WO2013023908A2 - Aussenläufermaschine mit statorsegmenten - Google Patents

Aussenläufermaschine mit statorsegmenten Download PDF

Info

Publication number
WO2013023908A2
WO2013023908A2 PCT/EP2012/064985 EP2012064985W WO2013023908A2 WO 2013023908 A2 WO2013023908 A2 WO 2013023908A2 EP 2012064985 W EP2012064985 W EP 2012064985W WO 2013023908 A2 WO2013023908 A2 WO 2013023908A2
Authority
WO
WIPO (PCT)
Prior art keywords
stator
machine according
electrical machine
carrier
groove
Prior art date
Application number
PCT/EP2012/064985
Other languages
English (en)
French (fr)
Other versions
WO2013023908A3 (de
Inventor
Markus KLÖPZIG
Peter Kummeth
Heinz Schmidt
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013023908A2 publication Critical patent/WO2013023908A2/de
Publication of WO2013023908A3 publication Critical patent/WO2013023908A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos

Definitions

  • the present invention relates to an electric machine with an external rotor and an internal stator, which is arranged coaxially with the external rotor.
  • segmented stators make stator production much easier and cheaper. From technical point of view, ⁇ a higher packing density of the winding and thus the construction of machines with significantly higher power density and smaller size is possible through the use of segmented stators.
  • the stator is located inside the rotor.
  • the Statorseg ⁇ elements are radially outward (towards the rotor) and can not be held by an enclosing housing, but must be fixed in other ways.
  • stator for an external rotor motor.
  • the stator comprises identical stator segments, which are held together in the circumferential direction successively via form-locking connections.
  • Stator comprises a pole with a foot portion, egg ⁇ nem arm portion and a head portion, which together have ähnli ⁇ surface geometry, such as a winding body.
  • aisenli ⁇ surface geometry such as a winding body.
  • On the Pole pieces are wound single windings, which gives identical stator segments, which are then assembled.
  • the radial forces acting on the stator must be absorbed by the form-locking connections. This can sometimes lead to stability problems.
  • the object of the present invention is thus to propose an electrical machine having a réelleläu ⁇ fer and the segmented inner stator stable up is built.
  • an electrical ⁇ specific machine with an external rotor and an internal stator which is arranged coaxially with the external rotor, wherein the inner stator comprising a support having on its periphery a plurality of
  • Stator segments each individually, force ⁇ conclusively in the radial direction, are attached directly to the carrier.
  • each stator segment is not only fixed to its adjacent segments, but directly to the carrier.
  • the carrier can directly absorb the significant radial forces on the stator segments.
  • each stator segment has a laminated core with exactly one tooth on which a coil is wound. This has the advantage that the individual stator segments can be wound much more easily, in particular automatically.
  • a stator segment also have a plurality of teeth, which are then correspondingly complex to wrap.
  • stator segments In addition, at least one of the stator segments, a groove which is directed to an adjacent of the stator segments, and the adjacent stator segment having a corresponding spring, wherein the two stator segments are positively connected to each other by the groove and the spring.
  • the individual stator segments are held not only immedi ⁇ bar by the carrier, but also by the adjacent stator segments in position.
  • the carrier may in particular be annular. Such carriers can be produced inexpensively, and they also have a very high strength. Alternatively, the carrier may also have the shape of a polygon. This has the advantage that the head of a Statorpols can be made just.
  • each stator segment may include a radially NEN after in- to the axis of the electric machine directed Fixed To ⁇ gungsnut with undercut.
  • the mounting groove is conveniently located at a portion of the respective stator segment which is magnetically less stressed during operation of the electrical machine than most other portions of the stator segment. As a result, the magnetic circuit in the stator is least affected by the mounting groove.
  • a particularly advantageous location for the mounting groove is centered on a pole tooth in the head of the pole.
  • a sliding block is arranged in the groove, which forms a positive connection with the undercut of the fastening groove.
  • a sliding block is easy to insert for mounting in the groove and should be made of a ferromagnetic material.
  • the sliding block can be fastened with a bolt to the carrier.
  • Such a bolt is easy to install and can absorb the radial forces sufficiently. It is also advantageous if the bolt and the sliding block are screwed together. Such glands can be realized with little effort.
  • FIG 2 shows a detail of FIG 1 with the stator and a single stator segment.
  • an external rotor machine with an external rotor 1 and an internal stator 2 is provided.
  • the external rotor 1 has distributed on the inner circumference permanent magnets 3, which are directed to the inner stator 2.
  • the stator 2 has six stator segments 4 by way of example. This number is of course exactly ⁇ so changed as the number of permanent magnets 3 on Au ⁇ .
  • Each stator segment 4 has a laminated core 5 (see FIG. 2). With the laminated core 5, a pole tooth 6 is formed, on which a winding is wound, which is not shown in the figures.
  • the pole tooth 6 is bounded radially outwardly to the outer rotor 1 with a pole piece 7 and radially inwardly with a tooth head 8.
  • the tooth head 8 is here attached directly to a stator 9, which here has an annular shape.
  • the stator segments 4 are fastened individually to this stator carrier 9. For the sake of clarity, only a single one is shown in FIG Stator segment 4 mounted on the annular stator 9.
  • the stator 9, a different geometry, for. B. polygonal possess. In the example shown in the figures contains the
  • Laminated core 5 of each stator 4 a fastening groove 10 which extends in the stacking direction of the laminated core 5 and in the axial direction of the electric machine and has an undercut.
  • the fastening groove 10 extends over the entire thickness of the laminated core 5.
  • a sliding block 11 space which also extends over the entire laminated core length and has one or more Ge ⁇ winch.
  • the stator segments 4 are fastened on the stator carrier 9 by screwing screws 12 through the stator carrier 9 into the threads of the sliding blocks 11 from the inside.
  • the laminated cores 5 of the stator 4 are pulled by the screws 12 ra ⁇ dial inward on the support ring 9 and fixed. Due to the fixed screw and a good thermal contact between the laminated core 5 and stator 9 is achieved.
  • the fastening groove 10 is embodied in a magnetically weakly loaded region of the iron circle. Namely, the magnetic flux in the pole tooth 6 divides in the direction of the left half of the tooth head 8 and the right half of the tooth head 8. The fastening groove 10 lies exactly between these two tooth head halves. Consequently, the reduction of the torque due to the mounting groove 10 is very low and can be reduced even further by execution of ferromagnetic groove blocks 11.
  • stator segments 4 On the side of the stator segments 4, in particular on the tooth heads 8, there is a groove 13 on one side and a spring on the side opposite in the circumferential direction
  • stator 4 are aligned well with each other and get additional stability in the ringförmi ⁇ gen arrangement. Should the attachment of a stator segment 4 loosen during operation of the machine, this segment is still held in position by the adjacent segments due to the described arrangement.
  • the attachment of the stator segments 4 on the stator support 9 is not carried out by a screw connection but by welding or brazing of the stator 9 and bolts for holding the stator segments 4 (not shown in the figures). It is important to ensure that the laminated cores 5 of the stator 4 are pressed well on the stator 9 and held in this position (possibly by a suitable auxiliary ⁇ device) until the welding or soldering of the two components is completed.
  • stator segments 4 and stator carrier 9 are also designed with inwardly directed bolts. These bolts can then be welded or soldered to the carrier ring.
  • the segmented stator 2 also allows a much simpler and thus more cost-effective production of stators for electric motors. For manufacturing less elaborate winding machines.
  • the windings can also be made faster. Due to the easier accessibility of the winding space of the seg ⁇ ment convinced Statorblechonge a better Ausnut ⁇ tion of the winding space and thus a greater winding density is achieved. This makes it possible to build an electric machine with a higher power density (compared to conventional stators), as the available winding space is used more efficiently. Due to the higher power density compared to Ma ⁇ machines with conventional stators allowing highly efficient electric machines are of lesser size imple- mented.
  • the segmented design also saves Ma ⁇ material, since the utilization of the sheet during punching is much higher. In addition, an automated production of such a stator is easier possible than in a single winding or non-segmented running stators.

Abstract

Es soll eine stabilere elektrische Maschine mit verbesserter Leistungsdichte vorgeschlagen werden. Hierzu wird eine elektrische Maschine mit einem Außenläufer (1) und einem Innenstator (2) bereitgestellt, der mit dem Außenläufer (1) koaxial angeordnet ist. Der Innenstator (2) weist einen Träger (9) auf, an dessen Umfang mehrere Statorsegmente jeweils einzeln, in radialer Richtung kraftschlüssig, direkt an dem Träger befestigt sind. Dadurch ergibt sich ein sehr stabiler Stator (2).

Description

Beschreibung
Außenläufermaschine mit Statorsegmenten Die vorliegende Erfindung betrifft eine elektrische Maschine mit einem Außenläufer und einem Innenstator, der mit dem Außenläufer koaxial angeordnet ist.
In elektrischen Maschinen und insbesondere in Elektromotoren für Fahrzeuganwendungen wie Hybridfahrzeuge oder E-Cars wird durch die Verwendung von segmentierten Statoren die Statorfertigung wesentlich vereinfacht und verbilligt. Aus techni¬ scher Sicht ist durch die Verwendung von segmentierten Statoren eine höhere Packungsdichte der Wicklung und damit der Bau von Maschinen mit deutlich höherer Leistungsdichte bzw. geringerer Baugröße möglich.
Benötigt man aufgrund der effektiveren Bauraumnutzung (unter Berücksichtigung von Schnittstellenanforderungen des Fahr- zeugherstellers) eine Außenläufer-Maschine, so befindet sich der Stator innerhalb des Rotors. Damit stehen die Statorseg¬ mente radial nach außen (Richtung Rotor) und können nicht durch ein umhüllendes Gehäuse gehalten werden, sondern müssen auf andere Weise fixiert werden.
Beim Bau von Elektromotoren mit Innenläufer und segmentiertem Stator wird typischerweise der Ring aus mehreren Statorseg¬ menten in ein Statorgehäuse eingepresst. Dies ist aufgrund des geometrischen Aufbaus einer Außenläufer-Elektromaschine nicht möglich.
Aus der Druckschrift DE 10 2008 050 450 AI ist ein Stator für einen Außenläufermotor bekannt. Der Stator umfasst identische Statorsegmente, die in Umfangsrichtung aufeinander folgend über Formschlussverbindungen zusammengehalten sind. Jedes
Statorsegment umfasst ein Polteil mit einem Fußabschnitt, ei¬ nem Armabschnitt und einem Kopfabschnitt , die zusammen ähnli¬ che Geometrie aufweisen, wie ein Wickelkörper. Auf die Polteile werden Einzelwicklungen aufgewickelt, wodurch man identische Statorsegmente erhält, die dann zusammengesetzt werden. Die auf den Stator wirkenden Radialkräfte müssen dabei von den Formschlussverbindungen aufgenommen werden. Dies kann unter Umständen zu Stabilitätsproblemen führen.
Die Aufgabe der vorliegenden Erfindung besteht somit darin, eine elektrische Maschine vorzuschlagen, die einen Außenläu¬ fer besitzt und deren segmentierter Innenstator stabiler auf- gebaut ist.
Erfindungsgemäß wird diese Aufgabe gelöst durch eine elektri¬ sche Maschine mit einem Außenläufer und einem Innenstator, der mit dem Außenläufer koaxial angeordnet ist, wobei der In- nenstator einen Träger aufweist, an dessen Umfang mehrere
Statorsegmente jeweils einzeln, in radialer Richtung kraft¬ schlüssig, direkt an dem Träger befestigt sind.
In vorteilhafter Weise ist also jedes Statorsegment nicht nur an seinen benachbarten Segmenten fixiert, sondern unmittelbar an dem Träger. Somit kann der Träger die wesentlichen radialen Kräfte auf die Statorsegmente direkt aufnehmen.
Darüber hinaus wird so ein guter thermischer Kontakt zwischen Statorsegmenten und Statorträger erreicht.
Vorzugsweise besitzt jedes Statorsegment ein Blechpaket mit genau einem Zahn, auf den eine Spule gewickelt ist. Dies hat den Vorteil, dass die einzelnen Statorsegmente wesentlich einfacher, insbesondere automatisiert bewickelt werden kön- nen. Alternativ kann ein Statorsegment natürlich auch mehrere Zähne aufweisen, die dann entsprechend aufwändiger zu bewickeln sind.
Darüber hinaus kann mindestens eines der Statorsegmente eine Nut, die zu einem benachbarten der Statorsegmente gerichtet ist, und das benachbarte Statorsegment eine korrespondierende Feder aufweisen, wobei die beiden Statorsegmente durch die Nut und die Feder formschlüssig miteinander verbunden sind. Damit werden die einzelnen Statorsegmente nicht nur unmittel¬ bar durch den Träger, sondern auch durch die benachbarten Statorsegmente in Position gehalten.
Der Träger kann insbesondere ringförmig ausgebildet sein. Derartige Träger können kostengünstig hergestellt werden, und sie besitzen außerdem eine sehr hohe Festigkeit. Alternativ kann der Träger auch die Form eines Polygons besitzen. Dies hat den Vorteil, dass der Kopf eines Statorpols eben gefertigt werden kann.
Darüber hinaus kann jedes Statorsegment eine radial nach in- nen zur Achse der elektrischen Maschine gerichtete Befesti¬ gungsnut mit Hinterschneidung aufweisen. Dies hat den Vorteil, dass jedes Statorsegment durch einen einfachen Form¬ schluss radial an dem Träger gehalten werden kann. Die Befestigungsnut ist günstigerweise an einem Abschnitt des jeweiligen Statorsegments angeordnet, der beim Betrieb der elektrischen Maschine magnetisch weniger belastet ist als die meisten anderen Abschnitte des Statorsegments. Hierdurch wird der magnetische Kreis im Stator durch die Befestigungsnut am wenigsten beeinträchtigt. Eine besonders vorteilhafte Stelle für die Befestigungsnut liegt mittig über einem Polzahn im Kopf des Pols.
Vorzugsweise ist in der Nut ein Nutstein angeordnet, der mit der Hinterschneidung der Befestigungsnut einen Formschluss eingeht. Ein derartiger Nutstein ist für die Montage leicht in die Nut einzuführen und sollte aus einem ferromagnetischen Material hergestellt sein. Ferner kann der Nutstein mit einem Bolzen an dem Träger befestigt sein. Ein derartiger Bolzen ist leicht zu montieren und kann in ausreichendem Maße die radialen Kräfte aufnehmen. Vorteilhaft ist außerdem, wenn der Bolzen und der Nutstein miteinander verschraubt sind. Derartige Verschraubungen las¬ sen sich mit geringem Aufwand realisieren. Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:
FIG 1 einen Querschnitt durch eine erfindungsgemäße
elektrische Maschine senkrecht zur Maschinenachse; und
FIG 2 einen Ausschnitt von FIG 1 mit dem Statorträger und einem einzelnen Statorsegment. Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.
Entsprechend dem Beispiel von FIG 1 ist eine Außenläuferma- schine mit einem Außenläufer 1 und einem Innenstator 2 vorgesehen. Der Außenläufer 1 besitzt am Innenumfang verteilt Permanentmagnete 3, die zum Innenstator 2 gerichtet sind.
Der Stator 2 weist im vorliegenden Beispiel exemplarisch sechs Statorsegmente 4 auf. Diese Anzahl ist natürlich genau¬ so veränderbar wie die Anzahl der Permanentmagnete 3 am Au¬ ßenläufer 1.
Jedes Statorsegment 4 weist ein Blechpaket 5 auf (vergleiche FIG 2) . Mit dem Blechpaket 5 ist ein Polzahn 6 ausgebildet, auf den eine Wicklung gewickelt wird, die in den Figuren nicht dargestellt ist. Der Polzahn 6 ist radial nach außen zum Außenläufer 1 hin mit einem Polschuh 7 und radial nach innen mit einem Zahnkopf 8 begrenzt. Der Zahnkopf 8 ist hier unmittelbar auf einem Statorträger 9 befestigt, der hier ringförmige Gestalt besitzt. An diesem Statorträger 9 sind gemäß FIG 1 die mehreren Statorsegmente 4 einzeln befestigt. Der Übersicht halber ist in FIG 2 lediglich ein einzelnes Statorsegment 4 auf dem ringförmigen Statorträger 9 befestigt. Alternativ kann der Statorträger 9 auch eine andere Geometrie, z. B. polygonförmig, besitzen. In dem in den Figuren dargestellten Beispiel enthält das
Blechpaket 5 jedes Statorsegments 4 eine Befestigungsnut 10, die in Stapelrichtung des Blechpakets 5 bzw. in axialer Richtung der elektrischen Maschine verläuft und eine Hinter- schneidung besitzt. Die Befestigungsnut 10 verläuft über die gesamte Dicke des Blechpakets 5. In der Befestigungsnut 10 findet ein Nutstein 11 Platz, der sich ebenfalls über die gesamte Blechpaketlänge erstreckt und der eine oder mehrere Ge¬ winde besitzt. Die Statorsegmente 4 werden auf dem Statorträger 9 befestigt, indem von innen Schrauben 12 durch den Statorträger 9 in die Gewinde der Nutsteine 11 geschraubt werden. Somit werden die Blechpakete 5 der Statorsegmente 4 durch die Schrauben 12 ra¬ dial nach innen auf den Trägerring 9 gezogen und fixiert. Durch die feste Verschraubung wird auch ein guter thermischer Kontakt zwischen Blechpaket 5 und Statorträger 9 erreicht.
Die Befestigungsnut 10 ist in einem magnetisch schwach be¬ lasteten Bereich des Eisenkreises ausgeführt. Der magnetische Fluss in dem Polzahn 6 teilt sich nämlich in Richtung zur linken Hälfte des Zahnkopfes 8 und zur rechten Hälfte des Zahnkopfes 8. Die Befestigungsnut 10 liegt genau zwischen diesen beiden Zahnkopfhälften . Demzufolge ist die Reduktion des Drehmoments aufgrund der Befestigungsnut 10 sehr gering und kann durch Ausführung von ferromagnetischen Nutsteinen 11 nochmals verringert werden.
Seitlich an den Statorsegmenten 4, insbesondere an den Zahnköpfen 8 befinden sich auf einer Seite eine Nut 13 und auf der in Umfangsrichtung gegenüberliegenden Seite eine Feder
14. Dadurch werden die Statorsegmente 4 gut zueinander ausgerichtet und erhalten zusätzliche Stabilität in der ringförmi¬ gen Anordnung. Sollte sich die Befestigung eines Statorseg- ments 4 während des Betriebs der Maschine lockern, so wird dieses Segment aufgrund der beschriebenen Anordnung weiterhin durch die benachbarten Segmente in seiner Position gehalten. Entsprechend einer alternativen Ausführungsform erfolgt die Befestigung der Statorsegmente 4 auf dem Statorträger 9 nicht durch eine Verschraubung sondern durch Verschweißen oder Hartlöten von Statorträger 9 und Bolzen zum Halten der Statorsegmente 4 (in den Figuren nicht dargestellt) . Dabei ist darauf zu achten, dass die Blechpakete 5 der Statorsegmente 4 gut auf den Statorträger 9 gepresst und in dieser Position gehalten werden (gegebenenfalls durch eine geeignete Hilfs¬ vorrichtung) , bis die Verschweißung bzw. Verlötung der beiden Komponenten abgeschlossen ist. Nur so kann garantiert werden, dass neben dem guten mechanischen Halt auch eine gute thermische Verbindung zwischen Statorsegmenten 4 und Statorträger 9 erreicht wird. Die Nutensteine 11 bleiben also erhalten und werden zusätzlich mit nach innen gerichteten Bolzen ausgeführt. Diese Bolzen können dann mit dem Trägerring ver- schweißt oder verlötet werden.
In vorteilhafter Weise ist also durch die Befestigung von Statorsegmenten 4 auf dem Statorträger 9 die Möglichkeit erschlossen, eine Außenläufermaschine mit segmentiertem Stator 2 zu fertigen. Derartige Elektromotoren können in Hybridfahrzeugen und sogenannten E-Cars eingesetzt werden. So wird es möglich, eine platzsparende und hocheffiziente Elektromaschi- ne zu entwickeln, die zumindest unter gewissen Randbedingungen, welche beispielsweise von einem Kraftfahrzeughersteller definiert werden, gegenüber einer Innenläufermaschine Bau¬ raumvorteile aufweist.
Der segmentierte Stator 2 erlaubt außerdem eine wesentlich einfachere und damit kostengünstigere Fertigung von Statoren für Elektromotoren. Zur Fertigung reichen weniger aufwändige Wickelmaschinen aus. Die Wicklungen können zudem schneller hergestellt werden. Durch die einfachere Zugänglichkeit des Wickelraums der seg¬ mentierten Statorblechpakete wird auch eine bessere Ausnut¬ zung des Wickelraums und damit eine größere Wicklungsdichte erreicht. Damit kann eine Elektromaschine mit höherer Leis- tungsdichte (im Vergleich zu konventionellen Statoren) gebaut werden, da der verfügbare Wicklungsraum effizienter genutzt wird. Durch die höhere Leistungsdichte im Vergleich zu Ma¬ schinen mit konventionellen Statoren wird ermöglicht, dass hocheffiziente Elektromaschinen mit geringerer Baugröße rea- lisiert werden. Die segmentierte Ausführung spart ferner Ma¬ terial, da die Ausnutzung des Blechs beim Stanzen wesentlich höher ist. Darüber hinaus ist eine automatisierte Fertigung eines solchen Stators einfacher möglich als bei einer Einzelwicklung oder bei nicht segmentiert ausgeführten Statoren.

Claims

Patentansprüche
1. Elektrische Maschine mit
- einem Außenläufer (1) und
- einem Innenstator (2), der mit dem Außenläufer (1) koaxial angeordnet ist,
dadurch gekennzeichnet, dass
- der Innenstator (2) einen Träger (9) aufweist, an dessen Umfang mehrere Statorsegmente (4) jeweils einzeln, in radia- 1er Richtung kraftschlüssig, direkt an dem Träger befestigt sind .
2. Elektrische Maschine nach Anspruch 1, wobei jedes Stator¬ segment (4) ein Blechpaket (5) mit genau einem Zahn (6) auf- weist, auf den eine Spule gewickelt ist.
3. Elektrische Maschine nach Anspruch 1 oder 2, wobei mindes¬ tens eines der Statorsegmente (4) eine Nut (13), die zu einem benachbarten der Statorsegmente gerichtet ist, und das be- nachbarte Statorsegment eine korrespondierende Feder (14) aufweist, und wobei die beiden Statorsegmente durch die Nut und die Feder formschlüssig miteinander verbunden sind.
4. Elektrische Maschine nach einem der vorhergehenden Ansprü- che, wobei der Träger (9) ringförmig ausgebildet ist.
5. Elektrische Maschine nach einem der Ansprüche 1 bis 3, wo¬ bei der Träger (9) eine Polygonform besitzt.
6. Elektrische Maschine nach einem der vorhergehenden Ansprü¬ che, wobei jedes Statorsegment (4) eine radial nach innen zur Achse der elektrischen Maschine gerichtete Befestigungsnut (10) mit Hinterschneidung aufweist.
7. Elektrische Maschine nach Anspruch 6, wobei die Befesti¬ gungsnut (10) an einem Abschnitt des jeweiligen Statorseg¬ ments angeordnet ist, der beim Betrieb der elektrischen Ma- schine magnetisch weniger belastet ist als die meisten ande¬ ren Abschnitte des Statorsegments.
8. Elektrische Maschine nach Anspruch 6 oder 7, wobei in der Befestigungsnut (10) ein Nutstein (11) angeordnet ist, der mit der Hinterschneidung der Befestigungsnut einen Form- schluss eingeht.
9. Elektrische Maschine nach Anspruch 8, wobei der Nutstein (11) mit einem oder mehreren Bolzen (12) an dem Träger (9) befestigt ist.
10. Elektrische Maschine nach Anspruch 9, wobei der oder die Bolzen (12) und der Nutstein (11) miteinander verschraubt sind.
11. Elektrische Maschine nach einem der Ansprüche 1 bis 9, wobei der oder die Bolzen (12) und der Nutstein (11) eintei¬ lig gestaltet sind und der oder die Bolzen am Träger (9) mit- tels einer oder mehrerer Muttern befestigt oder angeschweißt sind .
PCT/EP2012/064985 2011-08-15 2012-08-01 Aussenläufermaschine mit statorsegmenten WO2013023908A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011080959.7 2011-08-15
DE102011080959.7A DE102011080959B4 (de) 2011-08-15 2011-08-15 Außenläufermaschine mit Statorsegmenten

Publications (2)

Publication Number Publication Date
WO2013023908A2 true WO2013023908A2 (de) 2013-02-21
WO2013023908A3 WO2013023908A3 (de) 2013-06-20

Family

ID=46603960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/064985 WO2013023908A2 (de) 2011-08-15 2012-08-01 Aussenläufermaschine mit statorsegmenten

Country Status (2)

Country Link
DE (1) DE102011080959B4 (de)
WO (1) WO2013023908A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769403A (zh) * 2017-11-24 2018-03-06 佛山市卓能电机技术有限公司 电机定子及其制造工艺
CN108282038A (zh) * 2018-03-30 2018-07-13 中科矿山设备有限公司 矿井提升机的电动机定子和外转子的模块化结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021106341A1 (de) 2021-03-16 2022-09-22 Ebm-Papst Mulfingen Gmbh & Co. Kg Elektromotor mit verbesserter Motorausnutzung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050450A1 (de) 2008-10-08 2010-04-15 DüRR DENTAL AG Stator für einen Außenläufermotor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT180982B (de) * 1953-04-21 1955-02-10 Elin Ag Elek Ind Wien Spulenbefestigung an Polkörpern elektrischer Maschinen, insbesondere bei Bahnmotoren
CH523618A (de) * 1970-05-01 1972-05-31 Rotel Ag Verfahren zum Anbringen eines Stator- oder Rotoreisenkernes auf Wickelspulen eines Stators oder Rotors und Eisenkern zur Durchführung des Verfahrens
GB1561032A (en) * 1976-06-10 1980-02-13 Workman J Laminated foil stator
US4491769A (en) * 1982-05-24 1985-01-01 Heidelberg Goetz Rotary electric machine
GB8825071D0 (en) * 1988-10-26 1988-11-30 Nelco Holdings Ltd Laminated stators for dynamo electric machines
DE9214891U1 (de) * 1991-11-13 1992-12-24 Siemens Ag, 8000 Muenchen, De
JP3520740B2 (ja) * 1997-11-04 2004-04-19 国産電機株式会社 磁石発電機用電機子
JP4069760B2 (ja) * 2002-04-30 2008-04-02 株式会社デンソー 燃料ポンプ
WO2006114890A1 (ja) * 2005-04-25 2006-11-02 Mitsubishi Denki Kabushiki Kaisha アウタロータ型モータのステータ
DE102006014343A1 (de) * 2006-03-28 2007-10-11 Siemens Ag Verfahren zum Aufbauen einer elektrischen Maschine und Zahnhälften für einen Zahn einer elektrischen Maschine
DE102007018213B3 (de) * 2007-04-16 2008-10-30 Entrak Energie- Und Antriebstechnik Gmbh & Co. Kg Homopolarmaschine
DE102007032872A1 (de) * 2007-07-12 2009-01-15 Ipgate Ag Stator für Elektromotor
DE102008008696A1 (de) * 2008-02-11 2009-08-13 Dorma Gmbh + Co. Kg Profil und Profilsystem
DE102008053094A1 (de) * 2008-10-24 2010-04-29 Schaeffler Kg Direktantrieb in Segmentbauweise

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050450A1 (de) 2008-10-08 2010-04-15 DüRR DENTAL AG Stator für einen Außenläufermotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769403A (zh) * 2017-11-24 2018-03-06 佛山市卓能电机技术有限公司 电机定子及其制造工艺
CN107769403B (zh) * 2017-11-24 2019-10-01 惠州市卓能电机技术有限公司 电机定子及其制造工艺
CN108282038A (zh) * 2018-03-30 2018-07-13 中科矿山设备有限公司 矿井提升机的电动机定子和外转子的模块化结构

Also Published As

Publication number Publication date
WO2013023908A3 (de) 2013-06-20
DE102011080959B4 (de) 2020-12-17
DE102011080959A1 (de) 2013-02-21

Similar Documents

Publication Publication Date Title
EP2404367B1 (de) Doppelrotormotor
WO2020099048A1 (de) Stützeinrichtung für einen rotor einer fremderregten innenläufer-synchronmaschine bestehend aus einem stützring und einer sternscheibe
EP2962383B1 (de) Axialflussmaschine in leichtbauweise
DE102008057863A1 (de) Herstellung einer Elektromotorkomponente
DE102005013674A1 (de) Rotor für bürstenlosen Motor und bürstenloser Motor
EP1873887A2 (de) Verfahren zum Herstellen einer elektrischen Maschine sowie elektrische Maschine, hergestellt nach diesem Verfahren
EP1969697B1 (de) Elektrische Maschine, insbesondere Wechselstromgenerator für ein Kraftfahrzeug
EP4018529A1 (de) Scheibenläufermaschine für einen kraftfahrzeugantrieb
DE102019127583A1 (de) Rotoreinrichtung und Verfahren zur Herstellung einer Rotoreinrichtung für eine elektrische Maschine, insbesondere für einen Fahrzeugantrieb für ein Elektrofahrzeug
DE112008002752T5 (de) Stator und rotierende elektrische Maschine
DE102009060955A1 (de) Ständerwicklung für eine Transversalflussmaschine sowie hierzu Verfahren zur Herstellung einer Ständerwicklung
DE102010039123A1 (de) Rotor für eine permanentmagneterregte Transversalflussmaschine
DE102010061784A1 (de) Optimierter Speichenrotor
AT522711A1 (de) Stator für eine Axialflussmaschine
EP2790295A1 (de) Rotor für einen Reluktanzmotor, Verfahren zum Herstellen eines Rotors für einen Reluktanzmotor sowie elektrische Maschine, insbesondere ein Reluktanzmotor
DE112019004593T5 (de) Elektrische Rotationsmaschine, Stator davon und Herstellungsverfahren einer elektrischen Rotationsmaschine
DE102009060956A1 (de) Ständerwicklung für eine Transversalflussmaschine
DE102020101149A1 (de) Axialflussmaschine mit mechanisch fixierten Statorkernen mit radial verlaufenden Blechsegmenten
WO2013023908A2 (de) Aussenläufermaschine mit statorsegmenten
EP3989408A1 (de) Rotor für eine elektrische maschine, elektrische maschine für ein fahrzeug und verfahren zur herstellung eines rotors für eine elektrische maschine
EP1041697B1 (de) Reluktanzmaschine mit wenigstens zwei, je mit einer Erregerwicklung versehenen ausgeprägten Statorpolen und Verfahren zur Herstellung des Stators einer solchen Reluktanzmaschine
DE112016004389T5 (de) Rotierende elektrische maschine und herstellungsverfahren für eine rotierende elektrische maschine
DE102020116423A1 (de) Rotor und elektromechanischer Energiewandler mit toroidaler Erregerspule und Kraftfahrzeug
EP2523321A1 (de) Zylindrischer Linearmotor mit geblechtem Ständer
DE102014203945A1 (de) Statorelement zum Aufbau einer Statoranordnung für eine elektrische Maschine, Statoranordnung und Verfahren zum Aufbau einer Statoranordnung

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 12742893

Country of ref document: EP

Kind code of ref document: A2