WO2013027807A1 - リン回収剤とその製造方法 - Google Patents

リン回収剤とその製造方法 Download PDF

Info

Publication number
WO2013027807A1
WO2013027807A1 PCT/JP2012/071360 JP2012071360W WO2013027807A1 WO 2013027807 A1 WO2013027807 A1 WO 2013027807A1 JP 2012071360 W JP2012071360 W JP 2012071360W WO 2013027807 A1 WO2013027807 A1 WO 2013027807A1
Authority
WO
WIPO (PCT)
Prior art keywords
recovery agent
phosphorus recovery
magnesium
phosphorus
acid
Prior art date
Application number
PCT/JP2012/071360
Other languages
English (en)
French (fr)
Inventor
吉田祥子
今田敏弘
辻秀之
茂庭忍
海老原聡美
原口智
早見徳介
五十川昌邦
河野龍興
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2012557341A priority Critical patent/JP5665891B2/ja
Publication of WO2013027807A1 publication Critical patent/WO2013027807A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/045Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Definitions

  • Embodiments of the present invention relate to a phosphorus recovery agent and a method for producing the same.
  • the adsorbent after adsorbing phosphorus can be reused by releasing the adsorbed substance, in this case phosphorus, from the adsorbent.
  • the recovery agent after releasing phosphorus can be used again for the adsorption removal of phosphorus as described above.
  • the detached phosphorus itself can be reused as a chemical fertilizer, for example, by mixing it with other chemical components.
  • the conventional adsorbent is powdery, it is inconvenient to handle, and there is a problem in that the recovery operation when used for reuse becomes complicated, resulting in extra costs.
  • an object of the present invention is to provide a phosphorus recovery agent that can be reused as a resource at low cost.
  • the phosphorus recovery agent of the embodiment includes a compound represented by the general formula (M1O ⁇ (M2CO 3 ) ⁇ (M3 (OH) 2 ) 1- ⁇ - ⁇ ) ⁇ ⁇ SiO 2 ⁇ ⁇ H 2 O ⁇ ⁇ X (however, , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ are 0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 1, 0 ⁇ + ⁇ ⁇ 1, 0.01 ⁇ ⁇ ⁇ 20, 0 ⁇ ⁇ ⁇ 10, 0 ⁇ ⁇ ⁇ 0. A value in the range of 1, M (M1, M2 and M3) is one or both of magnesium and calcium, and X is one or more of Na 2 SO 4 , NaCl and CH 3 COONa .) It is a porous particle.
  • the phosphorus recovery agent of the embodiment is porous particles, and is represented by the general formula (M1O ⁇ (M2CO 3 ) ⁇ (M3 (OH) 2 ) 1- ⁇ - ⁇ ) ⁇ ⁇ SiO 2 ⁇ ⁇ H 2 O ⁇ ⁇ X. Compounds.
  • M M1, M2 and M3
  • X is one or more of Na 2 SO 4 , NaCl and CH 3 COONa .
  • the porosity of the phosphorus recovery agent is preferably 10 to 80%, or 30% to 80%.
  • the magnesium and calcium compounds contained in the phosphorus recovery agent of the embodiment are dissolved, and either or both of magnesium ions and calcium ions are generated in the waste water containing ammonia nitrogen and phosphorus. These ions react with ammonia and phosphorus in the waste water (reaction formulas 1, 2, and 3).
  • recovery agent of embodiment is a granulated material, Comprising: The compound which supplies magnesium ion or calcium ion to a granulated material so that magnesium ion or calcium ion can be supplied sequentially in waste_water
  • magnesium ions or calcium ions are sequentially eluted from the phosphorus recovery agent of the embodiment. Since elution occurs on the surface of the phosphorus recovery agent, magnesium ions or calcium ions generated by the elution are supplied to the surface of the phosphorus recovery agent. Since magnesium ions and calcium ions supplied to the surface recover phosphorus (phosphoric acid) by the reaction of the above reaction formulas 1, 2, and 3, the product accumulates on the phosphorus recovery agent, so that the surface of the phosphorus recovery agent The product can be recovered. And the phosphorus collection
  • the phosphorus recovery agent 1 is a granulation represented by the general formula (II) containing either or both of a magnesium compound and a calcium compound and silicic acid as shown in the conceptual diagram of FIG. It is a thing.
  • Magnesium compounds and calcium compounds are compounds that supply magnesium ions or calcium ions in a solution containing ammoniacal nitrogen (hereinafter referred to as waste water).
  • a magnesium compound or calcium compound and a part of silicon are bonded to form a compound represented by the general formula (I-II) (hereinafter referred to as Mg—Ca—Si compound).
  • Mg—Ca—Si compound (Mg F Ca 1-F ) Si G O I (OH) J ⁇ KH 2 O
  • General formula (I-II) (where 0 ⁇ F ⁇ 1, 0 ⁇ G, I, J ⁇ 1,0 ⁇ K ⁇ 10.)
  • the magnesium compound, calcium compound and Mg—Ca—Si compound contained in the phosphorus recovery agent are retained by a compound containing silicon.
  • the phosphorus recovery agent is a granulated product formed from a compound containing silicon.
  • the compound supplying magnesium ions or calcium ions in the waste water include at least one of magnesium oxide and calcium oxide, magnesium hydroxide, calcium hydroxide, magnesium carbonate and calcium carbonate.
  • the compound containing silicon include amorphous silicon dioxide, sodium silicate and potassium silicate.
  • the phosphorus recovery agent of the embodiment may include any salt of Na 2 SO 4 , NaCl, and CH 3 COONa.
  • the salt content is a molar amount of 0% to 1.0% of the molar amount of the compound supplying magnesium ions or calcium ions.
  • the shape of the phosphorus recovery agent of the present embodiment is not particularly limited, and may be spherical, granular, angular, fibrous, thread-like, rod-like, tubular, sheet-like, film-like, depending on the application.
  • Product plate-like product, bowl-like product, corrugated cardboard honeycomb-like product, and irregular-shaped product.
  • spherical, granular, and rectangular shapes are preferable, and when immersed and used in waste water, a sheet shape, a plate shape, and a film shape are preferable.
  • the ratio of the compound supplying magnesium ion or calcium ion to the compound containing silicon holding these is from 1: 0.01 to 1:20 in terms of the mass ratio of Mg (Ca) to Si (Mg (Ca): Si). preferable. If the ratio of the compound supplying magnesium ions or calcium ions is small, it is not preferable that the phosphorus recovery efficiency is lowered. When the ratio of the compound having silicon is too low, it is not preferable that the strength of the phosphorus recovery agent is low and it becomes difficult to recover the phosphorus recovery agent after the phosphorus recovery process.
  • the magnesium ion or calcium ion present on the surface of the recovery agent reacts with phosphate ions in the wastewater to form precipitates, and phosphorous from the wastewater. Contributes to the removal of acid ions.
  • This fixed amount is an amount that can be achieved by satisfying the above ratio.
  • the improvement of phosphorus removal performance due to the presence of magnesium ions and calcium ions on the surface of the recovery agent is considered in principle to remove phosphorus directly by reaction with phosphate ions in water. . Therefore, in the phosphorus recovery agent, it is preferable that at least a part of the compound supplying magnesium ions or calcium ions exists on the surface of the phosphorus recovery agent.
  • the compound that supplies magnesium ions or calcium ions is dispersed. It is preferable.
  • the BET specific surface area of the phosphorus recovery agent is preferably 0.1 m 2 / g or more, and more preferably 10 m 2 / g or more.
  • recovery agent is 500 m ⁇ 2 > / g or less, and 100 m ⁇ 2 > / g or more is also preferable.
  • the phosphorus recovered by reaction in the holes tends to stay in the holes, and the contact rate with the waste water is increased, and the phosphorus recovery rate is increased.
  • the phosphorus recovery agent preferably has holes, Those having a large number of are preferable.
  • a recovery action derived from the fact that the recovery agent contains magnesium ions or calcium ions also occurs in the pores, so that the recovery amount as a whole recovery agent increases.
  • the porosity is too high, the strength of the recovery agent is lowered and may not have a strength that can withstand practical use.
  • the upper limit of the porosity needs to be 80%, and more preferably 60%.
  • the lower limit of the porosity is preferably 10%, preferably 20%, particularly preferably 25%.
  • the lower limit may be 35% or 40%.
  • the pore diameter of the recovery agent is preferably in the range of 0.01 ⁇ m to 500 ⁇ m, more preferably in the range of 0.01 ⁇ m to 100 ⁇ m, and still more preferably in the range of 0.01 ⁇ m to 50 ⁇ m.
  • the pore diameter of the recovery agent is preferably 0.1 ⁇ m or more.
  • the porosity and pore diameter can be measured by, for example, pore distribution measurement by mercury porosimetry.
  • This recovery agent consists of magnesium ion or calcium ion and silicon, and its phosphorus removal performance is mainly due to the removal by reaction of magnesium ion or calcium ion contained in this recovery agent with phosphate ion and ammonium ion in waste water. is there.
  • the phosphate ion recovery agent of the present embodiment generates a precipitate containing phosphate ions by eluting the magnesium ion or calcium ion in the recovery agent into the waste water.
  • phosphate ions can be removed from the waste water.
  • calcium ions or calcium compounds present on the surface of the recovery agent Can also remove phosphate ions in waste water. Therefore, the phosphate ion recovery agent of the present embodiment can efficiently remove phosphate ions in waste water.
  • the phosphorus recovery agent of the present embodiment is based on the recovery effect due to containing magnesium ions or calcium ions, for example, as shown by the above general formula, and the increase in surface area due to the porous body. Due to the promotion of the recovery effect and the recovery effect due to the holes of the recovery agent itself, extremely high recovery ability is exhibited for ions in the waste water.
  • the method for producing a phosphorus recovery agent includes one or more compounds selected from magnesium hydroxide, magnesium oxide, calcium hydroxide, calcium oxide, magnesium carbonate and calcium carbonate, and a soluble silicate amorphous body.
  • the ratio of water glass (Si) becomes too large, it is not preferable that the phosphorus recovery performance deteriorates because magnesium ions and calcium ions necessary for the phosphorus recovery reaction cannot be sufficiently supplied to the waste water. On the other hand, if the ratio of water glass is too small, the quality of the silicon compound holding the magnesium compound and the calcium compound is reduced, and it becomes difficult to form a granulated body, which is not preferable. If used as a soluble silicate amorphous material other than water glass, it may be converted based on the weight of SiO 2.
  • Water glass is a water-soluble alkali metal silicate represented by the general formula [QSiO 2 ⁇ L 2 O] (L is an alkali metal, Q is a positive integer).
  • the adjusted mixture (slurry) is formed.
  • the mixture can be formed into various shapes using a granulator, for example, extrusion molding methods including extrusion granulation methods such as strand cutting and sheet cutting, compression molding methods, pressure molding granulation methods, rolling methods. Molding is performed using an arbitrary granulation method such as a dynamic granulation method and a rounding method.
  • Heat treatment process Next, the molded mixture is subjected to heat treatment.
  • a mixture formed at 50 ° C. or higher and 600 ° C. or lower is heated.
  • the heating temperature is more preferably 50 ° C. or more and 500 ° C. or less, and most preferably 50 ° C. or more and 300 ° C. or less.
  • a molded body is molded using a soluble silicate amorphous body, for example, water glass, heat-treated (dried), and then subjected to a heat-treated molded body.
  • a soluble silicate amorphous body for example, water glass, heat-treated (dried), and then subjected to a heat-treated molded body.
  • a porous molded body can be obtained by heat-treating the molded body. Further, by subjecting the heat-treated molded body to an acid treatment, the porosity is further improved, and the reaction of the surface is promoted by the acid treatment, so that the phosphorus removal performance is improved.
  • An acid treatment is performed on the heat-treated mixture.
  • a mixture that is heat-treated in 0.01 mol / l or more and 1 mol / l or less of acetic acid is immersed.
  • acid treatment using acetic acid has been described as a specific example.
  • the present invention is not limited to this, and various acids can be used.
  • sulfuric acid or hydrochloric acid can be used.
  • the size of the molded product can be arbitrarily adjusted using a pulverizer or a granulator, but this step may not be used depending on the method of using the molded product.
  • the method of using the phosphorus recovery agent in this embodiment is very simple, and is carried out by bringing the phosphorus recovery agent obtained as described above into contact with waste water.
  • the ions in the waste water can be recovered by the principle described above, that is, the magnesium ions or calcium ions contained in the phosphorus recovery agent or on the surface are combined with the ions in the waste water.
  • the above-described reaction for recovering phosphate ions is performed in the pores, and ions are also directly collected in the pores. It becomes like this.
  • the phosphorus recovery agent of this embodiment easily recovers the phosphorus recovery agent after the phosphorus removal test. It is possible.
  • recovery agent in this embodiment is applicable with respect to the waste_water
  • dissolution of the ion recovery agent may occur under strong acid acidity. Therefore, a preferable pH range for applying the ion recovery agent according to this embodiment is 2.0 or more and 14.0 or less, and a more preferable pH range is 3.0 or more and 13.0 or less.
  • the water content was measured by TG and quantified using fluorescent X-ray and chemical analysis. Specifically, the fluorescent X-rays were qualitatively determined by assigning peaks to each element in the fluorescent X-ray spectrum. Quantification was performed by measuring the intensity of the fluorescent X-ray spectrum (FP method and calibration curve method).
  • the FP method is a calculation method in which the sensitivity coefficient of each element is theoretically obtained from the measured intensity, and the total concentration of the detected elements is 100%.
  • the calibration curve method is a method in which a sample with a known concentration is measured at several points to create a calibration curve, and then an unknown sample is measured to quantify the concentration.
  • the chemical analysis used an ion chromatograph or an ICP emission spectroscopic analyzer. The sample was completely dissolved with, for example, nitric acid, and various ion concentrations were measured and quantified.
  • Example 1-1 As raw materials, magnesium hydroxide and water glass (sodium silicate solution: SiO 2 35% to 38%, Na 2 O 17% to 19%) and distilled water in a weight ratio of 1: 0.5: 10. Mixed (mixing step). Thereafter, the mixture was poured into a Teflon (registered trademark) beaker and dried in a dryer at 50 ° C. for 24 hours. Thereafter, heat treatment was further performed in an electric furnace at 300 ° C. for 3 hours (heat treatment step). Next, the heat-treated mixture was pulverized using a pulverizer, and the one having a particle size of about 2 mm was immersed in 0.1 M acetic acid for 1 hour (acid treatment step) to obtain a specimen 1-1. It was confirmed that the specimen 1-1 was represented by [MgO ⁇ 0.48 (SiO 2 ) ⁇ 8H 2 O ⁇ 0.01 (CH 3 COONa)].
  • a mixed aqueous solution adjusted to have a phosphate ion concentration of 60 mg / l, a magnesium ion concentration of 24 mg / l, a carbonate ion concentration of 3000 mg / l, and an ammonium ion of 500 mg / l was prepared as a drainage simulation solution.
  • 62.5 mg of the specimen 1-1 was put into 250 mL of the drainage simulation liquid, and the water quality was purified by mixing and stirring for 24 hours. After the treatment, the specimen was collected, and the solubility of the collected specimen was evaluated. Solubility is a characteristic required for phosphate fertilizers.
  • the phosphorus concentration (P) eluted when immersed in a 2 wt% citric acid solution at a liquid temperature of 30 ° C. is measured, and this is measured with phosphoric acid (P 2 O After converting into 5 ), the ratio of the amount of elution per recovered material is calculated. Since the phosphate fertilizer is required to have high solubility, it is preferable that the proportion of phosphorus eluted by citric acid is as high as possible. Specifically, it is desired to be 15 wt% or more. For the evaluation of the solubility, the specimen adsorbed with phosphorus in the water purification test was immersed in a citric acid solution, and the ratio of eluted phosphorus was calculated. The results obtained for these were as shown in Table 1.
  • the porosity and the pore diameter of the specimen 1-1 were confirmed by pore distribution measurement by a mercury intrusion method.
  • 5 specimens 1-1 were added to 50 mL of water (distilled water), stirred, and the time until collapse was measured.
  • disintegration when the added specimen became powdery, that is, when the size of each grain became 1/5 or less, disintegration was defined, and the elapsed time was confirmed. The longest stirring time is 24 hours. In addition, what did not disintegrate after 24 hours shall be 24 hours.
  • the filtration time when the drainage simulated liquid was passed through the specimen 1-1 was measured. The obtained results are shown in Table 1.
  • Example 1-2 Specimen 1-2 was obtained in the same manner as in Example 1-1 except that the firing temperature was 50 ° C. It was confirmed that the specimen 4 was represented by [MgO ⁇ 0.49 (SiO 2 ) ⁇ 10H 2 O ⁇ 0.008 (CH 3 COONa)]. Next, water purification treatment and evaluation of the granulated product were performed using the specimen 1-4 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1-3 A specimen 1-3 was obtained in the same manner as in Example 1-1 except that the amount of distilled water added was 20 g, the amount of water glass added was 5.6 g, and the firing temperature was 600 ° C. It was confirmed that the specimen 1-3 was represented by [MgO ⁇ 5.44 (SiO 2 ) ⁇ 7H 2 O ⁇ 0.01 (CH 3 COONa)]. Next, water purification treatment and evaluation of the granulated material were performed using the specimen 1-3 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1-4 Specimen 1-4 was obtained in the same manner as in Example 1-1 except that the amount of distilled water added was 4 g and the calcination temperature was 50 ° C. It was confirmed that the specimen 1-4 was represented by [MgO ⁇ 0.49 (SiO 2 ) ⁇ 10H 2 O ⁇ 0.009 (CH 3 COONa)]. Next, water purification treatment and evaluation of the granulated product were performed using the specimen 1-4 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1-5 Specimen 1-5 was obtained in the same manner as in Example 1-1 except that the amount of distilled water added was 20 g, the amount of water glass added was 9.0 g, and the maximum major axis was pulverized to 40 mm. It was confirmed that the specimen 1-5 was represented by [MgO ⁇ 8.74 (SiO 2 ) ⁇ 10H 2 O ⁇ 0.008 (CH 3 COONa)]. Next, water purification treatment and evaluation of the granulated material were performed using the specimen 1-5 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1-6 Specimen 1-6 was obtained in the same manner as in Example 1-1 except that the amount of water glass added was 0.1 g. It was confirmed that the specimen 8 was represented by [MgO ⁇ 0.01 (SiO 2 ) ⁇ 5H 2 O ⁇ 0.005 (CH 3 COONa)]. Next, water purification treatment and evaluation of the granulated material were performed using the specimen 1-6 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1--7 Specimen 1-7 was obtained in the same manner as in Example 1-1 except that the amount of distilled water added was 20 g and the amount of water glass added was 20 g. It was confirmed that the specimen 1-7 was represented by [MgO ⁇ 19.41 (SiO 2 ) ⁇ 8H 2 O ⁇ 0.005 (CH 3 COONa)]. Next, water purification treatment and evaluation of the granulated material were performed using the specimen 1-7 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1-8 Specimen 1-8 was obtained in the same manner as in Example 1-1 except that magnesium oxide was used as a raw material. Specimen 1-8 was [MgO ⁇ 0.34 (SiO 2 ) ⁇ 5H 2 O ⁇ 0.005 (CH 3 COONa)] Then, using Specimen 1-8 in the same manner as in Example 1-1 Water purification treatment and evaluation of granulated products were performed. The obtained results were as shown in Table 1.
  • Example 1-9 Specimen 1-9 was obtained in the same manner as in Example 1-1 except that calcium hydroxide was used as a raw material. Specimen 1-9 was [CaO ⁇ 0.62 (SiO 2 ) ⁇ 6H 2 O ⁇ 0.004 (CH 3 COONa)]. Then, using Specimen 1-9, the same method as Example 1-1 was used. Water purification treatment and evaluation of granulated products were performed. The obtained results were as shown in Table 1.
  • Example 1-10 Specimen 1-10 was obtained in the same manner as in Example 1-1 except that calcium oxide was used as a raw material. Specimen 1-10 was [CaO ⁇ 0.47 (SiO 2 ) ⁇ 6H 2 O ⁇ 0.004 (CH 3 COONa)] Then, using Specimen 1-10 in the same manner as Example 1-1 Water purification treatment and evaluation of granulated products were performed. The obtained results were as shown in Table 1.
  • Example 1-11 A specimen 1-11 was obtained in the same manner as in Example 1-1 except that 0.1 M sulfuric acid was used in the acid treatment step. It was confirmed that the specimen 1-11 was represented by [MgO ⁇ 0.49 (SiO 2 ) ⁇ 5H 2 O ⁇ 0.004 (Na 2 SO 4 )]. Next, water purification treatment and evaluation of the granulated material were performed using the specimen 1-11 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1-12 Specimen 1-12 was obtained in the same manner as in Example 1-1 except that 0.1M hydrochloric acid was used in the acid treatment step. It was confirmed that the specimen 1-12 was represented by [MgO ⁇ 0.49 (SiO 2 ) ⁇ 5H 2 O ⁇ 0.005 (NaCl)]. Next, water purification treatment and evaluation of the granulated material were performed using the specimen 1-12 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1-3 Specimen 1-15 was obtained in the same manner as in Example 1-1 except that the amount of distilled water added was 20 g, the amount of water glass added was 6.5 g, and the firing temperature was 600 ° C. It was confirmed that the specimen 1-15 was represented by [MgO ⁇ 6.30 (SiO 2 ) ⁇ 5H 2 O ⁇ 0.005 (CH 3 COONa)]. Next, water purification treatment and evaluation of the granulated product were performed using the specimen 1-15 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1-17 (Comparative Example 1-5) Specimen 1-17 was obtained in the same manner as in Example 1-1, except that the amount of distilled water added was 30 g, the amount of water glass added was 9.0 g, and the maximum major axis was pulverized to 40 mm. It was confirmed that the specimen 1-17 was represented by [MgO ⁇ 8.74 (SiO 2 ) ⁇ 10H 2 O ⁇ 0.001 (CH 3 COONa)]. Next, the water purification treatment and the evaluation of the granulated product were performed using the specimen 1-17 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1-8 Specimen 1-20 was obtained in the same manner as in Example 1-1 except that the amount of distilled water added was 25 g and the amount of water glass added was 25.0 g. It was confirmed that the specimen 1-20 was represented by [MgO ⁇ 24.3 (SiO 2 ) ⁇ 10H 2 O ⁇ 0.001 (CH 3 COONa)]. Next, water purification treatment and evaluation of the granulated material were performed using the specimen 1-20 in the same manner as in Example 1-1. The obtained results were as shown in Table 1.
  • Example 1-1 to 1-12 the amount of soluble phosphoric acid was as high as 15 wt% or more. Also.
  • the porosity of each specimen is 30 to 80%.
  • the pore diameter was 0.1 to 500 ⁇ m. Furthermore, in each of Examples 1-1 to 1-12, since there was no need for filtration or the like for the recovery of the specimen after the water purification treatment, there was no problem in practical handling because it could be easily recovered. I understood that.
  • Comparative Example 1-1 the amount of soluble phosphoric acid is high but powdery.
  • Comparative Examples 1-2, 1-4 and 1-6 the porosity is too low or the pore diameter is too small. Therefore, the contact property or water permeability with the water to be treated is deteriorated, and the amount of soluble phosphoric acid is lowered.
  • Comparative Examples 1-3 and 1-5 it was found that the pore size was too large or the porosity was too high, so that the strength was weak and the material collapsed with stirring for 24 hours.
  • Comparative Examples 1-7 and 1-8 since the amount of water glass was too much above the specified range, the permeability of the water to be treated into the phosphorus recovery agent decreased and the amount of soluble phosphoric acid was low.
  • the phosphorus recovery agent according to the embodiment is represented by the general formula (II-I) as described above.
  • the value of c needs to be 0 ⁇ c ⁇ 0.5.
  • the larger the value of c the larger the amount of the silicate binder.
  • the larger the value of c the smaller the reactivity with phosphorus. Desirably, 0 ⁇ c ⁇ 0.5.
  • l consists of both MgO and CaCO 3 .
  • the amount of the compound described as the magnesium compound is shown below.
  • x represents the amount of crystal water. A smaller value of x is better.
  • the phosphorus recovery agent 2 is a carrier (1) surface with a magnesium compound (2) held through a binder (3) (FIG. 2) or a phosphorus recovery agent.
  • Reference numeral 3 denotes a carrier (1) having a binder (3) held on the surface (FIG. 3).
  • the magnesium necessary for forming a composite oxide with magnesium phosphate and / or ammonium magnesium phosphate can be added to the carrier (1) and / or magnesium without adding magnesium from the other. Supplied by sequential decomposition of compound (2) with ammoniacal nitrogen.
  • magnesium ions are supplied to the surface of the phosphorus recovery agent as the carrier (1) and / or magnesium compound (2) is sequentially decomposed with ammoniacal nitrogen, it is combined with magnesium phosphate and / or ammonium magnesium phosphate. Crystallization of the object occurs on the surface of the phosphorus recovery agent. Therefore, the composite oxide with magnesium phosphate and / or ammonium magnesium phosphate is deposited on the surface of the phosphorus recovery agent without the release of fine composite oxide with magnesium phosphate and / or ammonium magnesium phosphate in the liquid. Phosphorus can be efficiently recovered.
  • the carrier (1) is preferably a compound represented by the following general formula (II-II) or (II-III).
  • the compositions represented by the general formulas (II-II) and (II-III) are composed of components effective as a fertilizer.
  • one or more kinds of clay minerals selected from dolomite, semi-baked dolomite and sepiolite are preferably used. These clay minerals have a lamellar crystal structure or a porous structure with voids, which facilitates the circulation of phosphate ions, ammonia ions, and magnesium ions, and increases the reactivity with phosphorus. .
  • the shape of the carrier (1) a granular shape, a plate shape, a rod shape, or the like is appropriately selected according to its use.
  • the carrier is classified using a classifier or the like.
  • the size of the carrier (1) it is desirable that the size of the carrier (1) passes through a 5 mm ⁇ sieve and remains on the 0.3 mm ⁇ sieve.
  • a spherical shape having a particle diameter of 0.3 mm or more and 5 mm or less is preferable.
  • the particle size is desirably 5 mm or less.
  • the size of the carrier is preferably such that it passes through a 5 mm ⁇ sieve and remains on the 0.3 mm ⁇ sieve. The particle size is measured with a microscope or the like, and the image is enlarged to the extent that it can be measured with submillimeter accuracy, and the particle size of each particle is measured.
  • the size of the phosphorus recovery agent is preferably such that it passes through a 5 mm ⁇ sieve and remains with a 0.3 mm ⁇ sieve.
  • a spherical shape having a particle diameter of 0.3 mm or more and 5 mm or less is preferable.
  • the recovery operation when recovering the phosphorus recovery agent becomes complicated.
  • the particle size increases, the phosphorus recovery performance deteriorates, so the particle size is desirably 5 mm or less.
  • the particle size is measured with a microscope or the like, and the image is enlarged to the extent that it can be measured with submillimeter accuracy, and the particle size of each particle is measured.
  • the carrier (1) preferably has a porosity of 10% or more and 80% or less, 30% or more and 80% or less, and a pore diameter of 0.01 ⁇ m or more and 1 mm or less and 0.1 ⁇ m or more and 1 mm or less. If the porosity becomes too high, the strength of the phosphorus recovery agent will decrease, and it will not have a strength that can withstand practical use. Moreover, when the porosity is lowered, the permeability of the water to be treated is deteriorated, and the phosphorus recovery ability may be lowered. From such a viewpoint, the porosity is preferably 10% to 80%, and preferably 30% to 80%.
  • the pore diameter of the carrier is desirably in the range of 0.01 ⁇ m to 1 mm and 0.1 ⁇ m to 1 mm.
  • the porosity and pore diameter can be measured by, for example, pore distribution measurement by mercury porosimetry.
  • the porosity of the phosphorus recovery agent is preferably 10% to 80% and 30 to 80%.
  • the magnesium compound (2) is preferably one or more substances selected from magnesium oxide, magnesium oxide, dolomite, semi-baked dolomite, and talc. These substances are components containing magnesium or magnesium and calcium that bind to phosphate ions in the wastewater containing phosphate ions and ammonia nitrogen.
  • the magnesium compound (2) is held on the surface of the carrier (1) through the binder (3). Magnesium ions held on the surface react with phosphate ions in the wastewater or phosphate ions and ammoniacal nitrogen, and phosphorus is recovered as a composite oxide of magnesium phosphate or ammonium magnesium phosphate. This action also removes phosphate ions from the waste water.
  • magnesium compound (2) When calcium is contained in the magnesium compound, this calcium also contributes to the recovery of phosphorus in the same manner as magnesium.
  • component of magnesium compound (2) when the component of magnesium compound (2) is contained in the support
  • the surface of the carrier By applying the surface of the carrier to water glass by dipping, etc., heat treatment and acid treatment, the surface of the carrier becomes porous, and the reactivity of magnesium ions and calcium ions with phosphorus and ammoniacal nitrogen increases, and the phosphorus recovery rate Will increase.
  • the particle size of the magnesium compound (2) is desirably 300 ⁇ m or less.
  • the binder (3) is for holding the magnesium compound (2) on the surface of the carrier, and a binder capable of binding to the carrier (1) and the magnesium compound (2) is selected, preferably with magnesium ions or calcium ions. Desirable is a soluble silicate that reacts to form an insoluble magnesium silicate compound or calcium silicate compound.
  • a heat-treated water glass is preferable.
  • Water glass is a water-soluble alkali metal silicate represented by the general formula [QSiO 2 ⁇ L 2 O] (Q is a positive integer, L is an alkali metal), and silicon dioxide obtained by heat-treating water glass , Sodium silicate, potassium silicate and the like.
  • the support immersed in the binder (3) is heated and acid-treated, the support surface becomes porous and the amount of phosphorus recovered increases.
  • water glass is preferable.
  • the phosphorus recovery agent of the embodiment is one or more carriers selected from dolomite, semi-baked dolomite and sepiolite, and 1 selected from silicic acid, alkali silicic acid and alkaline earth silicate on the surface of the carrier. It is preferable that at least one compound selected from magnesium hydroxide, magnesium oxide, dolomite, semi-baked dolomite, sepiolite and talc is retained.
  • the molded body produced by drying at room temperature has a porous carrier (1) surface holding the magnesium compound (2). Since it is difficult to form a quality structure, phosphorus recovery performance is not good. However, porosity is imparted by subjecting this molded product to heat treatment and acid treatment. By subjecting the molded body to heat treatment and acid treatment, porosity is imparted to the surface of the carrier and phosphorus recovery performance is improved.
  • the molded body is heated at 50 ° C. or higher and 700 ° C. or lower. Most preferably, it is 50 ° C or higher and 300 ° C or lower.
  • the acid treatment the molded body is impregnated with various acids such as hydrochloric acid, sulfuric acid and acetic acid.
  • acetic acid 0.01 mol / l or more and 1 mol / l or less is used.
  • the magnesium compound (2) is retained on the surface of the magnesium-containing mineral carrier (1) using the soluble silicate as the binder (3). It is possible to obtain a phosphorus recovery agent that is excellent and that hardly generates fine particles. Further, the amount of soluble phosphoric acid is large and can be effectively used as a phosphate fertilizer.
  • the method for producing a phosphorus recovery agent includes a mixture of one or more magnesium compounds selected from magnesium hydroxide, magnesium oxide, dolomite, semi-baked dolomite, sepiolite and talc and a soluble silicate, or soluble silicic acid.
  • the obtained slurry-like mixture is applied to a carrier.
  • a coating process is not particularly limited, but a rolling granulation method can be used.
  • the slurry solution is applied to the surface of the carrier while appropriately adding the slurry-like mixture while rolling on the carrier.
  • An appropriate amount of magnesium compound or water may be added during rolling granulation.
  • the molar ratio of magnesium compound to soluble silicate is preferably 1:25 to 25: 1 in terms of Mg / Si ratio. If the Si ratio becomes too large, the phosphorus recovery performance decreases. On the other hand, if the Si ratio is too small, the magnesium compound is not held on the carrier. This operation can be omitted when no magnesium compound is used.
  • the obtained molded body is subjected to heat treatment.
  • the molded body is heated at 50 ° C. or higher and 600 ° C. or lower. Most preferably, it is 50 ° C or higher and 300 ° C or lower.
  • An acid treatment is performed on the heat-treated molded body.
  • the molded body is impregnated with various acids such as hydrochloric acid, sulfuric acid and acetic acid.
  • acids such as hydrochloric acid, sulfuric acid and acetic acid.
  • acetic acid 0.01 mol / l or more and 1 mol / l or less is used.
  • washing treatment A water washing treatment is applied to the acid-treated molded body. Salts such as sodium chloride and sodium acetate produced in the acid treatment step are removed. In addition, the water washing process does not need to be implemented.
  • the molded product that has been subjected to the acid treatment and the water washing treatment is subjected to a drying treatment.
  • the molded body may be heated at 50 ° C. or higher and 100 ° C. or lower.
  • maintained the magnesium compound (2) can be obtained by making soluble silicate (3) into a binder on the magnesium containing mineral support
  • a soluble silicate aqueous solution is prepared.
  • water glass is preferable.
  • the obtained soluble silicate aqueous solution is applied to a carrier.
  • a coating process is not particularly limited, but a rolling granulation method can be used. While rolling onto the carrier, the soluble silicate aqueous solution is applied to the surface of the carrier while adding the slurry mixture as appropriate. An appropriate amount of water may be added during rolling granulation.
  • the molar ratio between the magnesium compound and the soluble silicate is preferably 1: 5 to 50: 1 in terms of Mg / Si ratio. If the Si ratio becomes too large, the phosphorus recovery performance decreases. On the other hand, if the Si ratio is too small, the magnesium compound is not held on the carrier.
  • the obtained molded body is subjected to heat treatment.
  • the molded body is heated at 50 ° C. or higher and 600 ° C. or lower. Most preferably, it is 50 ° C or higher and 300 ° C or lower.
  • An acid treatment is performed on the heat-treated molded body.
  • the molded body is impregnated with various acids such as hydrochloric acid, sulfuric acid and acetic acid.
  • various acids such as hydrochloric acid, sulfuric acid and acetic acid.
  • acetic acid 0.01 mol / l or more and 1 mol / l or less is used.
  • Na 2 SO 4 , NaCl and CH 3 COONa are produced by the acid treatment. Some or all of these salts are eluted by washing with water.
  • washing treatment A water washing treatment is applied to the acid-treated molded body. Salts such as sodium chloride and sodium acetate produced in the acid treatment step are removed. In addition, the water washing process does not need to be implemented.
  • the molded body that has been subjected to the acid treatment and the water washing treatment is subjected to a drying treatment.
  • the molded body is heated at 50 ° C. to 100 ° C.
  • maintained the magnesium compound (2) can be obtained by making soluble silicate (3) into a binder on the magnesium containing mineral support
  • recovery agent in this embodiment is demonstrated.
  • recovery agent in this embodiment is very simple.
  • the phosphorous recovery agent is brought into contact with waste water containing phosphorus and ammoniacal nitrogen.
  • magnesium ions contained in the phosphorus recovery agent are supplied to the surface of the phosphorus recovery agent, the crystallization of the composite oxide with magnesium phosphate and / or ammonium magnesium phosphate is the phosphorus recovery agent. happenss on the surface.
  • the composite oxide with magnesium phosphate and / or ammonium magnesium phosphate is deposited on the surface of the phosphorus recovery agent without the release of fine composite oxide with magnesium phosphate and / or ammonium magnesium phosphate in the liquid. Phosphorus can be efficiently recovered. Further, since the magnesium compound is retained on the surface of the magnesium-containing mineral carrier by using a soluble silicate as a binder, it has strength and is excellent in durability.
  • the concentration of ammonia nitrogen and phosphorus in the wastewater to which the phosphorus recovery agent of the embodiment is applied is preferably adjusted to pH 7 or higher using an alkaline earth metal oxide such as magnesia as necessary.
  • the pH is desirably 7.5-12.
  • the phosphorus recovery agent dissolves and the phosphorus recovery amount decreases.
  • the phosphorus recovery agent As a specific method for bringing the phosphorus recovery agent into contact with the waste water, for example, the phosphorus recovery agent is put into the waste water, and if necessary, the phosphorus is recovered by stirring or the like, followed by precipitation. . Moreover, the phosphorus collection
  • the soluble phosphoric acid content of the manufactured phosphorus recovery agent was determined by the following measurement method.
  • Example 2-1 Magnesium hydroxide (average diameter: 10 ⁇ m), a sodium silicate solution (Na 2 O: 17% or more and 19% or less, SiO 2 : 35% or more and 38% or less) and distilled water were used at a ratio of 1: 0.5: 5. Mixing at a weight ratio produced a slurry-like mixture. Using 5 g (average diameter: 0.5 mm) of semi-baked dolomite (MgO ⁇ CaCO 3 ) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • a sodium silicate solution Na 2 O: 17% or more and 19% or less, SiO 2 : 35% or more and 38% or less
  • distilled water distilled water
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.32MgO ⁇ 0.06SiO 2 ⁇ 0.68 (MgO ⁇ CaCO 3 ) ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-2 Magnesium hydroxide (average diameter: 10 ⁇ m), a sodium silicate solution (Na 2 O: 17% or more and 19% or less, SiO 2 : 35% or more and 38% or less) and distilled water were used at a ratio of 1: 0.5: 5. Mixing at a weight ratio produced a slurry-like mixture. Using 5 g (average diameter: 0.5 mm) of dolomite (MgCaCO 3 ) as a carrier, a slurry-like mixture was applied onto the carrier by a rolling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.3MgO ⁇ 0.05SiO 2 ⁇ 0.7 (MgCaCO 3 ) ⁇ 2.2H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-3 Magnesium hydroxide (average diameter: 10 ⁇ m), a sodium silicate solution (Na 2 O: 17% or more and 19% or less, SiO 2 : 35% or more and 38% or less) and distilled water were used at a ratio of 1: 0.5: 5. Mixing at a weight ratio produced a slurry-like mixture. Using a sepiolite (Mg 8 Si 12 O 30 (OH) 4 ) 15 g (average diameter: 0.5 mm) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • a sepiolite Mg 8 Si 12 O 30 (OH) 4
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the resulting phosphorus recovery agent 0.38MgO ⁇ 0.07SiO 2 ⁇ 0.62 (Mg 8 Si 12 O 30 (OH) 4) ⁇ 1.8H was 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-4 Magnesium oxide (average diameter: 10 ⁇ m), sodium silicate solution (Na 2 O: 17% to 19%, SiO 2 : 35% to 38%) and distilled water in a weight of 1: 0.5: 5 The mixture was mixed at a ratio to prepare a slurry mixture. Using 5 g (average diameter: 0.5 mm) of semi-baked dolomite (MgO ⁇ CaCO 3 ) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.41MgO ⁇ 0.05SiO 2 ⁇ 0.59 (MgO ⁇ CaCO 3 ) ⁇ 2.3H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-5 Semi-baked dolomite (MgO ⁇ CaCO 3 average diameter: 10 ⁇ m), sodium silicate solution (Na 2 O: 17% to 19%, SiO 2 : 35% to 38%) and distilled water 1: 0.5 : 5 was mixed at a weight ratio to prepare a slurry mixture. Using 5 g (average diameter: 0.5 mm) of semi-baked dolomite (MgO ⁇ CaCO 3 ) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.18MgO ⁇ 0.07SiO 2 ⁇ 0.82 (MgO ⁇ CaCO 3 ) ⁇ 2.5H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-6 Dolomite (MgCaCO 3 average diameter: 10 ⁇ m), sodium silicate solution (Na 2 O: 17% or more and 19% or less, SiO 2 : 35% or more and 38% or less), and distilled water were used at a ratio of 1: 0.5: 5. Mixing at a weight ratio produced a slurry-like mixture. Using 5 g (average diameter: 0.5 mm) of semi-baked dolomite (MgO ⁇ CaCO 3 ) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.2MgO ⁇ 0.07SiO 2 ⁇ 0.8 (MgO ⁇ CaCO 3 ) ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2--7 Talc (Mg 3 Si 4 O 10 (OH) 2 average diameter: 10 ⁇ m), sodium silicate solution (Na 2 O: 17% to 19%, SiO 2 : 35% to 38%) and distilled water, The mixture was mixed at a weight ratio of 4: 0.5: 10 to prepare a slurry mixture.
  • a slurry mixture was applied onto the carrier by a tumbling granulation method.
  • the obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the resulting phosphorus recovery agent 0.23MgO ⁇ 0.07SiO 2 ⁇ 0.77 (MgO ⁇ CaCO 3) ⁇ 2.4H was 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the resulting phosphorus recovery agent 0.21MgO ⁇ 0.07SiO 2 ⁇ 0.79 (MgO ⁇ CaCO 3) ⁇ 2.4H was 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-9 Magnesium hydroxide (average diameter: 10 ⁇ m), a sodium silicate solution (Na 2 O: 17% or more and 19% or less, SiO 2 : 35% or more and 38% or less) and distilled water were used at a ratio of 1: 0.5: 5. Mixing at a weight ratio produced a slurry-like mixture. Using 5 g (average diameter: 0.3 mm) of half-baked dolomite (MgO ⁇ CaCO 3 ) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.32MgO ⁇ 0.06SiO 2 ⁇ 0.68 (MgO ⁇ CaCO 3 ) ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-10 Magnesium hydroxide (average diameter: 10 ⁇ m), a sodium silicate solution (Na 2 O: 17% or more and 19% or less, SiO 2 : 35% or more and 38% or less) and distilled water were used at a ratio of 1: 0.5: 5. Mixing at a weight ratio produced a slurry-like mixture. Using 5 g (average diameter: 5 mm) of half-baked dolomite (MgO ⁇ CaCO 3 ) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.32MgO ⁇ 0.06SiO 2 ⁇ 0.68 (MgO ⁇ CaCO 3 ) ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-11 Semi-burned dolomite (MgO ⁇ CaCO 3 ) (average diameter: 300 ⁇ m), sodium silicate solution (Na 2 O: 17% to 19%, SiO 2 : 35% to 38%) and distilled water 1: 0 Mixing was performed at a weight ratio of 5: 5 to prepare a slurry mixture. Using 5 g (average diameter: 0.5 mm) of semi-baked dolomite (MgO ⁇ CaCO 3 ) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.18MgO ⁇ 0.07SiO 2 ⁇ 0.82 (MgO ⁇ CaCO 3 ) ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-12 A sodium silicate solution (Na 2 O: 17% or more and 19% or less, SiO 2 : 35% or more and 38% or less) and distilled water were mixed at a weight ratio of 1:10 to prepare a slurry-like mixture.
  • a slurry mixture was applied onto the carrier by a tumbling granulation method.
  • the obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace. Next, the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred.
  • the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the resulting phosphorus recovery agent 0.12MgO ⁇ 0.02SiO 2 ⁇ 0.88 (MgO ⁇ CaCO 3) ⁇ 2.4H was 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-13 Magnesium hydroxide (average diameter: 10 ⁇ m), sodium silicate solution (Na 2 O: 17% to 19%, SiO 2 : 35% to 38%) and distilled water in a weight ratio of 1: 2: 20
  • a slurry mixture was applied onto the carrier by a tumbling granulation method.
  • the obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace. Next, the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred.
  • the composition of the obtained phosphorus recovery agent was 0.32MgO ⁇ 0.23SiO 2 ⁇ 0.68 (MgO ⁇ CaCO 3 ) ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-14 Magnesium hydroxide (average diameter: 10 ⁇ m), sodium silicate solution (Na 2 O: 17% to 19%, SiO 2 : 35% to 38%) and distilled water in a weight ratio of 1: 4: 30 To prepare a slurry mixture. Using 5 g (average diameter: 0.5 mm) of semi-baked dolomite (MgO ⁇ CaCO 3 ) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace. Next, the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred.
  • a slurry mixture Using 5 g (average diameter: 0.5 mm) of semi-baked dolomite (MgO ⁇ CaCO 3 ) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The
  • the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the resulting phosphorus recovery agent 0.32MgO ⁇ 0.46SiO 2 ⁇ 0.68 (MgO ⁇ CaCO 3) ⁇ 2.4H was 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • Example 2-15 Magnesium hydroxide (average diameter: 10 ⁇ m), a sodium silicate solution (Na 2 O: 17% or more and 19% or less, SiO 2 : 35% or more and 38% or less) and distilled water were used at a ratio of 1: 0.5: 5. Mixing at a weight ratio produced a slurry-like mixture. Using 5 g (average diameter: 0.5 mm) of semi-baked dolomite (MgO ⁇ CaCO 3 ) as a carrier, a slurry mixture was applied onto the carrier by a tumbling granulation method. The obtained molded body was heat-treated at 300 ° C. for 3 hours in an electric furnace.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the resulting phosphorus recovery agent 0.32MgO ⁇ 0.06SiO 2 ⁇ 0.68 (MgO ⁇ CaCO 3) ⁇ 0.01CH was 3 COONa ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.32MgO ⁇ 0.06SiO 2 ⁇ 0.68 (MgO ⁇ CaCO 3 ) ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.32MgO ⁇ 0.06SiO 2 ⁇ 0.68 (MgO ⁇ CaCO 3 ) ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • the heat-treated molded body was immersed in a 0.1 M acetic acid solution for 3 hours and stirred. After the acid-treated molded body was washed with distilled water, it was dried with a dryer at 50 ° C.
  • the composition of the obtained phosphorus recovery agent was 0.32MgO ⁇ 0.06SiO 2 ⁇ 0.68 (MgO ⁇ CaCO 3 ) ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • the composition of the obtained phosphorus recovery agent was 0.32MgO ⁇ 0.68SiO 2 ⁇ 0.68 (MgO ⁇ CaCO 3 ) ⁇ 2.4H 2 O.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / l phosphate ion, 500 mg / l ammonia nitrogen, and 1000 mL of 3000 mg / l carbonate ion-containing solution (pH 8) were prepared as water to be treated.
  • the phosphorus-soluble agent obtained in Examples 2-1 to 2-11 had a high soluble phosphate content of 15 wt% or more. That is, according to this example, it was found that a phosphorus recovery agent having a high content of soluble phosphoric acid can be obtained.
  • Comparative Example 2-1 since the size of the carrier was large, the phosphorus recovery performance was lowered.
  • Comparative Example 2-2 it was found that collection was difficult because the particle size was small, and that collection work such as filtration was required, making practical handling difficult.
  • Comparative Example 2-3 since the particle size of the magnesium compound (2) was too large, the reactivity with phosphorus decreased and the content of soluble phosphonic acid decreased.
  • Comparative Example 4 since the SiO 2 ratio was high, the reactivity between phosphorus and the magnesium compound was deteriorated, and the phosphorus recovery amount was reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Removal Of Specific Substances (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

 実施形態のリン回収剤は、一般式(M1Oα(M2COβ(M3(OH)1-α-β)・γSiO・δHO・εXで表される化合物を含み、(但し、α、β,γ、δ、εは、0≦α≦1、0≦β≦1、0<α+β≦1、0.01≦γ≦20、0≦δ≦10、0≦ε≦0.1の範囲の値であり、M1、M2とM3はマグネシウムとカルシウムのいずれかまたは両方の金属であり、XはNaSO、NaClとCHCOONaのいずれか1種以上である。)多孔質の粒子であることを特徴とする。

Description

リン回収剤とその製造方法
 本発明の実施形態は、リン回収剤とその製造方法に関する。
 近年、経済活動の急速なグローバル化によって、世界規模での環境汚染・水質汚染が深刻な問題となっている。また、世界規模での生産活動は同時に資源枯渇を招き、希少元素として認識される元素の種類も増加する傾向にある。最近では世界規模でのリン鉱石の減少が進んでおり、近年では、リンも希少元素として認識されてきている。
 リンを吸着した後の吸着材は、この吸着材から吸着物質、この場合はリンを離脱させることによって再利用に供することができる。リンを離脱させた後の回収剤は、再度上述のようなリンの吸着除去に使用することができる。また、離脱したリン自体も、例えば他の化学成分と混合させるなどして化成肥料として再利用することができる。
 しかしながら、従来の吸着材は粉状であるために取扱いが不便であり、また、再利用に供する際の回収操作が煩雑となり、結果的に余分なコストがかかってしまうという問題があった。
特開2010-149078号公報
 そこで、実施形態にかかる発明は、資源として低コストで再利用することが可能なリン回収剤を提供することを目的とする。
 実施形態のリン回収剤は、一般式(M1Oα(M2COβ(M3(OH)1-α-β)・γSiO・δHO・εXで表される化合物を含み、(但し、α、β,γ、δ、εは、0≦α≦1、0≦β≦1、0<α+β≦1、0.01≦γ≦20、0≦δ≦10、0≦ε≦0.1の範囲の値であり、M(M1、M2とM3)はマグネシウムとカルシウムのいずれかまたは両方の金属であり、XはNaSO、NaClとCHCOONaのいずれか1種以上である。)多孔質の粒子であることを特徴とする。
実施形態にかかるリン回収剤の概念図である。 実施形態にかかるリン回収剤の概念図である。 実施形態にかかるリン回収剤の概念図である。
 実施形態のリン回収剤は多孔質の粒子であって、一般式(M1Oα(M2COβ(M3(OH)1-α-β)・γSiO・δHO・εXで表される化合物を含む。
(但し、α、β,γ、δ、εは、0≦α≦1、0≦β≦1、0<α+β≦1、0.01≦γ≦20、0≦δ≦10、0≦ε≦0.1の範囲の値であり、M(M1、M2とM3)はマグネシウムとカルシウムのいずれかまたは両方の金属であり、XはNaSO、NaClとCHCOONaのいずれか1種以上である。)
 リン回収剤リン回収剤の気孔率は、10~80%あるいは、30%~80%であることが好ましい。
 実施形態のリン回収剤に含まれるマグネシウムやカルシウムの化合物は溶解して、アンモニア性窒素およびリンを含む排水中で、マグネシウムイオンとカルシウムイオンのいずれか又はこれらの両方が生じる。これらのイオンは排水中のアンモニア及びリンと反応する(反応式1、2、3)。
Mg2++NH +PO 3-+6HO → MgNHPO・6HO  …(反応式1)
10Ca2++2OH+6PO 3-+6HO → Ca10(OH)(PO  …(反応式2)
Mg2++PO 3- → Mg(PO  ・・・(反応式3)
 リン(リン酸)を回収するために、排水中に塩化物を溶解させるなどしてマグネシウムイオンやカルシウムイオンを供給すると、生成物を得ることができるが、生成物は微細であるため排水中に遊離する。この遊離した生成物を回収するための装置が別に必要になりまた、回収するために生成物結晶成長をコントロールする必要があるなどするため回収コストが大きくなってしまう。
 そこで、実施形態のリン回収剤は、造粒物であって、排水中で逐次的にマグネシウムイオン又はカルシウムイオンを供給することができるように、造粒物にマグネシウムイオン又はカルシウムイオンを供給する化合物が含まれる形態とする。
 排水中では、実施形態のリン回収剤より、逐次的にマグネシウムイオン又はカルシウムイオンが溶出される。溶出はリン回収剤の表面で生じるため、溶出によって生じたマグネシウムイオン又はカルシウムイオンはリン回収剤の表面に供給される。表面に供給されたマグネシウムイオンやカルシウムイオンが上記反応式1,2,3の反応によってリン(リン酸)を回収するため、生成物がリン回収剤に堆積することで、リン回収剤の表面で生成物の回収が可能となる。そして、リンを回収したリン回収剤は、そのまま肥料として用いることができる利点がある。
(第1の実施形態)
 実施形態において、リン回収剤1は、図1の概念図に示す様にマグネシウム化合物又はカルシウム化合物のいずれか又は両方の化合物とケイ酸とを含む一般式(I-I)で表される造粒物である。
 (M1O(M2CO(M3(OH)1-A-B)・DSiO・EHO・FX ・・・一般式(I-I)(但し、A、B,D、E、Fは、0≦A≦1、0≦B≦1、0<A+B≦1、0.01≦D≦20、0≦E≦10、0≦F≦0.1の範囲の値であり、M(M1、M2とM3)はマグネシウムとカルシウムのいずれかまたは両方の金属であり、XはNaSO、NaClとCHCOONaのいずれか1種以上である。)
 マグネシウム化合物とカルシウム化合物は、アンモニア性窒素を含む溶液(以下、排水と記載)中でマグネシウムイオンまたはカルシウムイオンを供給する化合物である。マグネシウム化合物又はカルシウム化合物とケイ素の一部は結合して、一般式(I-II)で表される化合物(以下Mg-Ca-Si化合物)を形成している。
(MgCa1-F)Si(OH)・KHO・・・一般式(I-II)(但し、0≦F≦1、0<G,I,J<1,0≦K≦10である。)
 リン回収剤中に含まれる、マグネシウム化合物、カルシウム化合物とMg-Ca-Si化合物は、ケイ素を含む化合物で保持されている。リン回収剤は、ケイ素を含む化合物によって、成形された造粒物である。排水中でマグネシウムイオンまたはカルシウムイオンを供給する化合物は、酸化マグネシウムと酸化カルシウム、水酸化マグネシウム、水酸化カルシウム、炭酸マグネシウムと炭酸カルシウムのうち少なくとも1種以上が挙げられる。ケイ素を含む化合物として、非晶質の二酸化ケイ素、ケイ酸ナトリウムとケイ酸カリウム等が挙げられる。
 実施形態のリン回収剤には、NaSO、NaClとCHCOONaのうちのいずれかの塩を含む場合がある。塩の含有量はマグネシウムイオンまたはカルシウムイオンを供給する化合物のモル量の0%以上1.0%以下のモル量である。
 本実施形態のリン回収剤の形状は、特に限定されず、用途に応じて、球状物、粒状物、角状物、繊維状物、糸状物、棒状物、管状物、シート状物、膜状物、板状物、俵状物、ダンボールハニカム状物、不定形状物などとすることができる。例えば、カラムに詰めて使用する場合、球状、粒状、角状物が好ましく、排水中に浸漬させて使用する場合、シート状、板状、膜状が好ましい。
 マグネシウムイオンまたはカルシウムイオンを供給する化合物とこれらを保持するケイ素を含む化合物の比率はMg(Ca)とSiとの質量比(Mg(Ca):Si)で1:0.01から1:20が好ましい。マグネシウムイオンまたはカルシウムイオンを供給する化合物の比率が少ないと、リンの回収効率が低下することが好ましくない。ケイ素を有する化合物の比率が低すぎると、リン回収剤の強度が低く、リンの回収処理後にリン回収剤の回収が困難になることが好ましくない。
 また、アンモニア性窒素を有する排水中において、回収剤の表面に存在するマグネシウムイオンまたはカルシウムイオンが、一定量であれば、排水中のリン酸イオンと反応し沈殿物を生じ、排水中からのリン酸イオンの除去に貢献する。この一定量は、上記比率を満たすことで、達成可能な量である。
 なお、マグネシウムイオンやカルシウムイオンが回収剤の表面に存在することによるリン除去性能の向上は、原理的にはこれらが水中のリン酸イオンとの反応によってリンを直接除去しているものと考えられる。従って、リン回収剤において、マグネシウムイオンまたはカルシウムイオンを供給する化合物の少なくとも一部はリン回収剤の表面に存在していることが好ましい。製造プロセス等の理由により、マグネシウムイオンまたはカルシウムイオンを供給する化合物を選択的にリン回収剤の表面に存在させることが困難であれば、リン回収剤にマグネシウムイオンまたはカルシウムイオンを供給する化合物が分散していることが好ましい。
 また、リン回収剤は多孔質体であると、その比表面積が大きくなり、比表面積が大きくなることで、リンの回収効率が上がることが好ましい。そこで、リン回収剤のBET比表面積は、0.1m/g以上であることが好ましく、10m/g以上も好ましい。また、リン回収剤のBET比表面積は、500m/g以下であることが好ましく、100m/g以上も好ましい。また、孔内において反応して回収されたリンは孔内にとどまり易く、また、排水との接触率が高くなり、リン回収率が高くなるため、リン回収剤は孔を有するものが好ましく、孔を多数有するものが好ましい。リン回収剤の気孔率は、大きくなるほど当該空孔内で、回収剤がマグネシウムイオンまたはカルシウムイオンを含むことに由来する回収作用も生じることから、回収剤全体としての回収量が増大する。一方、気孔率が大きくなりすぎると、回収剤の強度が低下し、実用に耐え得るような強度を有しない場合がある。このような観点から、気孔率の上限は80%であることが必要であり、さらには60%であることが好ましい。また、気孔率の下限は10%が好ましく、好ましくは20%、特に好ましくは25%である。下限値は35%や40%でもよい。
 さらに、リン回収剤の孔径は、小さくなるほど効率的にリンと接触するため、排水中のイオンの空孔内に回収されるイオンの量が増大して回収能が高くなるので好ましいが、あまり小さくなりすぎると、回収剤の空孔内への液体、すなわち排水の浸透性が悪くなるので逆に回収剤の空孔内に吸着されるイオンの量が減少し、これによって回収能が減少する場合がある。このような観点から、回収剤の孔径は、0.01μm以上500μmの範囲が好ましく、また、0.01μm以上100μmの範囲がより好ましく、0.01μm以上50μmの範囲がさらに好ましい。回収剤の孔径は、0.1μm以上も好ましい。上記気孔率及び孔径は、例えば水銀圧入法による細孔分布測定により測定することができる。
 本回収剤は、マグネシウムイオンまたはカルシウムイオンとケイ素から成り、そのリン除去性能は主に、本回収剤に含まれるマグネシウムイオンまたはカルシウムイオンと排水中のリン酸イオンおよびアンモニウムイオンとの反応による除去である。
 したがって、本実施形態のリン酸イオンの回収剤は、上述したように、回収剤中のマグネシウムイオンまたはカルシウムイオンが排水中に溶出することによって、リン酸イオンを含む沈殿物を生成し、これを回収剤で回収することによって排水からのリン酸イオンの除去を行うことができ、さらに、本回収剤の表面に存在するマグネシウムイオンまたはマグネシウム化合物、カルシウムイオンまたはカルシウム化合物等によるリン酸イオンと反応によっても排水中のリン酸イオンを除去することができる。したがって、本実施形態のリン酸イオンの回収剤は、排水中のリン酸イオンを高効率に除去することができる。
 以上説明したように、本実施形態のリン回収剤は、例えば上記一般式で示されるような、マグネシウムイオンまたはカルシウムイオンを含むことによる回収効果、並びに多孔質体であることに起因する表面積増大による上記回収効果の促進、及び回収剤の空孔自体による回収効果によって、排水中のイオンに対して極めて高い回収能を示す。
 なお、本実施形態の回収剤が多孔質を示すのは、以下に説明するような製造方法、主として造粒の工程に起因するものである。
(リン回収剤の形態)
 (リン回収剤の製造方法)
 次に、本実施形態のリン回収剤の製造方法について説明する。
 リン回収剤の製造方法は、水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、酸化カルシウム、炭酸マグネシウムと炭酸カルシウムの中から選ばれた1種以上の化合物と可溶性ケイ酸塩非晶質体が含まれた混合物を成形する工程と、成形された前記混合物に対して熱処理を施す工程と、熱処理が施された前記混合物に対して酸処理を施す工程とを有することを特徴とする。
 (混合工程)
 粉状の水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、酸化カルシウム、炭酸マグネシウムと炭酸カルシウムの中から選ばれる1種以上の化合物と可溶性ケイ酸塩非晶質体とを混合して、混合物を調整する。
 可溶性ケイ酸塩非晶質体として水ガラスを用いる場合では、水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、酸化カルシウム、炭酸マグネシウムと炭酸カルシウムの中から選ばれる1種以上の化合物と水ガラスの質量比率は、Mg(Ca)[水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、酸化カルシウム、炭酸マグネシウムと炭酸カルシウムの中から選ばれる1種以上の化合物に含まれるマグネシウム原子とカルシウム原子の総質量]とSiの質量比で表すと1:0.01から1:20が好ましい。さらに好ましくは、1:0.05から1:10であり、もっとも好ましくは1:0.1~1:5である。水ガラス(Si)の比率が大きくなりすぎると、リンの回収反応に必要なマグネシウムイオンやカルシウムイオンが十分に排水に供給できなくなることでリンの回収性能が低下することが好ましくない。また、水ガラスの比率が小さすぎると、マグネシウム化合物およびカルシウム化合物を保持するケイ素化合物の良が少なくなり、造粒体を成形することが困難になるため好ましくない。可溶性ケイ酸塩非晶質体として水ガラス以外のものを用いる場合は、SiOの質量を基準に換算すればよい。
 実施形態のリン回収剤に使用される可溶性ケイ酸塩非晶質体としては、例えば、ケイ酸カリウムやケイ酸ナトリウム等を用いることができるが、水ガラスが最も好ましい。なお、水ガラスとは、一般式[QSiO・LO](Lはアルカリ金属、Qは正の整数)で表される水溶性アルカリ金属ケイ酸塩である。
 (成形工程)
 次に、調整された混合物(スラリー)を成形する。混合物を、造粒機を用いて様々な形状に成形することができ、例えば、ストランドカット、シートカット等の押し出し造粒法を含む押出成形法、圧縮成形法、加圧成形造粒法、転動造粒法および製丸法等任意の造粒法を用いて成形する。
 (熱処理工程)
 次に、成形された混合物に熱処理を施す。熱処理では、例えば50℃以上600℃以下で成形された混合物を加熱する。加熱の温度としては、さらに好ましくは50℃以上500℃以下であり、最も好ましくは50℃以上300℃以下である。
 ここで、熱処理と酸処理の必要性について説明する。水ガラスと酸化マグネシウムまたは水酸化マグネシウムまたは酸化カルシウムまたは水酸化カルシウムを含む混合物を、常温で乾燥させて形成された成形物は、多孔質構造を形成しづらく、また、耐水性およびリン除去性能が良くない。この問題を解決するため、本実施形態に係る製造方法では、可溶性ケイ酸塩非晶質体、例えば、水ガラスを用いて成形体を成形し、熱処理(乾燥)した後、熱処理した成形体に酸処理を施すことで、多孔質性および耐水性およびリン除去性能を向上させる。
 成形体に熱処理を施すことで、多孔質な成形体を得ることができる。また、熱処理した成形体に酸処理を施すことで、さらに多孔質性が向上し、酸処理によって表面の反応を促進するためリン除去性能が向上する。
 (酸処理工程)
 熱処理を施した混合物に対して酸処理を施す。例えば、0.01mol/l以上1mol/l以下の酢酸に加熱処理をした混合物を浸漬等させる。なお、本例では、酢酸を用いた酸処理を具体例として説明したが、これに限定されるものではなく、各種の酸が利用可能であり、たとえば、硫酸や塩酸を用いることができる。
 なお、酸処理を施すことでナトリウム塩を全て洗い流すことが可能であるが、全て洗い流すためには酸処理の工程が長時間または工程数が多数必要であることや、ナトリウム塩によって排水に緩衝作用が起こる。または、マグネシウムイオンやカルシウムイオンが溶出しやすくなるため、リンとの反応性が高くなる。よって、ナトリウム塩は残っていても良い。
 (洗浄工程)
 熱処理および酸処理を施した混合物に対して、例えば蒸留水またはエタノールを用いてナトリウム塩などを洗浄する。なお、リン回収性能に影響がなければ、本工程は行わなくても良い。
 (粉砕工程)
 成形されたものを、粉砕機や整粒機などを用いて大きさを任意に調整することができるが、成形体の使用方法によってはこの工程は用いなくても良い。
(リン回収剤の使用方法)
 本実施形態におけるリン回収剤の使用方法について説明する。
 本実施形態におけるリン回収剤の使用方法は極めて簡易であって、上述のようにして得たリン回収剤を排水に接触させることによって実施する。これによって、上述した原理、すなわち、リン回収剤に含まれるまたは表面のマグネシウムイオンまたはカルシウムイオンが排水中のイオンと結合することにより、排水中のイオンを回収できるものである。さらに、上記リン回収剤においては、空孔内に上記排水が取り込まれるため、この空孔内においても上述したリン酸イオン回収の反応が行われるとともに、空孔内にもイオンが直接回収されるようになる。
 したがって、水酸化マグネシウムまたは酸化マグネシウムまたは水酸化カルシウムまたは酸化カルシウムを含む粉体のイオン回収剤に比較して、本実施形態のリン回収剤は、リン除試験後のリン回収剤を容易に回収することが可能である。
 上記リン回収剤を排水と接触させる具体的な方法としては、例えば、上記イオン回収剤を排水中に投入し、必要に応じて撹拌などをしてイオンを回収したあと、沈降させる方法が挙げられる。この方法は、比較的大量の排水を処理する場合に有効な方法である。この方法によると、水質浄化設備が比較的大型になることが懸念点であるが、大量の排水を一度に処理できるという利点がある。
 また、上記リン回収剤をカラムに充填し、このカラム中に排水を導入することで接触させ、イオンの回収を行うこともできる。これらの方法は、処理装置が比較的小規模となるが、排水処理量も限定されるので、少量の排水を処理するのに好適である。
 なお、本実施形態におけるリン回収剤は、任意のpHの排水に対して適用することができる。しかしながら、強酸酸性下においてはイオン回収剤の溶解が生じる可能性がある。したがって、本実施形態によるイオン回収剤を適用するのに好ましいpH範囲は2.0以上14.0以下であり、更に好ましいpH範囲は3.0以上13.0以下である。
 (組成の評価・測定方法)
 含水量はTGで測定し、蛍光X線と化学分析を用いて定量した。
 具体的には、蛍光X線は、定性は、蛍光X線スペクトル中のピークの各元素への帰属を決定した。定量は、蛍光X線スペクトルの強度測定(FP法と検量線法)によって行った。FP法は測定強度から理論的に各元素の感度係数を求め、検出された元素の合計で濃度を100%とする計算方法である。また検量線法は、濃度の分かっているサンプルを濃度を変えて数点測定し検量線を作成し、その後、未知試料を測定して濃度を定量する方法である。
 次に、化学分析は、イオンクロマトグラフやICP発光分光分析装置を用いた。試料を例えば硝酸で完全溶解させ、各種イオン濃度を測定し定量した。
 (ク溶性リン酸量の測定方法)
 水質浄化試験後の回収物を液温30℃の2wt%クエン酸溶液に60分浸漬させた後、回収物を取り出しまたはろ過し、クエン酸溶液中のリン濃度をICP発光分光分析装置(SII ナノテクノロジー製 SP-1500V)で測定した。
(実施例1-1)
 原料として、水酸化マグネシウムと水ガラス(ケイ酸ナトリウム溶液:SiO 35%以上38%以下、NaO 17%以上19%以下)と蒸留水とを1:0.5:10の重量比で混合しした(混合工程)。その後、混合物をテフロン(登録商標)ビーカーに流し込み、50℃の乾燥機中で24時間乾燥させた。その後、さらに電気炉にて、300℃で3時間熱処理を施した(熱処理工程)。次に、熱処理した混合物を粉砕機を用いて粉砕し、粒径が2mm程度のものを0.1Mの酢酸に1時間浸漬させ(酸処理工程)、供試体1-1を得た。供試体1-1は[MgO・0.48(SiO)・8HO・0.01(CHCOONa)]で表されることを確認した。
 一方、リン酸イオン濃度60mg/l、マグネシウムイオン濃度24mg/l、炭酸イオン濃度3000mg/l、アンモニウムイオン500mg/lとなるよう調整された混合水溶液を排水模擬液として準備した。この排水模擬液250mLに62.5mgの供試体1-1を投入し、24時間混合撹絆して水質浄化処理を行った。処理後、供試体を回収し、回収した供試体のく溶性を評価した。ク溶性とはリン酸質肥料に求められる特性であり、液温30℃の2wt%クエン酸溶液に浸漬させた際に溶出するリン濃度(P)を測定し、それをリン酸(P)に換算した後、回収物あたりの溶出量の割合を算出したものを指す。リン酸質肥料は、ク溶性が高いことが求められるため、クエン酸によって溶出されるリンの割合が少しでも高いほうが好ましい。具体的に言うと、15wt%以上であることが望まれる。ク溶性の評価は、水質浄化処理試験によってリンを吸着した供試体をクエン酸溶液に浸漬し、溶出したリンの割合を算出した。これらについて得られた結果は表1に示す通りであった。
 次に、供試体1-1の形状について、供試体1-1の気孔率および細孔径を水銀圧入法による細孔分布測定により確認した。また、供試体1-1の浸漬時の強度を調べるため、水(蒸留水)50mLに供試体1-1を5粒添加した後攪拌し、崩壊するまでの時間を測定した。崩壊の定義としては、添加した供試体が粉状になったとき、つまりそれぞれの粒の大きさが1/5以下となった時を崩壊とし、その経過時間を確認した。最長の攪拌時間を24時間とする。なお、24時間後に崩壊しなかったものは24時間とする。さらに、供試体1-1の取扱性を評価するために、供試体1-1に対して上記排水模擬液を通水させた際のろ過時間を測定した。得られた結果を表1に示す。
(実施例1-2)
 焼成温度を50℃にした以外は実施例1-1と同様の方法により供試体1-2を得た。供試体4は[MgO・0.49(SiO)・10HO・0.008(CHCOONa)]で表されることを確認した。次いで、供試体1-4を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(実施例1-3)
 蒸留水添加量を20gにし、水ガラスの添加量を5.6gにし、焼成温度を600℃にした以外は実施例1-1と同様の方法により供試体1-3を得た。供試体1-3は[MgO・5.44(SiO)・7HO・0.01(CHCOONa)]で表されることを確認した。次いで、供試体1-3を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(実施例1-4)
 蒸留水添加量を4gにし、焼成温度を50℃にした以外は実施例1-1と同様の方法により供試体1-4を得た。供試体1-4は[MgO・0.49(SiO)・10HO・0.009(CHCOONa)]で表されることを確認した。次いで、供試体1-4を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(実施例1-5)
 蒸留水添加量を20gにし、水ガラスの添加量を9.0gにし、最大長径が40mmになるように粉砕した以外は実施例1-1と同様の方法により供試体1-5を得た。供試体1-5は[MgO・8.74(SiO)・10HO・0.008(CHCOONa)]で表されることを確認した。次いで、供試体1-5を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(実施例1-6)
 水ガラスの添加量を0.1gにした以外は実施例1-1と同様の方法により供試体1-6を得た。供試体8は[MgO・0.01(SiO)・5HO・0.005(CHCOONa)]で表されることを確認した。次いで、供試体1-6を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(実施例1-7)
 蒸留水添加量を20gにし、水ガラスの添加量を20gにした以外は実施例1-1と同様の方法により供試体1-7を得た。供試体1-7は[MgO・19.41(SiO)・8HO・0.005(CHCOONa)]で表されることを確認した。次いで、供試体1-7を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(実施例1-8)
 原料として酸化マグネシウムを用いた以外は実施例1-1と同様の方法により供試体1-8を得た。供試体1-8は[MgO・0.34(SiO)・5HO・0.005(CHCOONa)]次いで、供試体1-8を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(実施例1-9)
 原料として水酸化カルシウムを用いた以外は実施例1-1と同様の方法により供試体1-9を得た。供試体1-9は[CaO・0.62(SiO)・6HO・0.004(CHCOONa)]次いで、供試体1-9を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(実施例1-10)
 原料として酸化カルシウムを用いた以外は実施例1-1と同様の方法により供試体1-10を得た。供試体1-10は[CaO・0.47(SiO)・6HO・0.004(CHCOONa)]次いで、供試体1-10を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
 (実施例1-11)
 酸処理工程で0.1Mの硫酸を使用した以外は実施例1-1と同様の方法により供試体1-11を得た。供試体1-11は[MgO・0.49(SiO)・5HO・0.004(NaSO)]で表されることを確認した。次いで、供試体1-11を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
 (実施例1-12)
 酸処理工程で0.1Mの塩酸を使用した以外は実施例1-1と同様の方法により供試体1-12を得た。供試体1-12は[MgO・0.49(SiO)・5HO・0.005(NaCl)]で表されることを確認した。次いで、供試体1-12を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(比較例1-1)
 水酸化マグネシウム(粉状)を造粒することなく、そのまま吸着剤の供試体1-13として用い、実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(比較例1-2)
 蒸留水添加量を2gになるように添加した以外は実施例1-1と同様の方法により供試体1-14を得た。供試体1-14は[MgO・0.49(SiO)・2HO・0.005(CHCOONa)]で表されることを確認した。次いで、供試体1-14を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(比較例1-3)
 蒸留水添加量を20gにし、水ガラスの添加量を6.5gにし、焼成温度を600℃以外は実施例1-1と同様の方法により供試体1-15得た。供試体1-15は[MgO・6.30(SiO)・5HO・0.005(CHCOONa)]で表されることを確認した。次いで、供試体1-15を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(比較例1-4)
 蒸留水添加量を3gにし、水ガラス添加量を0.3gにし、焼成温度を50℃にした以外は実施例1-1と同様の方法により供試体1-16を得た。供試体1-16は[MgO・0.29(SiO)・HO・0.001(CHCOONa)]で表されることを確認した。次いで、供試体1-16を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(比較例1-5)
 蒸留水添加量を30gにし、水ガラスの添加量を9.0gにし、最大長径が40mmになるように粉砕した以外は実施例1-1と同様の方法により供試体1-17を得た。供試体1-17は[MgO・8.74(SiO)・10HO・0.001(CHCOONa)]で表されることを確認した。次いで、供試体1-17を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(比較例1-6)
 水ガラスの添加量を0.07gにした以外は実施例1-1と同様の方法により供試体1-22を得た。供試体1-18は[MgO・0.08(SiO)・5HO・0.001(CHCOONa)]で表されることを確認した。次いで、供試体1-18を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(比較例1-7)
 蒸留水添加量を25gにし、水ガラスの添加量を21.0gにした以外は実施例1-1と同様の方法により供試体1-19を得た。供試体1-23は[MgO・20.4(SiO)・10HO・0.001(CHCOONa)]で表されることを確認した。次いで、供試体1-19を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
(比較例1-8)
 蒸留水添加量を25gにし、水ガラスの添加量を25.0gにした以外は実施例1-1と同様の方法により供試体1-20を得た。供試体1-20は[MgO・24.3(SiO)・10HO・0.001(CHCOONa)]で表されることを確認した。次いで、供試体1-20を用いて実施例1-1と同様の方法で水質浄化処理および造粒物の評価を行った。得られた結果は表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1-1~1-12ではいずれもク溶性リン酸量が15wt%以上と高かった。また。供試体の気孔率はいずれも30~80%であり。細孔径は0.1~500μmであった。
 さらに、実施例1-1~1-12では、いずれも水質浄化処理後の供試体の回収に関してろ過などの必要性はなく簡単に回収できたことから、実用上の取扱いにおいても何ら問題がないことが分かった。
 一方、比較例1-1ではク溶性リン酸量は高いが粉状であり、比較例1-2、比較例1-4および比較例1-6では気孔率が低すぎたり孔径が小さすぎたりするため、被処理水との接触性または通水性が悪くなりク溶性リン酸量が低くなった。比較例1-3および比較例1-5では、孔径が大きすぎるまたは気孔率が高すぎるため、強度が弱く24時間の攪拌で崩壊することが分かった。また、比較例1-7および1-8では、水ガラスの量が規定範囲より多すぎるため、リン回収剤内部への被処理水の浸透性が低下しク溶性リン酸量が低かった。
 崩壊時間に関しては、気孔率および孔径が実施例1-1~1-12のように上記範囲内であれば、いずれも24時間崩壊しなかった。しかし、気孔率または孔径が上記範囲より高い場合、強度が弱くなりいずれも24時間浸漬には耐えられなかった。また、気孔率または孔径が上記範囲より小さい場合、24時間崩壊しないものの、排水への接触率が悪いためリン回収量が低かった。なお、今回実施形態得は、13~24時間迄に崩壊しなかったものは発生しなかった。
(第2の実施形態)
(リン回収剤)
 実施形態に係るリン回収剤は、前記したように一般式(II-I)で表される。
 aMgO・bCaCO・cSiO・d(MgCa)CO・g(MgSi(OH))・l((MgO)・(CaCO)・xHO  ・・・ (II-I)
(但し、a+b+d+g+l=1、0<a<1、0≦b,d,g,l≦1、0<c<0.5、0≦e,f,h,i,j≦1、e+f=1、h+i+j+k=1、0<m≦1、m+n=1、0≦x≦8である)
 一般式(II-I)において、aの値はa>0が必要であり、aの値が大きいほどリンとの反応性は大きくなるが、強度は弱くなり、aの値が小さいほどリンとの反応性は小さくなるが、強度は強くなる。cの値は0<c<0.5であることが必要である。
 一般式(II-I)において、cの値が大きいほどケイ酸塩バインダ量が多いことを示しており、cの値が大きいとリンとの反応性が小さくなる。望ましくは、0<c<0.5である。
 一般式(II-I)において、a、b、d、gは担体の構成比を示しており、a+b+d+g+l=1である。
 一般式(II-I)において、lはMgOとCaCOの両方からなる。以下マグネシウム化合物と記載する化合物の量を示す。
 一般式(II-I)において、e,f,m,nは炭酸マグネシウム塩の組成比を示しており、e+f=1、m+n=1である。
 一般式(II-I)において、h,i,j,kはケイ酸マグネシウム塩の組成比を示しており、h+i+j+k=1である。
一般式(II-I)において、xは結晶水の量を示す。xの値は小さい方が良い。
 次に、実施形態のリン回収剤の構造について説明する。図2と図3の概念図に示す様に、リン回収剤2は担体(1)表面にバインダ(3)を介して、マグネシウム化合物(2)を保持させたもの(図2)又はリン回収剤3は担体(1)表面にバインダ(3)を保持させたもの(図3)である。
 上記、組成及び構成を有するリン回収剤において、リン酸マグネシウム及び又はリン酸アンモニウムマグネシウムとの複合酸化物の生成に必要なマグネシウムは、他からマグネシウムを添加することなく、担体(1)及び又はマグネシウム化合物(2)のアンモニア性窒素による逐次的な分解によって供給される。担体(1)及び又はマグネシウム化合物(2)のアンモニア性窒素による逐次的な分解にともなって、マグネシウムイオンがリン回収剤表面に供給されるので、リン酸マグネシウム及び又はリン酸アンモニウムマグネシウムとの複合酸化物の結晶化はリン回収剤表面で起こる。そのため、微細なリン酸マグネシウム及び又はリン酸アンモニウムマグネシウムとの複合酸化物が液中に遊離することなく、リン回収剤表面にリン酸マグネシウム及び又はリン酸アンモニウムマグネシウムとの複合酸化物が堆積するので、効率よくリンを回収することができる。
 まず、担体(1)について説明する。担体は、一般式が次式(II-II)、(II-III)で表される化合物であることが望ましい。
 MgSi(OH)・nHO・・・(II-II)    (但し、0<a,b,c,d<1 a+b+c+d=1である)
 aMgO・b(MgCa)CO・・・(II-III)     (但し、0<a,b,c,d<1 c+d=1である)
 一般式(II-II)はケイ酸マグネシウム塩の組成を示しており、0<a,b,c,d<1 a+b+c+d=1である。
 一般式(II-III)は炭酸マグネシウム塩の組成を示しており、(但し、0<a,b,c,d<1 c+d=1である)である。
 一般式(II-II)、(II-III)で示される組成は肥料として有効な成分で構成されている。
 また、担体(1)の素材としては、ドロマイト、半焼ドロマイト、セピオライトから選ばれた1種類以上の粘土鉱物が好適に用いられる。これらの粘土鉱物は、結晶構造が層状構造であったり、空隙を伴う多孔質構造であったりするため、リン酸イオン、アンモニア性イオン、マグネシウムイオンの流通が容易となり、リンとの反応性が高まる。
 担体(1)の形状としては、粒状、板状、棒状などがその用途に応じて適宜選択される。担体は分級機などを用いて分級する。担体(1)の大きさに関しては、5mmφのふるいを通過し、0.3mmφのふるいで残存する大きさが望ましい。粒状の場合には、粒子径が0.3mm以上5mm以下の球形が好ましい。球形にすることで、リン回収剤を充填層に充填したときに、適度な空隙が生じ、この空隙を通じて被処理水が円滑に流れる。リン回収能を発揮するためには、粒子径が小さいほど好ましいが、0.3mm未満になると、処理水流通時に圧力損失が大きくなり、操作性が悪くなる。また、リン回収剤を回収するときの回収操作が煩雑になる。粒径が大きくなると、リン回収性能が悪くなるので、粒子径は5mm以下が望ましい。また、担体(1)の形状が球形以外の場合の担体の大きさは、5mmφのふるいを通過し、0.3mmφのふるいで残存する大きさが望ましい。粒径は顕微鏡等で、サブミリオーダーの精度で測定が可能な程度にまで像を拡大し、各粒子の粒径を測定する。
 リン回収剤の大きさは、5mmφのふるいを通過し、0.3mmφのふるいで残存する大きさが望ましい。粒状の場合には、粒子径が0.3mm以上5mm以下の球形が好ましい。球形にすることで、リン回収剤を充填層に充填したときに、適度な空隙が生じ、この空隙を通じて被処理水が円滑に流れる。リン回収能を発揮するためには、粒子径が小さいほど好ましいが、0.3mm未満になると、処理水流通時に圧力損失が大きくなり、操作性が悪くなる。また、リン回収剤を回収するときの回収操作が煩雑になる。粒径が大きくなると、リン回収性能が悪くなるので、粒子径は5mm以下が望ましい。粒径は顕微鏡等で、サブミリオーダーの精度で測定が可能な程度にまで像を拡大し、各粒子の粒径を測定する。
 担体(1)は、気孔率10%以上80%以下、30%以上80%以下であって、孔径が0.01μm以上1mm以下、0.1μm以上1mm以下の範囲であることが望ましい。気孔率が大きくなりすぎると、リン回収剤の強度が低下し、実用に耐え得るような強度を有しなくなる。また、気孔率が低くなると、被処理水の浸透性が悪くなり、リン回収能が低下する場合がある。このような観点から気孔率は10%~80%、30~80%であることが望ましい。気孔径が小さくなりすぎると、担体内への被処理水の浸透性が悪くなり、リン回収能が低下する場合がある。また、孔径が大きい孔が多数存在すると、担体強度が低下する。このような観点から、担体の孔径は、0.01μm以上1mm以下、0.1μm以上1mm以下の範囲であることが望ましい。
 上記気孔率及び孔径は、例えば水銀圧入法による細孔分布測定により測定することができる。
 なお、リン回収剤の気孔率は、10%~80%、30~80%が好ましい。
 次に、マグネシウム化合物(2)について説明する。このマグネシウム化合物(2)としては、酸化マグネシウム、酸化マグネシウム、ドロマイト、半焼ドロマイト、タルクから選ばれた1種類以上の物質であることが望ましい。これらの物質は、リン酸イオン及びアンモニア性窒素含有被処理排水において、リン酸イオンと結合するマグネシウムまたはマグネシウムとカルシウムを含む成分である。
 このマグネシウム化合物(2)は、バインダ(3)を介して担体(1)表面に保持されている。表面に保持されたマグネシウムイオンが、排水中のリン酸イオン又はリン酸イオンとアンモニア性窒素と反応し、リン酸マグネシウムやリン酸アンモニウムマグネシウムとの複合酸化物として、リンが回収される。また、この作用により排水中からリン酸イオンが除去されることになる。マグネシウム化合物にカルシウムが含まれる場合は、このカルシウムもマグネシウムと同様にリンの回収に寄与する。
 なお、担体にマグネシウム化合物(2)の成分が含まれている場合は、マグネシウム化合物を用いなくてもよい。
 担体表面を水ガラスに浸漬などにより塗布させ、加熱処理および酸処理することにより、担体表面が多孔質となり、マグネシウムイオンやカルシウムイオンと、リンおよびアンモニア性窒素との反応性が高まり、リン回収率が増加する。
 マグネシウム化合物(2)の粒径が大きすぎると、リンとの反応性が低下し、リン酸マグネシウム(リン酸カルシウム)やリン酸アンモニウムマグネシウム(リン酸アンモニウムマグネシウム)との複合酸化物が生成しにくくなる。このような観点から、マグネシウム化合物の粒子径は300μm以下が望ましい
 バインダ(3)は、マグネシウム化合物(2)を担体表面に保持させるものであり、担体(1)及びマグネシウム化合物(2)に対して結合可能なバインダが選択され、望ましくはマグネシウムイオンまたはカルシウムイオンと反応して、不溶性のマグネシウムケイ酸塩化合物またはカルシウムケイ酸塩化合物を生成する可溶性ケイ酸塩であることが望ましい。バインダ(3)の具体例としては、水ガラスを熱処理したものが好ましい。なお、水ガラスとは、一般式[QSiO・LO](Qは正の整数、Lはアルカリ金属)で表される水溶性アルカリ金属ケイ酸塩であり、水ガラスを熱処理した二酸化ケイ素、ケイ酸ナトリウム、ケイ酸カリウムなどが挙げられる。
 マグネシウム化合物(2)を用いない場合においては、バインダ(3)により浸漬させた担体を加熱処理及び酸処理すると、担体表面は多孔質となり、リン回収量が増加する。バインダ(3)の具体例としては、水ガラスが好ましい。
 そこで実施形態のリン回収剤は、ドロマイト、半焼ドロマイトとセピオライトから選ばれた1種類以上の担体と前記担体の表面にケイ酸、アルカリケイ酸及びアルカリ土類ケイ酸塩の中から選ばれた1種類以上の化合物と、水酸化マグネシウム、酸化マグネシウム、ドロマイト、半焼ドロマイト、セピオライトとタルクの中から選ばれた1種類以上のマグネシウム化合物が保持されていることが好ましい。
 なお、担体表面を水ガラスに浸漬させ、加熱処理及び酸処理することで、表面が多孔質となり、マグネシウムイオンやカルシウムイオンと、リン及びアンモニア性窒素との反応性が高まりリン回収量が増加する。
 担体(1)に可溶性ケイ酸塩バインダを用いてマグネシウム化合物(2)を保持させるために、常温で乾燥させて作製した成形体は、マグネシウム化合物(2)を保持した担体(1)表面が多孔質構造を形成しにくいので、リン回収性能が良好ではない。しかしながら、この成型物を加熱処理及び酸処理をほどこすことで、多孔性が付与される。成形体に加熱処理及び酸処理することで、担体表面に多孔性が付与されリン回収性能が向上する。
 また、式(II-II)又は式(II-III)又はドロマイト、半焼ドロマイト、セピオライトから選ばれた1種類以上の担体に可溶性ケイ酸塩を含浸させ、加熱及び酸処理することで、担体表面に多孔性が付与され、リン回収性能が向上する。
 加熱処理では、成形体を50℃以上700℃以下で加熱する。もっとも好ましくは50℃以上300℃以下である。
 酸処理では、塩酸、硫酸や酢酸等の各種酸に成形体を含浸させる。例えば0.01mol/l以上1mol/l以下の酢酸が利用される。
以上説明したように、実施形態のリン回収剤によれば、マグネシウム含有鉱物担体(1)表面に可溶性ケイ酸塩をバインダ(3)として、マグネシウム化合物(2)を保持させているので、回収性能にすぐれ、かつ微細粒子が発生しにくいリン回収剤を得ることができる。また、ク溶性リン酸量が大きくリン酸肥料として有効に利用することができる。
(リン回収剤の製造方法)
 次に、本実施形態のリン回収剤の製造方法について説明する。
 実施形態のリン回収剤の製造方法は、水酸化マグネシウム、酸化マグネシウム、ドロマイト、半焼ドロマイト、セピオライトとタルクの中から選ばれた1種類以上のマグネシウム化合物と可溶性ケイ酸塩との混合物又は可溶性ケイ酸塩を、ドロマイト、半焼ドロマイトとセピオライトから選ばれた1種類以上の担体に塗布して成型する成型工程と、前記成型した物を加熱する工程と、前記加熱した物を酸処理する工程と、を有するリン回収剤の製造方法
(塗布液作製工程)
 粉末状のマグネシウム化合物と可溶性ケイ酸塩水溶液と混合して、スラリー状の混合物を得る。
(塗布工程)
 次に、得られたスラリー状の混合物を担体に塗布する。塗布工程は特に問わないが、転動造粒法を用いることができる。担体に転動させながら、上記スラリー状の混合物を適宜添加しながら、担体表面にスラリー溶液を塗布する。なお、転動造粒時にマグネシウム化合物や水を適量添加してもよい。なお、マグネシウム化合物と可溶性ケイ酸塩のモル比率は、Mg/Si比で1:25~25:1が好ましい。Si比率が大きくなりすぎると、リン回収性能が低下する。また、Si比率が小さすぎると、マグネシウム化合物が担体に保持されない。
 なお、マグネシウム化合物を用いない場合はこの操作を省略することができる。
(熱処理工程)
  次に、得られた成型体に熱処理を施す。加熱処理では、成形体を50℃以上600℃以下で加熱する。もっとも好ましくは50℃以上300℃以下である。
(酸処理工程)
 熱処理を施された成型体に対して、酸処理を施す。酸処理では、塩酸、硫酸や酢酸等の各種酸に成形体を含浸させる。例えば0.01mol/l以上1mol/l以下の酢酸が利用される。
(水洗処理)
  酸処理を施された成型体に対して水洗処理をほどこす。酸処理工程で生成された塩化ナトリウムや酢酸ナトリウム等の塩類を除去する。なお、水洗処理は実施しなくてもよい。
(乾燥処理)
 酸処理及び水洗処理を施された成型体に対して、必要により乾燥処理をほどこす。乾燥処理では、成形体を50℃以上100℃以下で加熱してもよい。
 以上に説明した製造方法によれば、マグネシウム含有鉱物担体(1)表面に可溶性ケイ酸塩(3)をバインダとして、マグネシウム化合物(2)を保持させたリン回収剤を得ることができる。
(塗布液作製工程)
 可溶性ケイ酸塩水溶液を作製する。可溶性ケイ酸塩水溶液としては、水ガラスが好ましい。
(塗布工程)
 次に、得られた可溶性ケイ酸塩水溶液を担体に塗布する。塗布工程は特に問わないが、転動造粒法を用いることができる。担体に転動させながら、上記スラリー状の混合物を適宜添加しながら、担体表面に可溶性ケイ酸塩水溶液を塗布する。なお、転動造粒時に水を適量添加してもよい。なお、マグネシウム化合物と可溶性ケイ酸塩のモル比率は、Mg/Si比で1:5から50:1が好ましい。Si比率が大きくなりすぎると、リン回収性能が低下する。また、Si比率が小さすぎると、マグネシウム化合物が担体に保持されない。
(熱処理工程)
 次に、得られた成型体に熱処理を施す。加熱処理では、成形体を50℃以上600℃以下で加熱する。もっとも好ましくは50℃以上300℃以下である。
(酸処理工程)
 熱処理を施された成型体に対して、酸処理を施す。酸処理では、塩酸、硫酸や酢酸等の各種酸に成形体を含浸させる。例えば0.01mol/l以上1mol/l以下の酢酸が利用される。酸処理によって、NaSO、NaClとCHCOONaのいずれか1種以上が生成される。これらの塩は水洗処理によって、一部又は全部が溶出する。
(水洗処理)
 酸処理を施された成型体に対して水洗処理をほどこす。酸処理工程で生成された塩化ナトリウムや酢酸ナトリウム等の塩類を除去する。なお、水洗処理は実施しなくてもよい。
(乾燥処理)
 酸処理及び水洗処理を施された成型体に対して、乾燥処理をほどこす。乾燥処理では、成形体を50℃~100℃で加熱する。
 以上に説明した製造方法によれば、マグネシウム含有鉱物担体(1)表面に可溶性ケイ酸塩(3)をバインダとして、マグネシウム化合物(2)を保持させたリン回収剤を得ることができる。
(リン回収剤の使用方法)
 本実施形態におけるリン回収剤の使用方法について説明する。
 本実施形態におけるリン回収剤の使用方法は極めて簡易である。上記リン回収剤をリン及びアンモニア性窒素を含有している排水に接触させることによって実施する。これによって、上述したように、リン回収剤に含有されているマグネシウムイオンがリン回収剤表面に供給されるので、リン酸マグネシウム及び又はリン酸アンモニウムマグネシウムとの複合酸化物の結晶化はリン回収剤表面で起こる。そのため、微細なリン酸マグネシウム及び又はリン酸アンモニウムマグネシウムとの複合酸化物が液中に遊離することなく、リン回収剤表面にリン酸マグネシウム及び又はリン酸アンモニウムマグネシウムとの複合酸化物が堆積するので、効率よくリンを回収することができる。また、マグネシウム含有鉱物担体表面に可溶性ケイ酸塩をバインダとして、マグネシウム化合物を保持させているので、強度があり耐久性にすぐれている。
 実施形態のリン回収剤が適用される排水中のアンモニア性窒素及びリン濃度には特別な制限はない。排水のpHは必要に応じて、マグネシアなどのアルカリ土類金属酸化物を用いて、pH7以上にすることが好ましい。望ましくはpH7.5~12である。pHが低い酸性排水の場合、リン回収剤の溶解がおこり、リン回収量が低下する。
 上記リン回収剤を排水と接触させる具体的な方法としては、例えば、上記リン回収剤を排水中に投入し、必要に応じて撹拌などをしてリンを回収した後、沈降させる方法が挙げられる。
 また、上記リン回収剤をカラムに充填し、このカラム中に排水を流入させることで、リン回収剤と排水を接触させ、リン回収を行うことができる。
 次に、実施例により本実施形態を更に詳細に説明する。
 なお、製造したリン回収剤のク溶性リン酸含有量は、以下の測定方法によって求めた。
 [ク溶性リン酸含有量]
 肥料分析法に基づき、1gのリン回収剤を2%クエン酸で30℃、1時間振とうし、溶解したリン酸をICP発光分析法で定量した。
 (実施例2-1)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:0.5:5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.32MgO・0.06SiO・0.68(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
 (実施例2-2)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:0.5:5の重量比で混合し、スラリー状の混合物を作製した。ドロマイト(MgCaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.3MgO・0.05SiO・0.7(MgCaCO)・2.2HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
 (実施例2-3)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:0.5:5の重量比で混合し、スラリー状の混合物を作製した。セピオライト(MgSi1230(OH))15g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.38MgO・0.07SiO・0.62(MgSi1230(OH))・1.8HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
 (実施例2-4)
 酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:0.5:5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.41MgO・0.05SiO・0.59(MgO・CaCO)・2.3HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
 (実施例2-5)
 半焼ドロマイト(MgO・CaCO 平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:0.5:5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.18MgO・0.07SiO・0.82(MgO・CaCO)・2.5HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
 (実施例2-6)
 ドロマイト(MgCaCO 平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:0.5:5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.2MgO・0.07SiO・0.8(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
 (実施例2-7)
 タルク(MgSi10(OH) 平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、4:0.5:10の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.23MgO・0.07SiO・0.77(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
 (実施例2-8)
 セピオライト(MgSi1230(OH) 平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、10:0.5:20の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.21MgO・0.07SiO・0.79(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
 (実施例2-9)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:0.5:5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.3mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.32MgO・0.06SiO・0.68(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
(実施例2-10)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:0.5:5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.32MgO・0.06SiO・0.68(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
(実施例2-11)
 半焼ドロマイト(MgO・CaCO)(平均径:300μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:0.5:5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.18MgO・0.07SiO・0.82(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
(実施例2-12)
 ケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:10の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.12MgO・0.02SiO・0.88(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
(実施例2-13)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:2:20の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.32MgO・0.23SiO・0.68(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
(実施例2-14)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:4:30の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.32MgO・0.46SiO・0.68(MgO・CaCO)・2.4HOであった。
次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
(実施例2-15)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:0.5:5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.32MgO・0.06SiO・0.68(MgO・CaCO)・0.01CHCOONa・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
(比較例2-1)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:1:0.5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:7mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.32MgO・0.06SiO・0.68(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
(比較例2-2)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:1:0.5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.1mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.32MgO・0.06SiO・0.68(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
(比較例2-3)
 半焼ドロマイト(平均径:500μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:1:0.5の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.32MgO・0.06SiO・0.68(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
(比較例2-4)
 水酸化マグネシウム(平均径:10μm)とケイ酸ナトリウム溶液(NaO:17%以上19%以下、SiO:35%以上38%以下)と蒸留水とを、1:5:35の重量比で混合し、スラリー状の混合物を作製した。半焼ドロマイト(MgO・CaCO)5g(平均径:0.5mm)を担体として用いて、転動造粒法によりスラリー状の混合物を担体上に塗布した。
 得られた成形体を、電気炉にて300℃で3時間加熱処理した。次に熱処理した成形体を、0.1Mの酢酸液に3時間浸漬し撹拌した。酸処理した成形体を蒸留水で洗浄した後、50℃の乾燥機で乾燥させた。得られたリン回収剤の組成は0.32MgO・0.68SiO・0.68(MgO・CaCO)・2.4HOであった。
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/lのリン酸イオン、500mg/lのアンモニア性窒素、3000mg/lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤を接触させた。1日振とう後、リン回収剤を回収し、ク溶性リン酸含有量を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例2-1~2-11で得たリン回収剤のク溶性リン酸含有量は15wt%以上と高かった。すなわち、本実施例によりリン回収剤はク溶性リン酸含有量が大きいリン回収剤が得られることがわかった。
 一方、比較例2-1では担体の大きさが大きいため、リン回収性能が低下した。比較例2-2では粒径が小さいために回収が困難であり、ろ過などの回収作業が必要となり実用上の取扱いが困難であることがわかった。比較例2-3では、マグネシウム化合物(2)の粒径が大きすぎたため、リンとの反応性が低下し、ク溶性リン酸含有量は低下した。比較例4ではSiO比率が高くなったために、リンとマグネシウム化合物との反応性が悪くなり、リン回収量が低下した。
 以上、本発明の実施形態を説明したが、本発明は上記実施形態そのままに限定解釈されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成することができる。例えば、変形例の様に異なる実施形態にわたる構成要素を適宜組み合わせても良い。

Claims (20)

  1.  一般式(M1Oα(M2COβ(M3(OH)1-α―β)・γSiO・δHO・εXで表される化合物を含み、(但し、α、β,γ、δ、εは、0≦α≦1、0≦β≦1、0<α+β≦1、0.01≦γ≦20、0≦δ≦10、0≦ε≦0.1の範囲の値であり、M1、M2とM3はマグネシウムとカルシウムのいずれかまたは両方の金属であり、XはNaSO、NaClとCHCOONaのいずれか1種以上である。)
     多孔質の粒子であることを特徴とするリン回収剤。
  2.  前記リン回収剤の気孔率は、10%以上80%以下であり、
     前記リン回収剤の孔径は、0.01μm以上500μm以下であり、
     前記リン回収剤の比表面積は、0.1m/g以上100m/g以下であることを特徴とする請求項1に記載のリン回収剤。
  3.  前記リン回収剤の気孔率は、30%以上80%以下であり、
     前記リン回収剤の孔径は、0.1μm以上500μm以下であり、
     前記リン回収剤の比表面積は、10m/g以上500m/g以下であることを特徴とする請求項1に記載のリン回収剤。
  4.  前記一般式で表された化合物は、マグネシウム化合物又はカルシウム化合物のいずれか又は両方の化合物とケイ酸とを含む化合物であることを特徴とする請求項1に記載のリン回収剤。
  5.  前記マグネシウム化合物又は前記カルシウム化合物の少なくともいずれか一方と前記ケイ酸のケイ素の一部は、(MgCa1-F)Si(OH)・KHO(但し、0≦F≦1、0<G,I,J<1,0≦K≦10である)Mg-Ca-Si化合物を形成していることを特徴とする請求項3に記載のリン回収剤。
  6.  水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、酸化カルシウム、炭酸マグネシウムと炭酸カルシウムの中から選ばれる1種以上の化合物と可溶性ケイ酸塩非晶質体とが含まれた混合物を成形し、成形された前記混合物に対して熱処理と酸処理を施して得られたことを特徴とする請求項2に記載のリン回収剤。
  7.  水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、酸化カルシウム、炭酸マグネシウムと炭酸カルシウムの中から選ばれた1種以上の化合物と可溶性ケイ酸塩非晶質体が含まれた混合物を成形する工程と、
     成形された前記混合物に対して熱処理を施す工程と、
     熱処理が施された前記混合物に対して酸処理を施す工程と、
     を有することを特徴とするリン回収剤の製造方法。
  8.  前記一般式が、aMgO・bCaCO・cSiO・d(MgCa)CO・g(MgSi(OH))・l((MgO)・(CaCO)・xHO(但し、a+b+d+g+l=1、0<a<1、0≦b,d,g,l≦1、0<c<0.5、0≦e,f,h,i,j≦1、e+f=1、h+i+j+k=1、m+n=1、0≦x≦8である)であることを特徴とする請求項1に記載のリン回収剤。
  9.  前記一般式は担体と前記担体の表面に保持されるマグネシウム化合物を表すことを特徴とする請求項8に記載のリン回収剤。
  10.  前記担体は、ドロマイト、半焼ドロマイトとセピオライトから選ばれた1種類以上の粘土鉱物であることを特徴とする請求項8に記載のリン回収剤。
  11.  前記マグネシウム化合物は、ケイ酸、アルカリケイ酸及びアルカリ土類ケイ酸塩の中から選ばれた1種類以上の化合物と、水酸化マグネシウム、酸化マグネシウム、ドロマイト、半焼ドロマイト、セピオライトとタルクの中から選ばれた1種類以上の化合物であることを特徴とする請求項8に記載のリン回収剤。
  12.  前記担体の粒子径は、0.3mm以上5mm以下であることを特徴とする請求項8に記載のリン回収剤。
  13.  前記マグネシウム化合物の平均粒径は300μm以下であることを特徴とする請求項8に記載のリン回収剤。
  14.  前記熱処理の温度は、50℃以上600℃以下であることを特徴とする請求項7に記載のリン回収剤の製造方法。
  15.  前記熱処理の温度は、50℃以上300℃以下であることを特徴とする請求項7に記載のリン回収剤の製造方法。
  16.  前記酸処理に用いる酸は、0.01mol/l以上1mol/l以下の酢酸、塩酸と硫酸のいずれかを用いることを特徴とする請求項7に記載のリン回収剤の製造方法。
  17.  水酸化マグネシウム、酸化マグネシウム、ドロマイト、半焼ドロマイト、セピオライトとタルクの中から選ばれた1種類以上のマグネシウム化合物と可溶性ケイ酸塩との混合物又は可溶性ケイ酸塩を、ドロマイト、半焼ドロマイトとセピオライトから選ばれた1種類以上の担体に塗布して成型する成型工程と、
     前記成型した物を加熱する工程と、
     前記加熱した物を酸処理する工程と、
     を有するリン回収剤の製造方法。
  18.  前記熱処理の温度は、50℃以上600℃以下であることを特徴とする請求項17に記載のリン回収剤の製造方法。
  19.  前記熱処理の温度は、50℃以上300℃以下であることを特徴とする請求項17に記載のリン回収剤の製造方法。
  20.  前記酸処理に用いる酸は、0.01mol/l以上1mol/l以下の酢酸、塩酸と硫酸のいずれかを用いることを特徴とする請求項17に記載のリン回収剤の製造方法。
     
PCT/JP2012/071360 2011-08-24 2012-08-23 リン回収剤とその製造方法 WO2013027807A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012557341A JP5665891B2 (ja) 2011-08-24 2012-08-23 リン回収剤とその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011182506 2011-08-24
JP2011-182506 2011-08-24

Publications (1)

Publication Number Publication Date
WO2013027807A1 true WO2013027807A1 (ja) 2013-02-28

Family

ID=47746545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071360 WO2013027807A1 (ja) 2011-08-24 2012-08-23 リン回収剤とその製造方法

Country Status (2)

Country Link
JP (1) JP5665891B2 (ja)
WO (1) WO2013027807A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091566A (ja) * 2013-11-08 2015-05-14 太平洋セメント株式会社 リン回収用スラリー、その製造方法、並びに、リンを含む排水からのリンの回収方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110371982A (zh) * 2019-08-29 2019-10-25 贵州大学 一种熔盐镁热还原法还原纳米二氧化硅的方法
CN114605131B (zh) * 2022-02-16 2023-11-14 南阳师范学院 一种用于固体粉料冷固结成型的乙酸氧镁胶粘剂

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122889A (ja) * 1973-03-29 1974-11-25
JPS5493698A (en) * 1977-12-30 1979-07-24 Tokuyama Soda Co Ltd Calcium silicate and production thereof
JPS60110393A (ja) * 1983-11-21 1985-06-15 Hitachi Plant Eng & Constr Co Ltd 水中のリン酸除去材
JPS61263636A (ja) * 1985-05-17 1986-11-21 Ube Ind Ltd 珪酸カルシウム系水処理剤
JPH05192663A (ja) * 1992-01-22 1993-08-03 Inax Corp 汚水の脱燐剤
JPH10118638A (ja) * 1996-10-24 1998-05-12 Japan Vilene Co Ltd 水処理材
JP2009285636A (ja) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd リン回収資材とその製造方法およびリン回収方法
JP2011156470A (ja) * 2010-01-29 2011-08-18 Nippon Sheet Glass Co Ltd 汚染成分の処理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122889A (ja) * 1973-03-29 1974-11-25
JPS5493698A (en) * 1977-12-30 1979-07-24 Tokuyama Soda Co Ltd Calcium silicate and production thereof
JPS60110393A (ja) * 1983-11-21 1985-06-15 Hitachi Plant Eng & Constr Co Ltd 水中のリン酸除去材
JPS61263636A (ja) * 1985-05-17 1986-11-21 Ube Ind Ltd 珪酸カルシウム系水処理剤
JPH05192663A (ja) * 1992-01-22 1993-08-03 Inax Corp 汚水の脱燐剤
JPH10118638A (ja) * 1996-10-24 1998-05-12 Japan Vilene Co Ltd 水処理材
JP2009285636A (ja) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd リン回収資材とその製造方法およびリン回収方法
JP2011156470A (ja) * 2010-01-29 2011-08-18 Nippon Sheet Glass Co Ltd 汚染成分の処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091566A (ja) * 2013-11-08 2015-05-14 太平洋セメント株式会社 リン回収用スラリー、その製造方法、並びに、リンを含む排水からのリンの回収方法

Also Published As

Publication number Publication date
JP5665891B2 (ja) 2015-02-04
JPWO2013027807A1 (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
Zhang et al. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution
Liu et al. Adsorption removal of phosphate from aqueous solution by active red mud
Chen et al. Fluoride removal from water by granular ceramic adsorption
Wang et al. Removal of phosphate from aqueous solution by SiO 2–biochar nanocomposites prepared by pyrolysis of vermiculite treated algal biomass
Chen et al. Removal of Cd (II) and Pb (II) ions from natural water using a low-cost synthetic mineral: behavior and mechanisms
Nagaraj et al. Hydrothermal synthesis of a mineral-substituted hydroxyapatite nanocomposite material for fluoride removal from drinking water
Wang et al. Facile synthesis of eggshell biochar beads for superior aqueous phosphate adsorption with potential urine P-recovery
Sharma et al. Synthesis and characterization of an analogue of heulandite: Sorption applications for thorium (IV), europium (III), samarium (II) and iron (III) recovery from aqueous waste
Zendehdel et al. Removal of fluoride from aqueous solution by adsorption on NaP: HAp nanocomposite using response surface methodology
Zhao et al. The regeneration characteristics of various red mud granular adsorbents (RMGA) for phosphate removal using different desorption reagents
Adeno et al. Adsorptive removal of fluoride from water using nanoscale aluminium oxide hydroxide (AlOOH)
Zhao et al. Influence of sintering temperature on orthophosphate and pyrophosphate removal behaviors of red mud granular adsorbents (RMGA)
Cheng et al. Synergetic effects of anhydrite and brucite-periclase materials on phosphate removal from aqueous solution
JP5665891B2 (ja) リン回収剤とその製造方法
JPWO2008015784A1 (ja) ハイドロタルサイト様粒状体およびその製造方法
JP5562994B2 (ja) アンモニア性窒素及びリンの回収剤及びその製造方法
CN114950347B (zh) 一种利用天然石膏和黏土制备的除氟剂及其制备方法
JP4920007B2 (ja) ガラス発泡体の製造方法、ガラス発泡体及びガラス発泡体の再生方法
Kadirova et al. Simultaneous removal of NH4+, H2PO4− and Ni2+ from aqueous solution by thermally activated combinations of steel converter slag and spent alumina catalyst
JP2013088237A (ja) セシウム汚染土壌表面固化方法、セシウム固化・不溶化方法、及びこれらに用いる土壌固化剤、並びにセシウム除去方法及びこれに用いる酸化マグネシウム系吸着剤
Xiong et al. Low-grade sepiolite with low loading of Na/La salts for simultaneous removal of ammonia and phosphate from wastewater
JP2013248555A (ja) セシウム吸着材及びその製造方法
WO2023092144A1 (en) Modified biochar/coal lignites and their use in phosphate remediation and as solid amendments
JP5099349B2 (ja) 吸着剤
JP2012213673A (ja) 酸性排水から製造した複水層状水酸化物様吸着剤とその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012557341

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825855

Country of ref document: EP

Kind code of ref document: A1