WO2013027233A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2013027233A1
WO2013027233A1 PCT/JP2011/004639 JP2011004639W WO2013027233A1 WO 2013027233 A1 WO2013027233 A1 WO 2013027233A1 JP 2011004639 W JP2011004639 W JP 2011004639W WO 2013027233 A1 WO2013027233 A1 WO 2013027233A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
heat exchanger
temperature
control device
Prior art date
Application number
PCT/JP2011/004639
Other languages
English (en)
French (fr)
Inventor
啓輔 高山
幸志 東
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/004639 priority Critical patent/WO2013027233A1/ja
Priority to EP11871309.8A priority patent/EP2746700B1/en
Priority to US14/235,898 priority patent/US10006678B2/en
Priority to JP2013529779A priority patent/JP5710004B2/ja
Priority to CN201180072931.7A priority patent/CN103733002B/zh
Publication of WO2013027233A1 publication Critical patent/WO2013027233A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioner used for, for example, a multi air conditioner for buildings.
  • Patent Document 1 also shows a form in which a plurality of heat exchangers between heat media (described as intermediate heat exchangers in Patent Document 1) are connected to a refrigeration cycle circuit on the heat source side.
  • Patent Document 2 A conventional air conditioner for transmitting to a machine is also disclosed in Patent Document 2.
  • the air conditioner described in Patent Document 2 (described as a heat pump system in Patent Document 2) is a heat medium at the outlet of a heat exchanger between heat media (described as a use-side heat exchanger in Patent Document 1) (Patent Document).
  • the refrigerant side circulation rate is controlled with the temperature of the aqueous medium as the first temperature target, and the temperature difference of the heat medium flowing into and out of the heat exchanger between heat mediums becomes the second target temperature difference.
  • the operating capacity of the circulation pump that circulates the medium is controlled.
  • the temperature difference of the heat medium flowing into and out of the heat exchanger related to heat medium is smaller than the second target temperature difference, and the temperature of the heat medium at the outlet of the heat exchanger related to heat medium is small.
  • the operating capacity of the circulation pump is decreased.
  • Patent Document 2 also shows a form in which a plurality of heat exchangers related to heat medium are connected in parallel to a refrigeration cycle circuit on the heat source side.
  • a heat exchanger between heat media generally has a heat transfer area that can exchange heat for the rated capacity of an indoor unit (use side heat exchanger). For this reason, when the air conditioning load is reduced, such as when only a small-capacity user-side heat exchanger is operated in a building multi-air conditioner capable of partial load operation, heat flowing into the heat exchanger related to heat medium is reduced. The flow rate of the medium is reduced, and the temperature efficiency on the heat medium side of the heat exchanger related to heat medium is increased.
  • the temperature difference of the heat medium flowing into and out of the heat exchanger related to heat medium is smaller than the second target temperature difference, and the temperature of the heat medium at the outlet of the heat exchanger related to heat medium.
  • the operating capacity of the circulation pump is reduced and the temperature difference of the heat medium flowing into and out of the heat exchanger related to heat medium is controlled to become the second target temperature difference.
  • the temperature difference of the heat medium flowing into and out of the heat exchanger between heat mediums is controlled to a certain control target value. For this reason, also in the air conditioning apparatus described in Patent Document 2, the same problem as in Patent Document 1 occurs.
  • the refrigerant side circulation amount is controlled so that the heat medium flowing out from the heat exchanger between heat mediums becomes the first temperature target.
  • the air-conditioning load for each heat exchanger is different, so the refrigerant circulation amount is set. It is very difficult.
  • the present invention has been made in order to solve the above-described problems, and includes a plurality of heat exchangers for heat medium that can simultaneously perform the same function as a condenser or an evaporator, and a heat source device.
  • the refrigerant heated or cooled on the side and the heat medium flowing in the circuit on the use side are heat-exchanged by the heat exchanger between heat mediums, and the heat energy generated on the heat source unit side is used on the use side heat exchanger (that is, indoor unit)
  • a refrigerant side flow path, an expansion device, and a heat source side heat exchanger of a plurality of heat exchangers between heat media that operate as a compressor, a condenser, or an evaporator are connected by piping.
  • a heat medium flow control device provided corresponding to the use side heat exchanger is connected to a pipe, and a heat medium circulation circuit through which the heat medium circulates, and controls the heat medium flow control device to control the heat medium flow rate.
  • a control device for adjusting the flow rate of the heat medium flowing in the use side heat exchanger corresponding to the adjustment device; a first heat medium temperature detection device for detecting the temperature of the heat medium flowing into the use side heat exchanger; Provided corresponding to the use side heat exchanger, A second heat medium temperature detecting device for detecting the temperature of the heat medium flowing out from the heat exchanger for the heat side, wherein at least two of the plurality of heat exchangers between heat mediums are condensers or evaporators It is possible to perform the same function at the same time, and the control device detects the detected value of the first heat medium temperature detection device and the second heat medium temperature for the user side heat exchanger in operation.
  • a heat medium temperature difference which is a difference from a detection value of the detection device, is calculated, the heat medium flow control device is controlled so that the heat medium temperature difference becomes a heat medium temperature difference target value, and the first heat medium temperature is determined.
  • the detection value of the detection device is out of a predetermined range, the heat medium temperature difference target value is changed, and the heat medium temperature difference is changed with respect to at least one of the operating-side heat exchangers in operation. Is the heat medium temperature difference target value after the change. And it controls the amount adjusting device.
  • the target value of the heat medium temperature difference of the use side heat exchanger is changed.
  • the air-conditioning load of the heat exchanger related to heat medium decreases (for example, when the number of heating operations of the use side heat exchanger decreases)
  • the temperature efficiency of the heat exchanger related to heat medium increases, Even if the temperature difference between the medium and the air temperature in the air-conditioned space becomes large, it is possible to suppress the air-conditioning capacity from becoming excessive by changing the heat medium temperature difference target value.
  • FIG. 1 is a system circuit diagram of an air conditioner according to an embodiment of the present invention. It is a figure which shows the installation method to the building etc. of the air conditioning apparatus which concerns on embodiment of this invention. It is a flowchart which shows the control method of the heat medium flow control apparatus of the air conditioning apparatus which concerns on embodiment of this invention.
  • the air conditioner according to the embodiment of the present invention the air and the heat medium flowing through the use-side heat exchanger when the number of indoor units is changed while the heat medium temperature difference ⁇ Tw is controlled to a constant value. It is the characteristic view which showed the temperature change. It is a flowchart which shows the control method which changes the heat-medium temperature difference target value of the air conditioning apparatus which concerns on embodiment of this invention.
  • the air conditioner In the air conditioner according to the embodiment of the present invention, it is a characteristic diagram showing the temperature change of the air and the heat medium flowing through the use side heat exchanger when the control to change the heat medium temperature difference target value ⁇ Twm is performed. . It is a system circuit diagram which shows the intermediate device of another example of the air conditioning apparatus which concerns on embodiment of this invention. It is a system circuit diagram which shows an example of the heat source machine connected to the intermediate
  • FIG. 1 is a system circuit diagram of an air conditioner according to an embodiment of the present invention.
  • the air conditioner of the present embodiment includes a compressor 11, a four-way valve 12, which is a refrigerant flow switching device, a heat source side heat exchanger 13, an accumulator 14, a heat exchanger related to heat medium 31, an expansion valve such as an electronic expansion valve.
  • the apparatus 32 is connected by piping to constitute a refrigeration cycle circuit.
  • the compressor 11 pressurizes and discharges (sends out) the sucked refrigerant.
  • the four-way valve 12 connects the flow path of the refrigerant discharged from the compressor 11 to the heat source side heat exchanger 13 or the heat exchanger related to heat medium 31 according to the operation mode.
  • the cooling operation when all the operating indoor units 2 are performing cooling (including dehumidification, the same applies hereinafter)
  • the heating operation all the operating indoor units 2).
  • the circulation path is switched according to the time when the machine 2 is heating.
  • the heat source side heat exchanger 13 includes, for example, a heat transfer tube through which the refrigerant passes, fins (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air, and a fan that conveys air 101, and performs heat exchange between the refrigerant and air (outside air).
  • a heat transfer tube through which the refrigerant passes
  • fins not shown
  • a fan that conveys air 101, and performs heat exchange between the refrigerant and air (outside air).
  • it functions as an evaporator during heating operation, and evaporates the refrigerant to be gasified.
  • a condenser or a gas cooler hereinafter referred to as a condenser
  • the gas may not be completely gasified or liquefied, but may be in a two-phase mixed state of gas and liquid (gas-liquid two-phase refrigerant).
  • the heat exchanger related to heat medium 31 has a heat transfer section that allows the refrigerant to pass therethrough and a heat transfer section that allows the heat medium to pass, and allows heat exchange between the medium using the refrigerant and the heat medium.
  • the heat exchanger related to heat medium 31 functions as a condenser during heating operation, and heats the heat medium by dissipating heat to the refrigerant.
  • it functions as an evaporator during cooling operation, and the heat medium is absorbed by the refrigerant to cool the heat medium.
  • the expansion device 32 such as an electronic expansion valve depressurizes the refrigerant by adjusting the refrigerant flow rate.
  • heat exchangers between heat mediums 31 heat exchangers between heat mediums 31a and 31b
  • expansion devices 32 expansion devices provided corresponding to these heat exchangers between heat media 31 32a, 32b.
  • the heat exchanger related to heat medium 31 a and the expansion device 32 a and the heat exchanger related to heat medium 31 b and the expansion device 32 b are connected in parallel between the four-way valve 12 and the heat source side heat exchanger 13.
  • the number of heat exchangers 31 between heat media is arbitrary as long as it is two or more.
  • the accumulator 14 is provided on the suction side of the compressor 11. By providing the accumulator 14, there is a function of preventing excessive refrigerant in the refrigeration cycle circuit from being stored or preventing the compressor 11 from being damaged by returning a large amount of refrigerant liquid to the compressor 11.
  • heat source side refrigerant examples include single refrigerants such as R-22 and R-134a, pseudo-azeotropic mixed refrigerants such as R-410A and R-404A, non-azeotropic mixed refrigerants such as R-407C, A refrigerant having a relatively low global warming coefficient such as CF 3 CF ⁇ CH 2 or a mixture thereof, or a natural refrigerant such as CO 2 or propane can be used.
  • the air conditioner according to the present embodiment is provided corresponding to the heat exchanger related to heat medium 31, the use side heat exchanger 35, the pump 41 that is a heat medium circulation device, and the use side heat exchanger 35.
  • the heat medium flow control device 45 thus connected is connected by piping to constitute a heat medium circulation circuit.
  • the pump 41 which is a heat medium circulation device pressurizes in order to circulate the heat medium.
  • the flow volume (discharge flow volume) which sends out a thermal medium can be changed by changing the rotation speed of a built-in motor (not shown) within a fixed range.
  • the use side heat exchanger 35 heats or cools the air in the air-conditioned space by exchanging heat between the air in the air-conditioned space conveyed by the fan 102 and the heat medium in the indoor unit 2.
  • three use side heat exchangers 35 are provided in the heat medium circulation circuit.
  • a heat medium branching portion 55 is connected to the outflow side of the heat medium flow path of the heat exchanger 31 between the heat medium via the first heat medium flow path 50, and the heat exchanger 31 between the heat medium 31.
  • a heat medium junction 56 is connected to the inflow side of the heat medium flow path via a second heat medium flow path 51.
  • the three utilization side heat exchangers 35 are connected in parallel to the heat medium branching portion 55 and the heat medium junction portion 56.
  • the heat medium flow control device 45 which is a two-way flow control valve, is provided for each use side heat exchanger 35 and adjusts the flow rate of the heat medium flowing into the use side heat exchanger 35. .
  • the heat medium flow control device 45 is provided between the use side heat exchanger 35 and the heat medium junction 56, but between the heat medium branching portion 55 and the use side heat exchanger 35.
  • a heat medium flow control device 45 may be provided.
  • This heat medium circulation circuit is provided for each heat exchanger 31a, 31b. That is, the heat medium circulation circuit to which the heat exchanger related to heat medium 31a is connected includes the heat exchanger related to heat medium 31a, the use side heat exchangers 35a, 35b, and 35c, the pump 41a, and the heat medium flow control devices 45a, 45b, 45c is connected by piping. In addition, the heat medium circulation circuit to which the heat exchanger related to heat medium 31b is connected includes the heat exchanger related to heat medium 31b, the use side heat exchangers 35d, 35e, and 35f, the pump 41b, and the heat medium flow control devices 45d, 45e, 45f is connected by piping. In addition, the number of the use side heat exchanger 35 and the heat medium flow control device 45 is arbitrary.
  • the air conditioning apparatus is provided with various sensors.
  • a pressure sensor 71 serving as a refrigerant pressure detection device is installed between the discharge side of the compressor 11 and the four-way valve 12 to detect the discharge pressure.
  • the pressure sensor 72 is installed between the accumulator 14 and the compressor 11 and detects the suction pressure.
  • the pressure sensors 73a and 73b are installed between the gas pipe 4 (a pipe connecting the four-way valve 12 and the heat exchangers 31a and 31b as will be described later) and the heat exchangers 31a and 31b, The pressure of the refrigerant flowing through the heat exchangers 31a and 31b is detected.
  • the pressure sensors 73a and 73b may be provided between the heat exchangers 31a and 31b and the expansion devices 32a and 32b.
  • the positions of the pressure sensors 71 and 72 are not limited as long as the discharge pressure and the suction pressure of the compressor 11 can be detected.
  • Temperature sensors 74a and 74b which are refrigerant temperature detection devices, are installed between the gas pipe 4 and the heat exchangers 31a and 31b, and the temperature of the refrigerant flowing into the heat exchangers 31a and 31b during the heating operation. Is detected. In other words, the temperature sensors 74a and 74b detect the temperature of the refrigerant flowing out of the heat exchangers 31a and 31b during the cooling operation.
  • the temperature sensors 75a and 75b are installed between the heat exchangers 31a and 31b and the expansion devices 32a and 32b, and detect the temperature of the refrigerant flowing out of the heat exchangers 31a and 31b during the heating operation. In other words, the temperature sensors 75a and 75b detect the temperature of the refrigerant flowing into the intermediate heat exchangers 31a and 31b during the cooling operation.
  • Temperature sensors 81a and 81b which are heat medium temperature detection devices, are located between the heat medium outlets of the heat exchangers 31a and 32b between the heat mediums and the heat medium inlets of the use side heat exchangers 35a, 35b, 35c, 35d, 35e, and 35f. It detects the temperature of the heat medium outlet of the heat exchangers 31a and 32b (the temperature of the heat medium flowing out of the heat exchangers 31a and 32b).
  • the temperature sensors 85a, 85b, 85c, 85d, 85e, and 85f are provided from the heat medium outlet of the use side heat exchangers 35a, 35b, 35c, 35d, 35e, and 35f to the heat medium inlets of the heat exchangers 31a and 32b.
  • Heat medium outlet temperature of the use side heat exchangers 35a, 35b, 35c, 35d, 35e, and 35f (the temperature of the heat medium flowing out from the use side heat exchangers 35a, 35b, 35c, 35d, 35e, and 35f) ) Is detected.
  • the temperature sensors 81a and 81b correspond to the first heat medium temperature detecting device in the present invention.
  • the temperature sensors 85a, 85b, 85c, 85d, 85e, and 85f correspond to the second heat medium temperature detecting device in the present invention.
  • the components other than the pipes are accommodated in the heat source unit 1 (outdoor unit), the repeater 3 or the indoor unit 2.
  • the heat source unit 1 also houses a control device 201 that regulates the control of the heat source unit 1 and the control of the entire air conditioner.
  • the use side heat exchangers 35a, 35b, 35c, 35d, 35e, and 35f are accommodated in the indoor units 2a, 2b, 2c, 2d, 2e, and 2f, respectively.
  • the intermediate heat exchanger 31a, the pump 41a, and the heat medium flow control devices 45a, 45b, and 45c are accommodated in the relay 3a.
  • the repeater 3a also houses a control device 202a that regulates the control of the repeater 3a.
  • the intermediate heat exchanger 31b, the pump 41b, and the heat medium flow control devices 45d, 45e, and 45f are accommodated in the relay 3b.
  • the repeater 3b also houses a control device 202b that regulates the control of the repeater 3b.
  • the heat source unit 1 and the relays 3a and 3b are connected by a gas pipe 4 and a liquid pipe 5 which are refrigerant pipes. That is, the four-way valve 12 and the heat exchangers 31 a and 31 b are connected via the gas pipe 4, and the expansion devices 32 a and 32 b and the heat source side heat exchanger 13 are connected via the liquid pipe 5. . Further, each of the relay unit 3a and the indoor units 2a, 2b, 2c (each of the use-side heat exchangers 35a, 35b, 35c) has flow paths 6a, 6b, 6c and the heat medium return flow path 7a, 7b, 7c.
  • each of the relay unit 3a and each of the indoor units 2a, 2b, and 2c (each of the use side heat exchangers 35a, 35b, and 35c) is connected by one heat medium path.
  • each of the relay unit 3b and each of the indoor units 2d, 2e, and 2f (each of the use side heat exchangers 35d, 35e, and 35f) is connected by one heat medium path.
  • FIG. 2 is a diagram showing a method for installing the air-conditioning apparatus according to the embodiment of the present invention in a building or the like.
  • the heat source unit 1 is installed in a space outside the building 301 such as a building.
  • the indoor units 2a and 2b are located at positions where the air in the indoor spaces 303a, 303b, 303c, 303d, 303e, 303f, 303g, 303h, and 303i, such as living rooms, in the building 301 can be heated or cooled.
  • 2c, 2d, 2e, 2f, 2g, 2h, 2i are located at positions where the air in the indoor spaces 303a, 303b, 303c, 303d, 303e, 303f, 303g, 303h, and 303i, such as living rooms, in the building 301 can be heated or cooled.
  • 2c, 2d, 2e, 2f, 2g, 2h, 2i are examples of the indoor spaces 303a,
  • the repeaters 3a, 3b, 3c are installed in the non-air-conditioned spaces 302a, 302b, 302c in the building different from the indoor spaces 303a, 303b, 303c, 303d, 303e, 303f, 303g, 303h, 303i.
  • 1 shows two repeaters 3
  • FIG. 2 shows three repeaters 3, the number of repeaters 3 is arbitrary.
  • FIG. 1 the solid line arrow indicates the refrigerant flow direction during the heating operation
  • the broken line arrow indicates the refrigerant flow direction during the cooling operation
  • the alternate long and short dash line arrow indicates the heat medium during the cooling operation and the heating operation.
  • the level of the pressure in the refrigeration cycle circuit or the like is not determined by the relationship with the reference pressure, but is a relative pressure that can be achieved by compression of the compressor 11, refrigerant flow control of the expansion devices 32a, 32b, and the like. As high pressure and low pressure. The same applies to the temperature level.
  • Heating operation A heating operation in which the indoor units 2a, 2b, 2c, 2d, 2e, and 2f heat the indoor spaces 303a, 303b, 303c, 303d, 303e, and 303f will be described.
  • the refrigerant flow in the refrigeration cycle circuit will be described.
  • the refrigerant sucked into the compressor 11 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant exiting the compressor 11 flows through the four-way valve 12 and then flows into the relay 3 through the gas pipe 4.
  • the gas refrigerant that has flowed into the relays 3a and 3b flows into the heat exchangers 31a and 31b. Since the heat exchangers 31a and 31b function as a condenser for the refrigerant (that is, operate as a condenser in the refrigeration cycle circuit), the refrigerant passing through the heat exchangers 31a and 31b is The heat medium to be heat exchanged is heated and liquefied (dissipated to the heat medium). The liquid refrigerant flowing out of the heat exchangers 31a and 31b is depressurized by the expansion devices 32a and 32b, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure refrigerant passes through the liquid pipe 5 and flows out of the repeaters 3a and 3b.
  • the refrigerant that has flowed into the heat source unit 1 flows into the heat source side heat exchanger 13 and evaporates by exchanging heat with air, and flows out as a gas refrigerant or a gas-liquid two-phase refrigerant.
  • the evaporated refrigerant is sucked into the compressor 11 again via the four-way valve 12 and the accumulator 14.
  • the heat medium is heated by heat exchange with the refrigerant in the heat exchangers 31a and 31b.
  • the heat medium heated in the heat exchangers between heat mediums 31a and 31b is sucked by the pumps 41a and 41b and sent to the first heat medium flow paths 50a and 50b.
  • the heat medium distributed to the heat medium flow paths 6a, 6b, and 6c in the heat medium branching portion 55a flows out from the relay unit 3a and flows into the indoor units 2a, 2b, and 2c.
  • the heat medium distributed to the heat medium flow paths 6d, 6e, and 6f in the heat medium branching portion 55b flows out of the relay unit 3b and flows into the indoor units 2d, 2e, and 2f.
  • the heat medium flowing into the indoor units 2a, 2b, 2c, 2d, 2e, 2f is used in the fans 102a, 102b, 102c, 102d, 102e, 102f in the use side heat exchangers 35a, 35b, 35c, 35d, 35e, 35f.
  • the air exchanges heat with the air and heats the air to lower the temperature of the heat medium (dissipates heat to the air). Thereby, the indoor spaces 303a, 303b, 303c, 303d, 303e, and 303f are heated.
  • the heat medium that has exited the indoor units 2a, 2b, and 2c passes through the heat medium return flow paths 7a, 7b, and 7c and the heat medium flow control devices 45a, 45b, and 45c, and merges at the heat medium junction 56a.
  • the heat medium that has exited the indoor units 2d, 2e, and 2f passes through the heat medium return flow paths 7d, 7e, and 7f and the heat medium flow control devices 45d, 45e, and 45f, and merges in the heat medium confluence unit 56b. Then, it passes through the second heat medium flow paths 51a and 51b and flows into the heat exchangers between heat mediums 31a and 31b.
  • the high-pressure gas refrigerant is condensed by exchanging heat with the outside air conveyed by the fan 101 while passing through the heat source side heat exchanger 13, flows out as a high-pressure liquid refrigerant, passes through the liquid pipe 5, and repeater 3 a. , 3b.
  • the refrigerant flowing into the relays 3a and 3b expands by adjusting the opening degree of the expansion devices 32a and 32b, and the low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the heat exchangers 31a and 31b. Since the heat exchangers 31a and 31b function as an evaporator with respect to the refrigerant (that is, operate as an evaporator in the refrigeration cycle circuit), the refrigerant passing through the heat exchangers 31a and 31b is The heat medium to be heat exchanged is cooled (heat is absorbed from the heat medium) and flows out as a gas refrigerant. The gas refrigerant that has flowed out passes through the gas pipe 4 and flows out of the relays 3a and 3b. The refrigerant flowing into the heat source unit 1 is sucked into the compressor 11 again via the four-way valve 12 and the accumulator 14.
  • the heat medium is cooled by heat exchange with the refrigerant in the heat exchangers 31a and 31b.
  • the heat medium cooled in the heat exchangers between heat mediums 31a and 31b is sucked by the pumps 41a and 41b and sent out to the first heat medium flow paths 50a and 50b.
  • the heat medium distributed to the heat medium flow paths 6a, 6b, and 6c in the heat medium branching portion 55a flows out from the relay unit 3a and flows into the indoor units 2a, 2b, and 2c.
  • the heat medium distributed to the heat medium flow paths 6d, 6e, and 6f in the heat medium branching portion 55b flows out of the relay unit 3b and flows into the indoor units 2d, 2e, and 2f.
  • the heat medium flowing into the indoor units 2a, 2b, 2c, 2d, 2e, 2f is used in the fans 102a, 102b, 102c, 102d, 102e, 102f in the use side heat exchangers 35a, 35b, 35c, 35d, 35e, 35f.
  • the air exchanges heat with the air and cools the air to raise the temperature of the heat medium (heat is absorbed from the air). Accordingly, the indoor spaces 303a, 303b, 303c, 303d, 303e, and 303f are cooled.
  • the heat medium that has exited the indoor units 2a, 2b, and 2c passes through the heat medium return flow paths 7a, 7b, and 7c and the heat medium flow control devices 45a, 45b, and 45c, and merges at the heat medium junction 56a.
  • the heat medium that has exited the indoor units 2d, 2e, and 2f passes through the heat medium return flow paths 7d, 7e, and 7f and the heat medium flow control devices 45d, 45e, and 45f, and merges in the heat medium confluence unit 56b. Then, it passes through the second heat medium flow paths 51a and 51b and flows into the heat exchangers between heat mediums 31a and 31b.
  • each actuator provided in the refrigeration cycle apparatus is controlled as follows.
  • the rotation speed of the compressor 11 is controlled by the control device 201. Specifically, during the heating operation, the control device 201 controls the rotational speed of the compressor 11 with the discharge pressure detected by the pressure sensor 71 as a target value, and adjusts the refrigerant flow rate of the refrigeration cycle circuit. At this time, the discharge pressure is preferably about 50 ° C. in terms of the saturation pressure. During the cooling operation, the control device 201 controls the rotational speed of the compressor 11 with the suction pressure detected by the pressure sensor 72 as a target value, and adjusts the refrigerant flow rate of the refrigeration cycle circuit. At this time, the suction pressure is preferably about 0 ° C. in terms of saturation pressure.
  • the opening degree of the expansion devices 32a and 32b is controlled by the control devices 202a and 202b. Specifically, at the time of heating operation, the control devices 202a and 202b convert the condensation pressure detected by the pressure sensors 73a and 73b into a saturation temperature by the control devices 202a and 202b. In the control devices 202a and 202b, the difference (that is, the degree of supercooling) between the saturation temperature and the refrigerant outlet temperature of the heat exchangers 31a and 31b detected by the temperature sensors 75a and 75b becomes a predetermined target value. Thus, the opening degree of the expansion devices 32a and 32b is controlled, and the flow rate of the refrigerant flowing into each of the heat exchangers 31a and 31b is adjusted.
  • the degree of supercooling is preferably about 3 to 8 ° C.
  • the control devices 202a and 202b use the outlet temperatures of the heat exchangers 31a and 31b detected by the temperature sensors 74a and 74b and the heat exchangers 31a and 31b detected by the temperature sensors 75a and 75b.
  • the opening degree of the expansion devices 32a and 32b is controlled so that the difference from the inlet temperature (that is, the degree of superheat) becomes a predetermined target value, and the flow rate of refrigerant flowing into each of the heat exchangers 31a and 31b is adjusted.
  • the degree of superheat is preferably about 2 to 5 ° C.
  • ⁇ Heat medium flow control of heat medium flow control device> the control devices 202a and 202b cause the difference between the heat medium inlet temperature Twi and the outlet temperature Two of the use side heat exchangers 35a, 35b, 35c, 35d, 35e, and 35f.
  • ⁇ Tw Twi ⁇ Two
  • the control will be described using the heat medium flow control device 45a as an example.
  • the heat medium temperature difference target value ⁇ Twm is set to a value having a width that is a stable range. For this reason, in FIG. 3, the opening degree of the heat medium flow control device 45a is controlled so that the heat medium temperature difference ⁇ Tw of the use side heat exchanger 35a becomes the heat medium temperature difference target value ⁇ Twm having a predetermined width. A method will be described.
  • FIG. 3 is a flowchart showing a control method of the heat medium flow control device of the air conditioner according to the embodiment of the present invention. As shown in FIG. 3, in step S1, first, the control device 202a sets the opening degree L of the heat medium flow control device 45a to the maximum.
  • step S2 the control device 202a maintains the opening degree L of the heat medium flow control device 45a for a certain period of time.
  • step S3 the control device 202a detects the heat medium inlet temperature Twi of the use side heat exchanger 35a by the temperature sensor 81a, and detects the heat medium outlet temperature Two of the use side heat exchanger 35a by the temperature sensor 85a. And the control apparatus 202a calculates heat-medium temperature difference (DELTA) Tw of the utilization side heat exchanger 35a from these Twi and Two.
  • DELTA heat-medium temperature difference
  • step S4 the controller 202a determines whether or not the value obtained by subtracting the heat medium temperature difference ⁇ Tw from the heat medium temperature difference target value ⁇ Twm is greater than the upper limit value ⁇ Tws of the heat medium temperature difference target value ⁇ Twm (stable range). Determine whether.
  • the control device 202a determines that the heat medium temperature difference ⁇ Tw is smaller than the heat medium temperature difference target value ⁇ Twm (Yes), Proceed to step S5.
  • step S5 the control device 202a determines whether or not the opening degree L of the heat medium flow control device 45a is larger than the minimum opening degree Lmin.
  • the control device 202a reduces the opening degree L of the heat medium flow control device 45a by ⁇ L in step S6 to reduce the flow rate of the heat medium. Then, step S2 is reached again. If the opening degree L of the heat medium flow control device 45a is equal to or smaller than the minimum opening degree Lmin in step S5, the control device 202a returns to step S2 again without changing the opening degree L.
  • step S4 when the value obtained by subtracting the heat medium temperature difference ⁇ Tw from the heat medium temperature difference target value ⁇ Twm is equal to or less than the upper limit value ⁇ Tws of the heat medium temperature difference target value ⁇ Twm (stable range) in step S4, the control device 202a performs step Proceed to S7.
  • step S7 the controller 202a determines whether the value obtained by subtracting the heat medium temperature difference ⁇ Tw from the heat medium temperature difference target value ⁇ Twm is smaller than the lower limit value ⁇ Tws of the heat medium temperature difference target value ⁇ Twm (stable range). Judging.
  • step S7 when the value obtained by subtracting the heat medium temperature difference ⁇ Tw from the heat medium temperature difference target value ⁇ Twm is smaller than the lower limit value ⁇ Tws, the control device 202a determines that the heat medium temperature difference ⁇ Tw is larger than the heat medium temperature difference target value ⁇ Twm ( Yes), the process proceeds to step S8.
  • step S7 when the value obtained by subtracting the heat medium temperature difference ⁇ Tw from the heat medium temperature difference target value ⁇ Twm is equal to or greater than the lower limit value ⁇ Tws, the controller 202a determines that the heat medium temperature difference ⁇ Tw of the use side heat exchanger 35a is within the stable range. The process returns to step S2 again.
  • step S8 the control device 202a determines whether or not the opening degree L of the heat medium flow control device 45a is smaller than the maximum opening degree Lmax.
  • the control device 202a increases the opening degree L of the heat medium flow control device 45a by ⁇ L in step S9 to increase the flow rate of the heat medium. Then, step S2 is reached again. If the opening degree L of the heat medium flow control device 45a is greater than or equal to the maximum opening degree Lmax in step S8, the control device 202a returns to step S2 again without changing the opening degree L.
  • the heat medium inlet temperature Twi uses the heat medium temperature detected by the temperature sensor 81a, and the heat medium outlet temperature Two is detected by the temperature sensors 85b and 85c. Use the heating medium temperature.
  • the heat medium inlet temperature Twi uses the heat medium temperature detected by the temperature sensor 81b, and the heat medium outlet temperature Two is the temperature sensor 85d, 85e. , 85f is used.
  • control shown in the flowchart of FIG. 3 starts when the indoor unit 2a starts the heating operation.
  • the heat medium flow control device 45a has an opening degree so that the heat medium does not flow into the use side heat exchanger 35a.
  • step S5. 6 is performed. This is because the inlet air temperature of the indoor unit 2a is increased, the temperature difference between the heat medium and air in the use side heat exchanger 35a is reduced, and the heat exchange amount is decreased. This is because it becomes smaller.
  • the control apparatus 202a makes the opening degree of the heat medium flow control apparatus 45a small, and makes small the flow volume of the heat medium which flows into the use side heat exchanger 35a.
  • the control in steps S8 and S9 is performed. This is because the inlet air temperature of the indoor unit 2a is lowered, the temperature difference between the heat medium and the air in the use side heat exchanger 35a is increased, and the heat exchange amount is increased, so that the heat medium temperature difference ⁇ Tw is increased. This is because it becomes larger. For this reason, the control device 202a increases the opening degree of the heat medium flow control device 45a to increase the flow rate of the heat medium flowing into the use side heat exchanger 35a.
  • the air-conditioning apparatus heats corresponding to each use-side heat exchanger 35 so that the heat medium temperature difference ⁇ Tw of each use-side heat exchanger 35 approaches the heat medium temperature difference target value ⁇ Twm. Since the medium flow rate adjusting device 45 is controlled, it is possible to perform heat medium flow rate control in accordance with the heating load of each use side heat exchanger 35 (each indoor unit 2).
  • each indoor unit 2 is installed in a different conditioned space.
  • Heat medium flow control according to the heating load for each air-conditioned space can be performed.
  • the indoor units 2a and 2b are installed in the indoor spaces 303a and 303b that communicate with each other, and the same air-conditioned space is air-conditioned.
  • the indoor unit 2c is installed in an indoor space 303c partitioned from the indoor spaces 303a and 303b, and air-conditions a conditioned space different from the indoor units 2a and 2b.
  • the air-conditioning apparatus according to the present embodiment provides the use-side heat exchanger 35 of the indoor unit 2 installed in each air-conditioned space with an amount of heat medium corresponding to the heating load of each air-conditioned space. It can flow.
  • step S5 when it is determined in step S5 that the opening degree L of the heat medium flow control device 45 is not more than the minimum opening degree Lmin, the opening degree L is not further reduced. The opening degree does not become too small and the flow of the heat medium is not blocked.
  • the heat medium temperature difference ⁇ Tw is set to the heat medium temperature difference target value ⁇ Twm to control the flow rate of the heat medium.
  • This is a method of adjusting the heating capacity according to the heating load (air inlet temperature) of the machine 2a.
  • the heat medium inlet temperature Twi changes when the number of operating indoor units 2 (use side heat exchanger 35) changes.
  • the heat medium inlet temperature Twi detected by the temperature sensor 81 is the temperature of the heat medium flowing into the use-side heat exchanger 35 and the heat medium flowing out from the inter-heat medium heat exchanger 31 (that is, each use-side heat).
  • control for changing the heat medium temperature difference target value ⁇ Twm is performed.
  • a problem that occurs when the number of operating indoor units 2 connected to the heat exchanger related to heat medium 31 changes that is, the air conditioning load that the heat exchanger related to heat medium 31 changes
  • the control for changing the heat medium temperature difference target value ⁇ Twm is very useful for solving the problem.
  • a heat medium circulation circuit to which the heat exchanger related to heat medium 31a is connected will be described as an example.
  • the temperature efficiency ⁇ on the heat medium side of the heat exchanger related to heat medium 31a is expressed by the following equation (1).
  • (Twi-Two) / (Tcond-Two) (1)
  • Tcond is a condensing temperature of the refrigerant flowing through the heat exchanger related to heat medium 31 a and is controlled to a certain value depending on the number of rotations of the compressor 11.
  • the heat medium inlet temperature of the heat exchanger related to heat medium 31a is defined as Two, and the heat medium outlet temperature is defined as Twi. Yes.
  • Ntu Ap ⁇ Kp / ⁇ Gw ⁇ Cp (2)
  • Ap is the heat transfer area of the heat exchanger related to heat medium 31a
  • Kp is the heat passage rate of the heat exchanger related to heat medium 31a
  • Cp is the constant pressure specific heat of the heat medium.
  • ⁇ Gw is the heat medium mass flow rate of the heat exchanger 31a between heat media, and is the total value of the mass flow rates Gwa, Gwb, Gwc of the use side heat exchangers 35a, 35b, 35c.
  • Ap, Kp, and Cp can be regarded as almost constant.
  • FIG. 4 shows the air flowing through the use-side heat exchanger when the number of indoor units is changed in a state where the heat medium temperature difference ⁇ Tw is controlled to a constant value in the air conditioner according to the embodiment of the present invention. It is the characteristic view which showed the temperature change of a heat carrier.
  • the vertical axis represents temperature
  • the horizontal axis represents heat.
  • the temperature (it describes as normal in the figure) which flows through the utilization side heat exchanger 35a at the time of a 3 unit
  • the temperature of the air and the heat medium flowing through the use-side heat exchanger 35a during the operation of one unit that is, the air and the heat medium flowing through the use-side heat exchanger 35a after the temperature efficiency ⁇ of the inter-heat medium heat exchanger 31a increases.
  • the temperature is indicated by a broken line.
  • the heat medium and air exchange heat in a counterflow In the use side heat exchanger 35a, the heat medium and air exchange heat in a counterflow. At this time, the temperature of the heat medium is decreased by releasing heat to the air from the heat medium inlet temperature Twi to the heat medium outlet temperature Two. The temperature of the air rises by absorbing heat from the heat medium from the air inlet temperature Tai to the air outlet temperature Tao.
  • the heat exchange amount Qa of the use side heat exchanger 35a at this time can be obtained from the temperature difference between the heat medium flowing through the use side heat exchanger 35a and air by the following equation (4).
  • Qa Af ⁇ Kf ⁇ ⁇ Twa (4)
  • Af is a heat transfer area of the use side heat exchanger 35a
  • Kf is a heat passage rate of the use side heat exchanger 35a
  • ⁇ Twa is a temperature difference between the heat medium flowing through the use side heat exchanger 35a and air.
  • the temperature efficiency ⁇ of the heat exchanger related to heat medium 31a increases when the operation is changed from three to one, the heat medium inlet temperature Twi and the heat medium outlet temperature Two increase, as shown in FIG.
  • the average temperature of the heat medium flowing through the use side heat exchanger 35a increases from the average temperature 1 to the average temperature 2. Therefore, the temperature difference ⁇ Twa between the heat medium flowing through the use side heat exchanger 35a and the air becomes large, and it can be seen from the equation (4) that the heat exchange amount Qa of the use side heat exchanger 35a becomes large.
  • a method of suppressing an increase in the heating capacity of the indoor unit 2 a method of controlling the heat medium inlet temperature Twi of the use side heat exchanger 35a to be constant can be considered. And as a method of controlling the heat-medium inlet temperature of the utilization side heat exchanger 35a to be constant, the compressor 11 of the heat source apparatus 1 is designed so that the condensation temperature Tcond of the refrigerant flowing through the heat exchanger related to heat medium 31a is lowered. It is effective to reduce the rotational speed.
  • the heat exchanger for heat medium 31a (repeater 3a) is provided.
  • the indoor unit 2a performs heating operation
  • the indoor units 2d, 2e, and 2f perform heating operation.
  • the indoor units 2d, 2e, and 2f perform heating operation.
  • the indoor units 2d, 2e, and 2f perform heating operation.
  • the some heat exchanger 31 between heat media (relay device 3) like the air conditioning apparatus which concerns on this Embodiment, heat exchanger 31a, 31b between heat media (relay devices 3a, 3b).
  • the heat medium inlet temperature of the use side heat exchanger 35a becomes high, the heat medium temperature difference target value ⁇ Twm is increased, and the heat medium temperature difference ⁇ Tw is increased,
  • the heating capacity of the indoor unit 2a is controlled. The control of the heating capacity will be described based on the flowchart of FIG.
  • FIG. 5 is a flowchart showing a control method for changing the heat medium temperature difference target value of the air-conditioning apparatus according to the embodiment of the present invention.
  • the control device 202a sets the heat medium temperature difference target value ⁇ Twm to the initial value ⁇ Twm0 of the heat medium temperature difference target value.
  • the control device 202a sets the heat medium inlet temperature setting value Twim of the use side heat exchanger 35a to the initial value Twim0 of the heat medium inlet temperature setting value.
  • step S23 the control device 202a maintains the heat medium temperature difference target value ⁇ Twm and the heat medium inlet temperature setting value Twim of the use side heat exchanger 35a for a certain period of time while maintaining the initial values, and performs the heating operation.
  • step S24 the control device 202a detects the heat medium inlet temperature Twi of the use side heat exchanger 35a.
  • the heat medium inlet temperature Twi is the heat medium outlet temperature of the heat exchanger related to heat medium 31a and is a temperature detected by the temperature sensor 81a.
  • step S25 the control device 202a subtracts the heat medium inlet temperature setting value Twim from the heat medium inlet temperature Twi, and determines whether or not the value is larger than the upper limit value Twis of the stable range. That is, the control device 202a determines whether or not the heat medium inlet temperature Twi is higher than the upper limit value (Twis + Twim) of the predetermined range.
  • the control device 202a proceeds to step S26 and increases the heat medium temperature difference target value ⁇ Twm by ⁇ Twm. Further, the control device 202a proceeds to step S27, increases the heat medium inlet temperature setting value Twim by ⁇ Twim, and returns to step S23 again.
  • step S28 determines whether (Twi-Twim) is smaller than the lower limit value -Twis of the stable range. Determine. That is, the control device 202a determines whether or not the heat medium inlet temperature Twi is smaller than the lower limit ( ⁇ Twis + Twim) of the predetermined range.
  • the control device 202a proceeds to step S29 and decreases the heat medium temperature difference target value ⁇ Twm by ⁇ Twm. Further, the control device 202a proceeds to step S30, decreases the heat medium inlet temperature set value Twim by ⁇ Twim, and returns to step S23 again.
  • step S28 determines that the heat medium inlet temperature Twi is within the stable range and returns to step S23 again.
  • control shown in the flowchart of FIG. 5 starts when one of the indoor units 2a, 2b, 2c connected to the heat exchanger related to heat medium 31a (relay device 3a) starts the heating operation. Also, the process ends when all of the indoor units 2a, 2b, 2c connected to the heat exchanger related to heat medium 31a (relay unit 3a) are stopped. Further, the control shown in the flowchart of FIG. 5 is performed independently for each heat medium circulation circuit of the heat exchangers 31a and 31b (relay units 3a and 3b).
  • FIG. 6 shows the temperature change of the air and the heat medium flowing through the use side heat exchanger when the control to change the heat medium temperature difference target value ⁇ Twm is performed in the air conditioner according to the embodiment of the present invention.
  • FIG. 6 the vertical axis represents temperature, and the horizontal axis represents heat.
  • the temperature of the air and the heat medium flowing through the use-side heat exchanger 35 a after the temperature efficiency ⁇ of the heat exchanger related to heat medium 31 a increases as shown in FIG. 4 is indicated by a broken line.
  • the temperature of the air and the heat medium flowing through the use side heat exchanger 35a after the control to increase the heat medium temperature difference target value ⁇ Twm is indicated by a one-dot chain line.
  • FIG. 6 shows a state in which the temperature efficiency ⁇ of the heat exchanger related to heat medium 31a described with reference to FIG. 4 has increased with respect to the heat medium temperature change and the air temperature change of the use side heat exchanger 35a, and the present embodiment. This compares the state in which the control for increasing the heat medium temperature difference ⁇ Tw is performed.
  • the heat medium inlet temperature Twi of the use side heat exchanger 35a is slightly increased. This is because, when the heat medium temperature difference target value ⁇ Twm is increased, control to increase the heat medium temperature difference ⁇ Tw is performed (see FIG. 3). This is because the heat medium flow rate of the heat exchanger 31a is reduced, and the temperature efficiency ⁇ of the heat exchanger related to heat medium 31a is further increased. However, the heat medium inlet temperature Twi (the heat medium outlet temperature of the inter-heat medium heat exchanger 31a) of the use side heat exchanger 35a does not become higher than the condensation temperature Tcond.
  • the heat medium inlet temperature Twi of the use side heat exchanger 35a is close to the condensation temperature Tcond in the state where the temperature efficiency ⁇ of the heat exchanger related to heat medium 31a is originally high, the heat medium temperature difference target The degree to which the heat medium inlet temperature Twi increases by increasing the value ⁇ Twm is small.
  • the heat medium outlet temperature Two of the use side heat exchanger 35a is lowered, and the average temperature of the heat medium Decreases from an average temperature of 2 to an average temperature of 3. Therefore, the temperature difference ⁇ Twa between the heat medium flowing through the use side heat exchanger 35a and the air is reduced, and the heat exchange amount Qa of the use side heat exchanger 35a is reduced from the equation (4). If the heat exchange amount Qa becomes small, the air outlet temperature Tao of the use side heat exchanger 35a, that is, the blowing temperature of the indoor unit 2a becomes low.
  • the heat medium temperature difference target value ⁇ Twm is increased.
  • an excessive rise in the air outlet temperature of the use-side heat exchanger 35a that is, the blowout temperature of the indoor unit 2
  • the comfort of the user can be obtained, and the air is repeatedly operated and stopped.
  • the start / stop loss of the harmony device can be reduced.
  • the air conditioning apparatus of this Embodiment does not need to control the refrigerant
  • a utilization side heat exchanger Compared to an air conditioner that controls the refrigerant flow rate on the heat source side by controlling the rotation speed of the compressor 11 with respect to the heat medium inlet temperature of 35a, the communication load between the control device 201 and the control device 202a can be reduced.
  • the heat medium temperature difference target value ⁇ Twm is decreased. Therefore, for example, the state in which only the indoor unit 2a connected to the repeater 3a is in the heating operation is changed to the state in which all the indoor units 2a, 2b, and 2c are in the heating operation, and the heat exchanger related to heat medium 31a Even if the temperature efficiency ⁇ of the heat medium becomes low and the heat medium inlet temperature Twi becomes low, the heat medium temperature difference target value ⁇ Twm is reduced, so that the heat medium average temperature in the heat exchanger related to heat medium 31a can be increased.
  • the temperature of the indoor unit 2a it is possible to prevent the temperature of the indoor unit 2a from being lowered.
  • the air conditioner when the air conditioner is activated, when the heat medium or the air temperature in the indoor space is low, the flow rate of the heat medium can be increased. Sex can be obtained.
  • the control for changing the heat medium temperature difference target value ⁇ Twm of the operating-side heat exchanger 35 (indoor unit 2) shown in this embodiment is performed by the heat exchanger related to heat medium 31 (repeater 3). This is particularly effective when a plurality of indoor units 2 are installed and one or more indoor units 2 connected to each of the heat exchangers between heat media 31 (relay units 3) perform heating operation.
  • the plurality of usage-side heat exchangers 35 are in operation when the heat medium inlet temperature Twi of the usage-side heat exchanger 35a is higher than a predetermined range, all the usages in operation are performed. Although it is optimal to control the side heat exchanger 35 (indoor unit 2) to increase the heat medium temperature difference target value ⁇ Twm, at least one of the operating use side heat exchangers 35 (indoor unit 2) is in operation. Even if control is performed to increase the heat medium temperature difference target value ⁇ Twm, it is sufficiently effective.
  • the heat medium outlet temperature of the heat exchanger related to heat medium 31a decreases. Therefore, since the excessive increase in the air outlet temperature (that is, the blowout temperature of the indoor unit 2) can be suppressed even in the operating use side heat exchanger 35 that is not performing the control, the comfort of the user is obtained. It is also possible to reduce the on / off loss of the air conditioner that repeats operation and stop.
  • the heat medium temperature difference target value ⁇ Twm of the use side heat exchanger 35a is increased.
  • the heat medium temperature difference target value ⁇ Twm is set based on the heat medium inlet temperature of the use side heat exchanger 35a, that is, the heat medium outlet temperature of the inter-heat medium heat exchanger 31a. Therefore, regardless of the number and size of the usage-side heat exchangers 35a connected to the relay 3a, the heating capacity of the usage-side heat exchanger 35a becomes excessive, and the blowing temperature of the indoor unit 2 is increased. Can be suppressed.
  • the effect of heating operation is described, it is effective also when an air conditioning apparatus performs cooling operation.
  • the cooling operation when the temperature efficiency ⁇ of the heat exchanger related to heat medium 31a increases, the heat medium inlet temperature of the use side heat exchanger 35a becomes too low, and the cooling blowout temperature of the indoor unit 2 becomes too low.
  • the user feels uncomfortable, and the operation and the stop are repeated, and a start / stop loss of the air conditioner occurs. Therefore, by increasing the heat medium temperature difference target value ⁇ Twm, it is possible to suppress the cooling blowout temperature of the indoor unit 2 from being lowered.
  • the heat medium inlet temperature Twi of the use-side heat exchanger 35a is higher than the upper limit value in the predetermined range, the heat medium in the heat exchanger related to heat medium 31a is reduced by reducing the heat medium temperature difference target value ⁇ Twm.
  • the average temperature can be lowered. That is, it is possible to prevent the temperature of the indoor unit 2a from rising.
  • the air conditioner is activated, when the heat medium or the air temperature in the indoor space is high, the air temperature in the indoor space can be cooled more quickly.
  • the repeaters 3a, 3b, and 3c are installed in the non-air-conditioned spaces 302a, 302b, and 302c, even if the refrigerant leaks, the refrigerant can enter the indoor space. Can be prevented. Therefore, if the non-air-conditioned spaces 302a, 302b, and 302c are spaces that can be sufficiently ventilated, a flammable refrigerant such as propane can be used.
  • the rotation speed of the compressor 11 of the heat source unit 1 is controlled so that the condensation temperature is constant during heating operation and the evaporation temperature is constant during cooling operation. Even if the medium temperature difference target value ⁇ Twm is changed and the flow rate of the heat medium decreases, the condensation temperature rises excessively and stops abnormally, or the evaporation temperature drops excessively and the heat medium freezes. Can be prevented.
  • the rotation speed control of the pump 41a is not particularly mentioned, but the rotation speed of the pump 41a may be variable by the control device 202a. In this case, if the rotation speed of the pump 41a is controlled so that the largest opening degree among the heat medium flow control devices 45a, 45b, and 45c becomes the maximum opening degree, the energy can be further saved.
  • a stable range (a range from ⁇ Tws to ⁇ Tws) is set in order to control the opening degree L of the heat medium flow control device 45a. Further, in order to change the heat medium temperature difference target value ⁇ Twm of the use side heat exchanger 35a, a stable range (range from -Twis to Twis) is set. By setting the stable range, the frequency of controlling the opening degree L of the heat medium flow control device 45a can be reduced, and the life of the heat medium flow control device 45a can be extended.
  • the air conditioner of the present embodiment is an air conditioner in which each indoor unit 2 is in the same operation mode (cooling operation or heating operation), but the cooling operation or heating operation is performed for each indoor unit 2. It may be an air conditioner capable of selectively performing cooling and heating mixed operation. For example, by using the repeater 3a shown in FIG. 1 as the repeater 3a as shown in FIG. Even in such an air conditioner capable of operating in a mixed heating and cooling mode, it is possible to perform control to change the heat medium temperature difference target value ⁇ Twm of the operating-side heat exchanger 35 (indoor unit 2) during operation.
  • FIG. 7 is a system circuit diagram showing an intermediate unit of another example of the air-conditioning apparatus according to the embodiment of the present invention.
  • An expansion device 32a is provided between the refrigerant flow paths of the heat exchanger related to heat medium 31a and the heat exchanger related to heat medium 33a. Therefore, by flowing the high-pressure refrigerant compressed by the compressor 11 in the direction of the solid line arrow in FIG. 7, the heat exchanger related to heat medium 31a serves as a condenser, and the heat exchanger related to heat medium 33a serves as an evaporator. Mixed operation is possible. Further, by flowing the high-pressure refrigerant compressed by the compressor 11 in the direction opposite to the solid line arrow in FIG. 7, the heat exchanger related to heat medium 31a becomes an evaporator, and the heat exchanger related to heat medium 33a becomes a condenser. Mixed operation is possible.
  • a heat medium branching portion 55a is connected to the heat medium outlet side of the heat exchanger related to heat medium 31a via the first heat medium flow path 50a.
  • a heat medium junction 56a is connected to the heat medium inlet side of the heat exchanger related to heat medium 31a via a second heat medium flow path 51a.
  • a heat medium branching portion 57a is connected to the heat medium outlet side of the heat exchanger related to heat medium 33a via the first heat medium flow path 52a.
  • the heat medium junction 58a is connected to the heat medium inlet side of the heat exchanger related to heat medium 33a via the second heat medium flow path 53a.
  • the pump 41a sucks the heat medium heated or cooled by the heat exchanger related to heat medium 31a and sends it out to the first heat medium flow path 50a and the heat medium branching section 55a.
  • the pump 42a sucks the heat medium cooled or heated by the heat exchanger related to heat medium 33a and sends it out to the first heat medium flow path 52a and the heat medium branching part 57a.
  • the heat medium flow switching devices 46a, 46b, and 46c which are three-way valves, are connected to either the heat medium branching portion 55a that is one of the heating side or the cooling side and the heat medium branching portion 57a that is the other side.
  • the flow paths 6a, 6b, 6c are connected.
  • the heat medium flow switching devices 47a, 47b, and 47c include the heat medium return flow paths 7a, 7b, and 7c, the heat medium merging portion 56a that is one of the heating side and the cooling side, and the heat medium merging portion 58a that is the other. Either one of them.
  • the heat medium in the heat medium return flow paths 7a and 7b flows into the heat medium junction 56a.
  • the heat medium in the heat medium return flow path 7c flows into the heat medium junction 58a.
  • 7 includes a pressure sensor 73a that detects the pressure of the refrigerant flowing through the heat exchanger related to heat medium 31a, and a heat exchanger related to heat medium similar to the relay 3a illustrated in FIG. Temperature sensors 74a and 75a for detecting the temperature of the refrigerant flowing into and out of 31a are provided. 7 is provided with temperature sensors 76a and 77a for detecting the temperature of the refrigerant flowing into and out of the heat exchanger related to heat medium 33a.
  • the control device 202a calculates the difference between the saturation temperature converted from the detected pressure of the pressure sensor 73a and the detected temperature of the temperature sensor 75a.
  • the degree of supercooling of the heat exchanger related to heat medium 31a can be obtained.
  • the control device 202a calculates the difference between the temperature detected by the temperature sensor 74a and the temperature detected by the temperature sensor 75a, so that the heat exchanger related to the heat exchanger related to heat medium 31a operates.
  • the degree of superheat can be determined.
  • the control device 202a can obtain the degree of supercooling and the degree of superheat of the heat exchanger related to heat medium 31a by calculating the difference between the temperature detected by the temperature sensor 76a and the temperature detected by the temperature sensor 77a.
  • the control device 202a uses the heat exchanger related to heat medium that operates as a condenser (the heat exchanger related to heat medium 31a or the heat exchanger related to heat medium).
  • the degree of opening of the expansion device 32a is controlled so that the degree of supercooling of one of the devices 33a becomes a predetermined target value.
  • the control device 202a uses the heat exchanger related to heat medium that operates as an evaporator (the heat exchanger related to heat medium 31a or the heat exchanger related to heat medium).
  • the opening degree of the expansion device 32a is controlled so that the degree of superheat of the other of the vessel 33a becomes a predetermined target value.
  • the temperature detected by the temperature sensor 81a is used as the heat medium inlet temperature Twih of the indoor unit 2 in the heating operation, and the temperature is detected as the heat medium inlet temperature Twic of the indoor unit 2 in the cooling operation.
  • the heating-side heat medium temperature difference target value ⁇ Twmh and the cooling-side heat medium temperature difference target value ⁇ Twmc are: Each can be set (changed).
  • the flow path of the refrigerant discharged from the compressor 11 is connected to the heat exchanger related to heat medium 31a. It is preferable to switch the four-way valve 12 of the heat source device 1 so that the heat source side heat exchanger 13 is an evaporator.
  • the heat source side heat exchanger 13 may be a condenser.
  • the efficiency of the refrigeration cycle circuit of the air conditioner is improved by properly using the heat source side heat exchanger 13 as an evaporator or a condenser.
  • the control device 201 operates the heat source side heat exchanger 13 as an evaporator as follows. That is, the control device 201 switches the four-way valve 12 so that the flow path of the refrigerant discharged from the compressor 11 is connected to the heat exchanger related to heat medium 31a. Thereby, the high-pressure refrigerant discharged from the compressor 11 flows into the heat exchanger related to heat medium 31a that operates as a condenser. In addition, the refrigerant that has flowed out of the heat exchanger related to heat medium 33 a that operates as an evaporator flows into the heat source side heat exchanger 13.
  • the control apparatus 201 controls the rotation speed of the compressor 11 so that the condensation temperature of the heat exchanger related to heat medium 31a serving as a condenser becomes a condensation temperature target value. Further, the control device 201 controls the heat exchange amount of the heat source side heat exchanger 13 so that the evaporation temperature of the heat exchanger related to heat medium 33a serving as an evaporator becomes the evaporation temperature target value. For example, the heat exchange amount of the heat source side heat exchanger 13 is controlled by changing the rotation speed of the fan 101 corresponding to the heat exchange amount adjusting device of the present invention.
  • the control device 201 operates the heat source side heat exchanger 13 as a condenser as follows. That is, the control device 201 switches the four-way valve 12 so that the flow path of the refrigerant discharged from the compressor 11 is connected to the heat source side heat exchanger 13. Thereby, the refrigerant
  • the control device 201 controls the heat exchange amount of the heat source side heat exchanger 13 so that the condensation temperature of the heat exchanger related to heat medium 33a serving as a condenser becomes a condensation temperature target value.
  • the control device 201 controls the rotation speed of the compressor 11 so that the evaporation temperature of the heat exchanger related to heat medium 31a serving as an evaporator becomes an evaporation temperature target value.
  • the heat exchange amount of the heat source side heat exchanger 13 is controlled by changing the rotation speed of the fan 101 corresponding to the heat exchange amount adjusting device of the present invention.
  • the efficiency of the refrigeration cycle circuit of the air conditioner is improved by properly using the heat source side heat exchanger 13 as a condenser or an evaporator according to the total cooling load and heating load of the indoor unit 2.
  • the heat source side heat exchanger 13 is connected by connecting the heat source apparatus 1 shown, for example in FIG. It can be properly used as an evaporator or a condenser.
  • FIG. 8 is a system circuit diagram showing an example of a heat source machine connected to the intermediate unit shown in FIG.
  • the heat source machine 1 shown in FIG. 8 is obtained by adding a refrigerant flow switching device 60 to the heat source machine 1 shown in FIG.
  • the refrigerant flow switching device 60 includes check valves 61, 62, 63, 64 and connection pipes 65, 66.
  • the control device 201 when the total heating load of the indoor unit 2 is larger than the total cooling load, the control device 201 operates the heat source side heat exchanger 13 as an evaporator as follows. That is, the control device 201 switches the four-way valve 12 so that the suction side of the compressor 11 and the heat source side heat exchanger 13 are connected. Thereby, the high-pressure refrigerant discharged from the compressor 11 flows into the heat exchanger related to heat medium 31 a via the check valve 61. Further, the refrigerant that has flowed out of the heat exchanger related to heat medium 33 a flows into the heat source side heat exchanger 13 via the check valve 62.
  • the control apparatus 201 controls the rotation speed of the compressor 11 so that the condensation temperature of the heat exchanger related to heat medium 31a serving as a condenser becomes a condensation temperature target value. Further, the control device 201 controls the heat exchange amount of the heat source side heat exchanger 13 so that the evaporation temperature of the heat exchanger related to heat medium 33a serving as an evaporator becomes the evaporation temperature target value. For example, the heat exchange amount of the heat source side heat exchanger 13 is controlled by changing the rotation speed of the fan 101 corresponding to the heat exchange amount adjusting device of the present invention.
  • the control device 201 operates the heat source side heat exchanger 13 as a condenser as follows. That is, the control device 201 switches the four-way valve 12 so that the discharge side of the compressor 11 and the heat source side heat exchanger 13 are connected. Thereby, the refrigerant that has flowed out of the heat source side heat exchanger 13 flows into the heat exchanger related to heat medium 31 a via the check valve 63 and the connection pipe 65. The refrigerant flowing out of the heat exchanger related to heat medium 33 a flows into the accumulator 14 through the check valve 64 and the connection pipe 66, and flows into the compressor through the accumulator 14.
  • the control device 201 controls the heat exchange amount of the heat source side heat exchanger 13 so that the condensation temperature of the heat exchanger related to heat medium 31a serving as a condenser becomes the condensation temperature target value.
  • the control device 201 controls the rotation speed of the compressor 11 so that the evaporation temperature of the heat exchanger related to heat medium 33a serving as an evaporator becomes an evaporation temperature target value.
  • the heat exchange amount of the heat source side heat exchanger 13 is controlled by changing the rotation speed of the fan 101 corresponding to the heat exchange amount adjusting device of the present invention.
  • the refrigeration cycle of the air conditioner can be achieved by properly using the heat source side heat exchanger 13 as a condenser or an evaporator according to the total cooling load and heating load of the indoor unit 2. The efficiency of the circuit is improved.
  • the heat exchanger related to heat medium 31a and the heat exchanger related to heat medium 33a can be connected only in series, the heat exchanger between heat medium 31a and the heat medium. It is good also as a structure which can switch the connection state of the intermediate heat exchanger 33a in series or in parallel. For example, when the operation mode of all the indoor units 2 in operation is the cooling operation (that is, in the case of the entire cooling operation), the heat exchanger related to heat medium 31a and the heat exchanger related to heat medium 33a are connected in parallel. By flowing the refrigerant, the heat exchanger related to heat medium 31a and the heat exchanger related to heat medium 33a can be used as an evaporator.
  • the heat transfer area of an evaporator can be enlarged and the operating efficiency of an air conditioning apparatus can be improved.
  • the operation mode of all the indoor units 2 in operation is heating operation (that is, in the case of all heating operation)
  • the heat exchanger related to heat medium 31a and the heat exchanger related to heat medium 33a are connected in parallel.
  • the heat exchanger related to heat medium 31a and the heat exchanger related to heat medium 33a can be used as a condenser.
  • the heat transfer area of a condenser can be enlarged and the operating efficiency of an air conditioning apparatus can be improved.
  • the present invention can be applied to an air conditioner that circulates a heat medium to an indoor unit. Or it is applicable to the chiller which produces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 同一の機能(凝縮器又は蒸発器)を果たす複数の熱媒体間熱交換器を有し、熱源側での冷凍サイクル回路で加熱又は冷却された冷媒と利用側の熱媒体循環回路を流れる熱媒体とを熱媒体間熱交換器31で熱交換させ、熱源側で生成された熱エネルギーを利用側熱交換器35に伝達する空気調和装置であって、制御装置202は、運転中の利用側熱交換器35に対して、利用側熱交換器35の熱媒体入口温度Twiと熱媒体入口温度Twoとの差である熱媒体温度差ΔTwを算出し、熱媒体温度差ΔTwが熱媒体温度差目標値ΔTwmとなるように熱媒体流量調整装置45を制御し、熱媒体入口温度Twiが所定範囲から外れた場合、熱媒体温度差目標値ΔTwmを変更して、運転中の利用側熱交換器35の少なくとも1つの熱媒体流量調整装置45を制御する。

Description

空気調和装置
 本発明は、例えばビル用マルチエアコン等に用いる空気調和装置に関するものである。
 ビル用マルチエアコン等に用いられる従来の空気調和装置には、熱源側で加熱又は冷却された冷媒と利用側の回路を流れる熱媒体とを熱媒体間熱交換器で熱交換させ、熱源側で生成された熱エネルギーを利用側熱交換器(つまり室内機)に伝達するものがある(例えば、特許文献1参照)。特許文献1に記載の空気調和装置は、利用側熱交換器に流出入する熱媒体の温度差(以下、室内機出入口温度差という)を検知している。そして、この空気調和装置は、室内機出入口温度差が制御目標値より小さければ、流量調整弁の開口面積を減らして利用側熱交換器に流れる熱媒体の流量を減少させ、温度差が制御目標値より大きければ、流量調整弁の開口面積を増やして利用側熱交換器に流れる熱媒体の流量を増大させ、室内機出入口温度差が制御目標値に近づくようにしている。これによって、利用側熱交換器の熱負荷に応じて熱媒体を供給している。また、特許文献1には、熱媒体間熱交換器(特許文献1中では中間熱交換器と記載)を熱源側となる冷凍サイクル回路に複数接続する形態も示されている。
 また、熱源側で加熱又は冷却された冷媒と利用側の回路を流れる熱媒体とを熱媒体間熱交換器で熱交換させ、熱源側で生成された熱エネルギーを利用側熱交換器(つまり室内機)に伝達する従来の空調和装置は、特許文献2にも開示されている。この特許文献2に記載の空気調和装置(特許文献2ではヒートポンプシステムと記載)は、熱媒体間熱交換器(特許文献1中では利用側熱交換器と記載)の出口の熱媒体(特許文献1中では水系媒体と記載)の温度を第1温度目標として冷媒側循環量を制御し、熱媒体間熱交換器に流出入する熱媒体の温度差が第2目標温度差となるように熱媒体を循環させる循環ポンプの運転容量を制御している。また、特許文献2に記載の空気調和装置は、熱媒体間熱交換器に流出入する熱媒体の温度差が第2目標温度差より小さく、かつ熱媒体間熱交換器出口の熱媒体の温度が第1目標温度以上の場合、循環ポンプの運転容量を減少させ、一方、熱媒体間熱交換器に流出入する熱媒体の温度差が第2目標温度差より大きい場合、循環ポンプの運転容量を増加させている。さらに、特許文献2には、熱媒体間熱交換器を熱源側となる冷凍サイクル回路に並列に複数接続する形態も示されている。
WO2010/049999号公報 特開2010-196946号公報
 しかしながら、特許文献1に記載の空気調和装置では、熱媒体の室内機出入口温度差の制御目標値が一定であるため、以下に示す課題が発生する。例えば、熱媒体間熱交換器は、一般的に室内機(利用側熱交換器)の定格能力分を熱交換できるような伝熱面積を有している。このため、部分負荷運転が可能であるビル用マルチエアコンにおいて小容量の利用側熱交換器のみが稼動した場合等、空調負荷が小さくなった場合には、熱媒体間熱交換器に流入する熱媒体の流量が小さくなり、熱媒体間熱交換器の熱媒体側の温度効率が高くなる。
 すると、利用側熱交換器に流入する熱媒体の温度が高くなるので、室内機出入口温度差をある一定の制御目標値に制御すると、熱媒体と空調空間の空気温度との温度差が大きくなった分だけ空調能力が大きくなってしまう。このため、暖房運転時の吹き出し温度が過度に上昇したり、冷房運転時の吹き出し温度が過度に低下したりしてしまう。また、空調能力が過剰になることで発停ロスが発生してしまう。
 また、特許文献2に記載の空気調和装置では、熱媒体間熱交換器に流出入する熱媒体の温度差が第2目標温度差より小さく、かつ熱媒体間熱交換器出口の熱媒体の温度が第1目標温度以上の場合に、循環ポンプの運転容量を減少させて、熱媒体間熱交換器に流出入する熱媒体の温度差が第2目標温度差となるように制御するが、この場合もあくまで熱媒体間熱交換器に流出入する熱媒体の温度差はある一定の制御目標値に制御される。このため、特許文献2に記載の空気調和装置においても、特許文献1と同様の課題が発生する。
 また、特許文献2に記載の空気調和装置では、熱媒体間熱交換器から流出する熱媒体が第1温度目標となるように冷媒側循環量を制御しているが、例えば熱源側となる冷凍サイクル回路において凝縮器又は蒸発器として同時に同一の機能を果たす熱媒体間熱交換器が複数接続された場合、熱媒体間熱交換器ごとに担う空調負荷が異なるため、冷媒側循環量を設定することは非常に困難である。
 本発明は、上述のような課題を解決するためになされたものであり、凝縮器又は蒸発器として同時に同一の機能を果たすことが可能な複数の熱媒体間熱交換器を有し、熱源機側で加熱又は冷却された冷媒と利用側の回路を流れる熱媒体とを熱媒体間熱交換器で熱交換させ、熱源機側で生成された熱エネルギーを利用側熱交換器(つまり室内機)に伝達する空気調和装置において、空調負荷が減少した場合でも空調能力が過剰になることを防止できる空気調和装置を得ることを目的とする。
 本発明に係る空気調和装置は、圧縮機、凝縮器又は蒸発器として動作する複数の熱媒体間熱交換器の冷媒側流路、膨張装置、及び、熱源側熱交換器が配管接続され、冷媒が循環する冷凍サイクル回路と、前記熱媒体間熱交換器のそれぞれに設けられ、前記熱媒体間熱交換器の熱媒体側流路、熱媒体循環装置、少なくとも1つの利用側熱交換器、及び、前記利用側熱交換器に対応して設けられた熱媒体流量調整装置が配管接続され、熱媒体が循環する熱媒体循環回路と、前記熱媒体流量調整装置を制御して、当該熱媒体流量調整装置に対応する前記利用側熱交換器に流れる熱媒体の流量を調整する制御装置と、前記利用側熱交換器に流入する熱媒体の温度を検出する第1熱媒体温度検出装置と、前記利用側熱交換器に対応して設けられ、前記利用側熱交換器から流出した熱媒体の温度を検出する第2熱媒体温度検出装置と、を備え、複数の前記熱媒体間熱交換器のうちの少なくとも2つは、凝縮器又は蒸発器として同時に同一の機能を果たすことが可能となっており、前記制御装置は、運転中の前記利用側熱交換器に対して、前記第1熱媒体温度検出装置の検出値と前記第2熱媒体温度検出装置の検出値との差である熱媒体温度差を算出し、当該熱媒体温度差が熱媒体温度差目標値となるように前記熱媒体流量調整装置を制御し、前記第1熱媒体温度検出装置の検出値が予め定めた所定範囲から外れた場合、前記熱媒体温度差目標値を変更して、運転中の前記利用側熱交換器の少なくとも1つに対して、前記熱媒体温度差が変更後の前記熱媒体温度差目標値となるように前記熱媒体流量調整装置を制御するものである。
 本発明によれば、利用側熱交換器に流入する熱媒体の温度が所定の安定範囲から外れた場合、利用側熱交換器の熱媒体温度差目標値を変更するようにしている。これにより、熱媒体間熱交換器が担う空調負荷が減少したとき(例えば利用側熱交換器の暖房運転台数が減少したとき等)に、熱媒体間熱交換器の温度効率が高くなり、熱媒体と空調空間の空気温度との温度差が大きくなっても、熱媒体温度差目標値を変更することで、空調能力が過剰になるのを抑制することができる。したがって、本発明によれば、凝縮器又は蒸発器として同時に同一の機能を果たすことが可能な複数の熱媒体間熱交換器を有していても、暖房運転時の吹き出し温度の過度な上昇及び冷房運転時の吹き出し温度の過度な低下を防止でき、利用者の快適性を得ることができる。また、発停ロスの発生等を防止できる。
本発明の実施の形態に係る空気調和装置のシステム回路図である。 本発明の実施の形態に係る空気調和装置のビル等への設置方法を示す図である。 本発明の実施の形態に係る空気調和装置の熱媒体流量調整装置の制御方法を示すフローチャートである。 本発明の実施の形態に係る空気調和装置において、熱媒体温度差ΔTwを一定値に制御している状態で室内機の運転台数を変更した場合の利用側熱交換器を流れる空気及び熱媒体の温度変化を示した特性図である。 本発明の実施の形態に係る空気調和装置の熱媒体温度差目標値を変更する制御方法を示すフローチャートである。 本発明の実施の形態に係る空気調和装置において、熱媒体温度差目標値ΔTwmを変更する制御を行ったときの利用側熱交換器を流れる空気及び熱媒体の温度変化を示した特性図である。 本発明の実施の形態に係る空気調和装置の別の一例の中間器を示すシステム回路図である。 図7に示した中間器に接続される熱源機の一例を示すシステム回路図である。
実施の形態.
 以下、本実施の形態に係る空気調和装置について説明する。なお、以下の説明では、同一構成を区別して記載する必要が有る場合等、符号の末尾にアルファベットを付して記載することがある。
 図1は、本発明の実施の形態に係る空気調和装置のシステム回路図である。本実施の形態の空気調和装置は、圧縮機11、冷媒流路切替装置である四方弁12、熱源側熱交換器13、アキュムレータ14、熱媒体間熱交換器31、電子式膨張弁等の膨張装置32を配管接続して冷凍サイクル回路を構成している。
 より詳しくは、圧縮機11は吸入した冷媒を加圧して吐出する(送り出す)ものである。四方弁12は、圧縮機11から吐出された冷媒の流路を、運転モードに応じて、熱源側熱交換器13又は熱媒体間熱交換器31に接続するものである。本実施の形態では、冷房運転(動作しているすべての室内機2が冷房(除湿も含む。以下、同じ)を行っているとき)の運転時と、暖房運転(動作しているすべての室内機2が暖房を行っているときの運転)時とによって循環経路が切り替わるようにしている。
 熱源側熱交換器13は、例えば、冷媒を通過させる伝熱管及びその伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィン(図示せず)と、空気を搬送するファン101を有し、冷媒と空気(外気)との熱交換を行うものである。例えば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させてガス(気体)化させる。一方、冷房運転時においては凝縮器又はガスクーラ(以下では凝縮器とする)として機能する。場合によっては、完全にガス化、液化させず、液体とガスとの二相混合(気液二相冷媒)の状態にすることもある。
 熱媒体間熱交換器31は、冷媒を通過させる伝熱部と熱媒体を通過させる伝熱部とを有し、冷媒と熱媒体とによる媒体間の熱交換を行わせるものである。本実施の形態では、熱媒体間熱交換器31は、暖房運転時において凝縮器として機能し、冷媒に放熱させて熱媒体を加熱する。一方で冷房運転時において蒸発器として機能し、冷媒に吸熱させて熱媒体を冷却する。例えば電子式膨張弁等の膨張装置32は、冷媒流量を調整することにより冷媒を減圧させるものである。本実施の形態では、2つの熱媒体間熱交換器31(熱媒体間熱交換器31a,31b)と、これら各熱媒体間熱交換器31に対応して設けられた膨張装置32(膨張装置32a,32b)を備えている。熱媒体間熱交換器31a及び膨張装置32aと、熱媒体間熱交換器31b及び膨張装置32bとは、四方弁12と熱源側熱交換器13との間に並列接続されている。なお、熱媒体間熱交換器31の数は、2つ以上であれば任意である。
 アキュムレータ14は、圧縮機11の吸入側に設けられている。アキュムレータ14を設けることにより、冷凍サイクル回路中の過剰な冷媒を貯留したり、圧縮機11に冷媒液が多量に戻って圧縮機11が破損したりするのを防止する働きがある。
 なお、熱源側冷媒としては、例えばR-22、R-134a等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含む、CF3 CF=CH2 等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCO2 やプロパン等の自然冷媒を用いることができる。
 また、本実施の形態に係る空気調和装置は、熱媒体間熱交換器31、利用側熱交換器35、熱媒体循環装置であるポンプ41、及び、利用側熱交換器35に対応して設けられた熱媒体流量調整装置45を配管接続して熱媒体循環回路を構成している。
 熱媒体循環装置であるポンプ41は、熱媒体を循環させるために加圧するものである。ここで、ポンプ41については、内蔵するモータ(図示せず)の回転数を一定の範囲内で変化させることで、熱媒体を送り出す流量(吐出流量)を変化させることができる。利用側熱交換器35は、室内機2において、ファン102により搬送された空調空間の空気と熱媒体とを熱交換させ、空調空間の空気を加熱又は冷却するものである。本実施の形態では、熱媒体循環回路に3つの利用側熱交換器35を設けている。より詳しくは、熱媒体間熱交換器31の熱媒体流路の流出側には、第1熱媒体流路50を介して熱媒体分岐部55が接続されており、熱媒体間熱交換器31の熱媒体流路の流入側には、第2熱媒体流路51を介して熱媒体合流部56が接続されている。そして、これら熱媒体分岐部55及び熱媒体合流部56に3つの利用側熱交換器35が並列接続されている。例えば二方流量調整弁である熱媒体流量調整装置45は、利用側熱交換器35毎に設けられたものであり、利用側熱交換器35に流入する熱媒体の流量を調整するものである。なお、本実施の形態では、利用側熱交換器35と熱媒体合流部56の間に熱媒体流量調整装置45を設けているが、熱媒体分岐部55と利用側熱交換器35との間に熱媒体流量調整装置45を設けてもよい。
 この熱媒体循環回路は、熱媒体間熱交換器31a,31b毎に設けられている。つまり、熱媒体間熱交換器31aが接続された熱媒体循環回路は、熱媒体間熱交換器31a、利用側熱交換器35a,35b,35c、ポンプ41a、熱媒体流量調整装置45a,45b,45cを配管接続して構成されている。また、熱媒体間熱交換器31bが接続された熱媒体循環回路は、熱媒体間熱交換器31b、利用側熱交換器35d,35e,35f、ポンプ41b、熱媒体流量調整装置45d,45e,45fを配管接続して構成されている。なお、利用側熱交換器35と熱媒体流量調整装置45の台数は任意である。
 また、本実施の形態に係る空気調和装置には、各種センサが設けられている。
 冷媒圧力検出装置である圧力センサ71は、圧縮機11の吐出側と四方弁12の間に設置され吐出圧力を検知する。圧力センサ72は、アキュムレータ14と圧縮機11の間に設置され吸入圧力を検知する。圧力センサ73a,73bは、ガス管4(後述するように、四方弁12と熱媒体間熱交換器31a,31bを接続する配管)と熱媒体間熱交換器31a,31bの間に設置され、熱媒体間熱交換器31a,31bを流れる冷媒の圧力を検知する。ただし、圧力センサ73a,73bは、熱媒体間熱交換器31a,31bと膨張装置32a,32bの間に設けてもよい。また、圧力センサ71,72の位置は、それぞれ圧縮機11の吐出圧力、吸入圧力が検知できる場所であればこの限りではない。
 冷媒温度検出装置である温度センサ74a,74bは、ガス管4と熱媒体間熱交換器31a,31bの間に設置され、暖房運転時に熱媒体間熱交換器31a,31bへ流入する冷媒の温度を検知する。換言すると、温度センサ74a,74bは、冷房運転時に熱媒体間熱交換器31a,31bから流出する冷媒の温度を検知する。温度センサ75a,75bは、熱媒体間熱交換器31a,31bと膨張装置32a,32bの間に設置され、暖房運転時に熱媒体間熱交換器31a,31bから流出する冷媒の温度を検知する。換言すると、温度センサ75a,75bは、冷房運転時に熱媒体間熱交換器31a,31bへ流入する冷媒の温度を検知する。
 熱媒体温度検出装置である温度センサ81a,81bは、熱媒体間熱交換器31a,32bの熱媒体出口から利用側熱交換器35a,35b,35c,35d,35e,35fの熱媒体入口の間に設置され、熱媒体間熱交換器31a,32bの熱媒体出口温度(熱媒体間熱交換器31a,32bから流出する熱媒体の温度)を検知する。温度センサ85a,85b,85c,85d,85e,85fは、利用側熱交換器35a,35b,35c,35d,35e,35fの熱媒体出口から熱媒体間熱交換器31a,32bの熱媒体入口の間に設置され、利用側熱交換器35a,35b,35c,35d,35e,35fの熱媒体出口温度(利用側熱交換器35a,35b,35c,35d,35e,35fから流出する熱媒体の温度)を検知する。
 ここで、温度センサ81a,81bが、本発明における第1熱媒体温度検出装置に相当する。また、温度センサ85a,85b,85c,85d,85e,85fが、本発明における第2熱媒体温度検出装置に相当する。
 上述したこれら各構成のうち、配管を除く各構成を、熱源機1(室外機)、中継器3又は室内機2に収容している。
 詳しくは、圧縮機11、四方弁12、熱源側熱交換器13及びアキュムレータ14を、熱源機1(室外機)の中に収容している。また、熱源機1には、熱源機1の制御と空気調和装置全体の制御を統制する制御装置201も収容されている。利用側熱交換器35a,35b,35c,35d,35e,35fを、それぞれ各室内機2a,2b,2c,2d,2e,2fに収容している。熱媒体間熱交換器31a、ポンプ41a、熱媒体流量調整装置45a,45b,45cを、中継器3aに収容している。また、中継器3aには、中継器3aの制御を統制する制御装置202aも収容されている。熱媒体間熱交換器31b、ポンプ41b、熱媒体流量調整装置45d,45e,45fを、中継器3bに収容している。また、中継器3bには、中継器3bの制御を統制する制御装置202bも収容されている。
 また、熱源機1と中継器3a,3bは冷媒配管であるガス管4と液管5で接続されている。つまり、四方弁12と熱媒体間熱交換器31a,31bはガス管4を介して接続されており、膨張装置32a,32bと熱源側熱交換器13は液管5を介して接続されている。
 また、中継器3aと室内機2a,2b,2cのそれぞれ(利用側熱交換器35a,35b,35cのそれぞれ)は水や不凍液等の安全な熱媒体が流れる熱媒体行き流路6a,6b,6c及び熱媒体戻り流路7a,7b,7cで接続されている。つまり、中継器3aと室内機2a,2b,2cのそれぞれ(利用側熱交換器35a,35b,35cのそれぞれ)は、1つの熱媒体経路で接続されている。同様に、中継器3bと室内機2d,2e,2fのそれぞれ(利用側熱交換器35d,35e,35fのそれぞれ)は、1つの熱媒体経路で接続されている。
 図2は、本発明の実施の形態に係る空気調和装置のビル等への設置方法を示す図である。熱源機1は、ビル等の建物301外の空間に設置する。また、建物301内において居室等、空調対象空間となる室内空間303a,303b,303c,303d,303e,303f,303g,303h,303iの空気を加熱又は冷却させることができる位置に室内機2a,2b,2c,2d,2e,2f,2g,2h,2iを設置する。中継器3a,3b,3cは、室内空間303a,303b,303c,303d,303e,303f,303g,303h,303iとは別の建物内の非空調空間302a,302b,302cに設置する。なお、図1では中継器3を2台示し、図2では中継器3を3台示しているが、中継器3の台数は任意である。
<運転モード>
 続いて、本実施の形態に係る空気調和装置の各運転モードにおける動作について、図1に示す冷媒及び熱媒体の流れに基づいて説明する。なお、図1では、実線矢印が暖房運転時の冷媒の流れ方向を示し、破線矢印が冷房運転時の冷媒の流れ方向を示し、一点鎖線の矢印が冷房運転時及び暖房運転時の熱媒体の流れ方向を示す。ここで、冷凍サイクル回路等における圧力の高低については、基準となる圧力との関係により定まるものではなく、圧縮機11の圧縮、膨張装置32a,32b等の冷媒流量制御等によりできる相対的な圧力として高圧、低圧として表すものとする。また、温度の高低についても同様であるものとする。
(暖房運転)
 室内機2a,2b,2c,2d,2e,2fが室内空間303a,303b,303c,303d,303e,303fを加熱する暖房運転を説明する。まず、冷凍サイクル回路における冷媒の流れについて説明する。熱源機1において、圧縮機11に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機11を出た冷媒は、四方弁12を流れ、さらにガス管4を通って中継器3に流入する。
 中継器3a,3bに流入したガス冷媒は熱媒体間熱交換器31a,31bに流入する。熱媒体間熱交換器31a,31bは冷媒に対して凝縮器として機能するため(つまり冷凍サイクル回路においては凝縮器として動作するため)、熱媒体間熱交換器31a,31bを通過する冷媒は、熱交換対象となる熱媒体を加熱して液化する(熱媒体に放熱する)。熱媒体間熱交換器31a,31bを流出した液冷媒は、膨張装置32a,32bにより減圧され、低温低圧の気液二相冷媒となる。低温低圧の冷媒は液管5を通過して中継器3a,3bを流出する。
 熱源機1に流入した冷媒は、熱源側熱交換器13に流入して空気と熱交換することで蒸発し、ガス冷媒もしくは気液二相冷媒で流出する。蒸発した冷媒は、四方弁12、アキュムレータ14を介して再度圧縮機11へ吸い込まれる。
 次に、熱媒体循環回路における熱媒体の流れについて説明する。熱媒体は熱媒体間熱交換器31a,31bにおいて冷媒との熱交換により加熱される。熱媒体間熱交換器31a,31bにおいて加熱された熱媒体はポンプ41a,41bにより吸引され、第1熱媒体流路50a,50bに送り出される。熱媒体分岐部55aにおいて熱媒体行き流路6a,6b,6cに分配された熱媒体は、中継器3aから流出して室内機2a,2b,2cに流入する。熱媒体分岐部55bにおいて熱媒体行き流路6d,6e,6fに分配された熱媒体は、中継器3bから流出して室内機2d,2e,2fに流入する。
 室内機2a,2b,2c,2d,2e,2fに流入した熱媒体は、利用側熱交換器35a,35b,35c,35d,35e,35fにおいて、ファン102a,102b,102c,102d,102e,102fによって搬送される空気と熱交換し、空気を加熱して熱媒体の温度が低下する(空気に放熱する)。これによって、室内空間303a,303b,303c,303d,303e,303fは暖房される。
 室内機2a,2b,2cを出た熱媒体は、熱媒体戻り流路7a,7b,7c、熱媒体流量調整装置45a,45b,45cを通過して、熱媒体合流部56aにおいて合流する。室内機2d,2e,2fを出た熱媒体は、熱媒体戻り流路7d,7e,7f、熱媒体流量調整装置45d,45e,45fを通過して、熱媒体合流部56bにおいて合流する。その後、第2熱媒体流路51a,51bを通過して、熱媒体間熱交換器31a,31bに流入する。
(冷房運転)
 次に、室内機2a,2b,2c,2d,2e,2fが室内空間303a,303b,303c,303d,303e,303fを冷却する冷房運転を説明する。まず、冷凍サイクル回路における冷媒の流れについて説明する。熱源機1において、圧縮機11に吸入された冷媒は圧縮され、高圧のガス冷媒として吐出される。圧縮機11を出た冷媒は、四方弁12を経て、凝縮器として機能する熱源側熱交換器13に流れる。高圧のガス冷媒は熱源側熱交換器13を通過する間にファン101によって搬送される外気と熱交換して凝縮し、高圧の液冷媒となって流出し、液管5を通って中継器3a,3bに流入する。
 中継器3a,3bに流入した冷媒は膨張装置32a,32bの開度を調整することで膨張し、低温低圧の気液二相冷媒が熱媒体間熱交換器31a,31bに流入する。熱媒体間熱交換器31a,31bは冷媒に対して蒸発器として機能するため(つまり冷凍サイクル回路においては蒸発器として動作するため)、熱媒体間熱交換器31a,31bを通過する冷媒は、熱交換対象となる熱媒体を冷却して(熱媒体から吸熱する)、ガス冷媒となり流出する。流出したガス冷媒は、ガス管4を通過して中継器3a,3bを流出する。熱源機1に流入した冷媒は、四方弁12、アキュムレータ14を介して再度圧縮機11へ吸い込まれる。
 次に、熱媒体循環回路における熱媒体の流れについて説明する。熱媒体は熱媒体間熱交換器31a,31bにおいて冷媒との熱交換により冷却される。熱媒体間熱交換器31a,31bにおいて冷却された熱媒体はポンプ41a,41bにより吸引され、第1熱媒体流路50a,50bに送り出される。熱媒体分岐部55aにおいて熱媒体行き流路6a,6b,6cに分配された熱媒体は、中継器3aから流出して室内機2a,2b,2cに流入する。熱媒体分岐部55bにおいて熱媒体行き流路6d,6e,6fに分配された熱媒体は、中継器3bから流出して室内機2d,2e,2fに流入する。
 室内機2a,2b,2c,2d,2e,2fに流入した熱媒体は、利用側熱交換器35a,35b,35c,35d,35e,35fにおいて、ファン102a,102b,102c,102d,102e,102fによって搬送される空気と熱交換し、空気を冷却して熱媒体の温度が上昇する(空気から吸熱する)。これによって、室内空間303a,303b,303c,303d,303e,303fは冷房される。
 室内機2a,2b,2cを出た熱媒体は、熱媒体戻り流路7a,7b,7c、熱媒体流量調整装置45a,45b,45cを通過して、熱媒体合流部56aにおいて合流する。室内機2d,2e,2fを出た熱媒体は、熱媒体戻り流路7d,7e,7f、熱媒体流量調整装置45d,45e,45fを通過して、熱媒体合流部56bにおいて合流する。その後、第2熱媒体流路51a,51bを通過して、熱媒体間熱交換器31a,31bに流入する。
<冷凍サイクル回路のアクチュエータの制御>
 上述のような暖房運転及び冷房運転の際、冷凍サイクル装置に設けられた各アクチュエータは、次のように制御されている。
 圧縮機11は、制御装置201によって回転数が制御されている。具体的には、暖房運転時、制御装置201は、圧力センサ71が検知する吐出圧力を目標値にして圧縮機11の回転数を制御し、冷凍サイクル回路の冷媒流量を調整する。このとき、吐出圧力は飽和圧力に換算しておよそ50℃程度とするのが望ましい。冷房運転時、制御装置201は、圧力センサ72が検知する吸入圧力を目標値にして圧縮機11の回転数を制御し、冷凍サイクル回路の冷媒流量を調整する。このとき、吸入圧力は飽和圧力に換算しておよそ0℃程度とするのが望ましい。
 膨張装置32a,32bは、制御装置202a,202bにより開度が制御されている。具体的には、暖房運転時、制御装置202a,202bは、圧力センサ73a,73bが検知する凝縮圧力を制御装置202a,202bにて飽和温度に換算する。そして、制御装置202a,202bは、この飽和温度と温度センサ75a,75bで検知する熱媒体間熱交換器31a,31bの冷媒出口温度との差(すなわち過冷却度)が所定の目標値となるように膨張装置32a,32bの開度を制御し、熱媒体間熱交換器31a,31bのそれぞれに流入する冷媒流量を調整する。このとき、過冷却度はおよそ3~8℃程度とするのが望ましい。冷房運転時、制御装置202a,202bは、温度センサ74a,74bが検知する熱媒体間熱交換器31a,31bの出口温度と温度センサ75a,75bが検知する熱媒体間熱交換器31a,31bの入口温度との差(すなわち過熱度)が所定の目標値となるように膨張装置32a,32bの開度を制御し、熱媒体間熱交換器31a,31bのそれぞれに流入する冷媒流量を調整する。このとき、過熱度はおよそ2~5℃程度とするのが望ましい。
<熱媒体流量調整装置の熱媒体流量制御>
 また、上述のような暖房運転及び冷房運転の際、制御装置202a,202bは、利用側熱交換器35a,35b,35c,35d,35e,35fの熱媒体入口温度Twiと出口温度Twoの差である熱媒体温度差ΔTw(=Twi-Two)が熱媒体温度差目標値ΔTwmになるように熱媒体流量調整装置45a,45b,45c,45d,45e,45fの開度を制御する。以下、図3を用いて熱媒体流量調整装置45の当該制御について説明する。なお、各熱媒体流量調整装置45の制御方法は同じなので、図3では、熱媒体流量調整装置45aを例にして当該制御を説明する。また、本実施の形態では、熱媒体流量調整装置45の制御頻度を減らすため、熱媒体温度差目標値ΔTwmを、安定範囲となる幅を持たせた値としている。このため、図3では、利用側熱交換器35aの熱媒体温度差ΔTwが所定の幅を持った熱媒体温度差目標値ΔTwmとなるように、熱媒体流量調整装置45aの開度を制御する方法について説明する。
 図3は、本発明の実施の形態に係る空気調和装置の熱媒体流量調整装置の制御方法を示すフローチャートである。
 図3に示すように、ステップS1では、まず、制御装置202aは熱媒体流量調整装置45aの開度Lを最大に設定する。
 次に、ステップS2では、制御装置202aは、熱媒体流量調整装置45aの開度Lを一定時間維持する。ステップS3では、制御装置202aは、温度センサ81aによって利用側熱交換器35aの熱媒体入口温度Twiを検知し、温度センサ85aによって利用側熱交換器35aの熱媒体出口温度Twoを検知する。そして、制御装置202aは、これらTwi及びTwoから、利用側熱交換器35aの熱媒体温度差ΔTwを算出する。
 次に、ステップS4では、制御装置202aは、熱媒体温度差目標値ΔTwmから熱媒体温度差ΔTwを引いた値が、熱媒体温度差目標値ΔTwm(安定範囲)の上限値ΔTwsより大きいか否かを判定する。熱媒体温度差目標値ΔTwmから熱媒体温度差ΔTwを引いた値がΔTwsより大きい場合、制御装置202aは、熱媒体温度差ΔTwが熱媒体温度差目標値ΔTwmより小さいと判断し(Yes)、ステップS5へ進む。制御装置202aは、ステップS5で熱媒体流量調整装置45aの開度Lが最低開度Lminより大きいか否かを判断する。熱媒体流量調整装置45aの開度Lが最低開度Lminより大きい場合、制御装置202aは、ステップS6で熱媒体流量調整装置45aの開度LをδLだけ小さくして、熱媒体の流量を小さくし、再びステップS2に至る。ステップS5で熱媒体流量調整装置45aの開度Lが最低開度Lmin以下であれば、制御装置202aは、開度Lを変更せずに再びステップS2に戻る。
 一方、ステップS4において、熱媒体温度差目標値ΔTwmから熱媒体温度差ΔTwを引いた値が熱媒体温度差目標値ΔTwm(安定範囲)の上限値ΔTws以下であった場合、制御装置202aはステップS7に進む。そして、ステップS7において、制御装置202aは、熱媒体温度差目標値ΔTwmから熱媒体温度差ΔTwを引いた値が熱媒体温度差目標値ΔTwm(安定範囲)の下限値-ΔTwsより小さいか否かを判断する。熱媒体温度差目標値ΔTwmから熱媒体温度差ΔTwを引いた値が下限値-ΔTwsより小さい場合、制御装置202aは、熱媒体温度差ΔTwが熱媒体温度差目標値ΔTwmより大きいと判断し(Yes)、ステップS8へ進む。ステップS7において、熱媒体温度差目標値ΔTwmから熱媒体温度差ΔTwを引いた値が下限値-ΔTws以上の場合、制御装置202aは、利用側熱交換器35aの熱媒体温度差ΔTwが安定範囲内と判断し、再びステップS2に戻る。
 ステップS8では、制御装置202aは、熱媒体流量調整装置45aの開度Lが最大開度Lmaxより小さいか否かを判断する。熱媒体流量調整装置45aの開度Lが最大開度Lmaxより小さい場合、制御装置202aは、ステップS9で熱媒体流量調整装置45aの開度LをδLだけ大きくして、熱媒体の流量を大きくし、再びステップS2に至る。ステップS8で熱媒体流量調整装置45aの開度Lが最大開度Lmax以上であれば、制御装置202aは、開度Lを変更せずに再びステップS2に戻る。
 なお、利用側熱交換器35b,35cの熱媒体流量制御においては、熱媒体入口温度Twiは温度センサ81aが検知する熱媒体温度を使用し、熱媒体出口温度Twoは温度センサ85b,85cが検知する熱媒体温度を使用する。また、利用側熱交換器35d,35e,35fの熱媒体流量制御においては、熱媒体入口温度Twiは温度センサ81bが検知する熱媒体温度を使用し、熱媒体出口温度Twoは温度センサ85d,85e,85fが検知する熱媒体温度を使用する。
 また、図3のフローチャートに示す制御は、室内機2aが暖房運転を開始したときを起点に開始する。室内機2aが停止している場合は、熱媒体流量調整装置45aは、利用側熱交換器35aに熱媒体が流れないような開度にしておく。
 また、本実施の形態における熱媒体流量調整装置45aの制御では、熱媒体温度差ΔTwが熱媒体温度差目標値ΔTwmより小さい場合、室内機2aの暖房負荷が小さくなったと判定し、ステップS5,6の制御を行っている。これは、室内機2aの入口空気温度が高くなって、利用側熱交換器35aにおける熱媒体と空気の温度差が小さくなり、熱交換量が低下することが原因で、熱媒体温度差ΔTwが小さくなるためである。このため、制御装置202aは、熱媒体流量調整装置45aの開度を小さくして、利用側熱交換器35aに流入する熱媒体の流量を小さくしている。また、熱媒体温度差ΔTwが熱媒体温度差目標値ΔTwmより大きい場合、室内機2aの暖房負荷が大きくなったと判定し、ステップS8,9の制御を行っている。これは、室内機2aの入口空気温度が低くなって、利用側熱交換器35aにおける熱媒体と空気の温度差が大きくなり、熱交換量が増加することが原因で、熱媒体温度差ΔTwが大きくなるためである。このため、制御装置202aは、熱媒体流量調整装置45aの開度を大きくして、利用側熱交換器35aに流入する熱媒体の流量を大きくしている。
 すなわち、本実施の形態に係る空気調和装置は、各利用側熱交換器35の熱媒体温度差ΔTwを熱媒体温度差目標値ΔTwmに近づけるように、各利用側熱交換器35に対応した熱媒体流量調整装置45を制御するので、各利用側熱交換器35(各室内機2)の暖房負荷に合わせた熱媒体流量制御を実施することができる。
 また、各室内機2毎に、熱媒体流量調整装置45によって利用側熱交換器35の熱媒体温度差ΔTwを制御するので、各室内機2が異なる空調空間に設置されている場合でも、各空調空間毎の暖房負荷に応じた熱媒体流量制御を実施することができる。例えば、図2では、室内機2a,2bは、連通した室内空間303a,303bに設置されており、同一の空調空間を空調することとなる。また、室内機2cは、室内空間303a,303bと区画された室内空間303cに設置されており、室内機2a,2bとは異なる空調空間を空調することとなる。このような場合でも、本実施の形態に係る空気調和装置は、各空調空間に設置された室内機2の利用側熱交換器35に、各空調空間の暖房負荷に応じた量の熱媒体を流すことができる。
 また、本実施の形態では、ステップS5で熱媒体流量調整装置45の開度Lが最低開度Lmin以下と判断された場合、それ以上開度Lを小さくしないので、熱媒体流量調整装置45の開度が小さくなりすぎて、熱媒体の流れが閉塞することがない。
<熱媒体温度差目標値ΔTwmの変更制御>
 続いて、本実施の形態に係る空気調和装置の特徴の1つである、熱媒体温度差目標値ΔTwmを変更する制御について説明する。
 上述の制御は、利用側熱交換器35の熱媒体入口温度Twiがある温度一定の場合に、熱媒体温度差ΔTwを熱媒体温度差目標値ΔTwmにして熱媒体の流量を制御して、室内機2aの暖房負荷(空気入口温度)に応じて暖房能力を調整する方法である。しかしながら、熱媒体間熱交換器31に接続されている室内機のうち、運転中の室内機2(利用側熱交換器35)の台数が変化すると、熱媒体入口温度Twiが変化する。温度センサ81で検出される熱媒体入口温度Twiは、利用側熱交換器35に流入する熱媒体の温度であるとともに、熱媒体間熱交換器31から流出する熱媒体(つまり、各利用側熱交換器35から流出した熱媒体が合流して、熱媒体間熱交換器31で熱交換した後の熱媒体)の温度でもあるからである。このため、熱媒体間熱交換器31に接続されている室内機2の運転台数が変化する場合(つまり、熱媒体間熱交換器31が担う空調負荷が変化する場合)、熱媒体温度差ΔTwを一定に制御するだけでは、各室内機2の空調能力を制御することが難しくなる。そこで、本実施の形態では、熱媒体間熱交換器31に接続されている室内機2の運転台数が変化する場合(つまり、熱媒体間熱交換器31が担う空調負荷が変化する場合)でも、各室内機2の空調能力を好適に制御するため、熱媒体温度差目標値ΔTwmを変更する制御を行っている。
 以下では、熱媒体間熱交換器31に接続されている室内機2の運転台数が変化する場合(つまり、熱媒体間熱交換器31が担う空調負荷が変化する場合)に発生する課題、及び、熱媒体温度差目標値ΔTwmを変更する制御が当該課題を解決するために非常に有用であることについて詳細に説明する。なお、以下では、熱媒体間熱交換器31aが接続された熱媒体循環回路を例に説明する。
 暖房運転時、熱媒体間熱交換器31aの熱媒体側の温度効率εは次式(1)で表される。
 ε=(Twi-Two)/(Tcond-Two)…(1)
 ここで、Tcondは、熱媒体間熱交換器31aを流れる冷媒の凝縮温度であり、圧縮機11の回転数によってある一定の値に制御されるものである。なお、式(1)では、利用側熱交換器35aの入口・出口の関係と統一するため、熱媒体間熱交換器31aの熱媒体入口温度をTwo、熱媒体出口温度をTwiと定義している。
 また、伝熱単位数Ntuは次式(2)で表される。
 Ntu=Ap・Kp/ΣGw・Cp…(2)
 ここで、Apは熱媒体間熱交換器31aの伝熱面積、Kpは熱媒体間熱交換器31aの熱通過率、Cpは熱媒体の定圧比熱である。また、ΣGwは熱媒体間熱交換器31aの熱媒体質量流量であり、利用側熱交換器35a,35b,35cの各質量流量Gwa,Gwb,Gwcの合計値となる。Ap、Kp、Cpはほぼ一定と見なせる。
 さらに、式(1)と式(2)の関係は、次式(3)で表される。
  ε=1-exp(-Ntu)…(3)
 この式(3)は、伝熱単位数Ntuが大きくなるほど、温度効率εが1に近づくことを示している。
 ここで、運転する室内機2(利用側熱交換器35)の台数が変化する場合の熱媒体の温度変化について述べる。熱媒体間熱交換器31a(中継器3a)に接続された室内機2a,2b,2cが3台とも暖房運転する場合を3台運転とし、室内機2aのみが暖房運転して室内機2b,2cが停止する場合を1台運転とする。また、室内機2a,2b,2cの暖房負荷はほぼ同じと仮定する。以下、3台運転に対して1台運転のときの熱媒体の温度変化について説明する。
 1台運転のとき、熱媒体間熱交換器31aの熱媒体質量流量ΣGwは、ΣGw=Gwaとなり、3台運転時に比べておよそ1/3となる。すると、式(2)より伝熱単位数Ntuが大きくなり、式(3)より温度効率εが大きくなることがわかる。
 熱媒体の温度を考えると、上述した熱媒体流量調整装置45の熱媒体流量制御により、熱媒体温度差ΔTw(=Twi-Two)は一定値になるように制御されるため、温度効率εが大きくなるということは、式(1)よりTwoが高くなることを意味している。熱媒体温度差ΔTw(=Twi-Two)は一定値になるように制御されるため、同時にTwiも高くなる。
 一方で、3台運転から1台運転となった際、利用側熱交換器35aを流れる熱媒体及び空気は、図4のように変化する。
 図4は、本発明の実施の形態に係る空気調和装置において、熱媒体温度差ΔTwを一定値に制御している状態で室内機の運転台数を変更した場合の利用側熱交換器を流れる空気及び熱媒体の温度変化を示した特性図である。この図4は縦軸を温度、横軸を熱量としている。また、図4では、3台運転時に利用側熱交換器35aを流れる空気及び熱媒体の温度(図中では通常と記載)を実線で示している。また、1台運転時に利用側熱交換器35aを流れる空気及び熱媒体の温度、つまり、熱媒体間熱交換器31aの温度効率εが上昇した後に利用側熱交換器35aを流れる空気及び熱媒体の温度を破線で示している。
 利用側熱交換器35aでは、熱媒体と空気は対向流で熱交換する。このとき、熱媒体の温度は、熱媒体入口温度Twiから熱媒体出口温度Twoまで、空気に放熱することで温度が低下する。また、空気の温度は、空気入口温度Taiから空気出口温度Taoまで、熱媒体から吸熱することで温度が上昇する。
 このときの利用側熱交換器35aの熱交換量Qaは、利用側熱交換器35aを流れる熱媒体と空気の温度差から次式(4)で求めることができる。
 Qa=Af・Kf・ΔTwa …(4)
 ここで、Afは利用側熱交換器35aの伝熱面積、Kfは利用側熱交換器35aの熱通過率、ΔTwaは利用側熱交換器35aを流れる熱媒体と空気の温度差である。
 上述のように、3台運転から1台運転になると熱媒体間熱交換器31aの温度効率εが大きくなるため、熱媒体入口温度Twi及び熱媒体出口温度Twoが高くなり、図4のように、利用側熱交換器35aを流れる熱媒体の平均温度が平均温度1から平均温度2に高くなる。よって、利用側熱交換器35aを流れる熱媒体と空気の温度差ΔTwaが大きくなり、式(4)より、利用側熱交換器35aの熱交換量Qaが大きくなることがわかる。
 つまり、利用側熱交換器35aを流れる空気の流量とこの空気の入口温度Taiが一定であれば、利用側熱交換器35aの熱交換量Qaが上昇することで、空気の出口温度Taoが高くなる。
 すなわち、上述の一連の説明をまとめると、熱媒体間熱交換器31aに対して暖房運転する室内機2の台数が減少すると、利用側熱交換器35aの熱媒体入口温度Twi及び熱媒体出口温度Twoが高くなり、利用側熱交換器35aの1台あたりの熱交換量Qaが大きくなると言える。つまり、室内機2の1台あたりの暖房能力が大きくなるため、暖房能力が過剰になる場合は、利用側熱交換器35aの空気出口温度(すなわち室内機2の吹き出し温度)の上昇により利用者に不快感を与えてしまう。また、運転と停止を繰り返すこととなり、空気調和装置の発停ロスが発生してしまう。
 この課題を解決するためには、室内機2の暖房能力の増大を抑制する必要がある。
 まず、室内機2の暖房能力の増大を抑制するする方法としては、利用側熱交換器35aの熱媒体入口温度Twiを一定に制御する方法が考えられる。そして、利用側熱交換器35aの熱媒体入口温度を一定に制御する方法としては、熱媒体間熱交換器31aを流れる冷媒の凝縮温度Tcondを低くするように、熱源機1の圧縮機11の回転数を低くすることが有効である。しかしながら、本実施の形態に係る空気調和装置のように複数の熱媒体間熱交換器31(中継器3)を備えたものにおいては、例えば、熱媒体間熱交換器31a(中継器3a)に接続された熱媒体循環回路では室内機2aが暖房運転をし、熱媒体間熱交換器31b(中継器3b)に接続された熱媒体循環回路では室内機2d,2e,2fが暖房運転をする場合が想定される。また、本実施の形態に係る空気調和装置のように複数の熱媒体間熱交換器31(中継器3)を備えたものにおいては、熱媒体間熱交換器31a,31b(中継器3a,3b)に接続された熱媒体循環回路の運転室内機台数が同じでも、これら運転中の室内機の容量が異なる場合もある。このような場合、熱媒体間熱交換器31a,31bの温度効率εが異なるため、凝縮温度Tcondを設定するのが難しい。
 したがって、本実施の形態の空気調和装置では、利用側熱交換器35aの熱媒体入口温度が高くなったとき、熱媒体温度差目標値ΔTwmを大きくし、熱媒体温度差ΔTwを大きくして、室内機2aの暖房能力を制御している。この暖房能力の制御について、図5のフローチャートを基に説明する。
 図5は、本発明の実施の形態に係る空気調和装置の熱媒体温度差目標値を変更する制御方法を示すフローチャートである。
 図5に示すように、ステップS21では、まず、制御装置202aは、熱媒体温度差目標値ΔTwmを、熱媒体温度差目標値の初期値ΔTwm0に設定する。そして、ステップS22において、制御装置202aは、利用側熱交換器35aの熱媒体入口温度設定値Twimを、熱媒体入口温度設定値の初期値Twim0に設定する。
 次に、ステップS23では、制御装置202aは、熱媒体温度差目標値ΔTwmと利用側熱交換器35aの熱媒体入口温度設定値Twimを初期値のまま一定時間維持し、暖房運転を行う。
 次に、ステップS24では、制御装置202aは、利用側熱交換器35aの熱媒体入口温度Twiを検知する。上述のように、熱媒体入口温度Twiは、熱媒体間熱交換器31aの熱媒体出口温度であり、温度センサ81aが検知する温度である。
 次に、ステップS25では、制御装置202aは、熱媒体入口温度Twiから熱媒体入口温度設定値Twimを引いて、その値が安定範囲の上限値Twisより大きいか否かを判定する。つまり、制御装置202aは、熱媒体入口温度Twiが所定範囲の上限値(Twis+Twim)よりも大きいか否かを判定する。(Twi-Twim)が安定範囲の上限値Twisより大きい場合、制御装置202aは、ステップS26に進み、熱媒体温度差目標値ΔTwmをδΔTwmだけ大きくする。さらに、制御装置202aは、ステップS27に進み、熱媒体入口温度設定値TwimをδTwimだけ大きくして、再びステップS23に戻る。
 一方、ステップS25で(Twi-Twim)が安定範囲の上限値Twis以下だった場合、制御装置202aは、ステップS28に進み、(Twi-Twim)が安定範囲の下限値-Twisより小さいか否かを判定する。つまり、制御装置202aは、熱媒体入口温度Twiが所定範囲の下限値(-Twis+Twim)よりも小さいか否かを判定する。(Twi-Twim)が安定範囲の下限値-Twisより小さい場合、制御装置202aは、ステップS29に進み、熱媒体温度差目標値ΔTwmをδΔTwmだけ小さくする。さらに、制御装置202aは、ステップS30に進み、熱媒体入口温度設定値TwimをδTwimだけ小さくして、再びステップS23に戻る。
 一方、ステップS28において(Twi-Twim)が安定範囲の下限値-Twis以上であった場合、制御装置202aは、熱媒体入口温度Twiが安定範囲内と判断して再びステップS23に戻る。
 なお、図5のフローチャートに示す制御は、熱媒体間熱交換器31a(中継器3a)に接続された室内機2a,2b,2cのいずれかが暖房運転を開始したときを起点に開始する。また、熱媒体間熱交換器31a(中継器3a)に接続された室内機2a,2b,2cのすべてが停止したときに終了する。また、図5のフローチャートに示す制御は、熱媒体間熱交換器31a,31b(中継器3a,3b)の熱媒体循環回路毎に独立して行う。
 このような熱媒体温度差目標値ΔTwmを変更する制御の効果を、図6で説明する。
 図6は、本発明の実施の形態に係る空気調和装置において、熱媒体温度差目標値ΔTwmを変更する制御を行ったときの利用側熱交換器を流れる空気及び熱媒体の温度変化を示した特性図である。この図6は、縦軸を温度、横軸を熱量としている。また、図6では、図4でも示した、熱媒体間熱交換器31aの温度効率εが上昇した後に利用側熱交換器35aを流れる空気及び熱媒体の温度を破線で示している。また、熱媒体温度差目標値ΔTwmを大きくする制御を行った後に利用側熱交換器35aを流れる空気及び熱媒体の温度を一点鎖線で示している。つまり、図6は、利用側熱交換器35aの熱媒体温度変化及び空気温度変化について、図4で説明した熱媒体間熱交換器31aの温度効率εが大きくなった状態と、本実施の形態の熱媒体温度差ΔTwを大きくする制御を行った状態を比較しているものである。
 図6に示すように、熱媒体温度差目標値ΔTwmを大きくすると、利用側熱交換器35aの熱媒体入口温度Twiは、少し高くなる。これは、熱媒体温度差目標値ΔTwmを大きくすると、熱媒体温度差ΔTwを大きくする制御が行われるため(図3参照)、熱媒体流量調整装置45aの開度Lが小さくなり、熱媒体間熱交換器31aの熱媒体流量が小さくなって、熱媒体間熱交換器31aの温度効率εがより高くなるためである。しかしながら、利用側熱交換器35aの熱媒体入口温度Twi(熱媒体間熱交換器31aの熱媒体出口温度)は、凝縮温度Tcondより高くなることはない。さらに、元々熱媒体間熱交換器31aの温度効率εが高くなっている状態で、利用側熱交換器35aの熱媒体入口温度Twiが凝縮温度Tcondに近い値となるため、熱媒体温度差目標値ΔTwmを大きくすることによって熱媒体入口温度Twiが高くなる度合いは小さい。
 一方、熱媒体温度差目標値ΔTwm(熱媒体温度差ΔTw(=Twi-Two)の目標値)を大きくすると、利用側熱交換器35aの熱媒体出口温度Twoが低くなり、熱媒体の平均温度が平均温度2から平均温度3に低くなる。よって、利用側熱交換器35aを流れる熱媒体と空気の温度差ΔTwaが小さくなり、式(4)より、利用側熱交換器35aの熱交換量Qaは小さくなる。熱交換量Qaが小さくなれば、利用側熱交換器35aの空気出口温度Tao、すなわち室内機2aの吹き出し温度が低くなる。
 以上、本実施の形態のように構成された空気調和装置においては、利用側熱交換器35aの熱媒体入口温度Twiが所定範囲よりも高くなったとき、熱媒体温度差目標値ΔTwmを大きくすることで、暖房能力が過剰になるのを抑制することができる。よって、利用側熱交換器35aの空気出口温度、すなわち室内機2の吹き出し温度の過度な上昇を抑制することができるため、利用者の快適性を得ることができ、また運転と停止を繰り返す空気調和装置の発停ロスを減少させることができる。
 また、本実施の形態の空気調和装置では、熱媒体間熱交換器31aの冷媒側の凝縮温度や過冷却度を制御しなくても、利用側熱交換器35aの暖房能力を制御することができるため、熱源側の冷凍サイクル回路の効率が高くなる動作点で運転することができる。また、本実施の形態の空気調和装置は、冷媒側の凝縮温度を制御しなくてもよいため、制御装置を熱源機1と中継器3に分割して配置した場合、例えば利用側熱交換器35aの熱媒体入口温度に対して圧縮機11の回転数を制御して熱源側の冷媒流量を制御する空気調和装置と比較して、制御装置201と制御装置202aの通信負荷を減らすことができる。
 また、本実施の形態の空気調和装置では、利用側熱交換器35aの熱媒体入口温度Twiが所定範囲より低くなった場合、熱媒体温度差目標値ΔTwmを小さくするようにしている。このため、例えば、中継器3aに接続された室内機2aのみが暖房運転している状態から、室内機2a,2b,2c全てが暖房運転する状態に変化して、熱媒体間熱交換器31aの温度効率εが低くなり、熱媒体入口温度Twiが低くなっても、熱媒体温度差目標値ΔTwmを小さくするので、熱媒体間熱交換器31aにおける熱媒体平均温度を高くすることができる。すなわち、室内機2aの吹き出し温度が低下するのを防ぐことができる。また、例えば空気調和装置の起動時等に、熱媒体や室内空間の空気温度が低いときに、熱媒体流量を大きくできるため、室内空間の空気温度をより速く暖めることができ、利用者の快適性を得ることができる。
 これら本実施の形態で示した、運転中の利用側熱交換器35(室内機2)の熱媒体温度差目標値ΔTwmを変更する制御は、熱媒体間熱交換器31(中継器3)が複数台設置されていて、熱媒体間熱交換器31(中継器3)のそれぞれに接続された室内機2がそれぞれ1台以上暖房運転を行っているときに、特に有効である。
 なお、利用側熱交換器35aの熱媒体入口温度Twiが所定範囲よりも高くなったときに複数台の利用側熱交換器35(室内機2)が運転中の場合、運転中の全ての利用側熱交換器35(室内機2)に熱媒体温度差目標値ΔTwmを大きくする制御を行うことが最適であるが、運転中の利用側熱交換器35(室内機2)の少なくとも1台に熱媒体温度差目標値ΔTwmを大きくする制御を行うだけでも、十分に効果的である。運転中の利用側熱交換器35(室内機2)の少なくとも1台に熱媒体温度差目標値ΔTwmを大きくする制御を行うことにより、熱媒体間熱交換器31aの熱媒体出口温度が低下するため、当該制御を行っていない運転中の利用側熱交換器35においても空気出口温度(すなわち室内機2の吹き出し温度)の過度な上昇を抑制することができるため、利用者の快適性を得ることができ、また運転と停止を繰り返す空気調和装置の発停ロスを減少させることができる。
 また、本実施の形態の空気調和装置では、暖房運転する室内機2の空気入口温度が一定で、台数が減少したときに、利用側熱交換器35aの熱媒体温度差目標値ΔTwmを大きくすることが有効であると述べているが、例えば利用側熱交換器35aの空気入口温度が高くなる場合、すなわち暖房負荷が小さくなる場合にも有効である。これは、空気入口温度が高くなると、上述のように熱媒体流量調整装置45aの開度が小さくなり、利用側熱交換器35aの熱媒体流量が小さくなるため、結果的に熱媒体間熱交換器31aの熱媒体流量が小さくなり、温度効率εが高くなるためである。
 また、本実施の形態の空気調和装置では、利用側熱交換器35aの熱媒体入口温度、すなわち熱媒体間熱交換器31aの熱媒体出口温度を基に、熱媒体温度差目標値ΔTwmを設定しているので、中継器3aに接続された利用側熱交換器35aの台数や大きさに関わらず、利用側熱交換器35aの暖房能力が過剰になり、室内機2の吹き出し温度が高くなるのを抑制することができる。
 また、本実施の形態の空気調和装置では、暖房運転の効果を述べているが、空気調和装置が冷房運転をする場合にも有効である。冷房運転の場合は、熱媒体間熱交換器31aの温度効率εが高くなると、利用側熱交換器35aの熱媒体入口温度が低くなりすぎて、室内機2の冷房吹き出し温度が低くなりすぎる。すると、利用者に不快感を与え、また運転と停止を繰り返し、空気調和装置の発停ロスが発生する。そこで、熱媒体温度差目標値ΔTwmを大きくすることで、室内機2の冷房吹き出し温度が低くなることを抑制できる。
 つまり、利用側熱交換器35aが蒸発器として動作している場合、利用側熱交換器35aの熱媒体入口温度Twiが所定範囲の下限値よりも低くなった場合、熱媒体温度差目標値ΔTwmを大きくすることで、室内機2の冷房吹き出し温度が低くなることを抑制でき、利用者に不快感を与えることや、運転と停止を繰り返して空気調和装置の発停ロスが発生することを防止できる。また、利用側熱交換器35aの熱媒体入口温度Twiが所定範囲の上限値よりも高くなった場合、熱媒体温度差目標値ΔTwmを小さくすることで、熱媒体間熱交換器31aにおける熱媒体平均温度を低くすることができる。すなわち、室内機2aの吹き出し温度が上昇するのを防ぐことができる。また、空気調和装置の起動時等に、熱媒体や室内空間の空気温度が高いときに、室内空間の空気温度をより速く冷やすことができる。
 
 また、本実施の形態の空気調和装置では、中継器3a,3b,3cを非空調空間302a,302b,302cに設置するため、万が一冷媒が漏洩しても、冷媒が室内空間に侵入するのを防ぐことができる。そのため、非空調空間302a,302b,302cが十分に換気できるような空間であれば、プロパン等の可燃性冷媒を用いることもできる。
 また、本実施の形態の空気調和装置では、暖房運転時は凝縮温度を、冷房運転では蒸発温度を一定にするように、熱源機1の圧縮機11の回転数を制御しているため、熱媒体温度差目標値ΔTwmを変更して熱媒体の流量が低下しても、凝縮温度が過度に上昇して異常停止したり、蒸発温度が過度に低下して熱媒体が凍結したりすることを防ぐことができる。
 また、本実施の形態の空気調和装置では、ポンプ41aの回転数制御について特に言及しなかったが、ポンプ41aの回転数を制御装置202aによって可変としてもよい。この場合、熱媒体流量調整装置45a,45b,45cの中で最も開度が大きいものが、最大開度となるように、ポンプ41aの回転数を制御すれば、より省エネルギーになる。
 また、本実施の形態の空気調和装置では、熱媒体流量調整装置45aの開度Lを制御するために、安定範囲(-ΔTwsからΔTwsの範囲)を設定している。また、利用側熱交換器35aの熱媒体温度差目標値ΔTwmを変更するために、安定範囲(-TwisからTwisの範囲)を設定している。安定範囲を設定することにより、熱媒体流量調整装置45aの開度Lを制御する頻度を減らすことができ、熱媒体流量調整装置45aの寿命を延ばすことができる。
 また、本実施の形態の空気調和装置は、各室内機2が同一の運転モード(冷房運転又は暖房運転)となる空気調和装置であったが、各室内機2毎に冷房運転又は暖房運転を選択的に行うことができる冷暖房混在運転可能な空気調和装置であってもよい。例えば、図1に示した中継器3aを図7に示すような中継器3aとすることにより、冷暖房混在運転可能な空気調和装置となる。このような冷暖房混在運転可能な空気調和装置においても、運転中の利用側熱交換器35(室内機2)の熱媒体温度差目標値ΔTwmを変更する制御を行うことが可能である。
 図7は、本発明の実施の形態に係る空気調和装置の別の一例の中間器を示すシステム回路図である。この図7に示す中継器3aと図1で示した熱源機1とをガス管4及び液管5で接続することにより、冷暖房混在運転可能な空気調和装置とすることができる。以下、このように構成された空気調和装置について説明する。
 熱媒体間熱交換器31aと熱媒体間熱交換器33aの冷媒流路の間に、膨張装置32aが設けられている。このため、圧縮機11で圧縮された高圧冷媒を図7の実線矢印の方向に流すことにより、熱媒体間熱交換器31aが凝縮器となり、熱媒体間熱交換器33aが蒸発器となり、冷暖混在運転が可能となる。また、圧縮機11で圧縮された高圧冷媒を図7の実線矢印と反対方向に流すことにより、熱媒体間熱交換器31aが蒸発器となり、熱媒体間熱交換器33aが凝縮器となり、冷暖混在運転が可能となる。熱媒体間熱交換器31aの熱媒体出口側には、第1熱媒体流路50aを介して、熱媒体分岐部55aが接続されている。熱媒体間熱交換器31aの熱媒体入口側には、第2熱媒体流路51aを介して、熱媒体合流部56aが接続されている。また、熱媒体間熱交換器33aの熱媒体出口側には、第1熱媒体流路52aを介して、熱媒体分岐部57aが接続されている。熱媒体間熱交換器33aの熱媒体入口側には、第2熱媒体流路53aを介して、熱媒体合流部58aが接続されている。
 ポンプ41aは、熱媒体間熱交換器31aで加熱又は冷却された熱媒体を吸引して、第1熱媒体流路50a及び熱媒体分岐部55aに送り出すものである。ポンプ42aは、熱媒体間熱交換器33aで冷却又は加熱された熱媒体を吸引して、第1熱媒体流路52a及び熱媒体分岐部57aに送り出すものである。
 例えば三方弁である熱媒体流路切替装置46a,46b,46cは、暖房側又は冷房側の一方となる熱媒体分岐部55aと他方となる熱媒体分岐部57aのうちのどちらかと、熱媒体行き流路6a,6b,6cと、を接続するものである。これによって、例えば室内機2a,2bが暖房運転であれば、暖房側の熱媒体が利用側熱交換器35a,35bに流入し、室内機2cが冷房運転であれば、冷房側の熱媒体が利用側熱交換器35cに流入する。
 熱媒体流路切替装置47a,47b,47cは、熱媒体戻り流路7a,7b,7cと、暖房側又は冷房側の一方となる熱媒体合流部56aと他方となる熱媒体合流部58aのうちのどちらかと、を接続するものである。例えば、熱媒体間熱交換器31aが凝縮器として動作し、熱媒体間熱交換器33aが蒸発器として動作する場合、熱媒体戻り流路7a,7bの熱媒体が熱媒体合流部56aに流入し、熱媒体戻り流路7cの熱媒体が熱媒体合流部58aに流入する。
 また、図7に示す中継器3aには、図1に示す中継器3aと同様に、熱媒体間熱交換器31aを流れる冷媒の圧力を検知する圧力センサ73a、及び、熱媒体間熱交換器31aに流出入する冷媒の温度を検出する温度センサ74a,75aが設けられている。また、図7に示す中継器3には、熱媒体間熱交換器33aに流出入する冷媒の温度を検出する温度センサ76a,77aが設けられている。これにより、熱媒体間熱交換器31aが凝縮器として動作する場合、制御装置202aは、圧力センサ73aの検知圧力から換算した飽和温度と温度センサ75aの検知温度との差を算出することにより、熱媒体間熱交換器31aの過冷却度を求めることができる。熱媒体間熱交換器31aが蒸発器として動作する場合、制御装置202aは、温度センサ74aの検知温度と温度センサ75aの検知温度との差を算出することにより、熱媒体間熱交換器31aの過熱度を求めることができる。また、制御装置202aは、温度センサ76aの検知温度と温度センサ77aの検知温度との差を算出することにより、熱媒体間熱交換器31aの過冷却度及び過熱度を求めることができる。そして、制御装置202aは、室内機2の暖房負荷合計が冷房負荷合計よりも大きい場合、凝縮器として動作している熱媒体間熱交換器(熱媒体間熱交換器31a又は熱媒体間熱交換器33aの一方)の過冷却度が所定の目標値となるように、膨張装置32aの開度を制御する。また、制御装置202aは、室内機2の冷房負荷合計が暖房負荷合計よりも大きい場合、蒸発器として動作している熱媒体間熱交換器(熱媒体間熱交換器31a又は熱媒体間熱交換器33aの他方)の過熱度が所定の目標値となるように、膨張装置32aの開度を制御する。
 このように構成された空気調和装置においては、暖房運転の室内機2の熱媒体入口温度Twihとして温度センサ81aが検知する温度を使用し、冷房運転の室内機2の熱媒体入口温度Twicとして温度センサ82aが検知する温度を使用することで、暖房運転をする室内機2と冷房運転をする室内機2において、暖房側熱媒体温度差目標値ΔTwmhと冷房側熱媒体温度差目標値ΔTwmcを、それぞれ設定(変更)することができる。
 なお、冷暖混在運転可能な空気調和装置においては、室内機2の暖房負荷合計が冷房負荷合計よりも大きい場合、圧縮機11から吐出された冷媒の流路が熱媒体間熱交換器31aに接続するように熱源機1の四方弁12を切り替えて、熱源側熱交換器13を蒸発器とするとよい。また、室内機2の冷房負荷合計が暖房負荷合計よりも大きい場合、圧縮機11から吐出された冷媒の流路が熱源側熱交換器13に接続するように熱源機1の四方弁12を切り替えて、熱源側熱交換器13を凝縮器とするとよい。このように熱源側熱交換器13を蒸発器又は凝縮器として使い分けることにより、空気調和装置の冷凍サイクル回路の効率が向上する。
 詳しくは、制御装置201は、室内機2の暖房負荷合計が冷房負荷合計よりも大きい場合、次のように熱源側熱交換器13を蒸発器として動作させる。つまり、制御装置201は、圧縮機11から吐出された冷媒の流路が熱媒体間熱交換器31aに接続するように四方弁12を切り替える。これにより、圧縮機11から吐出された高圧冷媒は、凝縮器として動作する熱媒体間熱交換器31aに流入する。また、蒸発器として動作する熱媒体間熱交換器33aから流出した冷媒は、熱源側熱交換器13へ流入する。このとき、制御装置201は、凝縮器となる熱媒体間熱交換器31aの凝縮温度が凝縮温度目標値になるように、圧縮機11の回転数を制御する。また、制御装置201は、蒸発器となる熱媒体間熱交換器33aの蒸発温度が蒸発温度目標値になるように、熱源側熱交換器13の熱交換量を制御する。熱源側熱交換器13の熱交換量は、例えば、本発明の熱交換量調整装置に相当するファン101の回転数を変えて制御する。
 また、制御装置201は、室内機2の冷房負荷合計が暖房負荷合計よりも大きい場合、次のように熱源側熱交換器13を凝縮器として動作させる。つまり、制御装置201は、圧縮機11から吐出された冷媒の流路が熱源側熱交換器13に接続するように四方弁12を切り替える。これにより、熱源側熱交換器13から流出した冷媒は、凝縮器として動作する熱媒体間熱交換器33aに流入する。また、蒸発器として動作する熱媒体間熱交換器31aから流出した冷媒は、アキュムレータ14へ流入し、アキュムレータ14を通って圧縮機へ流入する。このとき、制御装置201は、凝縮器となる熱媒体間熱交換器33aの凝縮温度が凝縮温度目標値になるように、熱源側熱交換器13の熱交換量を制御する。また、制御装置201は、蒸発器となる熱媒体間熱交換器31aの蒸発温度が蒸発温度目標値になるように、圧縮機11の回転数を制御する。熱源側熱交換器13の熱交換量は、例えば、本発明の熱交換量調整装置に相当するファン101の回転数を変えて制御する。
 上述のように、室内機2の冷房負荷合計及び暖房負荷合計に応じて、熱源側熱交換器13を凝縮器又は蒸発器として使い分けることにより、空気調和装置の冷凍サイクル回路の効率が向上する。
 なお、図7に示した中継器3aの冷媒の流れ方向を一方向(矢印で示す方向)のみとする場合、例えば図8に示す熱源機1を接続することにより、熱源側熱交換器13を蒸発器又は凝縮器として使い分けることができる。
 図8は、図7に示した中間器に接続される熱源機の一例を示すシステム回路図である。
 図8に示す熱源機1は、図1に示した熱源機1に冷媒流路切替装置60を追加したものである。この冷媒流路切替装置60は、逆止弁61,62,63,64と、接続配管65,66を備えている。
 このように構成された熱源機1においては、制御装置201は、室内機2の暖房負荷合計が冷房負荷合計よりも大きい場合、次のように熱源側熱交換器13を蒸発器として動作させる。つまり、制御装置201は、圧縮機11の吸入側と熱源側熱交換器13とが接続されるように四方弁12を切り替える。これにより、圧縮機11から吐出された高圧冷媒は、逆止弁61を介して、熱媒体間熱交換器31aに流入する。また、熱媒体間熱交換器33aから流出した冷媒は、逆止弁62を介して、熱源側熱交換器13へ流入する。このとき、制御装置201は、凝縮器となる熱媒体間熱交換器31aの凝縮温度が凝縮温度目標値になるように、圧縮機11の回転数を制御する。また、制御装置201は、蒸発器となる熱媒体間熱交換器33aの蒸発温度が蒸発温度目標値になるように、熱源側熱交換器13の熱交換量を制御する。熱源側熱交換器13の熱交換量は、例えば、本発明の熱交換量調整装置に相当するファン101の回転数を変えて制御する。
 また、制御装置201は、室内機2の冷房負荷合計が暖房負荷合計よりも大きい場合、次のように熱源側熱交換器13を凝縮器として動作させる。つまり、制御装置201は、圧縮機11の吐出側と熱源側熱交換器13とが接続されるように四方弁12を切り替える。これにより、熱源側熱交換器13から流出した冷媒は、逆止弁63及び接続配管65を介して、熱媒体間熱交換器31aに流入する。また、熱媒体間熱交換器33aから流出した冷媒は、逆止弁64及び接続配管66を介してアキュムレータ14へ流入し、アキュムレータ14を通って圧縮機へ流入する。このとき、制御装置201は、凝縮器となる熱媒体間熱交換器31aの凝縮温度が凝縮温度目標値になるように、熱源側熱交換器13の熱交換量を制御する。また、制御装置201は、蒸発器となる熱媒体間熱交換器33aの蒸発温度が蒸発温度目標値になるように、圧縮機11の回転数を制御する。熱源側熱交換器13の熱交換量は、例えば、本発明の熱交換量調整装置に相当するファン101の回転数を変えて制御する。
 このように空気調和装置を構成しても、室内機2の冷房負荷合計及び暖房負荷合計に応じて、熱源側熱交換器13を凝縮器又は蒸発器として使い分けることにより、空気調和装置の冷凍サイクル回路の効率が向上する。
 なお、図7に示す中継器3aは、熱媒体間熱交換器31a及び熱媒体間熱交換器33aが直列のみに接続可能な構成となっているが、熱媒体間熱交換器31aと熱媒体間熱交換器33aの接続状態を直列又は並列に切り替えられる構成としてもよい。例えば、運転中の全室内機2の運転モードが冷房運転となる場合(つまり、全冷房運転の場合)、熱媒体間熱交換器31aと熱媒体間熱交換器33aを並列接続して両者に冷媒を流すことにより、熱媒体間熱交換器31a及び熱媒体間熱交換器33aを蒸発器とすることができる。これにより、蒸発器の伝熱面積を大きくすることができ、空気調和装置の運転効率を向上させることができる。同様に、運転中の全室内機2の運転モードが暖房運転となる場合(つまり、全暖房運転の場合)も、熱媒体間熱交換器31aと熱媒体間熱交換器33aを並列接続して両者に冷媒を流すことにより、熱媒体間熱交換器31a及び熱媒体間熱交換器33aを凝縮器とすることができる。これにより、凝縮器の伝熱面積を大きくすることができ、空気調和装置の運転効率を向上させることができる。
 本発明の活用例として、熱媒体を室内機に循環させる空気調和装置に適用できる。又は、温水、冷水を生成するチラーに適用できる。
 1 熱源機(室外機)、2 室内機、3 中継器、4 ガス管、5 液管、6 熱媒体行き流路、7 熱媒体戻り流路、11 圧縮機、12 四方弁、13 熱源側熱交換器、14 アキュムレータ、31,33 熱媒体間熱交換器、32 膨張装置、35 利用側熱交換器、41,42 ポンプ、45 熱媒体流量調整装置、46,47 熱媒体流路切替装置、50,52 第1熱媒体流路、51,53 第2熱媒体流路、55 熱媒体分岐部(暖房側熱媒体分岐部)、56 熱媒体合流部(暖房側熱媒体合流部)、57 熱媒体分岐部(冷房側熱媒体分岐部)、58 熱媒体合流部(冷房側熱媒体合流部)、60 冷媒流路切替装置、61,62,63,64 逆止弁、65,66 接続配管、71,72,73 圧力センサ、74,75,76,77,81,82,85 温度センサ、101,102 ファン、201,202 制御装置、301 建物、302 非空調空間、303 室内空間。
 
 

Claims (9)

  1.  圧縮機、凝縮器又は蒸発器として動作する複数の熱媒体間熱交換器の冷媒側流路、膨張装置、及び、熱源側熱交換器が配管接続され、冷媒が循環する冷凍サイクル回路と、
     前記熱媒体間熱交換器のそれぞれに設けられ、前記熱媒体間熱交換器の熱媒体側流路、熱媒体循環装置、少なくとも1つの利用側熱交換器、及び、前記利用側熱交換器に対応して設けられた熱媒体流量調整装置が配管接続され、熱媒体が循環する熱媒体循環回路と、
     前記熱媒体流量調整装置を制御して、当該熱媒体流量調整装置に対応する前記利用側熱交換器に流れる熱媒体の流量を調整する制御装置と、
     前記利用側熱交換器に流入する熱媒体の温度を検出する第1熱媒体温度検出装置と、
     前記利用側熱交換器に対応して設けられ、前記利用側熱交換器から流出した熱媒体の温度を検出する第2熱媒体温度検出装置と、
     を備え、
     複数の前記熱媒体間熱交換器のうちの少なくとも2つは、凝縮器又は蒸発器として同時に同一の機能を果たすことが可能となっており、
     前記制御装置は、
     運転中の前記利用側熱交換器に対して、前記第1熱媒体温度検出装置の検出値と前記第2熱媒体温度検出装置の検出値との差である熱媒体温度差を算出し、当該熱媒体温度差が熱媒体温度差目標値となるように前記熱媒体流量調整装置を制御し、
     前記第1熱媒体温度検出装置の検出値が予め定めた所定範囲から外れた場合、前記熱媒体温度差目標値を変更して、運転中の前記利用側熱交換器の少なくとも1つに対して、前記熱媒体温度差が変更後の前記熱媒体温度差目標値となるように前記熱媒体流量調整装置を制御することを特徴とする空気調和装置。
  2.  複数の前記熱媒体間熱交換器のうちの一部は、前記冷凍サイクル回路において凝縮器として動作し、前記利用側熱交換器を暖房運転させるものであり、
     複数の前記熱媒体間熱交換器のうちの残りの一部は、前記冷凍サイクル回路において蒸発器として動作し、前記利用側熱交換器を冷房運転させるものであることを特徴とする請求項1に記載の空気調和装置。
  3.  前記熱媒体間熱交換器が、前記冷凍サイクル回路において凝縮器として動作する場合、
     前記制御装置は、
     前記第1熱媒体温度検出装置の検出値が前記所定範囲の上限値よりも大きくなった場合、前記熱媒体温度差目標値を大きくし、
     前記第1熱媒体温度検出装置の検出値が前記所定範囲の下限値よりも小さくなった場合、前記熱媒体温度差目標値を小さくすることを特徴とする請求項1又は請求項2に記載の空気調和装置。
  4.  前記熱媒体間熱交換器が、前記冷凍サイクル回路において蒸発器として動作する場合、
     前記制御装置は、
     前記第1熱媒体温度検出装置の検出値が前記所定範囲の下限値よりも小さくなった場合、前記熱媒体温度差目標値を大きくし、
     前記第1熱媒体温度検出装置の検出値が前記所定範囲の上限値よりも大きくなった場合、前記熱媒体温度差目標値を小さくすることを特徴とする請求項1~請求項3のいずれか一項に記載の空気調和装置。
  5.  前記熱媒体流量調整装置は、流量調整弁であり、
     前記制御装置は、
     前記熱媒体温度差が前記熱媒体温度差目標値より大きい場合、前記流量調整弁の開度を大きくし、
     前記熱媒体温度差が前記熱媒体温度差目標値より小さい場合、前記流量調整弁の開度を小さくすることを特徴とする請求項1~請求項4のいずれか一項に記載の空気調和装置。
  6.  暖房負荷の方が冷房負荷よりも大きい場合、
     前記制御装置は、
     凝縮器として動作する前記熱媒体間熱交換器を流れる冷媒の凝縮温度が凝縮温度目標値となるように、前記圧縮機の回転数を制御することを特徴とする請求項1~請求項5のいずれか一項に記載の空気調和装置。
  7.  冷房負荷の方が暖房負荷よりも大きい場合、
     前記制御装置は、
     蒸発器として動作する前記熱媒体間熱交換器を流れる冷媒の蒸発温度が蒸発温度目標値となるように、前記圧縮機の回転数を制御することを特徴とする請求項1~請求項5のいずれか一項に記載の空気調和装置。
  8.  前記熱源側熱交換器は、熱交換量を調整する熱交換量調整装置を備え、
     暖房負荷の方が冷房負荷よりも大きい場合、
     前記制御装置は、
     前記熱源側熱交換器を蒸発器として動作させ、
     凝縮器として動作する前記熱媒体間熱交換器を流れる冷媒の凝縮温度が凝縮温度目標値となるように、前記圧縮機の回転数を制御し、
     蒸発器として動作する前記熱媒体間熱交換器を流れる冷媒の蒸発温度が蒸発温度目標値となるように、前記熱交換量調整装置を制御し、
     冷房負荷の方が暖房負荷よりも大きい場合、
     前記制御装置は、
     前記熱源側熱交換器を凝縮器として動作させ、
     凝縮器として動作する前記熱媒体間熱交換器を流れる冷媒の凝縮温度が凝縮温度目標値となるように、前記熱交換量調整装置を制御し、
     蒸発器として動作する前記熱媒体間熱交換器を流れる冷媒の蒸発温度が蒸発温度目標値となるように、前記圧縮機の回転数を制御することを特徴とする請求項2、又は、請求項2に従属する請求項3~請求項7のうちのいずれか一項に記載の空気調和装置。
  9.  前記圧縮機は熱源機に収容され、
     前記熱媒体間熱交換器は、複数台の中継器に分けて収容され、
     前記制御装置は、前記熱源機に設けられた熱源機制御装置と、前記中継器のそれぞれに設けられた中継器制御装置とに分割され、
     前記熱源機制御装置は、前記圧縮機の回転数を制御し、
     前記中継器制御装置のそれぞれは、自身が設けられた前記中継器に収容された前記熱媒体間熱交換器に流れる熱媒体の流量を制御することを特徴とする請求項1~請求項8のうちのいずれか一項に記載の空気調和装置。
PCT/JP2011/004639 2011-08-19 2011-08-19 空気調和装置 WO2013027233A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/004639 WO2013027233A1 (ja) 2011-08-19 2011-08-19 空気調和装置
EP11871309.8A EP2746700B1 (en) 2011-08-19 2011-08-19 Air conditioner
US14/235,898 US10006678B2 (en) 2011-08-19 2011-08-19 Air-conditioning apparatus
JP2013529779A JP5710004B2 (ja) 2011-08-19 2011-08-19 空気調和装置
CN201180072931.7A CN103733002B (zh) 2011-08-19 2011-08-19 空气调节装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004639 WO2013027233A1 (ja) 2011-08-19 2011-08-19 空気調和装置

Publications (1)

Publication Number Publication Date
WO2013027233A1 true WO2013027233A1 (ja) 2013-02-28

Family

ID=47746015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004639 WO2013027233A1 (ja) 2011-08-19 2011-08-19 空気調和装置

Country Status (5)

Country Link
US (1) US10006678B2 (ja)
EP (1) EP2746700B1 (ja)
JP (1) JP5710004B2 (ja)
CN (1) CN103733002B (ja)
WO (1) WO2013027233A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037496A1 (ja) * 2016-08-24 2018-03-01 三菱電機株式会社 空気調和装置
US11060779B2 (en) 2018-02-07 2021-07-13 Mitsubishi Electric Corporation Air-conditioning system and air-conditioning control method
JP7378685B1 (ja) 2023-01-20 2023-11-13 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064412B2 (ja) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル 空気調和装置
US9933192B2 (en) * 2012-12-20 2018-04-03 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2015059814A1 (ja) * 2013-10-25 2015-04-30 三菱電機株式会社 冷凍サイクル装置
WO2016009488A1 (ja) * 2014-07-14 2016-01-21 三菱電機株式会社 空気調和装置
WO2016170575A1 (ja) * 2015-04-20 2016-10-27 三菱電機株式会社 冷凍サイクル装置
EP3306215B1 (en) * 2015-06-02 2023-12-27 Mitsubishi Electric Corporation Air-conditioning device
CN104896675B (zh) * 2015-06-12 2017-12-08 广东美的暖通设备有限公司 多联机系统的回气过热度测试方法和多联机系统
KR20170068958A (ko) * 2015-12-10 2017-06-20 삼성전자주식회사 공조 시스템에서 온도를 제어하기 위한 장치 및 방법
KR102418488B1 (ko) * 2018-01-19 2022-07-06 엘지전자 주식회사 멀티형 공기조화기
JP6987217B2 (ja) * 2018-04-04 2021-12-22 三菱電機株式会社 空気調和システムの制御装置、室外機、中継機、熱源機および空気調和システム
WO2020059106A1 (ja) * 2018-09-21 2020-03-26 三菱電機株式会社 中継機
US11815281B2 (en) * 2018-09-26 2023-11-14 Mitsubishi Electric Corporation Air-conditioning device with a heat medium heat exchanger
CN110617598A (zh) * 2019-09-20 2019-12-27 青岛海尔空调电子有限公司 空调系统的控制方法及空调系统
WO2021106193A1 (ja) * 2019-11-29 2021-06-03 三菱電機株式会社 空気調和システムおよびその制御方法
US11519631B2 (en) * 2020-01-10 2022-12-06 Johnson Controls Tyco IP Holdings LLP HVAC control system with adaptive flow limit heat exchanger control
KR20210121401A (ko) * 2020-03-30 2021-10-08 엘지전자 주식회사 히트펌프 및 그 동작방법
DE102020115273A1 (de) 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Betrieb einer Kompressionskälteanlage und Kompressionskälteanlage
CN111895623A (zh) * 2020-08-12 2020-11-06 上海市建筑科学研究院有限公司 多联式空调机组控制方法及系统
JP7280521B2 (ja) * 2021-03-31 2023-05-24 ダイキン工業株式会社 ヒートポンプ装置
CN113108428B (zh) * 2021-04-13 2023-03-17 广州市水电设备安装有限公司 一种多联机中央空调系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571770A (ja) * 1991-09-11 1993-03-23 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2004060956A (ja) * 2002-07-26 2004-02-26 Sanyo Electric Co Ltd 熱移動装置及びその運転方法
JP2005069554A (ja) * 2003-08-22 2005-03-17 Kimura Kohki Co Ltd 水熱源空調システム
JP2010196950A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム
WO2010113296A1 (ja) * 2009-04-01 2010-10-07 三菱電機株式会社 空気調和装置
WO2011052040A1 (ja) * 2009-10-27 2011-05-05 三菱電機株式会社 空気調和装置
WO2011064814A1 (ja) * 2009-11-25 2011-06-03 三菱電機株式会社 空気調和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334660B2 (ja) * 1998-05-19 2002-10-15 三菱電機株式会社 冷凍サイクルの制御装置およびその制御方法
JP4151625B2 (ja) * 2004-07-21 2008-09-17 松下電器産業株式会社 空気調和機
CN1869549B (zh) * 2005-05-26 2010-04-28 威士顿精密工业股份有限公司 定温、差温式变频工业用冷却机装置
WO2009107395A1 (ja) * 2008-02-28 2009-09-03 ダイキン工業株式会社 冷凍装置
JP5188572B2 (ja) * 2008-04-30 2013-04-24 三菱電機株式会社 空気調和装置
WO2010049998A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置及び中継装置
JP5247812B2 (ja) * 2008-10-29 2013-07-24 三菱電機株式会社 空気調和装置
US20110146339A1 (en) * 2008-10-29 2011-06-23 Koji Yamashita Air-conditioning apparatus
US20110185754A1 (en) * 2008-10-29 2011-08-04 Mitsubishi Electric Air-conditioning apparatus
JP2010196946A (ja) 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム
JP5465242B2 (ja) * 2009-05-12 2014-04-09 三菱電機株式会社 空気調和装置
ES2665923T3 (es) * 2009-10-28 2018-04-30 Mitsubishi Electric Corporation Dispositivo acondicionador de aire
JP5498511B2 (ja) * 2009-12-28 2014-05-21 ダイキン工業株式会社 ヒートポンプシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571770A (ja) * 1991-09-11 1993-03-23 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2004060956A (ja) * 2002-07-26 2004-02-26 Sanyo Electric Co Ltd 熱移動装置及びその運転方法
JP2005069554A (ja) * 2003-08-22 2005-03-17 Kimura Kohki Co Ltd 水熱源空調システム
JP2010196950A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム
WO2010113296A1 (ja) * 2009-04-01 2010-10-07 三菱電機株式会社 空気調和装置
WO2011052040A1 (ja) * 2009-10-27 2011-05-05 三菱電機株式会社 空気調和装置
WO2011064814A1 (ja) * 2009-11-25 2011-06-03 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2746700A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037496A1 (ja) * 2016-08-24 2018-03-01 三菱電機株式会社 空気調和装置
JPWO2018037496A1 (ja) * 2016-08-24 2019-04-11 三菱電機株式会社 空気調和装置
GB2567973A (en) * 2016-08-24 2019-05-01 Mitsubishi Electric Corp Air conditioning device
GB2567973B (en) * 2016-08-24 2021-04-21 Mitsubishi Electric Corp Air-conditioning apparatus
US11060779B2 (en) 2018-02-07 2021-07-13 Mitsubishi Electric Corporation Air-conditioning system and air-conditioning control method
JP7378685B1 (ja) 2023-01-20 2023-11-13 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
EP2746700B1 (en) 2017-05-03
US20140150483A1 (en) 2014-06-05
US10006678B2 (en) 2018-06-26
JPWO2013027233A1 (ja) 2015-03-05
CN103733002B (zh) 2015-11-25
EP2746700A1 (en) 2014-06-25
JP5710004B2 (ja) 2015-04-30
EP2746700A4 (en) 2015-05-06
CN103733002A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5710004B2 (ja) 空気調和装置
JP5774225B2 (ja) 空気調和装置
JP5791785B2 (ja) 空気調和装置
JP6141454B2 (ja) 空気調和装置及び空気調和装置の制御方法
JP5377653B2 (ja) 空気調和装置
JP5279919B2 (ja) 空気調和装置
WO2013144994A1 (ja) 空気調和装置
JP5762427B2 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
WO2013072969A1 (ja) 空気調和装置
JP2005016858A (ja) ヒートポンプ式空調装置、ヒートポンプ式空調装置の運転方法
WO2011089652A1 (ja) 空調給湯複合システム
JP6120943B2 (ja) 空気調和装置
WO2011052038A1 (ja) 空気調和装置
JP6012875B2 (ja) 空気調和装置
JP6576603B1 (ja) 空気調和装置
JP5752135B2 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
JP6062030B2 (ja) 空気調和装置
WO2012160605A1 (ja) 空気調和装置
JP2008145038A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14235898

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013529779

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011871309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011871309

Country of ref document: EP