WO2013027535A1 - シャトルコック用人工羽根、シャトルコック及びシャトルコック用人工羽根の製造方法 - Google Patents
シャトルコック用人工羽根、シャトルコック及びシャトルコック用人工羽根の製造方法 Download PDFInfo
- Publication number
- WO2013027535A1 WO2013027535A1 PCT/JP2012/069120 JP2012069120W WO2013027535A1 WO 2013027535 A1 WO2013027535 A1 WO 2013027535A1 JP 2012069120 W JP2012069120 W JP 2012069120W WO 2013027535 A1 WO2013027535 A1 WO 2013027535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shuttlecock
- wing
- artificial
- artificial feather
- feather
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B67/00—Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
- A63B67/18—Badminton or similar games with feathered missiles
- A63B67/183—Feathered missiles
- A63B67/187—Shuttlecocks
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B67/00—Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
- A63B67/18—Badminton or similar games with feathered missiles
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B67/00—Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
- A63B67/18—Badminton or similar games with feathered missiles
- A63B67/183—Feathered missiles
- A63B67/187—Shuttlecocks
- A63B67/19—Shuttlecocks with several feathers connected to each other
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2209/00—Characteristics of used materials
- A63B2209/02—Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Definitions
- the present invention relates to an artificial feather for a shuttlecock, a shuttlecock, and a method for manufacturing an artificial feather for a shuttlecock.
- a natural shuttlecock uses about 16 natural feathers such as geese and ducks, and the end of each feather shaft is planted on a hemispherical base (base) made of cork covered with leather. This is the structure.
- wing currently used for the natural shuttlecock has the small specific gravity, and it is the characteristics that it is very lightweight. For example, the specific gravity is about 0.4 for the wing shaft and about 0.15 for the wing valve.
- the feather has high rigidity, and the natural shuttlecock provides a unique flight performance and a comfortable shot feeling.
- the feathers that are the raw material of the natural shuttlecock are collected from the above waterfowl and do not have to be the feathers of any part of the waterfowl. Only a few feathers can be collected from a waterfowl for a shuttlecock. That is, the production amount of the blades for the natural shuttlecock is limited. In recent years, due to the epidemic of bird flu, edible geese, the main source of feathers, have been disposed of in large quantities, and natural shuttlecocks will become more difficult to procure raw materials in the future. Expected to be expensive.
- an artificial shuttlecock is well known that has resin blades that are integrally formed in an annular shape.
- This artificial shuttlecock like a natural shuttlecock, moves independently one by one. Therefore, it is difficult to obtain the same flight performance as a natural shuttlecock. Therefore, as described in Patent Documents 1 and 2 below, artificial feathers simulating feathers have been proposed.
- the hit feeling of the shuttlecock is evaluated as being lighter as the shuttlecock bites into the gut (string) and feels lighter. Conversely, when the amount of shuttlecock biting into the gut increases, the feel at impact is felt heavy and is badly evaluated.
- the excellent shot feeling of the natural shuttlecock is due not only to the lightness of the natural blades, but also to the high rigidity and high resilience of the blade shafts of the blades. For this reason, not only is the artificial feather used for the artificial shuttlecock light, but also the wing shaft portion corresponding to the wing shaft of the natural feather is required to have high rigidity and resilience.
- the object of the present invention is to improve the feel at impact without impairing durability.
- a main invention for achieving the above object is an artificial feather for a shuttlecock provided with a sheet-like wing portion and a wing shaft portion that supports the wing portion, and the wing shaft portion includes glass fiber and carbon.
- An artificial feather for a shuttlecock which is formed of a resin containing nanotubes.
- FIG. 1 is a perspective view of an artificial shuttlecock viewed from the base side.
- FIG. 2 is a perspective view of the artificial shuttlecock viewed from the artificial feather side.
- FIG. 3 is a perspective view of the artificial feather.
- 4A to 4C are explanatory views of an improved example of the artificial feather 10.
- FIG. 4A is a plan view of the artificial feather 10 of the improved example as viewed from the front side.
- FIG. 4B is a plan view of the artificial feather 10 of the improved example as viewed from the back side.
- FIG. 4C is a view of the artificial feather 10 of the improved example as viewed from above. It is the figure which looked at a part of skirt part 4 constituted from artificial feather 10 of an example of improvement from the top.
- FIG. 6 is a table showing materials and evaluation results of each sample.
- FIG. 7A is a photograph of comparative sample A taken.
- FIG. 7B is a photograph of sample C taken.
- 8A and 8B are photomicrographs of the cross section of the wing shaft portion of Sample B.
- FIG. 8A is a photomicrograph of the cut surface
- FIG. 8B is a photomicrograph of the surface after partially dissolving the cut surface with a solvent.
- a shuttlecock artificial feather having a sheet-like wing portion and a wing shaft portion supporting the wing portion, wherein the wing shaft portion is formed of a resin containing glass fiber and carbon nanotubes
- the characteristic artificial feather for shuttlecock becomes clear. According to such an artificial feather for shuttlecock, an artificial feather that improves the feel at impact can be realized without impairing durability.
- the carbon nanotube has a functional group.
- the carbon nanotube preferably includes at least one of a carboxyl group and a hydroxyl group as the functional group. According to such a shuttlecock artificial feather, it is possible to further improve the feel at impact.
- the content of the carbon nanotube in the resin containing the glass fiber and the carbon nanotube is 0.4% by weight or less. According to such an artificial feather for shuttlecock, an artificial feather that improves the feel at impact can be realized without impairing durability.
- a shuttlecock comprising a base portion and a plurality of artificial feathers arranged annularly on the base portion, wherein the artificial feather comprises a sheet-like wing portion and a wing shaft portion that supports the wing portion.
- the shuttlecock in which the wing shaft portion is formed of a resin containing glass fiber and carbon nanotube, is also clarified. According to such a shuttlecock, the feel at impact can be improved without impairing durability.
- a method for manufacturing an artificial feather for a shuttlecock provided with a sheet-like wing portion and a wing shaft portion that supports the wing portion, wherein the wing shaft portion is formed of a resin containing glass fiber and carbon nanotube.
- the manufacturing method of the artificial feather for the shuttlecock characterized by the above is clarified. According to such a manufacturing method, an artificial feather having a good shot feeling can be manufactured without impairing durability.
- a first masterbatch blended with the glass fibers is prepared, a second masterbatch blended with the carbon nanotubes is prepared, the first masterbatch, the second masterbatch, the glass fibers, and the carbon nanotubes It is desirable to produce a resin containing the glass fiber and the carbon nanotube by kneading a resin that is not contained. Thereby, the carbon nanotube can be well dispersed in the resin together with the glass fiber.
- FIG. 1 is a perspective view of the artificial shuttlecock 1 viewed from the base portion 2 side.
- FIG. 2 is a perspective view of the artificial shuttlecock 1 viewed from the artificial feather 10 side.
- the artificial shuttlecock 1 includes a base portion 2, a plurality of artificial feathers 10 imitating natural feathers, and a string-like member 3 for fixing the artificial feathers 10 to each other.
- the base part 2 is configured by covering a thin skin on a cork base, for example.
- the shape of the base part 2 is a hemispherical shape with a diameter of 25 mm to 28 mm, and has a flat surface.
- the roots of the plurality of artificial feathers 10 are embedded in an annular shape along the circumference of the flat surface.
- the plurality of artificial feathers 10 are arranged such that the distance between them increases as the distance from the base portion 2 increases.
- the skirt part 4 is formed by the plurality of artificial feathers 10.
- the plurality of artificial feathers 10 are fixed to each other by a string-like member 3 (for example, a cotton thread).
- FIG. 3 is an external view of the artificial feather 10.
- the artificial feather 10 includes a wing part 12 and a wing shaft part 14.
- the wing part 12 is a part corresponding to a feather valve of a natural feather
- the wing shaft part 14 is a part corresponding to a feather axis of a natural feather.
- the vertical direction is defined along the wing shaft portion 14, and the side where the wing portion 12 is located is defined as the upper side, and the opposite side is defined as the lower side.
- the left-right direction is defined along the direction in which the wing part 12 extends from the wing shaft part 14.
- the front and the back are defined based on the state in which the artificial feather 10 is attached to the base portion 2. Below, each component may be described according to the upper, lower, left, and right sides defined in the figure.
- the wing portion 12 is a sheet-like member simulating the shape of a natural feather feather valve.
- the wing part 12 can be comprised, for example with a nonwoven fabric, resin, etc.
- the nonwoven fabric which can reproduce the external shape of a natural feather by cutting is employ
- a reinforcing film is formed on the surface of the wing part 12.
- the reinforced film can be formed by applying a resin. For example, various coating methods such as a dip method, a spray method, and a roll coating method can be employed.
- the reinforcing film may be formed on one side of the wing 12 or on both sides. Further, the reinforcing film may be formed on the entire surface of the wing portion 12 or may be formed on a part thereof.
- the wing shaft portion 14 is an elongated member that imitates the shape of the wing shaft of a natural wing, and is a member that supports the wing portion 12.
- the wing shaft portion 14 includes a wing support portion 14 ⁇ / b> A that supports a region from the upper end to the lower end of the wing portion 12, and a wing pattern portion 14 ⁇ / b> B protruding from the wing portion 12.
- the wing pattern portion 14B is a portion corresponding to a wing pattern of a natural feather (unusual: this part may be referred to as a wing).
- the lower end of the wing part 14 ⁇ / b> B is embedded in the base part 2 and fixed to the base part 2. The material of the wing shaft portion 14 will be described later.
- the cross section of the wing shaft 14 in the figure is drawn in a quadrilateral shape.
- the cross-sectional shape of the wing shaft portion 14 may be a rhombus shape, or may be a circular shape or an elliptical shape.
- the cross-sectional shape of the wing shaft portion 14 may be a shape in which a part of the wing shaft portion 14 protrudes like a T shape or a cross shape.
- the cross-sectional shape of the wing shaft portion 14 may be different in the vertical direction so that, for example, the upper side is circular and the lower side is square.
- the wing shaft portion 14 in the figure is formed so that the cross-sectional shape becomes larger toward the lower side.
- the size of the cross-sectional shape may be constant without changing in the vertical direction, or the size of the cross-sectional shape may change smoothly.
- the wing part 12 is supported on the back side of the wing support part 14A.
- the wing part 12 may be supported on the front side of the wing support part 14A.
- the wing portion 12 may be configured by two sheets, and the two wing portions 12 may be configured to sandwich the wing support portion 14A.
- the wing part 12 may be embedded inside the wing support part 14A.
- the resin containing glass fibers and carbon nanotubes becomes black (see FIG. 7B: even if the amount of carbon nanotubes is very small).
- the wing shaft portion 14 is formed using such a black resin, if the wing portion 12 is supported on the back side of the wing support portion 14A as shown in FIG. 3, the entire black wing shaft portion 14 (the wing support portion 14A) is supported. And both of the wing pattern portions 14B) are visually recognized, and as a result, the visibility of the artificial shuttlecock may be lowered.
- an artificial feather is configured as described below, so that the black color of the wing support portion 14A is hardly visible.
- FIG. 4A to 4C are explanatory diagrams of an improved example of the artificial feather 10.
- FIG. 4A is a plan view of the artificial feather 10 of the improved example as viewed from the front side.
- FIG. 4B is a plan view of the artificial feather 10 of the improved example as viewed from the back side.
- FIG. 4C is a view of the artificial feather 10 of the improved example as viewed from above.
- symbol is attached
- the improved artificial feather 10 includes a wing portion 12 and a wing shaft portion 14 and a reinforcing member 15.
- the reinforcing material 15 is a sheet-like member provided on the front side of the artificial feather 10 and is made of a foam (foamed polyethylene or the like).
- the reinforcing material 15 is bonded to the wing portion 12 with an adhesive, a double-sided adhesive tape, or the like.
- blade part 12 may be arrange
- the laminated structure of the wing portion 12 and the reinforcing material 15 made of foam does not impair the weight reduction, and even when the wing portion 12 is struck at the time of hitting the ball, the reinforcing material 15 absorbs the impact, and the wing portion It is possible to prevent the 12 from being damaged.
- the front / back relationship of the artificial feather 10 may be appropriately determined according to the demand for the shuttlecock as a product, such as aesthetics and durability.
- the wing support portion 14A of the wing shaft portion 14 is sandwiched between the sheet-like wing portion 12 and the sheet-like reinforcing material 15.
- the wing support portion 14A of the wing shaft portion 14 is hidden between the wing portion 12 and the reinforcing member 15 and is hardly visible from the outside.
- the portion that is visually recognized as black is only the wing pattern portion 14B, and the portion that appears black compared to the artificial feather of FIG. 3 described above can be reduced.
- the visibility of the artificial shuttlecock using the artificial feather 10 of the improved example is improved as compared with the artificial shuttlecock of FIG.
- the portion of the wing shaft portion 14 that looks black is reduced by sandwiching the wing support portion 14 of the wing shaft portion 14 between the wing portion 12 and the reinforcing member 15.
- the portion of the wing shaft portion 14 that appears black may be reduced by sandwiching the wing shaft portion 14 between the two wing portions 12.
- the portion of the wing shaft portion 14 that appears black can be reduced.
- the reinforcing material has a planar shape with a lack of edge at the portion overlapping the wing part 12 of the adjacent artificial feather 10. This is because, as shown in FIG. 5, the difference in thickness between the overlapping region 30 and the single region 40 is reduced, and the thickness of the skirt portion 4 is made as uniform as possible. By making the thickness of the skirt portion 4 as uniform as possible, it can be expected to approximate the flight performance and flight trajectory of the natural shuttlecock.
- the wing shaft portion 14 needs to be lightweight. Since the wing shaft part 14 becomes heavy and the weight balance of the shuttlecock becomes worse, not only the flight characteristics differ from the natural shuttlecock, but also the artificial shuttlecock 1 gets heavy and the artificial shuttlecock 1 bites into the gut This is because there is an increase in the hit feeling and the hit feeling becomes heavy (the hit feeling becomes worse).
- the wing shaft portion 14 has high rigidity and repulsive force.
- the wing shaft portion 14 has high rigidity and resilience. This is because the amount of the shuttlecock 1 biting into the gut is reduced and the feel at impact is lightened (feel at impact is improved). If the rigidity and resilience of the wing shaft portion 14 is low, the amount of biting into the gut increases and the feel at impact is heavy (the feel at impact is poor).
- the wing shaft part 14 needs to be durable. If the durability of the wing shaft portion 14 is low, when the artificial shuttlecock 1 receives a strong impact force from a gut (string) as in smashing, the root of the wing shaft portion 14 (near the flat surface of the base portion 2). This is because the wing pattern part 14B) of the sheet becomes easy to break. If the root of the wing shaft portion 14 is broken, the artificial shuttlecock 1 cannot maintain the original flight characteristics.
- the wing shaft portion 14 is not only lightweight, but also needs to maintain durability while having high rigidity and high repulsion.
- a resin reinforced using carbon nanotubes (hereinafter also referred to as CNT) is used as the material of the wing shaft portion 14 together with the glass fiber.
- the artificial feather 10 becomes highly rigid and highly repulsive while maintaining durability.
- the artificial shuttlecock 1 provided with the artificial feather 10 is durable and has a good shot feeling.
- the carbon fibers When carbon fibers are blended with resin together with glass fibers, the carbon fibers are generally about 5 to 10 ⁇ m in diameter, and therefore cannot be uniformly dispersed throughout unless a certain amount is blended. Commercially available composite grades of glass fiber and carbon fiber contain about 10% carbon fiber.
- carbon nanotubes when carbon nanotubes are blended together with glass fibers, it is necessary to disperse them in a small amount in order to reduce the durability when used in a large amount in terms of durability described later.
- a masterbatch containing glass fibers a resin containing glass fibers at a higher concentration than the final product
- a masterbatch with improved carbon nanotube dispersibility carbon nanotubes at a higher concentration than the final product.
- the carbon nanotubes could be well dispersed in the resin together with the glass fibers.
- the carbon nanotubes dispersed in the resin contribute to the improvement of the resilience of the resin.
- the carbon nanotubes can be well dispersed in the resin even when using a very small amount of carbon nanotubes compared to the case where carbon fibers are blended to the extent that a sufficient feel at impact is obtained. An effect is obtained.
- thermoplastic resin is used as a base material (matrix) of a resin in which glass fibers and carbon nanotubes are blended.
- a thermoplastic resin for example, a polyamide resin, a polyamide elastomer, a polyolefin elastomer, or the like can be used.
- polyamide 12 nylon 12, PA12 or the like can be employed.
- cup-stacked carbon nanotubes As the carbon nanotubes to be contained in the resin together with the glass fibers, cup-stacked carbon nanotubes (CS-CNT), multi-walled carbon nanotubes (MW-CNT), single-walled carbon nanotubes (SW-CNT), and the like can be used.
- CS-CNT cup-stacked carbon nanotubes
- MW-CNT multi-walled carbon nanotubes
- SW-CNT single-walled carbon nanotubes
- the carbon nanotube contained in the resin together with the glass fiber has a functional group.
- the carbon nanotube with a functional group can be obtained by modifying a functional group on the carbon nanotube.
- the functionalized carbon nanotubes into the resin together with the glass fibers, a phenomenon occurs in which the carbon nanotubes contact (adsorb) around the glass fibers. This is considered that the carbon nanotube and the glass fiber are in contact with each other as a result of the bonding force (including weak bonding force) acting between the functional group of the carbon nanotube and the glass surface. As a result, it is considered that the resilience of the carbon nanotube is imparted to the glass fiber.
- the carbon nanotube with the functional group is added to the resin together with the glass fiber. When it mix
- the functional group of the carbon nanotube with a functional group is a functional group with high polarity having affinity for glass. That is, the functional group of the carbon nanotube with a functional group is preferably a functional group exhibiting hydrophilicity.
- the carbon nanotube may have at least one of a carboxyl group and a hydroxyl group as a functional group.
- other functional groups for example, amino groups may be used as long as they are functional groups having an affinity for glass.
- the carbon nanotubes to be contained in the resin are preferably cup-stacked carbon nanotubes (CS-CNT).
- Cup-stacked carbon nanotubes have a structure in which a large number of cups are stacked, and have high strength and flexibility. Therefore, cup-stacked carbon nanotubes are especially used as carbon nanotubes contained in resins. If is adopted, the resilience is improved and the feel at impact is improved.
- the carbon nanotube content is desirably 0.4% by weight or less. If the carbon nanotube is contained within this range, the shot feeling can be improved without impairing the durability. In addition, it is confirmed by the Example mentioned later that it is desirable to contain a carbon nanotube in this range.
- FIG. 6 is a table showing materials (and evaluation results) of each sample.
- the shape of the artificial shuttlecock 1 of each sample is as shown in FIGS. 1, 2, 4, and 5.
- the shape, size, weight, etc. of the artificial shuttlecock are not described in the competition of the Japan Badminton Association. follow the rules).
- the material of each sample is common except the material of the wing shaft part 14.
- the resin base material (matrix) used as the material of the wing shaft part 14 is common to all samples, and is 12 nylon (PA12).
- GF in the table means glass fiber. “GFn%” in the table means that the glass fiber content is n wt%.
- the mixing ratio of the reinforcing fiber (glass fiber) of the reference sample is 20.0% by weight, and the reinforcing fiber (glass fiber, carbon fiber, carbon of other samples (reference sample, samples A to E, comparative samples 1 and 2)) Nanotubes) is 22.5% by weight.
- CNT in the table means carbon nanotube.
- CNT (1) in the table is a CS-CNT with a functional group (cup-stacked carbon nanotube, diameter 50 to 80 nm, length 0.82 to 1.08 ⁇ m).
- CNT (2) in the table is a functionalized MW-CNT (multi-walled carbon nanotube, diameter 8-15 nm, length 2 ⁇ m or less).
- CNT (3) in the table is MW-CNT (diameter 10 to 15 nm, length 0.1 to 10 ⁇ m).
- the functional group contains at least a carboxyl group and a hydroxyl group, and the amount thereof is 1 to 10% by weight.
- Reference sample A glass reinforced resin containing 20.0% by weight of glass fiber was prepared, an artificial feather 10 having a wing shaft portion 14 molded with this material was manufactured, and an artificial shuttle manufactured using this artificial feather 10 Cook 1 was used as a reference sample.
- the reference sample does not include reinforcing fibers other than glass fibers (such as carbon fibers).
- the reference sample has less glass fiber content (20.0 wt%) than the glass fiber content (22.5 wt%) of the reference sample.
- Reference sample A glass reinforced resin containing 22.5% by weight of glass fiber was prepared, an artificial feather 10 having a wing shaft portion 14 molded with this material was manufactured, and an artificial shuttle manufactured using this artificial feather 10 Cock 1 was used as a reference sample.
- This reference sample serves as a reference for evaluating durability and feel at impact.
- Sample A A resin containing 22.3% by weight of glass fiber and 0.2% by weight of CS-CNT (with a functional group) is prepared, and an artificial feather 10 having a wing shaft portion 14 formed of this material is manufactured.
- the artificial shuttlecock 1 manufactured using this artificial feather 10 was designated as sample A.
- Sample B A resin containing 22.3% by weight of glass fiber and 0.2% by weight of MW-CNT (with functional group) is prepared, and an artificial feather 10 having a blade shaft portion 14 formed of this material is manufactured.
- the artificial shuttlecock 1 manufactured using this artificial feather 10 was designated as sample B.
- Sample C A resin containing 22.3% by weight of glass fiber and 0.2% by weight of MW-CNT was prepared, and an artificial feather 10 having a wing shaft portion 14 molded with this material was manufactured. Sample C was an artificial shuttlecock 1 manufactured using No. 10.
- Samples A to C are made of resin containing 22.3% by weight glass fiber and 0.2% by weight CNT as the material of the wing shaft part 14. The difference between samples A to C is the type of carbon nanotube.
- Sample D A resin containing 22.1% by weight of glass fiber and 0.4% by weight of MW-CNT was prepared, and an artificial feather 10 having a wing shaft portion 14 molded with this material was manufactured. Sample D was an artificial shuttlecock 1 manufactured using No. 10.
- Sample E A resin containing 21.9% by weight of glass fiber and 0.6% by weight of MW-CNT was prepared, and an artificial feather 10 having a wing shaft portion 14 molded from this material was manufactured.
- the artificial shuttlecock 1 manufactured using 10 was designated as sample E.
- Samples C to E are made of resin containing glass fiber and MW-CNT as the material of the wing shaft portion 14. The difference between samples C to E is the content of MW-CNT.
- Comparative Sample A A resin containing 22.0% by weight of glass fiber and 0.5% by weight of carbon fiber was prepared, and an artificial feather 10 having a wing shaft portion 14 molded from this material was manufactured. The artificial shuttlecock 1 manufactured using 10 was used as a comparative sample A.
- Comparative sample B A resin containing 17.5% by weight of glass fiber and 5.0% by weight of carbon fiber was prepared, and an artificial feather 10 having a wing shaft portion 14 molded from this material was manufactured. The artificial shuttlecock 1 manufactured using 10 was used as a comparative sample B.
- FIG. 7A is a photograph of comparative sample A taken.
- FIG. 7B is a photograph of sample C taken.
- white paper is placed inside the skirt portion 4 (the plurality of artificial feathers 10 arranged in an annular shape).
- FIG. 7A Comparative Sample A containing 0.5% by weight of carbon fiber
- the wing support portion 14A of the wing shaft portion 14 is sandwiched between the sheet-like wing portion 12 and the sheet-like reinforcing material 15. Accordingly, it was confirmed that the black color of the wing support portion 14A of the wing shaft portion 14 is difficult to be visually recognized from the outside, and the portion of the wing shaft portion 14 that appears black can be reduced.
- FIG. 8A and 8B are micrographs of a cross section of the wing shaft portion 14 of the sample B.
- FIG. FIG. 8A is a photomicrograph of the cut surface
- FIG. 8B is a photomicrograph of the surface after partially dissolving the cut surface with a solvent.
- FIG. 8B shows the internal state of FIG. 8A, it can be seen from this photograph that the black carbon nanotubes are dispersed in the resin.
- FIG. 3 shows the evaluation results of the durability and feel at impact of each sample.
- the durability test was performed by repeating a smash with an initial speed exceeding 300 km / h a predetermined number of times.
- Durability evaluation was performed by confirming the state of the shuttle for each smash hit, and quantifying the initial breakage (the state where the shaft was first broken). When the predetermined number of times was completed, the state where there was no breakage was set to “100”, and when breakage occurred faster than the predetermined number of times, a method was used that showed the ratio of the number of smashes where breakage occurred. This time, there is no sample that exceeds the reference sample because no damage was the criterion.
- Natural cork is used for the base part 2 used for the evaluated shuttle. Natural cork has both lightness and good resilience, but it is a natural material and has many variations. As a result, individual differences occur even when the same type of wing shaft part is used. Therefore, about 5% is an error range, and those with durability evaluation of 96 or more are in a range where there is no practical problem.
- the evaluation of the feel at impact was performed by evaluating five monitors on the positive side (good evaluation) or the negative side (bad evaluation) on the basis of the reference sample.
- the average value range of -5 to less than -4 is "very bad”
- the average value range of -4 to less than -2.5 is “bad”
- the average value is -2.5 to less than -1.
- the range is “slightly bad”
- the range from -1 to less than 1 is "normal”
- the range from 1 to less than 2.5 is “slightly good”
- the range from 2.5 to less than 4 is "good”
- the range is from 4 to 5
- the range of was set to “very good”. However, it is also possible to evaluate the hit feeling from the average value of the five evaluation results.
- the comparative sample A had almost no change in durability and feel at impact compared to the reference sample. This is probably because the amount of carbon fiber relative to the resin is insufficient, as confirmed from the photograph in FIG. 7A.
- sample A and sample B the improvement in shot feeling was remarkable as compared with sample C.
- Sample B and Sample C are both MW-CNT, and both have carbon nanotubes well dispersed in the resin (both are shown in FIG. 7B because the wing shaft part 14 is black), and the presence or absence of functional groups Considering the difference, it is presumed that the carbon nanotubes having a functional group contribute to further improvement in the feel at impact.
- sample A containing CS-CNT has a better shot feeling than samples containing other types of carbon nanotubes.
- the average value of the shot feeling of sample C to sample E was higher than that of the reference sample, and sample D was the highest value. For this reason, it is presumed that if the carbon nanotube is contained until it reaches 0.4% by weight, the shot feeling can be improved according to the content of the carbon nanotube without impairing the durability. In addition, when the carbon nanotube is contained in an amount of more than 0.4% by weight, it is estimated that not only the durability but also the shot feeling may be lowered. For these reasons, it is presumed that the content of carbon nanotubes in the material (resin containing glass fibers and carbon nanotubes) is desirably 0.4% by weight or less.
- the carbon nanotube in the material is contained in the range of 0.2 wt% or more and 0.4 wt% or less, high hitting ball without impairing durability It was confirmed that the feeling can be realized.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
【課題】耐久性を損なわずに、打球感を向上させる。 【解決手段】本発明は、シート状の羽部と、前記羽部を支持する羽軸部とを備えたシャトルコック用人工羽根であって、前記羽軸部は、ガラス繊維とカーボンナノチューブを含む樹脂によって形成されていることを特徴とするシャトルコック用人工羽根である。
Description
この発明は、シャトルコック用人工羽根、シャトルコック及びシャトルコック用人工羽根の製造方法に関する。
バドミントン用シャトルコックには、羽根(はね)に水鳥の羽毛(天然羽毛)を用いたもの(天然シャトルコック)と、ナイロン樹脂などにより人工的に製造された人工羽根を用いたもの(人工シャトルコック)とがある。
周知のごとく、天然シャトルコックは、ガチョウやアヒルなどの天然羽毛を16本程度使用し、各羽毛の羽軸の末端を、皮で覆ったコルクなどからなる半球状の台(ベース部)に植設した構造である。そして、天然シャトルコックに使用されている羽根は、比重が小さく、極めて軽量であることが特徴である。例えば、比重は、羽軸の部分が0.4程度で、羽弁の部分が0.15程度である。また、羽毛は、剛性が高く、天然シャトルコックは、独特の飛行性能と心地よい打球感が得られる。
しかしながら、天然シャトルコックの原材料となる羽毛は、上記の水鳥から採取され、しかも、水鳥のどの部位の羽毛でもよい、というわけではなく、シャトルコック用に適した所定の部位があり、1羽の水鳥からシャトルコック用として採取できる羽毛は僅かである。すなわち、天然シャトルコック用の羽根の生産量には限りがある。また、近年では、鳥インフルエンザの流行により、羽毛の主要な調達源であった食用ガチョウが大量に処分される、という事態も発生し、天然シャトルコックは、今後、さらに、原料調達が難しく、より高価になることが予想される。
一方、人工シャトルコックとして、環状に一体成形された樹脂製の羽根を備えたものがよく知られているが、この人工シャトルコックは、天然シャトルコックのように羽根が1本ずつ独立して動かないため、天然シャトルコックと同様の飛行性能を得ることが難しい。そこで、以下の特許文献1や2に記載されているように、羽毛を模した人工羽根が提案されている。
シャトルコックの打球感は、シャトルコックがガット(ストリング)に食い込む量が少ないほど、軽く感じられて良い評価となる。逆に、シャトルコックがガットに食い込む量が多くなると、打球感は重く感じられて悪い評価となる。
同じ重量のシャトルコックの場合、打撃時(シャトルコックがガットから力を受けるとき)は、ベース部だけでなく羽弁及び羽軸がガットに接触するため、羽軸の剛性・反発性が高い事でシャトルコックがガットに食い込む量が少なくなり、打球感が軽くなる。仮に羽軸の剛性・反発性が低いと、ガットに食い込む量が多くなり打球感が重くなる。
天然シャトルコックの優れた打球感は、天然の羽根が軽量であるだけでなく、羽根の羽軸が高剛性・高反発であることにも起因している。このため、人工シャトルコックに用いられる人工羽根においても、軽量であるだけでなく、天然羽根の羽軸に相当する羽軸部の剛性・反発性が高いことが求められる。
特許文献1、2では、人工シャトルコックの羽軸部の材料に、繊維強化樹脂が採用されている。しかし、繊維強化樹脂としてガラス強化樹脂を採用した場合、十分な反発性が得られないため、その打球感は、天然シャトルコックに遠く及ばない性能になる。一方、炭素繊維を用いた強化樹脂を採用した場合、十分な打球感が得られる程度(十分な剛性が得られる程度)まで炭素繊維を配合すると、脆く折れ易くなってしまい、耐久性に問題が生じてしまう。
なお、耐久性を向上させるために人工シャトルコックを柔らかく構成すると、剛性・反発性が低くなるため、十分な打球感が得られなくなる。このように、耐久性と打球感は相反する課題であり、両立させることが困難であった。
本発明は、耐久性を損なわずに打球感を向上させることを目的とする。
上記目的を達成するための主たる発明は、シート状の羽部と、前記羽部を支持する羽軸部とを備えたシャトルコック用人工羽根であって、前記羽軸部は、ガラス繊維とカーボンナノチューブを含む樹脂によって形成されていることを特徴とするシャトルコック用人工羽根である。
本発明のシャトルコック用人工羽根によれば、耐久性を損なわずに、打球感を向上させることができる。
本発明の他の特徴については、本明細書及び図面の記載により明らかにする。
本発明の他の特徴については、本明細書及び図面の記載により明らかにする。
===概要===
本明細書及び図面の記載により、少なくとも、以下の事項が明らかとなる。
本明細書及び図面の記載により、少なくとも、以下の事項が明らかとなる。
シート状の羽部と、前記羽部を支持する羽軸部とを備えたシャトルコック用人工羽根であって、前記羽軸部は、ガラス繊維とカーボンナノチューブを含む樹脂によって形成されていることを特徴とするシャトルコック用人工羽根が明らかとなる。
このようなシャトルコック用人工羽根によれば、耐久性を損なわずに、打球感を向上させる人工羽根を実現できる。
このようなシャトルコック用人工羽根によれば、耐久性を損なわずに、打球感を向上させる人工羽根を実現できる。
前記羽部を含む少なくとも2枚のシート状の部材の間に前記羽軸部を挟持させることが望ましい。これにより、黒く視認される部分を減らすことができ、人工シャトルコックの視認性が向上する。
前記カーボンナノチューブは、官能基を備えることが望ましい。また、前記カーボンナノチューブは、前記官能基としてカルボキシル基及び水酸基の少なくとも一方を備えることが望ましい。このようなシャトルコック用人工羽根によれば、打球感の更なる向上を図ることができる。
前記ガラス繊維と前記カーボンナノチューブを含む樹脂における前記カーボンナノチューブの含有量が、0.4重量%以下であることが望ましい。このようなシャトルコック用人工羽根によれば、耐久性を損なわずに、打球感を向上させる人工羽根を実現できる。
ベース部と、前記ベース部に円環状に配置した複数の人工羽根とを備えたシャトルコックであって、前記人工羽根は、シート状の羽部と、前記羽部を支持する羽軸部とを備え、
前記羽軸部は、ガラス繊維とカーボンナノチューブを含む樹脂によって形成されている
ことを特徴とするシャトルコックも明らかとなる。
このようなシャトルコックによれば、耐久性を損なわずに、打球感を向上させることができる。
前記羽軸部は、ガラス繊維とカーボンナノチューブを含む樹脂によって形成されている
ことを特徴とするシャトルコックも明らかとなる。
このようなシャトルコックによれば、耐久性を損なわずに、打球感を向上させることができる。
シート状の羽部と、前記羽部を支持する羽軸部とを備えたシャトルコック用人工羽根の製造方法であって、前記羽軸部を、ガラス繊維とカーボンナノチューブを含む樹脂によって形成することを特徴とするシャトルコック用人工羽根の製造方法が明らかとなる。
このような製造方法によれば、耐久性を損なわずに打球感の良い人工羽根を製造することができる。
このような製造方法によれば、耐久性を損なわずに打球感の良い人工羽根を製造することができる。
前記ガラス繊維を配合した第1マスターバッチを用意し、前記カーボンナノチューブを配合した第2マスターバッチを用意し、前記第1マスターバッチと、前記第2マスターバッチと、前記ガラス繊維も前記カーボンナノチューブも含まれていない樹脂とを練り込むことによって、前記ガラス繊維と前記カーボンナノチューブを含む樹脂を生成することが望ましい。これにより、カーボンナノチューブをガラス繊維と共に樹脂に良く分散させることができる。
===人工シャトルコックの構造===
<人工シャトルコックの基本構造>
図1及び図2は、人工羽根10を備えた人工シャトルコック1の外観図である。図1は、ベース部2の側から見た人工シャトルコック1の斜視図である。図2は、人工羽根10の側から見た人工シャトルコック1の斜視図である。
<人工シャトルコックの基本構造>
図1及び図2は、人工羽根10を備えた人工シャトルコック1の外観図である。図1は、ベース部2の側から見た人工シャトルコック1の斜視図である。図2は、人工羽根10の側から見た人工シャトルコック1の斜視図である。
人工シャトルコック1は、ベース部2と、天然羽根を模した複数の人工羽根10と、人工羽根10を互いに固定するための紐状部材3とを備えている。ベース部2は、例えばコルクの台に薄い皮を覆うことによって構成されている。ベース部2の形状は、直径が25mmから28mmの半球状であり、平坦面を有する。この平坦面の円周に沿って円環状に複数の人工羽根10の根元が埋め込まれている。複数の人工羽根10は、ベース部2から離れるにしたがって互いの間隔が広くなるように配置される。これにより、複数の人工羽根10によってスカート部4が形成される。複数の人工羽根10は、紐状部材3(例えば木綿の糸)によって、互いに固定されている。
図3は、人工羽根10の外観図である。
人工羽根10は、羽部12と、羽軸部14を備えている。羽部12は、天然羽根の羽弁に相当する部分であり、羽軸部14は、天然羽根の羽軸に相当する部分である。図中では、羽軸部14に沿って上下方向が定義されており、羽部12のある側を上、反対側を下として定義している。また、図中では、羽軸部14から羽部12の延びる方向に沿って左右方向が定義されている。また、図中では、人工羽根10をベース部2に取り付けられた状態に基づいて、おもてと裏が定義されている。以下では、図中で定義された上下・左右・おもて裏に従って、各構成要素を説明することがある。
羽部12は、天然羽根の羽弁の形状を模したシート状の部材である。羽部12は、例えば不織布や樹脂などによって構成することができる。本実施形態では、裁断することによって天然羽根の外形形状を再現できる不織布を採用している。また、本実施形態では、打球時に不織布の繊維がほぐれることを防止するために、羽部12の表面に強化皮膜が形成されている。強化皮膜は、樹脂を塗布することによって形成することができ、例えば、ディップ法、スプレー法、ロールコート法などの種々の塗布方法を採用することができる。強化皮膜は、羽部12の片面に形成しても良いし、両面に形成しても良い。また、強化皮膜は、羽部12の全面に形成しても良いし、一部分に形成しても良い。
羽軸部14は、天然羽根の羽軸の形状を模した細長い部材であり、羽部12を支持する部材である。羽軸部14は、羽部12の上端から下端までの領域を支持する羽支持部14Aと、羽部12から突出した羽柄部14Bとを有する。羽柄部14Bは、天然羽根の羽柄(うへい:なお、この部位は羽根(うこん)と称されることもある)に相当する部分である。羽柄部14Bの下端は、ベース部2に埋め込まれ、ベース部2に固定されることになる。羽軸部14の材料については、後述する。
図中の羽軸部14は、断面形状が四角形状に描かれている。但し、羽軸部14の断面形状は、菱形形状でも良いし、円形状や楕円形状であっても良い。また、羽軸部14の強度を高めるために、羽軸部14の断面形状は、T字形状や十字形状のように一部が突出した形状になっていても良い。また、羽軸部14の断面形状は、例えば上側が円形状で下側が四角形状になるように、上下方向に異なっても良い。
また、図中の羽軸部14は、下側ほど断面形状が大きくなるように形成されている。但し、上下方向に断面形状の大きさが変化せずに一定であっても良いし、断面形状の大きさが滑らかに変化しても良い。
また、図中では、羽支持部14Aの裏側で羽部12が支持されている。但し、羽支持部14Aのおもて側で羽部12が支持されても良い。また、羽部12を2枚のシートで構成し、2枚の羽部12が羽支持部14Aを挟み込むように構成しても良い。また、羽支持部14Aの内部に羽部12が埋設されても良い。
<人工羽根の改良構造>
後述するように、ガラス繊維とカーボンナノチューブを含有した樹脂は、黒色になる(図7B参照:カーボンナノチューブが極めて少量でも黒色になる)。このような黒色の樹脂を用いて羽軸部14を形成した場合、図3のように羽部12を羽支持部14Aの裏側で支持すると、黒色の羽軸部14の全体(羽支持部14A及び羽柄部14Bの両方)が視認されてしまい、この結果、人工シャトルコックの視認性が低下するおそれがある。
後述するように、ガラス繊維とカーボンナノチューブを含有した樹脂は、黒色になる(図7B参照:カーボンナノチューブが極めて少量でも黒色になる)。このような黒色の樹脂を用いて羽軸部14を形成した場合、図3のように羽部12を羽支持部14Aの裏側で支持すると、黒色の羽軸部14の全体(羽支持部14A及び羽柄部14Bの両方)が視認されてしまい、この結果、人工シャトルコックの視認性が低下するおそれがある。
そこで、以下に説明するように人工羽根を構成することによって、羽支持部14Aの黒色が視認され難い構成にする。
図4A~図4Cは、人工羽根10の改良例の説明図である。図4Aは、改良例の人工羽根10をおもて側から見た平面図である。図4Bは、改良例の人工羽根10を裏側から見た平面図である。図4Cは、改良例の人工羽根10を上側から見た図である。なお、既に説明した部材については、同じ符号を付している。
改良例の人工羽根10は、羽部12と羽軸部14を備えていると共に、補強材15を備えている。補強材15は、人工羽根10のおもて側に設けられたシート状の部材であり、発泡体(発泡ポリエチレンなど)から構成されている。補強材15は、羽部12に積層された状態で接着剤や両面接着テープなどにより接着されている。なお、人工羽根10における表裏関係については、表側に羽部12を配置しても良いし、補強材15を表側に配置しても良い。改良例では、羽部12と発泡体からなる補強材15との積層構造により、軽量化を損なわず、打球時に羽部12を強打した場合でも、その衝撃を補強材15が吸収し、羽部12が破損するのを防止することができる。いずれにしても、人工羽根10における表裏関係については、美観や耐久性など、製品としてのシャトルコックに対する要求に従って適宜決定すればよい。
この改良例では、羽軸部14の羽支持部14Aが、シート状の羽部12と、シート状の補強材15との間で挟持されている。これにより、羽軸部14が黒色の材料で形成されたとしても、羽軸部14の羽支持部14Aは、羽部12と補強材15の間に隠れて、外部から視認され難くなる。
つまり、この改良例では、黒色に視認される部分が羽柄部14Bのみになり、前述の図3の人工羽根と比べて黒く見える部分を減らすことができる。これにより、改良例の人工羽根10を用いた人工シャトルコックは、前述の図1の人工シャトルコックと比べて、視認性が向上する。
ここでは、羽部12と補強材15との間に羽軸部14の羽支持部14を挟持させることによって、羽軸部14の黒く見える部分を減らしている。但し、2枚の羽部12の間に羽軸部14を挟持させることによって、羽軸部14の黒く見える部分を減らしても良い。このように、羽部12を含む少なくとも2枚のシート状の部材の間に羽軸部14を挟持させれば、羽軸部14の黒く見える部分を減らすことができる。
ところで、改良例の人工羽根10では、補強材は、隣接する人工羽根10の羽部12と重なり合う部分では縁が欠けた平面形状を有している。この理由は、図5に示すように、重複領域30と単独領域40との厚さの差を小さくし、スカート部4の厚さをできるだけ均一にさせるためである。スカート部4の厚さをできるだけ均一にさせることによって、天然シャトルコックにおける飛行性能や飛行軌跡に近似させることが期待できる。
<羽軸部に求められる機能>
羽軸部14の材料については後述するが、羽軸部14は軽量である必要がある。羽軸部14が重くなり、シャトルコックの重量バランスが悪くなることから、天然シャトルコックと異なる飛翔特性になるだけでなく、人工シャトルコック1が重たくなることで人工シャトルコック1がガットに食い込む量が多くなり、打球感が重くなる(打球感が悪くなる)ためである。
羽軸部14の材料については後述するが、羽軸部14は軽量である必要がある。羽軸部14が重くなり、シャトルコックの重量バランスが悪くなることから、天然シャトルコックと異なる飛翔特性になるだけでなく、人工シャトルコック1が重たくなることで人工シャトルコック1がガットに食い込む量が多くなり、打球感が重くなる(打球感が悪くなる)ためである。
また、羽軸部14は、剛性・反発力が高いことが望まれる。打撃時(シャトルコックがガットから力を受けるとき)は、ベース部2だけでなく羽部12及び羽軸部14がガットに接触するため、羽軸部14の剛性・反発性が高い事で人工シャトルコック1がガットに食い込む量が少なくなり、打球感が軽くなる(打球感が良くなる)ためである。仮に羽軸部14の剛性・反発性が低いと、ガットに食い込む量が多くなり打球感が重たく(打球感が悪く)なってしまう。
また、羽軸部14には、耐久性も必要である。羽軸部14の耐久性が低いと、スマッシュ時のように人工シャトルコック1がガット(ストリング)から強い衝撃力を受けたときに、羽軸部14の根元(ベース部2の平坦面の近傍の羽柄部14B)が折れ易くなるためである。羽軸部14の根元が折れてしまうと、人工シャトルコック1は、当初の飛翔特性を維持することができなくなる。
したがって、羽軸部14は、軽量であるだけでなく、高剛性・高反発力を備えながら、耐久性も維持する必要がある。
===羽軸部14の材料===
羽軸部14の材料として、繊維強化樹脂を使用することは知られている。しかし、繊維強化樹脂としてガラス強化樹脂を採用した場合、十分な反発性が得られないため、その打球感は、天然シャトルコックに遠く及ばない性能になる。一方、炭素繊維を用いた強化樹脂を採用した場合、十分な打球感が得られる程度(十分な剛性が得られる程度)まで炭素繊維を配合すると、脆く折れ易くなってしまい、耐久性に問題が生じてしまう。
羽軸部14の材料として、繊維強化樹脂を使用することは知られている。しかし、繊維強化樹脂としてガラス強化樹脂を採用した場合、十分な反発性が得られないため、その打球感は、天然シャトルコックに遠く及ばない性能になる。一方、炭素繊維を用いた強化樹脂を採用した場合、十分な打球感が得られる程度(十分な剛性が得られる程度)まで炭素繊維を配合すると、脆く折れ易くなってしまい、耐久性に問題が生じてしまう。
そこで、本実施形態では、羽軸部14の材料として、ガラス繊維とともにカーボンナノチューブ(以下、CNTと呼ぶこともある)を用いて強化した樹脂を採用する。
ガラス繊維とカーボンナノチューブを含む樹脂によって羽軸部14が形成されることにより、人工羽根10は、耐久性を維持しながら、高剛性・高反発力なものになる。この結果、この人工羽根10を備えた人工シャトルコック1は、耐久性があると共に、打球感の良いものになる。
炭素繊維をガラス繊維と共に樹脂に配合する場合、炭素繊維は一般的に直径5-10μm程の太さであるため、一定量が配合されないと全体に均一に分散させることができない。市販のガラス繊維と炭素繊維の複合グレードでは、炭素繊維が10%程度含有している。
これに対し、ガラス繊維と共にカーボンナノチューブを配合する場合、後述する耐久性の面で多量に使用する事は耐久性を低下させるため、少量で分散させる必要がある。その方法として、ガラス繊維を配合したマスターバッチ(最終品よりもガラス繊維を高濃度に含有した樹脂)と、カーボンナノチューブの分散性を良好としたマスターバッチ(最終品よりもカーボンナノチューブを高濃度に含有した樹脂)を用意した上で、更に非強化樹脂(ガラス繊維もカーボンナノチューブも含まれていない樹脂)を練り込むことでカーボンナノチューブをガラス繊維と共に樹脂に良く分散させることができた。
これに対し、ガラス繊維と共にカーボンナノチューブを配合する場合、後述する耐久性の面で多量に使用する事は耐久性を低下させるため、少量で分散させる必要がある。その方法として、ガラス繊維を配合したマスターバッチ(最終品よりもガラス繊維を高濃度に含有した樹脂)と、カーボンナノチューブの分散性を良好としたマスターバッチ(最終品よりもカーボンナノチューブを高濃度に含有した樹脂)を用意した上で、更に非強化樹脂(ガラス繊維もカーボンナノチューブも含まれていない樹脂)を練り込むことでカーボンナノチューブをガラス繊維と共に樹脂に良く分散させることができた。
これにより、樹脂中に分散したカーボンナノチューブは、樹脂の反発性の向上に寄与する。また、十分な打球感が得られる程度まで炭素繊維を配合する場合と比べて極めて少量のカーボンナノチューブの配合であっても、カーボンナノチューブを樹脂中によく分散させることができたため、打球感の向上効果が得られる。
ガラス繊維とカーボンナノチューブを配合した樹脂の母材(マトリックス)には、熱可塑性樹脂が用いられる。熱可塑性樹脂としては、例えば、ポリアミド系樹脂、ポリアミド系エラストマー、ポリオリフィン系エラストマーなどを用いることができる。具体的には、ポリアミド12(ナイロン12、PA12)などを採用することができる。
ガラス繊維と共に樹脂に含有させるカーボンナノチューブは、カップスタック型カーボンナノチューブ(CS-CNT)、多層型カーボンナノチューブ(MW-CNT)、単層型カーボンナノチューブ(SW-CNT)などを用いることができる。
また、ガラス繊維と共に樹脂に含有するカーボンナノチューブは、官能基を備えていることが望ましい。官能基付きカーボンナノチューブは、カーボンナノチューブに官能基を修飾することによって得られる。官能基付きカーボンナノチューブを樹脂に配合することによって、樹脂とカーボンナノチューブとの結合力が強まり、樹脂の反発性が向上し、打球感が向上する。
更に、官能基付きカーボンナノチューブをガラス繊維とともに樹脂に含有させることによって、カーボンナノチューブがガラス繊維の周辺に接触(吸着)するような現象が生じる。これは、カーボンナノチューブの官能基とガラス表面との間で結合力(弱い結合力を含む)が働いた結果、カーボンナノチューブとガラス繊維とが接触しているものと考えられる。これにより、カーボンナノチューブの持つ反発性がガラス繊維に付与されると考えられ、官能基の無いカーボンナノチューブをガラス繊維と共に樹脂に配合する場合と比べて、官能基付きカーボンナノチューブをガラス繊維と共に樹脂に配合すると、更なる打球感の向上効果が得られる。
このため、官能基付きカーボンナノチューブの官能基は、ガラスとの親和性のある極性の高い官能基が望ましい。つまり、官能基付きカーボンナノチューブの官能基は、親水性を示す官能基が望ましい。例えば、カーボンナノチューブは、官能基としてカルボキシル基及び水酸基の少なくとも一方を備えると良い。また、ガラスとの親和性のある官能基であれば他の官能基(例えばアミノ基など)であっても良い。
また、樹脂に含有させるカーボンナノチューブは、カップスタック型のカーボンナノチューブ(CS-CNT)であることが望ましい。カップスタック型のカーボンナノチューブは、多数のカップを重ねたような構造をしており、高い強度を有しつつ柔軟性も備えているため、樹脂に含有するカーボンナノチューブに特にカップスタック型のカーボンナノチューブを採用すれば、反発性が向上し、打球感が向上する。
カーボンナノチューブの含有量は、0.4重量%以下であることが望ましい。この範囲でカーボンナノチューブを含有させれば、耐久性を損なうことなく、打球感を向上させることができる。なお、この範囲でカーボンナノチューブを含有させることが望ましいことは、後述する実施例で確認されている。
===実施例===
<サンプル>
人工シャトルコック1の耐久性と打球感を評価するため、羽軸部14の材料の異なる人工シャトルコック1のサンプル(参考サンプル、基準サンプル、サンプルA~E、比較サンプル1、2)を作成した。図6は、各サンプルの材料(及び評価結果)を示す表である。
<サンプル>
人工シャトルコック1の耐久性と打球感を評価するため、羽軸部14の材料の異なる人工シャトルコック1のサンプル(参考サンプル、基準サンプル、サンプルA~E、比較サンプル1、2)を作成した。図6は、各サンプルの材料(及び評価結果)を示す表である。
各サンプルの人工シャトルコック1の形状は、図1、2、4、5に示す通りであり、共通である(人工シャトルコックの未説明の形状・大きさ・重さなどは、日本バドミントン協会競技規則の規定に従っている)。また、各サンプルの材料は、羽軸部14の材料を除き、共通している。
羽軸部14の材料となる樹脂の母材(マトリックス)は、いずれのサンプルにおいても共通であり、12ナイロン(PA12)である。
表中の「GF」は、ガラス繊維の意味である。表中の「GFn%」は、ガラス繊維の含有量がn重量%であることを意味する。
参考サンプルの強化繊維(ガラス繊維)の配合比は20.0重量%であり、他のサンプル(基準サンプル、サンプルA~E、比較サンプル1、2)の強化繊維(ガラス繊維、炭素繊維、カーボンナノチューブ)は22.5重量%である。
表中の「CNT」は、カーボンナノチューブの意味である。表中の「CNT(1)」は、官能基付きCS-CNT(カップスタック型カーボンナノチューブ、直径50~80nm、長さ0.82~1.08μm)である。表中の「CNT(2)」は、官能基付きMW-CNT(多層型カーボンナノチューブ、直径8~15nm、長さ2μm以下)である。表中の「CNT(3)」は、MW-CNT(直径10~15nm、長さ0.1~10μm)である。なお、官能基は少なくともカルボキシル基及び水酸基を含み、その量は1~10重量%である。
参考サンプル:20.0重量%のガラス繊維を含むガラス強化樹脂を準備し、この材料で成型した羽軸部14を備えた人工羽根10を製造し、この人工羽根10を用いて製造した人工シャトルコック1を参考サンプルとした。参考サンプルには、ガラス繊維以外の強化繊維(炭素繊維など)は含まれていない。なお、参考サンプルは、基準サンプルのガラス繊維の含有量(22.5重量%)と比べて、ガラス繊維の含有量が少ない(20.0重量%)。
基準サンプル:22.5重量%のガラス繊維を含むガラス強化樹脂を準備し、この材料で成型した羽軸部14を備えた人工羽根10を製造し、この人工羽根10を用いて製造した人工シャトルコック1を基準サンプルとした。この基準サンプルが、耐久性や打球感の評価の基準となる。
サンプルA:22.3重量%のガラス繊維と0.2重量%のCS-CNT(官能基付き)を含む樹脂を準備し、この材料で成形した羽軸部14を備えた人工羽根10を製造し、この人工羽根10を用いて製造した人工シャトルコック1をサンプルAとした。
サンプルB:22.3重量%のガラス繊維と0.2重量%のMW-CNT(官能基付き)を含む樹脂を準備し、この材料で成形した羽軸部14を備えた人工羽根10を製造し、この人工羽根10を用いて製造した人工シャトルコック1をサンプルBとした。
サンプルC:22.3重量%のガラス繊維と0.2重量%のMW-CNTを含む樹脂を準備し、この材料で成型した羽軸部14を備えた人工羽根10を製造し、この人工羽根10を用いて製造した人工シャトルコック1をサンプルCとした。
なお、サンプルA~Cは、いずれも22.3重量%のガラス繊維と0.2重量%のCNTを含む樹脂を、羽軸部14の材料としている。サンプルA~Cの間で異なる点は、カーボンナノチューブの種類である。
サンプルD:22.1重量%のガラス繊維と0.4重量%のMW-CNTを含む樹脂を準備し、この材料で成型した羽軸部14を備えた人工羽根10を製造し、この人工羽根10を用いて製造した人工シャトルコック1をサンプルDとした。
サンプルE:21.9重量%のガラス繊維と0.6重量%のMW-CNTを含む樹脂を準備し、この材料で成型した羽軸部14を備えた人工羽根10を製造し、この人工羽根10を用いて製造した人工シャトルコック1をサンプルEとした。
なお、サンプルC~Eは、いずれもガラス繊維とMW-CNTを含む樹脂を、羽軸部14の材料としている。サンプルC~Eの間で異なる点は、MW-CNTの含有率である。
比較サンプルA:22.0重量%のガラス繊維と0.5重量%の炭素繊維を含む樹脂を準備し、この材料で成型した羽軸部14を備えた人工羽根10を製造し、この人工羽根10を用いて製造した人工シャトルコック1を比較サンプルAとした。
比較サンプルB:17.5重量%のガラス繊維と5.0重量%の炭素繊維を含む樹脂を準備し、この材料で成型した羽軸部14を備えた人工羽根10を製造し、この人工羽根10を用いて製造した人工シャトルコック1を比較サンプルBとした。
<分散の様子>
図7Aは、比較サンプルAを撮影した写真である。図7Bは、サンプルCを撮影した写真である。(但し、図7A及び図7Bは、写真から羽軸部14の色を把握できるようにするために、スカート部4(円環状に配置された複数の人工羽根10)の内側に白色の紙が入っている。)
図7A(炭素繊維を0.5重量%含有した比較サンプルA)では、羽軸部14が灰色であることが確認された。これは、炭素繊維が樹脂全体に十分に分散しておらず、樹脂に対する炭素繊維の量が足りない状態である。(このため、後述するように、比較サンプルAでは、炭素繊維が含有されているにも関わらず、羽軸部14の剛性・反発性が向上せず、打球感が向上していない。)
これに対し、図7B(MW-CNTを0.2重量%含有したサンプルC)では、羽軸部14が黒色になっていることが確認された。(なお、サンプルA及びサンプルBにおいても、羽軸部14は黒色であった。)羽軸部14が黒色なのは、黒色のカーボンナノチューブが樹脂全体に分散している結果である。
図7Aは、比較サンプルAを撮影した写真である。図7Bは、サンプルCを撮影した写真である。(但し、図7A及び図7Bは、写真から羽軸部14の色を把握できるようにするために、スカート部4(円環状に配置された複数の人工羽根10)の内側に白色の紙が入っている。)
図7A(炭素繊維を0.5重量%含有した比較サンプルA)では、羽軸部14が灰色であることが確認された。これは、炭素繊維が樹脂全体に十分に分散しておらず、樹脂に対する炭素繊維の量が足りない状態である。(このため、後述するように、比較サンプルAでは、炭素繊維が含有されているにも関わらず、羽軸部14の剛性・反発性が向上せず、打球感が向上していない。)
これに対し、図7B(MW-CNTを0.2重量%含有したサンプルC)では、羽軸部14が黒色になっていることが確認された。(なお、サンプルA及びサンプルBにおいても、羽軸部14は黒色であった。)羽軸部14が黒色なのは、黒色のカーボンナノチューブが樹脂全体に分散している結果である。
なお、図7Bに示すように、羽軸部14の羽支持部14Aが、シート状の羽部12と、シート状の補強材15との間で挟持されている。これにより、羽軸部14の羽支持部14Aの黒色は外部から視認され難くなり、羽軸部14の黒く見える部分を減らすことができることも確認された。
図8A及び図8Bは、サンプルBの羽軸部14の断面の顕微鏡写真である。図8Aは、切断面の顕微鏡写真であり、図8Bは、切断面を溶剤で一部溶かした後の表面の顕微鏡写真である。図8Bは、図8Aの内部の状態を示しているともいえるが、この写真からも、黒色のカーボンナノチューブが樹脂の中で分散している様子が分かる。
このように、カーボンナノチューブを樹脂に含有させた場合、比較サンプルの炭素繊維と比べて極めて少量(0.2重量%)であっても、カーボンナノチューブが樹脂全体に分散することが確認された。
<ガラス繊維とCNTとの接触現象>
図8Aの顕微鏡写真(官能基付きMW-CNTを0.2重量%含有したサンプルB)によれば、カーボンナノチューブ(写真の黒色の部分)がガラス繊維(写真の細長い透明な部材)の周囲に接触(吸着)している様子が分かる。このように、官能基付きカーボンナノチューブを含有させると、カーボンナノチューブとガラス繊維とが接触する現象が生じることが確認された。
図8Aの顕微鏡写真(官能基付きMW-CNTを0.2重量%含有したサンプルB)によれば、カーボンナノチューブ(写真の黒色の部分)がガラス繊維(写真の細長い透明な部材)の周囲に接触(吸着)している様子が分かる。このように、官能基付きカーボンナノチューブを含有させると、カーボンナノチューブとガラス繊維とが接触する現象が生じることが確認された。
<耐久性と打球感の評価結果>
図3には、各サンプルの耐久性と打球感の評価結果が示されている。
図3には、各サンプルの耐久性と打球感の評価結果が示されている。
耐久試験は、初速が300Km/hを超えるスマッシュを所定回数繰り返すことにより行われた。
耐久性の評価は、スマッシュ打撃毎にシャトルの状態を確認して、初期破損(軸が最初に折れた状態)の発生時期により数値化する事で行われた。所定回数を終えた段階で破損が無い状態を「100」として、所定回数より速く破損が出た場合は破損が生じたスマッシュ回数の割合で示す方法を採用した。今回は、破損の無い状態が基準となったために、基準サンプルを超える評価のサンプルは存在しない。
また、評価したシャトルに用いたベース部2には天然コルクを用いている。天然コルクは軽さと良好な反発性を両立する半面、天然素材であるがゆえにばらつきが多い特徴を有する。その結果、同じ種類の羽軸部を使用した場合でも個体差が生じている。よって、5%程度は誤差の範囲であり、耐久性の評価が96以上のものは実用上問題の無い範囲である。
打球感の評価は、基準サンプルを基準として、5名のモニターがプラス側(良い評価)若しくはマイナス側(悪い評価)にそれぞれ5段階で評価することにより行われた。また、5名の評価結果の平均値から総括を実施している。総括では、平均値が-5以上-4未満の範囲を「すごく悪い」、平均値が-4以上-2.5未満の範囲を「悪い」、平均値が-2.5以上-1未満の範囲を「やや悪い」、-1以上1未満の範囲を「普通」、1以上2.5未満の範囲を「やや良い」、2.5以上4未満の範囲を「良い」、4以上5以下の範囲を「すごく良い」と設定した。但し、5つの評価結果の平均値から打球感を評価することも可能である。
参考サンプルでは、打球感が悪い(やや悪い)ことが確認された。これは、樹脂を強化する強化繊維(ガラス繊維)の量が少ないため、羽軸部14の剛性・反発性が低くなったためと考えられる。
また、比較サンプルAでは、基準サンプルと比べて、耐久性及び打球感にほとんど変化が無いことが確認された。これは、図7Aの写真からも確認された通り、樹脂に対する炭素繊維の量が不足しているためだと考えられる。
また、比較サンプルBでは、打球感が良くなることが確認された。これは、炭素繊維が十分に配合された結果、羽軸部14の剛性・反発性が高くなったためと考えられる。但し、比較サンプルBでは、耐久性が低くなることが確認された。これは、炭素繊維の含有量が多くなった結果、羽軸部14が脆く折れやすくなったためと考えられる。
次に、カーボンナノチューブを含有したサンプルA~Eについて説明する。
サンプルA~サンプルCのいずれにおいても、打球感の向上が確認された。これにより、サンプルA~サンプルCでは、比較サンプルBの炭素繊維の含有量(5.0重量%)に対して、ごく少量(0.2重量%)のカーボンナノチューブの含有によって、打球感の向上効果が得られることが確認された。
更に、サンプルA~サンプルCでは、カーボンナノチューブの含有による耐久性の低下は確認されなかった。つまり、サンプルA~サンプルCでは、比較サンプルBのように耐久性を損なうことなく、打球感が向上した。
特に、サンプルAとサンプルBでは、サンプルCと比べて、打球感の向上が顕著であった。サンプルBとサンプルCが、いずれもMW-CNTであり、いずれもカーボンナノチューブが樹脂によく分散しており(いずれも羽軸部14が黒色であるため、図7B参照)、官能基の有無が相違する点を考慮すると、カーボンナノチューブが官能基を備えていることが打球感の更なる向上に寄与していると推測される。
官能基付きMW-CNTを含有したサンプルBでは、カーボンナノチューブとガラス強化樹脂のガラス繊維とが接触する現象が確認されているので、この現象が打球感の更なる向上に寄与していると推測される。つまり、カーボンナノチューブが官能基としてカルボキシル基及び水酸基を備えていることが、打球感の更なる向上に寄与していると推測される。
また、CS-CNTを含有したサンプルAは、他のタイプのカーボンナノチューブを含有したサンプルと比べて、打球感が良いことが確認された。
サンプルC~サンプルEのいずれにおいても、打球感の向上が確認された。また、サンプルC~サンプルEでは、比較サンプルBほどの耐久性の低下はなかった。つまり、サンプルA~サンプルEでは、比較サンプルBと比べて、耐久性を損なわずに打球感が向上することが確認された。
また、サンプルCとサンプルDでは、耐久性がほとんど低下していないのに対し、サンプルEでは、耐久性の若干の低下が確認された。このため、耐久性の低下を考慮すると、材料(ガラス繊維とカーボンナノチューブを含む樹脂)の中のカーボンナノチューブの含有量は、0.4重量%以下(但し、0重量%より多い含有量である)であることが望ましいと推測される。
また、サンプルC~サンプルEの打球感の平均値は、いずれも基準サンプルと比べて高い値であると共に、サンプルDが最も高い値であった。このため、カーボンナノチューブを0.4重量%に達するまで含有させれば、耐久性を損なうことなく、カーボンナノチューブの含有量に応じて打球感を向上させることができると推測される。また、カーボンナノチューブを0.4重量%より多く含有させると、耐久性だけでなく打球感も低下することがあると推測される。これらの理由から、材料(ガラス繊維とカーボンナノチューブを含む樹脂)の中のカーボンナノチューブの含有量は、0.4重量%以下であることが望ましいと推測される。また、材料(ガラス繊維とカーボンナノチューブを含む樹脂)の中のカーボンナノチューブが0.2重量%以上、0.4重量%以下の範囲で含有されていれば、耐久性を損なわずに、高い打球感を実現できることが確認された。
===その他===
上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは言うまでもない。
上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは言うまでもない。
1 人工シャトルコック、
2 ベース部、
3 紐状部材、
4 スカート部、
10 人工羽根、
12 羽部、
14 羽軸部、
14A 羽支持部、
14B 羽柄部、
15 補強材、
30 重複領域、
40 単独領域
2 ベース部、
3 紐状部材、
4 スカート部、
10 人工羽根、
12 羽部、
14 羽軸部、
14A 羽支持部、
14B 羽柄部、
15 補強材、
30 重複領域、
40 単独領域
Claims (8)
- シート状の羽部と、前記羽部を支持する羽軸部とを備えたシャトルコック用人工羽根であって、
前記羽軸部は、ガラス繊維とカーボンナノチューブを含む樹脂によって形成されている
ことを特徴とするシャトルコック用人工羽根。 - 請求項1に記載のシャトルコック用人工羽根であって、
前記羽部を含む少なくとも2枚のシート状の部材の間に前記羽軸部を挟持させる
ことを特徴とするシャトルコック用人工羽根。 - 請求項1又は2に記載のシャトルコック用人工羽根であって、
前記カーボンナノチューブは、官能基を備える
ことを特徴とするシャトルコック用人工羽根。 - 請求項3に記載のシャトルコック用人工羽根であって、
前記カーボンナノチューブは、前記官能基としてカルボキシル基及び水酸基の少なくとも一方を備える
ことを特徴とするシャトルコック用人工羽根。 - 請求項1~4のいずれかに記載のシャトルコック用人工羽根であって、
前記ガラス繊維と前記カーボンナノチューブを含む樹脂における前記カーボンナノチューブの含有量が、0.4重量%以下である
ことを特徴とするシャトルコック用人工羽根。 - ベース部と、前記ベース部に円環状に配置した複数の人工羽根とを備えたシャトルコックであって、
前記人工羽根は、シート状の羽部と、前記羽部を支持する羽軸部とを備え、
前記羽軸部は、ガラス繊維とカーボンナノチューブを含む樹脂によって形成されている
ことを特徴とするシャトルコック。 - シート状の羽部と、前記羽部を支持する羽軸部とを備えたシャトルコック用人工羽根の製造方法であって、
前記羽軸部を、ガラス繊維とカーボンナノチューブを含む樹脂によって形成する
ことを特徴とするシャトルコック用人工羽根の製造方法。 - 請求項7に記載の製造方法であって、
前記ガラス繊維を配合した第1マスターバッチを用意し、
前記カーボンナノチューブを配合した第2マスターバッチを用意し、
前記第1マスターバッチと、前記第2マスターバッチと、前記ガラス繊維も前記カーボンナノチューブも含まれていない樹脂とを練り込むことによって、前記ガラス繊維と前記カーボンナノチューブを含む樹脂を生成する
ことを特徴とするシャトルコック用人工羽根の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/232,709 US20140155201A1 (en) | 2011-08-19 | 2012-07-27 | Artificial feather for shuttlecock, shuttlecock, and method of manufacturing artificial feather for shuttlecock |
CN201280040314.3A CN103842035B (zh) | 2011-08-19 | 2012-07-27 | 羽毛球用人造羽毛、羽毛球及羽毛球用人造羽毛的制造方法 |
EP12825786.2A EP2745883A4 (en) | 2011-08-19 | 2012-07-27 | ARTIFICIAL FEATHER FOR BADMINTON FLYWHEEL, BADMINTON FLYWHEEL AND METHOD FOR MANUFACTURING ARTIFICIAL FEATHER FOR BADMINTON FLYWHEEL |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011179801A JP5941633B2 (ja) | 2011-08-19 | 2011-08-19 | シャトルコック用人工羽根、シャトルコック及びシャトルコック用人工羽根の製造方法 |
JP2011-179801 | 2011-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013027535A1 true WO2013027535A1 (ja) | 2013-02-28 |
Family
ID=47746286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/069120 WO2013027535A1 (ja) | 2011-08-19 | 2012-07-27 | シャトルコック用人工羽根、シャトルコック及びシャトルコック用人工羽根の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140155201A1 (ja) |
EP (1) | EP2745883A4 (ja) |
JP (1) | JP5941633B2 (ja) |
CN (1) | CN103842035B (ja) |
WO (1) | WO2013027535A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5976907B1 (ja) * | 2015-08-17 | 2016-08-24 | 株式会社コスモ精機 | バドミントン用シャトル |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106914004B (zh) * | 2015-12-25 | 2023-10-20 | 戴见霖 | 羽毛球制造设备及其应用 |
JP6756517B2 (ja) * | 2016-05-09 | 2020-09-16 | ヨネックス株式会社 | シャトルコック用人工羽根、及び、シャトルコック |
TWI705843B (zh) * | 2019-08-28 | 2020-10-01 | 勝利體育事業股份有限公司 | 人造羽毛球 |
CN112206488B (zh) * | 2020-10-16 | 2022-01-18 | 张宇 | 一种羽毛球生产制作用钩线打结设备 |
TWI750995B (zh) * | 2021-01-13 | 2021-12-21 | 勝利體育事業股份有限公司 | 人造羽毛球與毛片及其製備方法 |
TWM637654U (zh) * | 2022-10-14 | 2023-02-11 | 勝利體育事業股份有限公司 | 人造羽毛球 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5969086A (ja) | 1982-10-14 | 1984-04-19 | ヤマハ株式会社 | シヤトルコツク用羽根 |
JP2008206970A (ja) | 2007-02-02 | 2008-09-11 | Mizuno Corp | バドミントン用シャトルコック、シャトルコック用人工羽根およびそれらの製造方法 |
JP2010082160A (ja) * | 2008-09-30 | 2010-04-15 | Mizuno Corp | バドミントン用シャトルコックおよびシャトルコック用ベース本体 |
JP2011036591A (ja) * | 2009-08-18 | 2011-02-24 | Mizuno Corp | シャトルコック用人工羽根、バドミントン用シャトルコックおよびそれらの製造方法 |
JP2011519986A (ja) * | 2008-04-22 | 2011-07-14 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | 不飽和ポリエステル、ラジカル硬化性ビニル化合物およびカーボンナノチューブに基づく反応樹脂 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070225426A1 (en) * | 2006-03-24 | 2007-09-27 | Nano-Proprietary, Inc. | Nylon 11/Filler/Modifier Composites |
-
2011
- 2011-08-19 JP JP2011179801A patent/JP5941633B2/ja not_active Expired - Fee Related
-
2012
- 2012-07-27 EP EP12825786.2A patent/EP2745883A4/en not_active Withdrawn
- 2012-07-27 WO PCT/JP2012/069120 patent/WO2013027535A1/ja active Application Filing
- 2012-07-27 US US14/232,709 patent/US20140155201A1/en not_active Abandoned
- 2012-07-27 CN CN201280040314.3A patent/CN103842035B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5969086A (ja) | 1982-10-14 | 1984-04-19 | ヤマハ株式会社 | シヤトルコツク用羽根 |
JP2008206970A (ja) | 2007-02-02 | 2008-09-11 | Mizuno Corp | バドミントン用シャトルコック、シャトルコック用人工羽根およびそれらの製造方法 |
JP2011519986A (ja) * | 2008-04-22 | 2011-07-14 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | 不飽和ポリエステル、ラジカル硬化性ビニル化合物およびカーボンナノチューブに基づく反応樹脂 |
JP2010082160A (ja) * | 2008-09-30 | 2010-04-15 | Mizuno Corp | バドミントン用シャトルコックおよびシャトルコック用ベース本体 |
JP2011036591A (ja) * | 2009-08-18 | 2011-02-24 | Mizuno Corp | シャトルコック用人工羽根、バドミントン用シャトルコックおよびそれらの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2745883A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5976907B1 (ja) * | 2015-08-17 | 2016-08-24 | 株式会社コスモ精機 | バドミントン用シャトル |
JP2017038634A (ja) * | 2015-08-17 | 2017-02-23 | 株式会社コスモ精機 | バドミントン用シャトル |
Also Published As
Publication number | Publication date |
---|---|
CN103842035B (zh) | 2016-04-20 |
JP5941633B2 (ja) | 2016-06-29 |
JP2013039317A (ja) | 2013-02-28 |
EP2745883A1 (en) | 2014-06-25 |
US20140155201A1 (en) | 2014-06-05 |
CN103842035A (zh) | 2014-06-04 |
EP2745883A4 (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013027535A1 (ja) | シャトルコック用人工羽根、シャトルコック及びシャトルコック用人工羽根の製造方法 | |
JP6756517B2 (ja) | シャトルコック用人工羽根、及び、シャトルコック | |
JP5866285B2 (ja) | シャトルコック用人工羽根、シャトルコック、およびシャトルコック用人工羽根の製造方法 | |
JP5802490B2 (ja) | シャトルコック用人工羽根、シャトルコック | |
CN109475769B (zh) | 羽毛球用人工羽毛及羽毛球 | |
JPWO2012033068A1 (ja) | シャトルコック用人工羽根、およびシャトルコック | |
US20150051027A1 (en) | Sporting goods with graphene material | |
US20030232565A1 (en) | Floppy flying toy | |
CN202015467U (zh) | 羽毛球专用人工羽毛及由其制成的羽毛球 | |
JP2014158603A (ja) | シャトルコック | |
JP2014073252A (ja) | シャトルコック、及び、シャトルコック用人工羽根 | |
JP7049414B2 (ja) | 人工シャトルコック | |
GB2492575A (en) | A shuttlecock with an extended shaft separating the head and skirt | |
US20080274663A1 (en) | Confetti | |
JP4439936B2 (ja) | 卓球用ラケット | |
CN202263368U (zh) | 人造羽毛片及由其制成的羽毛球 | |
CN203694553U (zh) | 羽毛球 | |
JP2015029845A (ja) | シャトルコック、及び、シャトルコック用人工羽根 | |
KR20150002602U (ko) | 감속기능 배드민턴 인조셔틀콕 | |
CN221491392U (zh) | 人造羽毛球 | |
US20240058656A1 (en) | Ball game racket frame, ball game racket, and method for manufacturing a ball game racket frame | |
JP7356178B2 (ja) | シャトルコックおよびシャトルコックの製造方法 | |
KR200484745Y1 (ko) | 베이스와 날개 이중구조 셔틀콕 | |
CN2897340Y (zh) | 9片篮球 | |
JP2020124640A (ja) | シャトルコック用人工羽根、及び、シャトルコック |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280040314.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12825786 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14232709 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012825786 Country of ref document: EP |