WO2013027401A1 - 重合体の製造方法 - Google Patents

重合体の製造方法 Download PDF

Info

Publication number
WO2013027401A1
WO2013027401A1 PCT/JP2012/005269 JP2012005269W WO2013027401A1 WO 2013027401 A1 WO2013027401 A1 WO 2013027401A1 JP 2012005269 W JP2012005269 W JP 2012005269W WO 2013027401 A1 WO2013027401 A1 WO 2013027401A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
rare earth
earth element
reaction
Prior art date
Application number
PCT/JP2012/005269
Other languages
English (en)
French (fr)
Inventor
会田 昭二郎
若槻 康雄
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201280040980.7A priority Critical patent/CN103748117B/zh
Priority to EP12825477.8A priority patent/EP2749578B1/en
Priority to JP2013529878A priority patent/JP5887349B2/ja
Priority to BR112014004138A priority patent/BR112014004138A2/pt
Priority to RU2014111056/04A priority patent/RU2559057C1/ru
Priority to US14/238,232 priority patent/US9688798B2/en
Publication of WO2013027401A1 publication Critical patent/WO2013027401A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/04Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing a polymer, and in particular, suppresses the formation of by-products, and at the same time, a non-conjugated olefin homopolymer, a conjugated diene compound homopolymer, and a conjugated diene compound-non-target product.
  • the present invention relates to a method for producing a polymer capable of producing a polymer having a hydroxyl group added to any terminal of a conjugated olefin copolymer in a high yield.
  • polymer is a concept including not only “polymer” but also “oligomer”.
  • the Alfo method is known as an industrial method for producing a linear higher alcohol (see, for example, Non-Patent Document 1).
  • a typical reaction triethylaluminum (AlEt 3 ) and high pressure (120 Kgf / cm 2 ) ethylene are reacted at 120 ° C. (the following reaction formula (1)), and oxidized at 50 ° C. and 5 Kgf / cm 2 (the following reaction formula). (2)) and a reaction that undergoes hydrolysis at 90 ° C. (the following reaction formula (3)) to convert to alcohol.
  • Reaction formula (1) Al (C 2 H 5 ) 3 +3 nC 2 H 4 ⁇ Al [— (CH 2 —CH 2 ) n —C 2 H 5 ] 3
  • n shows arbitrary integers.
  • Reaction formula (2) Al [— (CH 2 —CH 2 ) n —C 2 H 5 ] 3 + 1.5O 2 ⁇ Al [O— (CH 2 —CH 2 ) n —C 2 H 5 ] 3
  • Reaction formula (2) n shows arbitrary integers.
  • Reaction formula (3) Al [O— (CH 2 —CH 2 ) n —C 2 H 5 ] 3 + 3H 2 O ⁇ 3C 2 H 5 (CH 2 CH 2 ) n OH + Al (OH) 3
  • n represents an arbitrary integer.
  • Alfol has already been studied at a laboratory-capable ethylene pressure, and when the AlEt 3 reaction is carried out at an ethylene pressure of 20 Kg / cm 2 , the yield of the desired linear alcohol at a reaction temperature of 120 ° C. Has been found to be as low as about 3% of the aluminum compound used, and it has been confirmed that when the reaction temperature is raised, the production of linear terminal alkene becomes the main reaction (see comparative experiment).
  • the pressure of ethylene is set to 80 to 300 Kg / cm 2 and high temperature. It is necessary to react at least (100 ° C or more).
  • a technique for obtaining the same aluminum compound intermediate as the product of the reaction formula (1) at a low ethylene pressure for example, about 5 Kg / cm 2
  • a main group metal alkyl eg, AlR 3 , ZnR 2 , MgR 2
  • ethylene insertion in the CCTP method occurs between transition metal and alkyl and proceeds by a mechanism in which the grown alkyl group exchanges with the alkyl group bonded to aluminum, so that long chain alkyl is transferred to aluminum.
  • the terminal alkene is mixed due to a side reaction that causes ⁇ -hydrogen elimination on the transition metal.
  • the target reaction does not proceed even if the interaction between the alkylaluminum and the transition metal alkyl is strong or weak, there is a problem that the reaction conditions are limited (for example, see Non-Patent Document 2).
  • an object of the present invention is to suppress the production of by-products and to produce a homopolymer of a non-conjugated olefin, a conjugated diene compound, and a conjugated diene compound-non-conjugated olefin copolymer, which are target products. It is an object of the present invention to provide a method for producing a polymer, which can produce a polymer having a hydroxyl group added to any terminal thereof in a high yield.
  • the inventors suppress the formation of by-products by reacting a hydrocarbon containing at least one of the non-conjugated olefin and the conjugated diene compound with an organoaluminum compound using a rare earth element compound-containing catalyst.
  • high yields of non-conjugated olefin homopolymers, conjugated diene compound homopolymers, and conjugated diene compound-nonconjugated olefin copolymers, which are target products are obtained by adding a hydroxyl group to either terminal.
  • the present inventors have found that a method for producing a polymer that can be produced at a rate can be achieved, and have completed the present invention.
  • the method for producing a polymer of the present invention comprises a polymer in which a hydroxyl group is added to any terminal of a non-conjugated olefin homopolymer, a conjugated diene compound homopolymer, and a conjugated diene compound-nonconjugated olefin copolymer.
  • a method for producing a polymer for producing a coalescence wherein a hydrocarbon containing at least one of the non-conjugated olefin and the conjugated diene compound is reacted with an organoaluminum compound using a rare earth element compound-containing catalyst.
  • a third reaction step in which is reacted in which is reacted.
  • the formation of by-products (terminal alkene, terminal conjugated diene) is suppressed and the desired product is a homopolymer of a non-conjugated olefin, a homopolymer of a conjugated diene compound, and a conjugated diene compound. It is possible to provide a polymer production method capable of producing a polymer having a hydroxyl group added to any terminal of a non-conjugated olefin copolymer in a high yield.
  • FIG. 1 is a GC / MS spectrum chart of the product A obtained in Example 1.
  • the method for producing a polymer of the present invention includes at least a first reaction step, a second reaction step, and a third reaction step, and further includes other steps appropriately selected as necessary.
  • a polymer in which a hydroxyl group is added to any terminal of a homopolymer of a nonconjugated olefin, a homopolymer of a conjugated diene compound, and a conjugated diene compound-nonconjugated olefin copolymer is obtained. It can be produced in high yield.
  • the weight average molecular weight (Mw) of the polymer is preferably 20 to 1,000,000, more preferably 50 to 800,000, and particularly preferably 100 to 500,000.
  • the first reaction step is a step of reacting a hydrocarbon containing at least one of a non-conjugated olefin and a conjugated diene compound with an organoaluminum compound using a rare earth element compound-containing catalyst.
  • a reaction represented by the following chemical reaction formula (4) occurs. AlR 3 +3 nC 2 H 4 ⁇ Al [— (CH 2 —CH 2 ) n —R] 3 (4)
  • R represents an alkyl group
  • n represents an arbitrary integer.
  • the reaction temperature in the first reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. However, room temperature (20 ° C.) to 120 ° C. is preferable, 30 ° C. to 100 ° C. is more preferable, and 40 ° C. ⁇ 80 ° C. is particularly preferred. When the reaction temperature is lower than room temperature (20 ° C.), the temperature adjustment cost may increase, and when it exceeds 120 ° C., by-products such as alkenes may be generated. On the other hand, when the reaction temperature is within a particularly preferable range, it is advantageous in terms of production cost.
  • the lower limit of the reaction pressure in the first reaction step is usually 1 kgf / cm 2 (kg / cm 2 ), and there is no upper limit, but 100 kgf / cm 2 is preferable from an industrial viewpoint. That is, the reaction pressure in the first reaction step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 kgf / cm 2 to 100 kgf / cm 2 , and 5 kgf / cm 2 to 50 kgf / cm 2. 2 is more preferable, and 10 kgf / cm 2 to 30 kgf / cm 2 is particularly preferable.
  • reaction pressure is less than 1 kgf / cm 2 , it may take a long time for the reaction, and if it exceeds 100 kgf / cm 2 , it may not be preferable from an industrial viewpoint. On the other hand, it is advantageous in terms of reaction efficiency that the reaction pressure is within a particularly preferable range.
  • the reaction time in the first reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 1 second to 24 hours, more preferably 10 minutes to 10 hours, and 1 hour to 8 hours. Is particularly preferred. If the reaction time is less than 1 second, the reaction may not proceed sufficiently, and if it exceeds 24 hours, it may not be preferable from an industrial viewpoint. On the other hand, when the reaction time is within a particularly preferable range, it is advantageous in terms of production efficiency.
  • the first reaction step is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas.
  • toluene normal hexane, cyclohexane, etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, toluene is preferable in terms of solubility of the polymer.
  • the hydrocarbon contains at least one of a non-conjugated olefin and a conjugated diene compound, and may contain other hydrocarbons.
  • the amount of the hydrocarbon used is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 10 times to 1,000,000 times mol, and 20 times the amount of alkylaluminum described later. Mole to 100,000 times mol is more preferable, and 50 times to 10,000 times mol is particularly preferable. If the amount used is less than 10-fold mol, the molecular weight may not increase, and if it exceeds 1,000,000-fold mol, the reaction may not proceed sufficiently. On the other hand, if the amount used is within a particularly preferred range, it is advantageous in terms of reaction efficiency.
  • the non-conjugated olefin is used as a monomer and is a non-conjugated olefin other than a conjugated diene compound.
  • the non-conjugated olefin is preferably an acyclic olefin, and the non-conjugated olefin preferably has 2 to 10 carbon atoms. Accordingly, preferred examples of the non-conjugated olefin include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene.
  • non-conjugated olefins may be used alone or in combination of two or more.
  • the olefin refers to a compound that is an aliphatic unsaturated hydrocarbon and has one or more carbon-carbon double bonds.
  • the content of the non-conjugated olefin is not particularly limited and may be appropriately selected depending on the purpose, and may not be contained in the hydrocarbon at all (it is 0 mol% in the hydrocarbon). Or all of the non-conjugated olefin may be contained in the hydrocarbon (100 mol% may be contained in the hydrocarbon).
  • the conjugated diene compound is used as a monomer and preferably has 4 to 12 carbon atoms.
  • Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, and among these, 1,3-butadiene and isoprene are preferable.
  • these conjugated diene compounds may be used independently and may be used in combination of 2 or more type.
  • the content of the conjugated diene compound is not particularly limited and may be appropriately selected depending on the purpose, and may not be contained in the hydrocarbon at all (0 mol% in the hydrocarbon). All of the hydrocarbon may be the conjugated diene compound (100 mol% in the hydrocarbon).
  • organoaluminum compounds there is no restriction
  • AlR 1 R 2 R 3 (Xa) [Wherein, R 1 and R 2 are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 3 represents a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 represents the above It may be the same as or different from R 1 or R 2 ]
  • Specific examples of the organoaluminum compound are not particularly limited and may be appropriately selected depending on the intended purpose.
  • the rare earth element compound-containing catalyst is not particularly limited as long as it is a catalyst containing a rare earth element compound or a reaction product (component A) of the rare earth element compound and a Lewis base, and may be appropriately selected according to the purpose. Examples thereof include a first rare earth element compound-containing catalyst and a second rare earth element compound-containing catalyst, which will be described later. These may be used individually by 1 type and may use 2 or more types together. Among these, (dimethylaluminum ( ⁇ -dimethyl) bis (pentamethylcyclopentadienyl) lanthanum is preferable from the viewpoint of reaction efficiency.
  • the amount of the rare earth element compound-containing catalyst is preferably 0.000001 times to 0.1 times mol, more preferably 0.000002 times to 0.01 times mol, based on the total of the hydrocarbons. 0.000005 times mol to 0.001 times mol is particularly preferable. When the amount used is less than 0.000001 times mol, the reaction may not proceed sufficiently, and when it exceeds 0.1 times mol, the molecular weight may not increase. On the other hand, if the amount used is within a particularly preferred range, it is advantageous in terms of production cost.
  • the component (A) is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base.
  • the rare earth element compound and the reaction product of the rare earth element compound and the Lewis base include a rare earth element and carbon. It is not necessary to have a bond. When the rare earth element compound and the reactant do not have a rare earth element-carbon bond, the compound may be stable and easy to handle.
  • the rare earth element compound is a compound containing a lanthanoid element or scandium or yttrium composed of the elements of atomic numbers 57 to 71 in the periodic table.
  • the lanthanoid element examples include lanthanium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • the said (A) component may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the rare earth element compound is preferably a divalent or trivalent salt or complex compound of a rare earth metal, and one or more coordinations selected from a hydrogen atom, a halogen atom and an organic compound residue. More preferably, the rare earth element compound contains a child.
  • reaction product of the rare earth element compound or the rare earth element compound and a Lewis base is represented by the following general formula (XI) or (XII): M 11 X 11 2 ⁇ L 11 w (XI) M 11 X 11 3 ⁇ L 11 w (XII) [Wherein M 11 represents a lanthanoid element, scandium or yttrium, and X 11 independently represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, an aldehyde residue, a ketone residue.
  • the group (ligand) bonded to the rare earth element of the rare earth element compound include a hydrogen atom; a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert- Aliphatic alkoxy groups such as butoxy group; phenoxy group, 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6- Isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, 2-isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thio aliphatic thiolate groups such as sec-butoxy group
  • aldehyde residues such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2′-hydroxyacetophenone, 2′-hydroxybutyrophenone, 2′-hydroxypropiophenone, etc.
  • examples of the Lewis base that reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral And diolefins.
  • the Lewis base L 11 is the same or different. It may be.
  • the rare earth element compound-containing catalyst includes an ionic compound (B-1) composed of a non-coordinating anion and a cation, an aluminoxane (B-2), and a complex of Lewis acid, metal halide and Lewis base.
  • B component which is at least 1 type of compound selected from the group which consists of at least 1 type of halogen compound (B-3) among the organic compounds containing a compound and active halogen may further be included.
  • the total content of the component (B) in the rare earth element compound-containing catalyst is preferably 0.1 to 50 times mol of the component (A).
  • the ionic compound represented by (B-1) is composed of a non-coordinating anion and a cation, and reacts with the rare earth element compound which is the component (A) or a reaction product thereof with a Lewis base to become cationic.
  • Examples thereof include ionic compounds capable of generating a transition metal compound.
  • non-coordinating anion for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarbaound decaborate and the like.
  • examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation and tri (substituted phenyl) carbonium cation, and more specifically, as tri (substituted phenyl) carbonyl cation, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation, and the like.
  • ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (eg, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cation such as cation, N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation; dialkylammonium cation such as diisopropylammonium cation and dicyclohexylammonium cation Is mentioned.
  • trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (eg, tri (n-butyl)
  • the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • the ionic compound is preferably a compound selected and combined from the above-mentioned non-coordinating anions and cations, specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbohydrate. Preferred is nitrotetrakis (pentafluorophenyl) borate.
  • these ionic compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them.
  • the content of the ionic compound in the rare earth element compound-containing catalyst is preferably 0.1 to 10-fold mol, more preferably about 1-fold mol with respect to component (A).
  • the aluminoxane represented by the above (B-2) is a compound obtained by bringing an organoaluminum compound and a condensing agent into contact with each other.
  • R ′ is a hydrocarbon group having 1 to 10 carbon atoms, and some of the hydrocarbon groups may be substituted with a halogen atom and / or an alkoxy group
  • the degree of polymerization of the unit is preferably 5 or more, and more preferably 10 or more.
  • R ′ examples include a methyl group, an ethyl group, a propyl group, and an isobutyl group, and among these, a methyl group is preferable.
  • organoaluminum compound used as the raw material for the aluminoxane include trialkylaluminums such as trimethylaluminum, triethylaluminum, and triisobutylaluminum, and mixtures thereof. Trimethylaluminum is particularly preferable.
  • an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used.
  • the aluminoxane content in the rare earth compound-containing catalyst is such that the element ratio Al / M of the rare earth element M constituting the component (A) and the aluminum element Al of the aluminoxane is about 10 to 1000. It is preferable.
  • the halogen compound represented by (B-3) is composed of at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen, and is, for example, the component (A).
  • a rare earth element compound or a reaction product thereof with a Lewis base By reacting with a rare earth element compound or a reaction product thereof with a Lewis base, a cationic transition metal compound, a halogenated transition metal compound, or a compound in which the transition metal center is deficient in charge can be generated.
  • the total content of halogen compounds in the rare earth element compound-containing catalyst is preferably 1 to 5 times the mol of the component (A).
  • boron-containing halogen compounds such as B (C 6 F 5 ) 3 and aluminum-containing halogen compounds such as Al (C 6 F 5 ) 3 can be used, as well as III, IV,
  • a halogen compound containing an element belonging to the group V, VI or VIII can also be used.
  • aluminum halide or organometallic halide is used.
  • chlorine or bromine is preferable.
  • the Lewis acid examples include methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl aluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride , Pentachloride , Tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc., among which diethylaluminum chloride,
  • the metal halide constituting the complex compound of the above metal halide and Lewis base includes beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine.
  • a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, an alcohol, and the like are preferable.
  • tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2 -Ethylhexyl alcohol, 1-decanol, lauryl alcohol are preferred.
  • the Lewis base is reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per mol of the metal halide.
  • the metal remaining in the polymer can be reduced.
  • the organic compound containing the active halogen include benzyl chloride.
  • First rare earth element compound-containing catalyst-- As the first rare earth element compound-containing catalyst, the following general formula (I): (wherein M represents a lanthanoid element, scandium or yttrium, Cp R each independently represents an unsubstituted or substituted indenyl group, and R a to R f each independently represents an alkyl having 1 to 3 carbon atoms.
  • M represents a lanthanoid element, scandium or yttrium
  • Cp R each independently represents an unsubstituted or substituted indenyl group
  • X ′ represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group.
  • a silyl group or a hydrocarbon group having 1 to 20 carbon atoms L represents a neutral Lewis base, and w represents an integer of 0 to 3, and the following general formula (III ):
  • M represents a lanthanoid element, scandium or yttrium
  • Cp R ′ represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl
  • X represents a hydrogen atom, a halogen atom, an alkoxide group or a thiolate group.
  • a rare earth element compound-containing catalyst (hereinafter also referred to as a first rare earth element compound-containing catalyst) containing at least one complex selected from the group consisting of a half metallocene cation complex represented by The element compound-containing catalyst further contains other components contained in the usual rare earth element compound-containing catalyst including a metallocene complex, such as a promoter. Also good.
  • the metallocene complex is a complex compound in which one or more cyclopentadienyl or a derivative thereof is bonded to a central metal, and in particular, one cyclopentadienyl or a derivative thereof bonded to the central metal.
  • a certain metallocene complex may be called a half metallocene complex.
  • Cp R in the formula is an unsubstituted indenyl or substituted indenyl.
  • Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7-X R X or C 9 H 11-X R X.
  • X is an integer of 0 to 7 or 0 to 11.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • hydrocarbyl group examples include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • substituted indenyl examples include 2-phenylindenyl, 2-methylindenyl and the like. Note that the two Cp Rs in the general formulas (I) and (II) may be the same as or different from each other.
  • Cp R ′ in the formula is unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and among these, unsubstituted or substituted indenyl It is preferable that Cp R ′ having a cyclopentadienyl ring as a basic skeleton is represented by C 5 H 5-X R X. Here, X is an integer of 0 to 5.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • Specific examples of Cp R ′ having a cyclopentadienyl ring as a basic skeleton include the following. (In the formula, R represents a hydrogen atom, a methyl group or an ethyl group.)
  • Cp R ′ having the above indenyl ring as the basic skeleton is defined in the same manner as Cp R in the general formula (I), and preferred examples thereof are also the same.
  • Cp R ′ having the fluorenyl ring as a basic skeleton can be represented by C 13 H 9-X R X or C 13 H 17-X R X.
  • X is an integer of 0 to 9 or 0 to 17.
  • each R is preferably independently a hydrocarbyl group or a metalloid group.
  • the hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group.
  • metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there.
  • Specific examples of the metalloid group include a trimethylsilyl group.
  • the central metal M in the general formulas (I), (II), and (III) is a lanthanoid element, scandium, or yttrium.
  • the lanthanoid elements include 15 elements having atomic numbers of 57 to 71, and any of these may be used.
  • Preferred examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
  • the metallocene complex represented by the general formula (I) includes a silylamide ligand [—N (SiR 3 ) 2 ].
  • the R groups contained in the silylamide ligand (R a to R f in the general formula (I)) are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom.
  • R a ⁇ R c is a hydrogen atom, more preferably at least one of R d ⁇ R f is a hydrogen atom.
  • a methyl group is preferable as the alkyl group.
  • the metallocene complex represented by the general formula (II) contains a silyl ligand [—SiX ′ 3 ].
  • X ′ contained in the silyl ligand [—SiX ′ 3 ] is a group defined in the same manner as X in the general formula (III) described below, and preferred groups are also the same.
  • X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, and a hydrocarbon group having 1 to 20 carbon atoms.
  • examples of the alkoxide group include aliphatic alkoxy groups such as methoxy group, ethoxy group, propoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group; phenoxy group, 2,6-dioxy -Tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, Examples include aryloxide groups such as 2-isopropyl-6-neopentylphenoxy group, and among these, 2,6-di-tert-butylphenoxy group is preferable.
  • the thiolate group represented by X includes a thiomethoxy group, a thioethoxy group, a thiopropoxy group, a thio n-butoxy group, a thioisobutoxy group, a thiosec-butoxy group, a thiotert-butoxy group and the like Group thiolate group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropyl Arylthiolate groups such as thiophenoxy group, 2-tert-butyl-6-thioneopentylphenoxy group, 2-isopropyl-6-thioneopentylphenoxy group, 2,4,6-triisopropylthiophenoxy group, etc. Among these, 2,4,6-triisopropylthiophenoxy group,
  • examples of the amide group represented by X include aliphatic amide groups such as dimethylamide group, diethylamide group, diisopropylamide group; phenylamide group, 2,6-di-tert-butylphenylamide group, 2 , 6-diisopropylphenylamide group, 2,6-dineopentylphenylamide group, 2-tert-butyl-6-isopropylphenylamide group, 2-tert-butyl-6-neopentylphenylamide group, 2-isopropyl- Arylamido groups such as 6-neopentylphenylamide group and 2,4,6-tri-tert-butylphenylamide group; bistrialkylsilylamide groups such as bistrimethylsilylamide group, among them bistrimethylsilylamide Groups are preferred.
  • examples of the silyl group represented by X include trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group, and the like.
  • a tris (trimethylsilyl) silyl group is preferable.
  • the halogen atom represented by X may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but a chlorine atom or a bromine atom is preferred.
  • Specific examples of the hydrocarbon group having 1 to 20 carbon atoms represented by X include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • Linear or branched aliphatic hydrocarbon groups such as butyl group, neopentyl group, hexyl group, octyl group; aromatic hydrocarbon groups such as phenyl group, tolyl group, naphthyl group; aralkyl groups such as benzyl group, etc.
  • Others include hydrocarbon groups containing silicon atoms such as trimethylsilylmethyl group and bistrimethylsilylmethyl group. Among these, methyl group, ethyl group, isobutyl group, trimethylsilylmethyl group and the like are preferable.
  • X is preferably a bistrimethylsilylamide group or a hydrocarbon group having 1 to 20 carbon atoms.
  • the non-coordinating anion represented by, for example, a tetravalent boron anion.
  • tetravalent boron anion include tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dica
  • the metallocene complex represented by the above general formulas (I) and (II) and the half metallocene cation complex represented by the above general formula (III) are further 0 to 3, preferably 0 to 1 neutral.
  • examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like.
  • the neutral Lewis bases L may be the same or different.
  • metallocene complex represented by the general formula (I) and the formula (II) and the half metallocene cation complex represented by the general formula (III) may exist as a monomer, It may exist as a body or higher multimer.
  • the co-catalyst that can be used for the first rare earth element compound-containing catalyst can be arbitrarily selected from components that are used as a co-catalyst for a rare earth element compound-containing catalyst containing a normal metallocene complex.
  • Suitable examples of the cocatalyst include aluminoxanes, organoaluminum compounds, and the above ionic compounds. These promoters may be used alone or in combination of two or more.
  • alkylaminoxan is preferable, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem) and the like are preferable.
  • the aluminoxane content in the first rare earth element compound-containing catalyst is such that the element ratio Al / M between the central metal M of the metallocene complex and the aluminum element Al of the aluminoxane is about 10 to 1000, preferably about 100. It is preferable to do so.
  • the organoaluminum compound the general formula AlRR′R ′′ (wherein R and R ′ are each independently a C1 to C10 hydrocarbon group or a hydrogen atom, and R ′′ is a C1 to C10).
  • An organoaluminum compound represented by (a hydrocarbon group) is preferable.
  • the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, and dialkylaluminum hydride. Among these, trialkylaluminum is preferable.
  • the trialkylaluminum include triethylaluminum and triisobutylaluminum.
  • the content of the organoaluminum compound in the rare earth element compound-containing catalyst is preferably 1 to 50 times mol, and more preferably about 10 times mol to the metallocene complex.
  • the metallocene complex represented by the general formula (I) and the formula (II) and the half metallocene cation complex represented by the general formula (III) are respectively suitable promoters.
  • the amount of cis-1,4 bonds can be increased, and the molecular weight of the resulting copolymer can be increased.
  • the second rare earth element compound-containing catalyst includes a metallocene composite catalyst.
  • the metallocene composite catalyst includes a lanthanoid element, a rare earth element of scandium or yttrium, and a Group 13 element of the periodic table, and has the following formula (A): R a MX b QY b (A) [In the formula, each R independently represents unsubstituted or substituted cyclopentadienyl or unsubstituted or substituted indenyl, wherein R is coordinated to M, and M represents a lanthanoid element, scandium or yttrium.
  • X each independently represents a hydrocarbon group having 1 to 20 carbon atoms, X is ⁇ -coordinated to M and Q, Q represents a group 13 element in the periodic table, and Y represents each independently A hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, wherein Y is coordinated to Q, and a and b are 2.
  • the metal M in the formula (A) has the same meaning as the central metal M in the general formulas (I) to (III).
  • each R is independently an unsubstituted or substituted cyclopentadienyl or an unsubstituted or substituted indenyl, and the R is coordinated to the metal M.
  • the substituted cyclopentadienyl group include, for example, a tetramethylcyclopentadienyl group, a pentamethylcyclopentadienyl group, and the like.
  • Specific examples of the substituted indenyl group include, for example, 1 2,3-trimethylindenyl group, heptamethylindenyl group, 1,2,4,5,6,7-hexamethylindenyl group and the like.
  • Q represents a group 13 element of the periodic table, and specific examples include boron, aluminum, gallium, indium, thallium and the like.
  • X independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X is ⁇ -coordinated to M and Q.
  • the hydrocarbon group having 1 to 20 carbon atoms includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group.
  • the ⁇ coordination is a coordination mode having a crosslinked structure.
  • each Y independently represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, and the Y is coordinated to Q.
  • the hydrocarbon group having 1 to 20 carbon atoms has the same meaning as X in the formula (A).
  • the metallocene composite catalyst in a preferred example, the following formula (XV): [ Wherein M 1 represents a lanthanoid element, scandium or yttrium, Cp R each independently represents an unsubstituted or substituted cyclopentadienyl or an unsubstituted or substituted indenyl, and R A and R B represent each independently represent a hydrocarbon group having 1 to 20 carbon atoms, said R a and R B are coordinated ⁇ to M 1 and Al, R C and R D are carbon atoms each independently A metallocene composite catalyst represented by the formula: 1-20 hydrocarbon groups or hydrogen atoms.
  • the metal M 1 has the same meaning as the central metal M in the general formulas (I) to (III).
  • Cp R is unsubstituted or substituted cyclopentadienyl or unsubstituted or substituted indenyl.
  • Cp R having the cyclopentadienyl ring as a basic skeleton is defined in the same manner as Cp R ′ in formula (III), and preferred examples thereof are also the same.
  • Cp R having the indenyl ring as a basic skeleton is defined in the same manner as Cp R in formula (I), and preferred examples thereof are also the same.
  • R A and R B each independently represent a hydrocarbon group having 1 to 20 carbon atoms, said R A and R are coordinated ⁇ to M 1 ⁇ A l.
  • the hydrocarbon group having 1 to 20 carbon atoms has the same meaning as X in the formula (A).
  • the ⁇ coordination is a coordination mode having a crosslinked structure.
  • R C and R D are each independently a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom.
  • the hydrocarbon group having 1 to 20 carbon atoms has the same meaning as X in the formula (A).
  • the rare earth element compound-containing catalyst may contain the metallocene composite catalyst and a boron anion, and further, other components contained in the rare earth element compound-containing catalyst including a normal metallocene catalyst, for example, It preferably contains a cocatalyst and the like.
  • the metallocene composite catalyst and boron anion are also referred to as a two-component catalyst. According to the second rare earth element compound-containing catalyst, since the boron anion is further contained in the same manner as the metallocene composite catalyst, the content of each monomer component in the copolymer can be arbitrarily controlled. It becomes possible.
  • boron anion constituting the two-component catalyst include a tetravalent boron anion.
  • the boron anion can be used as an ionic compound combined with a cation.
  • the cation include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation.
  • the tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl).
  • amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N— N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation.
  • Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable. Therefore, as the ionic compound, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable.
  • the ionic compound composed of a boron anion and a cation is preferably added in an amount of 0.1 to 10 times, more preferably about 1 time, with respect to the metallocene composite catalyst.
  • a combination of the metallocene catalyst and the ionic compound (boron anion + cation) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • gadolinium and triphenylcarbonium tetrakis (pentafluorophenyl) borate is preferable.
  • aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. Further, as the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem) and the like are preferable. These aluminoxanes may be used alone or in combination of two or more.
  • the combination of the alkylaluminum and the rare earth element compound-containing catalyst is not particularly limited and may be appropriately selected depending on the intended purpose.
  • AlR 3 for example, AlMe 3 or Al (i-Bu) 3 more than 10 times that of the lanthanide complex
  • addition of an excessive amount of AlR 3 causes the polymerization activity to shift to the left side of the equilibrium reaction equation shown below. Inhibit. Therefore, in this AlR 3 addition system, long-chain alkylaluminum cannot be produced by a catalytic chain transfer polymerization (CCTP) type reaction.
  • CCTP catalytic chain transfer polymerization
  • the second reaction step is a step of reacting oxygen with the first reactant obtained in the first reaction step.
  • a reaction represented by the following chemical reaction formula (5) occurs.
  • the first reactant is Al [— (CH 2 —CH 2 ) n —R] 3
  • R represents an alkyl group
  • n represents an arbitrary integer.
  • the reaction temperature in the second reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably room temperature (20 ° C.) to 120 ° C., more preferably 30 ° C. to 100 ° C., and more preferably 40 ° C. ⁇ 80 ° C. is particularly preferred. If the reaction temperature is lower than room temperature (20 ° C.), the temperature adjustment cost may increase, and if it exceeds 120 ° C., temperature adjustment may be difficult. On the other hand, when the reaction temperature is within a particularly preferable range, it is advantageous in terms of production cost.
  • reaction pressure in the second reaction step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1kgf / cm 2 ⁇ 100kgf / cm 2, 1kgf / cm 2 ⁇ 50kgf / cm 2 is more preferable, and 2 kgf / cm 2 to 10 kgf / cm 2 is particularly preferable. If the reaction pressure is 0.1 kgf / cm 2 or less, the reaction may not proceed sufficiently, and if it exceeds 100 kgf / cm 2 , it may not be preferable from an industrial viewpoint. On the other hand, when the reaction pressure is within a particularly preferable range, it is advantageous in terms of production equipment.
  • the reaction time in the second reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 1 second to 24 hours, more preferably 10 minutes to 10 hours, and more preferably 30 minutes to 3 hours. Is particularly preferred. If the reaction time is less than 1 second, the reaction may not proceed sufficiently, and if it exceeds 24 hours, it may not be preferable from an industrial viewpoint. On the other hand, when the reaction time is within a particularly preferable range, it is advantageous in terms of production efficiency.
  • toluene normal hexane, cyclohexane, etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, toluene is preferable in terms of solubility of the polymer.
  • the amount of oxygen used is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferably 1-fold mol to 10,000-fold mol with respect to the first reactant, and 5-fold mol to 1,000-fold moles are more preferred, and 10-fold moles to 500-fold moles are particularly preferred. If the amount used is less than 1 mole, the reaction may not proceed sufficiently. On the other hand, if the amount used is within a particularly preferable range, it is advantageous in terms of production cost.
  • ⁇ Third reaction step> the second reactant obtained in the second reaction step is reacted with at least one of water and alcohol.
  • a reaction represented by the following chemical reaction formula (6) occurs.
  • R represents an alkyl group
  • n represents any integer .
  • the reaction temperature in the third reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 0 ° C. to 100 ° C., more preferably 10 ° C. to 80 ° C., and room temperature (20 ° C.). C. to 50.degree. C. is particularly preferred. When the reaction temperature is less than 0 ° C., the temperature adjustment cost may increase, and when it exceeds 100 ° C., the production equipment may be complicated. On the other hand, when the reaction temperature is within a particularly preferable range, it is advantageous in terms of production equipment.
  • reaction pressure in the third reaction step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1kgf / cm 2 ⁇ 100kgf / cm 2, 0.5kgf / cm 2 ⁇ 50kgf / Kg 2 is more preferable, and 1 kgf / cm 2 to 10 kgf / cm 2 is particularly preferable. If the reaction pressure is 0.1 kgf / cm 2 or less, the reaction may not proceed, and if it exceeds 100 kgf / cm 2 , it may not be preferable from an industrial viewpoint. On the other hand, when the reaction pressure is within a particularly preferable range, it is advantageous in terms of production equipment.
  • the reaction time in the third reaction step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 second to 24 hours, more preferably 10 minutes to 5 hours, and 15 minutes to 1 hour. Is particularly preferred. If the reaction time is less than 1 second, the reaction may not proceed sufficiently, and if it exceeds 24 hours, it may not be preferable from an industrial viewpoint. On the other hand, when the reaction time is within a particularly preferable range, it is advantageous in terms of production cost.
  • tetrahydrofuran THF
  • acetone methyl ethyl ketone, etc.
  • THF tetrahydrofuran
  • the amount of the water and / or alcohol used is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 to 10,000 times mol with respect to the second reactant. 5-fold mole to 1,000-fold mole is more preferred, and 10-fold mole to 500-fold mole is particularly preferred. If the amount used is less than 1 mole, the reaction may not proceed sufficiently. On the other hand, if the amount used is within a particularly preferred range, it is advantageous in terms of production cost.
  • limiting in particular as said alcohol According to the objective, it can select suitably, For example, methanol, ethanol, isopropanol, etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, isopropanol is preferable from the viewpoint of safety.
  • Example 1 In a glove box under a nitrogen atmosphere, dimethylaluminum ( ⁇ -dimethyl) bis (pentamethylcyclopentadienyl) samarium [(C 5 Me 5 ) 2 Sm ( ⁇ -Me) 2 AlMe 2 ] ( Shojiro Kaita, Zhaomin Hou, Masayoshi Nishiura, Yoshiharu Doi, Junko Kurazumi, Akira Horiuchi, Yasuo Wakatsuki: "Ultimately Specific 1,4-cis Polymerization of 1,3-Butadiene with a Novel Gadolinium Catalyst”: Macromol.Rapid Commun.2003, 24, 179-184.
  • Example 2 In Example 1, instead of using dimethylaluminum ( ⁇ -dimethyl) bis (pentamethylcyclopentadienyl) samarium [(C 5 Me 5 ) 2 Sm ( ⁇ -Me) 2 AlMe 2 ], dimethylaluminum ( ⁇ - Dimethyl) bis (pentamethylcyclopentadienyl) gadolinium [(C 5 Me 5 ) 2 Gd ( ⁇ -Me) 2 AlMe 2 ] Wakatsuki: “Ultimately Specific 1,4-cis Polymerization of 1, 3-Butadiene with a Novel Gadol Indium Catalyst ": Macromol. Rapid Commun.
  • Example 3 Alfol method
  • synthesis was carried out in the same manner as in Example 2 except that 10.0 g (0.18 mol) of butadiene was previously charged in the autoclave, and a product X was obtained.
  • the product X was filtered and purified through a sodium sulfate column, and then identified and quantitatively analyzed by GC / MS (trade name: EQ102020MGCS, manufactured by JEOL). Further, the content (mol%) of the butadiene moiety in the product X was determined from the integral ratio of the 1H-NMR spectrum and the 13C-NMR spectrum, and it was confirmed to be 5.1 mol%.
  • Example 1 (Comparative Example 1) In Example 1, instead of using dimethylaluminum ( ⁇ -dimethyl) bis (pentamethylcyclopentadienyl) samarium and triphenylcarbonium tetrakis (pentafluorophenyl) borate, dimethylaluminum ( ⁇ -dimethyl) bis ( Pentamethylcyclopentadienyl) samarium and triphenylcarbonium tetrakis (pentafluorophenyl) borate are not used at all, and the reaction temperature in Example 1 is 80 ° C. instead of 50 ° C. Was synthesized in the same manner to obtain product C. The product C was filtered and purified through a sodium sulfate column, and then identified and quantitatively analyzed by GC / MS (trade name: EQ12050MGCS, manufactured by JEOL).
  • Comparative Example 2 In Comparative Example 1, synthesis was carried out in the same manner except that the reaction temperature was 160 ° C. instead of 80 ° C., and a product D was obtained. The product D was filtered and purified through a sodium sulfate column, and then identified and quantitatively analyzed by GC / MS (trade name: EQ12050MGCS, manufactured by JEOL).
  • Example 3 In Example 1, instead of using dimethylaluminum ( ⁇ -dimethyl) bis (pentamethylcyclopentadienyl) samarium and triphenylcarbonium tetrakis (pentafluorophenyl) borate, dimethylaluminum ( ⁇ -dimethyl) bis ( Synthesis was performed in the same manner except that pentamethylcyclopentadienyl) samarium and triphenylcarbonium tetrakis (pentafluorophenyl) borate were not used, and product E was obtained. The product E was filtered and purified through a sodium sulfate column, and then identified and quantitatively analyzed by GC / MS (trade name: EQ12050MGCS, manufactured by JEOL).
  • the calibration curve was obtained using o-xylene and n-dodecane.
  • A number of moles of alkylaluminum used
  • L number of moles of lanthanide complex used
  • Al—H bonds remain ( ⁇ -H elimination)
  • the alkyl is regenerated by the reaction with ethylene, so that the yield of the produced alkene may exceed 100%.
  • the polymer produced by the production method of the present invention can be used for elastomer products in general, particularly for tire members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 副生成物の生成を抑制すると共に、目的生成物である非共役オレフィンの単独重合体、共役ジエン化合物の単独重合体、及び共役ジエン化合物-非共役オレフィン共重合体のいずれかの末端に水酸基が付加した重合体を高収率で製造することができる重合体の製造方法を提供する。本発明の重合体の製造方法は、非共役オレフィンの単独重合体、共役ジエン化合物の単独重合体、及び共役ジエン化合物-非共役オレフィン共重合体のいずれかの末端に水酸基が付加した重合体を製造する重合体の製造方法であって、前記非共役オレフィン及び前記共役ジエン化合物の少なくともいずれかを含む炭化水素と有機アルミニウム化合物とを、希土類元素化合物含有触媒を用いて反応させる第1反応工程と、前記第1反応工程において得られた第1反応物と酸素とを反応させる第2反応工程と、前記第2反応工程において得られた第2反応物と、水及びアルコールの少なくともいずれかとを反応させる第3反応工程と、を含む。

Description

重合体の製造方法
 本発明は、重合体の製造方法に関し、特に、副生成物の生成を抑制すると共に、目的生成物である非共役オレフィンの単独重合体、共役ジエン化合物の単独重合体、及び共役ジエン化合物-非共役オレフィン共重合体のいずれかの末端に水酸基が付加した重合体を高収率で製造することができる重合体の製造方法に関する。
 なお、本明細書において、「重合体」とは、「ポリマー」のみならず、「オリゴマー」も含む概念である。
 1952年にチーグラにより最初に報告された「Aufbaureaktion」は、エチレンを炭化アルミニウム結合に挿入して、長鎖のトリアルキルアルミニウムを付与することを含み、直鎖アルケン(Alfen)及び直鎖アルコール(Alfol法)の工業的生成のために用いられる。
 このように、直鎖高級アルコールを生成する工業的な方法として、Alfol法が知られている(例えば、非特許文献1参照)。典型的な反応としては、トリエチルアルミニウム(AlEt)と高圧(120Kgf/cm)エチレンを120℃で反応させ(下記反応式(1))、50℃、5Kgf/cmで酸化(下記反応式(2))及び90℃で加水分解(下記反応式(3))を行ってアルコールに変換する反応である。
・反応式(1):Al(C+3nC→Al[-(CH-CH-C
 但し、反応式(1)中において、nは任意の整数を示す。
・反応式(2):Al[-(CH-CH-C+1.5O→Al[O-(CH-CH-C
 但し、反応式(2)中において、nは任意の整数を示す。
・反応式(3):Al[O-(CH-CH-C+3HO→3C(CHCHOH+Al(OH)
 反応式(3)中において、nは任意の整数を示す。
 既に、Alfol法を実験室的に可能なエチレン圧で行う検討を行い、AlEtの反応を20Kg/cmのエチレン圧で行った場合、反応温度120°Cでは目的の直鎖アルコールの収率は使用したアルミ化合物の約3%と極めて低くなり、反応温度を上げると直鎖末端アルケンの生成が主反応となることを確認している(比較実験参照)。一般にエチレンをAlR(R=Me,Et)のAl-C間に挿入して上記反応式(1)によってアルミ化合物中間体を得る為には、エチレンの圧力を80~300Kg/cmとし高温(少なくとも100°C以上)で反応させる必要がある。
 一方、低いエチレン圧力(例えば約5Kg/cm)で反応式(1)の生成物と同じアルミ化合物中間体を得る技術が知られている。触媒的連鎖移動重合(Catalytic Chain Transfer Polymerization「CCTP法」)と呼ばれているこの方法では、遷移金属アルキル化合物を触媒として用いることにより主族金属アルキル(例えば、AlR、ZnR、MgR)のR基(R=Me,Et)をエチレンとの反応で長鎖アルキルに変換できる。得られたAlR(R:長鎖アルキル)を用いれば式(2),(3)に従ってアルコールR-OHを得る事が可能である(例えば、非特許文献2及び3参照)。
 しかしながら、上記CCTP法でのエチレン挿入は遷移金属-アルキル間に起こり、成長したアルキル基がアルミに結合しているアルキル基と交換を起こすという機構で進行するために、長鎖アルキルがアルミに転移する前に遷移金属上でβ-水素脱離を起こす副反応により末端アルケンが混入するという問題点がある。また、アルキルアルミと遷移金属アルキルの相互作用が強くても弱くても目的の反応が進行しないため、反応条件が限られるという問題点も有する(例えば、非特許文献2参照)。
A.Lundeen, R.Poe:"Alpha-Alcohols",in J.J.Mc Ketta,W.A.Cunningham(eds.):Encyclopedia of Chemical Processing and Design, vol. 2,Marcel Dekker, New York 1977,p.465. Winfried P.Kretachmer, Tobias Bauer, Bart Hessen, and Rhett Kempe:"An efficient yttrium catalysed version of the "Aufbaureaktion" for the synthesis of terminal functionalised polyethylene":The Royal Society of Chemistry 2010, Dalton Trans., 2010, 39,6847-6852 Rhett Kempe:"How to Polymerize Ethylene in a Highly Controlled Fashion":Chem. Eur. J. 2007, 13, 2764-2773
 そこで、本発明の目的は、副生成物の生成を抑制すると共に、目的生成物である非共役オレフィンの単独重合体、共役ジエン化合物の単独重合体、及び共役ジエン化合物-非共役オレフィン共重合体のいずれかの末端に水酸基が付加した重合体を高収率で製造することができる重合体の製造方法を提供することにある。
 本発明者らは、前記非共役オレフィン及び前記共役ジエン化合物の少なくともいずれかを含む炭化水素と有機アルミニウム化合物とを、希土類元素化合物含有触媒を用いて反応させることにより、副生成物の生成を抑制すると共に、目的生成物である非共役オレフィンの単独重合体、共役ジエン化合物の単独重合体、及び共役ジエン化合物-非共役オレフィン共重合体のいずれかの末端に水酸基が付加した重合体を高収率で製造することができる重合体の製造方法ことができることを見出し、本発明を完成させるに至った。
 即ち、本発明の重合体の製造方法は、非共役オレフィンの単独重合体、共役ジエン化合物の単独重合体、及び共役ジエン化合物-非共役オレフィン共重合体のいずれかの末端に水酸基が付加した重合体を製造する重合体の製造方法であって、前記非共役オレフィン及び前記共役ジエン化合物の少なくともいずれかを含む炭化水素と有機アルミニウム化合物とを、希土類元素化合物含有触媒を用いて反応させる第1反応工程と、前記第1反応工程において得られた第1反応物と酸素とを反応させる第2反応工程と、前記第2反応工程において得られた第2反応物と、水及びアルコールの少なくともいずれかとを反応させる第3反応工程と、を含むことを特徴とする。
 本発明によれば、副生成物(末端アルケン、末端共役ジエン)の生成を抑制すると共に、目的生成物である非共役オレフィンの単独重合体、共役ジエン化合物の単独重合体、及び共役ジエン化合物-非共役オレフィン共重合体のいずれかの末端に水酸基が付加した重合体を高収率で製造することができる重合体の製造方法を提供することができる。
図1は、実施例1で得られた生成物AのGC/MSスペクトルチャートである。
(重合体の製造方法)
 本発明の重合体の製造方法は、少なくとも、第1反応工程と、第2反応工程と、第3反応工程とを含み、さらに、必要に応じて適宜選択した、その他の工程を含む。
 本発明の重合体の製造方法により、非共役オレフィンの単独重合体、共役ジエン化合物の単独重合体、及び共役ジエン化合物-非共役オレフィン共重合体のいずれかの末端に水酸基が付加した重合体を高収率で製造することができる。
 前記重合体としては、特に制限はなく、目的に応じて適宜選択することができ、分子量が大きな「ポリマー」のみならず、分子量が小さい「オリゴマー」も含む。
 前記重合体の重量平均分子量(Mw)としては、20~1,000,000が好ましく、50~800,000がより好ましく、100~500,000が特に好ましい。
<第1反応工程>
 前記第1反応工程は、非共役オレフィン及び共役ジエン化合物の少なくともいずれかを含む炭化水素と有機アルミニウム化合物とを、希土類元素化合物含有触媒を用いて反応させる工程である。
 前記第1反応工程では、例えば、炭化水素としてエチレンを用いた場合、以下の化学反応式(4)で示される反応が起こる。
AlR+3nC→Al[-(CH-CH-R]・・・(4)
 但し、化学反応式(4)中において、Rはアルキル基を示し、nは任意の整数を示す。
 前記第1反応工程における反応温度としては、特に制限はなく、目的に応じて適宜選択することができるが、室温(20℃)~120℃が好ましく、30℃~100℃がより好ましく、40℃~80℃が特に好ましい。
 前記反応温度が、室温(20℃)未満であると、温度調整のコストが高くなることがあり、120℃を超えると、アルケン等の副生成物が生成することがある。一方、前記反応温度が、特に好ましい範囲内であると、製造コストの点で有利である。
 前記第1反応工程における反応圧力は、下限値が、通常、1kgf/cm(kg/cm)であり、上限値として限界はないが、工業的な観点から100kgf/cmが好ましい。
 即ち、前記第1反応工程における反応圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、1kgf/cm~100kgf/cmが好ましく、5kgf/cm~50kgf/cmがより好ましく、10kgf/cm~30kgf/cmが特に好ましい。
 前記反応圧力が、1kgf/cm未満であると、反応に多大な時間を要することがあり、100kgf/cmを超えると、工業的観点から好ましくないことがある。一方、前記反応圧力が、特に好ましい範囲内であると、反応効率の点で有利である。
 前記第1反応工程における反応時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1秒間~24時間が好ましく、10分間~10時間がより好ましく、1時間~8時間が特に好ましい。
 前記反応時間が、1秒間未満であると、反応が十分に進行しないことがあり、24時間を超えると、工業的観点から好ましくないことがある。一方、前記反応時間が、特に好ましい範囲内であると、生産効率の点で有利である。
 第1反応工程は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。
 第1反応工程で用いられる溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トルエン、ノルマルヘキサン、シクロヘキサン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、トルエンが、重合物の溶解性の点で、好ましい。
-炭化水素-
 前記炭化水素は、少なくとも、非共役オレフィン及び共役ジエン化合物の少なくともいずれかを含み、その他の炭化水素を含んでいてもよい。
 前記炭化水素の使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、後述するアルキルアルミニウムに対して、10倍モル~1,000,000倍モルが好ましく、20倍モル~100,000倍モルがより好ましく、50倍モル~10,000倍モルが特に好ましい。
 前記使用量が、10倍モル未満であると、分子量が増加しないことがあり、1,000,000倍モルを超えると、反応が十分に進行しないことがある。一方、前記使用量が、特に好ましい範囲内であると、反応効率の点で有利である。
--非共役オレフィン--
 前記非共役オレフィンは、単量体として用いられ、共役ジエン化合物以外の非共役オレフィンである。また、非共役オレフィンとしては、非環状オレフィンであることが好ましく、また、該非共役オレフィンの炭素数は2~10であることが好ましい。従って、上記非共役オレフィンとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等のα-オレフィンが好適に挙げられ、これらの中でも、エチレン、プロピレン及び1-ブテンが好ましく、エチレンが特に好ましい。α-オレフィンはオレフィンのα位に二重結合を有するため、共役ジエンとの共重合を効率よく行うことができる。これら非共役オレフィンは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、オレフィンは、脂肪族不飽和炭化水素で、炭素-炭素二重結合を1個以上有する化合物を指す。
 前記非共役オレフィンの含有量としては、特に制限はなく、目的に応じて適宜選択することができ、前記炭化水素中に全く含まれていなくてもよく(前記炭化水素中において0モル%であってもよく)、前記炭化水素中に全てが前記非共役オレフィンであってもよい(前記炭化水素中において100モル%であってもよい)。
--共役ジエン化合物--
 前記共役ジエン化合物は、単量体として用いられ、炭素数が4~12であることが好ましい。該共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン等が挙げられ、これらの中でも、1,3-ブタジエン及びイソプレンが好ましい。また、これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 前記共役ジエン化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができ、前記炭化水素中に全く含まれていなくてもよく(前記炭化水素中において0モル%)、前記炭化水素中に全てが前記共役ジエン化合物であってもよい(前記炭化水素中において100モル%)。
-その他の炭化水素-
 前記その他の炭化水素としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン、ノルボルネン、ジシクロペンタジエン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、スチレンが、反応性の点で、好ましい。
-有機アルミニウム化合物-
 前記有機アルミニウム化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、下記一般式(Xa)で表されることが好ましい。
     AlR ・・・ (Xa)
[式中、R及びRは、同一又は異なり、炭素数1~10の炭化水素基又は水素原子で、Rは炭素数1~10の炭化水素基であり、但し、Rは上記R又はRと同一又は異なっていてもよい]
 前記有機アルミニウム化合物の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。
 これらの中でも、トリイソブチルアルミニウムが、反応効率の点で、好ましい。
-希土類元素化合物含有触媒-
 前記希土類元素化合物含有触媒としては、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物(A成分)を含有する触媒である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、後述する、第一の希土類元素化合物含有触媒、第二の希土類元素化合物含有触媒、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、(ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)ランタニウムが、反応効率の点で、好ましい。
 また、前記希土類元素化合物含有触媒の使用量は、前記炭化水素の合計に対して、0.000001倍モル~0.1倍モルが好ましく、0.000002倍モル~0.01倍モルがより好ましく、0.000005倍モル~0.001倍モルが特に好ましい。
 前記使用量が、0.000001倍モル未満であると、反応が十分に進行しないことがあり、0.1倍モルを超えると、分子量が増加しないことがある。一方、前記使用量が、特に好ましい範囲内であると、製造コストの点で有利である。
 前記(A)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さなくてもよい。該希土類元素化合物及び反応物が希土類元素-炭素結合を有さない場合、化合物が安定であり、取り扱いやすくなることがある。ここで、希土類元素化合物とは、周期律表中の原子番号57~71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(XI)又は(XII):
     M1111 ・L11w ・・・ (XI)
     M1111 ・L11w ・・・ (XII)
[式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基、リン化合物残基、無置換又は置換のシクロペンタジエニル、若しくは無置換又は置換のインデニルを示し、L11は、ルイス塩基を示し、wは、0~3を示す]で表されることができる。
 上記希土類元素化合物の希土類元素に結合する基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6-ジ-tert-ブチルフェニルアミド基、2,6-ジイソプロピルフェニルアミド基、2,6-ジネオペンチルフェニルアミド基、2-tert-ブチル-6-イソプロピルフェニルアミド基、2-tert-ブチル-6-ネオペンチルフェニルアミド基、2-イソプロピル-6-ネオペンチルフェニルアミド基、2,4,6-tert-ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、2-ヒドロキシ-3-ナフトアルデヒド等のアルデヒドの残基;2’-ヒドロキシアセトフェノン、2’-ヒドロキシブチロフェノン、2’-ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2-ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2-ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基、リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p-ノニルフェニル)、リン酸ビス(ポリエチレングリコール-p-ノニルフェニル)、リン酸(ブチル)(2-エチルヘキシル)、リン酸(1-メチルヘプチル)(2-エチルヘキシル)、リン酸(2-エチルヘキシル)(p-ノニルフェニル)等のリン酸エステルの残基;2-エチルヘキシルホスホン酸モノブチル、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、フェニルホスホン酸モノ-2-エチルヘキシル、2-エチルヘキシルホスホン酸モノ-p-ノニルフェニル、ホスホン酸モノ-2-エチルヘキシル、ホスホン酸モノ-1-メチルヘプチル、ホスホン酸モノ-p-ノニルフェニル等のホスホン酸エステルの残基、ジブチルホスフィン酸、ビス(2-エチルヘキシル)ホスフィン酸、ビス(1-メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p-ノニルフェニル)ホスフィン酸、ブチル(2-エチルヘキシル)ホスフィン酸、(2-エチルヘキシル)(1-メチルヘプチル)ホスフィン酸、(2-エチルヘキシル)(p-ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2-エチルヘキシルホスフィン酸、1-メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p-ノニルフェニルホスフィン酸等のホスフィン酸の残基;無置換のシクロペンタジエニル;テトラメチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基等の置換のシクロペンタジエニル;無置換のシクロペンタジエニル;1,2,3-トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7-ヘキサメチルインデニル基等の置換のインデニル;などを挙げることもできる。
 なお、これらの配位子は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 前記希土類元素化合物含有触媒に用いる(A)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(XI)及び(XII)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。
 さらに、前記希土類元素化合物含有触媒には、非配位性アニオンとカチオンとからなるイオン性化合物(B-1)、アルミノキサン(B-2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B-3)よりなる群から選択される少なくとも一種の化合物である(B)成分をさらに含んでいてもよい。なお、前記希土類元素化合物含有触媒における(B)成分の合計の含有量は、(A)成分に対して0.1~50倍モルであることが好ましい。
 上記(B-1)で表されるイオン性化合物は、非配位性アニオンとカチオンとからなり、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられる。
一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n-ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記希土類元素化合物含有触媒におけるイオン性化合物の含有量は、(A)成分に対して0.1~10倍モルであることが好ましく、約1倍モルであることが更に好ましい。
 上記(B-2)で表されるアルミノキサンは、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(-Al(R’)O-)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R’は炭素数1~10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R’として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記希土類元素化合物含有触媒におけるアルミノキサンの含有量は、(A)成分を構成する希土類元素Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10~1000程度となるようにすることが好ましい。
 上記(B-3)で表されるハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例えば、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記希土類元素化合物含有触媒におけるハロゲン化合物の合計の含有量は、(A)成分に対して1~5倍モルであることが好ましい。
 上記ルイス酸としては、B(C等のホウ素含有ハロゲン化合物、Al(C等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第III,IV,V,VI又はVIII族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
 上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
 また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチル-ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチル-ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。
 上記ルイス塩基は、上記金属ハロゲン化物1モル当り、0.01~30モル、好ましくは0.5~10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
 上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
--第一の希土類元素化合物含有触媒--
 前記第一の希土類元素化合物含有触媒としては、下記一般式(I):
Figure JPOXMLDOC01-appb-C000001
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、R~Rは、それぞれ独立して炭素数1~3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す)で表されるメタロセン錯体、及び下記一般式(II):
Figure JPOXMLDOC01-appb-C000002
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換もしくは置換インデニルを示し、X’は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1~20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す)で表されるメタロセン錯体、並びに下記一般式(III):
Figure JPOXMLDOC01-appb-C000003
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp’は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1~20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示し、[B]は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からなる群より選択される少なくとも1種類の錯体を含む希土類元素化合物含有触媒(以下、第一希土類元素化合物含有触媒ともいう)が挙げられ、該希土類元素化合物含有触媒は、更に、通常のメタロセン錯体を含む希土類元素化合物含有触媒に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。
 上記一般式(I)及び式(II)で表されるメタロセン錯体において、式中のCpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7-X又はC11-Xで示され得る。ここで、Xは0~7又は0~11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2-フェニルインデニル、2-メチルインデニル等が挙げられる。なお、一般式(I)及び式(II)における二つのCpは、それぞれ互いに同一でも異なっていてもよい。
 上記一般式(III)で表されるハーフメタロセンカチオン錯体において、式中のCp’は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCp’は、C5-Xで示される。ここで、Xは0~5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCp’として、具体的には、以下のものが例示される。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子、メチル基又はエチル基を示す。)
 一般式(III)において、上記インデニル環を基本骨格とするCp’は、一般式(I)のCpと同様に定義され、好ましい例も同様である。
 一般式(III)において、上記フルオレニル環を基本骨格とするCp’は、C139-X又はC1317-Xで示され得る。ここで、Xは0~9又は0~17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
 一般式(I)、式(II)及び式(III)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
 一般式(I)で表されるメタロセン錯体は、シリルアミド配位子[-N(SiR]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるR~R)は、それぞれ独立して炭素数1~3のアルキル基又は水素原子である。また、R~Rのうち少なくとも一つが水素原子であることが好ましい。R~Rのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィンが導入され易くなる。同様の観点から、R~Rのうち少なくとも一つが水素原子であり、R~Rのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。
 一般式(II)で表されるメタロセン錯体は、シリル配位子[-SiX’]を含む。シリル配位子[-SiX’]に含まれるX’は、下記で説明される一般式(III)のXと同様に定義される基であり、好ましい基も同様である。
 一般式(III)において、Xは水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1~20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基等のアリールオキシド基が挙げられ、これらの中でも、2,6-ジ-tert-ブチルフェノキシ基が好ましい。
 一般式(III)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6-トリイソプロピルチオフェノキシ基が好ましい。
 一般式(III)において、Xが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6-ジ-tert-ブチルフェニルアミド基、2,6-ジイソプロピルフェニルアミド基、2,6-ジネオペンチルフェニルアミド基、2-tert-ブチル-6-イソプロピルフェニルアミド基、2-tert-ブチル-6-ネオペンチルフェニルアミド基、2-イソプロピル-6-ネオペンチルフェニルアミド基、2,4,6-トリ-tert-ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。
 一般式(III)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
 一般式(III)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1~20の炭化水素基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
 一般式(III)において、Xとしては、ビストリメチルシリルアミド基又は炭素数1~20の炭化水素基が好ましい。
 一般式(III)において、[B]で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
 上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
 また、上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
 上記第一希土類元素化合物含有触媒に用いることができる助触媒は、通常のメタロセン錯体を含む希土類元素化合物含有触媒の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO-3A(東ソーファインケム社製)等が好ましい。なお、上記第一希土類元素化合物含有触媒におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10~1000程度、好ましくは100程度となるようにすることが好ましい。
 一方、上記有機アルミニウム化合物としては、一般式AlRR’R’’(式中、R及びR’はそれぞれ独立してC1~C10の炭化水素基又は水素原子であり、R’’はC1~C10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記希土類元素化合物含有触媒における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1~50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
 更に、上記希土類元素化合物含有触媒においては、一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、重合体中にジエン由来部分を含む場合において、シス-1,4結合量を増大でき、また、得られる共重合体の分子量を増大できる。
--第二の希土類元素化合物含有触媒--
 前記第二の希土類元素化合物含有触媒は、メタロセン系複合触媒を含むことを特徴とする。
---メタロセン系複合触媒---
 以下に、上記メタロセン系複合触媒を詳細に説明する。上記メタロセン系複合触媒は、ランタノイド元素、スカンジウム又はイットリウムの希土類元素と周期律表第13族元素とを有し、下記式(A):
   RMXQY ・・・ (A)
[式中、Rはそれぞれ独立して無置換又は置換のシクロペンタジエニル若しくは無置換又は置換のインデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1~20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1~20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である]で表されることを特徴とする。
 上記メタロセン系複合触媒において、上記式(A)中の金属Mは、一般式(I)~(III)の中心金属Mと同義である。
 上記式(A)において、Rは、それぞれ独立して、無置換又は置換のシクロペンタジエニル若しくは無置換又は置換のインデニルであり、該Rは上記金属Mに配位している。なお、置換のシクロペンタジエニル基の具体例としては、例えば、テトラメチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基、などが挙げられ、置換インデニル基の具体例としては、例えば、1,2,3-トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7-ヘキサメチルインデニル基等が挙げられる。
 上記式(A)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
 上記式(A)において、Xはそれぞれ独立して炭素数1~20の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1~20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
 上記式(A)において、Yはそれぞれ独立して炭素数1~20の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1~20の炭化水素基としては、式(A)のXと同義である。
 上記メタロセン系複合触媒の好適例においては、下記式(XV):
Figure JPOXMLDOC01-appb-C000005
 [式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、それぞれ独立して無置換又は置換のシクロペンタジエニル若しくは無置換又は置換のインデニルを示し、R及びRは、それぞれ独立して炭素数1~20の炭化水素基を示し、該R及びRは、M及びAlにμ配位しており、R及びRは、それぞれ独立して炭素数1~20の炭化水素基又は水素原子を示す]で表されるメタロセン系複合触媒が挙げられる。
 上記式(XV)において、金属Mは、一般式(I)~(III)の中心金属Mと同義である。
 上記式(XV)において、Cpは、無置換又は置換のシクロペンタジエニル若しくは無置換又は置換のインデニルである。
 前記シクロペンタジエニル環を基本骨格とするCpは、一般式(III)のCp’と同様に定義され、好ましい例も同様である。
 前記インデニル環を基本骨格とするCpは、一般式(I)のCpと同様に定義され、好ましい例も同様である。
 上記式(XV)において、R及びRは、それぞれ独立して炭素数1~20の炭化水素基を示し、該R及びRは、M及Aにμ配位している。ここで、炭素数1~20の炭化水素基としては、式(A)のXと同義である。なお、μ配位とは、架橋構造をとる配位様式のことである。
 上記式(XV)において、R及びRは、それぞれ独立して炭素数1~20の炭化水素基又は水素原子である。ここで、炭素数1~20の炭化水素基としては、式(A)のXと同義である。
 また、前記希土類元素化合物含有触媒は、上記メタロセン系複合触媒と、ホウ素アニオンとを含んでいてもよく、更に、通常のメタロセン系触媒を含む希土類元素化合物含有触媒に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。上記第二希土類元素化合物含有触媒によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各単量体成分の共重合体中での含有量を任意に制御することが可能となる。
---ホウ素アニオン---
 上記第二希土類元素化合物含有触媒において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
 なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1~10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。
 前記メタロセン触媒と前記イオン性化合物(ホウ素アニオン+カチオン)との組合せとしては、特に制限はなく、目的に応じて適宜選択することができるが、(i)ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウムと、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せ(後述する実施例1)、(ii)ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)ガドリニウムと、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せ(後述する実施例2及び3)が好ましい。
 前記(i)ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウムと、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せ、(ii)ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)ガドリニウムと、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せを用い、さらにアルキルアルミニウムとしてトリイソブチルアルミニウムを用いた場合(下記化学構造式(1)参照)、下記化学構造式(2)に示すようなイオン型を生成するものと予想される。
Figure JPOXMLDOC01-appb-C000006
(化学構造式(1))
Figure JPOXMLDOC01-appb-C000007
(化学構造式(2))
---助触媒---
 上記第二希土類元素化合物含有触媒に用いることができる助触媒としては、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO-3A(東ソーファインケム社製)等が好ましい。なお、これらアルミノキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
-炭化水素と希土類元素化合物含有触媒との組合せ-
 前記炭化水素と希土類元素化合物含有触媒との組合せとしては、特に制限はなく、目的に応じて適宜選択することができるが、(i)エチレンと、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウムとの組合せ(後述する実施例1)、(ii)エチレンと、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)ガドリニウムとの組合せ(後述する実施例2及び3)が好ましい。
-アルキルアルミニウムと希土類元素化合物含有触媒との組合せ-
 前記アルキルアルミニウムと希土類元素化合物含有触媒との組合せとしては、特に制限はなく、目的に応じて適宜選択することができるが、(i)トリイソブチルアルミニウムと、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウムとの組合せ(後述する実施例1)、(ii)トリイソブチルアルミニウムと、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)ガドリニウムとの組合せ(後述する実施例2及び3)が好ましい。
-炭化水素と有機アルミニウム化合物と希土類元素化合物含有触媒との組合せ-
 前記炭化水素と前記アルキルアルミニウムと希土類元素化合物含有触媒との組合せとしては、特に制限はなく、目的に応じて適宜選択することができるが、(i)エチレンと、トリイソブチルアルミニウムと、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウムとの組合せ(後述する実施例1)、(ii)エチレンと、トリイソブチルアルミニウムと、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)ガドリニウムとの組合せ(後述する実施例2及び3)が好ましい。
 以下に、炭化水素としてエチレンを用いた場合の反応メカニズムを示す。
 式(XV)で示されたランタノイド化合物の例である1a,1bは溶液中でAlR(R=Me)を解離する平衡があり(下記反応式参照)、AlフリーのLn-Me結合へのエチレンの段階的な挿入により、ランタノイド化合物1a,1bはそれ自身でエチレンの重合に触媒反応を示す(エチレン圧2MPa、40℃、ランタノイドがGdである場合の活性が10Kg/mol・h・bar)。しかし過剰量のAlRの添加(例えば、ランタニド錯体に対して10倍超のAlMe又はAl(i-Bu))は、下記に示す平衡反応式の左辺への移行により、前記重合活性を阻害する。従って、このAlRの添加系では触媒的連鎖移動重合(CCTP)型の反応による長鎖アルキルアルミニウムの生成はおこりえない。
Figure JPOXMLDOC01-appb-C000008
 一方、上記平衡反応式における1aがトルエン中で等モルの[PhCB(C](TTPB)と共に反応し、その後、過剰のAlRが添加される場合、上記条件(エチレン圧2MPa、40℃)でエチレンと反応させた後、加水分解すると高収率でポリエチレンを与えた(触媒活性13.0Kg/mol・h・bar)。この反応はAl-炭素結合へエチレンが段階的に挿入した結果であることは、Al化合物中間体を下記<第2反応工程>および<第3反応工程>に付するとi-Bu-(CHCH)n-OH(n=1~8)の直鎖アルコールの混合物がGC/MSによって特定さることから明らかである(実施例参照)。
 上記式(XV)で示されたランタノイド化合物にホウ素イオン化合物を加えた場合、化学構造式(2)に示すランタノイド(ランタニド)カチオン種が生成する事は、Ln=Pr,Nd,Gdについてすでに知られている(Shojiro Kaita, Zhaomin Hou, Masayoshi Nishiura, Yoshiharu Doi, Junko Kurazumi, Akira Horiuchi, Yasuo Wakatsuki:“Ultimately Specific 1,4-cis Polymerization of 1、3-Butadiene with a Novel Gadolinium Catalyst”:Macromol.Rapid Commun.2003, 24, 179-184.)。同様に1bとTTPBとの反応後に、遊離AlMeを除去するとイオン構造(2b)の暗褐色固体が得られるが、錯体2bは、また、他の合成経路(下記反応式)によっても高収率で得られる。錯体2bのTHF-トルエン溶解液から3bの赤色結晶と[(CMeSm(THF)][B(C]の赤色結晶が単離された。以上のことから、化学構造式(1)に示したランタニド錯体/ホウ素イオン/有機アルミニウム混合系とエチレンの反応は、従来のAlfol法とは異なる温和な条件でAl-炭素間にエチレンを段階的に挿入するが、その機構は従来のCCTP法とは原理的に異なり、アルキル基を持たない遷移金属(ランタニド金属)カチオンが触媒する事が明らかとなった。
Figure JPOXMLDOC01-appb-C000009
<第2反応工程>
 前記第2反応工程は、前記第1反応工程において得られた第1反応物と酸素とを反応させる工程である。
 前記第2反応工程では、例えば、炭化水素としてエチレンを用いた場合、以下の化学反応式(5)で示される反応が起こる。
Al[-(CH-CH-R]+1.5O→Al[O-(CH-CH-R]
・・・(5)
 但し、化学反応式(5)中において、前記第1反応物はAl[-(CH-CH-R]であり、Rはアルキル基を示し、nは任意の整数を示す。
 前記第2反応工程における反応温度としては、特に制限はなく、目的に応じて適宜選択することができるが、室温(20℃)~120℃が好ましく、30℃~100℃がより好ましく、40℃~80℃が特に好ましい。
 前記反応温度が、室温(20℃)未満であると、温度調整のコストが高くなることがあり、120℃を超えると、温度調整が困難となることがある。一方、前記反応温度が、特に好ましい範囲内であると、製造コストの点で有利である。
 前記第2反応工程における反応圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1kgf/cm~100kgf/cmが好ましく、1kgf/cm~50kgf/cmがより好ましく、2kgf/cm~10kgf/cmが特に好ましい。
 前記反応圧力が、0.1kgf/cm以下であると、十分に反応が進行しないことがあり、100kgf/cmを超えると、工業的観点から好ましくないことがある。一方、前記反応圧力が、特に好ましい範囲内であると、製造設備の点で有利である。
 前記第2反応工程における反応時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1秒間~24時間が好ましく、10分間~10時間がより好ましく、30分間~3時間が特に好ましい。
 前記反応時間が、1秒間未満であると、反応が十分に進行しないことがあり、24時間を超えると、工業的観点から好ましくないことがある。一方、前記反応時間が、特に好ましい範囲内であると、生産効率の点で有利である。
 第2反応工程で用いられる溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トルエン、ノルマルヘキサン、シクロヘキサン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、トルエンが、重合物の溶解性の点で、好ましい。
-酸素-
 前記酸素の使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記第1反応物に対して、1倍モル~10,000倍モルが好ましく、5倍モル~1,000倍モルがより好ましく、10倍モル~500倍モルが特に好ましい。
 前記使用量が、1倍モル未満であると、反応が十分に進行しないことがある。一方、前記使用量が、特に好ましい範囲内であると、生産コストの点で有利である。
<第3反応工程>
 前記第2反応工程において得られた第2反応物と、水及びアルコールの少なくともいずれかとを反応させる工程である。
 前記第3反応工程では、例えば、炭化水素としてエチレンを用い、水を用いた場合、以下の化学反応式(6)で示される反応が起こる。
Al[O-(CH-CH-R]+3HO→3R(CH-CHOH+Al(OH)・・・(6)
 但し、化学反応式(6)中において、前記第2反応物はAl[O-(CH-CH-R]であり、Rはアルキル基を示し、nは任意の整数を示す。
 前記第3反応工程における反応温度としては、特に制限はなく、目的に応じて適宜選択することができるが、0℃~100℃が好ましく、10℃~80℃がより好ましく、室温(20℃)℃~50℃が特に好ましい。
 前記反応温度が、0℃未満であると、温度調整のコストが高くなることがあり、100℃を超えると、製造設備が複雑となることがある。一方、前記反応温度が、特に好ましい範囲内であると、製造設備の点で有利である。
 前記第3反応工程における反応圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1kgf/cm~100kgf/cmが好ましく、0.5kgf/cm~50kgf/cmがより好ましく、1kgf/cm~10kgf/cmが特に好ましい。
 前記反応圧力が、0.1kgf/cm以下であると、反応が進行しないことがあり、100kgf/cmを超えると、工業的観点から好ましくないことがある。一方、前記反応圧力が、特に好ましい範囲内であると、製造設備の点で有利である。
 前記第3反応工程における反応時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1秒間~24時間が好ましく、10分間~5時間がより好ましく、15分間~1時間が特に好ましい。
 前記反応時間が、1秒間未満であると、反応が十分に進行しないことがあり、24時間を超えると、工業的観点から好ましくないことがある。一方、前記反応時間が、特に好ましい範囲内であると、製造コストの点で有利である。
 第3反応工程で用いられる溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、テトラヒドロフラン(THF)、アセトン、メチルエチルケトン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、テトラヒドロフラン(THF)が、溶解性の点で、好ましい。
-水及び/又はアルコール-
  前記水及び/又はアルコールの使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記第2反応物に対して、1倍モル~10,000倍モルが好ましく、5倍モル~1,000倍モルがより好ましく、10倍モル~500倍モルが特に好ましい。
 前記使用量が、1倍モル未満であると、反応が十分に進行しないことがある。一方、前記使用量が、特に好ましい範囲内であると、製造コストの点で有利である。
 前記アルコールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノール、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、イソプロパノールが、安全性の点で、好ましい。
<その他の工程>
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、反応物から目的の生成物を回収する回収工程、などが挙げられる。
 前記回収工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、濾過、カラムを通じた精製、再沈、などが挙げられる。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(実施例1)
 窒素雰囲気下のグローブボックス中で、ガラス製容器に、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウム[(CMeSm(μ-Me)AlMe](Shojiro Kaita, Zhaomin Hou, Masayoshi Nishiura, Yoshiharu Doi, Junko Kurazumi, Akira Horiuchi, Yasuo Wakatsuki:“Ultimately Specific 1,4-cis Polymerization of 1、3-Butadiene with a Novel Gadolinium Catalyst”:Macromol.Rapid Commun.2003, 24, 179-184.に記載の方法で合成した)26mg(50μmol)、及び、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレ-ト[PhCB(C](東ソーファインケム社製)47mg(50μmol)をトルエン10mLに溶解し、3時間熟成を行った。その後、1.0Mのトリイソブチルアルミニウムのトルエン溶液(関東化学社製)10mL(10mmol)を加えた後、溶液を100mLのオートクレーブに移しグローブボックスから取り出した。その後、オートクレーブにエチレンを圧力20kgf/cmで導入し、50℃で6時間反応させた(第1反応工程)。反応終了後に酸素を5kgf/cmで導入し、50℃で1時間反応させた後(第2反応工程)、THF5mLおよび水2mLで反応停止を行ったところ生成物Aを得た(第3反応工程)。生成物Aは、濾過および硫酸ナトリウムのカラムを通して精製を行った後、GC/MS(商品名:EQ12050MGCS、JEOL社製)により同定および定量解析を行った。生成物AのGC/MSスペクトルチャートを図1に示す。
(実施例2)
 実施例1において、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウム[(CMeSm(μ-Me)AlMe]を用いる代わりに、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)ガドリニウム[(CMeGd(μ-Me)AlMe](Shojiro Kaita, Zhaomin Hou, Masayoshi Nishiura, Yoshiharu Doi, Junko Kurazumi, Akira Horiuchi, Yasuo Wakatsuki:“Ultimately Specific 1,4-cis Polymerization of 1、3-Butadiene with a Novel Gadolinium Catalyst”:Macromol.Rapid Commun.2003, 24, 179-184.に記載の方法で合成した)を用いたこと以外は、実施例1と同様の方法で合成を行い、生成物Bを得た。生成物Bは、濾過および硫酸ナトリウムのカラムを通して精製を行った後、GC/MS(商品名:EQ12050MGCS、JEOL社製)により同定および定量解析を行った。
(実施例3:Alfol法)
 実施例2において、オートクレーブ中にあらかじめブタジエンを10.0g(0.18mol)仕込んでおくこと以外は、実施例2と同様の方法で合成を行い、生成物Xを得た。生成物Xは、濾過および硫酸ナトリウムのカラムを通して精製を行った後、GC/MS(商品名:EQ102020MGCS,JEOL社製)により同定および定量解析を行った。また、生成物X中のブタジエン部分の含有率(mol%)を1H-NMRスペクトルおよび13C-NMRスペクトルの積分比より求めたところ、5.1mol%であることが確認された。
(比較例1)
 実施例1において、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウム及びトリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレ-トを用いる代わりに、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウム及びトリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレ-トを全く用いず、更に、実施例1において、反応温度を50℃とする代わりに、80℃としたこと以外は同様の方法で合成を行い、生成物Cを得た。生成物Cは、濾過および硫酸ナトリウムのカラムを通して精製を行った後、GC/MS(商品名:EQ12050MGCS、JEOL社製)により同定および定量解析を行った。
(比較例2)
 比較例1において、反応温度を80℃とする代わりに、160℃としたこと以外は同様の方法で合成を行い、生成物Dを得た。生成物Dは、濾過および硫酸ナトリウムのカラムを通して精製を行った後、GC/MS(商品名:EQ12050MGCS、JEOL社製)により同定および定量解析を行った。
(比較例3)
 実施例1において、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウム及びトリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレ-トを用いる代わりに、ジメチルアルミニウム(μ-ジメチル)ビス(ペンタメチルシクロペンタジエニル)サマリウム及びトリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレ-トを全く用いなかったこと以外は同様の方法で合成を行い、生成物Eを得た。生成物Eは、濾過および硫酸ナトリウムのカラムを通して精製を行った後、GC/MS(商品名:EQ12050MGCS、JEOL社製)により同定および定量解析を行った。
 以上のようにして得られた生成物A~E及びXの解析結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、上記表1における
「OH変換比率(Al基準%)」、「OH変換比率(Ln基準%)」、及び「副生アルケン(副生成物)の収率(%)(Al基準%)」は以下のように算出した。
S=GC/MSピーク面積から得られた各生成アルコールのモル数の総和(サンプルに添加したn-ドデカノールのモル数と検量線から算出した。検量線はn-ドデカノールとn-オクタノールで作成)
K=同様にGC/MSピーク面積から得られた各アルケンのモル数の総和(サンプルに添加したo-キシレンのモル数と検量線から算出した。検量線はo-キシレンとn-ドデカンを用いて作成)
A=使用したアルキルアルミニウムのモル数
L=使用したランタニド錯体のモル数
(1)「OH変換比率(Al基準%)」:(S/A)×100
(2)「OH変換比率(Ln基準%)」:(S/L)×100
(3)「副生アルケン(副生成物)の収率(%)(Al基準%)」:(K/A)×100
 なお、アルケンが脱離した後には Al-H 結合が残り(β-H脱離)、エチレンとの反応でアルキルが再生するため、生成アルケンの収率は100%を超えることがある。
 実施例1~3で合成された生成物A、B、Xと比較例1~3で合成された生成物C~Eとを比較することにより、非共役オレフィン及び共役ジエン化合物の少なくともいずれかを含む炭化水素と有機アルミニウム化合物とを、希土類元素化合物含有触媒を用いて反応させると、副生成物の生成を抑制すると共に、目的生成物である非共役オレフィンの単独重合体、共役ジエン化合物の単独重合体、及び共役ジエン化合物-非共役オレフィン共重合体のいずれかの末端に水酸基が付加した重合体(末端に水酸基が付加したオリゴマー)を高収率で製造することができることが分かった。
 本発明の製造方法により製造された重合体は、エラストマー製品全般、特にタイヤ部材に用いることができる。

Claims (8)

  1.  非共役オレフィンの単独重合体、共役ジエン化合物の単独重合体、及び共役ジエン化合物-非共役オレフィン共重合体のいずれかの末端に水酸基が付加した重合体を製造する重合体の製造方法であって、
     前記非共役オレフィン及び前記共役ジエン化合物の少なくともいずれかを含む炭化水素と有機アルミニウム化合物とを、希土類元素化合物含有触媒を用いて反応させる第1反応工程と、
     前記第1反応工程において得られた第1反応物と酸素とを反応させる第2反応工程と、
     前記第2反応工程において得られた第2反応物と、水及びアルコールの少なくともいずれかとを反応させる第3反応工程と、
    を含むことを特徴とする重合体の製造方法。
  2.  前記希土類元素化合物含有触媒が、
     (A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物を含むことを特徴とする請求項1に記載の重合体の製造方法。
  3.  前記希土類元素化合物又は前記希土類元素化合物とルイス塩基との反応物は、下記一般式(XI)又は(XII):
         M1111 ・L11w ・・・ (XI)
         M1111 ・L11w ・・・ (XII)
    [式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基、リン化合物残基、無置換又は置換のシクロペンタジエニル、若しくは無置換又は置換のインデニルを示し、L11は、ルイス塩基を示し、wは、0~3を示す]で表されることを特徴とする請求項2に記載の重合体の製造方法。
  4.  前記希土類元素化合物又は反応物は、希土類元素と炭素との結合を有さないことを特徴とする請求項2又は3に記載の重合体の製造方法。
  5.  前記希土類元素化合物含有触媒が、
     (B)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B-1)、アルミノキサン(B-2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B-3)よりなる群から選択される少なくとも一種をさらに含むことを特徴とする請求項2から4のいずれかに記載の重合体の製造方法。
  6.  前記有機アルミニウム化合物が、下記一般式(Xa):
         AlR ・・・ (Xa)
    [式中、R及びRは、同一又は異なり、炭素数1~10の炭化水素基又は水素原子で、Rは炭素数1~10の炭化水素基であり、但し、Rは上記R又はRと同一又は異なっていてもよい]で表されることを特徴とする請求項1から5のいずれかに記載の重合体の製造方法。
  7.  前記非共役オレフィンが、非環状オレフィンであることを特徴とする請求項1から6のいずれかに記載の重合体の製造方法。
  8.  前記共役ジエン化合物は、炭素数が4~12であることを特徴とする請求項1から7のいずれかに記載の重合体の製造方法。
PCT/JP2012/005269 2011-08-22 2012-08-22 重合体の製造方法 WO2013027401A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280040980.7A CN103748117B (zh) 2011-08-22 2012-08-22 聚合物的制造方法
EP12825477.8A EP2749578B1 (en) 2011-08-22 2012-08-22 Method for producing polymer
JP2013529878A JP5887349B2 (ja) 2011-08-22 2012-08-22 重合体の製造方法
BR112014004138A BR112014004138A2 (pt) 2011-08-22 2012-08-22 método para fabricar polímero
RU2014111056/04A RU2559057C1 (ru) 2011-08-22 2012-08-22 Способ получения полимера
US14/238,232 US9688798B2 (en) 2011-08-22 2012-08-22 Method for manufacturing a hydroxy group terminated olefin or conjugated diene polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-180930 2011-08-22
JP2011180930 2011-08-22

Publications (1)

Publication Number Publication Date
WO2013027401A1 true WO2013027401A1 (ja) 2013-02-28

Family

ID=47746161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005269 WO2013027401A1 (ja) 2011-08-22 2012-08-22 重合体の製造方法

Country Status (7)

Country Link
US (1) US9688798B2 (ja)
EP (1) EP2749578B1 (ja)
JP (1) JP5887349B2 (ja)
CN (1) CN103748117B (ja)
BR (1) BR112014004138A2 (ja)
RU (1) RU2559057C1 (ja)
WO (1) WO2013027401A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109218A (ja) * 1994-10-13 1996-04-30 Mitsui Petrochem Ind Ltd 末端に官能基を有するポリオレフィンの製造方法
JP2000256417A (ja) * 1999-03-10 2000-09-19 Nitto Denko Corp 末端ヒドロキシル化アクリル系重合体の製造方法
JP2001139603A (ja) * 1999-11-12 2001-05-22 Jsr Corp 共役ジエン系重合体およびゴム組成物
JP2005082735A (ja) * 2003-09-10 2005-03-31 Nippon Zeon Co Ltd 変性共役ジエン重合体の製造方法
JP2006219537A (ja) * 2005-02-08 2006-08-24 Mitsui Chemicals Inc 末端官能基含有ポリオレフィンの製造方法
WO2006112450A1 (ja) * 2005-04-15 2006-10-26 Bridgestone Corporation 変性共役ジエン系共重合体、ゴム組成物及びタイヤ
JP2009120757A (ja) * 2007-11-16 2009-06-04 Jsr Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410836A (en) 1964-03-09 1968-11-12 Phillips Petroleum Co Polymerization of conjugated dienes with a dilithium complex of an aromatic ketone
US5376745A (en) 1993-12-01 1994-12-27 Shell Oil Company Low viscosity terminally functionalized isoprene polymers
EP1086957A4 (en) * 1999-03-04 2005-08-31 Riken CATALYST COMPOSITION
KR100344230B1 (ko) * 1999-10-13 2002-07-24 금호석유화학 주식회사 산소분자를 이용한 하이드록시 고 1,4-시스 폴리부타디엔의 제조방법
US6376146B1 (en) * 2000-06-23 2002-04-23 Toshiba Tec Kabushiki Kaisha Developing agent and image forming apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109218A (ja) * 1994-10-13 1996-04-30 Mitsui Petrochem Ind Ltd 末端に官能基を有するポリオレフィンの製造方法
JP2000256417A (ja) * 1999-03-10 2000-09-19 Nitto Denko Corp 末端ヒドロキシル化アクリル系重合体の製造方法
JP2001139603A (ja) * 1999-11-12 2001-05-22 Jsr Corp 共役ジエン系重合体およびゴム組成物
JP2005082735A (ja) * 2003-09-10 2005-03-31 Nippon Zeon Co Ltd 変性共役ジエン重合体の製造方法
JP2006219537A (ja) * 2005-02-08 2006-08-24 Mitsui Chemicals Inc 末端官能基含有ポリオレフィンの製造方法
WO2006112450A1 (ja) * 2005-04-15 2006-10-26 Bridgestone Corporation 変性共役ジエン系共重合体、ゴム組成物及びタイヤ
JP2009120757A (ja) * 2007-11-16 2009-06-04 Jsr Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749578A4 *

Also Published As

Publication number Publication date
CN103748117A (zh) 2014-04-23
BR112014004138A2 (pt) 2017-03-01
EP2749578A1 (en) 2014-07-02
EP2749578B1 (en) 2016-09-28
CN103748117B (zh) 2016-12-28
EP2749578A4 (en) 2015-05-06
RU2559057C1 (ru) 2015-08-10
JP5887349B2 (ja) 2016-03-16
US20140171596A1 (en) 2014-06-19
US9688798B2 (en) 2017-06-27
JPWO2013027401A1 (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
RU2542992C2 (ru) Способ регулирования структуры цепи сополимера
JP5918132B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP5764128B2 (ja) 共重合体及びその製造方法
JP6616719B2 (ja) ゴム組成物、架橋ゴム組成物及びゴム製品
JP2013194100A (ja) 重合触媒組成物、及び重合体の製造方法
JP5557710B2 (ja) 共重合体
JP5902587B2 (ja) 共重合体の製造方法
JP2013155257A (ja) ゴム組成物及びタイヤ
JP6630138B2 (ja) 共重合体の製造方法、共重合体、ゴム組成物、及びゴム製品
JP5823674B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体
JP5965169B2 (ja) 重合触媒組成物、及び重合体組成物の製造方法
JP5887349B2 (ja) 重合体の製造方法
JP5917886B2 (ja) 共役ジエン系重合体
JP2014037500A (ja) 共重合体の製造方法
JP5961483B2 (ja) 共重合体の製造方法
JP5898975B2 (ja) 共重合体における単量体単位の含有割合の制御方法
WO2022123993A1 (ja) 共重合体、ゴム組成物及び樹脂組成物
JP5557642B2 (ja) 共役ジエン化合物と非共役オレフィンとの共重合体
JP2022090555A (ja) 共重合体、ゴム組成物及び樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529878

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012825477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14238232

Country of ref document: US

Ref document number: 2012825477

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014111056

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014004138

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014004138

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140221