WO2013023965A1 - Vorrichtung zum auftragen von aufschäumenden reaktionsgemischen - Google Patents

Vorrichtung zum auftragen von aufschäumenden reaktionsgemischen Download PDF

Info

Publication number
WO2013023965A1
WO2013023965A1 PCT/EP2012/065472 EP2012065472W WO2013023965A1 WO 2013023965 A1 WO2013023965 A1 WO 2013023965A1 EP 2012065472 W EP2012065472 W EP 2012065472W WO 2013023965 A1 WO2013023965 A1 WO 2013023965A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
reaction mixture
polyether polyol
parts
diisocyanate
Prior art date
Application number
PCT/EP2012/065472
Other languages
English (en)
French (fr)
Inventor
Torsten Hagen
Horst Jung
Ingo Kellerhof
Walter Schindler
Wolfgang Struppek
Jürgen Winkler
Original Assignee
Bayer Intellectual Property Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property Gmbh filed Critical Bayer Intellectual Property Gmbh
Priority to CN201280039394.0A priority Critical patent/CN103717370A/zh
Priority to EP12743468.6A priority patent/EP2741898A1/de
Priority to RU2014109076/05A priority patent/RU2014109076A/ru
Publication of WO2013023965A1 publication Critical patent/WO2013023965A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/461Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length dispensing apparatus, e.g. dispensing foaming resin over the whole width of the moving surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1808Catalysts containing secondary or tertiary amines or salts thereof having alkylene polyamine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1816Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1833Catalysts containing secondary or tertiary amines or salts thereof having ether, acetal, or orthoester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3278Hydroxyamines containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4261Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups prepared by oxyalkylation of polyesterpolyols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4891Polyethers modified with higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5003Polyethers having heteroatoms other than oxygen having halogens
    • C08G18/5006Polyethers having heteroatoms other than oxygen having halogens having chlorine and/or bromine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6688Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/127Mixtures of organic and inorganic blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the invention relates to a device comprising at least one mixing head and a discharge line for applying intumescent reaction mixtures to a substrate, wherein at least the parts of the outlet line (s) coming in contact with the intumescent reaction mixture consist of a thermoplastic polyurethane (TPU) Polyetherpolyol base with a release agent content between 0.30 mass% and 2.0 mass%, preferably between 0.35 mass% and 1.5 mass%, particularly preferably between 0.40 mass% and 1.0 Mass%), based on the total mass of the TPU according to the invention, and the use of this device in the production of composite elements.
  • TPU thermoplastic polyurethane
  • Sandwich composite elements comprising two cover layers and an intermediate core layer of a foam, are exposed to a variety of requirements, in particular increasing requirements for fire resistance at low element thicknesses, optimized smoking behavior and an efficient thermal insulation.
  • the market demands increasing productivity in the production of sandwich composite elements with simultaneously high surface quality of the outer layers.
  • the distributor device for applying the foamable material to the cover layer (the substrate).
  • the mixing head performs an oscillating movement across the width of a lower cover layer and carries the still liquid reaction mixture by means of a casting rake or tongue / spoon nozzle, which is arranged at right angles to the mixing head and parallel to the lower cover layer, on the lower cover layer.
  • the mixing head is attached to a guide rail, the so-called portal, above the lower cover layer and is accelerated by means of electric motors and braked before the reversal points.
  • the foaming raw materials are supplied to the mixing head via hose lines. Furthermore, some hydraulic or pneumatic hoses lead to the mixing head. The foaming raw materials are introduced into the mixing head via nozzles and mixed.
  • the reaction mixture then flows into the casting rake and exits at the regularly placed holes. Due to the length of the casting rake and its bores, as well as the oscillating movement of the mixing head, a distribution of the reaction mixture lying at an angle to the direction of production is achieved.
  • reaction mixture foams up and rises to the upper surface layer. In the foaming process, it adheres the two outer layers before the foam solidifies and hardens.
  • EP 1 857 248 A2 solves this problem in that not every outlet line has a separate mixing head. Rather, only a central mixing head is provided, are fed via the multiple outlet lines. The material of the outlet lines is only subject to the restrictions that it should not react with the reaction mixture to be foamed and should not disproportionately adhere to it (see column 3, lines 36 to 50). The use of thermoplastic polyurethanes is not disclosed in this context.
  • WO 2008/018787 A1 relates to a device for applying a viscous mixture on a surface by means of one or more outlet openings, which are fed by a feed element.
  • the document further relates to a method for producing an insulating element comprising the steps of applying a viscous mixture which forms a foam on a substrate layer, wherein the foam is then crosslinked and optionally the foam layer is further coated.
  • a mixing head 3 is supplied with components from the feeders 1 and 2 with raw material.
  • a casting rake 6 is controlled by a plurality of intermediate webs 5 via a sub-distribution 4 via a rigid main line 8. The casting rake is thus rigidly connected to the mixing head, can only be moved completely with the mixing head to the left or right in order to adjust the application area as a whole in the correct position to the substrate can. In addition, the cleaning of the system is very expensive.
  • WO 2008/104492 A2 discloses a method for the production of composite elements, wherein the application of the liquid starting material for the isocyanate-based rigid foam by means of a fixed, parallel and mounted at right angles to the direction of movement to the cover layer, provided with bored pipe.
  • WO 2009/077490 A2 discloses a method for producing composite elements, in which a tube-like casting rake with holes at the bottom, distributed over the entire length, is used, and wherein the application of the liquid starting material for the rigid foam parallel to the top layer plane and perpendicular to the direction of movement he follows.
  • WO 2010/108615 A1 discloses a method for the production of intumescent composite elements, in which a device comprising a mixing head, a distributor head with at least two hose lines and at least two stationary casting rakes is used.
  • the material of the hose lines is only subject to the restrictions that it does not react with the reaction mixture to be foamed and not disproportionately He is liable for this (see page 6, lines 9 to 17).
  • the use of thermoplastic polyurethanes is not disclosed in this context.
  • An object of the invention is therefore an apparatus for applying intumescent reaction mixtures to a substrate comprising:
  • thermoplastic polyether polyol-based polyurethane which contains at least one release agent in a content of 0.30 % By mass is 2.0% by mass, preferably 0.35% by mass to 1.5% by mass, particularly preferably 0.40% by mass to 1% by mass, based on the total mass of the thermoplastic polyurethane based on polyether polyol, contains.
  • the invention further relates to the use of the device according to the invention in the production of composite elements comprising a foam layer on a substrate.
  • a foaming reaction mixture in the context of the present invention are mixtures of raw materials to understand that react to form a foam, so for example mixtures of polyols and di- or polyisocyanates, optionally with the addition of a blowing agent and / or co-blowing means and other auxiliaries and additives.
  • a mixing head according to the present invention can be designed as a dynamic mixer basically known to the person skilled in the art or as a static mixer. It serves the intimate mixing of the respective raw materials.
  • the mixing head must be suitable for the respective foaming task. It is easy for a person skilled in the art to select the mixing head suitable for a specific foaming task.
  • the mixing head is preferably mounted above the substrate on a rigid frame, so that different reaction profiles for the production of different thickness products are possible.
  • the intumescent reaction mixture is distributed over the outlet line (s) on the substrate.
  • the outgoing lines may be pipes or hoses, for example. It is only essential in this connection that the parts of the outlet lines which come into contact with the intumescent reaction mixture are made of the thermoplastic polyurethane according to the invention. This can be achieved by making the entire outgoing line of this material (eg hoses made of thermoplastic polyurethane according to the invention). Alternatively, only the interior of the outlet conduit may also be coated with the thermoplastic polyurethane according to the invention (eg metal tubes with a coating of the thermoplastic polyurethane according to the invention).
  • thermoplastic polyurethane in contrast to ordinary polyurethane is understood as meaning a material comprising urethane structures which can be repeatedly softened under the influence of temperature and pressure.
  • Thermoplastic polyurethanes also referred to below as TPU
  • TPU Thermoplastic polyurethanes
  • TPU types which can be used according to the invention are those based on polyetherpolyol. This means that they are obtained by reacting suitable isocyanates (see below for details) with polyether polyols.
  • suitable isocyanates see below for details
  • inventively employable polyether polyols contain the structural element
  • R 1 and R 2 independently represent hydrogen, an alkyl or aryl group having 1 to 6 carbon atoms with or without halogen substitution, and wherein m is an integer between 0 and 2.
  • Such admixtures of other types of polyol are at most 10% by mass, preferably at most 5% by mass, more preferably at most 1% by mass, based on the total mass of all polyols used in the preparation of the thermoplastic polyurethanes according to the invention.
  • a material is referred to in the context of the present invention as being made of a thermoplastic polyurethane based on polyether-polyol, if it is at least 90% by mass, preferably at least 95% by mass, more preferably at least 99% by mass) and especially preferably entirely composed of this thermoplastic polyether-polyol-based polyurethane.
  • a release agent is understood as meaning a constituent of the thermoplastic polyurethane which is intended to prevent it from sticking to the surrounding material (see EP 0 792 917 Bl, p. 2 paragraphs [0004] and [0005]).
  • Such release agents are z.
  • fatty acid esters and their metal soaps besides fatty acid amides and oleic acid amides, or even polyethylene waxes. It is also possible to use mixtures of different release agents. In this case, the specification refers to 0.30% by mass to 2.0% by mass, preferably 0.35% by mass to 1.5% by mass, particularly preferably 0.40% by mass to 1.0% by mass. %, to the sum of all release agents.
  • the intumescent reaction mixture is applied to a substrate to which the respective foam adheres, optionally with the aid of an adhesion promoter, preferably in such a way that no unwetted areas are formed.
  • Suitable substrates in the context of the present invention for example, surfaces of metal, wood, cardboard, paper, bitumen u. a.
  • the reaction mixture in the mixing head or at least one of the raw materials used prior to feeding into the mixing head under elevated pressure (preferably from 6.0 bar to 12 bar (absolute)) gas, which under the given conditions of temperature and pressure not may react with the raw materials and the foam to be formed.
  • this gas is selected from the group of air, nitrogen, carbon dioxide and noble gases (eg argon and helium).
  • noble gases eg argon and helium.
  • air is used.
  • reaction mixture can be admixed.
  • these substances are selected by way of example from the group of graphite, polyurethane flour, melamine, quartz sand, Al 2 O 3, talc and nanocomposites such as, for example, phyllosilicates, nanotubes, nanosand; they are preferably added to the reaction mixture in the mixing head. However, it is also conceivable to interfere with the reaction mixture stream leaving the mixing head.
  • the device comprises a plurality of outlet lines.
  • the mixing head is followed by a distributor head, to which the outgoing lines are attached.
  • the device according to the invention comprises
  • thermoplastic polyurethane which comprises at least one release agent in a content of 0.30 mass% to 2.0 mass% 0.35 mass% to 1.5 mass%, particularly preferably 0.40 mass%> to 1.0 mass%), based on the total mass of the thermoplastic polyurethane based on polyether polyol.
  • the distributor head V is dispensable.
  • the one outlet line is preferably attached to the mixing head itself.
  • an embodiment of the device is preferred in which several, in particular two to ten, preferably three to eight, outgoing lines A are attached to a distributor head V. If the distributor head is described lying in fluid flow behind the mixing head in this context, then this is to be understood in relation to the flow direction of the material flowing through these two heads. First, the mixing head and then the (preferably attached to) distributor head are flowed through.
  • the intumescent reaction mixture is distributed, if appropriate via the distributor head V, to the at least one, preferably at least two to ten, particularly preferably three to eight discharge lines.
  • the materials of the mixing and, if necessary, distributor head are selected independently from one another preferably from steel, stainless steel, aluminum and plastics (for example polyethylene, polypropylene or polytetrafluoroethylene.) In preferred embodiments, these materials may be coated internally with TPU according to the invention Material to withstand the usual absolute pressures prevailing in the mixing head (in the range of about 3 bar to 10 bar) and temperatures (in the range of 20 ° C to 40 ° C.) In the case of multiple outgoing lines, the geometry of the distributor head is preferably selected so that Furthermore, it is advantageous if the cross section of the distributor head outlets is identical for all distributor head outlets On the other hand, angs can also be larger than the respective distribution head exits.
  • the polyether polyol-based thermoplastic polyurethanes (TPUs) to be used according to the invention fulfill the requirements which have to be met by a material from which outlet lines are to be produced (chemical inertness towards the intumescent reaction mixture and low adhesion) is extraordinarily good.
  • a material from which outlet lines are to be produced chemical inertness towards the intumescent reaction mixture and low adhesion
  • the present invention also encompasses such a device for applying intumescent reaction mixtures to a substrate, in which all parts coming into contact with the intumescent reaction mixture, namely mixing head, optionally distributor head, outlet lines and optionally Casting raking (see below for details) of the polyether polyol-based thermoplastic polyurethane which comprises at least one release agent in a content of 0.30 mass% to 2.0 mass%, preferably 0.35 mass% to 1.5% by mass, particularly preferably 0.40% by mass to 1.0% by mass, based on the total mass of the thermoplastic polyurethane based on polyetherpolyol, containing, manufactured or internally coated.
  • the polyether polyol-based thermoplastic polyurethane which comprises at least one release agent in a content of 0.30 mass% to 2.0 mass%, preferably 0.35 mass% to 1.5% by mass, particularly preferably 0.40% by mass to 1.0% by mass, based on the total mass of the thermoplastic polyurethane based on polyetherpolyol, containing, manufactured or internally
  • the mixing head the possibly existing distributor head and possibly existing casting rakes, it is preferred that these steel, stainless steel, aluminum and Plastics (such as polyethylene, polypropylene or polytetrafluoroethylene) to manufacture and coat inside with inventive TPU.
  • these steel, stainless steel, aluminum and Plastics such as polyethylene, polypropylene or polytetrafluoroethylene
  • polyether polyol-based TPU types are obtained in a preferred embodiment by reacting a diisocyanate (or mixtures of diisocyanates) with a polyether polyol (or mixtures of polyether polyols).
  • a diisocyanate or mixtures of diisocyanates
  • a polyether polyol or mixtures of polyether polyols.
  • the thermoplastic polyether-based polyol is obtained by reacting at least one polyether polyol having a molecular weight between 800 g / mol and 5000 g / mol, preferably between 900 g / mol and 1500 g / mol in the presence of at least one chain-extending diol having a molecular weight below 500 g / mol with at least one diisocyanate.
  • the term "molar mass” means the exact molar mass, provided that it is precisely defined diols and polyols whose exact molar mass can be calculated If it is not possible to determine the exact molar mass of a diol or polyol in the context of this invention
  • M n The number-average molecular weight M n , determined by gel permeation chromatography according to DIN 55672-1 of August 2007, is decisive This applies to all types of diols and polyols for all articles of the invention and for all embodiments.
  • polyols and diols may be 0.003 moles to 0.08 moles per mole of the chain-extending diol of a monofunctional chain terminator of the general structural formulas R 3 -OH, R 4 -NH 2 or R 4 -NH-R 5 may be included, wherein R 3 , R 4 and R 5 denote a straight or branched hydrocarbon chain having 1 to 30 carbon atoms, which may optionally contain oxygen, sulfur or other heteroatoms, and the molar ratio NCO / (OH + NH), multiplied by 100, the so-called index , between 96 and 108, preferably between 98 and 106.
  • thermoplastic polyurethanes according to the invention based on polyether polyol from Poyetherpolyolen and diisocyanates come as starting components on the isocyanate especially the technically readily available diisocyanates such as 2,4- and 2,6-toluene diisocyanate and mixtures thereof, the 4.4 '- And the 2,4'-diphenylmethane diisocyanate or mixtures thereof, the 4,4'-diisocyanato-dicyclohexylmethane, and the 1,6-diisocyanatohexane used. Preference is given to using 4,4'-diphenylmethane diisocyanate.
  • the starting materials used on the polyol side are in particular the polyaddition products of epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin.
  • epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin.
  • epoxides are either with themselves, z. B. in the presence of catalysts, or polymerized by addition of these epoxides, optionally in admixture or sequentially, to starting components with reactive hydrogen atoms such as alcohols or amines, for.
  • the average functionalities of the polyether polyols according to the invention are preferably between 1.5 and 3.
  • chain-extending diols having molecular weights below 500 g / mol are preferably ethylene glycol, diethylene glycol, butanediol, hexanediol, octanediol, decanediol and dodecanediol and hydroquinone bis (2-hydroxyethyl ether) into consideration.
  • DE 24 18 075 Al describes inter alia lined polyurethanes based on polyether, which, if in addition a release agent content between 0.30 mass% and d 2.0 mass%, preferably between 0.35 mass% and 1, 5 masses -%, more preferably between 0.40% by mass and 1, 0% by mass, is set (the release agent content plays no role in the cited document), are used in the invention.
  • a release agent content between 0.30 mass% and d 2.0 mass%, preferably between 0.35 mass% and 1, 5 masses -%, more preferably between 0.40% by mass and 1, 0% by mass, is set (the release agent content plays no role in the cited document), are used in the invention.
  • the particular properties of the polyether-based thermoplastic polyurethanes with a specified release agent content, which qualify them for use in the device according to the invention are not disclosed in this document.
  • the release agent to be used according to the invention is preferably selected from the group of the fatty acid esters, their metal soaps, fatty acid amides, polyethylene waxes and mixtures of the abovementioned compounds.
  • Specific examples of preferred compounds are stearic acid esters and montanic acid esters and their metal soaps, along with stearylamides and oleic acid amides.
  • Ethylene-bis-stearylamide, the diamide of ethylenediamine with steraric acid, is particularly preferably used.
  • thermoplastic polyurethane according to the invention can advantageously be prepared continuously by feeding the components by means of metering pumps to a mixing device where they are intimately stirred. It is particularly advantageous if from this mixing device, the reacting mixture heated to, optionally with release agent equipped, plates or belts is applied.
  • the thermoplastic polyurethane according to the invention can continuously in the so-called extruder process, for. In a multi-screw extruder in which the components isocyanate, polyether polyol and chain-extending diol are reacted (see EP 0 792 917 B1, in particular page 5, paragraphs [0027] and [0028]).
  • the dosage of the release agent can be metered continuously to the TPU reaction in the extruder.
  • the release agent can also be mixed in a further variant prior to the reaction with the thermoplastic polyurethane with the polyether polyol and then fed to it with the reaction.
  • thermoplastic polyurethane according to the invention also antioxidants and other auxiliaries, such as.
  • plasticizers are added. Typical plasticizers are, for example, benzoates, phthalates or phosphoric esters.
  • each discharge line opens into a casting rake G known to those skilled in the art, each casting rake having between 5 and 100, preferably 5 and 50, outlet openings for the intumescent reaction mixture, depending on the size.
  • This embodiment can also be combined with all the aforementioned embodiments. Structure and arrangement of the casting rakes are carried out in the context of the present invention preferably as in WO 2010/108615 AI on page 3, Z. 35 to page 4, Z. 25, on page 5, Z. 4 to Z. 13 and on P. 6, Z. 26 to p. 7, Z.7.
  • the casting rakes may be of the same material as the mixing and dispensing head (see above).
  • the device according to the invention is outstandingly suitable for use in processes for the production of composite elements comprising a foam layer on a substrate in all of the abovementioned embodiments.
  • a further subject of the present invention is therefore the use of the previously described apparatus for applying intumescent reaction mixtures to a substrate in the production of composite elements comprising a foam layer on a substrate.
  • the substrate is moved (for example by means of a conveyor belt in a predetermined direction).
  • the outgoing lines are preferably arranged and fixed on a rigid frame arranged transversely to the direction of movement of the substrate.
  • the reaction of the raw materials in the production of the composite elements is preferably carried out continuously, wherein the raw materials are fed by metering pumps to the mixing head and intimately mixed there.
  • the use of the device according to the invention in the production of so-called.
  • Sani vvz ' c / z composite elements ie composite elements containing two outer layers and a core layer therebetween, in the present case, a foam layer.
  • the lower cover layer is the substrate to which the foam layer is applied.
  • the foam layer is in turn bounded by the upper cover layer.
  • Another object of the present invention is therefore the use of the above-described apparatus for applying intumescent reaction mixtures to a substrate in the manufacture of composite elements, wherein the composite element is a sandwich composite element, wherein the foam layer between the substrate (the lower cover layer) and an upper cover layer is arranged. Between the substrate and the foam, other layers may be arranged.
  • Preferred foams are polyurethane foam, polyisocyanurate foam, polystyrene foam and phenolic resin foam. Particular preference is given to "rigid polyurethane foams", which are to be understood as meaning rigid foams based on polyurethane, polyurea and / or polyisocyanurate compounds.
  • the raw materials for the foam layer of the composite element or sandwich composite element are at least one isocyanate component ("component A”) and at least one polyol component (“component B”). used.
  • component A isocyanate component
  • component B polyol component
  • isocyanate component and polyol component also include mixtures of different isocyanates or polyols.
  • the raw materials react with each other when applied to the substrate to form the foam core layer.
  • This expansion of isocyanate and polyol component preferably takes place at an index of 100 to 400.
  • the index denotes the molar ratio of the isocyanate groups to the isocyanate-reactive hydrogen atom multiplied by 100.
  • the organic isocyanate component are aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic Polyisocyanates, preferably mixtures of isomers of diphenyl methane diisocyanate (MDI) and its oligomers (Polyphenylpolymethylenpolyisocyanat, PMDI) used.
  • carbodiimide groups urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret group-containing polyisocyanates, particularly preferably those based on polyphenylpolymethylene polyisocyanate.
  • suitable NCO prepolymers prepared from the reaction of PMDI with aliphatic or aromatic polyether polyols or polyester polyols, for example 1 to 4 hydroxyl-containing polyether polyols or polyester polyols having a molecular weight of 60 g / mol to 4000 g / mol is possible.
  • the polyol component contains compounds with isocyanate-reactive hydrogen atoms, such as polyether polyols, polyester polyols or polyester ethers. Such compounds are known to the person skilled in the art and are described, for example, in Mihailonescu, Chemistry and Technology of Polyols for Polyurethanes, Rapra Technology Limited, 2005, pp. 321-366 and pp. 419-431. Preference is given to using compounds which have a functionality of 1.8 to 4.5, a hydroxyl number of 20 to 600 mg KOH / g and optionally primary OH groups.
  • the polyol component may still contain low molecular weight chain extenders or crosslinkers. These additives can improve the flowability of the reaction mixture and the emulsifiability of the blowing agent-containing formulation on continuously producing plants on which elements with flexible or rigid cover layers are produced.
  • flameproofing agents are added to the intumescent reaction mixture of isocyanate and polyol components, preferably in an amount of 5 to 35% by mass, based on the total mass of compounds having isocyanate-reactive hydrogen atoms in the polyol component.
  • flame retardants are those skilled in the art known in principle and described, for example, in Polyurethane Handbook, Günter Oertel, Carl-Hanser Verlag, 1985, Chapter 6.1, page 270. These may be, for example, bromine- and chlorine-containing polyols or phosphorus compounds such as the esters of orthophosphoric acid and metaphosphoric acid, which may also contain halogen.
  • liquid flame retardants are selected at room temperature.
  • foaming reaction mixture of isocyanate and polyol component added blowing agent hydrocarbons eg.
  • isomers of pentane or fluorocarbons eg. HFC 245fa (1,1,1,3,3-pentafluoropropane), HFC 365mfc (1,1,1,3,3-pentafluorobutane) or mixtures thereof with HFC 227ea (heptafluoropropane). It is also possible to combine different propellant classes.
  • foaming reaction mixture of isocyanate and polyol component added co-blowing agent water and / or formic acid or other organic carboxylic acids.
  • the foaming reaction mixture of isocyanate and polyol component are preferably added in polyurethane chemistry conventional catalysts.
  • catalysts are: triethylenediamine, ⁇ , ⁇ -dimethylcyclohexylamine, tetramethylenediamine, 1-methyl-4-dimethylaminoethylpiperazine, triethylamine, tributylamine, dimethylbenzylamine, N, N ', N "-tris- (dimethylaminopropyl) hexahydrotriazine, dimethylaminopropylformamide, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylethylenediamine, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylbutanediamine, tetramethylhexanediamine, pentamethyldiethylenetriamine, tetramethyldiaminoethyl ether, dimethylpiperazine, 1, 2-dimethylimidazole,
  • Foam stabilizers are preferably added to the intumescent isocyanate and polyol component reaction mixture.
  • polyether siloxanes come into question here. These compounds are generally designed so that a copolymer of ethylene oxide and propylene oxide is connected to a Polydimethylsiloxanrest.
  • auxiliaries, additives, catalysts, etc. to the intumescent reaction mixture can be done before or during the mixing of polyol and isocyanate component, ie the components additionally used are added to the polyol or isocyanate component prior to their introduction into the mixing head , or they are mixed as a third stream in the mixing head with the isocyanate and polyol component.
  • the cover layers of the sandwich composite elements are made of a rigid or flexible material.
  • materials for the cover layers all materials known to those skilled in the art can be used. Preference is given to metals such as steel (galvanized and / or lacquered), aluminum (lacquered and / or anodised), copper, stainless steel or non-metals such as reinforced, unreinforced and / or filled plastics, such as polyvinyl chloride or polyester-based or glass fibers, impregnated cardboard, paper , Wood, bitumen glass fleece and mineral glass fleece.
  • the cover layers can also be coated with a lacquer.
  • Upper and lower cover layers can be made of different materials.
  • Such composite elements based on - possibly different (rigid or flexible) - cover layers and a core layer preferably made of rigid polyurethane foam are well known in the prior art and are also referred to as metal composite elements or insulation board. Further layers may be provided between the core layer and the cover layers.
  • Examples of the application of such composite elements with rigid cover layers are flat or lined wall elements and profiled roof elements for industrial halls and cold storage.
  • the composite elements are also used as truck bodies, hall doors and gates as well as in container construction.
  • Insulation boards as well as composite elements with flexible cover layers are used as insulating materials for roofs, exterior walls and as floorboards.
  • the preparation of these composite elements by a continuous or discontinuous process is basically known from the prior art.
  • the composite elements are produced "endlessly" on so-called double conveyor belts in thicknesses of generally about 20 to 240 mm, but thicknesses of less than 20 mm and more than 240 mm are also possible It usually consists of a circumferential upper belt for guiding the upper cover layer, a circumferential lower belt for guiding the lower cover layer, a feed device for the upper cover layer, a lower cover layer feeder, a molding line within which the polyurethane reaction mixture foams and reacts between the upper cover layer and the lower cover layer, a lengther for the composite element produced and a device for application bubbling reaction mixture on the lower cover layer.
  • the still liquid reaction mixture is preferably applied to the lower cover layer (substrate) by means of the device according to the invention.
  • the outgoing lines and the casting rakes are located at a height of 20 to 500 mm above the lower cover layer and are preferably arranged so that the reaction mixture can be applied to the lower cover layer, without leaving unwetted areas between the individual application areas respective casting rakes on the lower surface layer occur.
  • the now slowly foaming reaction mixture is transported on the lower cover layer by means of a lower belt in the molding section, which is spanned by an upper and lower belt.
  • the foaming reaction mixture reaches the upper cover layer and thus bonds the two outer layers together.
  • the foam solidifies and, after passing through the forming section, is cut to length through a cutting device for cutting the composite elements thus produced into desired lengths.
  • the hoses each had a diameter of 8 mm inside and 10 mm outside. The slight differences in the hose length do not affect the validity of the results.
  • the rigid foams of the metal composite elements were prepared according to the processing recipes described below. Hydroxyl numbers (OH numbers) were determined according to DIN 53240 in the version of December 1971, acid numbers according to DIN EN ISO 21 14 in the version of June 2002; the numerical values given are in each case as mg KOH / g. "Parts" means parts by weight.
  • Foam system A rigid polyurethane foam
  • Niax A-l (70% bis (2-dimethylaminoethyl) ether in dipropylene glycol); 8 parts of dimethylcyclohexylamine; 4 parts of pentamethyldiethylenetriamine; 68 parts of a polyether polyol having OH number 440, prepared by reacting a mixture of sucrose and monoethylene glycol with propylene oxide.
  • 2.2 parts by weight activator consisting of:
  • n-pentane 135 parts by weight 44 V 70 L (Desmodur® 44 V 70 L, mixture of 4,4'-diphenylmethane diisocyanate (MDI) and higher functional homologs (PMDI) with a viscosity at 25 ° C of > 610 mPas to - ⁇ 750 mPas
  • MDI 4,4'-diphenylmethane diisocyanate
  • PMDI higher functional homologs
  • the product contains approx. 34% 2-core MDI, available from Bayer MaterialScience AG) Key figure (index): 127
  • Foam system B PUR / PIR rigid foam
  • polyester polyether polyol having OH number 300 prepared by esterification of phthalic anhydride with diethylene glycol and reaction of the reaction product with ethylene oxide
  • 16.1 parts of a polyether polyol having OH number 28 prepared by reacting 1,2-propylene glycol with ethylene oxide and propylene oxide
  • 12.3 parts of a polyether polyol having OH number 380 prepared by reacting a mixture of sucrose, 1,2-propylene glycol and monoethylene glycol with propylene oxide
  • 25.6 parts of flame retardant trischloroisopropyl phosphate, TCPP
  • 2.6 parts of silicone-containing stabilizer 2.6 parts of a polyester polyol of phthalic anhydride and diethylene glycol having OH number 795 and acid number 100.
  • activator consisting of: 50 parts of dimethylcyclohexylamine; 23.5 parts of pentamethyldiethylenetriarnine; 26.5 parts of a polyether having OH number 440, prepared by reacting a mixture of sucrose and monoethylene glycol with propylene oxide. 3.0 parts by weight activator consisting of:
  • additive consisting of:
  • Table 1 shows the service life of the tubing materials used, wherein the life is understood as the duration between two tube changes during the production of metal-polyurethane foam composite elements.
  • the service life varies depending on the throughput and any production interruptions. Nevertheless, the difference in the service lives in the comparative examples to the inventive examples is clearly pronounced.
  • Table 1 Comparison of foam systems, hose materials and tool life from the examples.
  • thermoplastic polyurethanes are based on polytetrahydrofuran as the polyether component and 4,4'-diphenylmethane diisocyanate as
  • the release agent used was ethylene-bis-stearylamide.

Abstract

Die Erfindung betrifft eine Vorrichtung, mindestens umfassend einen Mischkopf und eine Abgangsleitung, zum Auftragen aufschäumender Reaktionsgemische auf ein Substrat, wobei mindestens die mit dem aufschäumenden Reaktionsgemisch in Kontakt tretenden Teile der Abgangsleitung(en) aus einem thermoplastischem Polyurethan (TPU) auf Polyetherpolyol-Basis mit einem Trennmittelgehalt zwischen 0,30 Massen-% und 2,0 Massen-%, bevorzugt zwischen 0,35 Massen-% und 1,5 Massen-%, besonders bevorzugt zwischen 0,40 Massen-% und 1,0 Massen-%, bezogen auf die Gesamtmasse des erfindungsgemäßen TPU, gefertigt sind, sowie die Verwendung dieser Vorrichtung in der Herstellung von Verbundelementen.

Description

Vorrichtung zum Auftragen von aufschäumenden Reaktionsgemischen
Die Erfindung betrifft eine Vorrichtung, mindestens umfassend einen Mischkopf und eine Abgangsleitung, zum Auftragen aufschäumender Reaktionsgemische auf ein Substrat, wobei mindes- tens die mit dem aufschäumenden Reaktionsgemisch in Kontakt tretenden Teile der Abgangslei- tung(en) aus einem thermoplastischem Polyurethan (TPU) auf Polyetherpolyol-Basis mit einem Trennmittelgehalt zwischen 0,30 Massen-% und 2,0 Massen-%, bevorzugt zwischen 0,35 Massen-% und 1,5 Massen-%, besonders bevorzugt zwischen 0,40 Massen-% und 1,0 Massen-%), bezogen auf die Gesamtmasse des erfindungsgemäßen TPU, gefertigt sind, sowie die Verwendung dieser Vorrichtung in der Herstellung von Verbundelementen.
Sandwich- Verbundelemente, umfassend zwei Deckschichten und eine dazwischen liegende Kernschicht aus einem Schaumstoff, sehen sich einer Vielzahl von Anforderungen ausgesetzt, insbesondere steigenden Anforderungen bezüglich Feuerwiderstandsfähigkeit bei niedrigen Elementdicken, optimiertem Rauchverhalten sowie einer effizienten Wärmeisolation. Darüber hinaus verlangt der Markt steigende Produktivitäten bei der Herstellung der Sandwich- Verbundelemente bei gleichzeitig hoher Oberflächengüte der Deckschichten. In diesem Zusammenhang besteht ein Bedarf an verbesserten Herstellverfahren von Sandwich- Verbundelementen, welche hohe Geschwindigkeiten und Zuverlässigkeit in der Produktion gewährleisten. Von besonderer Bedeutung ist dabei die Verteilervorrichtung zum Auftragen des verschäumbaren Materials auf die Deckschicht (das Substrat).
Verteilervorrichtungen zum Auftragen von verschäumbaren Reaktionsmischungen auf Substrate im Allgemeinen sind grundsätzlich schon seit längerem bekannt, beispielsweise aus US 4,624,213, DE 31 51 511 AI und GB 1,197,221. Keines dieser Dokumente geht darauf ein, wie ein gleichmäßiger Produktionsprozess über einen längeren Zeitraum (beispielsweise einer Produktionsschicht von ca. acht Stunden) aufrechterhalten werden kann, ohne dass es zu Problemen durch Verstopfungen durch aufschäumendes Material kommt. Zur kontinuierlichen Herstellung von Sandwich- Verbundelementen im Besonderen sind bisher aus dem Stand der Technik oszillierende Mischköpfe bekannt. Hierbei führt der Mischkopf eine oszillierende Bewegung über die Breite einer unteren Deckschicht aus und trägt das noch flüssige Reaktionsgemisch mittels einer Gießharke oder Zungen-/Löffeldüse, die im rechten Winkel zum Mischkopf und parallel zur unteren Deckschicht angeordnet ist, auf die untere Deckschicht auf. Der Mischkopf ist an einer Führungsschiene, dem so genannten Portal, über der unteren Deckschicht befestigt und wird mit Hilfe von Elektromotoren beschleunigt und vor den Umkehrpunkten abgebremst. Die Verschäumungs-Rohstoffe werden dem Mischkopf über Schlauchleitungen zugeführt. Des Weiteren führen teilweise Hydraulik- oder Pneumatikschläuche zum Mischkopf. Die Verschäumungs-Rohstoffe werden über Düsen in den Mischkopf eingebracht und vermischt.
Das Reaktionsgemisch fließt danach in die Gießharke und tritt an den regelmäßig angebrachten Bohrungen aus. Durch die Länge der Gießharke und deren Bohrungen, sowie der oszillierenden Bewegung des Mischkopfs, wird eine schräg zur Produktionsrichtung liegende Verteilung des Reaktionsgemisches erzielt.
Nach Aufbringung schäumt das Reaktionsgemisch auf und steigt bis zur oberen Deckschicht. Bei dem Aufschäumprozess verklebt es die beiden Deckschichten, bevor der Schaumstoff erstarrt und aushärtet.
Dieses Produktionsverfahren ist fertigungstechnisch hinsichtlich der Produktionsgeschwindigkeit limitiert. Auch wenn ausreichend starke Motoren, Führungsschienen, Schläuche, Mischköpfe und Gießharken oder Zungen-/Löffeldüsen verwendet würden, würde das Reaktionsgemisch bedingt durch zu hohe Fliehkräfte an den Umkehrpunkten über die Kanten der Deckschichten hinausgetragen werden. Nach dem Stand der Technik können Produktionsgeschwindigkeiten von mehr als 15 m/min bei der kontinuierlichen Herstellung von Sandwich- Verbundelementen mit dieser Auftragstechnik nicht erreicht werden. Hinlänglich bekannt ist die Technik, mittels stehender Mischkopftechnologie und starren Austrittsystemen die Produktionsgeschwindigkeit auf bis zu 60 m/min zu erhöhen (Kautschuk Gummi Kunststoffe, 57. Jahrgang, Nr. 4/2004). Diese Technologie besteht im Wesentlichen aus drei gleichen Dosierlinien mit separater Zuführung und separaten Mischköpfen und Austrittsystemen. Diese Technologie verfügt jedoch nicht über einen Verteilerkopf. Dieses Verfahren hat weiterhin den Nachteil, dass das jeweils austretende Reaktionsgemisch aus den einzelnen Mischköpfen auch unterschiedlichen physikalischen Bedingungen bezüglich Druck und Temperatur unterliegen kann, was sich im jeweiligen erhaltenen Schaumstoff durch Produktqualitätsminderungen wie beispielsweise ungleichmäßige Oberfläche, kleinere Zellen, unterschiedliche Wärmeleitfähigkeitswerte aufgrund punktuell unterschiedlicher Reaktionskinetik, bemerkbar macht. EP 1 857 248 A2 löst dieses Problem dadurch, dass nicht jede Austrittleitung über einen separaten Mischkopf verfügt. Vielmehr ist nur ein zentraler Mischkopf vorgesehen, über den mehrere Austrittleitungen gespeist werden. Das Material der Austrittsleitungen unterliegt lediglich den Beschränkungen, dass es nicht mit dem zu verschäumenden Reaktionsgemisch reagieren und nicht unverhältnismäßig stark an diesem haften dürfe (vgl. Spalte 3, Z. 36 bis 50). Der Einsatz thermoplastischer Polyurethane wird in diesem Zusammenhang nicht offenbart.
WO 2008/018787 AI betrifft eine Vorrichtung zum Auftragen eines viskosen Gemisches auf einer Oberfläche mittels einer oder mehrerer Auslassöffnungen, die durch ein Zufuhrelement gespeist werden. Die Schrift betrifft weiterhin ein Verfahren zur Herstellung eines Isolationselements mit den Schritten der Auftragung eines viskosen Gemisches, das einen Schaumstoff auf einer Substratschicht bildet, wobei der Schaumstoff anschließend vernetzt und gegebenenfalls die Schaumstoffschicht weiter beschichtet wird. Ein Mischkopf 3 wird mit Komponenten aus den Zuführungen 1 und 2 mit Rohstoffmaterial versorgt. Über eine starre Hauptleitung 8 wird über eine Unterverteilung 4 eine Giesharke 6 durch mehrere Zwischenstege 5 angesteuert. Die Gießharke ist somit starr mit dem Mischkopf verbunden, kann nur komplett mit dem Mischkopf nach links oder rechts bewegt werden um den Auftragsbereich im Ganzen in die richtige Position zum Substrat justieren zu können. Darüber hinaus ist die Reinigung des Systems sehr aufwändig.
WO 2008/104492 A2 offenbart ein Verfahren zur Herstellung von Verbundelementen, wobei der Auftrag des flüssigen Ausgangsmaterials für den Hartschaumstoff auf Isocyanatbasis mittels eines feststehenden, parallel und rechtwinklig zur Bewegungsrichtung zur Deckschicht angebrachten, mit Bohrungen versehenen Rohres erfolgt.
WO 2009/077490 A2 offenbart ein Verfahren zur Herstellung von Verbundelementen, bei dem eine rohrähnliche Gießharke mit Löchern an der Unterseite, verteilt über die gesamte Länge, eingesetzt wird, und wobei der Auftrag des flüssigen Ausgangsmaterials für den Hartschaumstoff parallel zur Deckschichtebene und rechtwinklig zur Bewegungsrichtung erfolgt.
WO 2010/108615 AI offenbart ein Verfahren zur Herstellung von aufschäumenden Verbundelementen, bei dem eine Vorrichtung umfassend einen Mischkopf, einen Verteilerkopf mit mindestens zwei Schlauchleitungen und mindestens zwei stationäre Gießharken eingesetzt wird. Das Material der Schlauchleitungen unterliegt lediglich den Beschränkungen, dass es nicht mit dem zu verschäumenden Reaktionsgemisch reagieren und nicht unverhältnismäßig stark an diesem haften dürfe (vgl. Seite 6, Z. 9 bis 17). Der Einsatz thermoplastischer Polyurethane wird in diesem Zusammenhang nicht offenbart.
In allen genannten Verfahren des Standes der Technik kann es leicht passieren, dass die Verfügbarkeit der Verteilervorrichtung für das zu verschäumende Material durch Verstopfungen, insbesondere von Zuführleitungen und/oder -Schläuchen, verringert wird, was zu Produktionsausfall und aufwändigen Reinigungs Operationen führt.
Diesen Schwierigkeiten der Verfahren des Standes der Technik Rechnung tragend ist ein Gegen- stand der vorliegenden Erfindung die Bereitstellung von Vorrichtungen bzw. Verfahren, mit welchen sich das Aufbringen von verschäumbaren Materialien auf geeignete Substrate mit hoher Produktionsgeschwindigkeit bei gleichzeitig hoher Zuverlässigkeit und Apparateverfügbarkeit und hoher, über den Produktionsprozess gleichbleibender, Produktqualität, insbesondere hinsichtlich der Oberflächengüte des herzustellenden Schaums, erreichen lässt. Insbesondere sollte die kon- tinuierliche Herstellung von Verbundelementen in diesem Sinne verbessert werden.
Ein Gegenstand der Erfindung ist daher eine Vorrichtung zum Auftragen von aufschäumenden Reaktionsgemischen auf ein Substrat umfassend:
(a) einen Mischkopf M zum Vermischen der zur Herstellung eines Schaumstoffs erforderlichen Rohmaterialien,
(b) mindestens eine Abgangsleitung A für das aufschäumende Reaktionsgemisch, wobei mindestens die mit dem aufschäumenden Reaktionsgemisch in Kontakt tretenden Teile der Abgangsleitung(en) aus einem thermoplastischem Polyurethan auf Polyetherpolyol-Basis gefertigt sind, welches wenigstens ein Trennmittel in einem Gehalt von 0,30 Massen- % b is 2,0 Massen-%, bevorzugt 0,35 Massen- % bis 1 ,5 Massen-%, besonders bevorzugt 0,40 Massen- % bis 1 ,0 Massen-%, bezogen auf die Gesamtmasse des thermoplastischen Polyurethans auf Polyetherpolyol-Basis, enthält.
Gegenstand der Erfindung ist ferner die Verwendung der erfindungsgemäßen Vorrichtung in der Herstellung von Verbundelementen umfassend eine Schaumstoffschicht auf einem Substrat.
Unter einem aufschäumendem Reaktions gemisch im Sinne der vorliegenden Erfindung sind Gemische aus Rohmaterialien zu verstehen, die unter Bildung eines Schaumstoffs reagieren, also beispielsweise Mischungen aus Polyolen und Di- bzw. Polyisocyanaten, ggf. unter Zusatz eines Treibmittels und/oder Co-Treib mittels und weiterer Hilfs- und Zusatzstoffe. Ein Mischkopf im Sinne der vorliegenden Erfindung kann je nach verwendeter Technologie („Hochdruck" oder „Niederdruck") als dem Fachmann grundsätzlich bekannter dynamischer Mischer oder als Statikmischer ausgebildet sein. Er dient der innigen Vermischung der jeweiligen Rohmaterialien. Der Mischkopf muss für die jeweilige Verschäumungsaufgabe geeignet sein. Es ist dem Fachmann ein Leichtes, den für eine bestimmte Verschäumungsaufgabe geeigneten Mischkopf auszuwählen. Bei der erfindungsgemäßen Vorrichtung ist der Mischkopf vorzugsweise oberhalb des Substrats an einem starren Gestell angebracht, so dass unterschiedliche Reaktionsprofile zur Herstellung von unterschiedlich dicken Produkten möglich sind.
Das aufschäumende Reaktionsgemisch wird über die Abgangsleitung(en) auf das Substrat verteilt. Die Abgangsleitungen können beispielsweise Rohre oder Schläuche sein. Wesentlich in diesem Zusammenhang ist nur, dass die mit dem aufschäumenden Reaktionsgemisch in Kontakt tretenden Teile der Abgangsleitungen aus dem erfindungsgemäßen thermoplastischen Polyurethan gefertigt sind. Dies kann dadurch erreicht werden, dass die gesamte Abgangsleitung aus diesem Material gefertigt ist (z. B. Schläuche aus erfindungsgemäßem thermoplastischem Polyurethan). Alternativ kann auch lediglich das Innere der Abgangsleitung mit dem erfindungsgemäßen thermoplastischen Polyurethan beschichtet sein (z. B. Metallrohre mit einer Beschichtung aus dem erfindungsgemäßen thermoplastischen Polyurethan).
Im Sinne der vorliegenden Erfindung wird unter thermoplastischem Polyurethan (im Unterschied zu gewöhnlichem Polyurethan) ein Urethanstrukturen umfassendes Material verstanden, das wiederholt unter dem Einfluss von Temp eratur und Druck erweicht werden kann. Thermoplastische Polyurethane (nachfolgend auch TPU genannt) an sich sind seit langem bekannt; sie werden z. B. im Polyurethane Handbook, Günter Oertel, Carl-Hanser Verlag, 1985, S. 405 bis S. 417 ausführlich beschrieben.
Die erfindungsgemäß einsetzbaren TPU-Typen sind solche auf Polyetherpolyol-Basis. Dies bedeutet, dass sie durch Umsetzung geeigneter Isocyanate (siehe weiter unten für Details) mit Polyetherpolyolen erhalten werden. Die erfindungsgemäß einsetzbaren Polyetherpolyole enthalten das Strukturelement
-CHR1-(CH2)m-CHR2-0-,
als Wiederholungseinheit, worin R1 und R2 unabhängig voneinander für Wasserstoff, eine Alkyl- oder Arylgruppe mit 1 bis 6 Kohlenstoffatomen mit oder ohne Halogensubstitution stehen, und worin m eine ganze Zahl zwischen 0 und 2 ist. B evorzugtes Po lyetherp o lyol ist Polytetrahydrofuran (R1 = R2 = H, m = 2). Die Mitverwendung anderer Polyoltypen (z. B. Polyesterpolyole) bei der Herstellung der erfindungsgemäßen thermoplastischen Polyurethane ist nicht erforderlich, stört in geringem Umfang jedoch auch nicht. Solche Beimischungen anderer Polyoltypen betragen maximal 10 Massen-%, bevorzugt maximal 5 Massen-%, besonders bevorzugt maximal 1 Massen%, bezogen auf die Gesamtmasse aller in der Herstellung der erfindungsgemäßen thermoplastischen Polyurethane eingesetzten Polyole.
Ein Material wird im Sinne der vorliegenden Erfindung als aus einem thermoplastischem Polyurethan auf Polyether-Polyol-Basis gefertigt bezeichnet, wenn es zu mindestens 90 Massen-%, bevorzugt zu mindestens 95 Massen-%, besonders bevorzugt mindestens 99 Massen-%) und ganz besonders bevorzugt vollständig aus diesem thermoplastischem Polyurethan auf Polyether-Polyol-Basis besteht.
Unter einem Trennmittel wird im Rahmen dieser Erfindung ein Bestandteil des thermoplastischen Polyurethans verstanden, der dessen Ankleben an das umgebende Material verhindern soll (siehe EP 0 792 917 Bl, S. 2 Absätze [0004] und [0005]). Solche Trennmittel sind z. B. Fettsäureester sowie deren Metallseifen, daneben Fettsäureamide und Ölsäureamide, oder auch Polyethylen- wachse. Es können auch Mischungen verschiedener Trennmittel eingesetzt werden. In diesem Fall bezieht sich die Angabe 0,30 Massen-% bis 2, 0 Massen-%, bevorzugt 0,35 Massen-% bis 1,5 Massen-%, besonders bevorzugt 0,40 Massen-% bis 1, 0 Massen-%, auf die Summe aller Trennmittel.
Das aufschäumende Reaktionsgemisch wird auf ein Substrat aufgegeben, an welchem der jeweilige Schaumstoff haftet, ggf. unter Zuhilfenahme eines Haftvermittlers, und zwar bevorzugt so, dass keine unbenetzten Bereiche entstehen. Geeignete Substrate im Sinne der vorliegenden Erfindung sind beispielsweise Oberflächen aus Metall, Holz, Pappe, Papier, Bitumen u. a.
Nachstehend werden verschiedene Ausführungsformen der erfindungsgemäßen Vorrichtung detailliert beschrieben. Dabei sind die einzelnen Ausführungsformen frei miteinander kombinierbar, sofern sich aus dem Kontext nicht eindeutig das Gegenteil ergibt.
In bevorzugten Ausführungsformen wird dem Reaktionsgemisch im Mischkopf oder mindestens einem der eingesetzten Rohmaterialien vor Einspeisung in den Mischkopf ein unter erhöhtem Druck (bevorzugt von 6,0 bar bis 12 bar (absolut)) stehendes Gas, welches unter den gegebenen Bedingungen von Temperatur und Druck nicht mit den Rohmaterialien und dem zu bildenden Schaumstoff reagieren darf. Bevorzugt ist dieses Gas ausgewählt aus der Gruppe von Luft, Stickstoff, Kohlendioxid und Edelgasen (bspw. Argon und Helium). Bevorzugt wird Luft eingesetzt. Nach dem Eintrag des Gases weist das Gemisch aus den Rohmaterialien und dem zugesetzten Gas auf seinem Weg zum Mischkopf (und von da über den Verteilerkopf über die Abgangsleitungen auf das Substrat) einen erhöhten Druck auf, was eine erhöhte Austragsgeschwindigkeit des aufschäumenden Reaktionsgemisches bedingt. Darüber hinaus wird durch den Zusatz eines unter Druck stehenden Gases die Produktqualität verbessert. Anstelle eines Gases oder zusätzlich dazu können auch andere Bestandteile der Reaktionsmischung hinzugemischt werden. Diese Stoffe sind beispielhaft ausgewählt aus der Gruppe von Graphit, Polyurethanmehl, Melamin, Quarzsand, AI2O3, Talkum und Nanokomposite wie beispielsweise Schichtsilicate, Nanotubes, Nanosand; sie werden der Reaktionsmischung bevorzugt im Mischkopf zugegeben. Ebenso denkbar ist aber auch eine Einmischung in den den Mischkopf verlassenden Reaktionsgemischstrom.
In einer weiteren bevorzugten Ausführungsform umfasst die Vorrichtung mehrere Abgangsleitungen. In diesem Fall ist dem Mischkopf ein Verteilerkopf nachgeschaltet, an dem die Abgangsleitungen befestigt sind. In dieser Ausführungsform umfasst die erfindungsgemäße Vorrichtung
(a) einen Mischkopf M zum Vermischen der zur Herstellung eines Schaumstoffs erforderlichen Rohmaterialien,
(aa) einen strömungstechnisch hinter dem Mischkopf liegenden Verteilerkopf V, an dem
(b) zwei bis zehn, bevorzugt drei bis acht, Abgangsleitungen A für das aufschäumende Reaktionsgemisch angebracht sind,
wobei mindestens die mit dem aufschäumenden Reaktionsgemisch in Kontakt tretenden Teile der Abgangsleitung(en) aus einem thermoplastischem Polyurethan auf Polyetherpolyol-Basis gefertigt sind, welches wenigstens ein Trennmittel in einem Gehalt von 0,30 Massen-% bis 2,0 Massen-%, bevorzugt 0,35 Massen-% bis 1,5 Massen-%, besonders bevorzugt 0,40 Massen-%> b i s 1,0 Massen-%), bezogen auf die Gesamtmasse des thermoplastischen Polyurethans auf Polyetherpolyol-Basis, enthält.
In der Ausführungsform der erfindungsgemäßen Vorrichtung mit nur einer Abgangsleitung A ist der Verteilerkopf V verzichtbar. In diesem Fall ist die eine Abgangsleitung bevorzugt am Mischkopf selbst angebracht. Bevorzugt ist jedoch eine Ausgestaltung der Vorrichtung, bei der mehrere, insbesondere zwei bis zehn, bevorzugt drei bis acht, Abgangs leitungen A an einem Verteilerkopf V angebracht sind. Wenn der Verteilerkopf in diesem Zusammenhang als strömungstechnisch hinter dem Mischkopf liegend beschrieben wird, so ist dies in Bezug auf die Strömungsrichtung des diese beiden Köpfe durchströmenden Materials zu verstehen: Es wird zunächst der Mischkopf und dann erst der (bevorzugt an diesem befestigte) Verteilerkopf durchströmt. Das aufschäumende Reaktionsgemisch, ggf. umfassend ein zugesetztes Gas oder einen der zuvor genannten festen Bestandteile, wird, ggf. über den Verteilerkopf V, auf die mindestens eine, bevorzugt mindestens zwei bis zehn, besonders bevorzugt drei bis acht Abgangsleitungen verteilt. Die Materialen des Misch- und ggf. Verteilerkopfes werden unabhängig voneinander bevorzugt ausgewählt aus Stahl, Edelstahl, Aluminium und Kunststoffen (beispielsweise Polyethylen, Polypropylen oder Polytetrafluorethylen. Diese Materialien können in bevorzugten Ausführungsformen innen mit erfindungsgemäßem TPU beschichtet sein. In jedem Fall muss das jeweils ausgewählte Material den im Mischkopf herrschenden üblichen absoluten Drücken (im Bereich von ca. 3 bar bis 10 bar) und Temperaturen (im Bereich von 20 °C bis 40 °C) standhalten. Im Falle mehrerer Abgangsleitungen ist die Geometrie des Verteilerkopfes bevorzugt so gewählt, dass die vom aufschäumenden Reaktionsgemisch zurückzulegende Wegstrecke bis zum Auftreffen auf das Substrat unabhängig davon, welche Abgangsleitung durchströmt wird, gleich lang ist. Des Weiteren ist es vorteilhaft, wenn der Querschnitt der Verteilerkopfausgänge bei allen Verteilerkopfausgängen identisch ist. Der Querschnitt des Verteilerkopfeingangs kann dagegen auch größer sein als die jeweiligen Verteilerkopfausgänge.
Die erfindungsgemäß einzusetzenden thermoplastischen Polyurethane (TPU) auf Polyetherpolyol- Basis erfüllen die Anforderungen, die an ein Material, aus dem Abgangsleitungen gefertigt werden sollen, zu stellen sind (zu nennen sind chemische Inertheit gegenüber dem aufschäumenden Reaktionsgemisch und geringe Haftung), außergewöhnlich gut. Insbesondere wurde auch gefunden, dass die Verstopfung von Abgangsleitungen durch bereits gebildeten Schaumstoff durch die Verwendung dieser TPU-Typen auf Polyetherpolyol-Basis weitgehend bis vollständig verhindert werden kann.
Aufgrund der exzellenten Materialeigenschaften dieser TPU-Typen umfasst die vorliegende Erfindung in bevorzugten Ausführungsformen auch eine solche Vorrichtung zum Auftragen von aufschäumenden Reaktionsgemischen auf ein Substrat, bei der alle mit dem aufschäumenden Reaktionsgemisch in Kontakt tretenden Teile, nämlich Mischkopf, ggf. Verteilerkopf, Abgangsleitungen und ggf. Gießharken (siehe weiter unten für Details), der Vorrichtung aus thermoplastischem Polyurethan auf Polyetherpolyol-Basis, welches wenigstens ein Trennmittel in einem Gehalt von 0,30 Massen-% bis 2,0 Massen-%, bevorzugt 0,35 Massen-% bis 1,5 Massen-%, besonders bevorzugt 0,40 Massen-% bis 1,0 Massen-%, bezogen auf die Gesamtmasse des thermoplastischen Polyurethans auf Polyetherpolyol-Basis, enthält, gefertigt oder innen beschichtet sind. Im Falle des Mischkopfs, des ggf. vorhandenen Verteilerkopfs und der ggf. vorhandenen Gießharken ist es bevorzugt, diese aus Stahl, Edelstahl, Aluminium und Kunststoffen (wie beispielsweise Polyethylen, Polypropylen oder Polytetrafluorethylen) zu fertigen und innen mit erfindungsgemäßem TPU zu beschichten.
Diese TPU-Typen auf Polyetherpolyol-Basis werden in einer bevorzugten Ausführungsform erhalten durch Umsetzung eines Diisocyanats (oder Mischungen von Diisocyanaten) mit einem Polyetherpolyol (oder Mischungen von Polyetherpolyolen). Besonders bevorzugt ist dabei eine solche Ausgestaltung der erfindungsgemäßen Vorrichtung, bei der das thermoplastische Polyurethan auf Polyetherpolyol-Basis erhalten wird durch Umsetzung wenigstens eines Polyetherpolyols mit einer Molmasse zwischen 800 g/mol und 5000 g/mol, bevorzugt zwischen 900 g/mol und 1500 g/mol in Gegenwart wenigstens eines kettenverlängernden Diols mit einer Molmasse unter 500 g/mol mit wenigstens einem Diisocyanat.
Der Begriff„Molmasse" meint im Rahmen dieser Erfindung die exakte Molmasse, sofern es sich um genau definierte Di- und Polyole handelt, deren exakte Molmasse berechnet werden kann. Wenn im Rahmen dieser Erfindung die Ermittlung der exakten Molmasse eines Di- oder Polyols nicht möglich ist, so ist die zahlengemittelte Molmasse Mn, b e stimmt durch Gelpermeationschromatographie nach DIN 55672-1 vom August 2007, maßgeblich. Dies gilt für alle Arten von Di- und Polyolen für alle Gegenstände der Erfindung und für alle Ausführungsformen.
Neben den zuvor genannten Poly- und Diolen können 0,003 Mol bis 0,08 Mol pro Mol des kettenverlängernden Diols eines monofunktionellen Kettenabbrechers der allgemeinen Strukturformeln R3-OH, R4-NH2 oder R4-NH-R5 enthalten sein, wobei R3, R4 und R5 eine gerade oder verzweigte Kohlenwasserstoffkette mit 1 bis 30 Kohlenstoff-Atomen, die gegebenenfalls Sauerstoff, Schwefel oder andere Heteroatome enthalten kann, bedeuten und das molare Verhältnis NCO/(OH + NH), multipliziert mit 100, der sogenannte Index, zwischen 96 und 108, vorzugsweise zwischen 98 und 106, liegt.
Für die bevorzugte Herstellung der erfindungsgemäßen thermoplastischen Polyurethane auf Polyetherpolyol-Basis aus Poyetherpolyolen und Diisocyanaten kommen als Ausgangskomponenten auf der Isocyanatseite insbesondere die technisch leicht zugänglichen Diisocyanate, wie das 2,4- und das 2,6-Toluylendiisocyanat sowie deren Gemische, das 4,4'- und das 2,4'- Diphenylmethandiisocyanat bzw. deren Gemische, das 4,4'-Diisocyanato-dicyclohexylmethan, sowie das 1,6-Diisocyanatohexan zum Einsatz. Bevorzugt kommt 4,4'-Diphenyl- methandiisocyanat zum Einsatz. Für die bevorzugte Herstellung der erfindungsgemäßen thermoplastischen Polyurethane auf Polyetherpolyol-Basis aus Poyetherpolyolen und Diisocyanaten kommen als Ausgangskomponenten auf der Polyolseite insbesondere die Polyadditionsprodukte von Epoxiden wie Ethylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin zum Einsatz. Diese Epoxide werden entweder mit sich selbst, z. B. in Gegenwart von Katalysatoren, polymerisiert, oder es werden durch Anlagerung dieser Epoxide, gegebenenfalls im Gemisch oder nacheinander, an Startkomponenten mit reaktionsfähigen Wasserstoffatomen wie Alkohole oder Amine, z. B. Wasser, Ethylenglykol, Propylenglykol-(l,3) oder -(1,2) 4,4 '-Dihydroxydiphenylpropan, Anilin, Ethanolamin oder Ethylendiamin, Polymerisate dargestellt. In beiden Varianten werden bevorzugt Ethylenoxid, Propylenoxid und Tetrahydrofuran, besonders bevorzugt Tetrahydrofuran eingesetzt. Bevorzugt liegen in allen Varianten die durchschnittlichen Funktionalitäten der erfindungsgemäßen Polyetherpolyole zwischen 1,5 und 3.
Als kettenverlängernde Diole mit Molmassen unter 500 g/mol kommen bevorzugt Ethylenglykol, Diethylenglykol, Butandiol, Hexandiol, Octandiol, Decandiol und Dodecandiol sowie der Hydro- chinon-bis-(2-hydroxyethylether) in Betracht.
DE 24 18 075 AI beschreibt unter anderem aneinandergereihte Polyurethane auf Polyetherpolyol- Basis, die, sofern zusätzlich ein Trennmittelgehalt zwischen 0,30 Massen- % un d 2,0 Massen-%, bevorzugt zwischen 0,35 Massen- % und 1 ,5 Massen-%, besonders bevorzugt zwischen 0,40 Massen-% und 1 ,0 Massen-%, eingestellt wird (der Trennmittelgehalt spielt in der genannten Schrift keine Rolle), erfindungsgemäß einsetzbar sind. Die besonderen Eigenschaften der auf Polyetherpolyolen basierenden thermoplastischen Polyurethane mit einem spezifizierten Trennmittelgehalt, die sie für den Einsatz in der erfindungsgemäßen Vorrichtung qualifizieren, werden in dieser Schrift nicht offenbart. Bevorzugt wird das erfindungsgemäß einzusetzende Trennmittel ausgewählt aus der Gruppe der Fettsäureester, deren Metallseifen, Fettsäureamiden, Polyethylenwachsen und Mischungen der vorgenannten Verbindungen. Konkrete Beispiele für bevorzugte Verbindungen sind Stearinsäureester und Montansäureester sowie deren Metallseifen, daneben Stearylamide und Ölsäureamide. Besonders bevorzugt eingesetzt wird Ethylen-bis-stearylamid, das Diamid des Ethylendiamins mit Sterarinsäure.
Das erfindungsgemäße thermoplastische Polyurethan kann vorteilhafterweise kontinuierlich hergestellt werden, indem die Komponenten mittels Dosierpumpen einer Mischvorrichtung zugeführt und dort innig verrührt werden. Besonders vorteilhaft ist es, wenn aus dieser Mischvorrichtung das reagierende Gemisch auf beheizte, gegebenenfall mit Trennmittel ausgerüstete, Platten oder Bänder aufgetragen wird. In einer weiteren vorteilhaften Variante kann das erfindungsgemäße thermoplastische Polyurethan kontinuierlich im sogenannten Extruderverfahren, z. B. in einem Mehrwellenextruder, in dem die Komponenten Isocyanat, Polyetherpolyol und kettenverlängerndes Diol zur Reaktion gebracht werden, hergestellt werden (vgl. EP 0 792 917 Bl, insbesondere S. 5, Absätze [0027] und [0028]). Die Dosierung des Trennmittels kann dabei kontinuierlich zu der TPU-Reaktion in den Extruder dosiert werden. Es ist aber auch möglich, das Trennmittel in das vorher hergestellte und in einem Extruder aufgeschmolzene thermoplastische Polyurethan zu dosieren und zu compoundieren. Das Trennmittel kann aber auch in einer weiteren Variante vor der Reaktion zum thermoplastischen Polyurethan mit dem Polyetherpolyol vermischt und anschließend mit diesem der Reaktion zugeführt werden.
Neben dem eingesetzten Trennmittel können dem erfindungsgemäßen thermoplastischen Polyurethan auch noch Antioxydantien und andere Hilfsstoffe, wie z. B. Weichmacher, zugesetzt werden. Typische Weichmacher sind beispielsweise Benzoate, Phthalate oder Phosphorsäureester.
Um zu gewährleisten, dass die pro Zeiteinheit auf das Substrat aufgebrachte Menge an aufschäumenden Reaktionsgemisch möglichst homogen verteilt wird, ist es bevorzugt, eine solche Vorrichtung zum Auftragen von aufschäumenden Reaktionsgemischen auf ein Substrat einzusetzen, bei der die am Verteilerkopf angebrachten Abgangsleitungen gleich lang sind, den gleichen Querschnitt haben und ihre mit dem aufschäumenden Reaktionsgemisch in Kontakt tretenden Teile aus dem gleichen Material (d. h. dem gleichen Typ von thermoplastische Polyurethan auf Polyetherpolyol-Basis) bestehen. Diese Ausführungsform ist mit allen zuvor genannten Ausführungsformen kombinierbar. Eine besonders vorteilhafte Verteilung des aufschäumenden Reaktionsgemisches auf das Substrat kann erreicht werden, wenn jede Abgangsleitung in eine dem Fachmann bekannte Gießharke G mündet, wobei jede Gießharke j e nach Größe zwischen 5 und 100, bevorzugt 5 und 50 Austrittsöffnungen für das aufschäumende Reaktionsgemisch besitzt. Auch diese Ausführungsform ist mit allen zuvor genannten Ausführungsformen kombinierbar. Aufbau und Anordnung der Gießharken erfolgen im Rahmen der vorliegenden Erfindung bevorzugt wie in WO 2010/ 108615 AI auf S. 3, Z. 35 bis S. 4, Z. 25, auf S. 5, Z. 4 bis Z. 13 und auf S. 6, Z. 26 bis S. 7, Z.7 beschrieben. Die Gießharken können aus dem gleichen Material wie der Misch- und Verteilerkopf (siehe oben) sein. Die erfindungsgemäße Vorrichtung eignet sich in allen zuvor genannten Ausführungsformen hervorragend für den Einsatz in Verfahren zur Herstellung von Verbundelementen umfassend eine Schaumstoffschicht auf einem Substrat. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung der zuvor beschriebenen Vorrichtung zum Auftragen von aufschäumenden Reaktionsgemischen auf ein Substrat in der Herstellung von Verbundelementen umfassend eine Schaumstoffschicht auf einem Substrat.
In einer bevorzugten Ausführungsform wird das Substrat (z. B. mittels eines Transportbandes in eine vorgegebene Richtung) bewegt. Dabei sind die Abgangsleitungen bevorzugt an einem in Querrichtung zur Bewegungsrichtung des Substrates angeordneten starren Gestell angeordnet und fixiert. Hierdurch wird ein über die Breite des Substrates gleichmäßiger Auftrag gewährleistet.
Die Umsetzung der Rohmaterialien in der Herstellung der Verbundelemente erfolgt bevorzugt kontinuierlich, wobei die Rohmaterialien mittels Dosierpumpen dem Mischkopf zugeführt und dort innig vermischt werden.
Besonders bevorzugt ist die Verwendung der erfindungsgemäßen Vorrichtung in der Herstellung der sog. Sani vvz'c/z-Verbundelemente, also Verbundelemente enthaltend zwei Deckschichten und eine dazwischen liegende Kernschicht, in vorliegendem Fall eine Schaumstoffschicht. Die untere Deckschicht ist das Substrat, auf dem die Schaumstoffschicht aufgebracht wird. Die Schaumstoffschicht wird wiederum von der oberen Deckschicht begrenzt. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung der zuvor beschriebenen Vorrichtung zum Auftragen von aufschäumenden Reaktionsgemischen auf ein Substrat in der Herstellung von Verbundelementen, wobei das Verbundelement ein Sandwich- Verbundelement ist, bei dem die Schaumstoffschicht zwischen dem Substrat (der unteren Deckschicht) und einer oberen Deckschicht angeordnet ist. Zwischen dem Substrat und dem Schaumstoff können noch andere Schichten angeordnet sein.
Bevorzugte Schaumstoffe sind Polyurethan-Schaumstoff, Polyisocyanurat-Schaumstoff, Poly- styrol-Schaumstoff und Phenolharz-Schaumstoff. Besonders bevorzugt sind „PUR- Hartschaumstoffe", worunter solche Hartschaumstoffe zu verstehen sind, die auf Polyurethan-, Polyharnstoff- und/oder Polyisocyanuratverbindungen basieren.
Im Fall von PUR-Hartschaumstoffen als Kernschicht werden als Rohmaterialien für die Schaum- stoffschicht des Verbundelements oder Sandwich- Verbundelements mindestens eine Isocyanat- Komponente („Komponente A") und mindestens eine Polyol-Komponente („Komponente B") eingesetzt. In diesem Zusammenhang schließen die Begriffe „Isocyanat-Komponente" bzw. „Polyol-Komponente" auch Gemische verschiedener Isocyanate bzw. Polyole mit ein.
Die Rohmaterialien reagieren beim Auftrag auf das Substrat miteinander unter Bildung der Schaumstoff-Kernschicht. Diese Verschäumung von Isocyanat- und Polyolkomponente erfolgt bevorzugt bei einem Index von 100 bis 400. Der Index bezeichnet das molare Verhältnis der Iso- cyanatgruppen zu dem gegenüber Isocyanatgruppen reaktiven Wasserstoffatomen multipliziert mit 100. Als organische Isocyanatkomponente werden aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate, bevorzugt Mischungen aus Isomeren des Diphenyl- methandiisocyanats (MDI) und dessen Oligomeren (Polyphenylpolymethylenpolyisocyanat, PMDI) eingesetzt. Ebenso können Carbodiimidgruppen, Urethangruppen, Allophanatgruppen, Isocyanuratgruppen, Harnstoffgruppen oder Biuretgruppen aufweisende Polyisocyanate, besonders bevorzugt auf der Basis von Polyphenylpolymethylenpolyisocyanat eingesetzt werden. Darüber hinaus ist die Verwendung von geeigneten NCO-Prepolymeren, hergestellt aus der Umsetzung von PMDI mit aliphatischen oder aromatischen Polyetherpolyolen oder Polyesterpolyolen, beispielsweise 1 bis 4 Hydroxylgruppen aufweisenden Polyetherpolyolen oder Polyesterpolyolen mit einer Molmasse von 60 g/mol bis 4000 g/mol möglich.
Die Polyolkomponente enthält Verbindungen mit gegenüber Isocyanatgruppen reaktiven Wasserstoffatomen wie Polyetherpolyole, Polyesterpolyole oder Polyesterether. Derartige Verbindungen sind dem Fachmann bekannt und beispielsweise in Mihail lonescu, Chemistry and Technology of Polyols for Polyurethanes, Rapra Technology Limited, 2005, S. 321 - 366 und S. 419 - 431 be- schrieben. Bevorzugt werden hierbei Verbindungen eingesetzt, welche eine Funktionalität von 1,8 bis 4,5, eine Hydroxylzahl von 20 bis 600 mg KOH/g und gegebenenfalls primäre OH-Gruppen aufweisen. Daneben kann die Polyolkomponente noch niedermolekulare Kettenverlängerer oder Vernetzer enthalten. Diese Zusätze können eine Verbesserung der Fließfähigkeit des Reaktionsgemisches und der Emulgierfähigkeit der treibmittelhaltigen Formulierung auf kontinuierlich produ- zierenden Anlagen, auf welchen Elemente mit flexiblen oder starren Deckschichten hergestellt werden, bewirken.
Dem aufschäumenden Reaktionsgemisch aus Isocyanat- und Polyolkomponente werden in der Regel Flammschutzmittel zugesetzt, bevorzugt in einer Menge von 5 bis 35 Massen-%, bezogen auf die Gesamtmasse an Verbindungen mit gegenüber Isocyanatgruppen reaktiven Wasserstoffatomen in der Polyolkomponente. Derartige Flammschutzmittel sind dem Fachmann im Prinzip bekannt und beispielsweise in Polyurethane Handbook, Günter Oertel, Carl-Hanser Verlag, 1985, Kapitel 6.1, S. 270 beschrieben. Dies können beispielsweise brom- und chlorhaltige Polyole oder Phosphorverbindungen wie die Ester der Orthophosphorsäure und der Metaphosphorsäure, die ebenfalls Halogen enthalten können, sein. Bevorzugt werden bei Raumtemperatur flüssige Flammschutzmittel gewählt.
Als dem aufschäumenden Reaktionsgemisch aus Isocyanat- und Polyolkomponente zugesetzte Treibmittel werden Kohlenwasserstoffe, z. B. die Isomeren des Pentans oder Fluorkohlenwasserstoffe, z. B. HFC 245fa (1,1,1,3,3-Pentafluorpropan), HFC 365mfc (1,1,1,3,3-Pentafluorbutan) oder deren Mischungen mit HFC 227ea (Heptafluorpropan), verwendet. Es können auch verschiedene Treibmittelklassen kombiniert werden.
Als dem aufschäumenden Reaktionsgemisch aus Isocyanat- und Polyolkomponente zugesetzte Co-Treib mittel werden Wasser und/oder Ameisensäure oder andere organische Carbonsäuren eingesetzt.
Dem aufschäumenden Reaktionsgemisch aus Isocyanat- und Polyolkomponente werden bevorzugt in der Polyurethanchemie übliche Katalysatoren zugesetzt. Beispiele für derartige Katalysatoren sind: Triethylendiamin, Ν,Ν-Dimethylcyclohexylamin, Tetramethylendiamin, 1- Methyl-4-dimethylaminoethylpiperazin, Triethylamin, Tributylamin, Dimethylbenzylamin, N,N',N"-Tris-(dimethylaminopropyl)hexahydrotriazin, Dimethylaminopropylformamid, Ν,Ν,Ν',Ν'-Tetramethylethylendiamin, Ν,Ν,Ν',Ν'-Tetramethylbutandiamin, Tetramethyl- hexandiamin, Pentamethyldiethylentriamin, Tetramethyldiaminoethylether, Dimethylpiperazin, 1 ,2-Dimethylimidazol, 1-Azabicyclo[3.3.0]octan, Bis-(dimethylaminopropyl)-harnstoff N- Methylmorpholin, N-Ethylmorpholin, N-Cyclohexylmorpholin, 2,3-Dimethyl-3,4,5,6- tetrahydropyrimidin, Triethanolamin, Diethanolamin, Triisopropanolamin, N- Methyldiethanolamin, N-Ethyldiethanolamin, Dimethylethanolamin, Zinn-(II)-acetat, Zinn-(II)- octoat, Zinn-(II)-ethylhexoat, Zinn-(II)-laurat, Dibutylzinndiacetat, Dibutylzinndilaurat, Dibutylzinnmaleat, Dioctylzinndiacetat, Tris-(N,N-dimethylaminopropyl)-s-hexahydrotriazin, Tetramethylammoniumhydroxid, Natriumacetat, Natriumoctoat, Kaliumacetat, Kaliumoctoat, Natriumhydroxid oder Gemische dieser Katalysatoren.
Dem aufschäumenden Reaktionsgemisch aus Isocyanat- und Polyolkomponente werden bevorzugt Schaumstabilisatoren zugesetzt. Hier kommen vor allem Polyethersiloxane in Frage. Diese Verbindungen sind im Allgemeinen so aufgebaut, dass ein Copolymerisat aus Ethylenoxid und Propylenoxid mit einem Polydimethylsiloxanrest verbunden ist. Ein Zusatz von Hilfs-, Zusatzstoffen, Katalysatoren etc. zum aufschäumenden Reaktionsgemisch kann vor oder während der Vermischung von Polyol- und Isocyanat-Komponente geschehen, d. h. die zusätzlich verwendeten Komponenten werden der Polyol- oder der Isocyanat-Komponente vor deren Einfuhr in den Mischkopf zugegeben, oder sie werden als dritter Strom im Mischkopf mit der Isocyanat- und Polyolkomponente vermischt.
Die Deckschichten der Sandwich- Verbundelemente sind aus einem starren oder flexiblen Material gefertigt. Als Materialien für die Deckschichten können alle dem Fachmann bekannten Materialien eingesetzt werden. Bevorzugt sind Metalle wie Stahl (verzinkt und/oder lackiert), Aluminium (lackiert und/oder eloxiert), Kupfer, Edelstahl oder Nichtmetalle wie verstärkte, unverstärkte und/oder gefüllte Kunststoffe, wie beispielsweise Polyvinylchlorid oder auf Polyesterbasis oder Glasfasern, imprägnierte Pappe, Papier, Holz, Bitumenglasvlies und mineralisches Glasvlies. Die Deckschichten können auch mit einem Lack beschichtet sein. Obere und untere Deckschicht können aus unterschiedlichen Materialien bestehen.
Derartige Verbundelemente auf Basis von - ggf. unterschiedlichen (starr oder flexibel) - Deckschichten und einer Kernschicht bevorzugt aus PUR-Hartschaumstoff sind aus dem Stand der Technik hinlänglich bekannt und werden auch als Metallverbundelemente oder Dämmplatte bezeichnet. Zwischen der Kernschicht und den Deckschichten können weitere Schichten vorgesehen sein.
Beispiele für die Anwendung solcher Verbundelemente mit starren Deckschichten sind ebene oder linierte Wandelemente sowie profilierte Dachelemente für den Industriehallenbau und Kühlhausbau. Auch finden die Verbundelemente als LKW- Aufbauten, Hallentüren und Tore sowie im Containerbau Einsatz. Dämmplatten sowie Verbundelemente mit flexiblen Deckschichten finden Einsatz als Dämmmaterialien von Dächern, Außenwänden und als Fußbodenplatten. Die Herstellung dieser Verbundelemente nach einem kontinuierlichen oder diskontinuierlichen Verfahren ist aus dem Stand der Technik grundsätzlich bekannt. Bei der bevorzugten kontinuierlichen Prozessführung werden die Verbundelemente„endlos" auf so genannten Doppel- Transportbändern in Dicken von in der Regel ca. 20 bis 240 mm hergestellt. Dicken von unter 20 mm und über 240 mm sind aber ebenfalls möglich. Ein solches Doppel-Transportband besteht dabei üblicherweise aus einem umlaufenden Oberband zur Führung der oberen Deckschicht, einem umlaufenden Unterband zur Führung der unteren Deckschicht, einer Zuführeinrichtung für die obere Deckschicht, einer Zuführeinrichtung für die untere Deckschicht, einer Formstrecke, innerhalb derer das Polyurethan-Reaktionsgemisch zwischen der oberen Deckschicht und der unteren Deckschicht aufschäumt und ausreagiert, einer Ablängeinrichtung für das hergestellte Verbundelement s owie e iner Vo rrichtung zum Auftrag en de s aufs chäumenden Reaktionsgemisches auf die untere Deckschicht. Die grundsätzliche Anordnung der einzelnen Elemente für ein kontinuierliches Herstellungsverfahren für Sandwich- Verbundelemente ist aus dem Stand der Technik, wie in DE 1 247 612 (B), insbesondere Spalte 4 Z. 27 bis Spalte 5, Z. 43 sowie die Figuren, und DE 1 609 668 (AI), insbesondere S. 3, vierter Absatz bis S. 5, erster Absatz (Seitenzahlenangabe unter Berücksichtigung des Deckblatts als Seite 1), beschrieben, bekannt.
Im Rahmen der vorliegenden Erfindung wird bevorzugt das noch flüssige Reaktionsgemisch auf die untere Deckschicht (Substrat) mittels der erfindungsgemäßen Vorrichtung aufgetragen. Vorteilhaft befinden sich die Abgangsleitungen und die ggf. eingesetzten Gießharken in einer Höhe von 20 bis 500 mm über der unteren Deckschicht und sind vorzugsweise so angeordnet, dass das Reaktionsgemisch auf die untere Deckschicht aufgebracht werden kann, ohne dass nicht benetzte Bereiche zwischen den einzelnen Auftragsbereichen der jeweiligen Gießharken auf der unteren Deckschicht auftreten. Das nun langsam aufschäumende Reaktionsgemisch wird auf der unteren Deckschicht mittels eines Unterbandes in die Formstrecke, die von einem Ober- und Unterband aufgespannt wird, transportiert. Das aufschäumende Reaktionsgemisch erreicht die obere Deckschicht und verklebt somit die beiden Deckschichten miteinander. Innerhalb der Formstrecke, wobei das Ober- und Unterband die Dicke des herzustellenden Produktes vorgibt, verfestigt sich der Schaumstoff und wird nach Durchlauf durch die Formstrecke über eine Ablängvorrichtung, zum Schneiden der so hergestellten Verbundelemente in gewünschte Längen, abgelängt.
Beispiele
Die folgenden Beispiele beschreiben die Verwendung der erfindungsgemäßen Vorrichtung in der Herstellung von Sandwich- Verbundelementen aus zwei metallischen Deckschichten und einer dazwischen liegenden Polyurethanhartschaumstoff-Kernschicht.
Zur Herstellung der Sandwich- Verbundelemente wurde jeweils ein handelsübliches, kontinuierlich arbeitendes Doppeltransportband eingesetzt. Diese Technologie ist an sich bekannt und beispielsweise in DE 1 609 668 AI beschrieben. Die Komponenten wurden in einem Hochdruckmischkopf vermischt, und das resultierende Reaktionsgemisch wurde anschließend über einen Verteilerkopf V über sechs Schläuche (Abgangsleitungen) auf eine untere Deckschicht (= Substrat) aus verzinktem Stahlblech, beidseitig lackiert, aufgetragen. Die obere Deckschicht bestand aus demselben Material. Die Schläuche wurden in regelmäßigen Abständen über die Breite der unteren Deckschicht angeordnet, um eine gleichmäßige Beauftragung zu gewährleisten, in EP 1 857 248 A2 auf S. 8 in Figur 1 beschrieben. Die Schläuche waren in den Beispielen jeweils zwischen 65 und 75 cm lang (die sechs in einem konkreten Beispiel eingesetzten Schläuche hatten jeweils exakt die gleiche Länge). Die Schläuche hatten jeweils einen Durchmesser von 8 mm innen und 10 mm außen. Die geringfügigen Unterschiede in der Schlauchlänge beeinträchtigen die Aussagekraft der Resultate nicht. Die Hartschaumstoffe der Metallverbundelemente wurden gemäß den nachstehend beschriebenen Verarbeitungsrezepturen hergestellt. Hydroxylzahlen (OH-Zahlen) wurden gemäß DIN 53240 in der Fassung vom Dezember 1971 bestimmt, Säurezahlen gemäß DIN EN ISO 21 14 in der Fassung vom Juni 2002; die angegebenen Zahlenwerte verstehen sich jeweils als mg KOH/g. „Teile" meint Gewichtsteile.
Schaumsystem A: PUR-Hartschaumstoff
100 Gew. -Teile Polyolformulierung mit OH-Zahl 305 bestehend aus:
31 Teile Flammschutzmittel (Trischlorisopropylphosphat, TCPP); 1,8 Teile Wasser; 1 Teil siliconhaltiger Stabilisator; 2,5 Teile Glycerin; 5 Teile eines Polyetherpolyols mit OH-Zahl 470, hergestellt durch Umsetzung von ortho-Toluylendiamin mit Ethylenoxid und Propylenoxid; 7 Teile eines Polyetherpolyols mit OH-Zahl 400, hergestellt durch Umsetzung von Glycerin mit Propylenoxid; 10 Teile eines Polyesterpolyols mit OH-Zahl 370, hergestellt durch Umsetzung von Phthalsäureanhydrid, Adipinsäure und Sojaölfettsäure mit 1 , 1 , 1 -Tris(hydroxymethyl)propan (TMP); 11 Teile eines bromierten Polyetherpolyols mit OH-Zahl 330; 30,7 Teile eines Polyesterpolyetherpolyols mit OH-Zahl 435, hergestellt durch Umsetzung von Phthalsäureanhydrid, Diethylenglykol, Sorbit und Propylenoxid.
2.4 Gew. -Teile Aktivator bestehend aus:
20 Teile Niax A-l (70 % Bis(2-dimethylaminoethyl)ether in Dipropylenglykol); 8 Teile Dimethyl- cyclohexylamin; 4 Teile Pentamethyldiethylentriamin; 68 Teile eines Polyetherpolyols mit OH-Zahl 440, hergestellt durch Umsetzung eines Gemisches von Sucrose und Monoethylenglykol mit Propylenoxid. 2,2 Gew. -Teile Aktivator bestehend aus:
25 Teile Kaliumacetat und 75 Teile Diethylenglykol.
4.5 Gew. -Teile n-Pentan 135 Gew. -Teile 44 V 70 L (Desmodur® 44 V 70 L, Gemisch von 4,4'-Diphenylmethandiisocyanat (MDI) und höherfunktionellen Homologen (PMDI) mit einer Viskosität bei 25 °C von > 610 mPas bis -ί 750 mPas. Das Produkt enthält ca. 34 % 2-Kern MDI, erhältlich von Bayer MaterialScience AG) Kennzahl (Index): 127
Schaumsystem B: PUR/PIR-Hartschaumstoff
100 Gew. -Teile Polyolformulierung mit OH-Zahl 190 bestehend aus:
40 Teile Polyesterpolyetherpolyol mit OH-Zahl 300, hergestellt durch Veresterung von Phthalsäure- anhydrid mit Diethylenglykol und Umsetzung des Reaktionsproduktes mit Ethylenoxid; 16,1 Teile eines Polyetherpolyols mit OH-Zahl 28, hergestellt durch Umsetzung von 1,2-Propylenglykol mit Ethylenoxid und Propylenoxid; 12,3 Teile eines Polyetherpolyols mit OH-Zahl 380, hergestellt durch Umsetzung eines Gemisches von Sucrose, 1,2-Propylenglykol und Monoethylenglykol mit Propylenoxid; 25,6 Teile Flammschutzmittel (Trischlorisopropylphosphat, TCPP); 0,8 Teile Wasser; 2,6 Teile siliconhaltiger Stabilisator; 2,6 Teile eines Polyesterpolyols aus Phthalsäureanhydrid und Diethylenglykol mit OH-Zahl 795 und Säurezahl 100.
0,8 Gew. -Teile Aktivator bestehend aus: 50 Teile Dimethylcyclohexylarnin; 23,5 Teile Pentamethyldiethylentriarnin; 26,5 Teile eines Polyethers mit OH-Zahl 440, hergestellt durch Umsetzung eines Gemisches von Sucrose und Monoethylenglykol mit Propylenoxid. 3,0 Gew. -Teile Aktivator bestehend aus:
25 Teile Kaliumacetat und 75 Teile Diethylenglykol.
2,0 Gew. -Teile Additiv bestehend aus:
10,9 Gew. -Teile Kohlendioxid, 38,9 Gew. -Teile Isopropanolamin und 50,3 Gew. -Teile Monoethyl- englykol.
14,5 Gew. -Teile n-Pentan 200 Gew. -Teile 44 V 70 L
Kennzahl (Index) : 331
Die folgende Tabelle 1 enthält die Standzeiten der eingesetzten Schlauchmaterialien, wobei unter Standzeit die Dauer zwischen zwei Schlauchwechseln während der Produktion von Metall- Polyurethan-Hartschaum- Verbundelementen verstanden wird. Die Standzeiten schwanken in Abhängigkeit vom Durchsatz und etwaigen Produktionsunterbrechungen. Nichtsdestotrotz ist der Unterschied der Standzeiten in den Vergleichsbeispielen zu den erfindungsgemäßen Beispielen deutlich ausgeprägt.
Tabelle 1: Gegenüberstellung Schaumsysteme, Schlauchmaterialien und Standzeiten aus den Beispielen.
Figure imgf000021_0001
Alle Thermoplastischen Polyurethane (TPU) basieren auf Poly-Tetrahydrofuran als Polyetherbestandteil und auf 4,4'-Diphenylmethandiisocyanat als
Isocyanatbestandteil.
Als Trennmittel wurde Ethylen-bis-stearylamid eingesetzt.
Wie man der Tabelle entnehmen kann, werden mit den erfindungsgemäßen TPU-Typen erheblich längere Standzeiten erzielt als in den Vergleichsbeispielen.

Claims

Patentansprüche
Vorrichtung zum Auftragen von aufschäumenden Reaktionsgemischen auf ein Substrat umfassend:
(a) einen Mischkopf M zum Vermischen der zur Herstellung eines Schaumstoffs erforderlichen Rohmaterialien,
(b) mindestens eine Abgangsleitung A für das aufschäumende Reaktionsgemisch, dadurch gekennzeichnet, dass mindestens die mit dem aufschäumenden Reaktionsgemisch in Kontakt tretenden Teile der Abgangsleitung(en) aus einem thermoplastischem Polyurethan auf Polyetherpolyol-Basis gefertigt sind, welches wenigstens ein Trennmittel in einem Gehalt von 0,30 Massen-% bis 2,0 Massen- %, bezogen auf die Gesamtmasse des thermoplastischen Polyurethans auf Polyetherpolyol-Basis, enthält.
Vorrichtung nach Anspruch 1, wobei die Vorrichtung umfasst:
(aa) einen strömungstechnisch hinter dem Mischkopf liegenden Verteilerkopf V, an dem
(b) zwei bis zehn Abgangsleitungen A für das aufschäumende Reaktionsgemisch angebracht sind.
Vorrichtung nach Anspruch 2, wobei die am Verteilerkopf V angebrachten Abgangsleitungen A gleich lang sind, den gleichen Querschnitt haben und ihre mit dem aufschäumenden Reaktionsgemisch in Kontakt tretenden Teile aus dem gleichen Material bestehen. 4. Vorrichtung nach einem der Ansprüche 1 bis 3, wobei jede Abgangsleitung A in eine Gießharke G, jeweils mindestens umfassend zwei Austrittsöffnungen für das aufschäumende Reaktionsgemisch, mündet.
Vorrichtung nach einem der Ansprüche 1 bis 4, wobei das Trennmittel ausgewählt ist aus der Gruppe bestehend aus
Fettsäureestern, Metallseifen von Fettsäureestern, Fettsäureamiden, Polyethylen- wachsen und Mischungen der vorgenannten Verbindungen.
Vorrichtung nach einem der Ansprüche 1 bis 5, wobei alle mit dem aufschäumenden Reaktionsgemisch in Kontakt tretenden Teile der Vorrichtung aus thermoplastischem Polyurethan auf Polyetherpolyol-Basis gefertigt sind, welches wenigstens ein Trennmittel in einem Gehalt von 0,3 Massen-% bis 2,0 Massen-%, bezogen auf die Gesamtmasse des thermoplastischen Polyurethans auf Polyetherpolyol-Basis, enthält.
Vorrichtung nach einem der Ansprüche 1 bis 6, wobei thermoplastische Polyurethan auf Polyetherpolyol-Basis erhalten wird durch Umsetzung wenigstens eines Polyetherpolyols mit einer Molmasse zwischen 800 g/mol und 5000 g/mol in Gegenwart wenigstens eines Diols mit einer Molmasse unter 500 g/mol mit wenigstens einem Diisocyanat.
Vorrichtung nach Anspruch 7, wobei jedes eingesetzte Polyetherpolyol durch Polymerisation eines oder mehrerer Epoxide ausgewählt aus der Gruppe bestehend aus
Ethylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid und
Epichlorhydrin
erhalten wird, und wobei jedes eingesetzte Diisocyanat ausgewählt ist aus der Gruppe bestehend aus
Toluylendiisocyanat, Diphenylmethandiisocyanat, Xylylendiisocyanat,
Naphthylendiisocyanat, Hexamethylendiisocyanat, Diisocyanatodicyclohexyl- methan und Isophorondiisocyanat,
und wobei jedes eingesetzte Diol mit einer Molmasse unter 500 g/mol ausgewählt ist aus der Gruppe bestehend aus
Ethylenglykol, Diethylenglykol, Butandiol, Hexandiol, Octandiol, Decandiol,
Dodecandiol und Hydrochinon-bis-(2-hydroxyethylether).
Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 8 in der Herstellung von Verbundelementen umfassend eine Schaumstoffschicht auf einem Substrat.
Verwendung nach Anspruch 9, wobei das Verbundelement ein Sandwich- Verbundelement ist, bei dem die Schaumstoffschicht zwischen dem Substrat und einer oberen Deckschicht angeordnet ist.
Verwendung nach einem der Ansprüche 10 oder 11, wobei man als Rohmaterialien für die Schaumstoffschicht mindestens eine Isocyanat-Komponente und mindestens eine Polyol- Komponente einsetzt.
PCT/EP2012/065472 2011-08-12 2012-08-07 Vorrichtung zum auftragen von aufschäumenden reaktionsgemischen WO2013023965A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280039394.0A CN103717370A (zh) 2011-08-12 2012-08-07 用于施加发泡反应混合物的装置
EP12743468.6A EP2741898A1 (de) 2011-08-12 2012-08-07 Vorrichtung zum auftragen von aufschäumenden reaktionsgemischen
RU2014109076/05A RU2014109076A (ru) 2011-08-12 2012-08-07 Устройство для нанесения вспениваемых реакционных смесей

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011080906A DE102011080906A1 (de) 2011-08-12 2011-08-12 Vorrichtung zum Auftragen von aufschäumenden Reaktionsgemischen
DE102011080906.6 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013023965A1 true WO2013023965A1 (de) 2013-02-21

Family

ID=46614501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/065472 WO2013023965A1 (de) 2011-08-12 2012-08-07 Vorrichtung zum auftragen von aufschäumenden reaktionsgemischen

Country Status (5)

Country Link
EP (1) EP2741898A1 (de)
CN (1) CN103717370A (de)
DE (1) DE102011080906A1 (de)
RU (1) RU2014109076A (de)
WO (1) WO2013023965A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015150304A1 (de) * 2014-04-03 2015-10-08 Basf Se Verfahren zur herstellung von polyurethan-hartschäumen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT2956246T (lt) 2013-02-13 2017-03-10 Basf Se Sudėtinių elementų gamybos būdas

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1247612B (de) 1965-07-22 1967-08-17 Heinz Suellhoefer Verfahren und Vorrichtung zur fortlaufenden Herstellung von kaschierten Platten aus Polyurethanhartschaum
GB1197221A (en) 1966-08-12 1970-07-01 T C T Sales Pty Ltd Improvements in and Connected with the Manufacture of Foam Plastic Laminates
DE1609668A1 (de) 1966-05-28 1972-03-09 Hoesch Ag Verfahren und Vorrichtung zur Herstellung von Wandelementen
DE2418075A1 (de) 1974-04-13 1975-10-30 Bayer Ag Thermoplastische polyurethan-elastomere mit verbesserter verarbeitbarkeit
DE3151511A1 (de) 1981-12-24 1983-07-28 Mathias 4815 Schloss Holte Mitter Vorrichtung zum gleichmaessigen verteilen von fluessigen, viskosen oder verschaeumten flotten
US4624213A (en) 1985-08-27 1986-11-25 Armstrong World Industries, Inc. Curtain coating apparatus and method of use
EP0792917B1 (de) 1996-03-01 2003-08-27 Bayer Ag Wachs enthaltende thermoplastisch verarbeitbare Polyurethane
EP1857248A2 (de) 2006-05-16 2007-11-21 Bayer MaterialScience AG Vorrichtung und Verfahren zur Herstellung von geschäumten Sandwich-Verbundelementen
WO2008018787A1 (en) 2006-08-08 2008-02-14 Basf Se A device for applying a viscous mixture to a surface as well as a method for manufacturing an insulation element
WO2008104492A2 (de) 2007-02-28 2008-09-04 Basf Se Verfahren zur herstellung von verbundkörpern auf der basis von schaumstoffen auf isocyanatbasis
WO2009077490A2 (de) 2007-12-17 2009-06-25 Basf Se Verfahren zur herstellung von verbundelementen auf der basis von schaumstoffen auf isocyanatbasis
WO2010108615A1 (de) 2009-03-25 2010-09-30 Bayer Materialscience Ag Sandwich-verbundelemente

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1247612B (de) 1965-07-22 1967-08-17 Heinz Suellhoefer Verfahren und Vorrichtung zur fortlaufenden Herstellung von kaschierten Platten aus Polyurethanhartschaum
DE1609668A1 (de) 1966-05-28 1972-03-09 Hoesch Ag Verfahren und Vorrichtung zur Herstellung von Wandelementen
GB1197221A (en) 1966-08-12 1970-07-01 T C T Sales Pty Ltd Improvements in and Connected with the Manufacture of Foam Plastic Laminates
DE2418075A1 (de) 1974-04-13 1975-10-30 Bayer Ag Thermoplastische polyurethan-elastomere mit verbesserter verarbeitbarkeit
DE3151511A1 (de) 1981-12-24 1983-07-28 Mathias 4815 Schloss Holte Mitter Vorrichtung zum gleichmaessigen verteilen von fluessigen, viskosen oder verschaeumten flotten
US4624213A (en) 1985-08-27 1986-11-25 Armstrong World Industries, Inc. Curtain coating apparatus and method of use
EP0792917B1 (de) 1996-03-01 2003-08-27 Bayer Ag Wachs enthaltende thermoplastisch verarbeitbare Polyurethane
EP1857248A2 (de) 2006-05-16 2007-11-21 Bayer MaterialScience AG Vorrichtung und Verfahren zur Herstellung von geschäumten Sandwich-Verbundelementen
WO2008018787A1 (en) 2006-08-08 2008-02-14 Basf Se A device for applying a viscous mixture to a surface as well as a method for manufacturing an insulation element
WO2008104492A2 (de) 2007-02-28 2008-09-04 Basf Se Verfahren zur herstellung von verbundkörpern auf der basis von schaumstoffen auf isocyanatbasis
WO2009077490A2 (de) 2007-12-17 2009-06-25 Basf Se Verfahren zur herstellung von verbundelementen auf der basis von schaumstoffen auf isocyanatbasis
WO2010108615A1 (de) 2009-03-25 2010-09-30 Bayer Materialscience Ag Sandwich-verbundelemente

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GÜNTER OERTEL: "Polyurethane Handbook", 1985, CARL-HANSER VERLAG
GÜNTER OERTEL: "Polyurethane Handbook", 1985, CARL-HANSER VERLAG, pages: 270
KAUTSCHUK GUMMI KUNSTSTOFFE, vol. 57, no. 4, 2004
MIHAIL LONESCU: "Chemistry and Technology of Polyols for Polyurethanes", 2005, RAPRA TECHNOLOGY LIMITED, pages: 321 - 366,419-

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015150304A1 (de) * 2014-04-03 2015-10-08 Basf Se Verfahren zur herstellung von polyurethan-hartschäumen

Also Published As

Publication number Publication date
RU2014109076A (ru) 2015-09-20
DE102011080906A1 (de) 2013-02-14
EP2741898A1 (de) 2014-06-18
CN103717370A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
EP2125323B1 (de) Verfahren zur herstellung von verbundkörpern auf der basis von schaumstoffen auf isocyanatbasis
EP2234732B1 (de) Verfahren und vorrichtung zur herstellung von verbundelementen auf der basis von schaumstoffen auf isocyanatbasis
EP1632511B2 (de) Auf aliphatischen polyesterpolyolen basierende pur-/pir-hartschaumstoffe
EP3090014B1 (de) Zusammensetzung geeignet zur herstellung von polyurethan- oder polyisocyanurat-hartschaumstoffen
EP2220138A1 (de) Einkomponentenpolyurethanklebstoff
WO2018141731A1 (de) Verfahren und system zur herstellung von schaum-verbundelementen
EP2233271A1 (de) Sandwich-Verbundelemente
WO2018141721A1 (de) Verfahren zur herstellung von polyurethan (pur) und polyurethan/polyisocyanurat (pur/pir) – hartschaumstoffen
EP1595904A2 (de) Gedämmtes Rohr, enthaltend mit Ameisensäure hergestelltes Polyurethan
EP2741898A1 (de) Vorrichtung zum auftragen von aufschäumenden reaktionsgemischen
EP2734565B1 (de) Pur-pir-hartschaumstoff mit verbesserter haftung in verbundelementen
EP3630481B1 (de) Verfahrung zur herstellung von gedämmten rohren
EP1842976B1 (de) Beschichtete Schaumstoffplatte
EP3576922B1 (de) Verfahren und vorrichtung zur herstellung von schaum-verbundelementen
WO2018141720A1 (de) Verfahren und vorrichtung zur herstellung von schaum-verbundelementen
EP3444287A1 (de) Dämmkörper, insbesondere dämmkörper zur zwischensparrendämmung
WO2017121894A1 (de) Verfahren zur herstellung von verbundelementen
EP2969449B1 (de) Verfahren zur herstellung von verbundelementen sowie erhaltenes verbundelement
EP4041521A1 (de) Verfahren und vorrichtung zur herstellung von schaum-verbundelementen
DE10310379A1 (de) Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12743468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014109076

Country of ref document: RU

Kind code of ref document: A