横坐标为加热时间t ,各个不同的 P i 加热功率下升温曲线的快速升温段构成S 区,慢速升温段构成K 区,并且确定管道加热器 最大功率 、 加热时间t 2 、流量L j时的最高 升温值 TH j ,组成不同流量下的系列升温曲线 。
上述最高 升温值 TH j 最大值为96℃ ,以适应所有的使用要求。
我们称通过升温变量 T找到相邻功率对这一过程为捕捉,。由于使用条件的变化,为更准确地找到合适的相邻功率对、更好地控制出水温度,捕捉时采用的 捕捉公式为升温变量 T=T cm - T R + x , 其中,T cm 为出水端口处目标水温,T R 为入水端口处水温,x 是补偿量。
因此,提供一种优质热水的快速制备方法 ,包括如下步骤:
步骤 a )根据 T =T cm - T R + x 公式计算出升温变量 T , T R、x 为一预设常数, 并在所述管道加热器系列升温曲线中寻找满足 T ≤ TH j 的相应流量 L j
步骤 b )以设定流量L j 的水进入管道加热器 , 再由水流量L j 对应的管道加热器的加热升温曲线对捕捉升温变量 T ,找到相应的处于慢速升温非线性加热区 K 区内的任一时间点所对应的管道加热器的相邻加热功率对,并用选定的相邻加热功率对的其中之一的加热功率进行加热;
步骤 c) 测量步骤 b) 中管道加热器出水端口处水温 T c ;当 t ≥ t 1 时,计算出水端口处目标水温 T cm 和出水端口处水温之间的偏差值 y= T cm - T c ,同时将 y 和已设定的目标水温最大允许偏差值 C p 进行比较,当偏差值 |y| > C p 时,将偏差值 y 再加原始补偿值x 得到新的补偿值x, 再进行步骤a )、步骤 b ) ;当偏差值 |y| < C p 时,继续进行步骤 b ) 。
为了使出水端口的出水起始温度接近目标水温,在步骤b) 中增加步骤 d ):先测量管道加热器内水的温度 T sh ,并根据目标水温 T cm 与 T sh 间的差值和管道加热器内水的容积计算在设定加热功率下的加热时间,并按该加热时间减去一定量得到实际加热时间,然后按实际加热时间以设定加热功率对管道加热器内的水进行加热,保证管道加热器内的水温度接近快速升温段末端 t 1对应的温度。
步骤 c)中 补偿量 x 的开始时刻最好为 t 1 = t 1 ( T cm -T sh )/ T cm -T R ) 。
为更好地控制出水温度,增加步骤e): 在步骤 b) 的加热过程中 ,若管道加热器出水端口的水温高于目标水温,则选择步骤b) 中 选定的 相邻加热功率对中较低的加热功率进行加热,若管道加热器出水口的水温低于目标水温,则选择 选定的相邻加热功率对中较高的加热功率进行加热,使管道加热器出水口水温一直在目标水温附近。
为优化捕捉过程的实时性能,增加入水口温度传感器,入水口温度传感器安装在进水器内,上述步骤 b )捕捉公式: T =T cm - T R + x 中入水端口水温 T R 采用入水口温度传感器 实际测量值。
根据上述方法提供了相应的优质热水的快速制备装置,其包括进水器、出水器、控制器、出水温度传感器、管道加热器、计量泵,所述的管道加热器的入水口通过计量泵与进水器连接,管道加热器的出水口与安装有出水温度传感器的出水器连接 ; 控制器的信号输入端与所述的出水温度传感器连接,控制器的电功率输出端分别与所述的计量泵、管道加热器的加热体连接,并根据设定条件控制计量泵的启动和管道加热器的加热,控制器根据上述优质热水的快速制备方法中的步骤进行控制。
上述制备装置中节省了入水口温度传感器的设置成本,降低了装置的故障率。
为更好地控制温度,管道加热器内还增加水的温度传感器 ,温度传感器与控制器的信号输入端相连,控制器根据上述快速制备方法中的步骤进行控制 。
为更好地控制温度, 进水器内增加进水温度传感器,进水温度传感器与控制器的信号输入端相连,控制器根据上述快速制备方法中的步骤进行控制 。
上述进水器可为水管、水箱等。
上述出水器可为水管、水箱等。
上述生产装置最好放置在壳体内,控制器通过壳体表面上的操作按钮面板操作。
上述计量泵最好为电磁泵,便于水流量的控制和精确定量。
有益效果
本发明因管道加热器始终工作在可控制的慢速加热 K 区,从而避免了 现有管道加热器加热水时由于其工作在快速升温段由于温度传感器的滞后性带来的控温不确定性, 使升温快速、方便、可控;同时根据加热过程中水温度的变化通过选择所选定的相邻功率对其中之一的加热功率加热,使水升温平稳,出水水温控制精度很高。 还由于对管道加热器内的水先行加热,再加新水进入管道加热器内加热,因此避免了温度较低的水直接接触已经加热了的较高温度的加热体而产生水和加热体交换表面的温度剧变,选用相邻功率对的控制方法 消除现有管道加热器全功率加热存在的加热体升温过高而把水烧老、将水的水分子团破坏的现象,使原始优质的水的质量不 发生变化,既能品尝到味道好的水又能保证身体健康。
附图说明
图1、本发明实施例 优质热水的快速制备装置的 外形图。
图 2 、本发明实施例 磁化水处理器结构示意图。
图 3 、本发明 实施例 的结构示意图。
图 4 、本发明 实施例 主控板控制电路框图。
图5 、本发明实施例管道加热器在流量L1下不同电功率时的升温曲线。
图6、本发明管道加热器的加热模型图。
图7、本发明管道加热器接入电网时的等效电路图。
图8、本发明实施例管道加热器在流量L1下不同电功率时的升温曲线。
本发明的实施方式
下面结合附图对本发明的实施例作进一步描述。
如图2、5 所示,管道加热器 4 的加热升温曲线测量如下:电磁泵 3 的流量设定值为 L1=5.5ml/ 秒,进水水温 Tj=10 度,纵坐标温度 T 为目标水温 Tm 与进水温度 Tj 间的差值,横坐标为加热时间 t ,绘出在管道加热器 4 不同电功率 P1 、P2 、P3 、P4 …… 时的升温曲线,形成快速升温的线性加热区 S 区和慢速升温的非线性加热区 K 区, K 区一直延伸到加热时间t2,t 2 = 单次出水总量 / 设定流量 L1 。
优质热水快速制备方法的步骤如下:
a )、用进水温度传感器 2 测量进水的水温,再根据设置的目标水温和依据的升温曲线,主控板选择进水流量 L1 和相应的目标水温区域的电功率对给加热作准备;
b )、启动进水前的加热,用管道加热器 4 上的发热体传感器 5 测量管道加热器 4 内发热体的温度,由主控板 12 换算成管道加热器内水的温度并计算与目标水温间的差值,确定设定电功率加热的限时数值,并且按上述数值打开管道加热器 4 限时加热,使管道加热器内的水体温度达到目标水温 Tm 附近区域;
c )、主控板启动电磁泵 3 , L1 流量的水从直饮水箱 1 中流出,并进入管道加热器 4 ,同时主控板用步骤 1 选定的电功率对中的一条升温曲线进行加热,推动管道加热器内水体出出水口,这时 L1 流量的水就在管道加热器的非线性加热 K 区,按照升温曲线进行缓慢升温,从而避开了 S 区的快速升温线性加热区,从出水口就可得到接近目标水温 Tm 的泡茶水;
d )、在加热过程中,发热体传感器 5 根据上述升温曲线提供自动调节电功率的信息,若管道加热器工作在两电功率升温曲线区域 P1 和 P2 之间,管道加热器 4 内的水温高于目标水温 Tm ,主控板使升温曲线自动向电功率对中低的那条升温曲线 P2 的方向切换,若管道加热器 4 内的水温低于目标水温 Tm ,主控板在升温曲线自动向电功率对中高的那条升温曲线 P1 方向切换,使管道加器出水端水温达到目标水温 Tm ;
e )、主控板根据所需出水量计算电磁泵的电驱动脉冲数,在出水时开始计数,到达脉冲数时停止加热,并延时 2 秒后关闭电磁泵,停止出水,或在到达脉冲数前再按动运行键停止加热,并延时 2 秒后关闭电磁泵,提前停止出水;
f)、管道加热器出水经水管流经磁化水处理器的磁场,随后流入水管头,在水管头内腔内和导气管送入的气体混合改善水的鲜活度,出水水温由出水温度传感器测得,并由主控板计算、跟踪、补偿管道加热器长时间加热工作特性飘移和新鲜空气注入造成水温下降。
上述步骤 b )确定在管道加热器 4 额定功率的一半电功率下加热的时间,并且按该数值减少 2 秒确定实际加热时间,主控板打开管道加热器 4 按该实际加热时间加热,使管道加热器内的水温度接近目标水温 Tg 。
上述步骤 d )中,更好地用出水温度传感器 2 随时检测管道加热器 4 出水口的水温度,若水温高于目标水温 Tg ,主控板自动选择加热功率低的 P2 进行加热,若管道加 热器 4出水口的水温低于目标水温 Tg ,主控板自动选择加热功率高的 P1 进行加热,使管道加器出水口水温达到目标水温 Tg 。
上述步骤f )是为更好地提高热水的质量 ,也可省略。
用上述方法生产泡茶水所用装置见图 1 、图 3 ,其包括连接操作按钮面板 1 的主控板 12 、电源 16 、管道加热器 4 、电磁泵 3 、直饮水箱 11 组成,管道加热器 4 的入水口通过电磁泵 3 与安装有进水温度传感器 2 的水管 14 连接,水管与直饮水箱 11 连接,管道加热器 4 的出水口与固定有出水温度传感器 8 的水管头 7 连接;主控板 12 的信号输入端分别与进、出水温度传感器 2 、 8 、管道加热器上的发热体温度传感器 5 连接,主控板 12 的电功率输出端分别与电磁泵 3 、管道加热器 4 连接。
管道加热器 4 为市售的管道极速加热器,型号为 HY-1, 功率 2200W ,实测具有图 5 所示的不同电功率下的升温曲线,发热体温度传感器 5 为 NTC 电阻传感器,热响应速度 1 ~ 3 秒紧贴管道加热器加热体安装,管道加热器的安装保证进水口在出水口的下方,进水温度传感器 2 安装在管接头 14-1 腔内,管接头 14-1 用螺钉固定在直饮水箱的侧壁上,主控板 12 采用的 CPU 为 STC12C5A32S2 ,上面还连接有射频卡读写模块 13 ,直饮水箱 11 内安装有液位开关、防干烧等安全保护 11-1 ,水管 14 为食用级硅胶管。
为改善水质,在管道加热器的出水口连接磁化水处理器 6 ,以及在磁化水处理器的出口端与导气管 9 垂直安装。
增装磁化水处理器和带微气泵的导气管,能进一步改善热水的鲜活度和含氧量,使其与优质茶、咖啡等配用,保证和提高了茶叶、咖啡的冲泡质量,在紧张工作后放松享受生活的乐趣。
水管 14 由管接头 14-1 及水管 14-2 、 14-3 、 14-4 三段组成,电磁泵、管道加热器的两端都有和水管 14 相接的接头 18 。
磁化水处理器 6 由中间有通孔、 H 形骨架 6-1 的上、下两凹槽内,嵌放 N 、 S 两钕铁硼磁块 6-2 构成,如图 2 所示。
水管头 7 的上端进气接口 7-1 连接导气管 9 ,导气管 9 与微气泵 10 出口连接,微气泵 10 与主控板 12 的电功率输出端连接。水管头 7 一侧壁感应口 7-4 处固定出水温度传感器 8 ,下端为出水口 7-2 ,水管头 7 另一侧壁上有进水接口 7-3 与磁化水处理器 6 出口端的水管 14-4 连接,由导气管进入水管头的空气和磁化水处理器进入的磁化水在水管头中混合,从下端出水口 7-2 流出供使用。
水管 14-2 的一端直接和管接头 14-1 弹性连接,另一端与电磁泵 3 的入水口接头 18 相连,电磁泵 3 的出水口接头 18 和管道加热器入水口接头 18 用水管 14-3 弹性连接,管道加热器出水口接头 18 与水管 14-4 的一端弹性连接,水管 14-4 另一端从骨架 6-1 中间通孔穿出与安装有出水温度传感器 8 的水管头 7 连接;主控板 12 的信号输入端分别与进、出水温度传感器 2 、 8 ,管道加热器上的发热体温度传感器 5 连接,主控板 12 的电功率输出端分别与所述的电磁泵 3 、管道加热器 4 连接。
将装有茶叶的水杯放置在此装置水管头7下端出水口7-2下方,电源16接通后,操作按钮面板1上的显示屏1-1显示所设置的水温和水量,若显示屏显示水温为80度、水量为100ml不是所需的,这时可按动温度键1-6直接改变设置水温,按动模式键1-2改变水量,设变成水温95度和水量150ml,若需要96度或94度的水温,这时还可按动增加键1-3或减少键1-4,将水温向大或小的方向作小范围调节,再按动运行键1-5,这时主控板根据a)、b)、c)、d)、e)步骤工作,从出水口7-2就流出水温96度或94度、水量为150ml的水供泡茶用。
或使用者将带有水温、水量等辅助数据的个人射频卡(图未画),放在射频卡读写模块13的射频感应区,按动运行键1-5,这时主控板根据a)、b)、c)、d)、e)步骤工作,从出水口7-2就流出射频卡所提供的水温、水量的水供泡茶用,同时操作按钮面板显示屏1-1上还有温度、水量数字显示。
本装置的极速出水温度在室温和98度之间,经加热制作出的水,可用95度的水泡咖啡,65度的水冲奶粉或不加热直接作饮用水使用,但所述直饮水箱11的水应是高质量附合国家标准的直饮水源或桶装水17。
根据本发明,可以得到茶艺要求的 冲泡绿茶、龙井茶 的 70 ~85度水,冲泡红茶和大红炮的90~98度水。
现仅以 η i 变化对 新制备方法中采用捕捉公式 T =T cm - T R + x 的效果进行说明。
用 Hy-1 管道加热器实验升温曲线见图8,测量时的环境温度是 25 ℃ ,供电电压 V o 交流 220V ,电网内阻 R s 取 2 Ω ,管道加热器的厚膜电阻 P l 取 20 Ω 。流量 L =L 0 =6.88ml/s ,比热容 C=4.18 焦耳,测量的基础水温为 15 ℃ ,分别输入给定功率 P 6 =1512.5w , P 5 =1650 w , P 4 =1787.5w ,在 t 2 时刻的升温值为 T 6 = 45 ℃ , T 5 = 48 ℃ , T 4 = 55 ℃ 。
根据 T ic -T R = η i × P i/(4.18 × L) 及上述的 P 6 , P 5 ,P 4 的值经计算得到实验条件下对应的 η 6 =0.856 , η 5 =0.837 , η 4 =0.885 。
当实际工作环境和实验条件不符时(如环境温度不是 25 ℃ ),实验条件下的 P i Σ 产生变化,引起实验条件下得到的 η i 偏离。设偏离值达到一定值时,例如 Δη i =0.03, 那么由 η i = η i - Δη i ,得到 η 6 =0.826 , η 5 =0.807 , η 4 =0.855 。根据公式 2 得到,因η i 变化而使相应功率P i 下t 2 时刻的升温值 为T i =T i • η i i ; 计算得到: T 6 =43.5℃ , T 5 =46.3℃ , T 4 =53.1℃。
同理,由 η i ′′ = η i + Δη i 计算得到 η 6 ′′ =0.886 , η 5 ′′ =0.867 , η 4 ′′ =0.915 ,偏离方向为 η i 值增加。根据公式 2 得到 , 因η i 变化而使相应功率P i 下t 2 时刻的升温值 为 T i ′′ =Ti • η i ′′ i ; 计算得到 T 6 ′′ =46.6℃ , T 5 ′′ =49.7℃ , T 4 ′′ =56.9℃ 。
不考虑 η i 变化时,目标水温 T cm =62.5℃ ,入水口水温 T R =15℃ 时,升温值 T =T cm -T R =47.5 ℃ ,根据 t 2 时刻测量数值 T 6 =45℃ , T 5 =48℃ ,T 4 =55℃进行 捕捉 。捕捉后T 6 =45℃<T =47.5 ℃<T 5 =48℃ , 对应选取的相邻功率对为 P 6 和 P 5 ,并通过 P 6 和 P 5 的切换,控制 T c 到达目标水温 T cm =62.5℃。
考虑到实际转换效率 与依据所示实验计算所得的 η i 有偏离时,用来捕捉的升温值 T i 数值就要补偿,以 η i 和 η i ′′ 为例:
当 η i = η i ′′ 时 , T 6 ′′ =46.6℃<T =47.5℃<T 5 ′′ =49.7℃ 。
当 η i = η i 时 , T 6 =43.5℃< T 5 =46.3℃<T =47.5℃ 。
所以当出现 η i 变成 η i 时,用上述 P 6 和 P 5 功率对加热控制 T cm =62.5℃ ,管道加热器在整个加热过程目标升温值和出水口升温值有一个无法消除的控制温差: y=T cm - T 5 -T R =62.5-46.3-15 =1.2℃ ,出水口升温值低于出水口目标升温值,无法用P 6 和 P 5 进行控制。
为此,在 t 1 时刻后对 T 进行新的捕捉,计算得到新的升温值T + y =47.5+1.2=48.7℃ ,再用 T 6 , T 5 , T 4 捕捉 T =48.7℃ 。捕捉后 T 5 =48℃< T =48.7℃<T4 =55℃ ,新捕捉到对应相邻加热功率对为 P 5 和 P 4 ,对应 η i = η i 的情况下 T 5 =46.3℃<T=47.5℃<T 4 =53℃ 。
所以在 T cm =62.5℃ , T R =15℃ ,在 η i = η i 的条件下,考虑修正值 y因素后,管道加热器用 T =48.7℃ 值在 P 6 , P 5 , P 4 中捕捉到 P 5 , P 4 功率对,用 P 5 , P 4 相邻功率对之间切换工作使 T cm =62.5℃ 在 η i = η i 的条件下控温变精准。
测量 Hy-1 管道加热器的升温特性见图5 ,TH 1 =87℃ , 测量时环境温度是 25 ℃ ,供电电压 V o 交流 220V ,电网内阻 R s 取 2 Ω ,管道加热器的厚膜电阻 R l 为 20 Ω ,流量 L 1 =5.5ml/s ,比热容 C=4.18 焦耳,基础水温为 10 ℃ 。
实际使用时设: T R =25℃ ,T cm =85℃ ,x=0,管道加热器的控温精度C p 为2℃ ,实际入水口水温为10℃ 。
执行步骤 a ),升温值 T =T cm - T R +x =60℃ < TH 1 ,确定 L 1 =5.5ml/s ,可使用一张 管道加热器的 升温曲线。
步骤b) 用图5T 轴上的 T i 数值捕捉升温值 T = 60 ℃ ,捕捉后,同时进行步骤e),经过 t 1 后,出水端口水温为 T c =T+T R =70℃ ,随后进行步骤 c ) t 1 时刻后: y=T cm - T c =15℃>C p , 同时 x由 x+y=15 替代,在步骤a)中得到捕捉公式升温值 T = T cm - T R + x =75℃<TH 1 ,确定流量 L = L 1 =5.5ml/s , 步骤b) 用 图5T 轴上的 T i 数值捕捉升温值 T =75℃ ,捕捉后,同时e),这时出水端口水温快速到达 T c =T+T R =85℃ ,达到出水端口目标水温控温 T cm =85℃ 控温要求。
由于 P i 有最大功率 的限制,给定流量 L j ( j=0 , 1,2,3 , …n )决定了管道加热器的最高升温 TH j 。 由此,管道加热器的升温曲线增加不同流量下的测定值,分别取管道加热器水流量 L j ( j=0 ,1,2,3,..n ),在 设 定 水流量 L j 时, 测量并绘出管道加热器在不同加热功率 P i 时的时间与温度之间关系的升温曲线,其中纵坐标温度T 为管道加热器出水端口水温 T c 与管道加热器 入水端口 水温 T R 间的升温值,横坐标为加热时间t ,各个不同的 P i 加热功率下升温曲线的快速升温段构成S 区,慢速升温段构成K 区,并且确定管道加热器 最大功率 、 加热时间t 2 、流量L j时的最高 升温值 TH j ,组成不同流量下的系列升温曲线 。
例如:再增加一张管道加热器的升温曲线图: L 0 =6.88ml/s , P 0 =2200w ,入水口水温 T R =15℃ ,测得 Hy-1 管道加热器 在不同的 P i 加热功率时的时间与温度之间关系的 升温曲线图8 ,最高出水口升温 TH 0 =68℃ 。
当使用环境改变,最高升温温度变为68度以下时,既可如前述的图5进行控制,也可用图8按上述方法进行控制,因此可以用2个不同流量下的管道加热器升温曲线选择其中之一进行控制。
用 1 张以上管道加热器加热升温曲线进行控制,扩大了出水温度和出水流量之间的选择范围,使装置能尽可能适应使用者的需要,如高温小流量、低温高流量的供水。

Claims (19)

  1. 优质热水的快速制备方法 ,其特征在于:依据的升温曲线是所用管道加热器的加热升温曲线,电磁泵的流量设定值 L1 ,纵坐标温度 T 为目标水温 Tm 与进水温度 TJ 间的差值,横坐标为加热时间 t ,绘出在不同电功率 P1 、 P2 、 P3 、 P4 …… 时的升温曲线,形成快速升温线性加热区 S 区和慢速升温非线性加热区 K 区; K 区一直延伸到 t2 , t2=单次出水总量 / 电磁泵设定流量 L1 ,上下两条相邻升温曲线也称电功率对在 K 区所围区域为目标水温的加热区域;
    优质热水的快速制备方法的步骤:
    a )、用进水温度传感器测量电磁泵进水的水温,再根据设置目标水温和依据的升温曲线,主控板选择相应和目标水温区域的电功率对给加热作准备;
    b )、启动进水前的加热,用管道加热器上的发热体传感器测量管道加热器内发热体的温度,由主控板换算成管道加热器内水的温度并计算与目标水温间的差值,或通过温度传感器测量管道加热器内水的温度并计算与目标水温间的差值,确定设定电功率加热的限时数值,并且按上述数值打开管道加热器限时加热,使管道加热器内的水体温度达到目标水温 Tm 附近区域;
    c )、主控板启动电磁泵, L1 流量的水从直饮水箱中流出,并进入管道加热器,同时主控板用步骤 1 选定的电功率对中的一条升温曲线进行加热,这时 L1 流量的水就在管道加热器的非线性加热 K 区按照升温曲线进行缓慢升温,从而避开了 S 区的快速升温线性加热区,从出水口就可得到接近目标水温的泡茶水;
    d )、在加热过程中,发热体传感器根据上述升温曲线提供自动调节电功率的信息,若管道加热器工作在步骤 1 选定的电功率对升温曲线间的目标水温,管道加热器内的水温高于目标水温,主控板使升温曲线自动向电功率对中低的那条升温曲线方向切换,若管道加热器内的水温低于目标水温,主控板使升温曲线自动向电功率对中高的那条升温曲线方向切换,使管道加热器出水口水温达到目标水 温 Tm ;
    e )、主控板根据所需出水量计算电磁泵的电驱动脉冲数,在出水时开始计数,到达脉冲数时停止加热,并延时 2 秒后关闭电磁泵,停止出水,或在到达脉冲数前再按动运行键停止加热,并延时 2 秒后关闭电磁泵,提前停止出水。
  2. 生产优质热水的所用装置,其特征在于: 包括安装在壳体表面上的操作按钮面板,安装在壳体内的主控板、固定有发热体温度传感器的管道加热器、水管、电源、电磁泵、带有安全保护的直饮水箱组成,所述的管道加热器的入水口通过电磁泵与安装有进水温度传感器的水管连接,水管与直饮水箱连接,管道加热器的出水口与安装有出水温度传感器的水管头连接,主控板的信号输入端分别与所述的进、出水温度传感器、发热体温度传感器连接,主控板的电功率输出端分别与所述的电磁泵、管道加热器连接。
  3. 优质热水的快速制备方法 ,其特征在于:包括以下步骤:
    a )、根据进水水温和设定的出水目标水温计算出温差,再由温差、设定的流量从管道加热器的升温曲线中找到相应的处于慢速升温非线性加热区 K 区内的任一时间点所对应的管道加热器的相邻加热功率对,并选择该相邻加热功率对预备对管道加热器内的水进行加热;
    b )、再以设定流量的水进入管道加热器,同时用步骤 a 选定的相邻加热功率对的其中之一的加热功率进行加热,进入管道加热器内的水就会在管道加热器的非线性 K 区内缓慢升温,从出水口得到目标水温的水;
    其中管道加热器的恒定流量时加热升温曲线确定方法如下:在设定的管道加热器流量 L1 下,测量并绘出在管道加热器不同加热功率时的时间与温度之间关系的升温曲线,其中纵坐标温度 T 为管道加热器出水口水温 Tm 与管道加热器进水温度 TJ 间的差值,横坐标为加热时间 t ,各个不同加热功率下升温曲线的快速升温段构成 S 区,慢速升温段构成 K 区。
  4. 如权利要求3所述的优质热水的快速制备方法 ,其特征在于: 还包括步骤 c )、先 测量管道加热器内水的温度,根据该温度与目标水温间的差值和管道加热器内水的容积计算在设定加热功率下的加热时间,并按该加热时间减去一定量得到实际加热时间,然后按实际加热时间以设定加热功率对管道加热器内的水进行加热,再按步骤b )加热。
  5. 如权利要求3所述的优质热水的快速制备方法 ,其特征在于: d ):加热过程中,若管道加热器出水口的水温高于目标水温,则选择步骤 a 中相邻加热功率对中较低的加热功率进行加热,若管道加热器出水口的水温低于目标水温,则选择相邻加热功率对中较高的加热功率进行加热,使管道加热器出水口水温一直在目标水温附近。
  6. 如权利要求3所述的优质热水的快速制备方法 ,其特征在于:K 区测量的加热时间为 t2 ,t2= 单次出水总量 / 设定流量 L1。
  7. 如权利要求3所述的优质热水的快速制备方法 ,其特征在于: K 区内的二条相邻升温曲线之间的温差变化范围在 3 ~ 7 ° 。
  8. 优质热水的快速制备装置,其特征在于:包括进水器、出水器、控制器、进水温度传感器、出水温度传感器、管道加热器、计量泵,所述的管道加热器的入水口通过计量泵与安装有进水温度传感器的进水器连接,管道加热器的出水口与安装有出水温度传感器的出水器连接,控制器的信号输入端分别与所述的进水温度传感器、出水温度传感器连接,控制器的电功率输出端分别与所述的计量泵、管道加热器的加热体连接,并根据设定条件控制计量泵的启动和管道加热器的加热,控制器根据上述优质热水的快速制备方法中的步骤进行控制。
  9. 根据权利要求8所述的优质热水的快速制备装置,其特征在于:还设置通气装置,通气装置由控制器控制通断,所述通气装置的气体进入出水器中。
  10. 根据权利要求8所述的优质热水的快速制备装置,其特征在于:所述管道加热器的出水经磁化水处理器处理后进入出水器。
  11. 根据权利要求8所述的优质热水的快速制备装置,其特征在于:所述控制器上的数据通过显示屏显示,操作参数通过各种操作键进行操作。
  12. 据权利要求8 所述的优质热水的快速制备装置,其特征在于:所述控制器上连接有射频卡读写模块与射频卡配合使用。
  13. 优质热水的快速制备方法 ,其特征在于: 包括如下步骤:
    步骤 a )根据 T =T cm - T R + x 公式计算出升温变量 T , T R、x 为一预设常数, 并在所述管道加热器系列升温曲线中寻找满足 T ≤ TH j 的相应流量 L j
    步骤 b )以设定流量L j 的水进入管道加热器 , 再由水流量L j 对应的管道加热器的加热升温曲线对捕捉升温变量 T ,找到相应的处于慢速升温非线性加热区 K 区内的任一时间点所对应的管道加热器的相邻加热功率对,并用选定的相邻加热功率对的其中之一的加热功率进行加热;
    步骤 c) 测量步骤 b) 中管道加热器出水端口处水温 T c ;当 t ≥ t 1 时,计算出水端口处目标水温 T cm 和出水端口处水温之间的偏差值 y= T cm - T c ,同时将 y 和已设定的目标水温最大允许偏差值 C p 进行比较,当偏差值 |y| > C p 时,将偏差值 y 再加原始补偿值x 得到新的补偿值x, 再进行步骤a )、步骤 b ) ;当偏差值 |y| < C p 时,继续进行步骤 b )
    其中管道加热器的加热升温曲线:分别取管道加热器水流量 L j ( j=0 ,1,2,3,..n ),在 设 定 水流量 L j 时, 测量并绘出管道加热器在不同加热功率 P i 时的时间与温度之间关系的升温曲线,其中纵坐标温度T 为管道加热器出水端口水温 T c 与管道加热器 入水端口 水温 T R 间的升温值,横坐标为加热时间t ,各个不同的 P i 加热功率下升温曲线的快速升温段构成S 区,慢速升温段构成K 区,并且确定管道加热器 最大功率 、 加热时间t 2 、流量L j时的最高 升温值 TH j ,组成不同流量下的系列升温曲线 。
  14. 根据权利要求 13所述的优质热水的快速制备方法 ,其特征在于: 在步骤b) 中增加步骤 d ):先测量管道加热器内水的温度 T sh ,并根据目标水温 T cm 与 T sh 间的差值和管道加热器内水的容积计算在设定加热功率下的加热时间,并按该加热时间减去一定量得到实际加热时间,然后按实际加热时间以设定加热功率对管道加热器内的水进行加热,这样保证管道加热器内的水温度接近快速升温段末端 t 1 时刻对应的温度 。
  15. 根据权利要求 13所述的优质热水的快速制备访求 ,其特征在于:步骤 c)中补偿量 x 的开始时刻 t 1 = t 1 ( T cm -T sh )/( T cm -T R ) 。
  16. 根据权利要求 13所述的优质热水的快速制备方法 ,其特征在于: 增加步骤e)、 在步骤 b) 的加热过程中 ,若管道加热器出水端口的水温高于目标水温,则选择步骤b) 中 选定的 相邻加热功率对中较低的加热功率进行加热,若管道加热器出水口的水温低于目标水温,则选择 选定的 相邻加热功率对中较高的加热功率进行加热,使管道加热器出水口水温一直在目标水温附近 。
  17. 优质热水的快速制备装置,其特征在于:其包括进水器、出水器、控制器、出水温度传感器、管道加热器、计量泵,所述的管道加热器的入水口通过计量泵与进水器连接,管道加热器的出水口与安装有出水温度传感器的出水器连接 ; 控制器的信号输入端与所述的出水温度传感器连接,控制器的电功率输出端分别与所述的计量泵、管道加热器的加热体连接,并根据设定条件控制计量泵的启动和管道加热器的加热,控制器根据上述优质热水的快速制备方法中的步骤进行控制。
  18. 根据权利要求 17所述的优质热水的快速制备装置,其特征在于: 管道加热器内还增加水的温度传感器 ,温度传感器与控制器的信号输入端相连,控制器根据上述优质热水的快速制备方法中的步骤进行控制 。
  19. 根据权利要求 17或18所述的优质热水的快速制备装置,其特征在于: 进水器内增加进水温度传感器,进水温度传感器与控制器的信号输入端相连,控制器根据上述优质热水的快速制备方法中的步骤进行控制 。
PCT/CN2012/078667 2011-08-26 2012-07-15 优质热水的快速制备方法及装置 WO2013029435A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280023660.0A CN103547195B (zh) 2011-08-26 2012-07-15 优质热水的快速制备方法及装置
US14/241,438 US9572454B2 (en) 2011-08-26 2012-07-15 Rapid preparation method of high-quality hot water

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN 201110255464 CN102357003B (zh) 2011-08-26 2011-08-26 泡茶水极速制备方法
CN201110255464.3 2011-08-26
CNPCT/CN2012/072140 2012-03-09
PCT/CN2012/072140 WO2013029364A1 (zh) 2011-08-26 2012-03-09 优质热水的快速制备方法及装置

Publications (1)

Publication Number Publication Date
WO2013029435A1 true WO2013029435A1 (zh) 2013-03-07

Family

ID=45582426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078667 WO2013029435A1 (zh) 2011-08-26 2012-07-15 优质热水的快速制备方法及装置

Country Status (3)

Country Link
US (1) US9572454B2 (zh)
CN (2) CN102357003B (zh)
WO (1) WO2013029435A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112336200A (zh) * 2020-10-23 2021-02-09 佛山市顺德区美的饮水机制造有限公司 用于饮水设备的方法、处理器、装置及存储介质

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029364A1 (zh) * 2011-08-26 2013-03-07 Chen Xiaoming 优质热水的快速制备方法及装置
CN102357003B (zh) * 2011-08-26 2013-07-10 陈晓明 泡茶水极速制备方法
CN102670072A (zh) * 2012-05-09 2012-09-19 罗岳均 极速开水机
CN105787249A (zh) * 2014-12-26 2016-07-20 联想(北京)有限公司 一种控制方法及电子设备
WO2016141562A1 (en) * 2015-03-11 2016-09-15 Nestec S.A. Heating module for beverage preparation device
CN105342861A (zh) * 2015-11-26 2016-02-24 深圳市智汇十方科技有限公司 一种智能奶瓶
CN105266594A (zh) * 2015-11-26 2016-01-27 边江 智能泡茶机
CN106369835A (zh) * 2016-09-22 2017-02-01 中山市爱马仕洁具有限公司 一种速热式恒温出水装置及其控制方法和控制系统
CN106667271A (zh) * 2017-03-01 2017-05-17 深圳鼎加弘思饮品科技有限公司 饮品机的温度补偿装置及其控制方法和饮品机
CN108742123B (zh) * 2018-05-25 2020-11-24 广东美的厨房电器制造有限公司 快速蒸汽实现方法、蒸汽烹饪装置及其方法、存储介质
CN109288399A (zh) * 2018-08-27 2019-02-01 珠海格力电器股份有限公司 泡茶设备控制方法、装置、泡茶设备及可读存储介质
CN110881853B (zh) * 2018-09-11 2021-07-23 宁波方太厨具有限公司 一种蒸箱的控制方法
CN109480620A (zh) * 2018-10-29 2019-03-19 九阳股份有限公司 一种电开水瓶的控制方法
CN111166155B (zh) * 2018-11-12 2022-03-15 九阳股份有限公司 蒸汽加热式烹饪器具的烹饪控制方法
CN111214145A (zh) * 2018-12-29 2020-06-02 九阳股份有限公司 一种食品加工机的控制方法
CN109683533B (zh) * 2019-01-15 2022-06-14 佛山市顺德区美的饮水机制造有限公司 基于物联网的智能冲泡机的冲泡方法及冲泡装置
CN109730537B (zh) * 2019-03-27 2020-06-23 江南大学 一种可调参数胶囊咖啡调味系统及方法
CN110051207A (zh) * 2019-05-21 2019-07-26 珠海格力电器股份有限公司 加热控制方法、装置、食品加工设备及存储介质
CN111984038B (zh) * 2019-05-23 2023-12-19 佛山市顺德区美的电热电器制造有限公司 热水处理装置及其出水量控制方法与装置
CN113208437A (zh) * 2020-01-21 2021-08-06 上海朴道水汇净水设备有限公司 饮水机热胆水温检测方法及系统、存储介质及终端
CN113142968B (zh) * 2020-01-22 2022-05-31 佛山市顺德区美的电热电器制造有限公司 烹饪器具、烹饪器具的控制方法和计算机可读存储介质
CN113142986B (zh) * 2020-01-22 2022-02-25 佛山市顺德区美的电热电器制造有限公司 烹饪器具、烹饪器具的控制方法和计算机可读存储介质
CN111694385B (zh) * 2020-05-09 2021-09-28 深圳安吉尔饮水产业集团有限公司 加热控制方法、加热装置及计算机存储介质
CN111713978A (zh) * 2020-05-21 2020-09-29 浙江沁园水处理科技有限公司 一种调温饮水机及其定量取水方法
CN112190130B (zh) * 2020-10-09 2022-06-14 安徽元通水处理设备有限公司 一种商用纯水机组节水节能系统及其装置
CN112263143B (zh) * 2020-10-23 2022-06-14 佛山市顺德区美的饮水机制造有限公司 用于即热式饮水设备的方法、装置、存储介质及处理器
CN112361606A (zh) * 2020-10-23 2021-02-12 上海纯米电子科技有限公司 水温控制方法及装置及净饮机
CN112369920B (zh) * 2020-10-23 2022-07-01 佛山市顺德区美的饮水机制造有限公司 用于即热式饮水设备的方法、处理器、装置及存储介质
CN115245278A (zh) * 2021-04-28 2022-10-28 九阳股份有限公司 即饮机控制方法和即饮机
CN113598604B (zh) * 2021-08-06 2022-11-08 安徽麦克传感科技有限公司 一种温度和压力一体化检测装置
CN114251833B (zh) * 2021-08-24 2023-03-31 佛山市顺德区美的饮水机制造有限公司 即热装置及其调控方法和调控装置、水处理装置和介质
CN114459144A (zh) * 2022-02-15 2022-05-10 佛山市顺德区美的饮水机制造有限公司 即热装置及其控制方法和装置、水处理装置、存储介质
CN114747943B (zh) * 2022-04-29 2024-03-15 佛山市顺德区美的饮水机制造有限公司 即热饮水机及其预热控制方法与装置、存储介质
CN115562391B (zh) * 2022-10-11 2023-10-31 珠海格力电器股份有限公司 饮水设备控制方法、装置、计算机设备和存储介质
CN115597238B (zh) * 2022-10-19 2024-05-10 珠海格力电器股份有限公司 一种用水设备的水温控制方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2269466A (en) * 1992-08-08 1994-02-09 Caradon Mira Ltd Improvements in or relating to instantaneous water heaters
WO1998027854A1 (en) * 1996-12-23 1998-07-02 Koninklijke Philips Electronics N.V. Coffee maker
CN201067337Y (zh) * 2007-07-18 2008-06-04 邬志坚 一种自控无热胆智能饮水机
EP2070458A1 (de) * 2007-12-12 2009-06-17 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Ermittlung eines Durchflusses in einer Kaffeemaschine und Kaffeemaschine zur Durchführung des Verfahrens
CN201481092U (zh) * 2009-04-18 2010-05-26 陆建钢 快速电加热饮水机
CN101832632A (zh) * 2010-06-23 2010-09-15 宁波圣莱达电器股份有限公司 管道电热极速开水机
CN201607003U (zh) * 2009-12-21 2010-10-13 汕头经济特区和通电讯有限公司 加热装置
CN201879495U (zh) * 2010-12-13 2011-06-29 舒定涛 快沸稳流水汽自动分离健康安全的节能型快沸式饮水机
CN102357003A (zh) * 2011-08-26 2012-02-22 陈晓明 泡茶水极速制备方法及装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669221A (en) * 1996-04-08 1997-09-23 Worldwide Water, Inc. Portable, potable water recovery and dispensing apparatus
CA2246816C (en) * 1998-09-04 2006-08-29 Bloomfield Industries Canada Limited Beverage brewing apparatus
US6460735B1 (en) * 2001-01-24 2002-10-08 Shlomo Greenwald Beverage dispenser having selectable temperature
US8366920B2 (en) * 2002-06-17 2013-02-05 S.I.P. Technologies L.L.C. Method and apparatus for programably treating water in a water cooler
JP4012006B2 (ja) * 2002-08-09 2007-11-21 ホシザキ電機株式会社 湯供給装置
US20040069768A1 (en) * 2002-10-11 2004-04-15 Patterson Wade C. System and method for controlling temperature control elements that are used to alter liquid temperature
US8511105B2 (en) * 2002-11-13 2013-08-20 Deka Products Limited Partnership Water vending apparatus
CN1250144C (zh) * 2004-12-07 2006-04-12 浙江沁园饮水科技有限公司 快速电加热饮水机
DE102005017617A1 (de) * 2005-04-15 2006-10-26 Electrolux Home Products Corporation N.V. Verfahren zur Temperatursteuerung und Temperatursteuereinheit eines Ofens
CN201308399Y (zh) * 2008-07-11 2009-09-16 于乔治 外置臭氧杀菌装置的桶装饮水机
FR2938249B1 (fr) * 2008-11-07 2013-07-05 Robert Liccioni Piece de distribution pour fontaine de distribution d'eau et fontaine comportant une telle piece
AU2010206490A1 (en) * 2009-01-20 2011-09-01 Filterezi Pty Ltd Water dispenser
CN201375420Y (zh) * 2009-04-02 2010-01-06 上海天泰茶业科技有限公司 多功能自动泡茶机器
ES2368643B1 (es) * 2009-06-01 2012-10-10 Bsh Electrodomésticos España, S.A. Campo de cocción con un sensor de temperatura.
CN101869434B (zh) * 2010-06-11 2012-02-15 陈晓明 泡茶机
US8997511B2 (en) * 2010-09-21 2015-04-07 Denering Berrio Heating or cooling system featuring a split buffer tank
CN102068206A (zh) 2011-01-11 2011-05-25 汕头经济特区和通电讯有限公司 一种利用加热管道加热水的方法及使用该方法的泡茶机
CN202567797U (zh) * 2011-08-26 2012-12-05 陈晓明 极速制备泡茶水的装置
EP2782485B1 (en) * 2011-09-09 2018-10-24 Fountain Master, LLC Beverage maker
GB2504947B (en) * 2012-08-13 2015-01-14 Kraft Foods R & D Inc Beverage preparation machines
US9738506B2 (en) * 2013-03-16 2017-08-22 Robert Clay Groesbeck Bag-in-box adapter for water dispenser
US9790079B2 (en) * 2014-09-19 2017-10-17 Robert Clay Groesbeck Bag-in-box adapter for water dispenser

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2269466A (en) * 1992-08-08 1994-02-09 Caradon Mira Ltd Improvements in or relating to instantaneous water heaters
WO1998027854A1 (en) * 1996-12-23 1998-07-02 Koninklijke Philips Electronics N.V. Coffee maker
CN201067337Y (zh) * 2007-07-18 2008-06-04 邬志坚 一种自控无热胆智能饮水机
EP2070458A1 (de) * 2007-12-12 2009-06-17 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Ermittlung eines Durchflusses in einer Kaffeemaschine und Kaffeemaschine zur Durchführung des Verfahrens
CN201481092U (zh) * 2009-04-18 2010-05-26 陆建钢 快速电加热饮水机
CN201607003U (zh) * 2009-12-21 2010-10-13 汕头经济特区和通电讯有限公司 加热装置
CN101832632A (zh) * 2010-06-23 2010-09-15 宁波圣莱达电器股份有限公司 管道电热极速开水机
CN201879495U (zh) * 2010-12-13 2011-06-29 舒定涛 快沸稳流水汽自动分离健康安全的节能型快沸式饮水机
CN102357003A (zh) * 2011-08-26 2012-02-22 陈晓明 泡茶水极速制备方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112336200A (zh) * 2020-10-23 2021-02-09 佛山市顺德区美的饮水机制造有限公司 用于饮水设备的方法、处理器、装置及存储介质
CN112336200B (zh) * 2020-10-23 2022-08-05 佛山市顺德区美的饮水机制造有限公司 用于饮水设备的方法、处理器、装置及存储介质

Also Published As

Publication number Publication date
CN103547195B (zh) 2018-10-26
US20140226960A1 (en) 2014-08-14
CN102357003B (zh) 2013-07-10
CN103547195A (zh) 2014-01-29
CN102357003A (zh) 2012-02-22
US9572454B2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
WO2013029435A1 (zh) 优质热水的快速制备方法及装置
WO2013029364A1 (zh) 优质热水的快速制备方法及装置
CN106369835A (zh) 一种速热式恒温出水装置及其控制方法和控制系统
WO2018018834A1 (zh) 电动汽车及用于电动汽车的ptc电加热器的控制方法、系统
WO2017128900A1 (zh) 智能型即热式饮用水加热装置
CN101502167A (zh) 使用ptc塑料导电电极的即时热水器
WO2019151624A1 (en) Water dispensing device
KR101498943B1 (ko) 순간 온수 공급 장치
SE8704816L (sv) Anordning for att paverka tillagnings- eller koktiden vid ett kokkerl
KR20150008018A (ko) 순간 온수 공급 방법
CN104746323A (zh) 一种温控方式改良的电熨斗及该电熨斗的温控方法
CN201028786Y (zh) 热泵热水器的恒温控制器
CN206176750U (zh) 一种速热式恒温出水装置及其控制系统
IES20160084A2 (en) Electric convector heater of the inverter type
AU2018232037A1 (en) Instant electrode water heater
CN206235898U (zh) 一种用于重油电加热的温度控制电路及温度控制系统
KR20200035424A (ko) 유리판 강화 공정을 위한 수행 수단 제어 방법
CN204494798U (zh) 一种盐浴炉及其电控系统
CN201285519Y (zh) 淋浴水温控制装置
TWI486542B (zh) Water temperature control system and method
CN204530278U (zh) 一种温控装置及使用该温控装置的电熨斗
CN103953787A (zh) 恒温电热水龙头
CN209086768U (zh) 用于电学检测系统的pwm式温度控制器
WO2006099802A1 (fr) Procédé de chauffage électrique à puissance étendue reposant sur un dispositif ptc et équipement idoine
CN207751330U (zh) 一种实验室电热炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14241438

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12827370

Country of ref document: EP

Kind code of ref document: A1