WO2020099048A1 - Stützeinrichtung für einen rotor einer fremderregten innenläufer-synchronmaschine bestehend aus einem stützring und einer sternscheibe - Google Patents

Stützeinrichtung für einen rotor einer fremderregten innenläufer-synchronmaschine bestehend aus einem stützring und einer sternscheibe Download PDF

Info

Publication number
WO2020099048A1
WO2020099048A1 PCT/EP2019/077841 EP2019077841W WO2020099048A1 WO 2020099048 A1 WO2020099048 A1 WO 2020099048A1 EP 2019077841 W EP2019077841 W EP 2019077841W WO 2020099048 A1 WO2020099048 A1 WO 2020099048A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
support ring
star
laminated core
support device
Prior art date
Application number
PCT/EP2019/077841
Other languages
English (en)
French (fr)
Inventor
Daniel Loos
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201980010600.7A priority Critical patent/CN111656649B/zh
Priority to US16/964,061 priority patent/US11349367B2/en
Publication of WO2020099048A1 publication Critical patent/WO2020099048A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/527Fastening salient pole windings or connections thereto applicable to rotors only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/60Electric Machines, e.g. motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/04Synchronous motors for single-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings

Definitions

  • externally excited or current-excited internal rotor synchronous machines for electrically drivable motor vehicles, for example electric or hybrid vehicles.
  • Such externally excited synchronous machines have a fixed stator with energizable stator windings and a rotor rotatably mounted with respect to the stator with energizable rotor windings.
  • the rotor has a laminated core which carries the rotor windings.
  • the rotor windings form winding heads on opposite end faces of the laminated core. Mechanical around the winding heads of the rotor against high centrifugal forces when the rotor rotates
  • Star disks are known from the prior art. Star discs are arranged on the axially opposite end faces of the laminated core between the end faces and the winding overhangs and serve to deflect the
  • Star disk would have a negative impact on the machine's performance data. Bores and notches caused by screwing as well as heat input into the rotor caused by welding also reduce rotor strength.
  • Star disc comprises a ring carrier for arrangement on a rotor yoke
  • the star disk comprises collar-like ends of the
  • Support teeth axially projecting end pieces for arranging on pole shoes protruding from the rotor teeth and for absorbing centrifugal forces radially to the
  • End pieces adjacent winding heads have mutually complementary bayonet locking areas which can be locked together by a plug-and-turn movement and are designed to connect the star disk and the support ring in a form-fitting manner.
  • the invention also relates to a rotor for an externally excited internal rotor synchronous machine of an electrically drivable motor vehicle with a laminated core comprising an annular rotor yoke, rotor teeth protruding radially from the rotor yoke and pole shoes protruding from the rotor teeth.
  • the rotor also points
  • the star disc is arranged between one of the end faces and the end windings.
  • the support ring surrounds the
  • the rotor can be arranged in a cavity of a stator of a current-excited internal rotor synchronous machine.
  • the rotor has the laminated core or a rotor core which carries the rotor windings.
  • the rotor core is usually a.
  • the rotor core is usually built up in layers and consists of up to 200 sheets stacked one above the other.
  • the rotor core has an annular rotor yoke and a plurality of rotor poles which are arranged on the rotor yoke in the circumferential direction along a rotor circumference.
  • a rotor shaft is arranged within the rotor yoke and connected to the iron core.
  • the rotor poles usually consist of a rotor tooth or rotor shaft protruding radially from the rotor yoke and a pole piece which is in the form of a segment of a circle and protrudes tangentially from the rotor tooth. Between the rotor teeth, rotor slots are formed which are closed by the pole shoes except for a slot between two adjacent pole pieces and into which the rotor windings are introduced. The rotor windings protrude from the rotor slots on axially opposite end faces of the laminated core, run over the rotor teeth on the end faces and form winding heads there.
  • the rotor can have a support device with a star disk and a support ring for each end face.
  • the star disks are arranged adjacent to the axially opposite end faces of the laminated core.
  • the star washers serve, among other things, to deflect winding wires of the rotor windings on the respective end face, so that the winding wires wound around the rotor teeth run on the end face over the supporting teeth of the star washer.
  • the star disk has a shape corresponding to the end face. This means that the star washer and the end face are approximately congruent, so that the star washer can be fitted precisely to the end face.
  • the star disk indicates the ring carrier corresponding to the shape of the rotor yoke, one with the number
  • End pieces in the circumferential direction larger than a width of the supporting teeth.
  • the end pieces thus form an axially slotted, cylindrical outer contour of the star disk.
  • the end windings are in the radial direction between the ring carrier and the
  • the star disk is preferably formed at least partially from plastic.
  • a surface of the star disk which is in contact with the winding wires is formed from the electrically insulating plastic.
  • a base body of the star disk can for example be made of a metal, e.g. Aluminum or steel, cast or forged, which is coated with an insulating plastic, for example overmolded.
  • the support ring can be arranged on the star disk and surround the star disk like a rim or jacket.
  • the support ring which is arranged concentrically to the star disc, provides additional stability and fixation.
  • the support ring is formed in particular from a metallic material, for example cast or forged. To prevent the support ring from moving back in the axial direction at high speeds of the rotor
  • the support ring and the star disk have the mutually complementary bayonet locking areas.
  • the star disk has a bayonet-type locking area for each end piece, so that the bayonet-type locking areas of the support ring are distributed over the support ring in the circumferential direction.
  • the respective bayonet locking areas are integral with the respective bayonet locking areas
  • Star disc or the support ring formed or arranged non-destructively and non-destructively arranged on the star disc or the support ring. So there are no separate connecting elements to the support ring and the star disk for providing the
  • the bayonet locking areas therefore provide a direct connection between the star disk and the support ring.
  • the bayonet locking areas can be connected to one another by the plug-and-turn movement. This means that the star disc and the support ring are initially axial
  • the bayonet locking areas are additionally designed to non-positively connect the star disk and the support ring in the assembled state.
  • the bayonet locking areas can be shaped in such a way that, after the plug-and-turn movement has been carried out, they are pressed together in regions by a normal force acting in the radial direction and are thus connected in a force-locking manner.
  • the positive and non-positive connection of the star disk and the support ring has the advantage that the stability of the rotor can be increased further.
  • the bayonet locking areas of the end pieces each have at least one longitudinal groove arranged on an outer side of the respective end piece and at least one transverse groove adjacent to the longitudinal groove, and the
  • Bayonet locking areas of the support ring for each end piece have at least one latching nose arranged on an inside of the support ring, which can be pushed in the axial direction along the longitudinal groove during the plug-in movement and can be pushed along the transverse groove in the circumferential direction during the rotary movement.
  • the bayonet locking areas each have three parallel longitudinal grooves and one transverse groove connecting the longitudinal grooves, and the
  • Bayonet locking elements of the support ring have three for each end piece
  • Cross grooves are formed as structures of the outer sides of the end pieces.
  • the end pieces can also be formed in several parts and each have a first part which faces the end windings and a second part which faces the support ring and which forms the bayonet catch area of the respective end piece.
  • the first part can be made of plastic, for example, and thus be electrically insulated from the end windings.
  • the second part can be formed from metal and thus a particularly stable connection with the metallic Form support ring. The first and the second part are non-destructively connected to each other.
  • the locking lugs which are distributed in the circumferential direction over the inside
  • the transverse grooves prevent the locking lugs arranged therein and thus the entire support ring from being able to move axially against the plugging direction.
  • the elevations and the areas can have, for example, trapezoidal cross sections.
  • the metallic support ring can be warmed before being attached to the star disk, as a result of which it expands and the plug-and-turn movement can be carried out more easily. As soon as the support ring is positively attached to the star disc, it can cool down, causing the
  • Mating surfaces are pressed against each other in the radial direction and the non-positive connection is formed. Centering of the support ring can advantageously also be achieved by means of the mating surfaces.
  • At least one of the end pieces has a stop, up to which the support ring can be rotated.
  • the attack can cause a
  • Intended position of the support ring with respect to the star disk are displayed and held, in which the form-fitting connection of the support ring and the star disk is provided by the bayonet locking areas.
  • the stop therefore ends the rotary movement as soon as the star disk and the support ring are finished have assumed the intended position to each other. For example, one of the latching lugs or the elevations of the support ring can abut the stop and end the rotary movement.
  • the support ring has a cylindrical jacket area surrounding the star disk, which has the bayonet locking areas of the support ring, and an annular cover area protruding radially inward from the jacket area, which overlaps at least in regions with an upper side of the star disk.
  • the cover area in particular covers at least the end windings on the top of the star disk.
  • an inner contour of the annular cover area is designed as a mating surface for pressing against a rotor shaft that is axially guided through the laminated core.
  • the ring-shaped cover area can thus protrude over the top of the star disk up to an inner edge of the tube carrier and can thus be pressed against the rotor shaft.
  • Support ring on the rotor shaft can also be centered.
  • the invention also relates to an externally excited internal rotor synchronous machine for a motor vehicle having a stator, which has a laminated core with stator windings, and a rotor according to the invention, which in a cavity of the stator, which has a laminated core with stator windings, and a rotor according to the invention, which in a cavity of the stator, which has a laminated core with stator windings, and a rotor according to the invention, which in a cavity of the
  • Laminated core of the stator is rotatably mounted.
  • a motor vehicle according to the invention comprises an externally excited internal rotor synchronous machine according to the invention.
  • the motor vehicle is in particular a
  • Passenger cars in the form of an electric or hybrid vehicle and have the externally excited internal rotor synchronous machine as a traction machine or
  • Embodiments and their advantages apply accordingly to the rotor according to the invention, for the internal rotor synchronous machine according to the invention and for the motor vehicle according to the invention.
  • Fig. 1 is a schematic exploded view of a rotor
  • Fig. 2 is a schematic representation of an embodiment of a
  • Fig. 5 shows a second assembly step for mounting the support device on the
  • Fig. 8 shows a cross section through the support device after assembly
  • Rotor teeth 5 are arranged, which extend in the radial direction R to the outside.
  • a rotor groove 6 is formed between two adjacent rotor teeth 5.
  • Rotor windings 7 can be wound around the rotor teeth 5, which form 2 winding heads 9 on axially opposite end faces 8 of the laminated core.
  • the laminated core 2 has pole shoes 10 which are arranged at the ends of the rotor teeth 5 and prevent the winding heads 9 arranged between the rotor yoke 3 and the pole shoes 10 from slipping off the rotor teeth 5 when the rotor 1 rotates.
  • deck slide 1 1 are also arranged, which close the rotor grooves 6 and prevent the
  • the rotor 1 has two support devices 12 according to the prior art, each of which comprises a star disk 13 according to the prior art and a support ring 14 according to the prior art.
  • the star disk 13 is arranged between the end face 8 of the laminated core 2 and the winding heads 9 and provides, among other things, for deflecting the winding wires of the rotor windings 7 on the end face 8.
  • the support ring 14 is arranged around the star washer 13, which provides additional stability and Fixing the star disc 13 ensures. In the case of a support device 12 designed in this way, the support ring 14 can become detached from the star disk 13 during the rotation of the rotor 1 and operational reliability of the electrical machine can no longer be guaranteed.
  • Support device 15 replaced, as shown by way of example in Fig. 2.
  • the support device 15 has a star disk 16 according to the invention and a support ring 17 according to the invention.
  • a view of the support ring 17 from a different perspective is shown in FIG. 3.
  • the star disk 16 has a ring carrier 18 which can be arranged adjacent to the rotor yoke 3 of the laminated core 2 of the rotor 1 (without the support device 12).
  • the rotor shaft 4 can be passed through the ring carrier 18.
  • An inner side 19 of the ring carrier 18 can form a mating surface through which the star disk 16 and the rotor shaft 4 can be connected by means of an interference fit.
  • An additional clamping ring can also be arranged between the rotor shaft 4 and the inside 19 of the ring carrier 18.
  • Support teeth 20 protrude radially from the ring carrier 18 and can be arranged on the end face 8 of the laminated core 2 overlapping with the rotor teeth 5. Via the supporting teeth 20, the rotor windings 7 are guided from a rotor groove 6 into an adjacent rotor groove 6, so that the supporting teeth 20 lie in the axial direction between the
  • Star disc 16 axially projecting, collar-like end pieces 21, which can absorb the centrifugal forces acting on the winding heads 9.
  • the end pieces 21 are designed here as partially curved, plate-like elements.
  • the support ring 17 is formed from metal and has an annular jacket region 22 and a radially inwardly projecting, annular cover region 23.
  • An inner contour 24 of the cover area 23 forms a mating surface which can be pressed against the rotor shaft 4 for connecting the support ring 17 to the rotor shaft 4.
  • the star disk 16 and the support ring 17 can be connected in a form-fitting manner by means of a plug-and-turn movement.
  • the star disk 16 and the support ring 17 have mutually complementary bayonet locking regions 25, 26.
  • Bayonet locking areas 25 of the star disk 16 are located on an outer side 27 of the end pieces 20 and the bayonet locking areas 25 of the support ring 17 are located on an inner side 28 of the support ring 17 in the jacket area 22.
  • the outer side 27 and the inner side 28 are radially adjacent in the assembled state of the support device 15 arranged together.
  • star disk 16 is partially formed from plastic
  • Bayonet locking areas 25 of the end pieces 21 are formed from metal. However, it may also be the case that the entire star disk 16, also in the bayonet locking regions 25, is formed from plastic.
  • the bayonet locking region 25 of an end piece 21 here has three axially extending, parallel longitudinal grooves 29 and a transverse groove 30 which extends in the circumferential direction U and adjoins the longitudinal grooves 29.
  • the bayonet locking areas 26 of the support ring 17 have three locking lugs 31 for each end piece 21 (see FIG. 3), which extend from the inside 28 of the Protruding jacket area 22 radially inwards. In the axial direction to the
  • Fig. 4 shows a first assembly step for mounting the support ring 17 on the
  • Star disc 16 which is already arranged between the end face 8 and the end windings 9 of the rotor 1.
  • Circumferential direction U rotated until the locking lugs 31 are aligned with or in line with the longitudinal grooves 29 of the end pieces 21 of the star disk 16.
  • the support ring 17 is pushed in an axial insertion direction S in the direction of the end face 8.
  • the locking lugs 31 are pushed along in the longitudinal grooves 19.
  • 6 shows a cross section through the support device 15 in the region of the bayonet locking regions 25, 26.
  • the support ring 17 is pushed completely onto the star disk 16 up to the end face 8 here. In this state, the locking lugs 31 have completely run through the longitudinal grooves 29.
  • the support ring 17 is rotated in the circumferential direction U, the latching lugs 31 shifting in the transverse groove 30 during the rotational movement.
  • the end piece As shown in the cross section in FIG. 8, has a stop 34 against which the latching lug 31 abuts.
  • the star disk 16 and the support ring 17 are positively connected due to the bayonet catch regions formed by the bayonet catch regions 25, 26.
  • the support ring 17 can therefore no longer be removed from the star disk 16 against the plugging direction S because of the latching lugs 31 arranged in the transverse grooves 30.

Abstract

Die Erfindung betrifft eine Stützeinrichtung (15) für einen Rotor einer Innenlä ufer-Synchronmaschine eines Kraftfahrzeugs mit einer Sternscheibe (16), welche am Blechpaket des Rotors zwischen einer Stirnseite des Blechpakets und Wickelköpfen der Rotorwicklungen anordenbar ist, und mit einem Stützring (17) zum Ummanteln der Sternscheibe (16), wobei die Sternscheibe (16) einen Ringträger (18) zum Anordnen an einem Rotorjoch des Blechpakets, vom Ringträger (18) radial abstehende Tragzähne (20) zum Anordnen an Rotorzähnen des Blechpakets, und kragenartige, von Enden der Tragzähne (20) axial abstehende Endstücke (21) zum Anordnen an Polschuhen des Rotorblechpakets, und wobei die Endstücke (21) der Sternscheibe (16) und der Stützring (17) zueinander komplementäre Bajonettverschlussbereiche (25, 26) aufweisen, welche dazu ausgelegt sind, die Sternscheibe (16) und den Stützring (17) formschlüssig zu verbinden. Die Erfindung betrifft außerdem einen Rotor (1), eine fremderregte Innenlä ufer-Synchronmaschine und ein Kraftfahrzeug mit einer derartiger Stützeinrichtung (15).

Description

STUTZEINRICHTUNG FÜR EINEN ROTOR EINER FREMDERREGTEN
INNENLÄUFER-SYNCHRONMASCHINE BESTEHEND AUS EINEM STÜTZRING UND
EINER STERNSCHEIBE
Die Erfindung betrifft eine Stützeinrichtung für einen Rotor einer fremderregten
Innenläufer-Synchronmaschine eines elektrisch antreibbaren Kraftfahrzeugs mit einer Sternscheibe, welche an einem Blechpaket des Rotors zwischen einer Stirnseite des Blechpakets und an der Stirnseite überstehenden Wickelköpfen von Rotorwicklungen des Rotors anordenbar ist, und mit einem Stützring zum Ummanteln der Sternscheibe. Die Erfindung betrifft außerdem einen Rotor, eine fremderregte Innenläufer- Synchronmaschine und ein Kraftfahrzeug.
Vorliegend richtet sich das Interesse auf fremderregte bzw. stromerregte Innenläufer- Synchronmaschinen für elektrisch antreibbare Kraftfahrzeuge, beispielsweise Elektro- oder Hybridfahrzeuge. Solche fremderregten Synchronmaschinen weisen einen ortsfesten Stator mit bestrombaren Statorwicklungen sowie einen bezüglich des Stators drehbar gelagerten Rotor mit bestrombaren Rotorwicklungen auf. Der Rotor weist ein Blechpaket auf, welches die Rotorwicklungen trägt. Die Rotorwicklungen bilden an gegenüberliegenden Stirnseiten des Blechpakets Wickelköpfe aus. Um die Wickelköpfe des Rotors gegen hohe Fliehkräfte bei einer Rotation des Rotors mechanisch
abzustützen, sind aus dem Stand der Technik Sternscheiben bekannt. Sternscheiben werden an den axial gegenüberliegenden Stirnseiten des Blechpakets zwischen den Stirnseiten und den Wickelköpfen angeordnet und dienen zum Umlenken der
Rotorwicklungen.
Um zu verhindern, dass die Sternscheiben durch die mechanische Belastung aufgrund der Fliehkräfte beschädigt werden, kann ein metallischer Stützring an jeder Sternscheibe angeordnet werden, welcher die Sternscheibe radial umgibt bzw. ummantelt. Dieser Stützring muss, um hohe Drehzahlen für den Rotor zu ermöglichen, sicher an dem Stützring gehalten werden. Um die Stützringe zu befestigen, können beispielsweise metallische Zuganker verwendet werden, was jedoch einen erhöhten Bauraumbedarf sowie einen erhöhten Materialaufwand zur Folge hat. Außerdem entsteht durch den metallischen Kontakt zwischen den Zugankern und den Stützungen ein elektromagnetischer Kurzschlusskäfig, welcher zusätzliche Verluste im Rotor erzeugt. Diese Verluste wirken sich nachteilig auf einen Wirkungsgrad und eine Thermik des Rotors aus. Auch ein Verschweißen oder Verschrauben des Stützrings an der
Sternscheibe würde sich negativ auf Leistungsdaten der Maschine auswirken. Durch das Verschrauben verursachte Bohrungen und Kerben sowie durch das Verschweißen verursachte Wärmeeinträge in den Rotor reduzieren außerdem eine Rotorfestigkeit.
Es ist Aufgabe der vorliegenden Erfindung, einen besonders stabilen, für hohe
Drehzahlen geeigneten Rotor für eine elektrische Innenläufer-Synchronmaschine eines Kraftfahrzeugs bereitzustellen.
Diese Aufgabe wird erfindungsgemäß durch eine Stützeinrichtung, einen Rotor, eine Innenläufer-Synchronmaschine sowie ein Kraftfahrzeug mit den Merkmalen gemäß den jeweiligen unabhängigen Patentansprüchen gelöst. Vorteilhafte Ausführungen der Erfindung sind Gegenstand der abhängigen Patentansprüche, der Beschreibung sowie der Figuren.
Eine erfindungsgemäße Stützeinrichtung für einen Rotor einer fremderregten Innenläufer- Synchronmaschine eines elektrisch antreibbaren Kraftfahrzeugs weist eine Sternscheibe, welche an einem Blechpaket des Rotors zwischen einer Stirnseite des Blechpakets und an der Stirnseite überstehenden Wickelköpfen von Rotorwicklungen des Rotors anordenbar ist, und einen Stützring zum Ummanteln der Sternscheibe auf. Die
Sternscheibe umfasst einen Ringträger zum Anordnen an einem Rotorjoch des
Blechpakets. Außerdem umfasst die Sternscheibe in Umfangsrichtung von dem
Ringträger radial abstehende Tragzähne zum Anordnen an radial von dem Rotorjoch abstehenden, die Rotorwicklungen tragenden Rotorzähnen und zum Umlenken der Rotorwicklungen. Ferner umfasst die Sternscheibe kragenartige, von Enden der
Tragzähne axial abstehende Endstücke zum Anordnen an von den Rotorzähnen abstehenden Polschuhen und zum Aufnehmen von Fliehkräften der radial zu den
Endstücken benachbarten Wickelköpfe. Die Endstücke und der Stützring weisen zueinander komplementäre, durch eine Steck-Dreh-Bewegung miteinander verriegelbare Bajonettverschlussbereiche auf, welche dazu ausgelegt sind, die Sternscheibe und den Stützring formschlüssig zu verbinden.
Die Erfindung betrifft außerdem einen Rotor für eine fremderregte Innenläufer- Synchronmaschine eines elektrisch antreibbaren Kraftfahrzeugs mit einem Blechpaket aufweisend ein ringförmiges Rotorjoch, radial von dem Rotorjoch abstehende Rotorzähne und an den Rotorzähnen abstehende Polschuhe. Der Rotor weist außerdem
Rotorwicklungen, welche um die Rotorzähne gewickelt sind und an axial
gegenüberliegenden Stirnseiten des Blechpakets Wickelköpfe ausbilden, sowie zumindest eine erfindungsgemäße Stützeinrichtung auf. Die Sternscheibe ist zwischen einer der Stirnseiten und den Wickelköpfen angeordnet. Der Stützring umgibt die
Sternscheibe radial und ist mit der Sternscheibe formschlüssig verbunden.
Der Rotor kann in einem Hohlraum eines Stators einer stromerregten Innenläufer- Synchronmaschine angeordnet werden. Der Rotor weist das Blechpaket bzw. einen Rotorkern auf, welcher die Rotorwicklungen trägt. Der Rotorkern ist üblicherweise ein Üblicherweise ist der Rotorkern schichtweise aufgebaut und besteht aus bis zu 200 übereinander gestapelten Blechen. Der Rotorkern weist ein ringförmiges Rotorjoch und mehrere Rotorpole auf, welche in Umfangsrichtung entlang eines Rotorumfangs an dem Rotorjoch angeordnet sind. Innerhalb des Rotorjochs wird eine Rotorwelle angeordnet und mit dem Eisenkern verbunden. Die Rotorpole bestehen üblicherweise aus einem radial von dem Rotorjoch abstehenden Rotorzahn bzw. Rotorschaft sowie einem kreissegmentförmigen, tangential von dem Rotorzahn abstehenden Polschuh. Zwischen den Rotorzähnen sind Rotornuten gebildet, welche bis auf einen Schlitz zwischen zwei benachbarten Polschuhen von den Polschuhen verschlossen werden und in welche die Rotorwicklungen eingebracht werden. An axial gegenüberliegenden Stirnseiten des Blechpakets ragen die Rotorwicklungen aus den Rotornuten heraus, verlaufen an den Stirnseiten über die Rotorzähne und bilden dort Wickelköpfe aus.
Der Rotor kann für jede Stirnseite eine Stützeinrichtung mit jeweils einer Sternscheibe und einem Stützring aufweisen. Die Sternscheiben werden anliegend an den axial gegenüberliegenden Stirnseiten des Blechpakets angeordnet. Die Sternscheiben dienen unter anderem dazu, Wicklungsdrähte der Rotorwicklungen an der jeweiligen Stirnseite umzulenken, sodass die um die Rotorzähne gewickelten Wicklungsdrähte an der Stirnseite über die Tragzähne der Sternscheibe verlaufen. Dazu weist die Sternscheibe eine mit der Stirnseite korrespondierende Form auf. Dies bedeutet, dass die Sternscheibe und die Stirnseite in etwa deckungsgleich ausgebildet sind, sodass die Sternscheibe passgenau an die Stirnseite angelegt werden kann. Die Sternscheibe weist dazu den mit der Form des Rotorjochs korrespondierenden Ringträger, eine mit der Anzahl an
Rotorpolen korrespondierende Anzahl an Tragzähnen sowie die kragenartigen Endstücke auf, welche mit den Polschuhen korrespondieren. Das Endstück ist dabei bezüglich der Tragzähne bzw. Tragarme axial abgewinkelt und erstreckt sich axial von der Stirnseite des Blechpakets weg. Die Endstücke verlängern also in axialer Richtung eine durch die Polschuhe gebildete Außenseite des Blechpakets. Außerdem ist eine Breite der
Endstücke in Umfangsrichtung größer als eine Breite der Tragzähne. Die Endstücke bilden somit eine axial geschlitzte, zylinderförmige Außenkontur der Sternscheibe. Die Wickelköpfe sind dabei in radialer Richtung zwischen dem Ringträger und den
Endstücken angeordnet, wobei die Endstücke verhindern, dass die Wickelköpfe bei einer Drehung des Rotors aufgrund der auf die Wickelköpfe wirkenden Fliehkraft von den Tragzähnen rutschen. Vorzugsweise ist die Sternscheibe zumindest teilweise aus Kunststoff gebildet. Dabei ist insbesondere eine mit den Wicklungsdrähten in Kontakt stehende Oberfläche der Sternscheibe aus dem elektrisch isolierenden Kunststoff gebildet. Ein Grundkörper der Sternscheibe kann beispielsweise aus einem Metall, z.B. Aluminium oder Stahl, gegossen oder geschmiedet sein, welcher mit einem isolierenden Kunststoff beschichtet, beispielsweise umspritzt, ist.
Um zu verhindern, dass eine durch die Wickelköpfe auf die Endstücke wirkende
Belastung die Sternscheibe zerstört, kann der Stützring an der Sternscheibe angeordnet werden und die Sternscheibe felgenartig bzw. mantelartig umgeben. Der Stützring, welcher konzentrisch zur Sternscheibe angeordnet ist, sorgt also für eine zusätzliche Stabilität und Fixierung. Der Stützring ist insbesondere aus einem metallischen Werkstoff gebildet, beispielsweise gegossen oder geschmiedet. Um zu verhindern, dass sich der Stützring bei hohen Drehzahlen des Rotors in axialer Richtung wieder von der
Sternscheibe löst, muss er axial fixiert werden. Dazu weisen der Stützring und die Sternscheibe die zueinander komplementären Bajonettverschlussbereiche auf.
Insbesondere weist die Sternscheibe für jedes Endstück einen Bajonettverschlussbereich auf, sodass die Bajonettverschlussbereiche des Stützrings in Umfangsrichtung über den Stützring verteilt angeordnet sind.
Insbesondere sind die jeweiligen Bajonettverschlussbereiche einstückig mit der
Sternscheibe bzw. dem Stützring ausgebildet oder fest und zerstörungsfrei unlösbar an der Sternscheibe bzw. dem Stützring angeordnet. Es sind also keine zu dem Stützring und der Sternscheibe separaten Verbindungselemente zum Bereitstellen der
formschlüssigen Verbindung notwendig. Die Bajonettverschlussbereiche stellen also eine Direktverbindung zwischen der Sternscheibe und dem Stützring bereit. Dazu sind die Bajonettverschlussbereiche durch die Steck-Dreh-Bewegung miteinander verbindbar. Dies bedeutet, dass die Sternscheibe und der Stützring zunächst axial
zusammengesteckt und dann entlang der Umfangsrichtung zueinander verdreht werden. Nach Durchführung der Steck-Dreh-Bewegung sind die Sternscheibe und der Stützring formschlüssig verbunden, wodurch der Stützring axial an der Sternscheibe fixiert ist.
Ein durch die Steck-Dreh-Bewegung hergestellter Bajonettverschluss zwischen dem Stützring und der Sternscheibe ist besonders stabil und kann besonders einfach und ohne großen zusätzlichen Materialaufwand bereitgestellt werden. Durch eine solche Stützeinrichtung kann ein bei hohen Drehzahlen stabiler Rotor bereitgestellt werden.
Es erweist sich als vorteilhaft, wenn die Bajonettverschlussbereiche zusätzlich dazu ausgelegt sind, die Sternscheibe und den Stützring im zusammengesteckten Zustand kraftschlüssig zu verbinden. Beispielsweise können die Bajonettverschlussbereiche derart geformt sein, dass sie nach Durchführen der Steck-Dreh-Bewegung durch eine in radiale Richtung wirkende Normalkraft bereichsweise aneinander gepresst sind und somit kraftschlüssig verbunden sind. Durch die formschlüssige und kraftschlüssige Verbindung der Sternscheibe und des Stützrings ergibt sich der Vorteil, dass eine Stabilität des Rotors weiter erhöht werden kann.
Dabei kann vorgesehen sein, dass die Bajonettverschlussbereiche der Endstücke jeweils zumindest eine an einer Außenseite des jeweiligen Endstücks angeordnete Längsnut und zumindest eine an die Längsnut angrenzende Quernut aufweisen, und die
Bajonettverschlussbereiche des Stützrings für jedes Endstück zumindest eine an einer Innenseite des Stützrings angeordnete Verrastungsnase aufweisen, welche bei der Steckbewegung in axialer Richtung entlang der Längsnut schiebbar ist und bei der Drehbewegung in Umfangsrichtung entlang der Quernut schiebbar ist. Insbesondere weisen die Bajonettverschlussbereiche pro Endstück jeweils drei parallel verlaufende Längsnuten und eine die Längsnuten verbindende Quernut auf, und die
Bajonettschlusselemente des Stützrings weisen für jedes Endstück jeweils drei
Verrastungsnasen auf.
Die Endstücke können dabei einstückig ausgebildet sein, wobei die Längs- und
Quernuten als Strukturierungen der Außenseiten der Endstücke ausgebildet sind. Die Endstücke können aber auch mehrteilig ausgebildet sein und jeweils einen ersten Teil, welcher den Wickelköpfen zugewandt ist, und einen zweiten Teil aufweisen, welcher dem Stützring zugewandt ist und welcher den Bajonettverschlussbereich des jeweiligen Endstücks bildet. Der erste Teil kann beispielsweise aus Kunststoff gebildet sein und somit gegenüber den Wickelköpfen elektrisch isoliert sein. Der zweite Teil kann aus Metall gebildet sein und somit eine besonders stabile Verbindung mit dem metallischen Stützring ausbilden. Der erste und der zweite Teil sind zerstörungsfrei unlösbar miteinander verbunden.
Die Längsnut und die daran angrenzende Quernut bilden eine Führungsschiene, in welcher die Verrastungsnase des Stützrings geführt werden kann. Die Verrastungsnasen sind Vorsprünge in der Innenseite des Stützrings und können beispielsweise durch Strukturieren der Innenseite des insbesondere metallischen Stützrings hergestellt sein.
Die Verrastungsnasen, welche in Umfangsrichtung verteilt über die Innenseite
angeordnet sind, werden entlang einer axialen Steckrichtung in die Längsnuten eingeführt und entlang einer Drehrichtung in die Quernuten geschoben. Die Quernuten verhindern, dass sich die darin angeordneten Verrastungsnasen und damit der gesamte Stützring axial entgegen der Steckrichtung bewegen können.
Besonders bevorzugt weisen die Bajonettverschlussbereiche des Stützrings axial an die Verrastungsnasen angrenzende, abgeflachte Erhebungen auf, welche erste Passflächen ausbilden. Die Bajonettverschlussbereiche der Endstücke weisen in Umfangsrichtung an die Längsnuten angrenzende, abgeflachte Bereiche auf, welche zweite Passflächen ausbilden. Die ersten und die zweiten Passflächen sind nach Durchführung der
Drehbewegung zum Ausbilden einer kraftschlüssigen Verbindung aneinander gepresst. Die Längsnuten und die Erhebungen können abgeschrägte, Gleitflächen bildende
Seitenwände aufweisen, sodass die Erhebungen bei der Drehbewegung aus den
Längsnuten heraus auf die Bereiche gleiten und dort angepresst werden können. Die Erhebungen und die Bereiche können beispielsweise trapezförmige Querschnitte aufweisen. Beispielsweise kann der metallische Stützring vor dem Befestigen an der Sternscheibe erwärmt werden, wodurch er sich ausdehnt und sich die Steck-Dreh- Bewegung leichter durchführen lässt. Sobald sich der Stützring im formschlüssig befestigten Zustand an der Sternscheibe befindet, kann er abkühlen, wodurch die
Passflächen in radialer Richtung gegeneinander gepresst werden und die kraftschlüssige Verbindung ausgebildet wird. Durch die Passflächen kann in vorteilhafter weise zusätzlich eine Zentrierung des Stützrings erreicht werden.
Es kann vorgesehen sein, dass zumindest eines der Endstücke einen Anschlag aufweist, bis zu welchem der Stützring drehbar ist. Durch den Anschlag kann eine
bestimmungsgemäße Lage des Stützrings bezüglich der Sternscheibe angezeigt und gehalten werden, in welcher durch die Bajonettverschlussbereiche die formschlüssige Verbindung des Stützrings und der Sternscheibe bereitgestellt wird. Der Anschlag beendet also die Drehbewegung, sobald die Sternscheibe und der Stützring ihre bestimmungsgemäße Lage zueinander eingenommen haben. Beispielsweise kann eine der Verrastungsnasen oder der Erhebungen des Stützrings an den Anschlag anstoßen und die Drehbewegung beenden.
In einer Weiterbildung der Erfindung weist der Stützring einen zylinderförmigen, die Sternscheibe umgebenden Mantelbereich, welcher die Bajonettverschlussbereiche des Stützrings aufweist, und einen von dem Mantelbereich radial nach innen abstehenden ringförmigen Deckelbereich, welcher mit einer Oberseite der Sternscheibe zumindest bereichsweise überlappt, auf. Der Deckelbereich überdeckt insbesondere zumindest die Wickelköpfe an der Oberseite der Sternscheibe. Insbesondere ist eine Innenkontur des ringförmigen Deckelbereichs als eine Passfläche zum Anpressen an eine durch das Blechpaket axial hindurchgeführte Rotorwelle ausgebildet. Der ringförmige Deckelbereich kann also über die Oberseite der Sternscheibe bis an einen Innenrand des Rohrträgers ragen und somit an die Rotorwelle angepresst werden. Durch das Anordnen des
Stützrings an der Rotorwelle kann der Stützring außerdem zentriert werden.
Die Erfindung betrifft außerdem eine fremderregte Innenläufer-Synchronmaschine für ein Kraftfahrzeug aufweisend einen Stator, welcher ein Blechpaket mit Statorwicklungen aufweist, und einen erfindungsgemäßen Rotor, welcher in einem Hohlraum des
Blechpakets des Stators drehbar gelagert ist.
Ein erfindungsgemäßes Kraftfahrzeug umfasst eine erfindungsgemäße fremderregte Innenläufer-Synchronmaschine. Das Kraftfahrzeug ist insbesondere ein
Personenkraftwagen in Form von einem Elektro- oder Hybridfahrzeug und weist die fremderregte Innenläufer-Synchronmaschine als Traktionsmaschine bzw.
Antriebsmaschine auf.
Die mit Bezug auf die erfindungsgemäße Stützeinrichtung vorgestellten
Ausführungsformen und deren Vorteile gelten entsprechend für den erfindungsgemäßen Rotor, für die erfindungsgemäße Innenläufer-Synchronmaschine sowie für das erfindungsgemäße Kraftfahrzeug.
Weitere Merkmale der Erfindung ergeben sich aus den Ansprüchen, der Figuren und der Figurenbeschreibung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen
Kombinationen oder in Alleinstellung verwendbar.
Die Erfindung wird nun anhand eines bevorzugten Ausführungsbeispiels sowie unter
Bezugnahme auf die Zeichnungen näher erläutert.
Es zeigen:
Fig. 1 eine schematische Explosionsdarstellung eines Rotors einer
Innenläufer-Synchronmaschine,
Fig. 2 eine schematische Darstellung einer Ausführungsform einer
erfindungsgemäßen Stützeinrichtung für einen Rotor mit einer
Sternscheibe und einem Stützring;
Fig. 3 der Stützring gemäß Fig. 2 aus einer anderen Perspektive;
Fig. 4 ein erster Montageschritt zum Montieren der Stützeinrichtung an einem
Blechpaket des Rotors;
Fig. 5 ein zweiter Montageschritt zum Montieren der Stützeinrichtung an dem
Blechpaket des Rotors;
Fig. 6 ein Querschnitt durch die Stützeinrichtung während des Montageschritts gemäß Fig. 5;
Fig. 7 ein dritter Montageschritt zum Montieren der Stützeinrichtung an dem
Blechpaket des Rotors; und
Fig. 8 ein Querschnitt durch die Stützeinrichtung nach der Montage gemäß
Fig. 7.
In den Figuren sind gleiche sowie funktionsgleiche Elemente mit den gleichen
Bezugszeichen versehen Fig. 1 zeigt einen Rotor 1 für eine hier nicht gezeigte Innenläufer-Synchronmaschine eines elektrisch antreibbaren Kraftfahrzeugs in einer Explosionsdarstellung. Der Rotor 1 weist ein Blechpaket 2 in Form von einem einstückigen Eisenkern auf. Das Blechpaket 2 weist ein ringförmiges Rotorjoch 3 auf, in welchem eine sich in axialer Richtung entlang einer Längsachse L bzw. Drehachse des Rotors 1 erstreckende Rotorwelle 4 anordenbar ist. An dem Rotorjoch 3 sind entlang einer Umfangsrichtung U eine Vielzahl von
Rotorzähnen 5 angeordnet, welche sich in radialer Richtung R nach außen erstrecken. Dabei wird zwischen zwei benachbarten Rotorzähnen 5 jeweils eine Rotornut 6 ausgebildet. Um die Rotorzähne 5 können Rotorwicklungen 7 gewickelt werden, welche an axial einander gegenüberliegenden Stirnseiten 8 des Blechpakets 2 Wickelköpfe 9 ausbilden. Außerdem weist das Blechpaket 2 Polschuhe 10 auf, welche an Enden der Rotorzähne 5 angeordnet sind und verhindern, dass die zwischen dem Rotorjoch 3 und den Polschuhen 10 angeordneten Wickelköpfe 9 bei einer Drehung des Rotors 1 von den Rotorzähnen 5 rutschen. In den Rotornuten 6 sind außerdem Deckschieber 1 1 angeordnet, welche die Rotornuten 6 verschließen und verhindern, dass die
Rotorwicklungen 7 aufgrund ihrer geringen Steifigkeit aus den Rotornuten 6 gedrückt werden.
Außerdem weist der Rotor 1 zwei Stützeinrichtungen 12 gemäß dem Stand der Technik auf, welche jeweils eine Sternscheibe 13 gemäß dem Stand der Technik und einen Stützring 14 gemäß dem Stand der Technik umfassen. Die Sternscheibe 13 wird zwischen der Stirnseite 8 des Blechpakets 2 und den Wickelköpfen 9 angeordnet und sorgt unter anderem für eine Umlenkung der Wickeldrähte der Rotorwicklungen 7 an der Stirnseite 8. Um die Sternscheibe 13 herum wird der Stützring 14 angeordnet, welcher für eine zusätzliche Stabilität und Fixierung der Sternscheibe 13 sorgt. Bei einer derart gestalteten Stützeinrichtung 12 kann es Vorkommen, dass sich der Stützring 14 während der Drehung des Rotors 1 von der Sternscheibe 13 löst und eine Betriebssicherheit der elektrischen Maschine nicht mehr gewährleistet werden kann.
Daher wird die Stützeinrichtung 12 des Rotors 1 durch eine erfindungsgemäße
Stützeinrichtung 15 ersetzt, wie sie beispielhaft in Fig. 2 gezeigt ist. Die Stützeinrichtung 15 weist eine erfindungsgemäße Sternscheibe 16 sowie einen erfindungsgemäßen Stützring 17 auf. Eine Ansicht des Stützrings 17 aus einen anderen Perspektive ist in Fig. 3 gezeigt. Die Sternscheibe 16 weist einen Ringträger 18 auf, welcher anliegend an dem Rotorjoch 3 des Blechpakets 2 des Rotors 1 (ohne die Stützeinrichtung 12) angeordnet werden kann. Die Rotorwelle 4 kann dabei durch den Ringträger 18 hindurchgeführt werden. Eine Innenseite 19 des Ringträgers 18 kann eine Passfläche ausbilden, durch welche die Sternscheibe 16 und die Rotorwelle 4 mittels Presspassung verbunden werden können. Auch kann ein hier nicht gezeigter, zusätzlicher Spannring zwischen der Rotorwelle 4 und der Innenseite 19 des Ringträgers 18 angeordnet sein. In diesem Fall liegt im angeordneten Zustand der Sternscheibe 16 an der Stirnseite 8 des Blechpakets 2 eine Spielpassung zwischen der Sternscheibe 18 und der Rotorwelle 4 und eine
Presspassung zwischen dem Spannring und der Rotorwelle 4 vor.
Radial von dem Ringträger 18 stehen Tragzähne 20 ab, welche an der Stirnseite 8 des Blechpakets 2 überlappend mit den Rotorzähnen 5 angeordnet werden können. Über die Tragzähne 20 werden die Rotorwicklungen 7 von einer Rotornut 6 in eine benachbarte Rotornut 6 geführt, sodass die Tragzähne 20 in axialer Richtung zwischen den
Rotorzähnen 5 und den Wickelköpfen 9 angeordnet sind. Außerdem weist die
Sternscheibe 16 axial abstehende, kragenartige Endstücke 21 auf, welche die auf die Wickelköpfe 9 wirkenden Fliehkräfte aufnehmen können. Die Endstücke 21 sind hier als teilweise gewölbte, plattenartige Elemente ausgebildet. Der Stützring 17 ist aus Metall gebildet und weist einen ringförmigen Mantelbereich 22, sowie einen radial nach innen ragenden, ringförmigen Deckelbereich 23 auf. Eine Innenkontur 24 des Deckelbereichs 23 bildet eine Passfläche aus, welche an die Rotorwelle 4 zum Verbinden des Stützrings 17 mit der Rotorwelle 4 angepresst werden kann.
Die Sternscheibe 16 und der Stützring 17 können über eine Steck-Dreh-Bewegung formschlüssig verbunden werden. Dazu weisen die Sternscheibe 16 und der Stützring 17 zueinander komplementäre Bajonettverschlussbereiche 25, 26 auf. Die
Bajonettverschlussbereiche 25 der Sternscheibe 16 befinden sich an einer Außenseite 27 der Endstücke 20 und die Bajonettverschlussbereiche 25 des Stützrings 17 befinden sich an einer Innenseite 28 des Stützrings 17 im Mantelbereich 22. Die Außenseite 27 und die Innenseite 28 sind im zusammengesetzten Zustand der Stützeinrichtung 15 radial angrenzend aneinander angeordnet.
Hier ist die Sternscheibe 16 bereichsweise aus Kunststoff gebildet, wobei die
Bajonettverschlussbereiche 25 der Endstücke 21 aus Metall gebildet sind. Es kann aber auch sein, dass die gesamte Sternscheibe 16, auch in den Bajonettverschlussbereichen 25, aus Kunststoff gebildet ist. Der Bajonettverschlussbereich 25 eines Endstücks 21 weist hier drei axial erstreckende, parallel verlaufende Längsnuten 29 sowie eine sich in Umfangsrichtung U erstreckende, an die Längsnuten 29 angrenzende Quernut 30 auf.
Die Bajonettverschlussbereiche 26 des Stützrings 17 weisen hier für jedes Endstück 21 drei Verrastungsnasen 31 (siehe Fig. 3) auf, welche von der Innenseite 28 des Mantelbereichs 22 radial nach innen abstehen. In axialer Richtung an die
Verrastungsnasen 31 angrenzend weist der Stützring 17 abgeflachte Erhebungen 32 auf, welche erste Passflächen ausbilden. Der Stützring 16 weist abgeflachte Bereiche 33 auf, welche in Umfangrichtung U an die Längsnuten 29 angrenzen und ebenfalls Passflächen ausbilden.
Fig. 4 zeigt einen ersten Montageschritt zum Montieren des Stützrings 17 an der
Sternscheibe 16, welche bereits zwischen der Stirnseite 8 und den Wickelköpfen 9 des Rotors 1 angeordnet ist. Zunächst wird dabei der Stützring 17 entlang der
Umfangsrichtung U so lange gedreht, bis die Verrastungsnasen 31 fluchtend zu den bzw. in einer Linie mit den Längsnuten 29 der Endstücke 21 der Sternscheibe 16 angeordnet sind. In einem in Fig. 5 dargestellten zweiten Montageschritt wird der Stützring 17 in einer axialen Steckrichtung S in Richtung der Stirnseite 8 geschoben. Dabei werden die Verrastungsnasen 31 in den Längsnuten 19 entlang geschoben. Fig. 6 zeigt einen Querschnitt durch die Stützeinrichtung 15 im Bereich der Bajonettverschlussbereiche 25, 26. Der Stützring 17 wird hier vollständig auf die Sternscheibe 16 bis zu der Stirnseite 8 geschoben. In diesem Zustand haben die Verrastungsnasen 31 die Längsnuten 29 vollständig durchlaufen. In einem dritten Montageschritt, wie er in Fig. 7 gezeigt ist, wird der Stützring 17 in Umfangsrichtung U gedreht, wobei sich während der Drehbewegung die Verrastungsnasen 31 in der Quernut 30 verschieben.
Zum Beenden der Drehbewegung weist das Endstück, wie in dem Querschnitt in Fig. 8 gezeigt, einen Anschlag 34 auf, gegen welchen die Verrastungsnase 31 stößt. Sobald die Verrastungsnase 31 gegen den Anschlag 34 gestoßen ist, sind die Sternscheibe 16 und der Stützring 17 aufgrund des durch die Bajonettverschlussbereiche 25, 26 gebildeten Bajonettverschlusses formschlüssig verbunden. Der Stützring 17 kann also aufgrund der in den Quernuten 30 angeordneten Verrastungsnasen 31 nicht mehr entgegen der Steckrichtung S von der Sternscheibe 16 entfernt werden. Zusätzlich werden in diesem Zustand die abgeflachten Erhebungen 32 des Stützrings 17 und die abgeflachten Bereiche 33 der Sternscheibe 16 entlang der radialen Richtung R gegeneinander gepresst und verbinden den Stützring 17 und die Sternscheibe 16 zusätzlich auch kraftschlüssig. Bezugszeichenliste
Rotor
Blechpaket
Rotorjoch
Rotorwelle
Rotorzahn
Rotornut
Rotorwicklung
Stirnseite
Wickelkopf
Polschuhe
Deckschieber
Stützeinrichtung
Sternscheibe
Stützring
Stützeinrichtung
Sternscheibe
Stützring
Ringträger
Innenseite des Ringträgers
Tragzahn
Endstück
Mantelbereich
Deckelbereich
Innenkontur
Bajonettverschlussbereiche der Sternscheibe
Bajonettverschlussbereiche des Stützrings
Außenseite der Endstücke
Innenseite des Stützrings
Längsnut
Quernut
Verrastungsnase
Erhebungen
Bereiche 34 Anschlag
L Längsachse
R radiale Richtung
U Umfangsrichtung
S Steckrichtung

Claims

Patentansprüche
1. Stützeinrichtung (15) für einen Rotor (1 ) einer fremderregten Innenläufer- Synchronmaschine eines elektrisch antreibbaren Kraftfahrzeugs mit einer
Sternscheibe (16), welche an einem Blechpaket (2) des Rotors (1 ) zwischen einer Stirnseite (8) des Blechpakets (2) und an der Stirnseite (8) überstehenden
Wickelköpfen (9) von Rotorwicklungen (7) des Rotors (1 ) anordenbar ist, und einem Stützring (17) zum Ummanteln der Sternscheibe (16), wobei die Sternscheibe (16)
- einen Ringträger (18) zum Anordnen an einem Rotorjoch (3) des Blechpakets (2),
- von dem Ringträger (18) radial abstehende Tragzähne (20) zum Anordnen an radial von dem Rotorjoch (3) abstehenden, die Rotorwicklungen (7) tragenden Rotorzähnen (5), und
- kragenartige, von Enden der Tragzähne (20) axial abstehende Endstücke (21 ) zum Anordnen an von den Rotorzähnen (5) abstehenden Polschuhen (10) und zum Aufnehmen von Fliehkräften der Wickelköpfe (9) aufweist, und wobei
die Endstücke (21 ) und der Stützring (17) zueinander komplementäre, durch eine Steck-Dreh-Bewegung miteinander verriegelbare Bajonettverschlussbereiche (25, 26) aufweisen, welche dazu ausgelegt sind, die Sternscheibe (16) und den Stützring (17) formschlüssig zu verbinden.
2. Stützeinrichtung (15) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Bajonettverschlussbereiche (25, 26) zusätzlich dazu ausgelegt sind, die
Sternscheibe (16) und den Stützring (17) im zusammengesteckten Zustand kraftschlüssig zu verbinden.
3. Stützeinrichtung (15) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Bajonettverschlussbereiche (25) der Endstücke (21 ) jeweils zumindest eine an einer Außenseite (27) des jeweiligen Endstücks (21 ) angeordnete Längsnut (29) und zumindest eine an die Längsnut (29) angrenzende Quernut (30) aufweisen, und die Bajonettverschlussbereiche (26) des Stützrings (17) für jedes Endstück (21 ) zumindest eine an einer Innenseite (28) des Stützrings (17) angeordnete
Verrastungsnase (31 ) aufweisen, welche bei der Steckbewegung in axialer Richtung entlang der Längsnut (29) schiebbar ist und bei der Drehbewegung in
Umfangsrichtung (U) entlang der Quernut (30) schiebbar ist.
4. Stützeinrichtung (15) nach Anspruch 3,
dadurch gekennzeichnet, dass
die Bajonettverschlussbereiche (25) der Endstücke (21 ) jeweils drei parallel verlaufende Längsnuten (29) und eine die Längsnuten (29) verbindende Quernut (30) aufweisen, und die Bajonettverschlussbereiche (26) des Stützrings (17) für jedes Endstück (21 ) drei Verrastungsnasen (31 ) aufweisen.
5. Stützeinrichtung (15) nach Anspruch 3 oder 4,
dadurch gekennzeichnet, dass
die Bajonettverschlussbereiche (26) des Stützrings (17) axial an die
Verrastungsnasen (31 ) angrenzende, abgeflachte Erhebungen (32) aufweisen, welche erste Passflächen ausbilden, und die Bajonettverschlussbereiche (25) der Endstücke (21 ) in Umfangsrichtung (U) an die Längsnuten (29) angrenzende, abgeflachte Bereiche (33) aufweisen, welche zweite Passflächen ausbilden, wobei die ersten und die zweiten Passflächen nach Durchführung der Drehbewegung zum Ausbilden einer kraftschlüssigen Verbindung zwischen dem Stützring (17) und der Sternscheibe (16) aneinander gepresst sind.
6. Stützeinrichtung (15) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
zumindest eines der Endstücke (21 ) einen Anschlag (34) aufweist, bis zu welchem der Stützring (17) drehbar ist.
7. Stützeinrichtung (15) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Stützring (17) einen zylinderförmigen, die Sternscheibe (16) umgebenden, axial erstreckenden Mantelbereich (22), welcher die Bajonettverschlussbereiche (25) aufweist, und einen von dem Mantelbereich (22) radial nach innen abstehenden ringförmigen Deckelbereich (23), welcher mit einer der Stirnseite (8) des Blechpakets (2) abgewandten Oberseite der Sternscheibe (16) zumindest bereichsweise überlappt, aufweist.
8. Stützeinrichtung (15) nach Anspruch 7,
dadurch gekennzeichnet, dass
eine Innenkontur des ringförmigen Deckelbereichs (23) als eine Passfläche zum Anpressen an eine durch das Blechpaket (2) axial hindurchgeführte Rotorwelle (4) ausgebildet ist.
9. Stützeinrichtung (15) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Stützring (17) aus einem metallischen Werkstoff ausgebildet ist
10. Stützeinrichtung (15) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Sternscheibe (17) zumindest teilweise aus Kunststoff gebildet ist.
11. Stützeinrichtung nach Anspruch 10,
dadurch gekennzeichnet, dass
die Bajonettverschlussbereiche (25) der Sternscheibe (16) aus einem metallischen Werkstoff gebildet sind.
12. Rotor (1 ) für eine fremderregte Innenläufer-Synchronmaschine eines elektrisch
antreibbaren Kraftfahrzeugs mit
- einem Blechpaket (2) aufweisend ein ringförmiges Rotorjoch (3), radial von dem Rotorjoch (3) abstehende Rotorzähne (5) und an den Rotorzähnen (5) abstehende Polschuhe (10),
- Rotorwicklungen (6), welche um die Rotorzähne (5) gewickelt sind und an axial gegenüberliegenden Stirnseiten (8) des Blechpakets (2) Wickelköpfe (9) ausbilden, -zumindest einer Stützeinrichtung (15) nach einem der vorhergehenden Ansprüche, wobei die Sternscheibe (16) zwischen einer Stirnseite (8) und den Wickelköpfen (9) angeordnet ist, und der Stützring (17) die Sternscheibe (16) radial umgibt und mit der Sternscheibe (16) formschlüssig verbunden ist.
13. Fremderregte Innenläufer-Synchronmaschine für ein Kraftfahrzeug aufweisend einen Stator, welcher ein Blechpaket mit Statorwicklungen aufweist, und einen Rotor (1 ) nach Anspruch 12, welcher in einem Hohlraum des Blechpakets des Stators drehbar gelagert ist.
14. Kraftfahrzeug mit einer fremderregten Innenläufer-Synchronmaschine nach Anspruch 13.
PCT/EP2019/077841 2018-11-14 2019-10-15 Stützeinrichtung für einen rotor einer fremderregten innenläufer-synchronmaschine bestehend aus einem stützring und einer sternscheibe WO2020099048A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980010600.7A CN111656649B (zh) 2018-11-14 2019-10-15 用于外部励磁的内转子同步电机的转子的由支撑环和星形盘组成的支撑装置
US16/964,061 US11349367B2 (en) 2018-11-14 2019-10-15 Support device for a rotor of a separately excited internal-rotor synchronous machine consisting of a support ring and a star disk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018128521.3A DE102018128521A1 (de) 2018-11-14 2018-11-14 Stützeinrichtung für einen Rotor einer fremderregten Innenläufer-Synchronmaschine, Rotor, fremderregte Innenläufer-Synchronmaschine sowie Kraftfahrzeug
DE102018128521.3 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020099048A1 true WO2020099048A1 (de) 2020-05-22

Family

ID=68281434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/077841 WO2020099048A1 (de) 2018-11-14 2019-10-15 Stützeinrichtung für einen rotor einer fremderregten innenläufer-synchronmaschine bestehend aus einem stützring und einer sternscheibe

Country Status (4)

Country Link
US (1) US11349367B2 (de)
CN (1) CN111656649B (de)
DE (1) DE102018128521A1 (de)
WO (1) WO2020099048A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3054880C (en) * 2017-03-03 2024-02-06 Ge Renewable Technologies Salient pole machine
DE102020116418A1 (de) 2020-06-22 2021-12-23 Bayerische Motoren Werke Aktiengesellschaft Aktivteil mit Stützprofil, Verfahren zum Herstellen eines Aktivteils, elektrische Maschine sowie Kraftfahrzeug
DE102020118943A1 (de) 2020-07-17 2022-01-20 Audi Aktiengesellschaft Sternscheibe für einen Rotor einer fremderregten Synchronmaschine, Rotor, Synchronmaschine und Verfahren zum Nadelwickeln von Leiterwicklungen eines Rotors
DE102020118944A1 (de) 2020-07-17 2022-01-20 Audi Aktiengesellschaft Sternscheibe für einen Rotor einer fremderregten Synchronmaschine
DE102020119680A1 (de) 2020-07-27 2022-01-27 Audi Aktiengesellschaft Sternscheibe für einen Rotor einer fremderregten Synchronmaschine
FR3114702B1 (fr) * 2020-09-29 2023-02-24 Renault Sas Rotor de machine électrique et procédé d’assemblage d’un tel rotor
DE102020127928A1 (de) 2020-10-23 2022-04-28 Valeo Siemens Eautomotive Germany Gmbh Rotor für eine elektrische Maschine, elektrische Maschine für ein Fahrzeug und Verfahren zur Herstellung eines Rotors für eine elektrische Maschine
EP3989406A1 (de) * 2020-10-26 2022-04-27 Valeo Siemens eAutomotive Germany GmbH Rotor und verfahren zum imprägnieren der wicklungen
DE102021122066A1 (de) 2021-08-26 2023-03-02 Audi Aktiengesellschaft Rotor für eine fremderregte Synchronmaschine
DE102021209866A1 (de) 2021-09-07 2023-03-09 Mahle International Gmbh Innenrotor
DE102021209865A1 (de) * 2021-09-07 2023-03-09 Mahle International Gmbh Rotorstück
DE102021123673A1 (de) 2021-09-14 2023-03-16 Bayerische Motoren Werke Aktiengesellschaft Stützeinrichtung für einen Rotor mit radialem Sicherungskonzept
FR3127087B1 (fr) * 2021-09-14 2023-09-22 Renault Sas Guide de bobinage pour rotor de machine électrique
DE102021123750A1 (de) 2021-09-14 2023-03-16 Bayerische Motoren Werke Aktiengesellschaft Wellenloser Schenkelpolrotor für eine elektrische Maschine mit Drehmomentabführung über einen Nutverschluss, Fertigungsverfahren und elektrische Maschine
DE102021124234A1 (de) 2021-09-20 2023-03-23 Bayerische Motoren Werke Aktiengesellschaft Stützeinrichtung für einen Rotor mit Rovingwicklung
DE102021129791A1 (de) 2021-11-16 2023-05-17 Bayerische Motoren Werke Aktiengesellschaft Stützeinrichtung für einen Rotor einer elektrischen Maschine eines Kraftfahrzeugs sowie elektrische Maschine für ein Kraftfahrzeug
DE102021129951A1 (de) 2021-11-17 2023-05-17 Bayerische Motoren Werke Aktiengesellschaft Stützeinrichtung für einen Rotor einer elektrischen Maschine eines Kraftfahrzeugs sowie elektrische Maschine für ein Kraftfahrzeug
DE102021131729A1 (de) 2021-12-02 2023-06-07 Bayerische Motoren Werke Aktiengesellschaft Rotor mit einer Stützvorrichtung, elektrische Maschine mit einem Rotor und Kraftfahrzeug mit einer elektrischen Maschine
DE102021133566A1 (de) 2021-12-17 2023-06-22 Valeo Eautomotive Germany Gmbh Rotor für eine elektrische Maschine mit einem rohrförmigen Kühlkanal
DE102021134614A1 (de) 2021-12-23 2023-06-29 Valeo Eautomotive Germany Gmbh Rotor für eine elektrische Maschine mit Fließbarrieren für Kühlmittel
DE102021134585A1 (de) 2021-12-23 2023-06-29 Valeo Eautomotive Germany Gmbh Rotorpaket für einen Rotor einer elektrischen Maschine, Rotor, elektrische Maschine und Verfahren zum Herstellen eines Rotors
DE102022106636A1 (de) 2022-03-22 2023-09-28 Bayerische Motoren Werke Aktiengesellschaft Zweiteilige Kühleinrichtung für einen Rotor zur Wickelkopfkühlung
DE102022110466A1 (de) 2022-04-29 2023-11-02 Hirschvogel Holding GmbH Verfahren zur Herstellung eines Massivumformbauteils und Massivumformbauteil hergestellt mit einem solchen Verfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1538750A1 (de) * 1966-12-06 1969-11-27 Bbc Brown Boveri & Cie Anordnung zur Sicherung der Laeuferkappen von Turbogeneratoren gegen axiale Verschiebung
DE2914316A1 (de) * 1979-04-09 1980-10-30 Zagorodnaja Geb Poluektova Baugruppe zum befestigen der wickelkoepfe der laeuferwicklung einer elektrischen vollpolmaschine
FR3048566A1 (fr) * 2016-03-02 2017-09-08 Valeo Equip Electr Moteur Rotor de machine electrique
US20180109170A1 (en) * 2016-10-17 2018-04-19 Hyundai Motor Company Driving Motor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831268A (en) * 1973-12-03 1974-08-27 Briggs & Stratton Corp Method of making an electric motor armature core
DE2555529C3 (de) * 1975-12-10 1985-05-30 SWF Auto-Electric GmbH, 7120 Bietigheim-Bissingen Elektromotor für eine Flüssigkeitspumpe mit einem von der Flüssigkeit umströmten Anker
GB2045542A (en) * 1979-03-23 1980-10-29 Vartanian G P Locking structure for rotor end winding of a distributed pole electric machine
DE3903945C1 (de) * 1989-02-10 1990-07-19 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt, De
DE19950826C2 (de) * 1999-10-21 2002-10-24 Ying-Chih Huang Läufer für einen elektrischen Motor
US6727634B2 (en) * 2001-08-30 2004-04-27 Honeywell International, Inc. System and method for end turn retention on a high speed generator rotor
JP4158154B2 (ja) * 2004-01-14 2008-10-01 株式会社デンソー 電動機およびそれを用いた燃料ポンプ
DE202008016729U1 (de) * 2008-09-26 2010-02-25 Ebm-Papst Mulfingen Gmbh & Co. Kg Stator für einen Innenläufermotor
JP5947637B2 (ja) * 2012-06-29 2016-07-06 オリエンタルモーター株式会社 ブラシレスモータのセンサ基板の取付方法および取付構造
KR101364028B1 (ko) * 2012-10-02 2014-02-19 엘지전자 주식회사 전동기
JP6229331B2 (ja) * 2013-07-02 2017-11-15 日本電産株式会社 モータ
DE102015201218A1 (de) * 2015-01-26 2016-07-28 Zf Friedrichshafen Ag Stator für eine elektrische Maschine mit einer gekapselten Verschaltungseinrichtung
CN105932848B (zh) * 2015-02-27 2019-05-21 博泽沃尔兹堡汽车零部件有限公司 用于电动机的定子结构组件
DE102016215716A1 (de) * 2016-08-22 2018-02-22 Em-Motive Gmbh Stator einer elektrischen Maschine
WO2018062346A1 (ja) * 2016-09-30 2018-04-05 日本電産株式会社 モータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1538750A1 (de) * 1966-12-06 1969-11-27 Bbc Brown Boveri & Cie Anordnung zur Sicherung der Laeuferkappen von Turbogeneratoren gegen axiale Verschiebung
DE2914316A1 (de) * 1979-04-09 1980-10-30 Zagorodnaja Geb Poluektova Baugruppe zum befestigen der wickelkoepfe der laeuferwicklung einer elektrischen vollpolmaschine
FR3048566A1 (fr) * 2016-03-02 2017-09-08 Valeo Equip Electr Moteur Rotor de machine electrique
US20180109170A1 (en) * 2016-10-17 2018-04-19 Hyundai Motor Company Driving Motor

Also Published As

Publication number Publication date
US11349367B2 (en) 2022-05-31
DE102018128521A1 (de) 2020-05-14
CN111656649A (zh) 2020-09-11
CN111656649B (zh) 2022-10-04
US20210050761A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
WO2020099048A1 (de) Stützeinrichtung für einen rotor einer fremderregten innenläufer-synchronmaschine bestehend aus einem stützring und einer sternscheibe
DE3242018A1 (de) Kuehlvorrichtung fuer eine elektrische rotationsmaschine
DE102012100158A1 (de) Stator für drehende elektrische Maschinen und Verfahren zum Herstellen desselben
DE102012100332A1 (de) Stator für eine rotierende elektrische Maschine und Verfahren zu seiner Herstellung
EP2790295A1 (de) Rotor für einen Reluktanzmotor, Verfahren zum Herstellen eines Rotors für einen Reluktanzmotor sowie elektrische Maschine, insbesondere ein Reluktanzmotor
DE2953033C2 (de) Rotor einer elektrischen Maschine mit ausgeprägten Polen
DE2924863C2 (de) Anordnung zur Befestigung einer Luftspaltwicklung
DE112004001898T5 (de) Kurzschlußteil, Kommutator und Verfahren zur Herstellung eines Kurzschlußteils
DE102020101149A1 (de) Axialflussmaschine mit mechanisch fixierten Statorkernen mit radial verlaufenden Blechsegmenten
EP3989408A1 (de) Rotor für eine elektrische maschine, elektrische maschine für ein fahrzeug und verfahren zur herstellung eines rotors für eine elektrische maschine
WO2019171218A1 (de) Rotoreinheit und elektromotor
EP0730334A1 (de) Ständer für eine elektrische Aussenpolmaschine
DE102010030877A1 (de) Steckbarer Polzahn
DE102018125834A1 (de) Stator für eine elektrische Maschine und Verfahren zum Herstellen eines derartigen Stators
EP4029117A1 (de) Elektrische maschine mit einer bestimmten positionierung verschiedener vertiefungen an einem nass laufenden stator
DE19927279B4 (de) Käfigläufer für eine elektrische Maschine
DE102020109980A1 (de) Stator für eine elektrische Maschine und elektrische Maschine
WO2019171219A1 (de) Rotoreinheit und elektromotor
DE102019123433A1 (de) Rotorblechpaket für einen Rotor und Verfahren zur Herstellung eines Rotorblechpakets
DE102019202566A1 (de) Rotor für eine elektrische Maschine mit Kühlkanälen
DE10162523A1 (de) Rotierende, elektrische Maschine mit einem Verstärkungsring am Anker
WO2018197133A1 (de) Segmentierter stator für eine elektrische maschine in innenläuferbauart
DE102022208672A1 (de) Rotor für eine Asynchronmaschine mit Kühlkanälen, Asynchronmaschine und Kraftfahrzeug
WO2023213486A1 (de) Rotor für eine fremderregte elektrische synchronmaschine
DE102021122045A1 (de) Vollpolläufer für eine elektrisch erregte Traktionsmaschine, Synchronmaschine und Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789644

Country of ref document: EP

Kind code of ref document: A1