WO2013029402A1 - 一种花生酶法改性蛋白的制备方法 - Google Patents

一种花生酶法改性蛋白的制备方法 Download PDF

Info

Publication number
WO2013029402A1
WO2013029402A1 PCT/CN2012/076349 CN2012076349W WO2013029402A1 WO 2013029402 A1 WO2013029402 A1 WO 2013029402A1 CN 2012076349 W CN2012076349 W CN 2012076349W WO 2013029402 A1 WO2013029402 A1 WO 2013029402A1
Authority
WO
WIPO (PCT)
Prior art keywords
peanut
microwave
modified protein
protein
temperature
Prior art date
Application number
PCT/CN2012/076349
Other languages
English (en)
French (fr)
Inventor
杨庆利
于丽娜
张会翠
朱凤
孙杰
毕杰
张初署
Original Assignee
山东省花生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省花生研究所 filed Critical 山东省花生研究所
Priority to SG2013047550A priority Critical patent/SG191262A1/en
Publication of WO2013029402A1 publication Critical patent/WO2013029402A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes

Definitions

  • the invention relates to a preparation method of a peanut enzymatically modified protein, and belongs to the field of food protein processing.
  • Peanut also known as groundnut and long-fruited fruit, has a fat content of 43 to 55% and a protein content of 25 to 30%. It is used both as an oil and as a protein. Among them, peanut protein contains eight essential amino acids, the biological potency is higher than soybean, and the anti-nutritional factor is less than soybean. Therefore, peanut protein can become a new protein resource after soy protein, solving the problem of less quality protein in the world.
  • Physical modification includes thermal denaturation, extrusion, spinning, and high static pressure techniques. Physical modification can improve certain functional properties of proteins such as foaming, emulsifying, etc., but it will destroy other functional properties such as solubility, gelation, etc., and is only suitable for the production of a specific protein product.
  • Chemical modification includes phosphorylation, succinylation, glycosylation, deamidation, covalent crosslinking, hydrolysis, oxidation, etc.
  • Enzymatic modification includes enzymatic catalysis and enzymatic polymerization, mild reaction conditions, no by-products, and strong specificity. It is a safe modification method and belongs to the emerging technology of enzyme engineering in the field of food protein processing. Important research and development implications and market prospects. Genetic engineering modification is to improve the functional properties and nutrient composition of plant proteins through genetic engineering or breeding of elite varieties in order to achieve the purpose of modification.
  • the invention adopts enzymatic modification technology, combined with microwave assisted enzymatic hydrolysis and ultrafiltration technology, and has better solubility and foaming under the premise of reducing chemical reagent dosage and shortening reaction time.
  • Enzymatic modification conditions are mild, low cost, and suitable for industrial production.
  • the present invention employs the following steps:
  • Low-denatured defatted peanut protein powder is added to distilled water, microwave-assisted dispersion and dissolution; pH value is adjusted, microwave-assisted alkali leaching; centrifugation, supernatant is ultrafiltered, concentrated liquid is adjusted to adjust pH value, protease is added, microwave assisted enzymatic hydrolysis; The mixture was concentrated by ultrafiltration, and the concentrate was freeze-dried to obtain a peanut enzymatically modified protein.
  • the enzymatic hydrolysate is inactivated by enzyme, separated and concentrated by ultrafiltration, and the concentrated liquid is freeze-dried to obtain a peanut enzymatically modified protein.
  • the low-denatured defatted peanut protein powder according to the step (1) is added to the distilled water in a mass of 10 to 12 times the mass of the protein powder, the microwave power is 700 w, the temperature is 44 ° C, and the microwave-assisted dispersion time is 10 min.
  • the pH of the peanut protein powder suspension described in the step (2) is adjusted to 9.03, the microwave power is 800 w, the temperature is 43 ° C, and the microwave assisted alkali leaching time is 9.6 min.
  • the enzyme-killing condition described in the step (4) is boiling water bath-killing enzyme for 12 min, and the ultrafiltration separation and concentration condition is selected from the PS-8 polysulfone membrane (the molecular weight cut-off is 8000 Da), the operating pressure is 0.10 MPa, and the temperature is 34. °C, the time is 28min.
  • Peanut enzymatically modified protein products are white in color, fine in powder, and have good solubility, foaming and foam stability.
  • Peanut protein powder is moderately hydrolyzed by protease, the peptide chain of protein is shortened, the spatial conformation changes, the hydrophobic group on the surface is hydrolyzed, and the hydrophilic group is exposed, which is beneficial to improve the solubility and foaming of the enzyme-modified protein.
  • the enzymatic modification conditions are mild, combined with microwave treatment, the reaction time is shortened, the cost is low, and it is suitable for industrial production.
  • Low-denatured defatted peanut protein powder was added to distilled water with a mass ratio of 1:10, and the glass rod was stirred uniformly.
  • microwave power 700w, temperature 44 °C microwave-assisted dispersion and dissolution for 10 min, peanut powder powder suspension was obtained; peanut protein powder suspension was adjusted.
  • the pH of the solution was 9.03, and the microwave-assisted alkali leaching was carried out for 9.6 min under the conditions of microwave power of 800 W and temperature of 43 ° C to obtain an alkali extract; at 16 ° C, 5200 r/min was centrifuged for 13 min, and PS-10 polysulfone was selected.
  • the membrane molecular weight cut off is 10000 Da
  • the supernatant was ultrafiltered for 38 min at an operating pressure of 0.09 MPa and a temperature of 36 ° C.
  • the concentrate was adjusted to pH 7.15, and trypsin: Protamex (complex protease) was added.
  • Neutral protease 2.4:1.4:1.2 Proportion of mixed protease solution, under microwave power 800w, temperature 48 °C, microwave assisted enzymatic hydrolysis for 12min, to obtain enzymatic hydrolysate; in boiling water bath, enzymatic hydrolysate Enzyme 12min, PS-8 polysulfone membrane (molecular weight cut-off is 8000Da), under the condition of operating pressure 0.10MPa, temperature 34 °C, the enzymatic hydrolysate was ultrafiltered for 28min, and the concentrate was freeze-dried to obtain peanut enzymatic modification. protein.
  • the peanut enzymatically modified protein has a solubility of 82.43%, a foaming property of 168.87%, and a foaming stability of 92.59%.
  • Low-denatured defatted peanut protein powder was added to distilled water with a mass ratio of 1:11.4, and the glass rod was evenly stirred.
  • microwave power 700w, temperature 44 °C microwave-assisted dispersion and dissolution for 10 min, peanut powder powder suspension was obtained; peanut protein powder suspension was adjusted.
  • the pH of the solution was 9.03, and the microwave-assisted alkali leaching was carried out for 9.6 min under the conditions of microwave power of 800 W and temperature of 43 ° C to obtain an alkali extract; at 16 ° C, 5200 r/min was centrifuged for 13 min, and PS-10 polysulfone was selected.
  • the membrane (molecular weight cut off is 10000 Da), the supernatant was ultrafiltered for 38 min under the conditions of an operating pressure of 0.09 MPa and a temperature of 36 ° C.
  • the concentrate was taken, and the pH was adjusted to 7.34, and trypsin: complex protease was added.
  • Protease 2.4: 1.4: 1.2 Proportion of mixed protease solution, under microwave power 800w, temperature 48 ° C, microwave assisted enzymatic hydrolysis for 12min, to obtain enzymatic hydrolysate; in boiling water bath, enzymatic hydrolysate for 12min, The PS-8 polysulfone membrane (molecular weight cut-off is 8000 Da) was used, and the enzymatic hydrolysate was ultrafiltered for 28 min under the operating pressure of 0.10 MPa and the temperature of 34 ° C. The concentrate was freeze-dried to obtain a peanut enzymatically modified protein.
  • the peanut enzymatically modified protein has a solubility of 85.15%, a foaming property of 175.31%, and a foaming stability of 93.99%.
  • Low-denatured defatted peanut protein powder was added to distilled water with a mass ratio of 1:11.8, and the glass rod was evenly stirred.
  • microwave power 700w, temperature 44 °C microwave-assisted dispersion and dissolution for 10 min, peanut powder powder suspension was obtained; peanut protein powder suspension was adjusted.
  • the pH of the solution was 9.03, and the microwave-assisted alkali leaching was carried out for 9.6 min under the conditions of microwave power of 800 W and temperature of 43 ° C to obtain an alkali extract; at 16 ° C, 5200 r/min was centrifuged for 13 min, and PS-10 polysulfone was selected.

Abstract

一种花生酶法改性蛋白的制备方法,包括以下步骤:低变性脱脂花生蛋白粉加入蒸熘水,微波辅助分散溶解;调节pH值,微波辅助碱浸提;离心,上清液超滤,取浓缩液调节pH值,加入蛋白酶,微波辅助酶解;灭酶,超滤分离浓缩,取浓缩液冷冻干燥,得到花生酶法改性蛋白。

Description

一种花生酶法改性蛋白的制备方法
一种花生酶法改性蛋白的制备方法
技术领域
本发明涉及花生酶法改性蛋白的制备方法,属于食品蛋白加工领域。
背景技术
花生又名落花生、长生果,脂肪含量为43~55%,蛋白质含量为25~30%,既是油用作物又是蛋白用作物。其中,花生蛋白含有八种必需氨基酸,生物学效价高于大豆,且抗营养因子比大豆少。因此,花生蛋白可以成为继大豆蛋白之后新的蛋白资源,解决世界优质蛋白少的难题。但是,碱提酸沉法制备的花生分离蛋白和醇沉法制备的花生浓缩蛋白的功能性质,如溶解性、乳化性、乳化稳定性、起泡性、泡沫稳定性等,由于受到工艺条件的影响,不适合一些食品加工,其应用受到限制,这就需要改善花生蛋白的功能性质,以满足某些特殊食品加工的需要。
目前,对蛋白质的改性处理,主要有物理改性、化学改性、酶法改性和基因工程改性四类方法。物理改性包括热变性、挤压、纺丝和高静压技术。物理改性可以改善蛋白的某种功能性质如起泡性、乳化性等,但会破坏其他的功能性质如溶解度、凝胶性等,只适合生产某种特殊蛋白产品。化学改性包括磷酸化、琥珀酰化、糖基化、脱酰胺、共价交联、水解、氧化等,已经成功开发了几种改性蛋白产品。但是,化学改性反应副产物多,对蛋白质氨基酸组成及营养价值有影响,其应用范围有限。酶法改性包括酶法催化和酶法聚合等,反应条件温和,无副产物,专一性强,是一种安全的改性方法,属于酶工程在食品蛋白加工领域中的新兴技术,具有重要的研究开发意义和市场前景。基因工程改性是通过基因工程或选育优良品种来改善植物蛋白质的功能性质和营养成分组成,以期达到改性的目的。
为了开发利用花生蛋白,本发明应用酶法改性技术,并结合微波辅助酶解和超滤等技术,在减少化学试剂用量、缩短反应时间的前提下,加工出具有较好溶解性、起泡性和泡沫稳定性的酶法改性蛋白产品。酶法改性条件温和,成本低,适合工业化生产。
发明内容
本发明的目的是提供较好的溶解性、起泡性和泡沫稳定性的花生酶法改性蛋白产品的制备方法。
为达到上述目的,本发明采用以下步骤:
低变性脱脂花生蛋白粉加入蒸馏水,微波辅助分散溶解;调节pH值,微波辅助碱浸提;离心,上清液超滤,取浓缩液调节pH值,加入蛋白酶,微波辅助酶解;灭酶,超滤分离浓缩,取浓缩液冷冻干燥,得到花生酶法改性蛋白。
具体来说,所述的方法如下:
(1)低变性脱脂花生蛋白粉加入蒸馏水,玻璃棒搅拌均匀,微波辅助分散溶解,得到花生蛋白粉悬浮液;
(2)调节花生蛋白粉悬浮液的pH值,微波辅助碱浸提,得到碱浸提液;
(3)将碱浸提液离心,上清液超滤,调节浓缩液的pH值,加入蛋白酶,微波辅助酶解,得到酶解液;
(4)将酶解液灭酶,超滤分离浓缩,取浓缩液冷冻干燥,得到花生酶法改性蛋白。
优选地,步骤(1)所述的低变性脱脂花生蛋白粉加入蒸馏水的质量为蛋白粉质量的10~12倍,微波功率为700w,温度为44℃,微波辅助分散时间为10min。
优选地,步骤(2)所述的花生蛋白粉悬浮液的pH值调节至9.03,微波功率为800w,温度为43℃,微波辅助碱浸提时间为9.6min。
优选地,步骤(3)所述的离心条件为16℃下,5200r/min离心13min,上清液超滤条件为选用PS-10聚砜膜(截留分子量为10000Da),操作压力为0.09~0.10MPa,温度为36℃,时间为38min,浓缩液的pH值调节至7.0~7.5,加入以胰蛋白酶:Protamex:中性蛋白酶=2.4:1.4:1.2比例混合的蛋白酶液,微波功率为800w,温度为48℃,微波辅助酶解12min。
优选地,步骤(4)所述的灭酶条件为沸水浴灭酶12min,超滤分离浓缩的条件为选用PS-8聚砜膜(截留分子量为8000Da),操作压力为0.10MPa,温度为34℃,时间为28min。
花生酶法改性蛋白产品颜色洁白,粉质细腻,具有较好的溶解性、起泡性和泡沫稳定性。花生蛋白粉经蛋白酶适度水解,蛋白质的肽链变短,空间构象发生变化,表面的疏水基团被水解,亲水基团暴露出来,有利于提高酶法改性蛋白的溶解性、起泡性和泡沫稳定性,并可改善其它功能性质。酶法改性条件温和,与微波处理相结合,反应时间变短,成本低,适合工业化生产。
具体实施方式
实施例1
低变性脱脂花生蛋白粉加入质量比1:10的蒸馏水,玻璃棒搅拌均匀,在微波功率700w,温度44℃的条件下,微波辅助分散溶解10min,得到花生蛋白粉悬浮液;调节花生蛋白粉悬浮液的pH值至9.03,在微波功率800w,温度43℃的条件下,微波辅助碱浸提9.6min,得到碱浸提液;在16℃下,5200r/min离心13min,选用PS-10聚砜膜(截留分子量为10000Da),在操作压力0.09MPa,温度36℃的条件下,将上清液超滤38min,取浓缩液,将其pH值调节至7.15,加入以胰蛋白酶:Protamex(复合蛋白酶):中性蛋白酶=2.4:1.4:1.2比例混合的蛋白酶液,在微波功率800w,温度48℃的条件下,微波辅助酶解12min,得到酶解液;在沸水浴中,将酶解液灭酶12min,选用PS-8聚砜膜(截留分子量为8000Da),在操作压力0.10MPa,温度34℃的条件下,将酶解液超滤28min,取浓缩液冷冻干燥,得到花生酶法改性蛋白。该花生酶法改性蛋白的溶解度为82.43%,起泡性为168.87%,起泡稳定性为92.59%。
实施例2
低变性脱脂花生蛋白粉加入质量比1:11.4的蒸馏水,玻璃棒搅拌均匀,在微波功率700w,温度44℃的条件下,微波辅助分散溶解10min,得到花生蛋白粉悬浮液;调节花生蛋白粉悬浮液的pH值至9.03,在微波功率800w,温度43℃的条件下,微波辅助碱浸提9.6min,得到碱浸提液;在16℃下,5200r/min离心13min,选用PS-10聚砜膜(截留分子量为10000Da),在操作压力0.09MPa,温度36℃的条件下,将上清液超滤38min,取浓缩液,将其pH值调节至7.34,加入以胰蛋白酶:复合蛋白酶:中性蛋白酶=2.4:1.4:1.2比例混合的蛋白酶液,在微波功率800w,温度48℃的条件下,微波辅助酶解12min,得到酶解液;在沸水浴中,将酶解液灭酶12min,选用PS-8聚砜膜(截留分子量为8000Da),在操作压力0.10MPa,温度34℃的条件下,将酶解液超滤28min,取浓缩液冷冻干燥,得到花生酶法改性蛋白。该花生酶法改性蛋白的溶解度为85.15%,起泡性为175.31%,起泡稳定性为93.99%。
实施例3
低变性脱脂花生蛋白粉加入质量比1:11.8的蒸馏水,玻璃棒搅拌均匀,在微波功率700w,温度44℃的条件下,微波辅助分散溶解10min,得到花生蛋白粉悬浮液;调节花生蛋白粉悬浮液的pH值至9.03,在微波功率800w,温度43℃的条件下,微波辅助碱浸提9.6min,得到碱浸提液;在16℃下,5200r/min离心13min,选用PS-10聚砜膜(截留分子量为10000Da),在操作压力0.10MPa,温度36℃的条件下,将上清液超滤38min,取浓缩液,将其pH值调节至7.46,加入以胰蛋白酶:Protamex:中性蛋白酶=2.4:1.4:1.2比例混合的蛋白酶液,在微波功率800w,温度48℃的条件下,微波辅助酶解12min,得到酶解液;在沸水浴中,将酶解液灭酶12min,选用PS-8聚砜膜(截留分子量为8000Da),在操作压力0.10MPa,温度34℃的条件下,将酶解液超滤28min,取浓缩液冷冻干燥,得到花生酶法改性蛋白。该花生酶法改性蛋白的溶解度为88.90%,起泡性为180.28%,起泡稳定性为95.47%。

Claims (5)

  1. 一种花生酶法改性蛋白的制备方法,其特征在于,包括以下步骤:
    (1)低变性脱脂花生蛋白粉加入蒸馏水,玻璃棒搅拌均匀,微波辅助分散溶解,得到花生蛋白粉悬浮液;
    (2)调节花生蛋白粉悬浮液的pH值,微波辅助碱浸提,得到碱浸提液;
    (3)将碱浸提液离心,上清液超滤,调节浓缩液的pH值,加入蛋白酶,微波辅助酶解,得到酶解液;
    (4)将酶解液灭酶,超滤分离浓缩,取浓缩液冷冻干燥,得到花生酶法改性蛋白;
    步骤(3)所述的加入的蛋白酶是以胰蛋白酶:复合蛋白酶:中性蛋白酶=2.4:1.4:1.2比例混合的蛋白酶液。
  2. 根据权利要求1所述的花生酶法改性蛋白的制备方法,其特征在于,步骤(1)所述的低变性脱脂花生蛋白粉加入蒸馏水的质量为蛋白粉质量的10~12倍,微波功率为700w,温度为44℃,微波辅助分散时间为10min。
  3. 根据权利要求1所述的花生酶法改性蛋白的制备方法,其特征在于,步骤(2)所述的花生蛋白粉悬浮液的pH值调节至9.03,微波功率为800w,温度为43℃,微波辅助碱浸提时间为9.6min。
  4. 根据权利要求1所述的花生酶法改性蛋白的制备方法,其特征在于,步骤(3)所述的离心条件为16℃下,5200r/min离心13min,上清液超滤条件为选用截留分子量为10000Da 的PS-10聚砜膜,操作压力为0.09~0.10MPa,温度为36℃,时间为38min,浓缩液的pH值调节至7.0~7.5,微波功率为800w,温度为48℃,微波辅助酶解12min。
  5. 根据权利要求1所述的花生酶法改性蛋白的制备方法,其特征在于,步骤(4)所述的灭酶条件为沸水浴灭酶12min,超滤分离浓缩的条件为选用截留分子量为8000Da的 PS-8聚砜膜,操作压力为0.10MPa,温度为34℃,时间为28min。
PCT/CN2012/076349 2011-08-26 2012-05-31 一种花生酶法改性蛋白的制备方法 WO2013029402A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG2013047550A SG191262A1 (en) 2011-08-26 2012-05-31 Method for praparing peanut modified protein with enzyme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110248652.3 2011-08-26
CN 201110248652 CN102334588B (zh) 2011-08-26 2011-08-26 一种花生酶法改性蛋白的制备方法

Publications (1)

Publication Number Publication Date
WO2013029402A1 true WO2013029402A1 (zh) 2013-03-07

Family

ID=45510727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076349 WO2013029402A1 (zh) 2011-08-26 2012-05-31 一种花生酶法改性蛋白的制备方法

Country Status (3)

Country Link
CN (1) CN102334588B (zh)
SG (1) SG191262A1 (zh)
WO (1) WO2013029402A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222537B (zh) * 2013-05-08 2014-11-05 中国农业科学院农产品加工研究所 一种双中性蛋白酶分步酶解花生分离蛋白制备花生肽的方法
CN104886595A (zh) * 2015-06-15 2015-09-09 青岛博之源生物技术有限公司 一种水酶法辅助微波醇水提取花生壳黄酮类物质的方法
CN105928750B (zh) * 2016-04-11 2019-08-16 沈阳师范大学 一种高溶解性红小豆分离蛋白加工方法
CN108094672A (zh) * 2018-01-24 2018-06-01 沈阳师范大学 一种挤压膨化协同酶法降低花生分离蛋白致敏性的方法
CN114468114A (zh) * 2022-01-12 2022-05-13 德州谷神蛋白科技有限公司 微波辅助酶法结合气流超微粉碎制备大豆分离蛋白的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916181A (zh) * 2006-08-21 2007-02-21 中国农业科学院农产品加工研究所 一种花生功能性混合短肽及其制备方法
CN101570773A (zh) * 2009-05-27 2009-11-04 中国农业科学院油料作物研究所 微波辅助酶解油料饼粕蛋白生产活性多肽的方法
CN101731445A (zh) * 2010-02-06 2010-06-16 赵广彬 一种利用低温花生粕制备花生蛋白和花生肽的方法
CN102250999A (zh) * 2011-06-01 2011-11-23 山东省花生研究所 一种花生活性肽分离纯化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094057A (zh) * 2009-12-10 2011-06-15 陈栋梁 一种以微波促酶解制备卵清蛋白多肽的方法
CN102094059A (zh) * 2009-12-10 2011-06-15 陈栋梁 一种以微波促进大豆蛋白水解制备大豆多肽的方法
CN101797038B (zh) * 2010-04-14 2012-06-13 山东省花生研究所 一种花生膳食纤维超声波或微波辅助提取及纯化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916181A (zh) * 2006-08-21 2007-02-21 中国农业科学院农产品加工研究所 一种花生功能性混合短肽及其制备方法
CN101570773A (zh) * 2009-05-27 2009-11-04 中国农业科学院油料作物研究所 微波辅助酶解油料饼粕蛋白生产活性多肽的方法
CN101731445A (zh) * 2010-02-06 2010-06-16 赵广彬 一种利用低温花生粕制备花生蛋白和花生肽的方法
CN102250999A (zh) * 2011-06-01 2011-11-23 山东省花生研究所 一种花生活性肽分离纯化方法

Also Published As

Publication number Publication date
CN102334588A (zh) 2012-02-01
SG191262A1 (en) 2013-07-31
CN102334588B (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2013029402A1 (zh) 一种花生酶法改性蛋白的制备方法
US9609883B2 (en) Method for producing wheat glutamine peptide
EP0511970B1 (fr) Procede pour preparer un hydrolysat enzymatique
US20170143001A1 (en) Soybean oligopeptide with low allergenicity and little bitterness and preparation method and application thereof
CN106701874B (zh) 藻蓝蛋白多肽的制备方法
CN101974589B (zh) 一种酶解和膜分离制备免疫活性大豆肽的方法
CN105255979B (zh) 一种同步制取沙丁鱼油与鲜味肽的方法
CN1932027A (zh) 一种双酶水解制备无苦味大豆肽的方法
JP6077672B2 (ja) 細胞培養培地用のトウモロコシ活性ペプチド添加剤
CN108294164B (zh) 一种工业化制备大豆蛋白的7s蛋白的方法及系统
CN103014109B (zh) 复合酶水解乳清蛋白制备蛋白胨的方法及所得蛋白胨
CN105385738A (zh) 一种牦牛奶酪蛋白磷酸肽的制备方法
CN101366469B (zh) 一种高效大豆蛋白起泡剂的制备方法
CN106720925B (zh) 一种复合酶聚合偶联超滤回收乳清蛋白或mpc中蛋白的方法
CN1240300C (zh) 由大豆粉制备蛋白水解物的方法
CN114540449A (zh) 消化率提升的高谷氨酰胺含量的水解乳清蛋白粉及其制备
CN108796016A (zh) 核桃肽及其酶解提取方法
CN109956950A (zh) 一种从猪血中提取血红蛋白肽和血红素的联产工艺
CN114468117A (zh) 一种具有高溶解度大豆分离蛋白的制备方法
CN113545454A (zh) 一种高分散蛋清粉的加工方法
KR101079030B1 (ko) 글루탐산 함량이 높은 미강 유래 단백질 가수분해물의 제조방법
CN105838768A (zh) 一种低盐酪蛋白磷酸肽的制备方法
CN106417613A (zh) 一种富含α-乳白蛋白的乳清粉及其制备方法
CN110547356A (zh) 一种功能性豆类乳清蛋白及其生产方法和应用
RU2536967C1 (ru) Способ получения пищевого продукта с пенообразующими свойствами

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827304

Country of ref document: EP

Kind code of ref document: A1