WO2013026340A1 - 通信腔体器件及其合分路结构 - Google Patents

通信腔体器件及其合分路结构 Download PDF

Info

Publication number
WO2013026340A1
WO2013026340A1 PCT/CN2012/079077 CN2012079077W WO2013026340A1 WO 2013026340 A1 WO2013026340 A1 WO 2013026340A1 CN 2012079077 W CN2012079077 W CN 2012079077W WO 2013026340 A1 WO2013026340 A1 WO 2013026340A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication cavity
cavity device
resonant
transmission line
resonant column
Prior art date
Application number
PCT/CN2012/079077
Other languages
English (en)
French (fr)
Inventor
郭春波
邸英杰
党志南
昌敏华
Original Assignee
京信通信系统(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司 filed Critical 京信通信系统(中国)有限公司
Priority to BR112014003555-5A priority Critical patent/BR112014003555B1/pt
Publication of WO2013026340A1 publication Critical patent/WO2013026340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2138Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using hollow waveguide filters

Definitions

  • the invention relates to a communication cavity device for combining multiple communication signals, which is suitable for a cavity device such as a combiner, a duplexer, a filter, etc., and particularly relates to a device applied to the communication cavity device. Combine the shunt structure.
  • the new frequency band is moving in both lower and higher directions than the traditional frequency band.
  • the market demand for combiners is getting higher and higher, and it is hoped that a combination of signals in wider frequency bands can be realized.
  • the conventional implementation is no longer sufficient, and a new implementation needs to be introduced.
  • the patent application with the publication number CN101478071A discloses a high relative bandwidth dual frequency combiner, which is a beneficial attempt in the industry.
  • a band-stop filter is used to implement a broadband low-band signal channel, and the relative bandwidth of the low-band signal channel can reach 200%, but the limitation is that the resistance of the band-stop filter is It is difficult to achieve sufficient suppression in a wide frequency band, so another signal channel can only be implemented by a narrowband filter to ensure sufficient passband isolation between the two channels. Therefore, the scope of application of this combiner is limited and cannot adapt to the new market environment.
  • Another object of the present invention is to overcome the above-mentioned deficiencies and to provide a non-interference combining method capable of achieving interference-free combining while maintaining a high relative bandwidth of both signal channels, including a combiner, a duplexer, and a filter.
  • the splitting structure inside the device including a combiner, a duplexer, and a filter.
  • the present invention adopts the following technical solutions:
  • a communication cavity device of the present invention comprises two signal channels respectively implemented in a cavity for transmitting signals of different frequency bands, and the same end of the two signal channels combines signals of two different frequency bands through a combined splitting structure Splitting and forming a common port, the combined branch structure includes:
  • a connector having one end connected to the common port and the other end capacitively coupled to the first signal path;
  • An impedance conversion transmission line having one end connected to the second signal path and the other end connected to the connecting member, and comprising at least two line segments having unequal impedances;
  • a dielectric support for fixing the resonant column and insulating the resonant column from the cavity.
  • the impedance conversion transmission line includes two segments, one end of one of the segments is connected to the connecting member, and one end of the second segment is connected to the second signal channel, and each of the two segments is itself The other end is connected to the resonant column.
  • each line segment of the impedance conversion transmission line is integrally formed, and the resonant column is provided with a through hole along a radial direction thereof, and the impedance conversion transmission line is disposed through the through hole.
  • the diameters of the segments in the impedance conversion transmission line are different.
  • the first signal channel is a band pass filter channel
  • the second signal channel is a low pass filter channel.
  • the second signal channel is an elliptic function type low pass filtering channel.
  • the first signal path includes a plurality of resonant columns, and the resonant column adjacent to the common port is provided with a hole slot disposed radially along the resonant column, and the connecting member is placed in the hole and the resonant column Sexual coupling.
  • one end of the connecting member is connected to the inner conductor of the common port, and the other end is provided with a dielectric sleeve at a portion capacitively coupled to the resonant column and coupled to the resonant column.
  • the second signal path includes a plurality of sequentially connected sub-cavities, a plurality of resonant columns disposed between each adjacent two sub-cavities, a conductor bar disposed above each of the resonant columns, and a position and quantity and the respective resonances a plurality of tuning screws corresponding to the column, wherein the conductor bars are provided with a plurality of screw holes respectively corresponding to the respective resonant columns, and the tuning screws respectively pass through the screw holes and respectively penetrate the slots of the resonant columns
  • the capacitive coupling between the tuning screw and the resonant column is achieved to achieve a connection between the impedance conversion transmission line and the second signal path on the conductor bar by physical connection.
  • the plurality of sub-cavities are arranged in the same direction, and the conductor bars are correspondingly linear. In another embodiment, the plurality of sub-cavities are not arranged in the same direction, and the conductor bars are correspondingly bent.
  • the diameter of the partial section around the screw hole of the conductor bar is larger than the diameter of the conductor bar body.
  • a ridge is disposed between the resonant column and the bottom wall of the metal cavity, and the heights of the respective ridges corresponding to the respective resonant columns are different.
  • the remaining sub-cavities between the first and the last sub-chambers are equally large.
  • a dielectric sleeve is provided between the tuning screw and the resonant column.
  • a combiner/duplexer/filter or the like of the present invention adopts the same structure as the aforementioned communication cavity device.
  • a combined shunt structure for use in a communication cavity device comprising:
  • a connector having a common port formed at one end and a first frequency band signal coupled to the communication cavity device at the other end;
  • An impedance conversion transmission line having one end for accessing a second frequency band signal of the communication cavity device, the other end being connected to the connecting member, and comprising at least two line segments having unequal impedances;
  • a dielectric support for securing the resonant column and isolating the resonant column from the cavity of the communication cavity device.
  • the impedance conversion transmission line includes two segments, one end of one of the segments is connected to the connecting member, and one end of the second segment is connected to the second signal channel, and each of the two segments has its own The other end is connected to the resonant column.
  • each line segment of the impedance conversion transmission line is integrally formed, and the resonant column is provided with a through hole along a radial direction thereof, and the impedance conversion transmission line is disposed through the through hole.
  • the diameters of the segments in the impedance conversion transmission line are different.
  • the impedance conversion transmission line has a diameter which is thicker in turn from one end to the other end of the connecting member.
  • Another combiner/duplexer/filter/feeder of the present invention employs the aforementioned shunt structure.
  • the present invention has the following advantages:
  • the multiplexer structure of the present invention achieves capacitive coupling of signals through a first signal path in a communication device and a communication channel, and is coupled to the second signal path through an impedance conversion transmission line and a coordination of the resonant column.
  • the signal is thus transmitted.
  • the impedance is inversely proportional to the frequency, so the higher frequency signal will be transmitted between the common port, the connecting member and the first signal channel; for the latter, the impedance transforming the transmission line and the resonant column The effect is equivalent to the inductance.
  • the impedance is proportional to the frequency.
  • the lower frequency signal is transmitted between the common port, the impedance conversion transmission line, the resonance column, and the second signal channel. It can be seen that the combined branch structure of the present invention separates the high frequency signal and the low frequency signal well, and realizes the function of the splitting path.
  • the interference frequency of the impedance conversion transmission line of a certain length due to resonance is moved due to the insertion of the resonance column, the interference frequency can be adjusted outside the frequency band of the first signal channel and the second signal channel by means of debugging means. Thus, it is ensured that the setting of the impedance conversion transmission line does not adversely affect the electrical performance of the communication cavity device.
  • the present invention uses an elliptic function type low-pass filter channel in the communication cavity device.
  • the low-pass filter channel has a unique structure and is based on a conventional sugar-gourd-shaped low-pass filter.
  • the resonator connected in series with an equivalent inductance and capacitance is incorporated into the main channel, and the equivalent inductance of the resonator is realized by a high impedance formed between the resonant column and the cavity wall, and the equivalent capacitance is between the adjusting screw and the inner wall of the resonant column. Slot coupling is achieved.
  • the communication cavity device thus formed can generate strong suppression in a wide frequency range outside the band, thereby satisfying the requirement of high isolation between communication systems.
  • FIG. 1 is a schematic structural view of a communication cavity device of the present invention
  • FIG. 2 is a schematic view showing a partial assembly structure of a combined branch structure and a low-pass filter channel of the present invention
  • FIG. 3 further reveals the assembly relationship between the resonant column, the conductor bar, the dielectric sleeve, and the tuning screw on the basis of FIG. 2;
  • FIG. 4 is a schematic view showing the assembled structure of the combined branch structure of the present invention.
  • a general cavity device disclosed in a preferred embodiment of the present invention is a combiner for combining signals of two different frequency bands.
  • the main body of the combiner is a cavity 12, and a cover 11 is disposed above the cavity 12 to integrally form a cavity device.
  • the channel 12 is provided with two signal channels 31, 32.
  • the first signal channel 31 is a band pass filter channel for filtering the first frequency band signal
  • the second signal channel 32 is a low pass filter channel. Filtering the second frequency band signal.
  • the first frequency band is a relatively high frequency band
  • the second frequency band is a relatively low frequency band
  • each frequency band may include one or more sub-bands belonging to an independent communication system.
  • the frequency band that the first frequency band can include is one or any one of DCS, WCDMA, TD-SCDMA, WLAN, LTE 2600, etc.
  • the second frequency band can include one of CATV, LTE 700, CDMA, and GSM.
  • the two signal channels 31, 32 of this embodiment are designed such that the relative bandwidth of the band pass filter channel is 45% and the relative bandwidth of the low pass filter channel is 200%.
  • the two signal channels 31, 32 each form a branch port 21, 22 at the same end, each branch port 21 or 22 is disposed on the cavity wall of the cavity 12, and in addition, the two signal channels 31, 32 are additionally The same end is branched by a combined branch structure to form a common port 20 disposed on the other chamber wall of the cavity 12.
  • the first signal path 31, that is, the band pass filter channel, is designed in a longitudinal cavity, and a longitudinally long spine 310 is protruded from the bottom wall of the cavity for reinforcing the formation of the resonant column 311.
  • the coupling effect between the resonators is achieved by opening window coupling between two adjacent resonant cavities formed by two adjacent resonant columns 311. If it is desired to enhance the out-of-band rejection, in other embodiments, the resonant cavity may be cross-coupled, including inductive cross-coupling by a window or U-line and capacitive cross-coupling by a flying rod.
  • a tuning screw 312 correspondingly inserted through the cover plate 11 and inserted into each of the resonant columns 311 is further provided.
  • the first and second resonant columns 311 in the first signal path 31 are respectively connected to the branch port 21 and the common port 20 to which they belong, with the connection being made by means of the connectors 41, 41'.
  • One end (first portion 412) of the connecting member 41, 41' is connected to an inner conductor (not shown) inherent to the port (branch port 21 or common port 20), and the other end (second portion 414) is capacitively coupled to the head-to-tail resonant column 311.
  • the coupling portion is connected.
  • the second portion 414 is provided with an elongated coupling rod 416 as a coupling portion, and the corresponding resonant column 311 is provided with a hole groove (not shown) along the radial direction thereof, and the coupling rod of the second portion 414 416 goes deep into the slot of the resonant column 311, and the coupling rod 416 and the resonant column 311 thereby achieve capacitive coupling.
  • a dielectric sleeve (not shown) made of Teflon or other insulating material is placed over the coupling rod 416.
  • the resonant columns 311 at both ends of the first signal path 31 can be capacitively coupled to the common port 20 and the associated branch port 21, respectively.
  • the second signal path 32 of the present invention is an elliptic function type low-pass filter channel, which mainly includes a plurality of sub-cavities formed in the cavity 12 and disposed between the two adjacent sub-chambers. a portion of the ridge portion 64 and a plurality of resonant columns 63 standing on each of the ridges 64, a conductor rod 5 traversing the longitudinal direction of the cavity 12 in the cavity 12 and placed above the resonant column 63, passing through the conductor bar 5 A plurality of tuning screws 61 are capacitively coupled to the respective resonant columns 63. Both ends of the conductor bar 5 are respectively connected to the common port 20 and the branch port 22 to which the channel belongs.
  • the plurality of sub-cavities are arranged substantially in the same direction (straight line), and the spatial volume of the sub-cavities 11-15 is realized according to the design of the electrical performance index.
  • the first and second sub-cavities 11 and 15 are removed in the direction.
  • the volume of the space is relatively small, and the remaining sub-cavities 12-14 in the middle section have substantially the same or similar spatial volume, which can be considered as equal.
  • a window opening structure is provided, and at a bottom wall of the cavity 12 at the window opening portion, a ridge 64 is provided above the bottom wall, on each ridge 64
  • One of the resonant columns 63 is erected.
  • the different ridges 64 are adapted to different frequency bands and have different heights. Thereby, a plurality of resonant columns 63 arranged along the same straight line are formed, and these resonant pillars 63 together with the windowing structure form an equivalent inductance in the aforementioned equivalent inductor-capacitor series resonator.
  • the two ends of the conductor bar 5 are respectively connected to the common port 20 and an inner conductor (not shown) of the branch port 22 to which the channel belongs, and the conductor bars 5 are also fixed above the respective resonance columns 63. Specifically, one end of the conductor bar 5 is directly connected to the inner conductor of the branch port 22 to which the channel 32 belongs, and the other end is connected to the common port 20 by the multiplexer structure of the present invention.
  • the conductor bars 5 are linear, and the main body thereof exhibits a small diameter, and a local section 51 is provided at a position corresponding to each of the resonator columns, and the diameter of the partial section 51 is smaller. Big.
  • the diameter of the partial section 51 is larger than the diameter of the body in order to provide a through hole for the tuning screw 61 to traverse.
  • a threaded passage is provided radially at each of the larger diameter partial sections 51 of the conductor bars 5.
  • the hole 50, and the resonator column 63 is provided with a slot 630 for the axial direction of the tuning screw 61.
  • the series connection of the corresponding equivalent inductance and equivalent capacitance constitutes an equivalent series resonator.
  • Multiple equivalent series resonators are combined to enable the low-pass filter path to produce higher rejection (above 70%) over a wide band of out-of-band (relative bandwidth up to 45%).
  • the arrangement of the plurality of sub-cavities may not be in the same direction (straight line), for example, the arrangement direction of the plurality of sub-cavities forms a right angle.
  • the conductor bars 5 also need to be designed to be bent. It can be seen that appropriately changing the structure of the individual components of the present invention does not affect the achievement of the technical effects of the present invention.
  • the present invention thus provides a combined shunt structure.
  • the multiplexer structure of the present invention includes a connector 41 for connecting a common port 20 and a first signal path 31 to a resonant column 311 adjacent to the common port 20, and includes The impedance transformation transmission line 42, the resonance column 43, and the medium support 44.
  • the impedance conversion transmission line 42 includes two spatially separated line segments 421, 422 having unequal thicknesses, a line segment 421 near the common port 20 and the first signal path 31 being thinner, and a line segment 422 near the second signal path 32.
  • the two columns 421, 422 are electrically connected in series between the two segments 421, 422 in the middle of the two.
  • One end of the thinner line segment 421 is welded to the connecting member 41 near the common port 20, and the other end is welded to one side of the resonant column 43; one end of the thicker line segment 422 is opposite to the other side of the resonant column 43.
  • the other end is welded to the corresponding end of the conductor bar 5.
  • the respective line segments 421, 422 of the impedance conversion transmission line 42 of the present invention have different diameters and are sequentially thickened.
  • the media support member 44 is fixed to the bottom wall of the cavity 12 and is designed to form a support for the resonant column 43 to ensure that the resonant column 43 is not grounded and insulated from the cavity 12.
  • the number of the line segments 421, 422 of the impedance conversion transmission line 42 is not limited by the preferred embodiment, and may be two or more sections 421, 422 or more, and is determined according to actual needs.
  • the plurality of segments 421, 422 may also be integrally formed and disposed through a radial through hole 430 of the resonant column 43.
  • the impedance conversion transmission line 42 includes two segments 421 and 422 having unequal diameters.
  • the two segments 421 and 422 are integrally formed and can be disposed through a through hole 430 of the resonant column 43. In this case, it can be considered that the impedance conversion transmission line 42 penetrates the resonance column 43 in series.
  • the connector 41 adjacent to the common port 20 is capacitively coupled on the one hand to one of the closest resonant columns 311 of the first signal path 31, and on the other hand through the impedance transform transmission line 42, the resonant column 43 and the second
  • the conductor bars 5 of the signal path 32 are directly physically welded, that is, a combination of two frequency band signals can be realized between the common port 20 and the two signal channels 31, 32.
  • the principle of realizing the splitting circuit is that, for the first signal path 31, since the capacitive coupling between the connecting member 41 and the resonant column 311, the equivalent capacitance value is fixed, and in this case, the impedance is inversely proportional to the frequency. Therefore, the signal of the higher frequency band can be transmitted through the first signal channel 31; for the second signal path 32, since the transmission distance of the connecting member 41 to the impedance conversion transmission line 42 (including the resonant column 43) is equivalent to the inductance, the inductance In the case where the sense value is fixed, the impedance is proportional to the frequency, and therefore, the signal of the lower frequency band can be transmitted through the second signal path 32. It can be seen that the unique design of the combined branch structure of the present invention achieves a good isolation effect on signals of two different frequency bands.
  • the interference may be caused, but due to the frequency shifting action of the resonance column 43, the resonance signal is moved outside the two frequency bands. Therefore, the resonant signal is no longer a source of interference, thereby ensuring good electrical performance of the communication cavity device of the present invention.
  • the high frequency band signal is filtered by the first signal channel 31, and the connector 41 of the combined branch structure is coupled to the common port 20, the low frequency band signal After being filtered by the second signal path 32, the impedance conversion transmission line 42 and the resonance column 43 are transmitted to the connector 41 and then transmitted to the common port 20.
  • the signals of the two different frequency bands are combined at the connector 41 and output through the common port 20. .
  • the high-band signal is coupled into the first signal channel 31 for transmission and filtering, and then output through the branch port 21 to which the first signal channel 31 belongs;
  • the signal is transmitted and filtered in the second signal path 32 via the connector 41, the impedance-converted transmission line 42 and the resonant column 43, and finally output via the branch port 22 to which the second signal path 32 belongs.
  • the combined branch structure of the present invention is equally applicable to communication cavity devices such as multi-frequency combiners, duplexers, and filters. Not subject to the above description of the dual frequency combiner.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开一种通信腔体器件及其合分路结构,该合分路结构包括:连接件,其一端形成公共端口,另一端用于耦合通信腔体器件的第一频段信号;阻抗变换传输线,其一端用于接入通信腔体器件的第二频段信号,另一端与所述连接件相连接,且其包含阻抗不等的至少两个线段;谐振柱,串接于阻抗变换传输线中部;介质支撑件,用于固定所述谐振柱并使谐振柱与通信腔体器件的腔体相绝缘。本发明通过合分路结构使两个频段信号实现很好的隔离而进行合路和分路,结合具有独特结构的椭圆函数型低通滤波器,可使通信腔体器件在确保高相对带宽的前提下在带外产生较强的抑制,从而满足通信系统间的高隔离度的要求。

Description

通信腔体器件及其合分路结构 技术领域
本发明涉及一种用于对多路通信信号进行合路的通信腔体器件,适用于合路器、双工器、滤波器等腔体器件,具体涉及应用于该通信腔体器件中的一种合分路结构。
背景技术
随着三网融合的发展以及LTE频段的启用,相比传统频段,新的频段正向着更低和更高两个方向发展。随着新的制式或系统的引入,市场对合路器的要求越来越高,希望能实现更宽频段信号的合分路。然而,对于如此宽频带的合路器,传统的实现方式已不能满足要求,需要引入新的实现方式。
公开号为CN101478071A的专利申请,揭示了一种高相对带宽双频合路器,是业内的一个有益的尝试。该专利申请所揭示的技术方案中,采用带阻滤波器来实现宽带的低频段信号通道,这种低频段信号通道的相对带宽可达到200%,但其局限性是,带阻滤波器的阻带很难做到在很宽的频带内具有足够大的抑制度,因此,另一信号通道只能由窄带滤波器实现,以便保证两个通道间有足够的通带隔离。所以,这种合路器的应用范围受到限制,无法适应新的市场环境。
实现高相对带宽的两个通道的合路需要技巧,以确保两个通道的信号的无干扰合路,而公知的合路器的合分路结构尽管可以在某种程度上满足这一需求,却未必能获得较为优良的技术指标。
技术问题
因此,本发明的主要目的在于提供一种能使两个信号通道均具有很高的相对带宽且同时具有较高的通带隔离的通信腔体器件,且该通信腔体器件的结构同样适用于合路器、双工器或滤波器中。
本发明的另一目的在于克服上述不足,提供一种在保持两个信号通道均具有很高的相对带宽的情况下仍能实现无干扰合路的适用于包含合路器、双工器、滤波器在内的合分路结构。
技术解决方案
为实现本发明的目的,本发明采用如下技术方案:
本发明的一种通信腔体器件,包括在腔体内实现的分别用于传输不同频段信号的两个信号通道,两个信号通道的同一端通过合分路结构对该两个不同频段信号进行合分路并形成公共端口,该合分路结构包括:
连接件,其一端与公共端口相连接,另一端与第一信号通道容性耦合;
阻抗变换传输线,其一端与第二信号通道相连接,另一端与所述连接件相连接,且其包含阻抗不等的至少两个线段;
谐振柱,串接于阻抗变换传输线中部;
介质支撑件,用于固定所述谐振柱并使谐振柱与腔体相绝缘。
一种实施例中,所述阻抗变换传输线包括两段线段,线段之一的一端与所述连接件相连接,线段之二的一端与所述第二信号通道相连接,两段线段各以自身的另一端与所述谐振柱相连接。
另一实施例中,所述阻抗变换传输线的的各个线段一体成型,所述谐振柱沿其径向设有贯通孔,所述阻抗变换传输线穿越所述贯通孔设置。
较佳的,所述阻抗变换传输线中的各段线段的直径不同。
较佳的,所述第一信号通道为带通滤波通道,所述第二信号通道为低通滤波通道。更具体的,所述第二信号通道为椭圆函数型低通滤波通道。
所述第一信号通道包含若干谐振柱,与所述公共端口相邻近的谐振柱设有沿该谐振柱径向设置的孔槽,所述连接件置入该孔槽中与该谐振柱容性耦合。具体的,所述连接件一端与所述公共端口的内导体相连,另一端与所述谐振柱容性耦合且与所述谐振柱相耦合的部位套设有介质套筒。
所述第二信号通道包括多个顺次相连通的子腔、设置于每相邻两个子腔之间的若干谐振柱、置于各谐振柱上方的导体棒以及位置与数量与所述各谐振柱相对应设置的若干调谐螺杆,所述导体棒设置有位置和数量分别与各谐振柱相对应的若干螺孔,各调谐螺杆分别穿过所述的螺孔并分别深入各谐振柱的槽孔中以实现调谐螺杆与谐振柱间的容性耦合,所述阻抗变换传输线与第二信号通道的连接通过物理连接在所述导体棒上实现。
一个实施例中,所述多个子腔沿同一方向上排布,所述导体棒相应呈直线状。另一实施例中,所述多个子腔不在同一方向上排布,所述导体棒相应呈折弯状。
为使螺孔具有足够大的空间,所述导体棒的螺孔周围的局部区段的直径大于导体棒主体的直径。
所述谐振柱与金属腔体的底壁之间设有脊部,所述各个谐振柱所对应的各个脊部的高度不同。
较佳的,所述多个子腔中,位于首尾两个子腔之间的其余子腔均等大。
为避免接触,所述调谐螺杆与谐振柱之间设有介质套筒。
本发明的一种合路器/双工器/滤波器等,其采用与前述的通信腔体器件相同的结构。
本发明的一种合分路结构,用于通信腔体器件中,其包括:
连接件,其一端形成公共端口,另一端用于耦合通信腔体器件的第一频段信号;
阻抗变换传输线,其一端用于接入通信腔体器件的第二频段信号,另一端与所述连接件相连接,且其包含阻抗不等的至少两个线段;
谐振柱,串接于阻抗变换传输线中部;
介质支撑件,用于固定所述谐振柱并使谐振柱与通信腔体器件的腔体相绝缘。
一个实施例中,所述阻抗变换传输线包括两段线段,线段之一的一端与所述连接件相连接,线段之二的一端与所述第二信号通道相连接,两段线段各以自身的另一端与所述谐振柱相连接。
另一实施例中,所述阻抗变换传输线的的各个线段一体成型,所述谐振柱沿其径向设有贯通孔,所述阻抗变换传输线穿越所述贯通孔设置。
较佳的,所述阻抗变换传输线中的各段线段的直径不同。所述阻抗变换传输线,自靠近所述连接件的一端至另一端,其各线段的直径依次变粗。
有益效果
本发明的另一种合路器/双工器/滤波器/馈电器,其采用前述的合分路结构。
与现有技术相比,本发明具有如下优点:
一方面,本发明的合分路结构,其通过连接件与通信腔体器件中的第一信号通道实现信号的容性耦合,且通过阻抗变换传输线和谐振柱的配合与第二信号通道实现连接由此传输信号。对于前者,电容值既定的情况下,阻抗与频率成反比,故较高频率的信号便会在公共端口、连接件、第一信号通道之间传输;对于后者,阻抗变换传输线与谐振柱的配合形成相当于电感的效果,电感值既定的情况下,阻抗与频率成正比,因此,较低频率的信号便会在公共端口、阻抗变换传输线、谐振柱、第二信号通道之间传输。由此可见,本发明的合分路结构很好地将高频信号和低频信号进行分离,实现了合分路的功能。
另一方面,由于特定长度的阻抗变换传输线因谐振产生的干扰频率由于置入了谐振柱而被搬移,通过调试手段可以将该干扰频率调节至第一信号通道和第二信号通道的频带之外,从而确保阻抗变换传输线的设置不会对通信腔体器件的电气性能产生不良影响。
再一方面,本发明在通信腔体器件中使用了椭圆函数型低通滤波通道,该低通滤波通道结构独特,是在传统的糖葫芦形低通滤波器的基础上,将其低阻抗部分代之以一个等效电感电容串联的谐振子并入主通道,该谐振子的等效电感由谐振柱与腔壁之间形成的高阻抗实现,等效电容由调节螺杆与谐振柱内壁之间的缝隙耦合实现。这样形成的通信腔体器件,可在带外较宽的频段范围内产生较强的抑制,从而满足通信系统间的高隔离度的要求。
附图说明
图1为本发明的一种通信腔体器件的结构示意图;
图2为本发明的合分路结构与低通滤波通道的部分组装结构示意图;
图3在图2的基础上,进一步揭示谐振柱、导体棒、介质套筒、调谐螺杆之间的组装关系;
图4为本发明的合分路结构的组装结构示意图。
本发明的最佳实施方式
本发明的实施方式
下面结合附图和实施例对本发明作进一步的说明:
请参阅图1,本发明的优选实施例揭示的一种通用腔体器件,是一种用于对两个不同频段的信号进行合分路的合路器。该合路器的主体是一个腔体12,在腔体12上方装设一盖板11,使合路器整体形成一个腔体器件。该腔体12内设有两个信号通道31、32,其中,第一信号通道31为带通滤波通道,用于对第一频段信号进行滤波;第二信号通道32为低通滤波通道,用于对第二频段信号进行滤波。第一频段为相对较高的频段,相对的,第二频段为相对较低的频段,并且,每一频段可以包含一个或一个以上的属于独立通信制式的子频段。例如,第一频段可以包含的频段为DCS、WCDMA、TD-SCDMA、WLAN、LTE2600等中的一种或任意多种,第二频段可以包含的频段为CATV、LTE700、CDMA和GSM等中的一种或任意多种。本实施例的两个信号通道31、32被设计成:带通滤波通道的相对带宽达到45%,低通滤波通道的相对带宽达到200%。两个信号通道31、32各以同一端形成一分支端口21、22,每个分支端口21或22均被设置在腔体12的腔壁上,此外,两个信号通道31、32又以另外同一端通过一个合分路结构进行合分路,形成一个设置于腔体12的另一腔壁上的公共端口20。
所述的第一信号通道31,也即带通滤波通道,设计在一纵长腔槽中,在腔槽的底壁上凸起一纵长的脊柱310,用于加强谐振柱311所形成的谐振腔之间的耦合效果。在脊柱310上方一线并排设置多个谐振柱311,相邻两个谐振柱311形成的相邻两个谐振腔间采用开窗耦合的方式实现感性耦合。若需要加强带外抑制时,在其它实施例中,谐振腔间可采用交叉耦合方式,包括开窗或U型线实现的感性交叉耦合和飞杆实现的容性交叉耦合。为了便于调谐,对应各个谐振柱311,还设有穿过所述盖板11对应插置于各谐振柱311的调谐螺杆312。请结合图1和图2,第一信号通道31中首尾两个谐振柱311分别用于连接到其所属的分支端口21和公共端口20,其中借助了连接件41、41’进行连接。连接件41、41’一端(第一部分412)与端口(分支端口21或公共端口20)固有的内导体(未图示)相连接,另一端(第二部分414)与首尾谐振柱311容性耦合相连接,具体而言,第二部分414设有一细长的耦合棒416作为耦合部位,相应的谐振柱311沿其径向设置一孔槽(未图示),第二部分414的耦合棒416深入谐振柱311的孔槽中,耦合棒416与谐振柱311由此实现容性耦合。为避免耦合棒416与谐振柱311的直接的物理接触,在耦合棒416上套设一由聚四氟乙烯或其它绝缘材料制成的介质套筒(未图示)。
借助以上的连接件41,41’,第一信号通道31的两端的谐振柱311便可分别与公共端口20、所属分支端口21容性耦合连接。
请再结合图1和图2,本发明的第二信号通道32为椭圆函数型低通滤波通道,主要包括形成于腔体12内的多个子腔、设置在相邻两个子腔之间的中间部位的脊部64和竖立在各脊部64之上的多个谐振柱63、于腔体12内横贯腔体12纵长方向并置于谐振柱63上方的导体棒5、穿过导体棒5与各谐振柱63容性耦合连接的多个调谐螺杆61。所述导体棒5两端分别用于连接到所述公共端口20和该通道所属的分支端口22。
请进一步结合图3,以便更清楚地理解本实施例的低通滤波通道的具体结构:
所述多个子腔基本沿同一方向(直线)顺次排布,子腔11-15的空间体积大小依赖于电性能指标的设计实现,较佳的,除该方向上首尾两个子腔11与15的空间体积相对较小外,其余处于中间段的子腔12-14基本上具有相同或相近似的空间体积,可视为等大。
相邻两个相连通的子腔的连通位置处,为开窗结构,在开窗部位的腔体12底壁处,设有高出该底壁的脊部64,在每一脊部64上,竖立设置一个所述的谐振柱63。不同的脊部64适应不同的频段而具有不同的高度。由此形成了多个沿同一直线排布的谐振柱63,这些谐振柱63与开窗结构一起形成了前述等效电感电容串联谐振子中的等效电感。
所述的导体棒5两端分别连接到公共端口20和该通道所属分支端口22的内导体(未图示),导体棒5也被固定在各个谐振柱63的上方。具体而言,导体棒5的一端与该通道32所属分支端口22的内导体直接连接,另一端通过本发明的合分路结构与公共端口20相连接。
本实施例中,导体棒5呈直线状,其主体呈现一个较小的直径,而其在对应所述每个谐振柱的位置处设有局部区段51,该局部区段51的直径则较大。局部区段51的直径大于主体的直径,是为了设置通孔以供调谐螺杆61穿越。
为了使每一调谐螺杆61穿越导体棒5的径向而与相应的谐振柱63实现容性耦合,在所述导体棒5的各个直径较大的局部区段51处径向设置具有螺纹的通孔50,并且,谐振柱63上设有供调谐螺杆61轴向进入的槽孔630。由此,一个调谐螺杆61穿过导体棒5上的一个通孔50后,深入与该通孔50位置相应的谐振柱63的槽孔630,即可实现该调谐螺杆61与相应的谐振柱63之间的容性耦合。为了确保调谐螺杆61与谐振柱63之间的绝缘,在调谐螺杆61外围套设一由聚四氟乙烯或其它绝缘材料制成的介质套筒62。
由以上的说明可以看出,多个调谐螺杆61分别穿过导体棒5上相应的多个通孔50后,分别与位置相对应的谐振柱63容性耦合,该容性耦合即为前述等效电感电容串联谐振子中的等效电容。
这样,相对应的等效电感和等效电容的串联就构成了等效串联谐振子。多个等效串联谐振子进而相配合使低通滤波通路可以在带外很宽的频段范围内(相对带宽可达45%)产生较高的抑制度(70dB以上)。
在本发明未图示的另一实施例中,所述多个子腔的排列可以不在同一方向(直线)上,例如,多个子腔的排列方向形成直角。作为适应性的改变,所述导体棒5也需设计成折弯状。可见,适当地改变本发明的个别部件的结构,依然不影响本发明的技术效果的实现。
为了实现所述第一信号通道31与第二信号通道32的各自一端与公共端口20的连接并藉此实现信号的合分路,本发明因而设置一合分路结构。
参阅图2和图4,本发明的合分路结构包括一个所述的用于连接公共端口20和第一信号通道31的一个与公共端口20相邻的谐振柱311的连接件41,还包括阻抗变换传输线42、谐振柱43以及介质支撑件44。
所述阻抗变换传输线42包括两个在空间上相分离的线段421、422,粗细不等,靠近公共端口20和第一信号通道31的线段421较细,而靠近第二信号通道32的线段422较粗,两个线段421、422之间刚好在两者的中部电性地串接所述的谐振柱43。较细的线段421一端与靠近公共端口20的所述连接件41相焊接,另一端与所述谐振柱43的一侧相焊接;较粗的线段422一端与所述谐振柱43另一侧相焊接,另一端则与所述导体棒5的相应端相焊接。可见,由公共端口20一侧的连接件41到导体棒5处,本发明的阻抗变换传输线42的各线段421、422具有不同直径,是顺次变粗的。所述介质支撑件44固定在腔体12的底壁上,并设计凹槽形成对所述谐振柱43的支撑,确保谐振柱43不接地、与腔体12相绝缘。
所述阻抗变换传输线42的线段421、422数量并不受本优选实施例所限,可以为两段421、422以上,依据实际需要调试确定。多段线段421、422也可一体成型后穿越所述谐振柱43的一个径向贯通孔430设置。如此,所述阻抗变换传输线42包括两段直径不等的线段421、422,两段线段421、422一体成型,可穿越所述谐振柱43的一个贯通孔430设置。这种情况下,可以视为阻抗变换传输线42将谐振柱43贯通串接。
如前所述,邻近公共端口20的连接件41一方面与第一信号通道31的一个最接近的谐振柱311容性耦合,另一方面通过阻抗变换传输线42、谐振柱43与所述第二信号通道32的导体棒5直接物理焊接,即可在公共端口20与两个信号通道31、32之间实现两个频段信号的合分路。
实现合分路的原理在于:对于第一信号通道31,由于连接件41与谐振柱311间容性耦合,其等效电容容值是固定的,在这种情况下,阻抗与频率成反比,因此,较高频段的信号能通过第一信号通道31传输;对于第二信号通道32,由于连接件41至阻抗变换传输线42(含谐振柱43)的这段传输距离等效于电感,在电感感值固定的情况下,阻抗与频率成正比,因此,较低频段的信号能通过第二信号通道32传输。可见,本发明的合分路结构的独特设计实现了对两个不同频段信号的很好的隔离效果。
至于两个信号通道31、32合分路时由阻抗变换传输线42谐振引起的谐振信号,可能引起干扰,但由于谐振柱43的移频作用,谐振信号被搬移到所述两个频段之外,因此,谐振信号便不再成为干扰源,从而确保本发明的通信腔体器件的良好的电气性能。
对于正向从两个分支端口21、22进入的两个不同频段的信号,高频段信号被第一信号通道31滤波后,被合分路结构的连接件41耦合到公共端口20,低频段信号被第二信号通道32滤波后,通过阻抗变换传输线42和谐振柱43传输到连接件41再传输到公共端口20,两个不同频段的信号在连接件41处实现合路并经公共端口20输出。
对于逆向从公共端口20进入的混合信号,经过连接件41后,高频段信号被耦合到第一信号通道31中进行传输和滤波后,经第一信号通道31所属的分支端口21输出;低频段信号经连接件41、阻抗变换传输线42和谐振柱43后,在第二信号通道32中进行传输和滤波,最后经第二信号通道32所属的分支端口22输出。
综上所述,本领域技术人员通过本发明以上的各实施例可知,本发明的合分路结构同样可适用于多频合路器、双工器和滤波器等通信腔体器件中,而不受以上关于双频合路器的说明的限制。
本发明尽管只给出以上实施例,但是,本领域内普通技术人员在通读本说明书后,结合公知常识,应能联想到更多的具体实施方式,但是这样的具体实施方式并不超脱本发明权利要求的精神,任何形式的等同替换或简单修饰均应视为被本发明所包括的实施例。
工业实用性
序列表自由内容

Claims (23)

  1. 一种通信腔体器件,包括在腔体内实现的分别用于传输不同频段信号的两个信号通道,两个信号通道的同一端通过合分路结构对该两个不同频段信号进行合分路并形成公共端口,其特征在于,该合分路结构包括:
    连接件,其一端与公共端口相连接,另一端与第一信号通道容性耦合;
    阻抗变换传输线,其一端与第二信号通道相连接,另一端与所述连接件相连接,且其包含阻抗不等的至少两个线段;
    谐振柱,串接于阻抗变换传输线中部;
    介质支撑件,用于固定所述谐振柱并使谐振柱与腔体相绝缘。
  2. 根据权利要求1所述的通信腔体器件,其特征在于,所述阻抗变换传输线包括两段线段,线段之一的一端与所述连接件相连接,线段之二的一端与所述第二信号通道相连接,两段线段各以自身的另一端与所述谐振柱相连接。
  3. 根据权利要求1所述的通信腔体器件,其特征在于,所述阻抗变换传输线的各个线段一体成形,所述谐振柱沿其径向设有贯通孔,所述阻抗变换传输线穿越所述贯通孔设置。
  4. 根据权利要求1至3中任意一项所述的通信腔体器件,其特征在于,所述阻抗变换传输线中的各段线段的直径不同。
  5. 根据权利要求1至3中任意一项所述的通信腔体器件,其特征在于,所述第一信号通道为带通滤波通道,所述第二信号通道为低通滤波通道。
  6. 根据权利要求5所述的通信腔体器件,其特征在于,所述第二信号通道为椭圆函数型低通滤波通道。
  7. 根据权利要求1至3中任意一项所述的通信腔体器件,其特征在于,所述第一信号通道包含若干谐振柱,与所述公共端口相邻近的谐振柱设有沿该谐振柱径向设置的孔槽,所述连接件置入该孔槽中与该谐振柱容性耦合。
  8. 根据权利要求7所述的通信腔体器件,其特征在于,所述连接件一端与所述公共端口的内导体相连,另一端与所述谐振柱容性耦合。
  9. 根据权利要求8所述的通信腔体器件,其特征在于,所述连接件与所述谐振柱相耦合的部位套设有介质套筒。
  10. 根据权利要求1至3中任意一项所述的通信腔体器件,其特征在于,所述第二信号通道包括多个顺次相连通的子腔、设置于每相邻两个子腔之间的若干谐振柱、置于各谐振柱上方的导体棒以及位置与数量与所述各谐振柱相对应设置的若干调谐螺杆,所述导体棒设置有位置和数量分别与各谐振柱相对应的若干螺孔,各调谐螺杆分别穿过所述的螺孔并分别深入各谐振柱的槽孔中以实现调谐螺杆与谐振柱间的容性耦合,所述阻抗变换传输线与第二信号通道的连接通过物理连接在所述导体棒上实现。
  11. 根据权利要求10所述的通信腔体器件,其特征在于,所述多个子腔沿同一方向上排布,所述导体棒相应呈直线状。
  12. 根据权利要求10所述的通信腔体器件,其特征在于,所述多个子腔不在同一方向上排布,所述导体棒相应呈折弯状。
  13. 根据权利要求10所述的通信腔体器件,其特征在于,所述导体棒的通孔周围的局部区段的直径大于导体棒主体的直径。
  14. 根据权利要求10所述的通信腔体器件,其特征在于,所述谐振柱与金属腔体的底壁之间设有脊部,所述各个谐振柱所对应的各个脊部的高度不同。
  15. 根据权利要求10所述的通信腔体器件,其特征在于,所述多个子腔中,位于首尾两个子腔之间的其余子腔均等大。
  16. 根据权利要求10所述的通信腔体器件,其特征在于,所述调谐螺杆与谐振柱之间设有介质套筒。
  17. 一种合路器/双工器/滤波器,其特征在于,其采用与权利要求1至16中任意一项所述的通信腔体器件相同的结构。
  18. 一种合分路结构,用于通信腔体器件中,其特征在于,其包括:
    连接件,其一端形成公共端口,另一端用于耦合通信腔体器件的第一频段信号;
    阻抗变换传输线,其一端用于接入通信腔体器件的第二频段信号,另一端与所述连接件相连接,且其包含阻抗不等的至少两个线段;
    谐振柱,串接于阻抗变换传输线中部;
    介质支撑件,用于固定所述谐振柱并使谐振柱与通信腔体器件的腔体相绝缘。
  19. 根据权利要求18所述的合分路结构,其特征在于,所述阻抗变换传输线包括两段线段,线段之一的一端与所述连接件相连接,线段之二的一端与所述第二信号通道相连接,两段线段各以自身的另一端与所述谐振柱相连接。
  20. 根据权利要求18所述的合分路结构,其特征在于,所述阻抗变换传输线的的各个线段一体成形,所述谐振柱沿其径向设有贯通孔,所述阻抗变换传输线穿越所述贯通孔设置。
  21. 根据权利要求18至20中任意一项所述的合分路结构,其特征在于,所述阻抗变换传输线中的各段线段的直径不同。
  22. 根据权利要求21所述的合分路结构,其特征在于,所述阻抗变换传输线,自靠近所述连接件的一端至另一端,其各线段的直径依次变粗。
  23. 一种合路器/双工器/滤波器,其特征在于,其采用如权利要求18至22中任意一项所述的合分路结构。
PCT/CN2012/079077 2011-08-24 2012-07-24 通信腔体器件及其合分路结构 WO2013026340A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112014003555-5A BR112014003555B1 (pt) 2011-08-24 2012-07-24 Componente da cavidade de comunicação e sua estrutura de combinação e distribuição

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110247232.3 2011-08-24
CN2011102472323A CN102386463B (zh) 2011-08-24 2011-08-24 通信腔体器件及其合分路结构

Publications (1)

Publication Number Publication Date
WO2013026340A1 true WO2013026340A1 (zh) 2013-02-28

Family

ID=45825606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079077 WO2013026340A1 (zh) 2011-08-24 2012-07-24 通信腔体器件及其合分路结构

Country Status (3)

Country Link
CN (1) CN102386463B (zh)
BR (1) BR112014003555B1 (zh)
WO (1) WO2013026340A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394332A (zh) * 2017-08-10 2017-11-24 京信通信系统(中国)有限公司 共用端口耦合装置及微波腔体器件

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386463B (zh) * 2011-08-24 2013-11-20 京信通信系统(中国)有限公司 通信腔体器件及其合分路结构
CN103972615B (zh) * 2013-01-29 2016-07-06 京信通信系统(中国)有限公司 新型低通滤波通路及采用它的通信腔体器件
CN104852108B (zh) * 2015-04-29 2018-10-19 上海华为技术有限公司 一种多工器的输入输出装置及多工器
WO2017113328A1 (zh) * 2015-12-31 2017-07-06 深圳市大富科技股份有限公司 腔体滤波器及其低通片和制作方法
CN105428761B (zh) * 2016-01-04 2018-05-29 张家港保税区灿勤科技有限公司 高抑制低损耗调螺免调试tem介质双工器及其制作方法
CN108879050B (zh) * 2018-07-23 2024-01-30 京信通信技术(广州)有限公司 带阻滤波器及通信腔体器件
CN110474141B (zh) * 2019-08-08 2024-02-27 京信通信技术(广州)有限公司 合路器
CN114243237B (zh) * 2021-12-20 2023-04-11 大富科技(安徽)股份有限公司 低通滤波结构及滤波器
CN116526098B (zh) * 2023-05-08 2024-02-23 宁波华瓷通信技术股份有限公司 一种多频合路器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160729A (ja) * 1999-12-02 2001-06-12 New Japan Radio Co Ltd ダイプレクサ
CN1988417A (zh) * 2006-12-11 2007-06-27 武汉虹信通信技术有限责任公司 宽频合路方法及其合路器
CN201018487Y (zh) * 2007-03-12 2008-02-06 京信通信系统(中国)有限公司 超宽带双频合路器
CN101258640A (zh) * 2005-09-05 2008-09-03 国立大学法人电气通信大学 分波电路及其设计方法
CN101542925A (zh) * 2007-01-19 2009-09-23 株式会社村田制作所 高频部件
CN102386463A (zh) * 2011-08-24 2012-03-21 京信通信系统(中国)有限公司 通信腔体器件及其合分路结构
CN202196844U (zh) * 2011-08-24 2012-04-18 京信通信系统(中国)有限公司 通信腔体器件及其合分路结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200986960Y (zh) * 2006-12-12 2007-12-05 摩比天线技术(深圳)有限公司 滤波器和公共端口之间的耦合结构及采用该结构的双工器
CN201018482Y (zh) * 2007-03-12 2008-02-06 京信通信系统(中国)有限公司 双频合路器
CN201918479U (zh) * 2011-01-18 2011-08-03 京信通信系统(中国)有限公司 可调节的高相对带宽合路器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160729A (ja) * 1999-12-02 2001-06-12 New Japan Radio Co Ltd ダイプレクサ
CN101258640A (zh) * 2005-09-05 2008-09-03 国立大学法人电气通信大学 分波电路及其设计方法
CN1988417A (zh) * 2006-12-11 2007-06-27 武汉虹信通信技术有限责任公司 宽频合路方法及其合路器
CN101542925A (zh) * 2007-01-19 2009-09-23 株式会社村田制作所 高频部件
CN201018487Y (zh) * 2007-03-12 2008-02-06 京信通信系统(中国)有限公司 超宽带双频合路器
CN102386463A (zh) * 2011-08-24 2012-03-21 京信通信系统(中国)有限公司 通信腔体器件及其合分路结构
CN202196844U (zh) * 2011-08-24 2012-04-18 京信通信系统(中国)有限公司 通信腔体器件及其合分路结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394332A (zh) * 2017-08-10 2017-11-24 京信通信系统(中国)有限公司 共用端口耦合装置及微波腔体器件
CN107394332B (zh) * 2017-08-10 2023-03-24 京信通信技术(广州)有限公司 共用端口耦合装置及微波腔体器件

Also Published As

Publication number Publication date
BR112014003555B1 (pt) 2023-05-16
CN102386463B (zh) 2013-11-20
BR112014003555A2 (pt) 2017-03-01
CN102386463A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2013026340A1 (zh) 通信腔体器件及其合分路结构
US20210336315A1 (en) In-line filter having mutually compensating inductive and capactive coupling
JP6676171B2 (ja) フィルタおよびワイヤレスネットワークデバイス
WO2013022250A9 (ko) 노치 구조를 채용한 무선 주파수 필터
CN102354778B (zh) 椭圆函数型低通滤波通路及采用它的通信腔体器件
AU2017375168B2 (en) High-performance band-stop filter and communications cavity device thereof
WO2013147524A1 (ko) 대역폭 가변 rf 필터
WO2013044743A1 (zh) 通信腔体器件及其椭圆函数型低通滤波通路
WO2014117482A1 (zh) 新型低通滤波通路及采用它的通信腔体器件
CN209183693U (zh) 射频腔体器件
CN106816675B (zh) 腔体式带阻滤波器及射频器件
WO2013118938A1 (ko) 다중 대역 통과 필터
WO2016072647A1 (ko) 듀플렉서
CN202196844U (zh) 通信腔体器件及其合分路结构
CN208539072U (zh) 带阻滤波器及通信腔体器件
CN107528560B (zh) 一种激光定位系统滤波组件
WO2021003836A1 (zh) 滤波器及其多零点实现模块
WO2016072643A2 (ko) 필터
CN102623776A (zh) 基于同轴腔体的带阻滤波器
CN206541914U (zh) 合路分路器
CN210093219U (zh) 一种多频段信号合路器
CN203013886U (zh) 腔体器件及其椭圆函数型低通滤波器
CN202454701U (zh) 多频合路器
CN103855447B (zh) 腔体器件及其椭圆函数型低通滤波器
Ouyang et al. Compact balanced filters with enhanced differential-mode out-of-band response using coupled slotline structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014003555

Country of ref document: BR

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 12825463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014003555

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140214