WO2013118938A1 - 다중 대역 통과 필터 - Google Patents

다중 대역 통과 필터 Download PDF

Info

Publication number
WO2013118938A1
WO2013118938A1 PCT/KR2012/002061 KR2012002061W WO2013118938A1 WO 2013118938 A1 WO2013118938 A1 WO 2013118938A1 KR 2012002061 W KR2012002061 W KR 2012002061W WO 2013118938 A1 WO2013118938 A1 WO 2013118938A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
pass filter
filter
cavities
high pass
Prior art date
Application number
PCT/KR2012/002061
Other languages
English (en)
French (fr)
Inventor
조학래
서수덕
Original Assignee
주식회사 이너트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이너트론 filed Critical 주식회사 이너트론
Priority to US14/123,045 priority Critical patent/US9583806B2/en
Publication of WO2013118938A1 publication Critical patent/WO2013118938A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2082Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with multimode resonators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure

Definitions

  • the present invention relates to a multi-band pass filter, more specifically, a multi-band pass filter in which one high pass filter and at least one band reject filter are coupled in series to one housing in order to facilitate miniaturization and matching characteristics. It is about.
  • the RF filter used in the mobile communication band includes low pass filter (LPF), band pass filter (BPF), high pass filter (HPF), and band stop filter. (Band Stop Filter: BSF).
  • LPF low pass filter
  • BPF band pass filter
  • HPF high pass filter
  • BSF Band Stop Filter
  • the band pass filter and the band stop filter have been recently used to increase the number of operators and to efficiently use the limited frequency resources.
  • the band pass filter In modern high frequency mobile communication system, which divides several frequencies into small bands, the band pass filter must accurately select the desired frequency band, and the band pass filter that passes all the frequency bands well but does not pass only the frequency of the specific band has the role of call quality. Because it is directly connected with.
  • the principle of such a filter uses resonance by a combination of inductance (L) and capacitance (C). Accordingly, the filter may implement a band stop filter or a band pass filter suitable for the application by various combinations of inductance components and capacitance components.
  • a mobile communication system 10 includes a plurality of band pass filters 12 to 16 between a base station system 2 and an antenna 4 so as to pass different frequency bands. ).
  • the band pass filters 12 to 16 are connected in parallel to each other to pass different frequency bands f1, f2 and f3. To this end, the mobile communication system 10 needs characteristic matching between the band pass filters 12 to 16.
  • the mobile communication system 10 includes a combination device and a split device 20 and 30 for coupling or separating high frequency signals to both sides. It is necessary.
  • the conventional mobile communication system 10 is very difficult to match the characteristics of the band pass filters 12 to 16 connected in parallel, so that it is difficult to realize the actual filter product.
  • Another object of the present invention is to provide a multi-band pass filter that is easy to match characteristics.
  • Another object of the present invention is to provide a multi-band pass filter having a high pass filter and at least one band reject filter in one housing to pass different frequency bands.
  • the multi-band pass filter of the present invention is characterized by having a high pass filter and at least one band reject filter in one housing.
  • Such a multi-band pass filter may pass different frequency bands.
  • Multi-band pass filter of the present invention one input terminal and one output terminal is provided with a housing spaced apart from each other; A high pass filter installed at one inner side of the housing and electrically connected to the input terminal, the high pass filter forming a plurality of resonator patterns in a circuit pattern on a printed circuit board; A plurality of cavities are formed in the housing, and each of the cavities includes a resonator, connected in series with the high pass filter, and a dual band stop filter provided between the high pass filter and the output terminal. .
  • the dual band reject filter comprises; Some of the cavities are arranged adjacent to the high pass filter, and having a transmission line installed side by side in a plurality of resonators installed inside the portion, a first band stop connected in series with the high pass filter A filter; The remainder of the cavities is mutually in series with the first band reject filter through the transmission line which is arranged between the first band reject filter and the output stage and is installed side by side in a plurality of resonators installed inside the remainder. And a second band reject filter connected.
  • the first band reject filter blocks a frequency band that is larger than a frequency band of the high pass filter and a frequency band that is smaller than a frequency band of the second band reject filter.
  • the housing Grooves are formed from the top to the bottom to provide the cavities, the cavities are arranged in a plurality of rows and a plurality of columns, and cavities positioned at both ends of the row or the column of the cavities in the signal transmission path.
  • a plurality of connecting passages are formed to correspond to each other.
  • connection passages connects the first and second band reject filters.
  • each of the connection passages is provided with the transmission line for signal transmission between the cavities located at both ends therein.
  • each of the first and second band rejection filters may include a number of the cavity and the resonator, a size of the resonator, a thickness of the transmission line, a spacing and a cross-sectional area of the resonator and the transmission line.
  • the strength of the frequency band and the stop band to be blocked is adjusted according to at least one.
  • the multi-band pass filter of the present invention can be miniaturized by providing a high pass filter and at least one band-stop filter in one housing, and facilitate matching without a separate combination device or slit device. Can be.
  • the multi-band pass filter of the present invention can pass different frequency bands by connecting a high pass filter and at least one band reject filter in series to one housing.
  • the multi-band pass filter of the present invention can obtain the same effect as the configuration in which a plurality of band pass filters passing through different frequency bands are connected in parallel.
  • the multi-band pass filter of the present invention is suitable for use in mobile communication systems of various mobile communication companies using different frequency bands.
  • FIG. 1 is a diagram showing the configuration of a band pass filter for passing different frequency bands according to the prior art
  • FIG. 2 is a waveform diagram showing expected characteristics of the multi-band pass filter shown in FIG. 1;
  • FIG. 3 illustrates a configuration of a multi band pass filter according to the present invention
  • FIG. 4 is a waveform diagram showing expected characteristics of the multi-band pass filter shown in FIG.
  • FIG. 5 is a diagram showing the configuration of a multi-band pass filter according to an embodiment of the present invention.
  • FIG. 6 shows a detailed configuration of the high pass filter shown in FIG. 5;
  • FIG. 7 shows a detailed configuration of the dual band reject filter shown in FIG. 5;
  • FIG. 8 is a waveform diagram showing the frequency characteristics of the multi-band pass filter shown in FIG.
  • FIG. 9 is a circuit diagram formed by the configuration of a multi-band pass filter according to another embodiment of the present invention.
  • FIG. 3 is a view showing a schematic configuration of a multi-band pass filter according to the present invention
  • Figure 4 is a waveform diagram showing the expected characteristics of the multi-band pass filter shown in FIG.
  • the multi-band pass filter 100 includes a housing 110 having an open top, one high pass filter 120 installed inside the housing 110, and at least one band reject filter 130. ).
  • the multi-band pass filter 100 further includes a housing cover (not shown) covering the upper portion of the housing 110.
  • the housing 110 has one input terminal 102 and one output terminal 104.
  • a high pass filter 120 and at least one band reject filter 130 are connected in series between an input terminal 102 and an output terminal 104 inside the housing 110.
  • the multi-band pass filter 100 blocks a high frequency signal filtered from the high pass filter 120 through at least one band reject filter 130, thereby suppressing a specific frequency band.
  • high frequency signals of different frequency bands f1, f2, and f3 may be passed.
  • This provides the effect of passing different frequency bands using one multi-band pass filter 100 in a mobile communication system.
  • a plurality of bands may be passed according to a plurality of mobile carriers assigned different frequency bands or used for different frequency bands (eg, Wibro, 4G, etc.). The problem of having a pass filter can be solved.
  • the multi-band pass filter 100 may be connected in series with each other in order of at least one band reject filter 130 and one high pass filter 120 in the housing 110.
  • the multi-band pass filter 100 may obtain the same expected characteristics as in FIG. 4 due to frequency reversibility.
  • FIG. 5 is a diagram showing the configuration of a multi-band pass filter according to an embodiment of the present invention
  • Figure 6 is a view showing a detailed configuration of the high pass filter shown in Figure 5
  • Figure 7 is shown in FIG. A diagram showing a detailed configuration of the dual band reject filter.
  • a multi-band pass filter 100 includes a cover 106 having one input terminal 102 and one output terminal 104, a housing 110,
  • the housing 110 includes one high pass filter (HPF) 120 and two, that is, dual band reject filters (dual BRFs) 130 (140, 150).
  • HPF high pass filter
  • dual BRFs dual band reject filters
  • the housing 110 is provided with a rectangular metal shape with an open top, and has an input terminal 102 and an output terminal 104 for signal transmission.
  • the open top of the housing 110 is coupled with the cover 106.
  • Each of the input terminal 102 and the output terminal 104 is mounted from the outside of the housing 110 to the inside.
  • the input terminal 102 is electrically connected to the circuit pattern of the high pass filter 120 inside the housing 110, and the output terminal 104 is electrically connected to the dual band reject filter 130 inside the housing 110. do.
  • the input terminal 102 and the output terminal 104 are spaced apart from the same side of the housing 110.
  • the housing 110 provides a space in which the high pass filter 120 is installed at one side of the interior close to the input terminal 102, and provides a space in which the dual band reject filter 130 is installed in the remaining portion of the housing 110.
  • the remaining portion of the housing 110 forms a plurality of cavities 132 in a structure arranged in the horizontal and vertical direction. That is, the cavities 132 are arranged to have a plurality of rows and a plurality of columns in the remaining part of the housing 110.
  • Each of the cavities 132 is provided in a groove shape so that the partition wall 136 is formed between adjacent cavities, and is formed to extend in a downward direction from the top of the housing 110.
  • the cavities 132 are disposed in the horizontal and vertical directions to have a plurality of rows and columns.
  • the cavities 132 are coupled in series with each other.
  • some of the cavities 132 constituting the dual band reject filter 130 are configured as the first band reject filter 140, and others are configured as the second band reject filter 140.
  • a portion of the adjacent cavity 132 is opened, the partition wall 136 is formed with a window, each of the cavity 132 is provided with a resonator 134.
  • the housing 110 also provides a plurality of connection passages (142 in FIG. 7) for coupling in series the cavities arranged in different rows (or columns) of the cavities 132.
  • Each of the connecting passages 142 is provided in a groove shape to interconnect the cavities disposed at the ends of different rows (or columns).
  • each of the connection passages 142 is provided with a transmission line (not shown) for coupling the corresponding cavities.
  • the particular connection passage 142 is provided with a transmission line for electrically connecting the first and second band rejection filters 140, 150 inside the housing.
  • the cavities 132 are connected in series with each other and are coupled in a zigzag direction.
  • the high pass filter (HPF) 120 is installed at one side of the housing 110, that is, the portion close to the input terminal 102.
  • the high pass filter 120 has one end (124a of FIG. 6) electrically connected to the input terminal 102 at one side inside the housing 110, and the other end (124b of FIG. 6) is electrically connected with the dual band stop filter 130. Is connected.
  • a circuit pattern 124 is formed on the printed circuit board 122.
  • the circuit pattern 124 forms a transmission line and a plurality of resonator patterns.
  • High pass filter 120 forms transmission line and resonator patterns, for example, as conductive microstrip circuit pattern 124 on dielectric substrate 122.
  • the high pass filter 120 has a microstrip circuit pattern 124 silver-plated on a surface of the dielectric substrate 122 at a predetermined thickness (for example, about 10 ⁇ m), and between the microstrip circuit patterns 124.
  • a transmission line and a resonator pattern are designed to pass a desired high frequency band by adjusting the interval and the width and width of the microstrip circuit pattern 124.
  • the dual band reject filter (Dual BRF) 130 is composed of the first and second band reject filter (140, 150).
  • the first and second band reject filters 140 and 150 respectively block different frequency bands.
  • the first band reject filter 140 blocks a lower frequency band than the second band reject filter 150.
  • the first band reject filter 140 may block a higher frequency band than the second band reject filter 150.
  • Each of the first and second band rejection filters 140 and 150 includes a plurality of cavities 132, and each of the cavities 132 is provided with a resonator 134.
  • the resonators 134 are provided in a rod or rod shape, and are installed vertically from the bottom of the cavity 132 in an upward direction.
  • the resonators 134 of the first band reject filter 140 are provided as low band stop resonators that block low band frequencies, and the resonators 134 of the second band stop filter 150 block high band frequencies.
  • a high band stop resonator is provided.
  • the resonator 134 of the first band rejection filter 140 has a smaller structure (ie, cross-sectional area) than the resonator 134 of the second band rejection filter 150.
  • Each of the first and second band reject filters 140 and 150 is provided with a transmission line 138 for signal transmission, as shown in FIG. 7.
  • the transmission line 138 is installed in a window in which a part of the partition wall 136 is opened and is disposed at the side of the resonator 134. Therefore, the transmission line 138 is arranged in parallel with the resonators 134.
  • the transmission line 138 is inserted into each of the plurality of connection passages 142 to couple the corresponding resonators.
  • the transmission line 138 is formed of, for example, a metal material, and both ends thereof are electrically connected to the circuit pattern 124b and the output terminal 104 of the high pass filter 120 inside the housing 110.
  • the transmission line 130 has a structure including a coaxial line electrically connecting the high pass filter 120 and the output end 104, and a capacitive conductor having an outer circumferential surface spaced apart from each side of the resonator 134 by a predetermined distance.
  • the coaxial line is located on the window of the partition 136 and the capacitive conductor is disposed at a position corresponding to the side of the resonators 134. That is, the capacitive conductor is provided on the coaxial line at the position where the resonators 134 are disposed on one side.
  • the capacitive conductor is provided in a cylindrical or cylindrical shape extending outward from the central axis of the coaxial line and having a diameter larger than that of the coaxial line.
  • Each of the first and second band rejection filters 140 and 150 may include the number of cavities 132 and the resonator 134, the size of the resonator 134, the thickness of the transmission line 138, the transmission of the resonator 134 and transmission.
  • the intensity of the frequency band and the stop band to be blocked can be adjusted according to the distance and the cross-sectional area of the line 138.
  • the first band reject filter 140 is provided with a smaller number of cavities 132 and resonators 134 than the second band reject filter 150.
  • the high-band high-frequency signal passed by the high pass filter 120 is driven by the first and second band reject filters 140 and 150.
  • the first and second band reject filters 140 and 150 By forming two band reject sections, three band pass sections for passing substantially different frequency bands are formed.
  • the multi-band rejection filter 100 of the present invention includes a high pass filter 120 formed of a printed circuit board type in one housing 110 and at least one band reject filter 130 formed of a resonator type. And 150) in series with each other, it is easy to match characteristics, can pass different frequency bands, and can be miniaturized.
  • FIG. 9 is a circuit diagram formed by the configuration of a multi-band pass filter according to another embodiment of the present invention.
  • the dual band rejection filter in the circuit diagram of this embodiment includes eight resonators, the circuit diagram is obviously changed corresponding to the number of resonators.
  • the multi-band rejection filter 100 has input and output terminations Term1 and Term2 having impedances of about 50 Ohms at both ends respectively connected to the input terminal 102 and the output terminal 104.
  • the multi-band rejection filter 100 is provided with a high pass filter 120 and a dual band rejection filter 130 (140, 150) between the input and output termination (Term1, Term2).
  • the high pass filter 120 is formed by a circuit pattern of a printed circuit board, and includes a plurality of capacitors C1 to C6 and a plurality of inductors L1 to L5 formed between the capacitors C1 to C6. ). Each of the inductors L1 to L5 is connected in parallel with each other, and is connected in series with each of the capacitors C1 to C6. In addition, the high pass filter 120 includes a plurality of capacitors C7 and C8 and one inductor L6 connected in series with each other at a portion connected to the dual band rejection filter 130.
  • the dual band rejection filter 130 includes a plurality of LC parallel resonant circuits PLC1 to PLC8 formed by the transmission line 138 and a plurality of LC series resonant circuits C9 formed by each of the plurality of resonators 134. , L7, C10 to C21, L13, and C22).
  • Each of the LC parallel resonant circuits PLC1 to PLC8 has one inductor and one capacitor connected in parallel with each other.
  • Each of the LC series resonant circuits C7, L6, C8 to C21, L13, and C22 is formed between the adjacent LC parallel resonant circuits PLC1 to PLC8 and between ground.
  • Each of the LC series resonant circuits C7, L6, C8 to C21, L13, and C22 has one inductor L7 to L13 and two capacitors C7 to C11 connected in series. That is, each of the inductors L7 to L11 is located between two capacitors.
  • the multi-band pass filter 100 of the present invention combines the high pass filter 120 and the at least one band reject filter 130 in one housing 110 in series with each other. Pass different frequency bands.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

본 발명은 소형화 및 매칭 특성이 용이하기 위한 다중 대역 통과 필터에 관한 것이다. 다중 대역 통과 필터는 하나의 하우징에 하나의 고역 통과 필터와 적어도 하나의 대역 저지 필터가 상호 직렬로 결합된다. 고역 통과 필터는 인쇄회로기판에 전송 라인 및 공진기 패턴을 형성한다. 듀얼 대역 저지 필터는 제 1 및 제 2 대역 저지 필터를 포함하고, 고역 통과 필터와 상호 직렬로 연결된다. 이러한 다중 대역 통과 필터는 서로 다른 주파수 대역을 통과시킬 수 있다. 본 발명에 의하면, 소형화가 가능하고, 별도의 콤비네이션 장치나 슬릿 장치없이 매칭을 용이하게 할 수 있다.

Description

다중 대역 통과 필터
본 발명은 다중 대역 통과 필터에 관한 것으로, 좀 더 구체적으로 소형화 및 매칭 특성이 용이하기 위하여, 하나의 하우징에 하나의 고역 통과 필터와 적어도 하나의 대역 저지 필터가 상호 직렬로 결합되는 다중 대역 통과 필터에 관한 것이다.
이동 통신 대역에서 사용되는 고주파 필터(RF Filter)에는 저역 통과 필터(Low Pass Filter : LPF), 대역 통과 필터(Band Pass Filter : BPF), 고역 통과 필터(High Pass Filter : HPF) 및, 대역 저지 필터(Band Stop Filter : BSF) 등으로 구분된다. 그 중 대역 통과 필터와 대역 저지 필터는 많은 사업자의 등장과 한정된 주파수 자원을 효율적으로 사용하기 위해 최근 그 사용이 증가하고 있다.
이는 여러 주파수를 잘게 나누어 쓰는 현대의 고주파 이동 통신 시스템에서 원하는 주파수 대역만 정확하게 골라내야 하는 대역 통과 필터와, 모든 주파수 대역은 잘 통과시키면서 특정 대역의 주파수만 통과시키지 않는 대역 저지 필터의 역할이 통화 음질과 직결되기 때문이다. 이러한 필터의 원리는 인덕턴스(inductance : L)와, 캐패시턴스(Capacitance : C)의 조합에 의한 공진을 이용한다. 따라서 필터는 인덕턴스 성분과 캐패시턴스 성분을 다양하게 조합함에 따라, 용도에 적합한 대역 저지 필터 또는 대역 통과 필터를 구현할 수 있다.
도 1 및 도 2를 참조하면, 종래기술에 따른 이동 통신 시스템(10)은 서로 다른 주파수 대역을 통과시키기 위하여, 기지국 시스템(2)과 안테나(4) 사이에 복수 개의 대역 통과 필터(12 ~ 16)들을 구비한다. 대역 통과 필터(12 ~ 16)들은 상호 병렬로 연결되어 서로 다른 주파수 대역(f1, f2, f3)을 통과시킨다. 이를 위해 이동 통신 시스템(10)은 대역 통과 필터(12 ~ 16)들 간의 특성 매칭이 필요하다.
이러한 이동 통신 시스템(10)은 상호 병렬로 연결된 복수 개의 대역 통과 필터(12 ~ 16)들의 특성을 매칭시키기 위하여, 양측 각각에 고주파 신호를 결합하거나 분리하는 콤비네이션 장치 및 스플릿 장치(20, 30)가 필요하게 된다. 그러나 종래기술의 이동 통신 시스템(10)은 병렬로 연결되는 대역 통과 필터(12 ~ 16)들 간의 특성 매칭이 매우 어려워서, 실제 필터 제품으로 구현하기가 어렵다.
본 발명의 목적은 소형화가 가능한 다중 대역 통과 필터를 제공하는 것이다.
본 발명의 다른 목적은 특성 매칭이 용이한 다중 대역 통과 필터를 제공하는 것이다.
본 발명의 또 다른 목적은 하나의 하우징에 고역 통과 필터와 적어도 하나의 대역 저지 필터를 구비하여 서로 다른 주파수 대역을 통과시키는 다중 대역 통과 필터를 제공하는 것이다.
상기 목적들을 달성하기 위한, 본 발명의 다중 대역 통과 필터는 하나의 하우징에 고역 통과 필터와 적어도 하나의 대역 저지 필터를 구비하는데 그 한 특징이 있다. 이와 같은 다중 대역 통과 필터는 서로 다른 주파수 대역을 통과시킬 수 있다.
이 특징에 따른 본 발명의 다중 대역 통과 필터는, 하나의 입력단과 하나의 출력단이 상호 이격되어 구비되는 하우징과; 상기 하우징의 내부 일측에 설치되어 상기 입력단에 전기적으로 연결되고, 인쇄회로기판 상의 회로 패턴으로 복수 개의 공진기 패턴들을 형성하는 고역 통과 필터 및; 상기 하우징 내부에 복수 개의 공동들을 형성하고, 상기 공동들 각각에 공진기가 구비되어, 상기 고역 통과 필터와 상호 직렬로 연결되며, 상기 고역 통과 필터와 상기 출력단 사이에 제공되는 듀얼 대역 저지 필터를 포함한다.
한 실시예에 있어서, 상기 듀얼 대역 저지 필터는; 상기 공동들 중 일부가 상기 고역 통과 필터와 인접하게 배열되고, 상기 일부의 내부에 설치된 복수 개의 공진기들에 나란하게 설치되는 전송 선로를 구비하여 상기 고역 통과 필터와 상호 직렬로 연결되는 제 1 대역 저지 필터와; 상기 공동들 중 나머지가 상기 제 1 대역 저지 필터와 상기 출력단 사이에 배열되고, 상기 나머지의 내부에 설치된 복수 개의 공진기들에 나란하게 설치되는 상기 전송 선로를 통해 상기 제 1 대역 저지 필터와 상호 직렬로 연결되는 제 2 대역 저지 필터를 포함한다.
다른 실시예에 있어서, 상기 제 1 대역 저지 필터는 상기 고역 통과 필터의 주파수 대역보다 큰 주파수 대역을 저지하고, 상기 제 2 대역 저지 필터의 주파수 대역보다 작은 주파수 대역을 저지한다.
또 다른 실시예에 있어서, 상기 하우징은; 상부에서 하부 방향으로 홈을 형성하여 상기 공동을 구비하고, 상기 공동들을 복수 개의 행과 복수 개의 열로 배열되게 형성하고, 그리고 상기 공동들 중 상기 행 또는 상기 열의 양단에 위치하는 공동들을 신호 전송 경로에 대응하여 상호 연결하도록 복수 개의 연결 통로를 형성한다.
또 다른 실시예에 있어서, 상기 연결 통로들 중 하나는 상기 제 1 및 상기 제 2 대역 저지 필터들을 연결한다.
또 다른 실시예에 있어서, 상기 연결 통로들 각각은 내부에 상기 양단에 위치하는 공동들 간에 신호 전송을 위한 상기 전송 선로가 삽입 설치된다.
또 다른 실시예에 있어서, 상기 제 1 및 상기 제 2 대역 저지 필터들 각각은 상기 공동 및 상기 공진기의 갯수, 상기 공진기의 크기, 상기 전송 선로의 굵기, 상기 공진기와 상기 전송 선로의 간격 및 단면적 중 적어도 하나에 따라 저지되는 주파수 대역 및 저지 대역의 세기가 조절된다.
상술한 바와 같이, 본 발명의 다중 대역 통과 필터는 하나의 하우징에 고역 통과 필터와, 적어도 하나의 대역 저지 필터를 제공함으로써, 소형화가 가능하고, 별도의 콤비네이션 장치나 슬릿 장치없이 매칭을 용이하게 할 수 있다.
또 본 발명의 다중 대역 통과 필터는 하나의 하우징에 고역 통과 필터와, 적어도 하나의 대역 저지 필터를 직렬로 연결함으로써, 서로 다른 주파수 대역을 통과시킬 수 있다.
또 본 발명의 다중 대역 통과 필터는 서로 다른 주파수 대역을 통과시키는 복수 개의 대역 통과 필터들이 병렬로 연결되는 구성과 동일한 효과를 얻을 수 있다.
이로 인하여 본 발명의 다중 대역 통과 필터는 서로 다른 주파수 대역을 이용하는 다양한 이동 통신사의 이동 통신 시스템에 이용하기에 적합하다.
도 1은 종래기술에 따른 서로 다른 주파수 대역을 통과하기 위한 대역 통과 필터의 구성을 도시한 도면;
도 2는 도 1에 도시된 다중 대역 통과 필터의 기대 특성을 도시한 파형도;
도 3은 본 발명에 따른 다중 대역 통과 필터의 구성을 도시한 도면;
도 4는 도 3에 도시된 다중 대역 통과 필터의 기대 특성을 도시한 파형도;
도 5는 본 발명의 일 실시예에 따른 다중 대역 통과 필터의 구성을 도시한 도면;
도 6은 도 5에 도시된 고역 통과 필터의 상세한 구성을 도시한 도면;
도 7은 도 5에 도시된 듀얼 대역 저지 필터의 상세한 구성을 도시한 도면;
도 8은 도 5에 도시된 다중 대역 통과 필터의 주파수 특성을 도시한 파형도; 그리고
도 9는 본 발명의 다른 실시예에 따른 다중 대역 통과 필터의 구성에 의해 형성되는 회로도이다.
본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 서술하는 실시예로 인해 한정되어지는 것으로 해석되어서는 안된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서 도면에서의 구성 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어진 것이다.
이하 첨부된 도 3 내지 도 9를 참조하여 본 발명의 실시예를 상세히 설명한다.
도 3은 본 발명에 따른 다중 대역 통과 필터의 개략적인 구성을 도시한 도면이고, 도 4는 도 3에 도시된 다중 대역 통과 필터의 기대 특성을 나타내는 파형도이다.
도 3을 참조하면, 다중 대역 통과 필터(100)는 상부가 개방된 하우징(110)과, 하우징(110) 내부에 설치되는 하나의 고역 통과 필터(120)와, 적어도 하나의 대역 저지 필터(130)를 포함한다. 또 다중 대역 통과 필터(100)는 하우징(110)의 상부를 덮는 하우징 커버(미도시됨)를 더 포함한다.
하우징(110)은 하나의 입력단(102)과 하나의 출력단(104)을 구비한다. 다중 대역 통과 필터(100)는 하우징(110) 내부의 입력단(102)과 출력단(104) 사이에서 고역 통과 필터(120)와 적어도 하나의 대역 저지 필터(130)가 상호 직렬로 연결된다.
이러한 다중 대역 통과 필터(100)는 도 4에 도시된 바와 같이, 고역 통과 필터(120)로부터 필터링된 고주파 신호를 적어도 하나의 대역 저지 필터(130)를 통해 특정 주파수 대역을 저지하므로, 대역 저지 필터(130)의 갯수에 따라 서로 다른 주파수 대역(f1, f2, f3)의 고주파 신호를 통과시킬 수 있다. 이는 이동 통신 시스템에서 하나의 다중 대역 통과 필터(100)를 이용하여 서로 다른 주파수 대역을 통과시킬 수 있는 효과를 제공한다. 예를 들어, 서로 다른 주파수 대역을 할당받은 복수 개의 이동 통신사별로 서로 다른 주파수 대역을 통과시키거나, 또는 서로 다른 주파수 대역을 사용하는 용도(예를 들어, Wibro, 4G 등)에 따라, 복수 개의 대역 통과 필터를 구비해야 하는 문제점을 해결할 수 있다.
또 다중 대역 통과 필터(100)는 도 3과는 달리 하우징(110) 내부에서 적어도 하나의 대역 저지 필터(130), 하나의 고역 통과 필터(120) 순으로 상호 직렬로 연결되어 제공할 수도 있다. 이러한 다중 대역 통과 필터(100)는 주파수 가역성으로 인해 도 4와 동일한 기대 특성을 얻을 수 있다.
도 5는 본 발명의 일 실시예에 따른 다중 대역 통과 필터의 구성을 도시한 도면이고, 도 6은 도 5에 도시된 고역 통과 필터의 상세한 구성을 도시한 도면이고, 도 7은 도 5에 도시된 듀얼 대역 저지 필터의 상세한 구성을 도시한 도면이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 다중 대역 통과 필터(100)는 하나의 입력단(102)과 하나의 출력단(104)을 구비하는 커버(106)와, 하우징(110)과, 하우징(110) 내부에 하나의 고역 통과 필터(High Pass Filter : HPF)(120)와, 두 개 즉, 듀얼 대역 저지 필터(Dual Band Reject Filter : Dual BRF)(130 : 140, 150)를 포함한다. 고역 통과 필터(120)와 듀얼 대역 저지 필터(130)는 입력단(102)과 출력단(104) 사이에서 상호 직렬로 연결된다.
*하우징(110)은 상부가 개방된 직육면체 형상의 금속 재질로 구비되고, 신호 전송을 위한 입력단(102) 및 출력단(104)를 구비한다. 하우징(110)의 개방된 상부는 커버(106)와 결합된다. 입력단(102)과 출력단(104) 각각은 하우징(110)의 외부로부터 내부로 장착된다. 입력단(102)은 하우징(110)의 내부에서 고역 통과 필터(120)의 회로 패턴에 전기적으로 연결되고, 출력단(104)은 하우징(110)의 내부에서 듀얼 대역 저지 필터(130)에 전기적으로 연결된다. 이 실시예에서 입력단(102)과 출력단(104)은 하우징(110)의 동일 측면에 이격되게 설치된다.
하우징(110)은 입력단(102)에 근접한 내부의 일측에 고역 통과 필터(120)가 설치되는 공간을 제공하고, 내부의 나머지 부분에 듀얼 대역 저지 필터(130)가 설치되는 공간을 제공한다. 하우징(110)의 나머지 부분에서는 가로 세로 방향으로 배열되는 구조로 복수 개의 공동(132)들을 형성한다. 즉, 공동(132)들은 하우징(110) 내부의 나머지 부분에서 복수 개의 행과 복수 개의 열을 갖도록 배치된다. 공동(132)들 각각은 인접하는 공동들 간에 격벽(136)이 형성되도록 홈 형상으로 구비되며, 하우징(110)의 상부에서 하부 방향으로 길게 형성된다.
이 실시예에서, 공동(132)들은 복수 개의 행과 열을 갖도록 가로 및 세로 방향으로 배치된다. 공동(132)들은 상호 직렬로 커플링된다. 이 때, 듀얼 대역 저지 필터(130)를 구성하는 공동(132)들의 일부는 제 1 대역 저지 필터(140)로 구성되고, 나머지는 제 2 대역 저지 필터(140)로 구성된다. 또 인접하는 공동(132)들 사이에는 일부가 개방되어 윈도우가 형성된 격벽(136)이 구비되고, 공동(132)들 각각에는 공진기(134)가 설치된다.
또 하우징(110)은 공동(132)들 중 서로 다른 행(또는 열)에 배치되는 공동들을 직렬로 커플링하기 위하여 복수 개의 연결 통로(도 7의 142)를 제공한다. 연결 통로(142)들 각각은 서로 다른 행(또는 열)의 끝단에 배치되는 공동들을 상호 연결하도록 홈 형상으로 제공된다. 또 연결 통로(142)들 각각에는 해당 공동들을 커플링 하기 위한 전송 선로(미도시됨)가 설치된다. 특히, 특정 연결 통로(142)에는 하우징 내부에서 제 1 및 제 2 대역 저지 필터(140, 150)들을 전기적으로 연결하기 위한 전송 선로가 설치된다. 따라서 공동(132)들은 상호 직렬로 연결되어, 지그재그 방향으로 커플링된다.
고역 통과 필터(HPF)(120)는 하우징(110)의 내부 일측 즉, 입력단(102)에 근접된 부분에 설치된다. 고역 통과 필터(120)는 일단(도 6의 124a)이 하우징(110) 내부의 일측에서 입력단(102)과 전기적으로 연결되고, 타단(도 6의 124b)이 듀얼 대역 저지 필터(130)와 전기적으로 연결된다.
고역 통과 필터(120)는 도 6에 도시된 바와 같이, 인쇄회로기판(122) 상에 회로 패턴(124)이 형성된다. 회로 패턴(124)은 전송 선로와 복수 개의 공진기 패턴들을 형성한다. 고역 통과 필터(120)는 예컨대, 유전체 기판(122)에 전도성의 마이크로스트립 회로 패턴(124)으로 전송 선로 및 공진기 패턴들을 형성한다. 이러한 고역 통과 필터(120)는 마이크로스트립 회로 패턴(124)이 유전체 기판(122)의 일면에 일정 두께 (예를 들어, 약 10 ㎛)로 은도금되고, 이들 마이크로스트립 회로 패턴(124)들 사이의 간격과 마이크로스트립 회로 패턴(124)의 폭, 넓이 등을 조절하여 원하는 고역의 주파수 대역을 통과시키는 전송 선로 및 공진기 패턴이 설계된다.
그리고 듀얼 대역 저지 필터(Dual BRF)(130)는 제 1 및 제 2 대역 저지 필터(140, 150)로 구성된다. 제 1 및 제 2 대역 저지 필터(140, 150)는 서로 다른 주파수 대역을 각각 저지한다. 예를 들어, 제 1 대역 저지 필터(140)는 제 2 대역 저지 필터(150)보다 낮은 주파수 대역을 저지한다. 물론 제 1 대역 저지 필터(140)는 제 2 대역 저지 필터(150)보다 높은 주파수 대역을 저지할 수도 있다.
제 1 및 제 2 대역 저지 필터(140, 150)들 각각은 복수 개의 공동(132)들을 구비하고, 공동(132)들 각각에는 공진기(134)가 설치된다. 공진기(134)들은 막대 또는 봉 형상으로 구비되며, 공동(132)의 하부에서 상부 방향으로 수직하게 설치된다. 예컨대, 제 1 대역 저지 필터(140)의 공진기(134)들은 저대역 주파수를 저지하는 저대역 저지 공진기로 구비되고, 제 2 대역 저지 필터(150)의 공진기(134)들은 고대역 주파수를 저지하는 고대역 저지 공진기로 구비된다. 이 실시예에서 제 1 대역 저지 필터(140)의 공진기(134)는 제 2 대역 저지 필터(150)의 공진기(134) 보다 그 크기(즉, 단면적)가 작은 구조를 갖는다.
또 제 1 및 제 2 대역 저지 필터(140, 150)들 각각은 도 7에 도시된 바와 같이, 신호 전송을 위한 전송 선로(138)가 설치된다. 전송 선로(138)는 격벽(136)의 일부가 개방된 윈도우에 설치되어 공진기(134)의 측면에 배치된다. 따라서 전송 선로(138)는 공진기(134)들과 나란하게 배치된다. 또 전송 라인(138)은 복수 개의 연결 통로(142)들 각각의 내부에 삽입되어, 해당 공진기들을 커플링한다.
전송 선로(138)는 예컨대, 금속 재질로 구비되고, 양단 각각이 하우징(110) 내부에서 고역 통과 필터(120)의 회로 패턴(124b)과 출력단(104)에 전기적으로 연결된다. 이러한 전송 선로(130)는 고역 통과 필터(120)와 출력단(104)을 전기적으로 연결하는 동축 라인과, 외주면이 공진기(134) 각각의 측면과 일정 간격 이격되게 배치하는 용량성 도체를 포함하는 구조를 갖는다. 동축 라인은 격벽(136)의 윈도우 상에 위치하고, 용량성 도체는 공진기(134)들의 측면에 대응하는 위치에 배치된다. 즉, 용량성 도체는 일측에 공진기(134)들이 배치되는 위치의 동축 라인 상에 구비된다. 용량성 도체는 동축 라인의 중심축으로부터 외측으로 연장되어 동축 라인보다 큰 직경을 갖는 원통 또는 원기둥 형상으로 구비된다.
이러한 제 1 및 제 2 대역 저지 필터(140, 150)들 각각은 공동(132) 및 공진기(134)의 갯수, 공진기(134)의 크기, 전송 선로(138)의 굵기, 공진기(134)와 전송 선로(138)의 간격 및 단면적 등에 따라 저지되는 주파수 대역 및 저지 대역의 세기가 조절 가능하다. 이 실시예에서는 제 1 대역 저지 필터(140)는 제 2 대역 저지 필터(150) 보다 공동(132) 및 공진기(134)의 갯수가 작게 구비된다.
이 실시예의 다중 대역 통과 필터(100)는 도 8에 도시된 바와 같이, 고역 통과 필터(120)에 의해 통과된 고대역의 고주파 신호가 제 1 및 제 2 대역 저지 필터(140, 150)에 의해 2 개의 저지(Band Reject) 구간을 형성함으로써, 실질적으로 서로 다른 주파수 대역을 통과시키는 3 개의 대역 통과(Band Pass) 구간을 형성한다.
따라서 본 발명의 다중 대역 저지 필터(100)는 하나의 하우징(110) 내부에 인쇄회로기판 타입으로 형성되는 고역 통과 필터(120)와, 공진기 타입으로 형성되는 적어도 하나의 대역 저지 필터(130 : 140, 150)를 상호 직렬로 결합함으로써, 특성 매칭이 용이하고, 서로 다른 주파수 대역을 통과시킬 수 있으며, 소형화가 가능하다.
그리고 도 9는 본 발명의 다른 실시예에 따른 다중 대역 통과 필터의 구성에 의해 형성되는 회로도이다. 이 실시예의 회로도에서의 듀얼 대역 저지 필터는 8 개의 공진기를 구비하고 있지만, 공진기의 갯수에 대응하여 회로도의 변경은 자명하다 하겠다.
도 9를 참조하면, 다중 대역 저지 필터(100)는 입력단(102)와 출력단(104) 에 각각 연결된 양단에 예컨대, 약 50 오옴(Ohm)의 임피던스를 갖는 입력 및 출력 터미네이션(Term1, Term2)을 형성한다. 또 다중 대역 저지 필터(100)는 입력 및 출력 터미네이션(Term1, Term2) 사이에 고역 통과 필터(120)와 듀얼 대역 저지 필터(130 : 140, 150)가 구비된다.
*고역 통과 필터(120)는 인쇄회로기판의 회로 패턴에 의해 형성되며, 복수 개의 캐패시터(C1 ~ C6)들과, 각각의 캐패시터(C1 ~ C6)들 사이에 형성되는 복수 개의 인덕터(L1 ~ L5)를 포함한다. 인덕터(L1 ~ L5)들 각각은 상호 병렬로 연결되고, 캐패시터(C1 ~ C6)들 각각에 상호 직렬로 연결된다. 또 고역 통과 필터(120)는 듀얼 대역 저지 필터(130)와의 연결되는 부분에 상호 직렬로 연결되는 복수 개의 캐패시터(C7, C8)와 하나의 인덕터(L6)가 형성된다.
듀얼 대역 저지 필터(130)는 전송 선로(138)에 의해 형성되는 복수 개의 LC 병렬 공진 회로(PLC1 ~ PLC8)과, 복수 개의 공진기(134)들 각각에 의해 형성되는 복수 개의 LC 직렬 공진 회로(C9, L7, C10 ~ C21, L13, C22)들을 포함한다.
그리고 LC 병렬 공진 회로(PLC1 ~ PLC8)들 각각은 하나의 인덕터와 하나의 캐패시터가 상호 병렬로 연결된다. LC 직렬 공진 회로(C7, L6, C8 ~ C21, L13, C22)들 각각은 상호 인접하는 LC 병렬 공진 회로(PLC1 ~ PLC8)들 사이와 접지 사이에서 형성된다. LC 직렬 공진 회로(C7, L6, C8 ~ C21, L13, C22)들 각각은 하나의 인덕터(L7 ~ L13)와 두 개의 캐패시터(C7 ~ C11)들이 상호 직렬로 연결된다. 즉, 인덕터(L7 ~ L11) 각각은 두 개의 캐패시터들 사이에 위치된다.
상술한 바와 같이, 본 발명의 다중 대역 통과 필터(100)는 하나의 하우징(110)에 고역 통과 필터(120)와, 적어도 하나의 대역 저지 필터(130 : 140, 150)를 상호 직렬로 결합하여 서로 다른 주파수 대역을 통과시킨다.
이상에서, 본 발명에 따른 다중 대역 통과 필터의 구성 및 작용을 상세한 설명과 도면에 따라 도시하였지만, 이는 실시예를 들어 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다.

Claims (7)

  1. 서로 다른 주파수 대역을 통과시키는 다중 대역 통과 필터에 있어서:
    하나의 입력단과 하나의 출력단이 상호 이격되어 구비되는 하우징과;
    상기 하우징의 내부 일측에 설치되어 상기 입력단에 전기적으로 연결되고, 인쇄회로기판 상의 회로 패턴으로 복수 개의 공진기 패턴들을 형성하는 고역 통과 필터 및;
    상기 하우징 내부에 복수 개의 공동들을 형성하고, 상기 공동들 각각에 공진기가 구비되어, 상기 고역 통과 필터와 상호 직렬로 연결되며, 상기 고역 통과 필터와 상기 출력단 사이에 제공되는 듀얼 대역 저지 필터를 포함하는 것을 특징으로 하는 다중 대역 통과 필터.
  2. 제 1 항에 있어서,
    상기 듀얼 대역 저지 필터는;
    상기 공동들 중 일부가 상기 고역 통과 필터와 인접하게 배열되고, 상기 일부의 내부에 설치된 복수 개의 공진기들에 나란하게 설치되는 전송 선로를 구비하여 상기 고역 통과 필터와 상호 직렬로 연결되는 제 1 대역 저지 필터와;
    상기 공동들 중 나머지가 상기 제 1 대역 저지 필터와 상기 출력단 사이에 배열되고, 상기 나머지의 내부에 설치된 복수 개의 공진기들에 나란하게 설치되는 상기 전송 선로를 통해 상기 제 1 대역 저지 필터와 상호 직렬로 연결되는 제 2 대역 저지 필터를 포함하는 것을 특징으로 하는 다중 대역 통과 필터.
  3. 제 2 항에 있어서,
    상기 제 1 대역 저지 필터는 상기 고역 통과 필터의 주파수 대역보다 큰 주파수 대역을 저지하고, 상기 제 2 대역 저지 필터의 주파수 대역보다 작은 주파수 대역을 저지하는 것을 특징으로 하는 다중 대역 통과 필터.
  4. 제 2 항에 있어서,
    상기 하우징은;
    상부에서 하부 방향으로 홈을 형성하여 상기 공동을 구비하고, 상기 공동들을 복수 개의 행과 복수 개의 열로 배열되게 형성하고, 그리고 상기 공동들 중 상기 행 또는 상기 열의 양단에 위치하는 공동들을 신호 전송 경로에 대응하여 상호 연결하도록 복수 개의 연결 통로를 형성하는 것을 특징으로 하는 다중 대역 통과 필터.
  5. 제 4 항에 있어서,
    상기 연결 통로들 중 하나는 상기 제 1 및 상기 제 2 대역 저지 필터들을 연결하는 것을 특징으로 하는 다중 대역 통과 필터.
  6. 제 5 항에 있어서,
    상기 연결 통로들 각각은 내부에 상기 양단에 위치하는 공동들 간에 신호 전송을 위한 상기 전송 선로가 삽입 설치되는 것을 특징으로 하는 다중 대역 통과 필터.
  7. 제 2 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 제 1 및 상기 제 2 대역 저지 필터들 각각은 상기 공동 및 상기 공진기의 갯수, 상기 공진기의 크기, 상기 전송 선로의 굵기, 상기 공진기와 상기 전송 선로의 간격 및 단면적 중 적어도 하나에 따라 저지되는 주파수 대역 및 저지 대역의 세기가 조절되는 것을 특징으로 하는 다중 대역 통과 필터.
PCT/KR2012/002061 2012-02-06 2012-03-22 다중 대역 통과 필터 WO2013118938A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/123,045 US9583806B2 (en) 2012-02-06 2012-03-22 Multi-band pass filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0011574 2012-02-06
KR1020120011574A KR101266945B1 (ko) 2012-02-06 2012-02-06 다중 대역 통과 필터

Publications (1)

Publication Number Publication Date
WO2013118938A1 true WO2013118938A1 (ko) 2013-08-15

Family

ID=48666742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002061 WO2013118938A1 (ko) 2012-02-06 2012-03-22 다중 대역 통과 필터

Country Status (3)

Country Link
US (1) US9583806B2 (ko)
KR (1) KR101266945B1 (ko)
WO (1) WO2013118938A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848259B1 (ko) * 2016-09-09 2018-04-16 주식회사 이너트론 공진기 및 이를 포함하는 필터
KR101826838B1 (ko) * 2016-09-19 2018-02-08 주식회사 이너트론 커넥터 및 이를 포함하는 통신 컴포넌트
KR102436396B1 (ko) * 2017-11-24 2022-08-25 주식회사 케이엠더블유 캐비티 필터 조립체
US10944144B2 (en) * 2018-03-20 2021-03-09 Commscope Italy, S.R.L. Low loss radio frequency transmission lines and devices including such transmission lines
KR20200060844A (ko) * 2018-11-23 2020-06-02 삼성전기주식회사 프론트 엔드 모듈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080076238A (ko) * 2007-02-15 2008-08-20 주식회사 퀀텀베이스 이동통신 중계기에서의 다중필터 합성을 이용한 고선택도rf 필터 뱅크
KR20090090825A (ko) * 2008-02-22 2009-08-26 장세주 간섭 신호를 억제한 필터 모듈
JP2009538005A (ja) * 2006-05-15 2009-10-29 エプコス アクチエンゲゼルシャフト 電気的素子
KR101090725B1 (ko) * 2011-06-13 2011-12-08 주식회사 이너트론 이중 대역 저지 필터

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132651A (en) * 1989-06-13 1992-07-21 Murata Manufacturing Co., Ltd. Filter apparatus
JPH04245807A (ja) * 1991-01-31 1992-09-02 Rohm Co Ltd フィルタ装置
US5410284A (en) * 1992-12-09 1995-04-25 Allen Telecom Group, Inc. Folded multiple bandpass filter with various couplings
US5543758A (en) * 1994-10-07 1996-08-06 Allen Telecom Group, Inc. Asymmetric dual-band combine filter
US5774027A (en) * 1995-08-25 1998-06-30 Sanyo Electric Co., Ltd. Band-pass filter with trap circuits having different Q factors
DE69734846T2 (de) * 1996-02-27 2006-08-31 Hitachi Metals, Ltd. Frequenzweiche für Zweiband-Mobilfunkendgeräte
US7417517B2 (en) * 2006-07-13 2008-08-26 Motorola, Inc. Method and apparatus for a communications filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538005A (ja) * 2006-05-15 2009-10-29 エプコス アクチエンゲゼルシャフト 電気的素子
KR20080076238A (ko) * 2007-02-15 2008-08-20 주식회사 퀀텀베이스 이동통신 중계기에서의 다중필터 합성을 이용한 고선택도rf 필터 뱅크
KR20090090825A (ko) * 2008-02-22 2009-08-26 장세주 간섭 신호를 억제한 필터 모듈
KR101090725B1 (ko) * 2011-06-13 2011-12-08 주식회사 이너트론 이중 대역 저지 필터

Also Published As

Publication number Publication date
US9583806B2 (en) 2017-02-28
US20150042419A1 (en) 2015-02-12
KR101266945B1 (ko) 2013-05-30

Similar Documents

Publication Publication Date Title
CN105978523B (zh) 电缆及通信装置
FI86673C (fi) Keramiskt duplexfilter.
WO2013118938A1 (ko) 다중 대역 통과 필터
DE60217762T2 (de) Laminiertes Filter, integrierte Vorrichtung und Kommunikationsgerät
WO2013022250A9 (ko) 노치 구조를 채용한 무선 주파수 필터
US20100231324A1 (en) Monoblock dielectric multiplexer capable of processing multi-band signals
WO2018066790A1 (ko) 무선 주파수 필터
CN108711664A (zh) 宽带带阻谐振滤波器
US6097268A (en) Multilayer duplexer with no shielding electrodes
WO2021060633A1 (en) Dielectric filter
US20100214040A1 (en) Multilayer planar tunable filter
WO2016089015A1 (ko) 필터 패키지
WO2021034177A1 (ko) 전송영점을 갖는 로우 패스 필터
WO2011013969A2 (ko) 메타머티리얼을 이용한 다층 구조 안테나 및 이를 포함하는 이동 통신 장치
CN110429920A (zh) 一种微型多层陶瓷带通滤波器
CN102751552A (zh) 一种td-lte射频信号接收前端滤波处理装置
WO2016072643A2 (ko) 필터
KR20180000641U (ko) 강화된 격리 및 손실을 가지는 마이크로 다이플렉서
CN112272014A (zh) 一种混合介质频分器
WO2012036343A1 (ko) 공진기 타입 유전체 저역 통과 여파기 및 그를 포함하는 통신 소자
WO2022265180A1 (ko) 스퓨리어스를 조정하는 그라운드 기둥을 포함하는 광대역 다이플렉서
WO2024117758A1 (ko) 안테나 모듈 및 고주파 모듈
US6362705B1 (en) Dielectric filter unit, duplexer, and communication apparatus
WO2016148340A1 (ko) 유전체 다이플렉서
CN110098452A (zh) 电介质滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14123045

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 12868314

Country of ref document: EP

Kind code of ref document: A1