WO2013022084A1 - 無塗装筺体とその製造方法 - Google Patents

無塗装筺体とその製造方法 Download PDF

Info

Publication number
WO2013022084A1
WO2013022084A1 PCT/JP2012/070434 JP2012070434W WO2013022084A1 WO 2013022084 A1 WO2013022084 A1 WO 2013022084A1 JP 2012070434 W JP2012070434 W JP 2012070434W WO 2013022084 A1 WO2013022084 A1 WO 2013022084A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
acetone
component
resin component
parts
Prior art date
Application number
PCT/JP2012/070434
Other languages
English (en)
French (fr)
Inventor
藤沢 朋幸
博治 板谷
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to US14/237,936 priority Critical patent/US9187626B2/en
Priority to JP2013528075A priority patent/JP6140606B2/ja
Priority to CN201280039263.2A priority patent/CN103748174A/zh
Priority to KR1020147001237A priority patent/KR20140027473A/ko
Publication of WO2013022084A1 publication Critical patent/WO2013022084A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]

Definitions

  • the present invention relates to an unpainted casing having excellent impact resistance, deep hue, and a high-class appearance, and a manufacturing method thereof.
  • the inventors of the present invention have specified conditions for exerting enamel tone with a deep hue and a high-class feeling, and are insoluble in acetone containing a rubber component having a specific mass average particle size.
  • Thermoplastic resin containing the resin component (A) of the above, the unit component content derived from the specific unsaturated nitrile monomer and the acetone-soluble resin component (B) having a specific molecular weight, and the colorant (C) The casing using the molded article made of the composition (D) satisfies the conditions for exhibiting the enamel tone and is also impact resistant without performing a painting process or a process of attaching a special film. I found it excellent. That is, the present invention is as follows.
  • A) 20 to 60% by mass, acetone-soluble resin component (B) 40 to 80% by mass (provided that (A) + (B) 100% by mass), and a colorant (C), and
  • Acetone-soluble resin component (B) contains 6.0 to 45% by mass of a component derived from an unsaturated nitrile monomer, and (2) has a molecular weight of 70,000 or less by gel permeation chromatography (GPC) measurement.
  • GPC gel permeation chromatography
  • the component is contained in the acetone-soluble resin component (B) in an amount of 2 to 20% by mass.
  • thermoplastic resin composition (D) has a falling weight impact 50% fracture energy in accordance with JIS K7211-1976 of 4.0 J or more.
  • the colorant (C) is a dye mixture comprising at least four or more colors, and each dye has a sublimation start temperature of 210 to 400 ° C.
  • the mold having a surface roughness Ra of 0.1 or less is used and molding is performed at a mold temperature of 60 to 150 ° C. and an injection pressure of 300 to 1300 kg / cm 2 or less.
  • the present invention it is possible to obtain a non-coated casing having a deep hue, a high-class appearance, and excellent impact resistance without requiring complicated processes such as painting and film pasting. Is possible.
  • the present invention includes an acetone-insoluble resin containing a rubber component (a) having a mass average particle diameter of 0.05 to 0.3 ⁇ m and a linear expansion coefficient of 11 ⁇ 10 ⁇ 5 to 20.5 ⁇ 10 ⁇ 5 / ° C.
  • the acetone-soluble resin component (B) contains 6.0 to 45% by mass of a component derived from an unsaturated nitrile monomer, and (2) a molecular weight of 70,000 as measured by gel permeation chromatography (GPC).
  • the following components are contained in 2 to 20% by mass in the acetone-soluble resin component (B).
  • a thermoplastic resin composition (D) is used.
  • the acetone-insoluble resin component (A) in the present invention includes a rubber component (a) having a mass average particle size of 0.05 to 0.3 ⁇ m or less and a linear expansion coefficient of 11 ⁇ 10 ⁇ 5 to 20.5 ⁇ 10. It is a resin component at -5 / ° C. From the thermoplastic resin composition (D) or a molded article comprising the thermoplastic resin composition (D), it can be taken out by the following method.
  • the centrifuge tube is dried at 80 ° C. for 30 minutes or more and then allowed to cool in a desiccator for 15 minutes or more.
  • the weight of the centrifuge tube is precisely weighed to 0.1 mg with an electronic balance.
  • About 1 g is cut from the thermoplastic resin composition (D) or the molded product, weighed into a centrifuge tube, and precisely weighed to 0.1 mg.
  • the sample adhering to the silicon stopper is dropped into the centrifuge tube using a small amount of acetone.
  • the centrifuge is operated again and centrifuged at a rotation speed of 20,000 rpm for 50 minutes. After centrifugation, the centrifuge tube is removed from the rotor and the supernatant liquid is decanted. Further, about 20 ml of acetone is collected with a graduated cylinder, put into a centrifuge tube, sealed with a silicon stopper, and then shaken at a speed of 100 times per minute at an amplitude of 25 mm for 1 hour. Operate the centrifuge and centrifuge at 20,000 rpm for 50 minutes. After centrifugation, the centrifuge tube is removed from the rotor and the supernatant liquid is decanted. Dry at 80 ° C. for 30 minutes, and then dry at 130 ° C.
  • the molded article made of the thermoplastic resin composition (D) or the thermoplastic resin composition (D) may contain a component insoluble in acetone in addition to the acetone-insoluble resin component (A). In this case, the remainder obtained by removing other acetone-insoluble components from the final product obtained above becomes the acetone-insoluble resin component (A).
  • the measurement of the linear expansion coefficient of the acetone-insoluble resin component (A) is performed in accordance with ASTM D696 by using a sample of the acetone-insoluble resin component (A) by compression molding at 260 ° C. and a pressure of 80 kg / cm 2 and a thickness of 5 mm. In the range of -30 ° C to 60 ° C with TMA.
  • the above-mentioned acetone According to the method for obtaining the insoluble resin component (A), a mixture of the acetone insoluble resin component (A) and other acetone insoluble components may be obtained. In the case of 2% by mass or less of the whole acetone insoluble matter, this mixture may be compression molded into a sample having a thickness of 5 mm at 260 ° C. and a pressure of 80 kg / cm 2 , and the linear expansion coefficient may be measured.
  • acetone-insoluble resin component (A) examples include the rubber component (a) and the graft copolymer (G) obtained by grafting some (co) polymer (F) to the rubber component (a).
  • the rubber component (a) any rubber component having a glass transition temperature of 0 ° C. or lower can be used.
  • conjugated diene polymers are preferable, and polybutadiene, styrene-butadiene copolymer rubber, and acrylonitrile-butadiene copolymer rubber are particularly preferable.
  • polybutadiene, styrene-butadiene copolymer, styrene-butadiene block copolymer and acrylonitrile-butadiene copolymer are preferably used from the viewpoint of impact resistance.
  • the mass average particle diameter of the rubber component (a) is 0.05 to 0.3 ⁇ m.
  • the thickness is preferably 0.08 to 0.15 ⁇ m, more preferably 0.1 to 0.15 ⁇ m. In terms of impact, it is 0.05 ⁇ m or more, and in terms of gloss, it is 0.3 ⁇ m or less.
  • TEM transmission electron microscope
  • D thermoplastic resin composition
  • an ultrathin section of 60 ⁇ 2 nm is cut out from a molded product and, for example, butadiene is stained with osmium acid, and then observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the rubber component is contained in the thermoplastic resin composition in the present invention, a substantially circular dark color portion is observed.
  • the photograph is analyzed with an image analysis software (“A Image-kun” manufactured by Asahi Kasei Engineering Co., Ltd.) for an arbitrary 50 ⁇ m ⁇ 50 ⁇ m range of the ultrathin section, and the mass average particle diameter of the dark circle part is approximately circular by the function attached to the image analysis software. Is calculated.
  • the (co) polymer (F) to be grafted to the rubber component (a) is one or more selected from aromatic vinyl monomers, unsaturated nitrile monomers, and unsaturated carboxylic acid alkyl ester monomers. Examples thereof include (co) polymers composed of monomers.
  • the (co) polymer (F) can also contain other monomers copolymerizable with aromatic vinyl monomers, unsaturated nitrile monomers, and unsaturated carboxylic acid alkyl ester monomers. .
  • aromatic vinyl monomer examples include styrene, ⁇ -methyl styrene, o-methyl styrene, p-methyl styrene, o-ethyl styrene, p-ethyl styrene, pt-butyl styrene, vinyl naphthalene, and the like.
  • styrene and ⁇ -methylstyrene are preferably used. These can be used alone or in combination of two or more.
  • Examples of the unsaturated nitrile monomer include acrylonitrile, methacrylonitrile, ethacrylonitrile and the like, and among them, acrylonitrile is preferably used. These can be used alone or in combination of two or more.
  • Examples of the unsaturated carboxylic acid alkyl ester monomer include acrylic acid such as butyl acrylate, ethyl acrylate, methyl acrylate, and methyl methacrylate, and methacrylic acid ester compounds, and acrylic acid such as acrylic acid and methacrylic acid.
  • Examples of other copolymerizable monomers include N-substituted maleimide monomers such as maleic anhydride, N-phenylmaleimide and N-methylmaleimide, and glycidyl group-containing monomers such as glycidyl methacrylate. . These can be used alone or in combination of two or more.
  • the (co) polymer (F) is a polymer such as a styrene polymer, an acrylonitrile polymer, a methyl methacrylate polymer, and a butyl acrylate polymer, an acrylonitrile / styrene copolymer, an acrylonitrile / methyl methacrylate copolymer.
  • Polymer methyl acrylate / methyl methacrylate copolymer, styrene / methyl methacrylate copolymer, acrylonitrile / ⁇ -methyl styrene copolymer, styrene / N-phenylmaleimide copolymer, acrylonitrile / styrene / butyl acrylate copolymer, Examples include acrylonitrile / styrene / methyl methacrylate copolymer and acrylonitrile / styrene / N-phenylmaleimide copolymer.
  • acrylonitrile / styrene copolymer acrylonitrile / styrene copolymer, acrylonitrile / methyl methacrylate copolymer, methyl acrylate / methyl methacrylate copolymer, styrene / methyl methacrylate copolymer, acrylonitrile / styrene / butyl acrylate copolymer, and acrylonitrile / styrene.
  • -Methyl methacrylate copolymer is preferred.
  • Examples of the method for producing the graft copolymer (G) include emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, and combinations of these polymerization methods. Specifically, there is an emulsion graft polymerization method in which the (co) polymer (F) is graft-polymerized to the latex of the rubber component (a) produced by emulsion polymerization. Any of continuous, batch, and semi-batch methods can be used. The proportion of the (co) polymer (F) grafted to the rubber component (a) produced during the production process of the graft copolymer (G) is preferably 10 to 200 parts by mass, more preferably 100 parts by mass of the rubber component.
  • the amount is preferably 20 to 170 parts by mass.
  • the ratio of the grafted component can be determined by absorption peak analysis obtained using a Fourier transform infrared spectrophotometer (FT-IR).
  • FT-IR Fourier transform infrared spectrophotometer
  • the rubber component in the acetone-insoluble resin component (A) is preferably contained in an amount of 10 to 100% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
  • the thermoplastic resin composition (D) used in the present invention contains 20 to 60% by mass of an acetone-insoluble resin component (A). It is 20% by mass or more in terms of releasability and impact in injection molding, and 60% by mass or less in terms of moldability and expression of enamel tone.
  • the content of the acetone-insoluble resin component (A) in the thermoplastic resin composition (D) is preferably 25 to 55% by mass, more preferably 30 to 45% by mass.
  • the acetone-insoluble resin component (A) in the present invention has a linear expansion coefficient of 11 ⁇ 10 ⁇ 5 to 20.5 ⁇ 10 ⁇ 5 / ° C. Preferably, it is 12.5 ⁇ 10 ⁇ 5 to 19 ⁇ 10 ⁇ 5 / ° C., more preferably 12.5 ⁇ 10 ⁇ 5 to 17 ⁇ 10 ⁇ 5 / ° C.
  • the haze value of the casing can be set to 30% or more.
  • the linear expansion coefficient to 11 ⁇ 10 ⁇ 5 / ° C. or more, the haze value of the housing can be 90% or less, and sufficient impact resistance can be obtained.
  • the acetone-soluble resin component (B) of the present invention is (1) Resin containing 6.0 to 45% by mass of a component derived from an unsaturated nitrile monomer, and (2) 2 to 20% by mass of a component having a molecular weight of 70,000 or less as measured by gel permeation chromatography (GPC) It is a component and can be taken out as a component other than the acetone-insoluble component from a molded article comprising the thermoplastic resin composition (D) or the thermoplastic resin composition (D).
  • GPC gel permeation chromatography
  • acetone-soluble components other than the acetone-soluble resin component (B) are contained in the molded article made of the thermoplastic resin composition (D) or the thermoplastic resin composition (D) of the present invention, for example, Is 2% by mass or less of the total acetone-soluble matter, the amount obtained by subtracting the components insoluble in acetone from the thermoplastic resin composition (D) or the sample of the molded body made of the thermoplastic resin composition (D) is The amount of the acetone-soluble resin component (B) can be used.
  • the acetone-soluble resin component (B) contains 6.0 to 45% by mass of a unit component derived from an unsaturated nitrile monomer.
  • the acetone-soluble resin component (B) includes one or more selected from aromatic vinyl monomers, unsaturated carboxylic acid alkyl ester monomers, and other monomers copolymerizable therewith. 16.5 to 82% by mass is contained.
  • unsaturated nitrile monomer acrylonitrile is preferable.
  • aromatic vinyl monomer styrene and ⁇ -methylstyrene are preferable.
  • unsaturated carboxylic acid alkyl ester monomer butyl acrylate, ethyl acrylate, and methyl acrylate.
  • Methyl methacrylate is preferred.
  • examples of the copolymer contained in the acetone-soluble resin component (B) include styrene / acrylonitrile copolymer, styrene / acrylonitrile / butyl acrylate copolymer, and styrene / acrylonitrile / methyl methacrylate copolymer.
  • Styrene / acrylonitrile / methyl acrylate copolymer, acrylonitrile / methyl methacrylate copolymer, acrylonitrile / methyl acrylate copolymer, and acrylonitrile / methyl acrylate copolymer are preferable.
  • the unit component derived from the unsaturated nitrile monomer in the copolymer is preferably 20 to 45% by mass, more preferably 21 to 43% by mass, and 22 to 40%. More preferred is mass%. It is 20% by mass or more in terms of impact, and 45% by mass or less in terms of moldability.
  • these copolymers are preferably contained in the acetone-soluble resin component (B) in an amount of 30 to 100% by mass, more preferably 40 to 100% by mass, and still more preferably 50 to 100% by mass.
  • the acetone-soluble resin component (B) used in the present invention when measured by GPC, has a molecular weight of 10,000 to 300,000 with two or more peaks and less than five in terms of the balance between impact properties and moldability. preferable.
  • the mass average molecular weight of the whole acetone-soluble resin component (B) is 10,000 or more in terms of impact and 300,000 or less in terms of moldability. Preferably, it is 10,000 to 250,000, particularly 10,000 to 200,000.
  • a component having a molecular weight of 70,000 or less by GPC measurement needs to be contained in an amount of 2 to 20% by mass in the acetone-soluble resin component (B) in terms of the balance between fluidity and impact properties.
  • the molecular weight distribution (mass average molecular weight / number average molecular weight) of the acetone-soluble resin component (B) is preferably 1.5 to 5.0, more preferably 1.8 to 4 in terms of impact properties and moldability. 0.0 is preferred.
  • the mass average molecular weight and the number average molecular weight of the acetone-soluble resin component (B) are measured by GPC.
  • a standard curve having a known monodispersed mass average molecular weight and an analytical gel column that elutes a high molecular weight component in advance are used to prepare a calibration curve in advance from the elution time and the mass average molecular weight.
  • the molecular weight of each sample can be determined from the obtained calibration curve.
  • the thermoplastic resin composition (D) used in the present invention contains 40-80% by mass of an acetone-soluble resin component (B). It is 40% by mass or more in terms of moldability and enamel appearance, and is 80% by mass or less in terms of mold release and impact properties in injection molding.
  • the content of the acetone-soluble resin component (B) in the thermoplastic resin composition (D) is preferably 45 to 75% by mass, more preferably 55 to 70% by mass.
  • a smaller refractive index difference between the acetone-insoluble resin component (A) and the acetone-soluble resin component (B) contained in the unpainted casing of the present invention is preferable.
  • a method in which a component close to the refractive index of the acetone-insoluble resin component (A) is included in the acetone-soluble resin component (B), or the acetone-insoluble resin component (A) is grafted together In the case of a polymer, a method for increasing the graft ratio can be mentioned.
  • the refractive index measurement method include an Abbe refractometer and a laser refractometer.
  • the acetone-insoluble resin component (A) and the acetone-soluble resin component (B) are 30 mm ⁇ 30 mm ⁇ 0.2 mm (thickness).
  • Film is used as a sample.
  • press molding is preferable because the influence of orientation is small.
  • the refractive index of the acetone-soluble resin component (B) and the acetone-insoluble resin component (A) may have to be measured by different methods. In this case, the refractive index is measured at the same light wavelength.
  • the colorant (C) used in the present invention is used for coloring pigments and dyes.
  • the pigment is an organic pigment and an inorganic pigment, and the organic pigment is a natural organic pigment and a synthetic organic pigment.
  • Natural organic pigments are vegetable pigments, animal pigments and mineral pigments, and synthetic organic pigments are dyed lake pigments, soluble azo pigments, insoluble azo pigments, condensed azo pigments, azo complex pigments, phthalocyanines. Pigments, condensed multiple-reduced pigments, fluorescent pigments, and the like. Examples include disazo, benzimidazolone, monoazo lake, isoindolinone, anthraquinone, condensed azo, quinacridone, perylene, diketopyrrolopyrrole, phthalocyanine, and indigoid.
  • Inorganic pigments are natural inorganic pigments and synthetic inorganic pigments, and natural inorganic pigments are earth pigments, calcined soils, mineral pigments, and the like.
  • Synthetic inorganic pigments include oxide pigments, hydroxide pigments, sulfide pigments, silicate pigments, phosphate pigments, carbonate pigments, metal powder pigments, and carbon pigments.
  • oxide pigments For example, zinc white, lead white, lithopone, titanium dioxide, barium sulfate, barite powder, red lead, iron oxide, yellow lead, zinc, ultramarine, and carbon black.
  • Dyes are nitroso dyes, nitro dyes, azo dyes, stilbene azo dyes, ketoimine dyes, triphenylmethane dyes, xanthene dyes, acridine dyes, quinoline dyes, methine / polymethine dyes, thiazole dyes, indamine / indophenol dyes, azine dyes Oxazine dye, thiazine dye, sulfur dye, aminoketone / oxyketone dye, anthraquinone dye, indigoid dye, phthalocyanine dye and the like.
  • the unpainted casing of the present invention has an enamel-like appearance and has a gloss according to JIS K7105 of 60% to 120%, a haze value according to JIS K7105 of 30% to 90%, and conforms to JIS K7105.
  • the L * value must be 13 or less.
  • a mold having a surface roughness Ra of 0.1 or less and a temperature maintained at 60 to 150 ° C. is used.
  • the thermoplastic resin composition (D) used in the present invention is molded at an injection pressure of 300 to 1300 kg / cm 2 or less.
  • the gloss is more preferably in the range of 70 to 100%, still more preferably 80 to 100%.
  • a mold having a surface roughness Ra of 0.1 or less and a temperature maintained at 60 to 150 ° C. is used.
  • the thermoplastic resin composition (D) used in the present invention is molded at an injection pressure of 300 to 1300 kg / cm 2 or less.
  • the haze value is more preferably in the range of 50 to 80%.
  • a mold having a surface roughness Ra of 0.1 or less and a temperature maintained at 60 to 150 ° C. is used.
  • the thermoplastic resin composition (D) used in the invention is molded at an injection pressure of 300 to 1300 kg / cm 2 or less.
  • the L * value is preferably 12 or less, more preferably 11 or less.
  • the molding temperature is set to a range of 100 to 150 ° C. or more of the glass transition temperature or melting point of the polymer in the acetone-soluble resin component (B). Good.
  • the temperature is 220 to 260 ° C.
  • the temperature is 260 to 300 ° C.
  • C colorant
  • red, yellow and green it is preferable to use red, yellow and green. It is more preferable to combine four colors of (C). In this case, it is preferable to add blue, purple, or orange to red, yellow, or green. Most preferred is a combination of red, yellow, green, blue, or red, yellow, green, and purple.
  • the red color here is a colorant whose Color Index is represented by Red, other yellow color is Yellow, blue color is Blue, green color is Green, purple color is Violet, and orange color is Orange. Colorant.
  • Red Red
  • blue color Blue
  • green color Green
  • purple color Violet
  • orange color Orange.
  • Colorant for example, in the case of a specific red system, this means Pigment Red, Solvent Red, and Disperse Red.
  • the sublimation start temperature is preferably 210 to 400 ° C. from the viewpoint of securing a stable color tone.
  • the sublimation start temperature of the dye is a temperature at which the decomposition of the dye is started, and is preferably a temperature suitable for the resin production temperature and the molding processing temperature, more preferably 210 to 380 ° C., most preferably 220 to 350 ° C. .
  • the sublimation start temperature varies depending on the dye structure, and it is preferable to combine dyes having a specific range of sublimation start temperatures. Moreover, it is preferable to select a dye having a close sublimation start temperature, and the range is preferably within 100 ° C.
  • the sublimation start temperature of the colorant (C) is determined by a method of measuring the weight change at a constant heating rate in the presence or distribution of an inert gas such as nitrogen or helium, for example, as in a thermogravimetric analysis (TGA) method. Can be measured.
  • TGA thermogravimetric analysis
  • the colorant is preferably contained in the thermoplastic resin composition (D) in an amount of 0.01% by mass or more for enamel tone having a deep color, and 2% in that it can hardly cause mold contamination. % Or less is preferable.
  • the content varies depending on the colorant used, and is adjusted so that the haze value is within 90%. In the case of dyes, carbon black, and inorganic pigments, the content is preferably 0.01 to 1% by mass, and in the case of organic pigments, the content is preferably 0.01 to 2% by mass.
  • the identification of the monomer constituting the acetone-soluble resin component (B) and the acetone-insoluble resin component (A) in the thermoplastic resin composition (D) forming the uncoated housing of the present invention, and the calculation of the component ratio are as follows: , Pyrolysis gas chromatography and Fourier transform infrared spectrophotometer (FT-IR) (manufactured by JASCO Corporation). In the analysis of FT-IR, the content of the component derived from the unsaturated nitrile monomer in the acetone-soluble resin component (B) is identified by carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR method).
  • FT-IR Fourier transform infrared spectrophotometer
  • the component ratio of the unsaturated nitrile monomer calculated from the integral value of the group and the integral value of the functional group representing the monomer copolymerizable with the unsaturated nitrile monomer is calculated.
  • Specific examples of functional groups representative of monomers copolymerizable with unsaturated nitrile monomers are based on the 4-position carbon of the phenyl group in the case of styrene and the carbon of the ester group in the case of methyl methacrylate. .
  • the increase rate of the L * value in the fiber friction test can be 60% or less. This is because it is preferable that the enamel tone is not lowered by an action such as dirt cleaning and wiping that is normally performed in actual use as a casing. The reason that the enamel tone is lowered by the wiping operation is that fine scratches are generated on the surface of the injection molded product.
  • the fiber friction test can be used as a measure of gloss and color tone (L * value) retention, ie scratch resistance.
  • the fiber friction test is a test in which the surface of an injection molded product is rubbed with tissue paper to determine the degree of damage. Daily cleaning and wiping of the housing can be reproduced by evaluation with a wiping load of 500 g, a stroke of 60 mm, a speed of 50 mm / sec, and a reciprocation count of 20 times.
  • the increase in the L * value on the surface of the injection-molded product before and after this test can be 60% or less, but can also be 30% or less and 5% or less. .
  • the linear expansion coefficient of the resin component (A) insoluble in acetone is set in the range of 11 ⁇ 10 ⁇ 5 to 20.5 ⁇ 10 ⁇ 5 .
  • the injection speed at the time of injection molding for molding the casing may be adjusted in the range of 1 to 50 mm / s.
  • the increase amount of the L * value can be more easily set in a preferred range.
  • the injection speed here is not the cylinder speed of the injection molding machine but the speed at which the resin flows in the mold product cavity.
  • the speed is obtained by obtaining the resin injection capacity per unit time from the diameter and speed of the cylinder and dividing by the product cavity area.
  • a resin is injected into a product cavity having a thickness of 4 mm, a width of 10 mm, and a length of 120 mm at a cylinder diameter of ⁇ 30 and a cylinder speed of 5 mm / s
  • Injection speed: 3532.5 / 40 88.125 mm / s Is required.
  • the following method is performed to control the linear expansion coefficient of the acetone-insoluble resin component (A) within a specific range.
  • Acetone-insoluble resin component (A) is a graft copolymer and increases its graft ratio
  • Acetone-insoluble resin component (A) rubber component (a) increases the degree of crosslinking 3)
  • Acetone-insoluble resin Increasing the glass transition temperature (Tg) of the rubber component (a) of the component (A)
  • Tg glass transition temperature
  • the coefficient of linear expansion is controlled without greatly depending on the degree of crosslinking or Tg of the rubber component (a). Is possible.
  • Increasing the graft ratio decreases the linear expansion coefficient, and decreasing the graft ratio increases the linear expansion coefficient.
  • the graft ratio can be adjusted by increasing or decreasing the mass of the monomer to be grafted with respect to the mass of the rubber component (a) when preparing the graft copolymer.
  • the mass of the monomer to be grafted may be increased with respect to the mass of the rubber component (a).
  • the linear expansion coefficient of the resin component (A) insoluble in acetone is controlled by the method 2)
  • the linear expansion coefficient is decreased by increasing the degree of crosslinking, and the linear expansion coefficient is decreased by decreasing the degree of crosslinking.
  • a swelling index is 10 to 80, more preferably 15 to 60.
  • the swelling index is controlled by increasing the polymerization temperature, increasing the polymerization conversion at the end of the polymerization, or decreasing the monomer / polymer concentration ratio during the polymerization.
  • Such a method can be employed, and in this way, the swelling index can be reduced and the degree of crosslinking can be increased.
  • the swelling index can be reduced by copolymerizing a crosslinkable monomer such as divinylbenzene.
  • the linear expansion coefficient is lowered by increasing the glass transition temperature (Tg), and the linear expansion coefficient is increased by lowering the glass transition temperature (Tg).
  • the acetone-insoluble resin component (A) those having a Tg of about ⁇ 100 to 0 ° C. of the rubber component (a) are preferably used from the viewpoint of impact resistance. More preferably, it is ⁇ 20 to ⁇ 90 ° C. If the composition of the monomer constituting the acetone-insoluble resin component (A) is adjusted and the Tg of the rubber component (a) is brought close to the upper limit of 0 ° C., the linear expansion coefficient can be reduced.
  • Examples of a method for controlling the Tg of the rubber component (a) include a method of using a copolymer as the rubber component (a) and adjusting the composition ratio of the copolymer.
  • the Tg of the rubber component (a) can be increased by reducing the butadiene ratio in the block portion mainly composed of butadiene.
  • the above methods 1) to 3) may be used alone or in combination.
  • the method of controlling by the graft ratio is preferable because it is easy to balance the impact property and the enamel appearance.
  • the sliding aid examples include lubricants such as aliphatic metal salts, olefins, polyester elastomers, polyamide elastomers, and the like.
  • a lubricant such as an aliphatic metal salt, it is preferable that at least one or more lubricants having a fatty acid metal salt and an amide group or an ester group are blended.
  • the fatty acid metal salt is a salt of a metal and a fatty acid containing one or more selected from sodium, magnesium, calcium, aluminum, and zinc.
  • sodium stearate, magnesium stearate, calcium stearate and zinc stearate are particularly preferred.
  • stearic acid-based metal salts specifically calcium stearate.
  • olefins include compositions produced from at least one of ethylene, propylene, ⁇ -olefin, and the like, and these include compositions derived from the composition as a raw material.
  • Examples thereof include polypropylene, ethylene-propylene copolymer, polyethylene (high density, low density, linear low density), oxidized polyolefin, and graft polymerized polyolefin.
  • Preferred are oxidized polyolefin wax and polyolefin grafted with styrene resin, and more preferred are polypropylene wax, polyethylene wax, oxidized polypropylene wax, oxidized polyethylene wax, acrylonitrile-styrene copolymer grafted polypropylene, acrylonitrile-styrene.
  • the polyester elastomer is a polyester obtained by polycondensation of a dicarboxylic acid compound and a dihydroxy compound, ring-opening polycondensation of a polycondensation lactone compound of an oxycarboxylic acid compound, or polycondensation of a mixture of these components.
  • the effect of the present invention can be obtained by using either polyester or copolyester.
  • dicarboxylic acid compound examples include terephthalic acid, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 3 Aromatic dicarboxylic acids such as sodium sulfoisophthalate, aliphatic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, dicyclohexyl-4,4-dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic Examples thereof include aliphatic dicarboxylic acids such as acid, succinic acid, oxalic acid, adipic acid, sebacic acid and dodecanedicarboxylic acid, and mixtures of these di
  • dicarboxylic acid compounds can also be used in the form of an ester-forming derivative, for example, a lower alcohol ester such as dimethyl ester.
  • these dicarboxylic acid compounds can be used alone or in combination of two or more.
  • terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, sebacic acid, adipic acid and dodecanedicarboxylic acid are preferably used from the viewpoint of polymerizability, color tone and physical properties.
  • dihydroxy compound examples include ethylene glycol, propylene glycol, butanediol, neopentyl glycol, butenediol, hydroquinone, resorcin, dihydroxydiphenyl ether, cyclohexanediol, hydroquinone, resorcin, dihydroxydiphenyl ether, cyclohexanediol, 2,2-bis (4- Hydroxyphenyl) propane and the like, and polyoxyalkylene glycols and alkyl, alkoxy or halogen substituted products thereof are also included. These dihydroxy compounds can be used alone or in combination of two or more.
  • oxycarboxylic acid compound examples include oxybenzoic acid, oxynaphthoic acid, diphenyleneoxycarboxylic acid and the like, and these alkyl, alkoxy and halogen substituted products are also included. These oxycarboxylic acid compounds can be used alone or in combination of two or more.
  • a lactone compound such as ⁇ -caprolactone can also be used for the production of a polyester elastomer.
  • the polyamide elastomer includes an aminocarboxylic acid or lactam having 6 or more carbon atoms, or a nylon mn salt having m + n of 12 or more.
  • the hard segment (X) includes ⁇ -aminocaproic acid, ⁇ -aminoenanoic acid, ⁇ -amino.
  • Aminocarboxylic acids such as caprylic acid, ⁇ -aminobergonic acid, ⁇ -aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid; lactams such as caprolactam laurolactam, nylon 6,6, nylon 6,10, nylon 6,12, nylon 11,6, nylon 11,10, nylon 12,6, nylon 11,12, nylon 12,10, nylon 12,12 and the like.
  • soft segment (Y) such as polyol
  • soft segment (Y) such as polyol
  • examples of the soft segment (Y) include polyethylene glycol, poly (1,2- and 1,3-propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, and ethylene oxide.
  • examples thereof include a block or random copolymer of propylene oxide and a block or random copolymer of ethylene oxide and tetrahydrofuran.
  • the number average molecular weight of these soft segments (Y) is preferably 200 to 6,000, more preferably 250 to 4,000.
  • both ends of poly (alkylene oxide) glycol may be aminated or carboxylated.
  • these sliding aids those using stearic acid metal salts and waxes in combination are particularly preferable.
  • an acid-modified or epoxy-modified modified resin may be mixed for the purpose of improving the compatibility. Further, part of the acetone-insoluble resin component (A) and the acetone-soluble resin component (B) may be acid-modified or epoxy-modified as long as the enamel tone is not impaired. As such a thing, what copolymerized the vinyl monomer containing a carboxyl group or a glycidyl group etc. are mentioned, for example.
  • vinyl monomer containing a carboxyl group examples include unsaturated compounds containing a free carboxyl group such as acrylic acid, crotonic acid, cinnamic acid, itaconic acid, maleic acid, maleic anhydride, itaconic anhydride, and chloromaleic anhydride.
  • unsaturated compounds containing an acid anhydride type carboxyl group such as acid and citraconic anhydride, among which acrylic acid, methacrylic acid and maleic anhydride are preferred.
  • Examples of the vinyl monomer containing a glycidyl group include glycidyl methacrylate, glycidyl acrylate, allyl glycidyl ether, methyl glycidyl ether, and methyl glycidyl methacrylate. Among these, glycidyl methacrylate is preferred.
  • the unpainted casing of the present invention can have a falling weight impact 50% fracture energy based on JIS K7211-1976 of 4.0 J or more and 10 J or less.
  • the falling weight impact 50% fracture energy In order to set the falling weight impact 50% fracture energy to 4.0 J or more, it can be varied by controlling the rubber content and the mass average molecular weight of the acetone-soluble resin component (B). Specifically, the falling weight impact 50% fracture energy can be increased by increasing the rubber content or increasing the mass average molecular weight of the acetone-soluble resin component (B).
  • the falling weight impact 50% energy is evaluated according to JIS K7211-1976.
  • the double bell is a sphere type 2 (mass: 1 ⁇ 0.05 kg, shape: diameter: about 63 mm), and has a 50% fracture height using 20 test pieces in an environment of temperature 23 ° C. and humidity 50 ⁇ 5%. Calculate to energy.
  • H 1 Test height (cm) when the height level (i) is 0
  • d Height interval when moving the test height up and down
  • i Height level when H 1 is 0, and a height level that increases or decreases one by one.
  • ni Number of test pieces destroyed (or not destroyed) at each level
  • N Number of test pieces destroyed (or not destroyed)
  • Total number m Weight of heavy bell (kg)
  • g Gravity acceleration (9.80665 m / S 2 ) is substituted for calculation.
  • the unpainted casing of the present invention has a notched Charpy impact strength of 5 kJ / m 2 according to ISO 179. 5 kJ / m 2 or more is preferable in terms of product transportation and use, and Charpy impact strength is controlled by controlling the rubber content, the mass average molecular weight of the acetone-soluble resin component (B), and the like. Can be varied.
  • the unpainted casing of the present invention is molded using a mold having a surface roughness (Ra) of 0.1 or less. Ra is more preferably 0.05 or less.
  • the gloss of the housing varies depending on the surface roughness of the mold and molding conditions. When the surface roughness of the mold is small, the mold temperature is increased, and the molding pressure is decreased, the gloss of the housing surface is increased.
  • the mold In order to reduce the surface roughness (Ra) of the mold to 0.1 or less, it is preferably finished with a file of # 4000 or more, more preferably # 12000 or more.
  • the finishing can be adjusted by polishing with an ultrasonic polishing machine or manual operation with a diamond file, a grindstone, a ceramic grindstone, a ruby grindstone, a GC grindstone or the like.
  • the steel material of the mold to be used is preferably a quenched and tempered steel of 40 HRC or more, more preferably 50 HRC or more.
  • a chrome plated mold may be used, or a chrome plated mold may be used on the polished mold as described above.
  • the unpainted casing of the present invention is molded at a mold temperature of 60 to 150 ° C.
  • the mold temperature is more preferably 60 to 100 ° C. When the mold temperature is in this range, excellent gloss on the surface of the housing can be obtained.
  • thermoplastic resin composition (D) used in the present invention has a phosphite-based, hindered phenol-based, benzotriazole-based, benzophenone-based, benzoate-based, and cyanoacrylate-based ultraviolet absorbers as long as the effects of the present invention are not impaired.
  • thermoplastic resin composition (D) used in the present invention is, for example, melt kneaded using an open roll, an intensive mixer, an internal mixer, a kneader, a continuous kneader with a twin-screw rotor, an extruder such as an extruder. It can be manufactured by a method or the like. Of these, a single screw or twin screw extruder is preferred.
  • thermoplastic resin composition (D) used in the present invention all the components may be supplied to the same supply port at a time, or the components may be supplied from different supply ports. good. For example, using an extruder that possesses two inlets, melt and knead by supplying different components from the main inlet installed on the screw base side and the secondary inlet installed between the main inlet and the extruder tip. The method of doing is mentioned.
  • thermoplastic resin composition (D) when the thermoplastic resin composition (D) is produced by extrusion, for example, it volatilizes at a reduced pressure of ⁇ 100 to ⁇ 800 hPa from a vent hole provided between the center of the cylinder of the twin screw extruder and the tip of the extruder. It is preferable from the viewpoint of moldability to suck the minute.
  • the extruded resin can be directly cut into pellets or formed into strands and then cut with a pelletizer to be pelletized.
  • the shape of the pellet can be a general shape such as a cylinder, a prism, or a sphere, but a cylinder is preferable.
  • the casing of the present invention is molded by an injection molding machine.
  • injection molding include injection compression molding, gas assist molding using nitrogen gas or carbon dioxide gas, high-speed heat cycle molding, and the like. These can be used in combination.
  • Preferred are gas assist molding, high speed heat cycle molding, and a combination of gas assist molding and high speed heat cycle molding.
  • the gas assist molding referred to here is injection molding using gas or carbon dioxide gas.
  • a resin is injected into a mold cavity and then pressurized into the molded body.
  • a method of injecting a gas a method of injecting a pressurized gas into a cavity corresponding to one side of a molded body after injecting a resin into a mold cavity, as in, for example, Japanese Patent No. 3819972, As described above, there is a method in which a thermoplastic resin is filled with a gas in advance.
  • the molding method used varies depending on the shape of the molded product. In the case where sink marks and warp are large, gas assist molding, high-speed heat cycle molding, and the like are selected. Among these, a method in which a pressurized gas is press-fitted into a cavity corresponding to one side of the molded body is preferable.
  • gas assist is preferable for the pressure retention for preventing sink marks and warpage.
  • the mold temperature is relatively high, so that burrs are easily generated, and if the holding time is not lengthened, sinking and warping cannot be prevented.
  • the casing of the present invention is an exterior (cover) of equipment having some function such as machinery or electricity.
  • Applications used include home appliances, OA equipment, housing equipment, and vehicle equipment.
  • home appliances include vacuum cleaners, washing machines, refrigerators, microwave ovens, rice cookers, electric kettles, telephones, coffee makers, liquid crystal and plasma TVs, visual recorders, audio stereos, mobile phones including smartphones.
  • Examples include exteriors such as stationary game machines, portable game machines, and remote controllers, and exteriors attached to these.
  • Specific examples of the OA device include a composite device such as a fax machine and a copy machine, an exterior of a liquid crystal monitor, a printer, a personal computer, etc., and an exterior attached to these.
  • housing equipment examples include exteriors such as system kitchens, washstands, and system baths, and exteriors attached thereto.
  • vehicle equipment include garnish covers for automobile interiors, such as shift lever indicator covers, door handle frames, power window switch frames, center clusters, car stereos, car navigation frames, center pillar covers, etc. An exterior is mentioned.
  • Examples of the shape and size of the housing of the present invention include a thin shape such as a plate shape to a shape having a three-dimensional thickness, and a polygonal shape with corners square to a shape with many curved surfaces. Etc. Regarding the size, examples include a small shape included in the range of 10 ⁇ 10 ⁇ 10 mm to a large shape included in the range of 300 ⁇ 100 ⁇ 100 mm.
  • the wiping direction was a direction in which the fiber was easily torn, the wiping load was 500 g, the stroke was 60 mm, the speed was 50 mm / sec, and the number of reciprocations was 20 reciprocations.
  • the L * value on the surface of the molded product was measured before and after the continuous friction work, and the amount of change was confirmed.
  • L * is a lightness index, which is L *, a *, and b * color system L * of CIE 1976, and was measured using S & M COLOR COMPUTER MODEL SM-5 manufactured by Suga Test Instruments Co., Ltd. (7) Measurement of mass average particle diameter Acetone-insoluble resin component (A) is taken out from the molded product, and an ultrathin section of 60 nm ⁇ 2 nm is cut out from the molded article, and stained with, for example, osmium acid, and then transmission electron microscope ( (TEM). The photograph was analyzed with image analysis software to obtain a mass average particle size.
  • TEM transmission electron microscope
  • Acetone-insoluble resin component (A) was compression molded into a sample having a thickness of 5 mm at 260 ° C. and a pressure of 80 kg / cm 2 , and the obtained sample was used in accordance with ASTM D696. The linear expansion coefficient was measured in the range of ⁇ 30 ° C. to 60 ° C. by TMA.
  • Composition analysis In the identification of the content of the component derived from the unsaturated nitrile monomer in the acetone-soluble resin component (B), the nitrile group was analyzed by carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR method).
  • thermoplastic resin composition (D) was dissolved in acetone and separated into an acetone-soluble resin component (B) and an acetone-insoluble resin component (A) by a centrifuge. Using a solution of 0.25 g of dried acetone-soluble resin component (B) dissolved in 50 ml of 2-butanone as a sample, the reduced viscosity is obtained by measuring the outflow time in a Cannon-Fenske type capillary at 30 ° C. It was. (11) Surface roughness Measured by using Tokyo Seimitsu Co., Ltd. surfcom 570A-3D (surface roughness / contour shape measuring machine).
  • the polymer (A-1) was 8.6 parts by mass of acrylonitrile, 57.1 parts by mass of butadiene, 34.3 parts by mass of styrene, graft
  • the linear expansion coefficient was 16.0 ⁇ 10 ⁇ 5 / ° C.
  • the copolymer (b-1) was 20.1 parts by mass of acrylonitrile and 79.9 parts by mass of styrene
  • (b-1) The reduced viscosity of was 0.33 dl / g.
  • polymer (A-2) was found to be 19.1 parts by weight of acrylonitrile, 45.5 parts by weight of butadiene, 35.4 parts by weight of styrene, graft The ratio was 119.8%, the linear expansion coefficient was 13.5 ⁇ 10 ⁇ 5 / ° C., and the copolymer (b-2) was 34.8 parts by mass of acrylonitrile, 65.2 parts by mass of styrene, and (b-2) The reduced viscosity of was 0.58 dl / g.
  • FT-IR Fourier transform infrared spectrophotometer
  • the polymer (A-3) was 15.1 parts by mass of acrylonitrile, 57.1 parts by mass of butadiene, 27.8 parts by mass of styrene, The rate was 75.1%, the linear expansion coefficient was 15.5 ⁇ 10 ⁇ 5 / ° C., and the copolymer (b-3) was 35.1 parts by mass of acrylonitrile, 64.9 parts by mass of styrene, and (b-3) The reduced viscosity of was 0.33 dl / g.
  • FT-IR Fourier transform infrared spectrophotometer
  • the polymer (A-4) was 8.6% by mass of acrylonitrile, 68.1% by mass of butadiene, 23.3% by mass of styrene, graft The rate was 46.8%, the linear expansion coefficient was 17.9 ⁇ 10 ⁇ 5 / ° C., and the copolymer (b-4) was 27.1% by mass of acrylonitrile and 72.9% by mass of styrene, and (b-4) The reduced viscosity of was 0.38 dl / g.
  • FT-IR Fourier transform infrared spectrophotometer
  • the polymer (A-5) was found to be 16.2 parts by mass of methyl methacrylate, 1.6 parts by mass of acrylonitrile, 75 parts by mass of butadiene, and styrene. 7.2 parts by mass, graft ratio 33.3%, linear expansion coefficient 19.2 ⁇ 10 ⁇ 5 / ° C., copolymer (b-5) is methyl methacrylate 64.7 parts by mass, acrylonitrile 6.5 parts by mass The styrene was 28.8 parts by mass, and the reduced viscosity of (b-5) was 0.42 dl / g.
  • FT-IR Fourier transform infrared spectrophotometer
  • the polymer (A-6) was found to be 9.1 parts by weight of acrylonitrile, 69.7 parts by weight of butadiene, 21.2 parts by weight of styrene, graft
  • the rate of expansion was 43.5%
  • the linear expansion coefficient was 18.0 ⁇ 10 ⁇ 5 / ° C.
  • the copolymer (b-6) was 30.1 parts by mass of acrylonitrile, 69.9 parts by mass of styrene, and (b-6)
  • the reduced viscosity of was 0.35 dl / g.
  • a reaction vessel having an internal volume of 150 l was continuously fed at a rate of 37.5 kg / hour using a spray nozzle.
  • the polymerization initiator t-butylperoxy-2-ethylhexanoate used had a crosslinking efficiency ⁇ of 64.
  • the polymerization temperature was 130 ° C., and the same amount of the reaction liquid as that of the supply liquid was continuously withdrawn so that the filling rate of the reaction liquid in the reaction tank could be maintained at 70% by volume.
  • a temperature control jacket was provided in the liquid phase portion of the reaction tank, and the temperature control jacket temperature was 129 ° C.
  • the polymerization conversion rate was 30.5 wt% / hr.
  • the extracted reaction liquid was introduced into a volatile component removing apparatus maintained at 250 ° C. and a high vacuum of 10 mmHg, and the unreacted monomer and organic solvent were degassed and recovered.
  • the copolymer (E-10) was converted into pellets. It was collected.
  • composition of (E-1) was 39.1% by mass of acrylonitrile, 51.1% by mass of styrene, 9.8% by mass of butyl acrylate. Met. The reduced viscosity was 0.42 dl / g.
  • the polymerization temperature was 130 ° C., and the same amount of the reaction solution as that of the supply solution was continuously withdrawn so that the filling rate of the reaction solution in the reaction vessel could be maintained at 70% by volume.
  • a jacket for temperature control was provided in a portion corresponding to the liquid phase portion of the reaction tank, and the jacket temperature was 128 ° C.
  • the power required for stirring was 4 kW / m, and the polymerization conversion rate was 39.8 wt% / hr.
  • the extracted reaction liquid was introduced into a volatile component removing device maintained at 250 ° C. and a high vacuum of 10 mmHg, and the unreacted monomer and organic solvent were degassed and recovered, and the resulting copolymer (E-2) was recovered. Collected as pellets.
  • This solution was continuously supplied to a sealed pressure resistant reactor having an internal volume of 10 liters, and polymerized with stirring at an average temperature of 135 ° C. and an average residence time of 2 hours.
  • This polymerization solution is continuously sent to a storage tank connected to the reactor, the polymer is separated from the unreacted monomer and the solution, and the polymer is continuously extruded in a molten state by an extruder, and a copolymer ( E-3) pellets were obtained.
  • C-3 Mitsubishi Chemical Co., Ltd. Diaresin Yellow H2G (trade name) (Disperse Yellow 160, sublimation temperature 315 ° C.)
  • C-4 Sumiplast (registered trademark) Yellow HLR (trade name) (Disperse Yellow 54, sublimation temperature 276 ° C.) manufactured by Sumika Chemtex Co., Ltd.
  • C-5 Sumiplast (registered trademark) Green G (trade name) (Solvent Green 3, sublimation temperature 354 ° C.) manufactured by Sumika Chemtex Co., Ltd.
  • C-6 Macrolex (registered trademark) Blue RR (trade name) (Solvent Blue 97, sublimation temperature 264 ° C.) manufactured by LANXESS
  • C-7 Sumiplast (registered trademark) Blue SR (trade name) manufactured by Sumika Chemtex Co., Ltd. (Solvent Blue 87, temperature rising temperature: 310 ° C.)
  • C-8 Pliogen (registered trademark) Red K3580 (trade name) (Pigment Red 149, sublimation temperature of 400 ° C. or higher) manufactured by BASF Co., Ltd. [Other (X)]
  • X-1 Sanwa Kasei Kogyo Co., Ltd.
  • Sun Wax E-250P (trade name) (acid value polyethylene wax: mass average molecular weight 1 million, acid value 20)
  • X-2 NUC3195 (trade name) (ethylene / vinyl acetate copolymer) manufactured by Dow Chemical Japan Co., Ltd.
  • X-3 SAK-CS-PPT-1 (trade name) (calcium stearate) manufactured by Shinagawa Chemical Co., Ltd.
  • PCM-30, L / D 28, manufactured by Ikekai Tekko Co., Ltd.
  • Pellets of the resin composition were obtained by kneading under the conditions of a cylinder set temperature of 250 ° C., a screw rotation speed of 150 rpm, and a kneading resin discharge speed of 15 kg / hr, and then injection molded at a resin temperature of 250 ° C.
  • Example 1 Pellets and molded products were obtained in the same manner as in Example 1 with the composition and conditions shown in Table 1.
  • the casing of the present invention is excellent in enamel tone and impact resistance with surface shine and depth, it is a casing for high-end home appliances, game machines, cameras, mobile phones, televisions and other decorative frames, automobile interior members, etc. Can be used.
  • home appliances include televisions, telephones, printers, computers, vacuum cleaners, speakers, and the like.
  • automobile interior members include center clusters, switch boards, pillars, and the like.

Abstract

 量平均粒子径が0.05~0.3μmのゴム成分(a)を含み、線膨脹係数が11×10-5~20.5×10-5のアセトン不溶の樹脂成分(A)20~60質量%、 アセトン可溶の樹脂成分(B)40~80質量%(但し、(A)+(B)=100質量%)、 及び着色剤(C)を含み、かつ (1)アセトン可溶の樹脂成分(B)が、不飽和ニトリル単量体由来の成分を6.0~45質量%含み、及び (2)ゲルパーミエーションクロマトグラフィー(GPC)測定による分子量7万以下の成分が、アセトン可溶の樹脂成分(B)中に2~20質量%含まれる、 熱可塑性樹脂組成物(D)からなる成形品を用いた無塗装筺体であって、該筐体のJIS K7105に準拠したL*値が13以下、光沢が60~120%、曇価が30~90%である、上記無塗装筺体。

Description

無塗装筺体とその製造方法
 本発明は、耐衝撃性に優れ、色合いに深みがあり、高級感漂う外観を有する無塗装筐体とその製法に関する。
 近年、樹脂を使用した各種製品の筐体は、耐衝撃性に加えて高い意匠性が求められるようになっている。中でも家電、ゲーム機、及び自動車の内装材等を中心に、色合いに深みがあり、高級感漂うエナメル調が求められる傾向にある。従来は、樹脂だけでエナメル調の意匠性を得ることが困難であったため、樹脂成形品に塗装を施したり、予め希望の意匠に施した加飾フィルムを筐体に貼り付ける方法でエナメル調の筐体を得ていた(例えば特許文献1)。
特開2002-292798号公報
 しかし、塗装は、工程が増えるため筐体にかかるコストが上がることや、塗料の約半分を占めるシンナー等の有機溶剤全てが揮発性有機化合物となって大気に放出されるため、環境的に好ましくないことが問題となっている。また、特許文献1の発明のように表面に特殊なフィルムを貼る方法は、樹脂成形品と貼り付けたフィルムの剥がれが懸念されると共に、塗装工程と同様に製品化に対して工程が増えるという問題がある。
 本発明者らは鋭意検討を重ねた結果、色合いに深みがあり、高級感漂うエナメル調を発揮するための条件を特定し、そして、特定の質量平均粒子径を有するゴム成分を含んだアセトン不溶の樹脂成分(A)と、特定の不飽和ニトリル単量体由来の単位成分含有量及び特定の分子量を有するアセトン可溶の樹脂成分(B)、及び着色剤(C)とを含む熱可塑性樹脂組成物(D)からなる成形品を用いた筐体は、塗装工程、特殊なフィルムを貼り付ける工程を行わなくても、上記エナメル調を発揮するための条件を満たしつつかつ耐衝撃性にも優れることを見出した。すなわち、本願発明は以下の通りである。
[1]質量平均粒子径が0.05~0.3μmのゴム成分(a)を含み、線膨脹係数が11×10-5~20.5×10-5/℃のアセトン不溶の樹脂成分(A)20~60質量%、アセトン可溶の樹脂成分(B)40~80質量%(但し、(A)+(B)=100質量%)、及び着色剤(C)を含み、かつ
(1)アセトン可溶の樹脂成分(B)が、不飽和ニトリル単量体由来の成分を6.0~45質量%含み、及び
(2)ゲルパーミエーションクロマトグラフィー(GPC)測定による分子量7万以下の成分が、アセトン可溶の樹脂成分(B)中に2~20質量%含まれる、
熱可塑性樹脂組成物(D)からなる成形品を用いた無塗装筺体であって、該筐体のJIS K7105に準拠したL*値が13以下、光沢が60~120%、曇価が30~90%である、上記無塗装筺体。
[2]アセトン可溶の樹脂成分(B)がGPC測定で分子量1万~30万にピークを少なくとも2個含む[1]記載の無塗装筺体。
[3]繊維摩擦試験でのL*値の増加率が60%以下である[1]又は[2]記載の無塗装筺体。
[4]熱可塑性樹脂組成物(D)のJIS K7211-1976に準拠した落錘衝撃50%破壊エネルギーが4.0J以上である[1]~[3]のいずれか一項に記載の無塗装筺体。
[5]着色剤(C)が少なくとも4色以上からなる染料混合物であり、各染料の昇華開始温度が210~400℃である[1]~[4]のいずれか一項に記載の無塗装筺体。
[6]表面粗さRaが0.1以下の金型を使用し、金型温度60~150℃、射出圧力300~1300kg/cm以下にて成形する[1]~[5]のいずれか一項に記載の無塗装筺体の製造方法。
 本発明によれば、塗装やフィルム貼り付け等の煩雑な工程を必要とすることなく、色合いに深みがあり、高級感漂う外観を有し、かつ耐衝撃性に優れる無塗装筐体を得ることが可能となる。
 本発明について、以下具体的に説明する。
 本発明には、質量平均粒子径が0.05~0.3μmのゴム成分(a)を含み、線膨脹係数が11×10-5~20.5×10-5/℃のアセトン不溶の樹脂成分(A)20~60質量%、アセトン可溶の樹脂成分(B)40~80質量%(但し、(A)+(B)=100質量%)、及び着色剤(C)を含み、かつ
(1)アセトン可溶の樹脂成分(B)が、不飽和ニトリル単量体由来の成分を6.0~45質量%含み、及び
(2)ゲルパーミエーションクロマトグラフィー(GPC)測定による分子量7万以下の成分が、アセトン可溶の樹脂成分(B)中に2~20質量%含まれる、
熱可塑性樹脂組成物(D)が用いられる。
 本発明におけるアセトン不溶の樹脂成分(A)は、質量平均粒子径が0.05~0.3μm以下のゴム成分(a)を含む、線膨脹係数が11×10-5~20.5×10-5/℃の樹脂成分である。熱可塑性樹脂組成物(D)又は熱可塑性樹脂組成物(D)からなる成形品からは、以下の方法により取り出すことができる。
 乾燥した遠沈管を1サンプルにつき2本準備する。遠沈管はあらかじめ80℃、30分以上乾燥後、デシケーター中で15分以上放冷されたものを使用する。遠沈管の重量は、電子天秤で0.1mgまで精秤する。熱可塑性樹脂組成物(D)又は成形品から約1gを切削し、遠沈管に計量し、0.1mgまで精秤する。メスシリンダーでアセトン約20mlを採取し遠沈管に入れシリコン栓をする。振とう機で速度毎分100回、振幅25mmで2時間振とうする。振とう後、遠心分離を行う。まずシリコン栓を外す。この際、シリコン栓に付着しているサンプルは、少量のアセトンを用いて遠沈管内へ落とす。2本の遠沈管を遠心分離機のローターへ対角線上にセットする。遠心分離機を操作して、回転数20,000rpmで60分間遠心分離する(日立高速冷却遠心機)。遠心分離終了後、遠沈管をローターから取り出し上澄み液をデカンテーションする。メスシリンダーでアセトン約20mlを採取し遠沈管に入れシリコン栓をした後、速度毎分100回、振幅25mmで1時間振とうする。再び遠心分離機を操作して、回転数20,000rpmで50分間遠心分離する。遠心分離終了後、遠沈管をローターから取り出し上澄み液をデカンテーションする。さらにメスシリンダーでアセトン約20mlを採取し遠沈管に入れシリコン栓をした後、速度毎分100回、振幅25mmで1時間振とうする。遠心分離機を操作して、回転数20,000rpmで50分間遠心分離する。遠心分離終了後、遠沈管をローターから取り出し上澄み液をデカンテーションする。80℃で30分間乾燥した後、130℃で30分間乾燥する。乾燥後デシケーター中で30分以上放冷する。十分に放冷後、電子天秤で0.1mgまで精秤する。
 熱可塑性樹脂組成物(D)又は熱可塑性樹脂組成物(D)からなる成形品には、アセトン不溶の樹脂成分(A)の他にアセトンに不溶な成分が含まれる場合があり、このような場合は、上記で得られた最終生成物から他のアセトンに不溶な成分を除去した残りがアセトン不溶の樹脂成分(A)となる。
 アセトン不溶の樹脂成分(A)の線膨張係数の測定は、アセトン不溶の樹脂成分(A)をコンプレッション成形で260℃、80kg/cmの圧力で厚さ5mmの試料とし、ASTM D696に準拠してTMAにより-30℃~60℃の範囲で行う。
 本発明の熱可塑性樹脂組成物(D)や、熱可塑性樹脂組成物(D)からなる成形品からアセトン不溶の樹脂成分(A)を取り出して線膨張係数を測定する場合には、上述のアセトン不溶の樹脂成分(A)を得る方法によれば、アセトン不溶の樹脂成分(A)と他のアセトンに不溶な成分の混合物が得られる場合があるが、他のアセトンに不溶な成分が、例えばアセトン不溶分全体の2質量%以下の場合は、この混合物をコンプレッション成形で260℃、80kg/cmの圧力で厚さ5mmの試料とし、線膨張係数を測定して差し支えない。
 アセトン不溶の樹脂成分(A)としては、ゴム成分(a)やゴム成分(a)に何らかの(共)重合体(F)をグラフトさせたグラフト共重合体(G)などが挙げられる。ゴム成分(a)としては、ガラス転移温度が0℃以下のものであれば用いることができる。
 具体的にはポリブタジエン、スチレン-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、ポリイソプレン、ポリクロロプレン、スチレン-ブタジエンブロック共重合ゴム、スチレン-イソプレンブロック共重合ゴム、エチレン-プロピレン-ジエン三元共重合ゴム等の共役ジエン系ゴム、ポリアクリル酸ブチル等のアクリル系ゴム、エチレン-プロピレンゴム、シリコンゴム、シリコン-アクリル複合ゴム及びそれらの水素添加物等を使用することができる。これらの中でも共役ジエン系重合体が好ましく、特にポリブタジエン、スチレン-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴムが好ましい。このうち、ポリブタジエン、スチレン-ブタジエン共重合体、スチレン-ブタジエンのブロック共重合体及びアクリロニトリル-ブタジエン共重合体が、耐衝撃性の点で好ましく用いられる。
 ゴム成分(a)の質量平均粒子径は、0.05~0.3μmである。好ましくは0.08~0.15μmであり、更に0.1~0.15μmである。衝撃性の点で0.05μm以上であり、光沢の点で0.3μm以下である。
 成形品におけるゴム成分(a)の質量平均粒子径を測定する場合は、透過型電子顕微鏡(TEM)写真を画像解析して求めることができ、熱可塑性樹脂組成物(D)の原材料としてのゴム成分(a)の質量平均粒子径を測定する場合は、日機装(株)社製マイクロトラック粒度分析計「nanotrac150」にて測定する。
 上記画像解析の方法としては例えば、成形品から60±2nmの極薄切片を切り出し、例えばブタジエンならオスミニウム酸を用いて染色した後、透過型電子顕微鏡(TEM)により観察を行う。本発明中の熱可塑性樹脂組成物中にゴム成分が含まれている場合、略円形の暗色部が観察される。超薄切片の任意の50μm×50μmの範囲について写真を画像解析ソフト(旭化成エンジニアリング株式会社製「A像くん」)で解析し、画像解析ソフト付属の機能により略円形の暗色部の質量平均粒子径を算出する。
 ゴム成分(a)にグラフトさせる(共)重合体(F)としては、芳香族ビニル単量体、不飽和ニトリル単量体、及び不飽和カルボン酸アルキルエステル単量体から選ばれる1種類以上の単量体からなる(共)重合体が挙げられる。(共)重合体(F)には、芳香族ビニル単量体、不飽和ニトリル単量体、及び不飽和カルボン酸アルキルエステル単量体と共重合可能な他の単量体を含むこともできる。
 芳香族ビニル単量体としては、スチレンをはじめ、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、o-エチルスチレン、p-エチルスチレン及びp-t-ブチルスチレン、ビニルナフタレンなどが挙げられるが、なかでもスチレン及びα-メチルスチレンが好ましく用いられる。これらは、1種又は2種以上用いることができる。
 不飽和ニトリル単量体としては、アクリロニトリル、メタクリロニトリル及びエタクリロニトリルなどが挙げられるが、なかでもアクリロニトリルが好ましく用いられる。これらは、1種又は2種以上用いることができる。
 不飽和カルボン酸アルキルエステル単量体としては、ブチルアクリレート、エチルアクリレート、メチルアクリレート、メチルメタクリレートなどのアクリル酸及びメタクリル酸エステル化合物、アクリル酸、メタクリル酸等のアクリル酸等が挙げられる。
 共重合可能な他の単量体としては、無水マレイン酸、N-フェニルマレイミド、N-メチルマレイミド等のN-置換マレイミド系単量体、グリシジルメタクリレート等のグリシジル基含有単量体等が挙げられる。これらは、1種又は2種以上用いることができる。
 (共)重合体(F)は、具体的には、スチレン重合体、アクリロニトリル重合体、メチルメタクリレート重合体、及びブチルアクリレート重合体などの重合体、アクリロニトリル・スチレン共重合体、アクリロニトリル・メチルメタクリレート共重合体、メチルアクリレート・メチルメタクリレート共重合体、スチレン・メチルメタクリレート共重合体、アクリロニトリル・α-メチルスチレン共重合体、スチレン・N-フェニルマレイミド共重合体、アクリロニトリル・スチレン・ブチルアクリレート共重合体、アクリロニトリル・スチレン・メチルメタクリレート共重合体、及びアクリロニトリル・スチレン・N-フェニルマレイミド共重合体などが挙げられる。これらのうち、アクリロニトリル・スチレン共重合体、アクリロニトリル・メチルメタクリレート共重合体、メチルアクリレート・メチルメタクリレート共重合体、スチレン・メチルメタクリレート共重合体、アクリロニトリル・スチレン・ブチルアクリレート共重合体、及びアクリロニトリル・スチレン・メチルメタクリレート共重合体が好ましい。
 グラフト共重合体(G)の製造方法としては、乳化重合、懸濁重合、塊状重合、溶液重合、及びこれらの重合法の組合せ等の方法が挙げられる。具体的には、乳化重合で製造されたゴム成分(a)のラテックスに(共)重合体(F)をグラフト重合させる乳化グラフト重合方法がある。なお、連続式、バッチ式、セミバッチ式いずれの方法も可能である。 グラフト共重合体(G)の製造過程で生成するゴム成分(a)にグラフトした(共)重合体(F)の割合は、ゴム成分を100質量部として、10~200質量部が好ましく、より好ましくは20~170質量部である。グラフトした成分の割合は、フーリエ変換赤外分光光度計(FT-IR)を用いて得られる吸収ピーク解析により求めることができる。アセトン不溶の樹脂成分(A)中のゴム成分としては、10~100質量%含有されることが好ましく、さらに30~70質量%が好ましく、特に40~60質量%が好ましい。
 本発明に用いられる熱可塑性樹脂組成物(D)には、アセトン不溶の樹脂成分(A)が20~60質量%含まれる。射出成形での離型性、衝撃性の点で、20質量%以上であり、成形性とエナメル調の発現の点で60質量%以下である。熱可塑性樹脂組成物(D)中のアセトン不溶の樹脂成分(A)の含量は、25~55質量%が好ましく、更に30~45質量%が好ましい。
 本発明におけるアセトン不溶の樹脂成分(A)は、線膨脹係数が11×10-5~20.5×10-5/℃である。好ましくは、12.5×10-5~19×10-5/℃、さらに好ましくは12.5×10-5~17×10-5/℃である。線膨脹係数を20.5×10-5/℃以下とすることで、筺体の曇価を30%以上とすることができる。また、線膨脹係数を11×10-5/℃以上とすることで、筺体の曇価を90%以下とし、十分な耐衝撃性を得ることができる。
 本発明のアセトン可溶の樹脂成分(B)は、
(1)不飽和ニトリル単量体由来の成分を6.0~45質量%含み、及び
(2)ゲルパーミエーションクロマトグラフィー(GPC)測定による分子量7万以下の成分を2~20質量%含む
樹脂成分であり、熱可塑性樹脂組成物(D)又は熱可塑性樹脂組成物(D)からなる成形品からはアセトン不溶分以外の成分として取り出すことができる。
 なお、本発明の熱可塑性樹脂組成物(D)又は熱可塑性樹脂組成物(D)からなる成形品にアセトン可溶の樹脂成分(B)以外のアセトン可溶成分が含まれる場合は、例えばこれらがアセトン可溶分全体の2質量%以下の場合には、熱可塑性樹脂組成物(D)又は熱可塑性樹脂組成物(D)からなる成形体のサンプルからアセトンに不溶な成分を差し引いた量を、アセトン可溶の樹脂成分(B)の量として差し支えない。
 アセトン可溶の樹脂成分(B)には、不飽和ニトリル単量体由来の単位成分が6.0~45質量%が含まれる。その他、アセトン可溶の樹脂成分(B)には、芳香族ビニル単量体、不飽和カルボン酸アルキルエステル単量体、その他これらに共重合可能な他の単量体から選ばれる1種類以上が16.5~82質量%含まれる。
 不飽和ニトリル単量体としては、アクリロニトリルが好ましく、芳香族ビニル単量体としては、スチレン、αメチルスチレンが好ましく、不飽和カルボン酸アルキルエステル単量体としては、ブチルアクリレート、エチルアクリレート、メチルアクリレート、メチルメタクリレートが好ましい。これらのうち、アセトン可溶の樹脂成分(B)に含まれる共重合体としては、例えば、スチレン・アクリロニトリル共重合体、スチレン・アクリロニトリル・ブチルアクリレート共重合体、スチレン・アクリロニトリル・メチルメタクリレート共重合体、スチレン・アクリロニトリル・メチルアクリレート共重合体、アクリロニトリル・メチルメタクリレート共重合体、アクリロニトリル・メチルアクリレート共重合体、及びアクリロニトリル・メチルアクリレート共重合体であることが好ましい。
 このような共重合体を構成する場合、共重合体中の不飽和ニトリル単量体由来の単位成分は20~45質量%であることが好ましく、21~43質量%がより好ましく、22~40質量%が更に好ましい。衝撃性の点で20質量%以上であり、成形性の点で45質量%以下である。
 またこれらの共重合体は、アセトン可溶の樹脂成分中(B)に30~100質量%含まれることが好ましく、40~100質量%がより好ましく、50~100質量%が更に好ましい。
 本発明に用いられるアセトン可溶の樹脂成分(B)は、GPCで測定したとき、分子量1万~30万にピークが2個以上5個未満あることが衝撃性と成形性のバランスの点で好ましい。アセトン可溶の樹脂成分(B)全体の質量平均分子量は、衝撃性の点で1万以上であり、成形性の点で30万以下である。好ましくは1万~25万であり、特に1万~20万である。
 また、GPC測定による分子量7万以下の成分が、流動性、衝撃性のバランスの点で、アセトン可溶の樹脂成分(B)中、2~20質量%含まれる必要がある。
 アセトン可溶の樹脂成分(B)の分子量分布(質量平均分子量/数平均分子量)は、衝撃性、成形性の点で1.5~5.0であることが好ましく、更に1.8~4.0が好ましい。
 アセトン可溶の樹脂成分(B)の質量平均分子量、及び数平均分子量はGPCで測定される。予め、単分散の質量平均分子量が既知である標準ポリスチレンと、高分子量成分を先に溶出する分析ゲルカラムを用い、溶出時間と質量平均分子量から検量線を作成しておく。得られた検量線から各試料の分子量を求めることができる。
 本発明に用いられる熱可塑性樹脂組成物(D)には、アセトン可溶の樹脂成分(B)が40~80質量%含まれる。成形性とエナメル調の発現の点で40質量%以上であり、射出成形での離型性、衝撃性の点で80質量%以下である。熱可塑性樹脂組成物(D)中のアセトン可溶の樹脂成分(B)の含量は、45~75質量%が好ましく、更に55~70質量%が好ましい。
 本発明の無塗装筐体に含まれるアセトン不溶の樹脂成分(A)とアセトン可溶の樹脂成分(B)の屈折率差は、小さい方が好ましい。屈折率差を小さくするには、アセトン不溶の樹脂成分(A)の屈折率に近い成分をアセトン可溶の樹脂成分(B)に含ませる方法や、アセトン不溶の樹脂成分(A)がグラフト共重合体の場合にはグラフト率を高める方法が挙げられる。
 屈折率の測定方法は、例えばアッベ屈折率計、レーザー屈折率計等があげられる。アッベ屈折率計、レーザー屈折率計を用いて屈折率を測定する場合、アセトン不溶の樹脂成分(A)、アセトン可溶の樹脂成分(B)は30mm×30mm×0.2mm(厚さ)のフイルムを試料として用いる。フイルムの作成方法は、例えばプレス成形が配向の影響が少ないため好ましい。屈折率を測定する際に、試料によってはアセトン可溶の樹脂成分(B)とアセトン不溶の樹脂成分(A)の屈折率を異なる方法で測定しなければならない場合がある。この場合は、同じ光の波長で屈折率を測定する。
 本発明に用いられる着色剤(C)とは、顔料及び染料などの着色用として用いられるものである。
 顔料とは、有機系顔料と無機系顔料のことであり、有機系顔料とは、天然有機顔料と合成有機顔料のことである。
 天然有機顔料とは、植物性顔料、動物性顔料及び鉱物性顔料のことであり、合成有機顔料とは、染付レーキ顔料、溶性アゾ顔料、不溶性アゾ顔料、縮合アゾ顔料、アゾ錯塩顔料、フタロシアニン顔料、縮合多還顔料及び蛍光顔料等のことである。例えば、ジスアゾ系、ベンズイミダゾロン系、モノアゾレーキ系、イソインドリノン系、アントラキノン系、縮合アゾ系、キナクリドン系、ペリレン系、ジケトピロロピロール系、フタロシアニン系、及びインジゴイド系などが挙げられる。
 無機系顔料とは、天然無機顔料及び合成無機顔料のことであり、天然無機顔料とは土系顔料、焼成土、鉱物性顔料等のことである。合成無機顔料とは、酸化物顔料、水酸化物顔料、硫化物顔料、珪酸塩顔料、燐酸塩顔料、炭酸塩顔料、金属粉顔料及び炭素顔料等のことである。例えば、亜鉛華、鉛白、リトポン、二酸化チタン、硫酸バリウム、バライト粉、鉛丹、酸化鉄、黄鉛、亜鉛、群青、及びカーボンブラックなどが挙げられる。染料とは、ニトロソ染料、ニトロ染料、アゾ染料、スチルベンアゾ染料、ケトイミン染料、トリフェニルメタン染料、キサンテン染料、アクリジン染料、キノリン染料、メチン/ポリメチン染料、チアゾール染料、インダミン/インドフェノール染料、アジン染料、オキサジン染料、チアジン染料、硫化染料、アミノケトン/オキシケトン染料、アントラキノン染料、インジゴイド染料、フタロシアニン染料等が挙げられる。
 本発明の無塗装筐体は、エナメル調の外観を発現するために、JIS K7105に準拠した光沢が60%~120%、JIS K7105に準拠した曇価が30%~90%、JIS K7105に準拠したL*値が13以下であることが必要である。
 JIS K7105に準拠した光沢が60%~120%である本発明の筐体を製造するためには、温度を60~150℃に保った表面粗さRaが0.1以下の金型を用い、本発明に用いられる熱可塑性樹脂組成物(D)を射出圧力300~1300kg/cm以下にて成形する。光沢は、70~100%の範囲とすることがより好ましく、80~100%とすることが更に好ましい。
 JIS K7105に準拠した曇価が30%~90%である本発明の筐体を製造するためには、温度を60~150℃に保った表面粗さRaが0.1以下の金型を用い、本発明に用いられる熱可塑性樹脂組成物(D)を射出圧力300~1300kg/cm以下にて成形する。曇価は、50~80%の範囲とすることがより好ましい。
 JIS K7105に準拠したL*値が13以下である本発明の筐体を製造するためには、温度を60~150℃に保った表面粗さRaが0.1以下の金型を用い、本発明に用いられる熱可塑性樹脂組成物(D)を射出圧力300~1300kg/cm以下にて成形する。L*値は12以下、さらに11以下とすることがより好ましい。
 光沢、曇価、L*値をより好ましい範囲とするためには、成形温度をアセトン可溶の樹脂成分(B)中の重合体のガラス転移温度又は融点の100~150℃以上の範囲にするとよい。例えば、ABS系樹脂、ゴム変性ポリスチレン等、及びメチルメタクリレート系樹脂の場合には、220~260℃、ポリカーボネートを含む樹脂の場合には、260~300℃である。
 光沢、曇価、L*値をさらに好ましい範囲とするためには、着色剤(C)としては3色以上を用いと良い。この場合は赤系、黄系、緑系を用いるのが好ましい。(C)を4色組み合せると、より好ましく、この場合は赤系、黄系、緑系に、青系、紫系又は橙系などを追加することが好ましい。最も好ましいのは、赤系、黄系、緑系、青系又は赤系、黄系、緑系、紫系の組み合わせである。
 ここでいう赤系とは、Color IndexがRedで表されている着色剤であり、その他黄系はYellow、青系はBlue、緑系はGreen、紫系はViolet、橙系はOrangeで表される着色剤である。例えば、具体的に赤系の場合は、Pigment Red、Solvent Red、及びDisperse Redのことである。
 着色剤(C)のなかでも染料の場合は、昇華開始温度が210~400℃であることが安定した色調確保の点で好ましい。染料の昇華開始温度は、染料の分解が開始される温度のことであり、樹脂の製造温度や成形加工温度にあった温度が好ましく、210~380℃がより好ましく、220~350℃が最も好ましい。昇華開始温度は、染料の構造により異なり、特定範囲の昇華開始温度の染料を組み合せることが好ましい。また、各染料の昇華開始温度も近いものを選定するのが好ましく、範囲は100℃以内が好ましい。昇華開始温度が近いと熱による色調変化が染料間で少なくなるため、もとの色調から大きくずれにくい。
 着色剤(C)の昇華開始温度は、例えば熱重量分析(TGA)法のように、窒素、ヘリウム等の不活性ガスの存在または流通下、一定の昇温速度で重量変化を測定する方法により測定することができる。
 着色剤は、色に深みのあるエナメル調のためには、熱可塑性樹脂組成物(D)中に0.01質量%以上含有されることが好ましく、金型汚染を引き起こしにくくできる点で2質量%以下含有されることが好ましい。含有量は、用いる着色剤により異なり、曇価が90%以内となるように調整される。染料やカーボンブラック、無機顔料の場合は、含有量は0.01~1質量%、有機顔料の場合は、含有量は0.01~2質量%が好ましい。
 本発明の無塗装筺体をなす熱可塑性樹脂組成物(D)中のアセトン可溶の樹脂成分(B)及びアセトン不溶の樹脂成分(A)を構成する単量体の同定、成分比の算出は、熱分解ガスクロマトグラフ法及びフーリエ変換赤外分光光度計(FT-IR)(日本分光(株)製)を用いて行うことができる。
 FT-IRの分析における、アセトン可溶の樹脂成分(B)中の不飽和ニトリル単量体由来の成分の含有量の同定においては、炭素核磁気共鳴分光法(13C-NMR法)によりニトリル基の積分値と不飽和ニトリル単量体と共重合可能な単量体を代表する官能基の積分値から算出される不飽和ニトリル単量体の成分比を算出する。不飽和ニトリル単量体と共重合可能な単量体を代表する官能基の具体例として、スチレンの場合はフェニル基の4位の炭素、メタクリル酸メチルの場合はエステル基の炭素を基準とする。
 本発明の無塗装筐体は、繊維摩擦試験でのL*値の増加率が60%以下とすることができる。筐体として実使用において、通常行われる程度の、汚れ清掃・拭き取り等の行為により、エナメル調が低下しないことが好ましいからである。拭き取り作業により、エナメル調が低下するのは、射出成形品表面に細かい傷が生じるためである。光沢及び色調(L*値)の保持能力、すなわち耐傷性の尺度として、繊維摩擦試験を用いることができる。繊維摩擦試験とは、射出成形品表面をティシュペーパーで擦り、傷付きの程度を判定する試験である。拭き取り荷重500g、ストローク60mm、スピード50mm/sec、往復回数20回での評価により、日常行われる筐体の清掃・拭き取りを再現することができる。
 本発明の筐体は本試験の前後において、射出成形品表面のL*値の増加量を、60%以下とすることができるが、さらに30%以下、5%以下とすることも可能である。
 繊維摩擦試験において、L*値の増加量を好ましい範囲とするためには、アセトン不溶の樹脂成分(A)の線膨張係数を11×10-5~20.5×10-5の範囲にし、筐体を成形する射出成形時の射出速度を1~50mm/sの範囲で調整するとよい。さらに、熱可塑性樹脂組成物(D)に摺動補助剤を添加することにより、より容易にL*値の増加量を好ましい範囲とすることができる。
 ここでいう射出速度とは、射出成形機のシリンダ速度ではなく、金型製品キャビティ内を樹脂が流動する速度である。これは、シリンダの径および速度から単位時間当たりの樹脂射出容量を求め、製品キャビティ面積で割り返すことで速度は求められる。具体的には、例えば、厚み4mm、幅10mm、長さ120mmの製品キャビティ中に、シリンダ径φ30、シリンダ速度5mm/sで樹脂を射出した場合には、
 製品キャビティ面積:4×10=40mm
 単位時間当たりの樹脂射出容量:15×15×3.14×5=3532.5mm/S
 射出速度:3532.5/40=88.3125mm/s
と求められる。
 アセトン不溶の樹脂成分(A)の線膨張係数を特定の範囲に制御するのには以下の方法が行われる。
1)アセトン不溶の樹脂成分(A)がグラフト共重合体であり、そのグラフト率を高める
2)アセトン不溶の樹脂成分(A)のゴム成分(a)の架橋度を高める
3)アセトン不溶の樹脂成分(A)のゴム成分(a)のガラス転移温度(Tg)を高める
 1)の方法によれば、ゴム成分(a)の架橋度やTgに大きく依存せずに線膨張係数を制御することが可能となる。グラフト率を高くすることで線膨張係数は小さくなり、グラフト率を低くすることで線膨張係数は大きくなる。グラフト率は、グラフト共重合体を調合する際に、ゴム成分(a)の質量に対して、グラフトを行う単量体の質量を増減させることにより、調整することができる。グラフト率を高める場合、ゴム成分(a)の質量に対して、グラフトを行う単量体の質量を増やせばよい。
 一方、2)の方法でアセトン不溶の樹脂成分(A)の線膨張係数を制御する場合は、架橋度を高くすることで線膨張係数は低くなり、架橋度を低くすることで線膨張係数は高くなる。ゴム成分(a)の架橋度を示す指標として膨潤指数を用いることが好ましい。好ましい膨潤指数は10~80であり、より好ましくは15~60である。膨潤指数をこの範囲に調整することにより、アセトン不溶の樹脂成分(A)の線膨張係数を好ましい範囲に制御することが可能となる。膨潤指数の制御は、例えば乳化重合でゴム成分(a)を製造する場合、重合温度を高くする、重合終了時の重合転化率を高める、重合中のモノマー/ポリマー濃度比を小さくして重合する、等の方法を採用することができ、このようにすると、膨潤指数が小さくなり、架橋度を高めることができる。さらに、架橋性のモノマー、例えばジビニルベンゼン等を共重合して使用することにより、膨潤指数を小さくすることもできる。
 3)の方法を採用する場合、ガラス転移温度(Tg)を高くすることで線膨張係数は低くなり、ガラス転移温度(Tg)を低くすることで線膨張係数は高くなる。アセトン不溶の樹脂成分(A)は、耐衝撃性の点から、好ましくはゴム成分(a)のTgが-100~0℃程度のものが使用される。より好ましくは-20~-90℃である。アセトン不溶の樹脂成分(A)を構成する単量体の組成を調整してゴム成分(a)のTgを上限の0℃に近づければ、線膨張係数を小さくすることが可能である。ゴム成分(a)のTgを制御する方法としては、ゴム成分(a)として共重合体を用い、共重合体の組成比を調整する方法が挙げられる。例えば、スチレン-ブタジエンブロック共重合体の場合、ブタジエンを主体とするブロック部分のブタジエン比率を下げることにより、ゴム成分(a)のTgを高めることができる。アセトン不溶の樹脂成分(A)の線膨張係数の制御には、上記1)~3)の方法を単独で、又は組み合せて使用することも可能である。このうち、グラフト率で制御する方法が、衝撃性とエナメル調外観とのバランスを取りやすく、好ましい。
 摺動補助剤としては、例えば脂肪族金属塩等の滑剤、オレフィン類、ポリエステルエラストマー、ポリアミドエラストマー等が上げられる。脂肪族金属塩等の滑剤としては、脂肪酸金属塩及びアミド基又はエステル基を有する滑剤が少なくとも1種以上配合されることが好ましい。脂肪酸金属塩とは、ナトリウム、マグネシウム、カルシウム、アルミニウム、亜鉛から選ばれる1種以上が含まれた金属と脂肪酸の塩である。好ましくは、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム(モノ、ジ、トリ)、ステアリン酸亜鉛、モンタン酸ナトリウム、モンタン酸カルシウム、リシノール酸カルシウム、ラウリン酸カルシウムであり、更に好ましくは、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛がある。特に好ましくはステアリン酸系の金属塩であり、具体的にはステアリン酸カルシウムが好ましい。オレフィン類としては、エチレン、プロピレン、α-オレフィンなどの少なくとも1種以上から生成される組成物が挙げられ、これらは該組成物を原料に誘導された組成物も含む。例えば、ポリプロピレン、エチレン-プロピレン共重合体、ポリエチレン(高密度、低密度、直鎖状低密度)、酸化型ポリオレフィン、グラフト重合ポリオレフィンなどである。好ましくは、酸化型ポリオレフィンワックス、スチレン系樹脂をグラフトしたポリオレフィンであり、更に好ましくは、ポリプロピレンワックス、ポリエチレンワックス、酸化型ポリプロピレンワックス、酸化型ポリエチレンワックス、アクリロニトリル-スチレン共重合体グラフトポリプロピレン、アクリロニトリル-スチレン共重合体グラフトポリエチレン、スチレン重合体グラフトポリプロピレン、及びスチレン重合体グラフトポリエチレンである。ポリエステルエラストマーとしては、ジカルボン酸化合物とジヒドロキシ化合物との重縮合、オキシカルボン酸化合物の重縮合ラクトン化合物の開環重縮合、或いはこれらの各成分の混合物の重縮合などによって得られるポリエステルであり、ホモポリエステル又はコポリエステルの何れを用いても本発明の効果が得られる。上記ジカルボン酸化合物としては、テレフタル酸、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4-ジカルボン酸、ジフェノキシエタンジカルボン酸、3-スルホイソフタル酸ナトリウムなどの芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、ジシクロヘキシル-4,4-ジカルボン酸などの脂肪族ジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、コハク酸、シュウ酸、アジピン酸、セバシン酸、ドデカンジカルボン酸などの脂肪族ジカルボン酸、及びこれらのジカルボン酸の混合物などが挙げられ、これらのアルキル、アルコキシ又はハロゲン置換体なども含まれる。また、これらのジカルボン酸化合物は、エステル形成可能な誘導体、例えば、ジメチルエステルのような低級アルコールエステルの形で使用することも可能である。本発明においては、これらのジカルボン酸化合物を単独で、又は2種以上組み合わせて用いることができる。このうち、特にテレフタル酸、イソフタル酸、1,4-シクロヘキサンジカルボン酸、セバシン酸、アジピン酸及びドデカンジカルボン酸が重合性、色調及び物性の点から好ましく用いられる。上記ジヒドロキシ化合物としては、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ブテンジオール、ハイドロキノン、レゾルシン、ジヒドロキシジフェニルエーテル、シクロヘキサンジオール、ハイドロキノン、レゾルシン、ジヒドロキシジフェニルエーテル、シクロヘキサンジオール、2,2-ビス(4-ヒドロキシフェニル)プロパンなどが挙げられ、ポリオキシアルキレングリコール及びこれらのアルキル、アルコキシ又はハロゲン置換体も含まれる。これらのジヒドロキシ化合物は、単独で又は2種以上組み合わせて用いることができる。上記オキシカルボン酸化合物としては、オキシ安息香酸、オキシナフトエ酸、ジフェニレンオキシカルボン酸などが挙げられ、これらのアルキル、アルコキシ及びハロゲン置換体も含まれる。これらのオキシカルボン酸化合物は、単独で、又は2種以上組み合わせて用いることができる。また、ポリエステルエラストマーの製造のために、εーカプロラクトンなどのラクトン化合物を用いることもできる。ポリアミドエラストマーとしては、炭素数6以上のアミノカルボン酸もしくはラクタム、又はm+nが12以上のナイロンmn塩などからなり、ハードセグメント(X)としては、ω-アミノカプロン酸、ω-アミノエナン酸、ω-アミノカプリル酸、ω-アミノベルゴン酸、ω-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸などのアミノカルボン酸;カプロラクタムラウロラクタムなどのラクタム類、ナイロン6,6、ナイロン6,10、ナイロン6,12、ナイロン11,6、ナイロン11,10、ナイロン12,6、ナイロン11,12、ナイロン12,10、ナイロン12,12などのナイロン塩が挙げられる。また、ポリオールなどのソフトセグメント(Y)としては、ポリエチレングリコール、ポリ(1,2-及び1,3-プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとのブロック又はランダム共重合体、エチレンオキシドとテトラヒドロフランとのブロック又はランダム共重合体などが挙げられる。これらのソフトセグメント(Y)の数平均分子量は、好ましくは200~6,000、より好ましくは250~4,000である。なお、本発明においてはポリ(アルキレンオキシド)グリコールの両末端を、アミノ化又はカルボキシル化して用いてもよい。これらの摺動補助剤の中では、特にステアリン酸系金属塩とワックス類を併用したものが良い。摺動補助剤を添加する場合には、その相容性を向上させる目的で、酸変性或いはエポキシ変性した変性樹脂を混合してもよい。また、アセトン不溶の樹脂成分(A)、アセトン可溶の樹脂成分(B)の一部をエナメル調が損なわれない範囲で酸変性、エポキシ変性してもよい。このようなものとしては例えば、カルボキシル基又はグリシジル基を含有したビニルモノマーを共重合させたものなどが挙げられる。カルボキシル基を含有するビニルモノマーとしては、例えば、アクリル酸、クロトン酸、ケイ皮酸、イタコン酸、マレイン酸等の遊離カルボキル基を含有する不飽和化合物、無水マレイン酸、無水イタコン酸、クロロ無水マレイン酸、無水シトラコン酸などの酸無水物型カルボキシル基を含有する不飽和化合物等があげられるが、これらの中では、アクリル酸、メタクリル酸、無水マレイン酸が好適である。グリシジル基を含有するビニルモノマーとしては、例えば、メタクリル酸グリシジル、アクリル酸グリシジル、アリルグリシジルエーテル、メチルグリシジルエーテル、メチルグリシジルメタクリレート等が挙げられるが、これらの中ではメタクリル酸グリシジルが好適である。
 本発明の無塗装筐体は、JIS K7211-1976に準拠した落錘衝撃50%破壊エネルギーを4.0J以上10J以下とすることができる。
 落錘衝撃50%破壊エネルギーを4.0J以上とするためには、ゴム含有量やアセトン可溶の樹脂成分(B)の質量平均分子量などを制御することで変動させることができる。具体的には、ゴム含有量を増やしたり、アセトン可溶の樹脂成分(B)の質量平均分子量を高めたりすることで落錘衝撃50%破壊エネルギーを高くすることができる。
 落錘衝撃50%エネルギーは、JIS K7211-1976に準じて評価される。重鐘は球2形(質量:1±0.05kg、形状:直径約63mm)を用い、温度23℃、湿度50±5%の環境下で試験片20枚を用いて50%破壊高さを求めエネルギーに換算する。
 具体的には下記式(1)、(2)から計算される。
 H50(50%破壊高さ)=H+d[Σ(i×ni)/N±1/2]・・・(1)
 E50(50%破壊エネルギー)=m×g×H50          ・・・(2)
ここに、H:高さ水準(i)が0のときの試験高さ(cm)
    d:試験高さを上下させるときの高さ間隔(cm)
    i:Hのときを0とし、1つずつ増減する高さ水準
    ni:各水準において破壊した(又は破壊しなかった)試験片の数
    N:破壊した(又は破壊しなかった)試験片の総数
    m:重鐘の重量(kg)
    g:重力の加速度(9.80665m/S)を代入し計算する。
 本発明では、H=60cm、d=2.5cm、m=1kgで測定し計算した。
 本発明の無塗装筐体は、ISO 179に準拠したノッチ付きシャルピー衝撃強さが5kJ/mである。5kJ/m以上であることは、製品の運搬や使用上の点で好ましく、シャルピー衝撃強さは、ゴム含有量やアセトン可溶の樹脂成分(B)の質量平均分子量などを制御することで変動させることができる。
 本発明の無塗装筐体は、表面粗さ(Ra)が0.1以下の金型を使用して成形する。Raが0.05以下であるとより好ましい。筐体の光沢は、金型の表面粗さ、及び成形条件で変化する。金型の表面粗さが小さく、金型温度を高くし、成形圧力を下げると、筐体表面の光沢は高くなる。
 金型の表面粗さ(Ra)を0.1以下にするためには、#4000番手以上、より好ましくは#12000番手以上のヤスリで仕上げられることが好ましい。仕上げとしては、ダイヤモンドヤスリ、砥石、セラミック砥石、ルビー砥石、GC砥石等により超音波研磨機或いは手作業で磨くことによって調整することができる。
 また、用いる金型の鋼材は40HRC以上の焼入れ焼き戻し鋼が好ましく、さらに好ましくは50HRC以上である。金型を磨く代わりに、クロムめっきした金型を用いてもよいし、上述のように磨いた金型にクロムめっきをした金型を用いてもよい。
 本発明の無塗装筐体は、金型温度60~150℃にて成形される。金型温度は60~100℃がより好ましい。金型温度がこの範囲にあると優れた筐体表面の光沢を得ることができる。
 一般に、キャビティ表面温度を高くすると冷却までの時間が長くなるため、成形サイクルが長くなってしまう問題がある。そこで、キャビティ表面を短時間で加熱冷却する高速ヒートサイクル成形法を用いることが好ましい。
 本発明に用いられる熱可塑性樹脂組成物(D)には、本願発明の効果を損なわない範囲でホスファイト系、ヒンダードフェノール系、ベンゾトリアゾール系、ベンゾフェノン系、ベンゾエート系及びシアノアクリレート系の紫外線吸収剤及び酸化防止剤、高級脂肪酸や酸エステル系及び酸アミド系、さらに高級アルコールなどの滑剤及び可塑剤、モンタン酸及びその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステラアマイド及びエチレンワックスなどの離型剤、亜リン酸塩、次亜リン酸塩などの着色防止剤、核剤、アミン系、スルホン酸系、ポリエーテル系などの帯電防止剤、1,3-フェニレンビス(2,6-ジメチルフェニル=ホスファート)、テトラフェニル-m-フェニレンビスホスファート、フェノキシホスホリル、フェノキシホスファゼンなどのリン系難燃剤、ハロゲン系難燃剤などの添加剤を含有させてもよい。
 本発明に用いられる熱可塑性樹脂組成物(D)は、例えば、オープンロール、インテシブミキサー、インターナルミキサー、コニーダー、二軸ローター付の連続混練機、押出機等の混和機を用いた溶融混練方法等によって製造できる。これらのうち単軸、又は二軸押出機が好ましい。
 本発明に用いられる熱可塑性樹脂組成物(D)を製造するには、全ての構成成分を同一の供給口に一度に供給しても良いし、構成成分をそれぞれ異なる供給口から供給しても良い。例えば、投入口を2ヶ所有する押出機を用い、スクリュー根元側に設置した主投入口、主投入口と押出機先端の間に設置した副投入口からそれぞれ別の構成成分を供給して溶融混練する方法が挙げられる。
 また、別の構成成分を同一の供給口から供給する場合、予め両者を混合した後、押出機ホッパーに投入して混練する方法が挙げられる。
 また、熱可塑性樹脂組成物(D)を押出生産する際、例えば、二軸押出機のシリンダーの中央部から押出機先端の間に設置されたベント孔から、減圧度-100~-800hPaで揮発分を吸引するのが成形性の点で好ましい。押出された樹脂は、直接切断してペレット化するか、又はストランドを形成した後ペレタイザーで切断してペレット化することができる。ペレットの形状は、円柱、角柱、球状など、一般的な形状をとり得るが、円柱型が好適である。
 本発明の筐体は、射出成形機により成形される。射出成形としては、例えば、射出圧縮成形、窒素ガスや炭酸ガスなどによるガスアシスト成形、高速ヒートサイクル成形などが挙げられる。これらは組み合わせて用いることができる。好ましくは、ガスアシスト成形、高速ヒートサイクル成形、及びガスアシスト成形と高速ヒートサイクル成形の組合せである。ここで言うガスアシスト成形とは、ガスや炭酸ガスを用いた射出成形であり、例えば特公昭57-14968号公報等のように樹脂を金型キャビティ内に射出した後に、成形体内部に加圧ガスを注入する方法や例えば特許3819972号公報等のように樹脂を金型キャビティ内に射出した後に、成形体の片面に対応するキャビティに加圧ガスを圧入する方法や、例えば特許3349070号公報等のように熱可塑性樹脂に予めガスを充填させ成形する方法が挙げられる。成形品形状により用いられる成形方法は変わる。ヒケやソリが大きい場合などは、ガスアシスト成形、高速ヒートサイクル成形などが選択されるが、このうち、成形体の片面に対応するキャビティに加圧ガスを圧入する方法が好ましい。
 本発明では、ヒケ、ソリ防止の保圧はガスアシストが好ましい。ヒケ、ソリ防止の保圧を樹脂で行う場合、金型温度が比較的高いため、バリが発生しやすくなると共に、保圧時間を長くしなければヒケやソリは防止できなくなる。
 本発明の筐体とは、機械や電気など何らかの機能を有する機器の外装(カバー)である。用いられる用途としては、家電機器、OA機器、住設機器及び車両機器などが挙げられる。家電機器としては具体的に、掃除機、洗濯機、冷蔵庫、電子レンジ、炊飯器、電器ポット、電話機、コーヒーメーカー、液晶やプラズマなどのテレビ、ビジュアルレコーダー、オーディオステレオ、スマートフォンを含んだ携帯電話、据置型ゲーム機、携帯型ゲーム機、リモコンなどの外装やこれらに付属する外装などが挙げられる。OA機器としては具体的に、ファックスやコピーなどの複合機器、液晶モニター、プリンター、パソコンなどの外装やこれらに付属する外装などが挙げられる。住設機器としては具体的に、システムキッチン、洗面台、システムバスなどの外装やこれらに付属する外装が挙げられる。車両機器としては具体的に、自動車の内装のガーニッシュカバー、例えばシフトレバーインジケーターカバー、ドアハンドル枠、パワーウィンドウスイッチ枠、センタークラスター、カーステレオやカーナビ枠、センターピラーカバーなどの外装やこれらに付属する外装が挙げられる。
 本発明の筐体の形状や大きさは、板状のような薄い形状から、3次元的な厚みがある形状までのものが挙げられ、コーナーが角張った多角形型の形状から曲面の多い形状などが挙げられる。大きさについても10×10×10mmの範囲に含まれる小さい形状から、300×100×100mmの範囲に含まれる大きな形状などが挙げられる。
 以下に実施例を示す。評価は次に示す方法に従って行った。また試験片は、特に記載していない限り、シリンダー温度240℃、射出速度10mm/sにて作成した。
(1)色調(L*値)
 90mm×50mm×2.5mmの平板を試験片に用い、スガ試験機株式会社製 S&M COLOUR COMPUTER MODEL SM-5にてL*を測定した。
 測定条件は、JIS K7105に準拠した。L*は、明度指数であってCIE 1976のL*、a*、b*表色系のL*である。
(2)光沢
 90mm×50mm×2.5mmの平板を試験片に用い、スガ試験機株式会社製 S&M COLOUR COMPUTER MODEL SM-5にて光沢を測定した。
測定条件は、JIS K7105に準拠した。光沢は、60度鏡面光沢度である。
(3)曇価
 90mm×50mm×2.5mmの平板を試験片に用い、株式会社東洋精機製作所製 ヘイズガードIIにて曇価を測定した。測定条件は、JIS K7105に準拠した。
(4)落錘衝撃性(J)
 射出成形機を用いて、シリンダー温度220℃、金型温度60℃にて50mm×90mm、厚み2.5mmの平板を作成し、JIS K7211-1976に準じて50%破壊エネルギーを評価した。
(5)ノッチ付きシャルピー衝撃試験
 ISO179に従って、所定のサイズのノッチ加工を行った試験片を用意した。試験の値は試験片5本の平均値を用いた。
(6)繊維摩擦試験
 90mm×50mm×2.5mmの黒色の平板を試験片に用い、学振磨耗試験機を用いて繊維による成形品表面の連続摩擦作業を行った。繊維としてはティッシュペーパー((株)カミ商事 エルモアティシュー)を8枚重ね、これを3回折り重ねたものを使用した。拭き取り方向は繊維が裂け易い方向とし、拭き取りの荷重は500g、ストロークは60mm、スピードは50mm/sec、往復回数は20往復とした。
 連続摩擦作業の前後で成形品表面のL*値を測定し、その変化量を確認した。
 ここで、L*は明度指数であってCIE1976のL*、a*、b*表色系のL*であり、スガ試験機株式会社製 S&M COLOUR COMPUTER MODEL SM-5を用いて測定した。
(7)質量平均粒子径の測定
 成形品からアセトン不溶の樹脂成分(A)を取り出し、ここから60nm±2nmの極薄切片を切り出し、例えばオスミニウム酸を用いて染色した後、透過型電子顕微鏡(TEM)により観察した。写真を画像解析ソフトで解析し、質量平均粒子径を得た。
(8)線膨脹係数の測定
 アセトン不溶の樹脂成分(A)をコンプレッション成形で260℃、80kg/cmの圧力で厚さ5mmの試料とし、得られた試料を用いてASTM D696に準拠し、TMAにより-30℃~60℃の範囲で線膨脹係数を測定した。
(9)組成分析
 アセトン可溶の樹脂成分(B)中の不飽和ニトリル単量体由来の成分の含有量の同定においては、炭素核磁気共鳴分光法(13C-NMR法)によりニトリル基の積分値と不飽和ニトリル単量体と共重合可能な単量体を代表する官能基の積分値から算出される不飽和ニトリル単量体の成分比と、フーリエ変換赤外分光光度計(FT-IR)により算出されたニトリル基及び不飽和ニトリル単量体と共重合可能な単量体を代表する官能基の吸光度の比から検量線をあらかじめ作製し、この検量線を用いてFT-IR測定結果から不飽和ニトリル単量体の成分比を算出した。
(10)還元粘度
 熱可塑性樹脂組成物(D)をアセトンに溶解し、これを遠心分離機によりアセトン可溶の樹脂成分(B)、及びアセトン不溶の樹脂成分(A)に分離した。乾燥したアセトン可溶の樹脂成分(B)0.25gを2-ブタノン50mlにて溶解した溶液を試料とし、30℃にてCannon-Fenske型毛細管中の流出時間を測定することで還元粘度を得た。
(11)表面粗さ
(株)東京精密 surfcom570A-3D(表面粗さ・輪郭形状測定機)を使用して測定した。
(12)アセトン可溶の樹脂成分(B)の分子量、分子量分布の測定
 ゲルパーミエーションクロマトグラフィー(GPC)にて評価した。
 条件は以下の通りである。
 測定装置:日本分析工業製ゲルパーミエーションクロマトグラフィー(LC-908)
 カラム:JAIGEL-4H 1本及びJAIGEL-2H 2本を直列接続
 検出器:RI(示差屈折)検出器
 検出感度:2.4μV/sec
 尚、単分散の質量平均分子量が既知で分子量の異なるスチレン樹脂(質量平均分子量1020~190万)を検量線用標準サンプルとして用いた。
[グラフト共重合体(G)の製造例1(G-1)]
 重合反応槽に、ポリブタジエンゴムラテックス(日機装(株)社製マイクロトラック粒度分析計「nanotrac150」にて測定した質量平均粒子径=0.28μm、固形分量=40質量部)110質量部、ターシャリードデシルメルカプタン0.1質量部、及び脱イオン水25質量部を加え、気相部を窒素置換した後、55℃に昇温した。続いて、1.5時間かけて70℃まで昇温しながら、アクリロニトリル12質量部、スチレンを48質量部、ターシャリードデシルメルカプタン0.5質量部、クメンハイドロパーオキシド0.15質量部よりなる単量体混合液、及び脱イオン水22質量部にナトリウムホルムアルデヒドスルホキシレート0.2質量部、硫酸第一鉄0.004質量部、エチレンジアミンテトラ酢酸2ナトリウム塩0.04質量部を溶解してなる水溶液を4時間にわたり添加した。添加終了後1時間、重合反応槽を70℃に制御しながら重合反応を完結させた。
 このようにして得られたABSラテックスに、シリコーン樹脂製消泡剤、及びフェノール系酸化防止剤エマルジョンを添加した後、硫酸アルミニウム水溶液を加えて凝固させ、さらに、十分な脱水、水洗を行った後、乾燥させて重合体(G-1)を得た。その後(G-1)をアセトンで処理し、アセトンに不溶な樹脂成分(A-1)、及びアセトンに可溶な成分(b-1)を得た。(G-1)における重合体(A-1)と共重合体(b-1)との割合は、70質量%と30質量%であった。フーリエ変換赤外分光光度計(FT-IR)を用いた組成分析の結果、重合体(A-1)はアクリロニトリル8.6質量部、ブタジエン57.1質量部、スチレン34.3質量部、グラフト率75.1%、線膨張係数16.0×10-5/℃、共重合体(b-1)はアクリロニトリル20.1質量部、スチレン79.9質量部であり、また(b-1)の還元粘度は0.33dl/gであった。
[グラフト共重合体(G)の製造例2(G-2)]
 重合反応槽に、ポリブタジエンゴムラテックス(日機装(株)社製マイクロトラック粒度分析計「nanotrac150」にて測定した質量平均粒子径=0.16μm、固形分量=40質量部)110質量部、ターシャリードデシルメルカプタン0.05質量部、及び脱イオン水45質量部を加え、気相部を窒素置換した後、55℃に昇温した。続いて、1.5時間かけて70℃まで昇温しながら、アクリロニトリル21質量部、スチレンを39質量部、ターシャリードデシルメルカプタン0.05質量部、クメンハイドロパーオキシド0.3質量部よりなる単量体混合液、及び脱イオン水22質量部にナトリウムホルムアルデヒドスルホキシレート0.2質量部、硫酸第一鉄0.004質量部、エチレンジアミンテトラ酢酸2ナトリウム塩0.04質量部を溶解してなる水溶液を4時間にわたり添加した。添加終了後1時間、重合反応槽を70℃に制御しながら重合反応を完結させた。
 このようにして得られたABSラテックスに、シリコーン樹脂製消泡剤、及びフェノール系酸化防止剤エマルジョンを添加した後、硫酸アルミニウム水溶液を加えて凝固させ、さらに、十分な脱水、水洗を行った後、乾燥させて重合体(G-2)を得た。その後(G-2)をアセトンで処理し、アセトンに不溶な樹脂成分(A-2)、及びアセトンに可溶な成分(b-2)を得た。(G-2)における重合体(A-2)と共重合体(b-2)との割合は、87.9質量%と12.1質量%であった。フーリエ変換赤外分光光度計(FT-IR)を用いた組成分析の結果、重合体(A-2)はアクリロニトリル19.1質量部、ブタジエン45.5質量部、スチレン35.4質量部、グラフト率119.8%、線膨張係数13.5×10-5/℃、共重合体(b-2)はアクリロニトリル34.8質量部、スチレン65.2質量部であり、また(b-2)の還元粘度は0.58dl/gであった。
[グラフト共重合体(G)の製造例3(G-3)]
 重合反応槽に、ポリブタジエンゴムラテックス(日機装(株)社製マイクロトラック粒度分析計「nanotrac150」にて測定した質量平均粒子径=0.08μm、固形分量=40質量部)110質量部、ターシャリードデシルメルカプタン0.1質量部、及び脱イオン水25質量部を加え、気相部を窒素置換した後、55℃に昇温した。続いて、1.5時間かけて70℃まで昇温しながら、アクリロニトリル21質量部、スチレンを39質量部、ターシャリードデシルメルカプタン0.5質量部、クメンハイドロパーオキシド0.15質量部よりなる単量体混合液、及び脱イオン水22質量部にナトリウムホルムアルデヒドスルホキシレート0.2質量部、硫酸第一鉄0.004質量部、エチレンジアミンテトラ酢酸2ナトリウム塩0.04質量部を溶解してなる水溶液を4時間にわたり添加した。添加終了後1時間、重合反応槽を70℃に制御しながら重合反応を完結させた。
 このようにして得られたABSラテックスに、シリコーン樹脂製消泡剤、及びフェノール系酸化防止剤エマルジョンを添加した後、硫酸アルミニウム水溶液を加えて凝固させ、さらに、十分な脱水、水洗を行った後、乾燥させて重合体(G-3)を得た。その後(G-3)をアセトンで処理し、アセトンに不溶な樹脂成分(A-3)、及びアセトンに可溶な成分(b-3)を得た。(G-3)における重合体(A-3)と共重合体(b-3)との割合は、70質量%と30質量%であった。フーリエ変換赤外分光光度計(FT-IR)を用いた組成分析の結果、重合体(A-3)はアクリロニトリル15.1質量部、ブタジエン57.1質量部、スチレン27.8質量部、グラフト率75.1%、線膨張係数15.5×10-5/℃、共重合体(b-3)はアクリロニトリル35.1質量部、スチレン64.9質量部であり、また(b-3)の還元粘度は0.33dl/gであった。
[グラフト共重合体(G)の製造例4(G-4)]
 重合反応槽に、ポリブタジエンゴムラテックス(日機装(株)社製マイクロトラック粒度分析計「nanotrac150」にて測定した質量平均粒子径=0.03μm、固形分量=50質量部)140質量部、ターシャリードデシルメルカプタン0.075質量部、及び脱イオン水5質量部を加え、気相部を窒素置換した後、50℃に昇温した。続いて、1時間かけて65℃まで昇温しながら、アクリロニトリル13.5質量部、スチレンを36.5質量部、ターシャリードデシルメルカプタン0.25質量部、クメンハイドロパーオキシド0.1質量部よりなる単量体混合液、及び脱イオン水22質量部にナトリウムホルムアルデヒドスルホキシレート0.2質量部、硫酸第一鉄0.004質量部、エチレンジアミンテトラ酢酸2ナトリウム塩0.04質量部を溶解してなる水溶液を4時間にわたり添加した。添加終了後1時間、重合反応槽を70℃に制御しながら重合反応を完結させた。
 このようにして得られたABSラテックスに、シリコーン樹脂製消泡剤、及びフェノール系酸化防止剤エマルジョンを添加した後、硫酸アルミニウム水溶液を加えて凝固させ、さらに、十分な脱水、水洗を行った後、乾燥させて重合体(G-4)を得た。その後(G-4)をアセトンで処理し、アセトンに不溶な樹脂成分(A-4)、及びアセトンに可溶な成分(b-4)を得た。(G-4)における重合体(A-4)と共重合体(b-4)との割合は、73.4質量%と26.6質量%であった。フーリエ変換赤外分光光度計(FT-IR)を用いた組成分析の結果、重合体(A-4)はアクリロニトリル8.6質量%、ブタジエン68.1質量%、スチレン23.3質量%、グラフト率46.8%、線膨張係数17.9×10-5/℃、共重合体(b-4)はアクリロニトリル27.1質量%、スチレン72.9質量%であり、また(b-4)の還元粘度は0.38dl/gであった。
[グラフト共重合体(G)の製造例5(G-5)]
 重合反応槽に、ポリブタジエンゴムラテックス(日機装(株)社製マイクロトラック粒度分析計「nanotrac150」にて測定した質量平均粒子径=0.16μm、固形分量=15質量部)95質量部、ターシャリードデシルメルカプタン0.1質量部、及び脱イオン水25質量部を加え、気相部を窒素置換した後、55℃に昇温した。続いて、1.5時間かけて70℃まで昇温しながら、メタクリル酸メチル55質量部、アクリロニトリル5.5質量部、スチレンを24.5質量部、ターシャリードデシルメルカプタン0.1質量部、クメンハイドロパーオキシド0.05質量部よりなる単量体混合液、及び脱イオン水22質量部にナトリウムホルムアルデヒドスルホキシレート0.2質量部、硫酸第一鉄0.004質量部、エチレンジアミンテトラ酢酸2ナトリウム塩0.04質量部を溶解してなる水溶液を4時間にわたり添加した。添加終了後1時間、重合反応槽を70℃に制御しながら重合反応を完結させた。このようにして得られたABSラテックスに、シリコーン樹脂製消泡剤、及びフェノール系酸化防止剤エマルジョンを添加した後、硫酸アルミニウム水溶液を加えて凝固させ、さらに、十分な脱水、水洗を行った後、乾燥させて重合体(G-5)を得た。その後(G-5)をアセトンで処理し、アセトンに不溶な樹脂成分(A-5)、及びアセトンに可溶な成分(b-5)を得た。(G-5)における重合体(A-5)と共重合体(b-5)との割合は、20質量%と80質量%であった。フーリエ変換赤外分光光度計(FT-IR)を用いた組成分析の結果、重合体(A-5)はメタクリル酸メチル16.2質量部、アクリロニトリル1.6質量部、ブタジエン75質量部、スチレン7.2質量部、グラフト率33.3%、線膨張係数19.2×10-5/℃、共重合体(b-5)はメタクリル酸メチル64.7質量部、アクリロニトリル6.5質量部、スチレン28.8質量部であり、また(b-5)の還元粘度は0.42dl/gであった。
[グラフト共重合体(G)の製造例6(G-6)]
 重合反応槽に、ポリブタジエンゴムラテックス(日機装(株)社製マイクロトラック粒度分析計「nanotrac150」にて測定した質量平均粒子径=0.35μm、固形分量=40質量部)110質量部、ターシャリードデシルメルカプタン0.1質量部、及び脱イオン水25質量部を加え、気相部を窒素置換した後、55℃に昇温した。続いて、1.5時間かけて70℃まで昇温しながら、アクリロニトリル18質量部、スチレンを42質量部、ターシャリードデシルメルカプタン0.5質量部、クメンハイドロパーオキシド0.15質量部よりなる単量体混合液、及び脱イオン水22質量部にナトリウムホルムアルデヒドスルホキシレート0.2質量部、硫酸第一鉄0.004質量部、エチレンジアミンテトラ酢酸2ナトリウム塩0.04質量部を溶解してなる水溶液を4時間にわたり添加した。添加終了後1時間、重合反応槽を70℃に制御しながら重合反応を完結させた。このようにして得られたABSラテックスに、シリコーン樹脂製消泡剤、及びフェノール系酸化防止剤エマルジョンを添加した後、硫酸アルミニウム水溶液を加えて凝固させ、さらに、十分な脱水、水洗を行った後、乾燥させて重合体(G-6)を得た。その後(G-6)をアセトンで処理し、アセトンに不溶な樹脂成分(A-6)、及びアセトンに可溶な成分(b-6)を得た。(G-6)における重合体(A-6)と共重合体(b-6)との割合は、70質量%と30質量%であった。フーリエ変換赤外分光光度計(FT-IR)を用いた組成分析の結果、重合体(A-6)はアクリロニトリル9.1質量部、ブタジエン69.7質量部、スチレン21.2質量部、グラフト率43.5%、線膨張係数18.0×10-5/℃、共重合体(b-6)はアクリロニトリル30.1質量部、スチレン69.9質量部であり、また(b-6)の還元粘度は0.35dl/gであった。
[アセトン可溶の樹脂成分(B)中の共重合体の製造例1(E-1)]
 反応槽への供給液として、アクリロニトリル31質量部、スチレン31質量部、ブチルアクリレート8質量部、溶媒としてトルエン30質量部、重合開始剤として、t-ブチルパーオキシ-2-エチルヘキサノエート0.05質量部からなる混合物を、窒素ガスを用いてバブリングさせた後、特許第3664576号の実施例2に記載されたものと同様の二段傾斜パドル型(傾斜角度45度)攪拌翼を供えた内容積150lの反応槽に、スプレーノズルを用いて連続的に37.5kg/時間の速度で供給した。なお、使用した重合開始剤t-ブチルパーオキシ-2-エチルヘキサノエートの架橋効率εは64であった。重合温度は130℃とし、反応槽内での反応液の充満率が70容量%を維持できるように、供給液量と同量の反応液を連続的に抜き出した。反応槽の液相部相当部分には温調のためのジャケットが設けられ、温調ジャケット温度は129℃であった。重合転化速度は30.5wt%/hrであった。抜き出した反応液は、250℃、10mmHgの高真空に保たれた揮発分除去装置へ導入し、未反応単量体、有機溶剤を脱気回収し、共重合体(E-10)はペレットとして回収した。
 (E-1)の組成は、フーリエ変換赤外分光光度計(FT-IR)を用いた組成分析の結果、アクリロニトリル39.1質量%、スチレン51.1質量%、ブチルアクリレート9.8質量%であった。また、還元粘度は0.42dl/gであった。
[アセトン可溶の樹脂成分(B)中の共重合体の製造例2(E-2)]
 アクリロニトリル13質量部、スチレン52質量部、溶媒としてトルエン35質量部、重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート0.05質量部からなる混合物を、窒素ガスを用いてバブリングさせた後、特許第3664576号の実施例2に記載されたものと同様の二段傾斜パドル型(傾斜角度45度)攪拌翼を供えた内容積150lの反応槽に、スプレーノズルを用いて連続的に37.5kg/時間の速度で供給した。なお、使用した重合開始剤t-ブチルパーオキシ-2-エチルヘキサノエートの架橋効率εは64であった。
 重合温度は130℃とし、反応槽内での反応液の充満率が70容量%を維持できるように、供給液量と同量の反応液を連続的に抜き出した。反応槽の液相部相当部分には温調のためのジャケットが設けられ、ジャケット温度は128℃であった。また、攪拌所要動力は4kW/m、重合転化速度は39.8wt%/hrであった。
 抜き出した反応液は、250℃、10mmHgの高真空に保たれた揮発分除去装置へ導入し、未反応単量体、有機溶剤を脱気回収し、生成した共重合体(E-2)をペレットとして回収した。
 (E-2)の組成は、フーリエ変換赤外分光光度計(FT-IR)を用いた組成分析の結果、アクリロニトリル20.8質量%、スチレン79.2質量%であった。また、還元粘度は0.75dl/gであった。
[アセトン可溶の樹脂成分(B)中の共重合体の製造例3(E-3)]
 メタクリル酸メチル68.6質量部、アクリル酸メチル1.4質量部、エチルベンゼン30質量部からなる単量体混合物に、1,1-ジ-t-ブチルパ-オキシ-3,3,5-トリメチルシクロヘキサン150ppm、及びn-オクチルメルカプタン1500ppmを添加し、均一に混合した。
 この溶液を内容積10リットルの密閉式耐圧反応器に連続的に供給し、攪拌下に平均温度135℃、平均滞留時間2時間で重合した。この重合液を反応器に接続された貯槽に連続的に送り出し、重合体と未反応単量体及び溶液と分離し、重合体を押出機にて連続的に溶融状態で押出し、共重合体(E-3)のペレットを得た。
 この共重合体の還元粘度は、0.35dl/gであり、熱分解ガスクロ法を用いて組成分析したところ、メタクリル酸メチル単位/アクリル酸メチル単位=98.0/2.0(質量比)の結果を得た。
[染料(C)]
 C-1:住化ケムテックス(株)製 Sumiplast(登録商標) Red H4GR(商品名)(Solvent Red 179、昇華温度323℃)
 C-2:住化ケムテックス(株)製 Sumiplast(登録商標) Red HL5B(商品名)(Solvent Red 52、昇華温度288℃)
 C-3:三菱化学(株)製 Diaresin Yellow H2G(商標名)(Disperse Yellow 160、昇華温度315℃)
 C-4:住化ケムテックス(株)製 Sumiplast(登録商標) Yellow HLR(商品名)(Disperse Yellow 54、昇華温度276℃)
 C-5:住化ケムテックス(株)製 Sumiplast(登録商標) Green G(商品名)(Solvent Green 3、昇華温度354℃)
 C-6:ランクセス(株)製 Macrolex(登録商標) Blue RR(商品名)(Solvent Blue 97、昇華温度264℃)
 C-7:住化ケムテックス(株)製 Sumiplast(登録商標) Blue SR(商品名)(Solvent Blue 87、昇温温度310℃)
 C-8:ビー・エー・エス・エフ(株)製 Paliogen(登録商標) Red K3580(商品名)(Pigment Red 149、昇華温度400℃以上)
[その他(X)]
 X-1:三洋化成工業(株)製 サンワックスE-250P(商品名)(酸価ポリエチレンワックス:質量平均分子量1.0万、酸価20)
 X-2:ダウ・ケミカル日本(株)製 NUC3195(商品名)(エチレン・酢酸ビニル共重合体)
 X-3:品川化工(株)製 SAK-CS-PPT-1(商品名)(ステアリン酸カルシウム)
[実施例1]
 共重合体(G-1)37.5質量部、共重合体(E-2)35質量部、共重合体(E-4)27.5質量部、染料(C-1)0.25質量部、染料(C-3)0.002質量部、染料(C-5)0.11質量部、染料(C-7)0.23、その他(X-1)0.5質量部、その他(X-3)0.5質量部を混合した後、これを押出機ホッパーに投入し、二軸押出機(PCM-30、L/D=28、池貝鉄工(株)製)を使用して、シリンダー設定温度250℃、スクリュー回転数150rpm、混練樹脂の吐出速度15kg/hrの条件で混練して樹脂組成物のペレットを得た後、樹脂温度250℃で射出成形(東芝機械(株)製 EC100)を行い、平板10cm×10cm×3mmを作成した。金型は10000番手のヤスリにて、表面がRa0.05μmになるまで磨いたものを使用した。また、金型温度は65℃、射出最大圧力1,100kg/cmとした。
[実施例2~9、比較例1~7]
 表1記載の配合組成、条件にて、実施例1と同様の方法でペレット、及び成形品を得た。
Figure JPOXMLDOC01-appb-T000001
 本発明の筐体は、表面の輝きと奥行き感のあるエナメル調と耐衝撃性に優れるため、高級家電、ゲーム機、カメラ、携帯電話、テレビ等の飾り枠、自動車の内装部材などの筐体に用いることができる。家電としては、テレビ、電話、プリンター、コンピューター、掃除機、スピーカー等、自動車の内装部材としてはセンタークラスター、スイッチボード、ピラー等が挙げられる。

Claims (6)

  1.  質量平均粒子径が0.05~0.3μmのゴム成分(a)を含み、線膨脹係数が11×10-5~20.5×10-5のアセトン不溶の樹脂成分(A)20~60質量%、
     アセトン可溶の樹脂成分(B)40~80質量%(但し、(A)+(B)=100質量%)、
     及び着色剤(C)を含み、かつ
    (1)アセトン可溶の樹脂成分(B)が、不飽和ニトリル単量体由来の成分を6.0~45質量%含み、及び
    (2)ゲルパーミエーションクロマトグラフィー(GPC)測定による分子量7万以下の成分が、アセトン可溶の樹脂成分(B)中に2~20質量%含まれる、
    熱可塑性樹脂組成物(D)からなる成形品を用いた無塗装筺体であって、該筐体のJIS K7105に準拠したL*値が13以下、光沢が60~120%、曇価が30~90%である、上記無塗装筺体。
  2.  アセトン可溶の樹脂成分(B)がGPC測定で分子量1万~30万にピークを少なくとも2個含む請求項1記載の無塗装筺体。
  3.  繊維摩擦試験でのL*値の増加率が60%以下である請求項1又は2記載の無塗装筺体。
  4.  熱可塑性樹脂組成物(D)のJIS K7211-1976に準拠した落錘衝撃50%破壊エネルギーが4.0J以上である請求項1~3のいずれか一項に記載の無塗装筺体。
  5.  着色剤(C)が少なくとも4色以上からなる染料混合物であり、各染料の昇華開始温度が210~400℃である請求項1~4のいずれか一項に記載の無塗装筺体。
  6.  表面粗さRaが0.1以下の金型を使用し、金型温度60~150℃、射出圧力300~1300kg/cm以下にて成形する請求項1~5のいずれか一項に記載の無塗装筺体の製造方法。
PCT/JP2012/070434 2011-08-11 2012-08-10 無塗装筺体とその製造方法 WO2013022084A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/237,936 US9187626B2 (en) 2011-08-11 2012-08-10 Uncoated housing and method for manufacturing same
JP2013528075A JP6140606B2 (ja) 2011-08-11 2012-08-10 無塗装筺体とその製造方法
CN201280039263.2A CN103748174A (zh) 2011-08-11 2012-08-10 无涂层壳体及其制造方法
KR1020147001237A KR20140027473A (ko) 2011-08-11 2012-08-10 무도장 하우징과 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-176415 2011-08-11
JP2011176415 2011-08-11

Publications (1)

Publication Number Publication Date
WO2013022084A1 true WO2013022084A1 (ja) 2013-02-14

Family

ID=47668586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070434 WO2013022084A1 (ja) 2011-08-11 2012-08-10 無塗装筺体とその製造方法

Country Status (6)

Country Link
US (1) US9187626B2 (ja)
JP (1) JP6140606B2 (ja)
KR (1) KR20140027473A (ja)
CN (1) CN103748174A (ja)
TW (1) TWI462819B (ja)
WO (1) WO2013022084A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899601A (zh) * 2013-11-11 2016-08-24 旭化成株式会社 汽车内部部件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115726A (ja) * 2002-09-27 2004-04-15 Mitsubishi Rayon Co Ltd グラフト共重合体、該グラフト共重合体を含有する熱可塑性樹脂組成物、並びに成形品
JP2004124042A (ja) * 2002-08-07 2004-04-22 Techno Polymer Co Ltd 低蓄熱性熱可塑性樹脂組成物及び成形品
JP2009120705A (ja) * 2007-11-14 2009-06-04 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物およびその押出樹脂成形体
WO2011037172A1 (ja) * 2009-09-24 2011-03-31 ユーエムジー・エービーエス株式会社 強化熱可塑性樹脂組成物及び成形品
WO2012043790A1 (ja) * 2010-10-01 2012-04-05 旭化成ケミカルズ株式会社 無塗装高鮮映耐衝撃射出成形品とその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2420357B2 (de) * 1974-04-26 1980-02-07 Bayer Ag, 5090 Leverkusen Formmassen
JPH1030047A (ja) * 1996-07-16 1998-02-03 Mitsubishi Rayon Co Ltd ゴム変性スチレン系樹脂組成物
JP2002292798A (ja) 2001-03-30 2002-10-09 Nissha Printing Co Ltd 漆黒感を有する加飾用フィルムとこれを用いた漆黒感を有する加飾成形品の製造方法
US6844071B1 (en) 2003-10-06 2005-01-18 General Electric Company Multilayer articles comprising polycarbonate and polypropylene and method for their preparation
EP1570983B1 (de) * 2004-02-03 2007-10-17 EMS-Chemie AG Werkstoffverbunde aus einem Formteil aus transparenten oder transluzenten, einfärbbaren Kunststoffformmassen
EP2289999B1 (en) * 2008-06-19 2013-04-24 Asahi Kasei Chemicals Corporation Thermoplastic composition
DE102009015039A1 (de) 2009-03-26 2010-09-30 Bayer Materialscience Ag Schlagzähmodifizierte Polycarbonat-Zusammensetzungen zur Herstellung metallisierter Formkörper mit homogenem Oberflächenglanz

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124042A (ja) * 2002-08-07 2004-04-22 Techno Polymer Co Ltd 低蓄熱性熱可塑性樹脂組成物及び成形品
JP2004115726A (ja) * 2002-09-27 2004-04-15 Mitsubishi Rayon Co Ltd グラフト共重合体、該グラフト共重合体を含有する熱可塑性樹脂組成物、並びに成形品
JP2009120705A (ja) * 2007-11-14 2009-06-04 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物およびその押出樹脂成形体
WO2011037172A1 (ja) * 2009-09-24 2011-03-31 ユーエムジー・エービーエス株式会社 強化熱可塑性樹脂組成物及び成形品
WO2012043790A1 (ja) * 2010-10-01 2012-04-05 旭化成ケミカルズ株式会社 無塗装高鮮映耐衝撃射出成形品とその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899601A (zh) * 2013-11-11 2016-08-24 旭化成株式会社 汽车内部部件
EP3070122A4 (en) * 2013-11-11 2016-11-23 Asahi Chemical Ind INTERIOR COMPONENT

Also Published As

Publication number Publication date
TWI462819B (zh) 2014-12-01
CN103748174A (zh) 2014-04-23
JP6140606B2 (ja) 2017-05-31
US20140186565A1 (en) 2014-07-03
KR20140027473A (ko) 2014-03-06
JPWO2013022084A1 (ja) 2015-03-05
TW201313436A (zh) 2013-04-01
US9187626B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
KR101466525B1 (ko) 무도장 고선영성 내충격 사출 성형품과 그 제조 방법
JP6092378B2 (ja) 熱可塑性樹脂組成物及びその成形品
JP2009067970A (ja) 耐傷付性と意匠性に優れかつ衝撃性を付与した熱可塑性樹脂組成物
JP2020111722A (ja) 熱可塑性樹脂組成物及びその成形品
JP6322000B2 (ja) 熱可塑性樹脂組成物、その成形体、及びその製造方法
JP6140606B2 (ja) 無塗装筺体とその製造方法
JP5062826B2 (ja) 耐傷付性、意匠性及び耐衝撃性に優れる熱可塑性樹脂組成物
JP6352694B2 (ja) 熱可塑性樹脂組成物及びその成形品
JP2013209513A (ja) 無塗装高鮮映難燃耐衝撃射出成形品とその製造方法
JP2013209512A (ja) 無塗装筐体とその製造方法
JP5952056B2 (ja) 熱可塑性樹脂組成物及びその成形品
EP3070122B1 (en) Automotive interior parts
KR102504924B1 (ko) 대리석 외관을 갖는 성형품
JP6513457B2 (ja) 熱可塑性樹脂組成物及びその成形品
JP2021172741A (ja) 熱可塑性樹脂組成物及びその成形品
JP2021101004A (ja) 熱可塑性樹脂組成物、及び成形品
JP2020117556A (ja) 熱可塑性樹脂組成物及び成形品
JP2012062485A (ja) 耐傷付性、意匠性及び耐衝撃性に優れる熱可塑性樹脂組成物からなる白色系成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528075

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147001237

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14237936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822715

Country of ref document: EP

Kind code of ref document: A1