WO2013021950A1 - 新規fgfr4変異体の検出法 - Google Patents

新規fgfr4変異体の検出法 Download PDF

Info

Publication number
WO2013021950A1
WO2013021950A1 PCT/JP2012/069869 JP2012069869W WO2013021950A1 WO 2013021950 A1 WO2013021950 A1 WO 2013021950A1 JP 2012069869 W JP2012069869 W JP 2012069869W WO 2013021950 A1 WO2013021950 A1 WO 2013021950A1
Authority
WO
WIPO (PCT)
Prior art keywords
fgfr4
mutation
subject
seq
cancer
Prior art date
Application number
PCT/JP2012/069869
Other languages
English (en)
French (fr)
Inventor
崇史 二見
竜也 川瀬
信昭 新堂
留美 竹下
Original Assignee
アステラス製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アステラス製薬株式会社 filed Critical アステラス製薬株式会社
Priority to EP12822338.5A priority Critical patent/EP2740803A4/en
Priority to US14/236,993 priority patent/US9267176B2/en
Priority to JP2013528014A priority patent/JP6036693B2/ja
Publication of WO2013021950A1 publication Critical patent/WO2013021950A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a method for detecting a novel variant of FGFR4 and a method for detecting cancer using the presence of the variant as an index.
  • Fibroblast Growth Factor Receptor is a kind of receptor tyrosine kinase, and fibroblast growth factor (FGF) is known as a ligand for FGFR.
  • FGF fibroblast growth factor
  • the existence of four receptor types FGFR1, FGFR2, FGFR3, and FGFR4 is known in the FGFR family. These receptors are composed of transmembrane proteins having an extracellular domain, a transmembrane domain, and an intracytoplasmic domain. The extracellular domain contains two or three immunoglobulin (Ig) domains.
  • FGFR is a monomeric tyrosine kinase receptor that is activated by dimerization that occurs at the cell surface in a complex of FGFR dimer, FGF, and heparing lycan or proteoglycan.
  • FGF FGFR dimer
  • FGF heparing lycan or proteoglycan.
  • FGF there are 22 known FGFs, each having the ability to bind to one or more FGFRs.
  • Receptor tyrosine kinase is activated by binding of FGF to FGFR, and signal transduction is performed downstream.
  • Complex biological functions such as cell migration and cell proliferation are controlled by differences in the expression site and timing of FGFR.
  • FGFR4 gene variant 1 (GenBank accession number: NM_002011.3), variant 2 (GenBank accession number: NM_022963.2)), variant 3 (GenBank accession) are currently available for the human FGFR4 gene. Number: NM — 21367.1))
  • variant 1 and variant 3 encode FGFR4 isoform 1
  • variant 2 encodes FGFR4 isoform 2.
  • FGFR4 isoform 1 has a total length of 802 amino acids
  • isoform 2 has a total length of 762 amino acids
  • isoform 1 and isoform 2 have different amino acid sequences in the transmembrane domain, but the same amino acid sequence in the extracellular domain and the intracellular membrane domain
  • the FGFR tyrosine kinase domain is present in the intracellular membrane domain, and it has been confirmed that point mutations in the FGFR tyrosine kinase domain are involved in cancer activation in various cancers.
  • point mutations in the FGFR tyrosine kinase domain are involved in cancer activation in various cancers.
  • an amino acid mutation (N535K, N535D) at the position corresponding to position 535 in isoform 1 was found, and the introduction of these point mutations is a constant for FGFR4. It has been reported that activation is caused and intracellular signals are abnormally activated, causing canceration and cell proliferation (Non-patent Document 1).
  • FGFR4 having a mutation in the tyrosine kinase domain is present in a sample obtained from a stomach cancer patient (Examples 1 and 2), and the mutation in the FGFR4 gene is an activating mutation (Example 5). It was found that the infected cells of this mutant FGFR4 gene have tumorigenicity, and that the gene is a causative gene for cancer (Example 7). Based on these findings, the present inventor constructed a method for detecting cancer of this mutant FGFR4 gene, provided a primer set, a probe and a detection kit therefor, and detected this mutant FGFR4 gene to thereby inhibit the FGFR4 inhibitor. It was possible to select cancer patients to be treated.
  • the present invention relates to the following [1] to [15].
  • [1] A method for detecting a fibroblast growth factor receptor 4 (FGFR4) mutant in a subject, comprising the presence of a mutation from the 183rd glycine to cysteine in the FGFR4 tyrosine kinase domain in a sample obtained from the subject.
  • a method comprising the step of detecting.
  • [2] The method according to [1], wherein the mutation is a mutation in FGFR4 described in (1) to (2) below. (1) Mutation from 636th glycine to cysteine in FGFR4 isoform 1; or (2) Mutation from 596th glycine to cysteine in FGFR4 isoform 2.
  • [3] The method according to [1] or [2], wherein the mutation is a mutation in FGFR4 according to (1) or (2) below.
  • [4] The method according to [1] or [2], comprising a step of detecting the presence of a mutation in the FGFR4 gene according to (1) to (2) below.
  • the method according to any one of [6] to [8], comprising a step of detecting the presence of a mutation from the 1906th guanine to thymine in the FGFR4 gene comprising the base sequence represented by SEQ ID NO: 1.
  • the method includes a step of amplifying a nucleic acid in a sample obtained from the subject using a primer set designed to amplify a region in the FGFR4 gene described in (1) to (2) below: [1 ] To [9]. (1) a region containing the 1906th base in the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 1; or (2) a region containing the 1786th base in the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 3.
  • a sense primer composed of an arbitrary continuous at least 16 base oligonucleotide between base numbers 1 to 1905 of SEQ ID NO: 1 and an arbitrary continuous at least 16 base oligonucleotide between base numbers 1907 to 2409 of SEQ ID NO: 1
  • a primer set of antisense primers consisting of oligonucleotides complementary to each other; and (2) a sense primer consisting of any consecutive at least 16 base oligonucleotides between base numbers 1 to 1785 of SEQ ID NO: 3 and SEQ ID NO:
  • a primer set of antisense primers consisting of oligonucleotides complementary to any consecutive at least 16 base oligonucleotides between base numbers 1787 to 2289 of 3.
  • a probe designed to be able to hybridize under stringent conditions to a region containing a mutation in the FGFR4 gene described in (1) to (2) below is applied to a nucleic acid in a sample obtained from the subject.
  • [13] The method according to any one of [1] to [12], comprising a step of obtaining a sample from the subject.
  • the present invention also relates to the following [16] to [18].
  • [16] A method for detecting the presence of cancer in a subject, comprising the step according to any one of [1] to [12].
  • [17] The method according to [16], comprising obtaining a sample from the subject.
  • [18] The method according to [16] or [17], wherein the cancer is gastric cancer.
  • the present invention also relates to the following [19] to [23].
  • a method for diagnosing cancer in a subject comprising the step according to any one of [1] to [12].
  • [20] The method according to [19], comprising the step of obtaining a sample from the subject.
  • [22] The method according to [19] or [20], wherein the cancer is gastric cancer.
  • the method according to [22] further comprising the step of determining that the subject is highly likely to have stomach cancer when the mutation is detected from a sample obtained from the subject.
  • the present invention also relates to the following [24] to [27].
  • [24] A method for identifying a subject who is an indication for treatment with an FGFR4 inhibitor, the subject being a cancer patient, comprising the steps according to any one of [1] to [12] above .
  • the method according to [24] comprising the step of obtaining a sample from the subject.
  • the method according to [24] or [25] further comprising a step of determining that the subject is a target for treatment with an FGFR4 inhibitor when the mutation is detected from a sample obtained from the subject. the method of.
  • [27] The method according to any one of [24] to [26], wherein the cancer is gastric cancer.
  • the present invention also relates to the following [28] to [31].
  • [28] A primer set for detecting the presence of a mutation from the 183rd glycine to cysteine of the FGFR4 tyrosine kinase domain in a sample obtained from a subject, the FGFR4 gene described in (1) to (2) below Primer set designed to amplify the region in. (1) a region containing the 1906th base in the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 1; or (2) a region containing the 1786th base in the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 3.
  • the primer set according to [28] which is selected from the group consisting of the following (1) and (2).
  • a sense primer composed of an arbitrary continuous at least 16 base oligonucleotide between base numbers 1 to 1905 of SEQ ID NO: 1 and an arbitrary continuous at least 16 base oligonucleotide between base numbers 1907 to 2409 of SEQ ID NO: 1
  • a primer set of antisense primers consisting of oligonucleotides complementary to each other; and (2) a sense primer consisting of any consecutive at least 16 base oligonucleotides between base numbers 1 to 1785 of SEQ ID NO: 3 and SEQ ID NO:
  • a primer set of antisense primers consisting of oligonucleotides complementary to any consecutive at least 16 base oligonucleotides between base numbers 1787 to 2289 of 3.
  • the present invention also relates to the following [32] to [34].
  • [32] A probe for detecting the presence of a mutation from the 183rd glycine to cysteine of the FGFR4 tyrosine kinase domain in a sample obtained from a subject, wherein the FGFR4 gene according to the following (1) to (2) A probe designed to hybridize under stringent conditions to a region containing a mutation. (1) Mutation from the 1906th guanine to thymine of the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 1; or (2) From the 1786th guanine of the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 3 to thymine. Mutation. [33] The probe according to [32], wherein the subject is a cancer patient. [34] The probe according to [33], wherein the cancer is gastric cancer.
  • the present invention also relates to the following [35] to [37].
  • [35] A detection kit for detecting the presence of a mutation from the 183rd glycine to cysteine of the FGFR4 tyrosine kinase domain in a sample obtained from a subject, the primer according to [28] or [29] A kit for detection comprising at least one of the set or the probe according to [32].
  • [36] The detection kit according to [35], wherein the subject is a cancer patient.
  • the detection kit according to [36] wherein the cancer is gastric cancer.
  • the present invention also relates to the following [38] to [45].
  • [38] A method for detecting the presence of cancer in a subject, comprising the step of amplifying a nucleic acid in a sample obtained from the subject using the primer set described in [28] or [29]. .
  • the method according to [38] comprising a step of amplifying a region in the FGFR4 gene according to (1) to (2) below using the primer set. (1) a region containing the 1906th base of the FGFR4 isoform 1 gene; or (2) a region containing the 1786th base of the FGFR4 isoform 2 gene.
  • [40] The method according to [38] or [39], comprising a step of amplifying a region in the FGFR4 gene according to (1) to (2) below using the primer set.
  • (1) a region containing the 1906th base of the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 1; or (2) a region containing the 1786th base of the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 3.
  • a method for detecting the presence of cancer in a subject comprising the step of hybridizing the probe according to [32] to a nucleic acid in a sample obtained from the subject.
  • the present invention also relates to the following [46] to [50].
  • [46] A method for diagnosing cancer in a subject, comprising the step according to any one of [38] to [43].
  • [47] The method according to [46], comprising obtaining a sample from the subject.
  • the method of [46] or [47] wherein the cancer is gastric cancer.
  • the method according to [49] further comprising the step of determining that the subject is likely to have gastric cancer when the mutation is detected from a sample obtained from the subject.
  • the present invention also relates to the following [51] to [54].
  • [51] A method for identifying a subject who is an indication for treatment with an FGFR4 inhibitor, the subject being a cancer patient, comprising the steps of any of [38] to [43] above .
  • [52] The method according to [51], comprising the step of obtaining a sample from the subject.
  • [53] The method according to [51] or [52], further comprising a step of determining that the subject is an indication for treatment with an FGFR4 inhibitor when the mutation is detected from a sample obtained from the subject. the method of.
  • [54] The method according to any one of [51] to [53], wherein the cancer is gastric cancer.
  • the present invention also relates to the following [55] to [56].
  • a method for treating cancer comprising a step of administering an FGFR4 inhibitor to a patient, wherein the patient is treated by the method described in any of [24] to [26] and [51] to [53].
  • the method according to [55], wherein the cancer is gastric cancer.
  • the present invention also relates to the following [57] to [59].
  • [57] A FGFR4 variant polypeptide or a polynucleotide encoding the polypeptide, which has a 183rd glycine to cysteine mutation in the FGFR4 tyrosine kinase domain.
  • [58] A screening method for a therapeutic agent for cancer, comprising a step of evaluating whether a test substance inhibits the activity or expression of the polypeptide or polynucleotide.
  • the method of [58], wherein the cancer is gastric cancer.
  • the detection method of the present invention is a method for detecting a novel variant of FGFR4, and can distinguish whether or not a cancer patient (particularly a stomach cancer patient) is a subject of application of an FGFR inhibitor.
  • this method can be used as a method for detecting and diagnosing cancer (particularly gastric cancer) in a subject.
  • the primer set, probe and detection kit of the present invention can be used in the method of the present invention.
  • the detection method of the present invention is a method for detecting a fibroblast growth factor receptor 4 (FGFR4) mutant in a subject, wherein the 183rd glycine of the FGFR4 tyrosine kinase domain is converted to cysteine in a sample obtained from the subject. Detecting the presence of the mutation.
  • FGFR4 fibroblast growth factor receptor 4
  • Samples obtained from the subjects include collected from the subjects (samples separated from the living body), specifically, any collected cellular tissue, body fluid (blood, oral mucus, circulating tumor cells), Exosomes, etc.), biopsy samples, etc. are used, but biopsy samples are preferably used.
  • Genomic DNA or RNA can be extracted from the collected sample and used, and its transcription product (product resulting from transcription and translation of the genome; for example, mRNA, cDNA, protein) can be used. In particular, it is preferable to prepare and use mRNA or cDNA.
  • FGFR4 is known to have two isoforms, isoforms 1 and 2.
  • FGFR4 isoform 1 is FGFR4 consisting of 802 amino acids in total length.
  • wild-type FGFR4 isoform 1 consists of an amino acid sequence shown in SEQ ID NO: 2 and is encoded by a polynucleotide consisting of a base sequence shown in SEQ ID NO: 1.
  • FGFR4 isoform 2 is FGFR4 consisting of 762 amino acids in total length.
  • wild-type FGFR4 isoform 2 consists of the amino acid sequence shown in SEQ ID NO: 4 and is encoded by a polynucleotide consisting of the base sequence shown in SEQ ID NO: 3.
  • FGFR4 isoforms 1 and 2 have a common tyrosine kinase domain in their intracellular region.
  • the tyrosine kinase domain of FGFR4 is a region consisting of 311 amino acids corresponding to amino acid positions 454 to 764 of FGFR4 isoform 1 and amino acid positions 414 to 724 of isoform 2, respectively. Means.
  • the tyrosine kinase domain of wild-type FGFR4 isoforms 1 and 2 consists of the amino acid sequence shown in SEQ ID NO: 10, and is encoded by a polynucleotide consisting of the base sequence shown in SEQ ID NO: 9.
  • the mutation to be detected in the method of the present invention is a mutation in the tyrosine kinase domain of FGFR4. Specifically, the 183rd glycine in the tyrosine kinase domain of FGFR4 is changed to cysteine. It is a mutation.
  • a typical example of the mutation to be detected is a mutation from the 183rd glycine to cysteine of the FGFR4 tyrosine kinase domain consisting of the amino acid sequence shown in SEQ ID NO: 10.
  • the mutation to be detected is caused by a mutation in the tyrosine kinase domain coding region of the FGFR4 gene.
  • a typical example of such a gene mutation is a mutation from 547th guanine to thymine in the tyrosine kinase domain coding region of the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 9.
  • the aforementioned detection target mutation corresponds to a mutation from 636th glycine to cysteine in FGFR4 isoform 1, and corresponds to a mutation from 596th glycine to cysteine in FGFR4 isoform 2.
  • Examples of the mutation in the FGFR4 gene corresponding to each of these mutations include a mutation from the 1906th guanine to thymine in the FGFR4 isoform 1 gene and a mutation from the 1786th guanine to thymine in the FGFR4 isoform 2 gene. .
  • mutations to be detected in the method of the present invention include a mutation from 636th glycine of FGFR4 consisting of the amino acid sequence shown in SEQ ID NO: 2 to cysteine, and FGFR4 consisting of the amino acid sequence shown in SEQ ID NO: 4.
  • the 596th glycine to cysteine mutation is included.
  • mutations in the FGFR4 gene corresponding to these include a mutation from the 1906th guanine to thymine of the FGFR4 gene comprising the nucleotide sequence represented by SEQ ID NO: 1, and the FGFR4 gene comprising the nucleotide sequence represented by SEQ ID NO: 3. 1786th guanine to thymine mutation.
  • mutant protein a protein having a detection target mutation
  • mutant polynucleotide encoding a protein having a detection target mutation also referred to as “mutant polynucleotide”
  • mutant polynucleotide examples include polynucleotides consisting of the base sequence shown in SEQ ID NO: 5 or SEQ ID NO: 7.
  • this detection step detects the presence of the mutant polynucleotide in the genomic DNA of the sample obtained from the subject, or the sample obtained from the subject.
  • a transcript for example, mRNA or cDNA
  • Extraction of genomic DNA and preparation of mRNA and cDNA can be performed by methods known in the art, and can be easily performed using a commercially available kit.
  • this detection step a gene mutation analysis method known in the art can be used.
  • this detection step is performed by using a known nucleic acid amplification method (PCR method, RT-PCR method, LCR method (Ligase chain Reaction), SDA method) for nucleic acid derived from a sample obtained from a subject (eg, mRNA, cDNA, etc.).
  • PCR method RT-PCR method
  • LCR method Liigase chain Reaction
  • SDA method SDA method for nucleic acid derived from a sample obtained from a subject
  • NASBA method Nucleic acid sequence-based amplification method
  • ICAN method Isothermal and chimerized amplification-Lampification method.
  • TMAs a region including a portion corresponding to the mutation to be detected in the mutant polynucleotide (also referred to as “mutation region to be detected”), and sequencing the amplified product after amplification.
  • the presence or absence of mutation can be confirmed by performing the above.
  • a method known in the art such as a direct sequence method can be used.
  • the primer used in the above-described nucleic acid amplification method is not particularly limited as long as it can amplify the mutation region to be detected in the mutant polynucleotide, and is designed based on the base sequence of the mutant polynucleotide.
  • Primer design can be performed using primer design software (for example, Primer Express; PE Biosystems).
  • primer design software for example, Primer Express; PE Biosystems.
  • the sense primer and the antisense primer should be set so that the size of the amplification product when mRNA or cDNA is amplified is 1 kb or less. Is appropriate.
  • PCR restriction enzyme fragment length polymorphism analysis method
  • TaqMan method allele-specific primer PCR (ASP-PCR) method
  • SSCP method SSCP method
  • a method can also be used.
  • RFLP method after a mutation region to be detected is amplified by PCR, when a change occurs in a restriction enzyme recognition site based on the mutation, the difference between the nucleic acid fragments after the restriction enzyme treatment is analyzed by electrophoresis.
  • the TaqMan method is a method of adding a probe (TaqMan probe) modified with a fluorescent substance (FAM, VIC, etc.) at the 5 ′ end and a quencher (quenching) substance at the 3 ′ end to the PCR reaction system.
  • a TaqMan probe is hybridized to the mutation region to be detected and a PCR reaction is performed from the primer, the TaqMan probe is degraded by the 5 ′ ⁇ 3 ′ exonuclease activity of the DNA polymerase in the extension reaction, thereby The fluorescent substance is released from the probe, the suppression by the quencher is released, and fluorescence is emitted from the fluorescent substance, whereby the target mutation is detected.
  • the ASP-PCR method is a method of detecting the presence or absence of nucleic acid amplification by PCR by designing a primer so as to have a detection target mutation site at the 3 'end.
  • a mutation region to be detected is amplified by PCR and then separated into single-stranded DNA, which is separated by electrophoresis on a non-denaturing gel. Mutation changes the higher order structure of the DNA, which reflects the difference in mobility on the gel.
  • a method based on probe hybridization can also be used, and examples thereof include a DNA chip method, an Invader method, and a melting curve analysis method.
  • DNA chip method DNA containing a mutation region to be detected is placed on a substrate, nucleic acid derived from a subject is hybridized to the DNA chip, and the presence or absence of hybridization is confirmed.
  • Invader method two types of nucleic acids (Invader oligo and signal probe) that hybridize before and after the mutation site to be detected are reacted with a nucleic acid derived from a subject, and then a Cleavease enzyme that recognizes the triplex structure of the DNA to be formed is used. Act to release the flap in the signal probe.
  • the flap hybridizes with the detection FRET Probe, and the enzyme acts again on this to detect the fluorescence of the fluorescent substance released from the FRET Probe.
  • the temperature is gradually raised, and a change in fluorescence accompanying the temperature rise is measured to create a melting curve. This confirms the change in melting temperature with or without mutation.
  • a method based on primer extension can also be used, and examples thereof include SNaPshot method and Pyrosequencing method.
  • SNaPshot method a primer adjacent to the mutation site to be detected and a fluorescently labeled ddNTP are used, and the incorporated base is detected by extending only one base from the primer.
  • pyrosequencing method pyrophosphoric acid is generated when dNTPs are added one by one in the primer extension reaction and dNTPs are incorporated by the polymerase reaction. The resulting pyrophosphate is detected by a fluorescence reaction with luciferase, and the base sequence is determined from the emission peak pattern.
  • a person skilled in the art can appropriately design primers and probes to be used based on the gene mutation analysis method to be used, and is not particularly limited. For example, it can be produced by a chemical synthesis method. .
  • the presence of a mutant protein in a sample obtained from a subject may be detected, and for example, it can be carried out using an antibody that specifically recognizes the mutant protein. Production of such an antibody and detection of a protein using the antibody can be performed using a method known in the art.
  • a mutation to be detected when a mutation to be detected is detected from a sample obtained from a subject, it can be determined that the subject is likely to have cancer (particularly stomach cancer).
  • the detection step in the method of the present invention can be used for a method for detecting the presence of cancer (particularly gastric cancer) in a subject or a method for diagnosing cancer in a subject.
  • the diagnostic method of the present invention in addition to the detection step of the present invention, when the mutation is detected from a sample obtained from the subject, it is determined that the subject is highly likely to have cancer (particularly gastric cancer).
  • the process of carrying out may be included.
  • the said detection process can be used also for the method of identifying the test subject (cancer patient, such as gastric cancer) used as the application object of the treatment by an FGFR4 inhibitor.
  • the identification method of the present invention may include a step of determining that the subject is a target for treatment with the FGFR4 inhibitor when the mutation is detected from a sample obtained from the subject.
  • the primer set of the present invention is a primer set for detecting the presence of a mutation from the 183rd glycine to cysteine of the FGFR4 tyrosine kinase domain in a sample obtained from a subject, It includes a sense primer and an antisense primer designed to amplify the mutation region to be detected in the nucleotide.
  • the antisense primer consists of a nucleic acid molecule (preferably a nucleic acid molecule of at least 16 bases) that hybridizes under stringent conditions (preferably under more stringent conditions) to the mutated polynucleotide. It consists of a nucleic acid molecule (preferably a nucleic acid molecule of at least 16 bases) that hybridizes with the complementary strand of the mutant polynucleotide under stringent conditions (preferably under more stringent conditions).
  • the primer set of the present invention comprises a region containing the 1906th base in the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 1, or the 1786th base in the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 3. It includes a sense primer and an antisense primer designed to amplify the region to be contained.
  • primer set of the present invention include a primer set selected from the group consisting of (1) and (2) below: (1) A sense primer composed of an arbitrary continuous at least 16 base oligonucleotide between base numbers 1 to 1905 of SEQ ID NO: 1 and an arbitrary continuous at least 16 base oligonucleotide between base numbers 1907 to 2409 of SEQ ID NO: 1 A primer set of antisense primers consisting of oligonucleotides complementary to each other; and (2) a sense primer consisting of any consecutive at least 16 base oligonucleotides between base numbers 1 to 1785 of SEQ ID NO: 3 and SEQ ID NO: A primer set of antisense primers consisting of oligonucleotides complementary to any consecutive at least 16 base oligonucleotides between base numbers 1787 to 2289 of 3.
  • the primer set of the present invention is a sense primer and an antisense primer designed to amplify a region containing the 547th base in the tyrosine kinase domain coding region of the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 9.
  • Specific embodiments include the following primer sets: Sense primer consisting of any continuous at least 16 base oligonucleotide between base numbers 1 to 546 of SEQ ID NO: 9 and any continuous at least 16 base oligonucleotide between base numbers 548 to 933 of SEQ ID NO: 9 A primer set of antisense primers consisting of complementary oligonucleotides.
  • the primer set of the present invention can be used in the method of the present invention.
  • the primer set of the present invention may be used to amplify a nucleic acid in a sample obtained from a subject. Good.
  • the probe of the present invention is a probe for detecting the presence of a mutation from the 183rd glycine to cysteine of the FGFR4 tyrosine kinase domain in a sample obtained from a subject, and in the mutant polynucleotide in the detection step of the present invention.
  • This probe is designed so that it can hybridize to the mutation region to be detected.
  • the probe of the present invention is a nucleic acid molecule (preferably at least 16 bases) that hybridizes under stringent conditions (preferably under more stringent conditions) to a mutant region to be detected in a mutant polynucleotide or its complementary strand. Nucleic acid molecules).
  • the probe of the present invention is a mutation from the 1906th guanine to thymine of the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 1, or the 1786th guanine of the FGFR4 gene consisting of the base sequence shown in SEQ ID NO: 3. It is designed to hybridize to a region containing a mutation from thymine to thymine.
  • the probe of the present invention can be used in the method of the present invention.
  • the method of the present invention may include a step of hybridizing the probe of the present invention to a nucleic acid in a sample obtained from a subject.
  • the “stringent conditions” are as follows: “5 ⁇ SSPE, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 200 ⁇ g / mL sperm DNA, over 42 ° C. “Night” is a condition for cleaning, “0.5 ⁇ SSC, 0.1% SDS, 42 ° C.”. “More stringent conditions” means “5 ⁇ SSPE, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 200 ⁇ g / mL sperm DNA, over 42 ° C.” “Night”, the conditions for cleaning are “0.2 ⁇ SSC, 0.1% SDS, 65 ° C.”.
  • the interval between the selected positions of the sense primer and the antisense sense primer is 1 kb or less, or the size of the amplification product amplified by the sense primer and the antisense sense primer is 1 kb or less.
  • the primer and probe of the present invention usually have a chain length of 15 to 40 bases, preferably 16 to 24 bases, more preferably 18 to 24 bases, and particularly preferably 20 to 24 bases.
  • the primer set and probe of the present invention can be easily produced by those skilled in the art by, for example, chemical synthesis, and may be labeled with a fluorescent label or the like depending on the detection method.
  • the detection kit of the present invention is a kit for detecting the presence of a mutation from the 183rd glycine to cysteine of the FGFR4 tyrosine kinase domain in a sample obtained from a subject, and preferably the primer set or the present invention of the present invention. Including at least one of the probes of the invention.
  • the primer set, probe and detection kit of the present invention can also be used in the aforementioned method of the present invention.
  • the method of the present invention may include a step of amplifying the detection target mutation region using the primer set of the present invention, and may include a step of hybridizing the probe of the present invention to the detection target mutation region.
  • the therapeutic method of the present invention is a method for treating cancer, comprising the step of administering an FGFR4 inhibitor to a cancer patient (especially gastric cancer) positive for the FGFR4 variant of the present invention.
  • the above-mentioned method can be used to treat a patient who has been identified as a target for treatment with an FGFR4 inhibitor.
  • FGFR4 inhibitors include PD173074 (eg, Clin Cancer Res. 2005 Feb 1; 11 (3): 1336-41), anti-FGFR4 antibody (eg, MAbs. 2011; 3 (4): 376-86), and the like.
  • Various known FGFR4 inhibitors can be used.
  • the method for screening a substance that inhibits the activity or expression of the FGFR4 variant of the present invention can be used as a method for screening a therapeutic agent positive for the FGFR4 variant of the present invention (preferably gastric cancer).
  • the test substance is contacted with the FGFR4 variant of the present invention and analyzed whether the activity is inhibited, or the test substance is applied to a cell expressing the FGFR4 mutant of the present invention. And analyzing whether the activity or expression is inhibited. Whether the activity (ie, autophosphorylation activity) of the FGFR4 variant of the present invention is inhibited can be determined by analyzing the change in the tyrosine phosphorylation level of the FGFR4 variant of the present invention contacted with a test substance, This can be done using assay methods known in the art.
  • Whether or not the expression of the FGFR4 variant of the present invention is inhibited is analyzed by whether or not the expression of mRNA or protein in cells expressing the FGFR4 variant of the present invention contacted with a test substance is suppressed. This can be performed using a method known in the art such as a quantitative PCR method or an ELISA method. Or you may confirm the inhibitory effect with respect to tumor growth at the time of inoculating the nude mouse with the cell which expresses the FGFR4 variant of this invention, and administering a test substance to this mouse like the below-mentioned Example.
  • This mutation is caused by glycine (G) to cysteine (C) at amino acid positions corresponding to the 636th position in the amino acid sequence of isoform 1 (SEQ ID NO: 2) and the 596th position in the amino acid sequence of isoform 2 (SEQ ID NO: 4). Corresponds to the mutation to).
  • the FGFR4 mutant having this mutation is also referred to as G636C-FGFR4.
  • Example 2 Detection of G636C-FGFR4 in gastric cancer sample Using the same method as in Example 1 for the 83 samples of RNA derived from stomach cancer patient tissue (Asterland, USA), the presence or absence of G636C-FGFR4 mutation was confirmed.
  • the G636C mutation was introduced by the Mutagenesis method (PrimeSTAR (registered trademark) Mutagenesis Basal Kit; Takara Bio Inc.) using the primers of SEQ ID NO: 16 and SEQ ID NO: 17 (G636C). -FGFR4 / TOPO XL).
  • the base sequence and amino acid sequence of the prepared G636C-FGFR4 are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively.
  • PCR fragments were transferred to pTracer TM -CMV Bsd (Life Technologies) cleaved with EcoRV, to In-Fusion cloning system (In-Fusion (registered trademark) Advantage PCR Cloning Kit w / Cloning Enhancer; Takara Bio Inc.). And cloned.
  • the vectors generated for these wild type and mutant FGFR4 are referred to as FGFR4 / pTracer-CMV-Bsd and G636C-FGFR4 / pTracer-CMV-Bsd.
  • G636C-FGFR4 / pTracer-CMV-BV was introduced in comparison with FGFR4 / pTracer-CMV-Bsd. Increased FGFR4 autophosphorylation and enhanced ERK phosphorylation were observed in HEK293 cells. From the above, it was shown that G636C is an activating mutation.
  • lentiviral expression vector of wild type and mutant FGFR4 Lentiviral expression vector obtained by digesting FGFR4 / TOPO XL with SpeI and XhoI and digesting the nucleic acid fragment with SpeI and SalI Cloning to SpeI-SalI site (named FGFR4 / pLenti6.3);
  • a lentiviral expression vector G636C-FGFR4 / pLenti6.3 was constructed from G636C-FGFR4 / TOPO XL.
  • FGFR4 / pLenti6.3 or G636C-FGFR4 / pLenti6.3 3 ⁇ g each, and a packaging plasmid 9 ⁇ g (ViraPower TM Packaging Mix; Life Technologies) and transfection reagent (Lipofectamine 2000; Life Technologies) 293FT cell packaging cells (Life Technologies).
  • the culture supernatant 3 days after the introduction was recovered as a lentivirus, polybrene (Sigma) was added at a concentration of 6 ⁇ g / ml, and then added to mouse NIH3T3 cells.
  • NIH3T3 cells Two days later, the culture supernatant of NIH3T3 cells was replaced with DMEM medium (Invitrogen) supplemented with 10% bovine serum (Invitrogen) and Blastcidin (InvivoGen) 5 ⁇ g / ml.
  • DMEM medium Invitrogen
  • Blastcidin InvivoGen 5 ⁇ g / ml.
  • Two strains of NIH3T3 cells stably expressing type FGFR4 and G636C-FGFR4, respectively (FGFR4 / NIH3T3-e7 and FGFR4 / NIH3T3-f7, and G636C-FGFR4 / NIH3T3-c1 and G636C-FGFR4 / NIH3T, respectively) ).
  • Example 7 Examination of tumor-forming ability of G636C-FGFR4
  • this cell line was transplanted into nude mice and the tumor-forming ability was examined.
  • FGFR4 / NIH3T3-e7, FGFR4 / NIH3T3-f7, G636C-FGFR4 / NIH3T3-c1, and G636C-FGFR4 / NIH3T3-c2 each cell of observed subcutaneously into nude mice 3 ⁇ 10 one by six inoculated 22 days.
  • the detection method of the present invention is a method for detecting a novel variant of FGFR4, and is useful for distinguishing whether or not a cancer patient (particularly a stomach cancer patient) is an application target of an FGFR inhibitor. .
  • This method is also useful as a method for detecting and diagnosing cancer (particularly gastric cancer) in a subject.
  • the primer set, probe and detection kit of the present invention can be used in the method of the present invention.

Abstract

癌の原因である新たな遺伝子変異を解明し、これにより、当該遺伝子変異又は当該変異を有するタンパク質の検出方法、被験者における癌の存在を検出する方法、被験者における癌を診断する方法、並びにそのためのプライマーセット、プローブ及び検出用キットを提供することを課題とする。 被験者における線維芽細胞増殖因子受容体4(FGFR4)変異体の検出方法であって、被験者から得た試料中の、FGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異の存在を検出する工程を包含する、方法を提供する。

Description

新規FGFR4変異体の検出法
 本発明は、FGFR4の新規変異体の検出方法、及び該変異体の存在を指標とする癌の検出方法に関する。
 線維芽細胞増殖因子受容体(Fibroblast Growth Factor Receptor;FGFR)は受容体チロシンキナーゼの1種であり、FGFRのリガンドしては、線維芽細胞増殖因子(FGF)が知られている。FGFRファミリーには、4つの受容体型FGFR1、FGFR2、FGFR3及びFGFR4の存在が知られている。これらの受容体は、細胞外ドメイン、膜貫通ドメイン及び細胞質内ドメインを有する膜貫通タンパク質から構成される。細胞外ドメインは2つ又は3つの免疫グロブリン(Ig)ドメインを含む。FGFRは、FGFR二量体、FGF、及びヘパリングリカン又はプロテオグリカンの複合体において細胞表面で起こる二量体化によって活性化される、単量体チロシンキナーゼ受容体である。FGFについては、22種の既知のFGFが存在し、それぞれが1つ又は複数のFGFRと結合する能力を有する。FGFがFGFRに結合することで受容体チロシンキナーゼが活性化され、下流にシグナル伝達が行われる。FGFRの発現部位や時期の差異によって、細胞遊走や細胞増殖などの複雑な生体機能を制御している。
 FGFRファミリーのうち、ヒトのFGFR4遺伝子については現在までに3つのスプライシングバリアント(FGFR4遺伝子バリアント1(GenBank登録番号:NM_002011.3)、バリアント2(GenBank登録番号:NM_022963.2)、バリアント3(GenBank登録番号:NM_213647.1))の存在が知られている。このうち、バリアント1及びバリアント3はFGFR4のアイソフォーム1をコードし、バリアント2はFGFR4のアイソフォーム2をコードする。FGFR4アイソフォーム1は全長802アミノ酸、アイソフォーム2は全長762アミノ酸からなり、アイソフォーム1とアイソフォーム2はその膜貫通ドメイン内の領域において異なるものの、細胞外ドメイン及び細胞膜内ドメインにおいて同一のアミノ酸配列を有する。
 FGFRのチロシンキナーゼドメインは細胞膜内ドメインに存在し、種々の癌においてFGFRのチロシンキナーゼドメインにおける点変異が癌の活性化に関与していることが確認されている。このうち、FGFR4については、横紋筋腫において、アイソフォーム1における535番目に対応する位置でのアミノ酸変異(N535K、N535D)が見いだされており、これら点突然変異の導入が、FGFR4の恒常的な活性化を引き起こし、細胞内シグナルが異常に活性化され、癌化及び細胞増殖を引き起こしていることが報告されている(非特許文献1)。
 しかし、前記N535K及びN535D変異以外で、FGFR4のチロシンキナーゼドメイン内に活性化点変異が存在しているとの報告は無い。
ザ ジャーナル オブ クリニカル インベスティゲーション(The Journal of Clinical Investigation),(英国),2009年,11巻,p.3395-3407
 癌の原因である新たな遺伝子変異を解明し、これにより、当該遺伝子変異又は当該変異を有するタンパク質の検出方法、被験者における癌の存在を検出する方法、被験者における癌を診断する方法、当該変異陽性の癌患者を同定する方法、並びにそのためのプライマーセット、プローブ及び検出用キットを提供することを課題とする。
 本発明は、チロシンキナーゼドメイン内に変異を有するFGFR4が、胃癌患者から得た検体に存在すること(実施例1~2)、このFGFR4遺伝子における変異が活性化変異であること(実施例5)、この変異FGFR4遺伝子の感染細胞が腫瘍形成能を有し、該遺伝子が癌の原因遺伝子であることを見出した(実施例7)。本発明者は、これらの知見から、この変異FGFR4遺伝子の癌の検出法を構築し、そのためのプライマーセット、プローブ及び検出用キットを提供し、この変異FGFR4遺伝子を検出することにより、FGFR4阻害剤治療の対象となる癌患者を選別することを可能とした。
 すなわち、本発明は、以下の[1]~[15]に関する。
[1]被験者における線維芽細胞増殖因子受容体4(FGFR4)変異体の検出方法であって、被験者から得た試料中の、FGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異の存在を検出する工程を包含する、方法。
[2]前記変異が下記(1)乃至(2)に記載のFGFR4における変異である、[1]に記載の方法。
(1)FGFR4アイソフォーム1の636番目のグリシンからシステインへの変異;又は
(2)FGFR4アイソフォーム2の596番目のグリシンからシステインへの変異。
[3]前記変異が下記(1)乃至(2)に記載のFGFR4における変異である、[1]又は[2]に記載の方法。
(1)配列番号2に示されるアミノ酸配列からなるFGFR4の636番目のグリシンからシステインへの変異;又は
(2)配列番号4に示されるアミノ酸配列からなるFGFR4の596番目のグリシンからシステインへの変異。
[4]下記(1)乃至(2)に記載のFGFR4遺伝子における変異の存在を検出する工程を包含する、[1]又は[2]に記載の方法。
(1)FGFR4アイソフォーム1遺伝子の1906番目のグアニンからチミンへの変異;又は
(2)FGFR4アイソフォーム2遺伝子の1786番目のグアニンからチミンへの変異。
[5]下記(1)乃至(2)に記載のFGFR4遺伝子における変異の存在を検出する工程を包含する、[1]~[4]のいずれかに記載の方法。
(1)配列番号1に示される塩基配列からなるFGFR4遺伝子の1906番目のグアニンからチミンへの変異;又は
(2)配列番号3に示される塩基配列からなるFGFR4遺伝子の1786番目のグアニンからチミンへの変異。
[6]前記変異がFGFR4アイソフォーム1の636番目のグリシンからシステインへの変異である、[2]に記載の方法。
[7]前記変異が配列番号2に示されるアミノ酸配列からなるFGFR4の636番目のグリシンからシステインへの変異である、[6]に記載の方法。
[8]FGFR4アイソフォーム1遺伝子の1906番目のグアニンからチミンへの変異の存在を検出する工程を包含する、[6]に記載の方法。
[9]配列番号1に示される塩基配列からなるFGFR4遺伝子の1906番目のグアニンからチミンへの変異の存在を検出する工程を包含する、[6]~[8]のいずれかに記載の方法。
[10]下記(1)乃至(2)に記載のFGFR4遺伝子における領域を増幅できるように設計したプライマーセットを用いて、前記被験者から得た試料中の核酸を増幅させる工程を包含する、[1]~[9]のいずれかに記載の方法。 
(1)配列番号1に示される塩基配列からなるFGFR4遺伝子における1906番目の塩基を含む領域;又は
(2)配列番号3に示される塩基配列からなるFGFR4遺伝子における1786番目の塩基を含む領域。
[11]前記プライマーセットが、以下の(1)及び(2)からなる群より選択される、[10]に記載の方法。
(1)配列番号1の塩基番号1から1905間の任意の連続する少なくとも16塩基のオリゴヌクレオチドからなるセンスプライマー及び配列番号1の塩基番号1907から2409間の任意の連続する少なくとも16塩基のオリゴヌクレオチドに対して相補的であるオリゴヌクレオチドからなるアンチセンスプライマーのプライマーセット;並びに
(2)配列番号3の塩基番号1から1785間の任意の連続する少なくとも16塩基のオリゴヌクレオチドからなるセンスプライマー及び配列番号3の塩基番号1787から2289間の任意の連続する少なくとも16塩基のオリゴヌクレオチドに対して相補的であるオリゴヌクレオチドからなるアンチセンスプライマーのプライマーセット。
[12]下記(1)乃至(2)に記載のFGFR4遺伝子における変異を含む領域にストリンジェント条件下でハイブリダイズすることができるように設計したプローブを、前記被験者から得た試料中の核酸にハイブリダイズさせる工程を包含する、[1]~[9]のいずれかに記載の方法。 
(1)配列番号1に示される塩基配列からなるFGFR4遺伝子の1906番目のグアニンからチミンへの変異;又は
(2)配列番号3に示される塩基配列からなるFGFR4遺伝子の1786番目のグアニンからチミンへの変異。
[13]前記被験者から試料を得る工程を包含する、[1]~[12]のいずれかに記載の方法。
[14]前記被験者が癌患者である、[1]~[13]のいずれかに記載の方法。
[15]前記癌が胃癌である、[14]に記載の方法。
 また、本発明は、以下の[16]~[18]に関する。
[16]被験者における癌の存在を検出する方法であって、前記[1]~[12]のいずれかに記載の工程を包含する、方法。
[17]前記被験者から試料を得る工程を包含する、[16]に記載の方法。
[18]前記癌が胃癌である、[16]又は[17]に記載の方法。
 また、本発明は、以下の[19]~[23]に関する。
[19]被験者における癌を診断する方法であって、前記[1]~[12]のいずれかに記載の工程を包含する、方法。
[20]前記被験者から試料を得る工程を包含する、[19]に記載の方法。
[21]前記変異が前記被験者から得た試料から検出された場合に、該被験者が癌に罹患している可能性が高いと判定する工程をさらに包含する、[19]又は[20]に記載の方法。
[22]前記癌が胃癌である、[19]又は[20]に記載の方法。
[23]前記変異が前記被験者から得た試料から検出された場合に、該被験者が胃癌に罹患している可能性が高いと判定する工程をさらに包含する、[22]に記載の方法。
 また、本発明は、以下の[24]~[27]に関する。
[24]FGFR4阻害剤による治療の適応対象となる被験者を同定する方法であって、該被験者は癌患者であり、前記[1]~[12]のいずれかに記載の工程を包含する、方法。
[25]前記被験者から試料を得る工程を包含する、[24]に記載の方法。
[26]前記変異が前記被験者から得た試料から検出された場合に、該被験者がFGFR4阻害剤による治療の適応対象であると判定する工程をさらに包含する、[24]又は[25]に記載の方法。
[27]前記癌が胃癌である、[24]~[26]のいずれかに記載の方法。
 また、本発明は、以下の[28]~[31]に関する。
[28]被験者から得た試料中のFGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異の存在を検出するためのプライマーセットであって、下記(1)乃至(2)に記載のFGFR4遺伝子における領域を増幅できるように設計した、プライマーセット。
(1)配列番号1に示される塩基配列からなるFGFR4遺伝子における1906番目の塩基を含む領域;又は
(2)配列番号3に示される塩基配列からなるFGFR4遺伝子における1786番目の塩基を含む領域。
[29]以下の(1)及び(2)からなる群より選択される、[28]に記載のプライマーセット。
(1)配列番号1の塩基番号1から1905間の任意の連続する少なくとも16塩基のオリゴヌクレオチドからなるセンスプライマー及び配列番号1の塩基番号1907から2409間の任意の連続する少なくとも16塩基のオリゴヌクレオチドに対して相補的であるオリゴヌクレオチドからなるアンチセンスプライマーのプライマーセット;並びに
(2)配列番号3の塩基番号1から1785間の任意の連続する少なくとも16塩基のオリゴヌクレオチドからなるセンスプライマー及び配列番号3の塩基番号1787から2289間の任意の連続する少なくとも16塩基のオリゴヌクレオチドに対して相補的であるオリゴヌクレオチドからなるアンチセンスプライマーのプライマーセット。
[30]前記被験者が癌患者である、[28]又は[29]に記載のプライマーセット。
[31]前記癌が胃癌である、[30]に記載のプライマーセット。
 また、本発明は、以下の[32]~[34]に関する。
[32]被験者から得た試料中のFGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異の存在を検出するためのプローブであって、下記(1)乃至(2)に記載のFGFR4遺伝子における変異を含む領域にストリンジェント条件下でハイブリダイズすることができるように設計した、プローブ。
(1)配列番号1に示される塩基配列からなるFGFR4遺伝子の1906番目のグアニンからチミンへの変異;又は
(2)配列番号3に示される塩基配列からなるFGFR4遺伝子の1786番目のグアニンからチミンへの変異。
[33]前記被験者が癌患者である、[32]に記載のプローブ。
[34]前記癌が胃癌である、[33]に記載のプローブ。
 また、本発明は、以下の[35]~[37]に関する。
[35]被験者から得た試料中のFGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異の存在を検出するための検出用キットであって、前記[28]又は[29]に記載のプライマーセット或いは前記[32]に記載のプローブの少なくとも1つを含む、検出用キット。
[36]前記被験者が癌患者である、[35]に記載の検出用キット。
[37]前記癌が胃癌である、[36]に記載の検出用キット。
 また、本発明は、以下の[38]~[45]に関する。
[38]被験者における癌の存在を検出する方法であって、前記[28]又は[29]に記載のプライマーセットを用いて、被験者から得た試料中の核酸を増幅させる工程を包含する、方法。
[39]前記プライマーセットを用いて、下記(1)乃至(2)に記載のFGFR4遺伝子における領域を増幅させる工程を包含する、[38]に記載の方法。
(1)FGFR4アイソフォーム1遺伝子の1906番目の塩基を含む領域;又は
(2)FGFR4アイソフォーム2遺伝子の1786番目の塩基を含む領域。
[40]前記プライマーセットを用いて、下記(1)乃至(2)に記載のFGFR4遺伝子における領域を増幅させる工程を包含する、[38]又は[39]に記載の方法。
(1)配列番号1に示される塩基配列からなるFGFR4遺伝子の1906番目の塩基を含む領域;又は
(2)配列番号3に示される塩基配列からなるFGFR4遺伝子の1786番目の塩基を含む領域。
[41]被験者における癌の存在を検出する方法であって、前記[32]に記載のプローブを、被験者から得た試料中の核酸にハイブリダイズさせる工程を包含する、方法。
[42]前記プローブを、下記(1)乃至(2)に記載のFGFR4遺伝子における変異を含む領域にハイブリダイズさせる工程を包含する、[41]に記載の方法。
(1)FGFR4アイソフォーム1遺伝子の1906番目のグアニンからチミンへの変異;又は
(2)FGFR4アイソフォーム2遺伝子の1786番目のグアニンからチミンへの変異。
[43]前記プローブを、下記(1)乃至(2)に記載のFGFR4遺伝子における変異を含む領域にハイブリダイズさせる工程を包含する、[41]又は[42]に記載の方法。
(1)配列番号1に示される塩基配列からなるFGFR4遺伝子の1906番目のグアニンからチミンへの変異;又は
(2)配列番号3に示される塩基配列からなるFGFR4遺伝子の1786番目のグアニンからチミンへの変異。
[44]前記被験者から試料を得る工程を包含する、[38]~[43]のいずれかに記載の方法。
[45]前記癌が胃癌である、[38]~[44]のいずれかに記載の方法。
 また、本発明は、以下の[46]~[50]に関する。
[46]被験者における癌を診断する方法であって、前記[38]~[43]のいずれかに記載の工程を包含する、方法。
[47]前記被験者から試料を得る工程を包含する、[46]に記載の方法。
[48]前記変異が前記被験者から得た試料から検出された場合に、該被験者が癌に罹患している可能性が高いと判定する工程をさらに包含する、[46]又は[47]に記載の方法。
[49]前記癌が胃癌である、[46]又は[47]に記載の方法。
[50]前記変異が前記被験者から得た試料から検出された場合に、該被験者が胃癌に罹患している可能性が高いと判定する工程をさらに包含する、[49]に記載の方法。
 また、本発明は、以下の[51]~[54]に関する。
[51]FGFR4阻害剤による治療の適応対象となる被験者を同定する方法であって、該被験者は癌患者であり、前記[38]~[43]のいずれかに記載の工程を包含する、方法。
[52]前記被験者から試料を得る工程を包含する、[51]に記載の方法。
[53]前記変異が前記被験者から得た試料から検出された場合に、該被験者がFGFR4阻害剤による治療の適応対象であると判定する工程をさらに包含する、[51]又は[52]に記載の方法。
[54]前記癌が胃癌である、[51]~[53]のいずれかに記載の方法。
 また、本発明は、以下の[55]~[56]に関する。
 [55]FGFR4阻害剤を患者に投与する工程を包含する癌の治療方法であって、該患者が前記[24]~[26]及び[51]~[53]のいずれかに記載の方法によって同定された患者である、に記載の方法。
 [56]前記癌が胃癌である、[55]に記載の方法。
 また、本発明は、以下の[57]~[59]に関する。
[57]FGFR4チロシンキナーゼドメインにおける183番目のグリシンからシステインへの変異を有する、FGFR4変異体ポリペプチド又は該ポリペプチドをコードするポリヌクレオチド。
[58]試験物質が前記ポリペプチド又はポリヌクレオチドの活性又は発現を阻害するか否かを評価する工程を包含する、癌治療剤のスクリーニング方法。
[59]前記癌が胃癌である、[58]に記載の方法。
 本発明の検出方法は、FGFR4の新規変異体を検出する方法であり、癌患者(特に、胃癌患者)に対してFGFR阻害剤の適用対象者であるか否かを鑑別することができる。また、本方法は、被験者における癌(特に、胃癌)を検出及び診断する方法として利用できる。また、本発明のプライマーセット、プローブ及び検出用キットは、本発明の方法に用いることができる。
《本発明の検出方法》
 本発明の検出方法は、被験者における線維芽細胞増殖因子受容体4(FGFR4)変異体の検出方法であって、被験者から得た試料中の、FGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異の存在を検出する工程を含む。
 被験者から得た試料としては、被験者からの採取物(生体から分離した試料)、具体的には、任意の採取された細胞組織、体液(血液、口腔粘液、循環腫瘍細胞(Circulating tumor cell)、エキソソーム等)、生検された試料等を用いるが、好適には生検された試料を用いる。採取した試料からゲノムDNAもしくはRNAを抽出して用いることができ、またその転写産物(ゲノムが転写及び翻訳される結果生じる産物;例えば、mRNA、cDNA、蛋白質)を用いることができる。特には、mRNA又はcDNAを調製して用いることが好ましい。
 現在まで、FGFR4には2つのアイソフォーム、アイソフォーム1及び2が存在することが知られている。FGFR4アイソフォーム1は全長802アミノ酸からなるFGFR4であり、例えば、野生型のFGFR4アイソフォーム1は、配列番号2に示されるアミノ酸配列からなり、配列番号1に示される塩基配列からなるポリヌクレオチドにコードされる。FGFR4アイソフォーム2は全長762アミノ酸からなるFGFR4であり、例えば、野生型のFGFR4アイソフォーム2は、配列番号4に示されるアミノ酸配列からなり、配列番号3に示される塩基配列からなるポリヌクレオチドにコードされる。FGFR4のアイソフォーム1及び2は、その細胞膜内領域において共通のチロシンキナーゼドメインを有する。本明細書中で使用される場合、FGFR4のチロシンキナーゼドメインとは、FGFR4アイソフォーム1のアミノ酸第454~764位、アイソフォーム2のアミノ酸第414~724位にそれぞれ対応する、311アミノ酸からなる領域を意味する。野生型のFGFR4アイソフォーム1及び2のチロシンキナーゼドメインは、配列番号10に示されるアミノ酸配列からなり、配列番号9に示される塩基配列からなるポリヌクレオチドにコードされる。
 本発明の方法における検出対象となる変異(「検出対象変異」とも称する)は、FGFR4のチロシンキナーゼドメイン内の変異であり、具体的には、FGFR4のチロシンキナーゼドメインの183番目のグリシンからシステインへの変異である。本検出対象変異の代表的な例としては、配列番号10に示されるアミノ酸配列からなるFGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異が挙げられる。本検出対象変異は、FGFR4遺伝子のチロシンキナーゼドメインコード領域における変異に起因し、従って、本発明の方法において遺伝子変異の存在を検出してもよい。このような遺伝子変異の代表的な例としては、配列番号9に示される塩基配列からなるFGFR4遺伝子のチロシンキナーゼドメインコード領域の547番目のグアニンからチミンへの変異が挙げられる。
 前述の検出対象変異は、FGFR4アイソフォーム1においては636番目のグリシンからシステインへの変異に対応し、FGFR4アイソフォーム2においては596番目のグリシンからシステインへの変異に対応する。また、これらの変異にそれぞれ対応するFGFR4遺伝子における変異としては、FGFR4アイソフォーム1遺伝子の1906番目のグアニンからチミンへの変異、FGFR4アイソフォーム2遺伝子の1786番目のグアニンからチミンへの変異が挙げられる。
 本発明の方法における検出対象変異のより具体的な例としては、配列番号2に示されるアミノ酸配列からなるFGFR4の636番目のグリシンからシステインへの変異、配列番号4に示されるアミノ酸配列からなるFGFR4の596番目のグリシンからシステインへの変異が挙げられる。また、これらに対応するFGFR4遺伝子における変異の例としては、配列番号1に示される塩基配列からなるFGFR4遺伝子の1906番目のグアニンからチミンへの変異、配列番号3に示される塩基配列からなるFGFR4遺伝子の1786番目のグアニンからチミンへの変異が挙げられる。
 本発明の方法においては、検出対象変異を有するタンパク質(「変異型タンパク質」とも称する)又は検出対象変異を有するタンパク質をコードするポリヌクレオチド(「変異型ポリヌクレオチド」とも称する)のいずれを検出対象としてもよい。変異型タンパク質の例としては、配列番号6又は配列番号8に示されるアミノ酸配列からなるタンパク質が挙げられる。また、変異型ポリヌクレオチドの例としては、配列番号5又は配列番号7に示される塩基配列からなるポリヌクレオチドが挙げられる。
 本発明の検出方法において変異型ポリヌクレオチドの存在を検出する場合、本検出工程は、被験者から得た試料のゲノムDNA中の変異型ポリヌクレオチドの存在を検出すること、あるいは、被験者から得た試料から抽出したゲノムDNAの転写産物(例えば、mRNA又はcDNA)を調製し、変異型ポリヌクレオチドに対応するmRNA又はcDNAの存在を検出することにより実施できる。ゲノムDNAの抽出、mRNA及びcDNAの調製は当該分野で公知の方法で行うことができ、市販のキットを用いて簡便に行うことができる。
 本検出工程は、当該分野で公知の遺伝子変異解析方法を使用することができる。例えば、本検出工程は、被験者から得た試料由来の核酸(例えば、mRNAやcDNA等)に対して公知の核酸増幅方法(PCR法、RT-PCR法、LCR法(Ligase chain Reaction)、SDA法(Strand displacement amplification)、NASBA法(Nucleic acid sequence-based amplification)、ICAN法(Isothermal and chimeric primer-initiated amplification of nucleic acids)、LAMP法(Loop-mediated isothermal amplification)、TMA法(Gen-Probe’s TMA system)等)を用いて、変異型ポリヌクレオチド中の検出対象変異に対応する部分を含む領域(「検出対象変異領域」とも称する)を増幅させる工程を含み、増幅後、この増幅産物について配列決定を行うことによって変異の有無を確認することができる。このような配列決定法としては、ダイレクトシーケンス法等の当該分野で公知の方法を使用することができる。
 前述の核酸増幅方法に用いられるプライマーは、変異型ポリヌクレオチド中の検出対象変異領域を増幅できるものであれば、特には限定されず、変異型ポリヌクレオチドの塩基配列に基づいて設計する。プライマー設計は、プライマー設計ソフトウェア(例えば、Primer Express;PE Biosystems)等を利用してできる。また、増幅産物のサイズが大きくなると増幅効率が悪くなるため、センスプライマーとアンチセンスプライマーは、mRNA又はcDNAを対象に増幅したときの増幅産物の大きさが1kb以下になるように設定するのが適切である。
 核酸増幅方法を用いる別の公知の遺伝子変異解析方法として、RFLP法(制限酵素断片長多型解析法)、TaqMan法、アレル特異的プライマーPCR(ASP-PCR)法、SSCP法等のPCRに基づく方法も使用可能である。RFLP法は、PCRにより検出対象変異領域を増幅した後、変異に基づき制限酵素認識部位に変化が生じる場合に、その制限酵素処理後の核酸断片の差異を電気泳動により解析する。TaqMan法は、5’末端に蛍光物質(FAM、VIC等)、3’末端にクエンチャー(消光)物質で修飾したプローブ(TaqManプローブ)をPCR反応系に添加する方法である。本方法では、検出対象変異領域に対してTaqManプローブをハイブリダイズさせ、プライマーからのPCR反応を行うと、伸長反応におけるDNAポリメラーゼの5’→3’エキソヌクレアーゼ活性によりTaqManプローブが分解され、それにより蛍光物質がプローブより遊離し、クエンチャーによる抑制が解除されて蛍光物質から蛍光が発し、これにより目的の変異が検出される。ASP-PCR法は、3’末端に検出対象変異部位を有するようにプライマーを設計し、PCRによる核酸増幅の有無を検出する方法である。SSCP法では、検出対象変異領域をPCR増幅した後、一本鎖DNAに分離し、これを非変性ゲルでの電気泳動により分離する。変異によりDNAの高次構造が変化し、これがゲル上の移動度の差異を反映する。
 また別の公知の遺伝子変異解析方法として、プローブハイブリダイゼーションに基づく方法も使用可能であり、例えば、DNAチップ法、Invader法、融解曲線解析法等が挙げられる。DNAチップ法では、検出対象変異領域を含むDNAを基板上に配置し、被験者由来の核酸をDNAチップにハイブリダイズさせ、ハイブリダイズの有無を確認する。Invader法では、検出対象変異部位の前後にハイブリダイズする2種の核酸(Invaderオリゴ及びシグナルプローブ)を被験者由来の核酸に反応させた後、形成されるDNAの三重鎖構造を認識するClevase酵素を作用させ、シグナルプローブ中のFlapを遊離させる。次いで、Flapが検出用FRET Probeとハイブリダイズし、これに同酵素が再度作用し、FRET Probeから遊離された蛍光物質の蛍光を検出する。融解曲線解析法は、検出対象変異領域に蛍光標識プローブをハイブリダイズさせた後、徐々に温度を上昇させ、温度上昇に伴う蛍光の変化を測定して融解曲線を作成する。これにより、変異の有無に伴う融解温度の変化を確認する。
 また別の公知の遺伝子変異解析方法として、プライマーエクステンションに基づく方法も使用可能であり、例えば、SNaPshot法、Pyrosequencing法が挙げられる。SNaPshot法では、検出対象変異部位に隣接するプライマーと蛍光標識したddNTPを用い、プライマーから一塩基のみを伸長させて取り込まれた塩基を検出する。Pyrosequencing法では、プライマー伸長反応において、1種類ずつdNTPを添加し、ポリメラーゼの反応によりdNTPが取り込まれるとピロリン酸が生じる。生じたピロリン酸をルシフェラーゼによる蛍光反応で検出し、発光ピークパターンから塩基配列を決定する。
 当業者であれば、使用する遺伝子変異解析方法に基づいて、使用されるプライマー及びプローブを適宜設計することができ、特に限定されることはないが、例えば、化学合成法によって製造することができる。
 本発明の検出方法においては、被験者から得た試料中の変異型タンパク質の存在を検出してもよく、例えば、変異型タンパク質を特異的に認識する抗体を用いて実施できる。このような抗体の作製及び抗体を用いたタンパク質の検出は、当該分野で公知の方法を用いて行うことができる。
 本発明の方法において、検出対象変異が被験者から得た試料から検出された場合、当該被験者が癌(特には胃癌)に罹患している可能性が高いと判定できる
 また、本発明の方法における検出工程は、被験者における癌(特には胃癌)の存在の検出方法、又は被験者における癌の診断方法に使用することができる。本発明の診断方法は、本発明の検出工程に加えて、当該変異が被験者から得た試料から検出された場合に、被験者が癌(特には胃癌)に罹患している可能性が高いと判定する工程を含んでもよい。また、当該検出工程は、FGFR4阻害剤による治療の適応対象となる被験者(胃癌などの癌患者)を同定する方法にも使用することができる。本発明の同定方法は、当該検出工程に加えて、当該変異が被験者から得た試料から検出された場合に、被験者がFGFR4阻害剤による治療の適応対象であると判定する工程を含んでもよい。
《本発明のプライマーセット、プローブ、検出用キット》
 本発明のプライマーセットは、被験者から得た試料中のFGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異の存在を検出するためのプライマーセットであって、本発明の検出工程における変異型ポリヌクレオチド中の検出対象変異領域を増幅できるように設計したセンスプライマー及びアンチセンスプライマーを含む。アンチセンスプライマーは、変異型ポリヌクレオチドにストリンジェントな条件下(好ましくは、よりストリンジェントな条件下)でハイブリダイズする核酸分子(好ましくは、少なくとも16塩基の核酸分子)からなり、センスプライマーは、変異型ポリヌクレオチドの相補鎖にストリンジェントな条件(好ましくは、よりストリンジェントな条件下)でハイブリダイズする核酸分子(好ましくは、少なくとも16塩基の核酸分子)からなる。
 好ましくは、本発明のプライマーセットは、配列番号1に示される塩基配列からなるFGFR4遺伝子における1906番目の塩基を含む領域、又は配列番号3に示される塩基配列からなるFGFR4遺伝子における1786番目の塩基を含む領域を増幅できるように設計したセンスプライマー及びアンチセンスプライマーを含む。
 本発明のプライマーセットの具体的な態様としては、以下(1)及び(2)からなる群より選択されるプライマーセットが挙げられる:
(1)配列番号1の塩基番号1から1905間の任意の連続する少なくとも16塩基のオリゴヌクレオチドからなるセンスプライマー及び配列番号1の塩基番号1907から2409間の任意の連続する少なくとも16塩基のオリゴヌクレオチドに対して相補的であるオリゴヌクレオチドからなるアンチセンスプライマーのプライマーセット;並びに
(2)配列番号3の塩基番号1から1785間の任意の連続する少なくとも16塩基のオリゴヌクレオチドからなるセンスプライマー及び配列番号3の塩基番号1787から2289間の任意の連続する少なくとも16塩基のオリゴヌクレオチドに対して相補的であるオリゴヌクレオチドからなるアンチセンスプライマーのプライマーセット。
 より好ましくは、本発明のプライマーセットは、配列番号9に示される塩基配列からなるFGFR4遺伝子のチロシンキナーゼドメインコード領域における547番目の塩基を含む領域を増幅できるように設計したセンスプライマー及びアンチセンスプライマーを含み、具体的な態様としては、以下に示すプライマーセットが挙げられる:
配列番号9の塩基番号1から546間の任意の連続する少なくとも16塩基のオリゴヌクレオチドからなるセンスプライマー及び配列番号9の塩基番号548から933間の任意の連続する少なくとも16塩基のオリゴヌクレオチドに対して相補的であるオリゴヌクレオチドからなるアンチセンスプライマーのプライマーセット。
 本発明のプライマーセットは、本発明の方法において使用することができ、例えば、本発明の方法において、本発明のプライマーセットを用いて、被験者から得た試料中の核酸を増幅させる工程を含んでもよい。
 本発明のプローブは、被験者から得た試料中のFGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異の存在を検出するためのプローブであって、本発明の検出工程における変異型ポリヌクレオチド中の検出対象変異領域にハイブリダイズすることができるように設計したプローブである。本発明のプローブは、変異型ポリヌクレオチド又はその相補鎖中の検出対象変異領域にストリンジェントな条件下(好ましくは、よりストリンジェントな条件下)でハイブリダイズする核酸分子(好ましくは、少なくとも16塩基の核酸分子)からなる。
 好ましくは、本発明のプローブは、配列番号1に示される塩基配列からなるFGFR4遺伝子の1906番目のグアニンからチミンへの変異、又は配列番号3に示される塩基配列からなるFGFR4遺伝子の1786番目のグアニンからチミンへの変異を含む領域にハイブリダイズするように設計される。
 本発明のプローブは、本発明の方法において使用することができ、例えば、本発明の方法において、被験者から得た試料中の核酸に本発明のプローブをハイブリダイズさせる工程を含んでもよい。
 前記「ストリンジェントな条件」とは、ハイブリダイゼーションのための条件として、「5×SSPE、5×Denhardt’s液、0.5%SDS、50%ホルムアミド、200μg/mL鮭精子DNA、42℃オーバーナイト」、洗浄のための条件として、「0.5×SSC、0.1%SDS、42℃」の条件である。「よりストリンジェントな条件」とは、ハイブリダイゼーションのための条件として、「5×SSPE、5×Denhardt’s液、0.5%SDS、50%ホルムアミド、200μg/mL鮭精子DNA、42℃オーバーナイト」、洗浄のための条件として、「0.2×SSC、0.1%SDS、65℃」の条件である。
 前記プライマーセットにおいては、センスプライマーとアンチセンスセンスプライマーの選択位置の間隔が1kb以下であるか、あるいは、センスプライマーとアンチセンスセンスプライマーにより増幅される増幅産物の大きさが1kb以下であることが好ましい。また、本発明のプライマー及びプローブは、通常、15~40塩基、好ましくは16~24塩基、更に好ましくは18~24塩基、特に好ましくは20~24塩基の鎖長を有する。
 本発明のプライマーセット及びプローブは、例えば、化学合成法によって当業者に容易に製造することができ、また、検出方法に応じて、蛍光標識等で標識化してもよい。
 本発明の検出用キットは、被験者から得た試料中のFGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異の存在を検出するためのキットであり、好ましくは、本発明のプライマーセット又は本発明のプローブの少なくとも1つを含む。本発明のプライマーセット、プローブ及び検出用キットは、前述の本発明の方法において使用することもできる。例えば、本発明の方法は、本発明のプライマーセットを用いて検出対象変異領域を増幅する工程を含んでもよく、本発明のプローブを検出対象変異領域にハイブリダイズさせる工程を含んでよい。
《本発明の治療方法》
 本発明の治療方法は、本発明のFGFR4変異体の陽性の癌(特には胃癌)患者にFGFR4阻害剤を投与する工程を包含する、癌の治療方法である。本発明の治療方法において、前述の方法を用いて、FGFR4阻害剤による治療の適応対象と同定された患者を治療することができる。FGFR4阻害剤としては、PD173074(例えば、Clin Cancer Res.2005 Feb 1;11(3):1336-41)、抗FGFR4抗体(例えば、MAbs. 2011;3(4):376-86)など当業者に公知の種々のFGFR4阻害剤が使用できる。
《本発明のスクリーニング方法》
 本発明者らによって同定されたFGFR4変異体は、胃癌患者においてその存在が検出され、癌の原因遺伝子であることも確認された。従って、本発明のFGFR4変異体の活性又は発現を阻害する物質をスクリーニングする方法は、本発明のFGFR4変異体の陽性の癌(好ましくは胃癌)治療剤をスクリーニングする方法として利用できる。
 例えば、本発明のスクリーニング方法は、本発明のFGFR4変異体に試験物質を接触させ、その活性が阻害されるか否かを分析するか、又は本発明のFGFR4変異体を発現する細胞に試験物質を接触させ、その活性又は発現が阻害されるか否かを分析することによって実施することができる。本発明のFGFR4変異体の活性(即ち自己リン酸化活性)が阻害されたか否かは、試験物質を接触させた本発明のFGFR4変異体のチロシンリン酸化レベルの変化を分析することにより判定でき、これは、当該分野で公知のアッセイ方法を用いて実施可能である。また、本発明のFGFR4変異体の発現が阻害されたか否かは、試験物質を接触させた本発明のFGFR4変異体を発現する細胞におけるmRNA又は蛋白質の発現を抑制するか否かにより分析することにより判定でき、これは、定量的PCR法やELISA法などの当該分野で公知の方法を用いて実施可能である。あるいは、後述の実施例のように、本発明のFGFR4変異体を発現する細胞をヌードマウスに接種し、該マウスに試験物質を投与した場合の、腫瘍増殖に対する阻害作用を確認してもよい。
 以下、実施例によって本発明を詳述するが、本発明は該実施例によって限定されるものではない。なお、特に断りがない場合は、公知の方法に従って実施可能である。また、市販の試薬やキット等を用いる場合には市販品の指示書に従って実施可能である。
[実施例1] 胃癌臨床検体にけるG636C変異FGFR4(G636C-FGFR4)ポリヌクレオチドの発見
 胃癌患者組織由来RNA(米国アステランド社)St041検体RNAに対して、逆転写酵素(SuperScriptIII、ライフテクノロジーズ社)及びオリゴ(dT)プライマー(オリゴ(dT)20プライマー、ライフテクノロジーズ社)を用いて、キットのプロトコールにしたがって逆転写反応を行い、cDNAを合成した。
 次に、配列番号11および配列番号12のプライマーを用いて、上記で得たcDNAを鋳型として、DNAポリメラーゼ(KOD-Plus-Ver.2;東洋紡)を用いてPCR(98℃30秒、52℃30秒、68℃30秒を35サイクル)を行った。その後、前述PCR産物をカラム(PCR Purification Kit;キアゲン社)を用いて精製した。その後、配列番号13のプライマーを用いて、上記で得た精製PCR産物を鋳型として、シークエンス反応を実施した(Big Dye Terminator v3.1 Cycle Sequencing Kit;ライフテクノロジーズ社)。
 この結果、FGFR4アイソフォーム1(GenBank登録番号:NM_002011.3、GenBank登録番号:NM_213647.1)のコーディング領域(配列番号1)における1906番目、FGFR4アイソフォーム2(GenBank登録番号:NM_022963.2)のコーディング領域(配列番号3)における1786番目にそれぞれ対応する位置での、グアニン(G)からチミン(T)への置換が見いだされた。この変異は、アイソフォーム1のアミノ酸配列(配列番号2)における636番目、アイソフォーム2のアミノ酸配列(配列番号4)における596番目にそれぞれ対応するアミノ酸位置での、グリシン(G)からシステイン(C)への変異に相当する。この変異を有するFGFR4変異体をG636C-FGFR4とも称する。
[実施例2] 胃癌サンプルにおけるG636C-FGFR4の検出
 胃癌患者組織由来RNA(米国アステランド社)83サンプルに対して、実施例1と同じ方法を用いて、G636C-FGFR4変異の有無を確認した。
 その結果、サンプルSt041で、前述のG636C-FGFR4変異が検出された。このことから、上記方法により、胃癌臨床検体由来の試料中のG636C-FGFR4の存在を検出することができ、G636C-FGFR4の陽性患者を選択できることが示された。
[実施例3] 野生型及び変異体FGFR4のクローニング
 G636C-FGFR4のORF全長をタンパク質として発現するため、まず野生型FGFR4(アイソフォーム1)をクローニングした。配列番号14(制限酵素サイトとして、SpeIを含む)及び配列番号15(制限酵素サイトとして、XhoIを含む)のプライマーにて、全長FGFR4(UltimateTM ORFCard for Clone ID IOH13371:ライフテクノロジーズ社)を鋳型として、DNAポリメラーゼ(PrimeSTAR GXL DNA Polymerase;タカラバイオ株式会社)を用いてPCR(98℃10秒、55℃15秒、68℃2分を30サイクル)を行った。本PCR産物をクローニングベクター(TOPO XL PCR Cloning Kit;ライフテクノロジーズ社)にクローニングした(FGFR4/TOPO XL)。
 次に、FGFR4/TOPO XLを鋳型に、配列番号16及び配列番号17のプライマーを用いてMutagenesis法(PrimeSTAR(登録商標)Mutagenesis Basal Kit;タカラバイオ株式会社)にて、G636C変異を導入した(G636C-FGFR4/TOPO XL)。作製したG636C-FGFR4の塩基配列及びアミノ酸配列を、配列番号5及び配列番号6にそれぞれ示す。
[実施例4] 野生型及び変異体FGFR4の発現ベクターの作製
 FGFR4/TOPO XL及びG636C-FGFR4/TOPO XLを鋳型として、配列番号18および配列番号19のプライマーにて、DNAポリメラーゼ(PrimeSTAR GXL DNA Polymerase;タカラバイオ株式会社)を用いてPCR(98℃10秒、55℃15秒、68℃2分を30サイクル)を行った。増幅されたDNA断片を電気泳動した後、ゲルから切り出し、カラム精製を行った。これらPCR断片を、EcoRVにて切断したpTracerTM-CMV Bsd(ライフテクノロジーズ社)に、In-Fusionクローニングシステム(In-Fusion(登録商標)Advantage PCR Cloning Kit w/Cloning Enhancer;タカラバイオ株式会社)にてクローニングした。これら野生型及び変異体FGFR4について作製したベクターを、FGFR4/pTracer-CMV-Bsd及びG636C-FGFR4/pTracer-CMV-Bsdと称する。
[実施例5] G636C変異が活性化変異であることの確認
 HEK293細胞を24ウェルプレートに2×105個播種した後、トランスフェクション試薬(Lipofectamine 2000;ライフテクノロジーズ社)を用いてFGFR4/pTracer-CMV-Bsd又はG636C-FGFR4/pTracer-CMV-Bsdをそれぞれ400ng遺伝子導入した。翌日、細胞をSDSサンプルバッファーにて溶解し、ウエスタンブロッティングを行った。抗リン酸化FGFR4抗体(Cell Signaling Technology)及び抗リン酸化ERK1/2抗体(Cell Signaling Technology)にて検出した結果、FGFR4/pTracer-CMV-Bsdに比べ、G636C-FGFR4/pTracer-CMV-Bsdを導入したHEK293細胞のFGFR4の自己リン酸化の亢進及びERKのリン酸化亢進が認められた。以上より、G636Cが活性化変異であることが示された。
[実施例6] 野生型及び変異体FGFR4のレンチウイルス発現ベクターの作製
 FGFR4/TOPO XLをSpeI、XhoIで消化し、核酸断片をSpeI、SalI消化したレンチウイルス発現ベクター(pLenti6.3/V5-TOPO;ライフテクノロジーズ社)のマルチクローニングサイトに存在するSpeI-SalIサイトにクローニングした(FGFR4/pLenti6.3と命名)。同様の手法にて、G636C-FGFR4/TOPO XLから、レンチウイルス発現ベクターG636C-FGFR4/pLenti6.3を構築した。
 上記、FGFR4/pLenti6.3又はG636C-FGFR4/pLenti6.3をそれぞれ3μg、パッケージング用プラスミド9μg(ViraPowerTM Packaging Mix;ライフテクノロジーズ社)と共に、トランスフェクション試薬(Lipofectamine 2000;ライフテクノロジーズ社)を用いて、293FT細胞パッケージング細胞(ライフテクノロジーズ社)に導入した。導入3日後の培養上清を、レンチウイルスとして回収し、ポリブレン(polybrene;Sigma社)を6μg/mlの濃度で添加した後、マウスNIH3T3細胞に添加した。2日後にNIH3T3細胞の培養上清をDMEM培地(インビトロジェン社)に10%牛血清(インビトロジェン社)及びBlastcidin(InvivoGen社)5μg/mlを添加したものに交換し、さらに2週間培養を続け、野生型FGFR4及びG636C-FGFR4をそれぞれ安定発現するNIH3T3細胞を2株ずつ(それぞれ、FGFR4/NIH3T3-e7及びFGFR4/NIH3T3-f7、並びにG636C-FGFR4/NIH3T3-c1及びG636C-FGFR4/NIH3T3-c2と命名)を取得した。
[実施例7] G636C-FGFR4の腫瘍形成能の検討
 in vivoにおける造腫瘍能を検討するため本細胞株をヌードマウスに移植し腫瘍形成能を検討した。FGFR4/NIH3T3-e7、FGFR4/NIH3T3-f7、G636C-FGFR4/NIH3T3-c1、及びG636C-FGFR4/NIH3T3-c2の各細胞をヌードマウスの皮下に3×106個ずつ接種し22日間観察した。その結果、FGFR4/NIH3T3-e7又はFGFR4/NIH3T3-f7を移植したマウスでは腫瘍形成が確認されなかった。一方、G636C-FGFR4/NIH3T3-c1又はG636C-FGFR4/NIH3T3-c2を移植したマウスにおいては、いずれも腫瘍形成が確認された。以上から、G636C-FGFR4は癌の原因遺伝子であることが示された。
 本発明の検出方法は、FGFR4の新規変異体を検出する方法であり、癌患者(特に、胃癌患者)に対してFGFR阻害剤の適用対象者であるか否かを鑑別するのに有用である。また、本方法は、被験者における癌(特に、胃癌)を検出及び診断する方法としても有用である。また、本発明のプライマーセット、プローブ及び検出用キットは、本発明の方法に用いることができる。

Claims (14)

  1.  被験者における線維芽細胞増殖因子受容体4(FGFR4)変異体の検出方法であって、被験者から得た試料中の、FGFR4チロシンキナーゼドメインの183番目のグリシンからシステインへの変異の存在を検出する工程を包含する、方法。
  2.  前記変異が下記(1)乃至(2)に記載のFGFR4における変異である、請求項1に記載の方法。
    (1)FGFR4アイソフォーム1の636番目のグリシンからシステインへの変異;又は
    (2)FGFR4アイソフォーム2の596番目のグリシンからシステインへの変異。
  3.  前記変異が下記(1)乃至(2)に記載のFGFR4における変異である、請求項1に記載の方法。
    (1)配列番号2に示されるアミノ酸配列からなるFGFR4の636番目のグリシンからシステインへの変異;又は
    (2)配列番号4に示されるアミノ酸配列からなるFGFR4の596番目のグリシンからシステインへの変異。
  4.  下記(1)乃至(2)に記載のFGFR4遺伝子における変異の存在を検出する工程を包含する、請求項1に記載の方法。
    (1)FGFR4アイソフォーム1遺伝子の1906番目のグアニンからチミンへの変異;又は
    (2)FGFR4アイソフォーム2遺伝子の1786番目のグアニンからチミンへの変異。
  5.  下記(1)乃至(2)に記載のFGFR4遺伝子における変異の存在を検出する工程を包含する、請求項1に記載の方法。
    (1)配列番号1に示される塩基配列からなるFGFR4遺伝子の1906番目のグアニンからチミンへの変異;又は
    (2)配列番号3に示される塩基配列からなるFGFR4遺伝子の1786番目のグアニンからチミンへの変異。
  6.  下記(1)乃至(2)に記載のFGFR4遺伝子における領域を増幅できるように設計したプライマーセットを用いて、前記被験者から得た試料中の核酸を増幅させる工程を包含する、請求項1に記載の方法。 
    (1)配列番号1に示される塩基配列からなるFGFR4遺伝子における1906番目の塩基を含む領域;又は
    (2)配列番号3に示される塩基配列からなるFGFR4遺伝子における1786番目の塩基を含む領域。
  7.  下記(1)乃至(2)に記載のFGFR4遺伝子における変異を含む領域にストリンジェント条件下でハイブリダイズすることができるように設計したプローブを、前記被験者から得た試料中の核酸にハイブリダイズさせる工程を包含する、請求項1に記載の方法。 
    (1)配列番号1に示される塩基配列からなるFGFR4遺伝子の1906番目のグアニンからチミンへの変異;又は
    (2)配列番号3に示される塩基配列からなるFGFR4遺伝子の1786番目のグアニンからチミンへの変異。
  8.  前記被験者から試料を得る工程を包含する、請求項1~7のいずれかに記載の方法。
  9.  前記被験者が癌患者である、請求項1~7のいずれかに記載の方法。
  10.  前記癌が胃癌である、請求項9に記載の方法。
  11.  被験者における癌の存在を検出する方法であって、請求項1~7のいずれかに記載の工程を包含する、方法。
  12.  被験者における癌を診断する方法であって、請求項1~7のいずれかに記載の工程を包含する、方法。
  13.  FGFR4阻害剤による治療の適応対象となる被験者を同定する方法であって、該被験者は癌患者であり、請求項1~7のいずれかに記載の工程を包含する、方法。
  14.  FGFR4阻害剤を患者に投与する工程を包含する癌の治療方法であって、該患者が請求項13に記載の方法によって同定された患者である、方法。
PCT/JP2012/069869 2011-08-05 2012-08-03 新規fgfr4変異体の検出法 WO2013021950A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12822338.5A EP2740803A4 (en) 2011-08-05 2012-08-03 METHOD FOR RECOGNIZING NEW FGFR4 MUTANTS
US14/236,993 US9267176B2 (en) 2011-08-05 2012-08-03 Method for detecting novel FGFR4 mutant
JP2013528014A JP6036693B2 (ja) 2011-08-05 2012-08-03 新規fgfr4変異体の検出法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011171507 2011-08-05
JP2011-171507 2011-08-05

Publications (1)

Publication Number Publication Date
WO2013021950A1 true WO2013021950A1 (ja) 2013-02-14

Family

ID=47668458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069869 WO2013021950A1 (ja) 2011-08-05 2012-08-03 新規fgfr4変異体の検出法

Country Status (4)

Country Link
US (1) US9267176B2 (ja)
EP (1) EP2740803A4 (ja)
JP (1) JP6036693B2 (ja)
WO (1) WO2013021950A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3365335B1 (en) 2015-10-23 2024-02-14 Array Biopharma, Inc. 2-aryl- and 2-heteroaryl-substituted 2-pyridazin-3(2h)-one compounds as inhibitors of fgfr tyrosine kinases
US20230115945A1 (en) 2019-12-30 2023-04-13 Tyra Biosciences, Inc. Aminopyrimidine compounds
WO2021138391A1 (en) 2019-12-30 2021-07-08 Tyra Biosciences, Inc. Indazole compounds
EP4271673A1 (en) 2020-12-30 2023-11-08 Tyra Biosciences, Inc. Indazole compounds as kinase inhibitors
KR20230154436A (ko) 2021-02-26 2023-11-08 타이라 바이오사이언시스, 인크. 아미노피리미딘 화합물 및 그의 사용 방법
WO2024006883A1 (en) 2022-06-29 2024-01-04 Tyra Biosciences, Inc. Polymorphic compounds and uses thereof
WO2024006897A1 (en) 2022-06-29 2024-01-04 Tyra Biosciences, Inc. Indazole compounds

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
CLIN CANCER RES., vol. 11, no. 3, 1 February 2005 (2005-02-01), pages 1336 - 41
DATABASE GENBANK [online] 16 July 2011 (2011-07-16), MOTODA, N. ET AL.: "Definition: Homo sapiens fibroblast growth factor receptor 4 (FGFR4), transcript variant 1, mRNA", XP003033604, retrieved from N N N Y accession no. NM_002011 *
DATABASE GENBANK [online] 16 July 2011 (2011-07-16), MOTODA, N. ET AL.: "Definition: Homo sapiens fibroblast growth factor receptor 4 (FGFR4), transcript variant 3, mRNA", XP003033606, retrieved from N N N Y accession no. NM_213647 *
DATABASE GENBANK [online] 16 July 2011 (2011-07-16), MOTODA, N. ET AL.: "HOMO SAPIENS FIBROBLAST GROWTH FACTOR RECEPTOR 4 (FGFR4), TRANSCRIPT VARIANT 2, MRNA", XP003033605, retrieved from N N N Y accession no. NM_022963 *
DING L. ET AL.: "Somatic mutations affect key pathways in lung adenocarcinoma", NATURE, vol. 455, 2008, pages 1069 - 1075, XP002597660 *
MABS., vol. 3, no. 4, 2011, pages 376 - 86
ROIDL A. ET AL.: "The FGFR4 Y367C mutant is a dominant oncogene in MDA-MB453 breast cancer cells", ONCOGENE, vol. 29, no. 10, 2010, pages 1543 - 1552, XP002560350 *
See also references of EP2740803A4 *
TAYLOR JG. 6TH ET AL.: "Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models", J. CLIN. INVEST., vol. 119, no. 11, 2009, pages 3395 - 3407, XP055086226 *
THE JOURNAL OF CLINICAL INVESTIGATION (UNITED KINGDOM, vol. 11, 2009, pages 3395 - 3407
WESCHE J. ET AL.: "Fibroblast growth factors and their receptors in cancer", BIOCHEM. J., 2011, vol. 437, no. 2, 28 June 2011 (2011-06-28), pages 199 - 213, XP055142382 *
YE Y. ET AL.: "The fibroblast growth factor receptor-4 Arg388 allele is associated with gastric cancer progression", ANN. SURG. ONCOL., vol. 17, no. 12, 2010, pages 3354 - 3361, XP019866609 *

Also Published As

Publication number Publication date
US9267176B2 (en) 2016-02-23
EP2740803A1 (en) 2014-06-11
US20140220035A1 (en) 2014-08-07
JPWO2013021950A1 (ja) 2015-03-05
EP2740803A4 (en) 2015-03-25
JP6036693B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6036693B2 (ja) 新規fgfr4変異体の検出法
JP2014082984A (ja) 新規ntrk2活性化変異の検出法
AU2007275140B2 (en) Method for the detection of EGFR mutations in blood samples
JP5719593B2 (ja) ポリヌクレオチドプライマー
JP2013226108A (ja) 新規ntrk2活性化変異の検出法
JP2009511008A (ja) ErbB受容体薬に対する患者の応答を予測またはモニタリングする方法
WO2013141266A1 (ja) 新規ret融合体の検出法
KR101851382B1 (ko) 광을 이용한 핵산의 증폭 억제 방법 및 고감도의 선택적 핵산 증폭 방법
KR20130094342A (ko) 인간 표피 성장 인자 수용체 유전자 내의 돌연변이를 탐지하기 위한 방법 및 조성물
WO2001066719A1 (fr) Nouveau gene clone en neuroblastome humain et nouveaux fragments de gene
JP6562970B2 (ja) 予後予測方法
EP2971075B1 (en) Methods and compositions for detecting mutations in the human pi3kca (pik3ca) gene
JP6153515B2 (ja) Hla−a*24:02を検出する方法、及び検出キット
WO2010124222A2 (en) Vegf and vegfr1 gene expression useful for cancer prognosis
TWI609968B (zh) 癌症檢測套組
WO2012115068A1 (ja) 乳癌におけるfgfr4変異体の検出法
KR20200002933A (ko) Abl1 t315i 변이의 발현 레벨의 측정 방법
JP2014530013A (ja) Sf3b1遺伝子における変異および慢性リンパ性白血病
KR101309887B1 (ko) 위암 감수성 진단용 lox 유전자 snp 및 이를 이용한 위암 감수성 진단방법
WO2015129655A1 (ja) Dnajb1-prkaca遺伝子の検出方法
JP2014054185A (ja) 新規braf融合体の検出法
JP6472075B2 (ja) Gistの予後又は治療抵抗性の診断
JP4325787B2 (ja) グルクロン酸抱合酵素1a9による薬物解毒代謝の異常の遺伝子診断に用いることができる変異型ポリヌクレオチドおよび核酸分子
JP2008228621A (ja) びまん性大細胞性リンパ腫をサブタイプ分けする方法
JP2017006111A (ja) 膀胱癌におけるfgfr3変異体の検出法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528014

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012822338

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14236993

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE