WO2013021671A1 - 炉内温度測定装置 - Google Patents
炉内温度測定装置 Download PDFInfo
- Publication number
- WO2013021671A1 WO2013021671A1 PCT/JP2012/055392 JP2012055392W WO2013021671A1 WO 2013021671 A1 WO2013021671 A1 WO 2013021671A1 JP 2012055392 W JP2012055392 W JP 2012055392W WO 2013021671 A1 WO2013021671 A1 WO 2013021671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- furnace
- sensor
- tube
- gas
- temperature
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/08—Protective devices, e.g. casings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/14—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
- G01K1/146—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations arrangements for moving thermometers to or from a measuring position
Definitions
- the present invention relates to an in-furnace temperature measuring device for a furnace in which gas is generated.
- a combustion furnace that burns solid hydrocarbon fuel obtained by pyrolyzing coal, coke, biomass, industrial waste, etc. at a high temperature, or a gasification furnace that gasifies the solid hydrocarbon fuel
- the reaction in the furnace is performed.
- this type of combustion furnace and gasification furnace has a characteristic that highly corrosive gas and solid fuel molten ash are generated inside.
- the furnace temperature is as high as about 1600 ° C., which is not as high as in conventional industrial equipment, and the furnace pressure is as high as about 2.5 MPa.
- the furnace pressure is as high as about 2.5 MPa.
- there is slag containing a large amount of reducing carbon in the furnace and this, together with the high temperature environment, forms a gas atmosphere having strong corrosiveness in the furnace. Therefore, in a combustion furnace or gasification furnace in which gas is generated inside, an airtight type in-furnace temperature measuring device capable of measuring the in-furnace temperature without leaking the atmospheric gas in the furnace is required.
- such an airtight type in-furnace temperature measuring apparatus includes a support tube connected to a measurement hole communicating with the inside of the furnace and a sensor protection tube including a temperature sensor made of a thermocouple.
- the protection tube is hermetically housed inside the support tube so that the tip of the sensor protection tube corresponding to the warm portion is always exposed in the furnace (see, for example, Patent Documents 1 and 2).
- the sensor protective tube is housed in the axial direction relative to the support tube, and the tip of the sensor protective tube is always exposed in the furnace. In some cases, it deteriorated in a relatively short period of time, and the sensor protection tube had to be replaced early. In particular, in the coal gasification furnace, since the inside of the furnace is at a high temperature and high pressure as described above and has a strong corrosive atmosphere, there is a characteristic that the deterioration of the tip of the sensor protection tube is very likely to proceed, The problem is how to improve the durability of the sensor protection tube compared to a normal combustion furnace.
- the present invention extends the life of a sensor protection tube in an airtight type furnace temperature measuring apparatus and method for measuring the furnace temperature while sealing the atmosphere gas in the furnace. With the goal.
- the in-furnace temperature measuring device of the present invention (hereinafter sometimes simply referred to as “measuring device”) is an in-furnace temperature measuring device for a furnace in which gas is generated, and communicates with a measurement hole leading to the inside of the furnace.
- a support tube, a sensor protection tube inserted in the support tube so as to be axially movable with the tip directed toward the furnace, and a gap between the support tube and the sensor protection tube are hermetically sealed.
- a plurality of seal rings arranged at intervals so as to be divided into a plurality of space portions in the axial direction, and a temperature-sensitive portion are accommodated inside the protective tube so as to correspond to the tip of the sensor protective tube.
- a temperature sensor and a drive mechanism for driving the tip of the sensor protective tube so as to be freely retractable in the axial direction from the measurement hole into the furnace while maintaining a sealed state by the seal ring. It is characterized by that.
- the drive mechanism drives the tip of the sensor protective tube so as to be freely retractable in the axial direction from the measurement hole into the furnace while maintaining the sealing state by the seal member.
- the tip of the sensor protection tube can be moved in and out of the furnace without leaking the gas atmosphere in the furnace to the outside. For this reason, the tip of the sensor protective tube protrudes into the furnace only when temperature measurement is required, and the sensor protective tube is immersed in a standby position outside the furnace during other times. It is possible to extend the service life.
- the plurality of seal rings are arranged at intervals in the axial direction so that the gaps between the support tube and the sensor protective tube are divided into a plurality of space portions in the axial direction. Therefore, the axial movement of the sensor protection tube relative to the support tube is smooth and smooth compared to the case of using a single seal ring. There is an advantage that can be done.
- a gas flow mechanism for flowing an inert gas higher than the pressure in the furnace is further provided in each space portion located on the furnace side of each seal ring.
- the gas circulation mechanism since the gas circulation mechanism circulates an inert gas having a pressure higher than the pressure in the furnace in each space portion located on the furnace side of each seal ring, a plurality of seal rings and space portions, Assuming that the first, second,... Are numbered in order from the side closer to the furnace, the inert gas flowing through the first space part enters the furnace through the measurement hole. For this reason, damage to the first seal ring due to direct exposure of the first seal ring to the gas atmosphere in the furnace can be prevented.
- circulates each space part also has a function which air-cools a support tube and a sensor protection tube, and this prevents the thermal damage of each seal ring effectively.
- the tip portion of the sensor protective tube has higher corrosion resistance than the other main body portion of the protective tube, and can be attached coaxially and detachably to the main body portion. It is preferable that it consists of a cover cylinder.
- the cover cylinder has higher corrosion resistance than the main body portion, durability of the tip portion of the sensor protective tube exposed to the furnace during temperature measurement is improved. Further, even if the cover cylinder is damaged, it can be removed and replaced from the main body, so that the maintenance cost of the measuring device can be reduced compared to the case where the sensor protective tube is replaced as a whole. .
- the measurement apparatus of the present invention further includes a seal chamber that isolates the opening on the proximal end side of the gap from the outside, and the gas flow mechanism includes a flow passage that allows the inert gas to flow in the seal chamber. It is preferable to have.
- the gas circulation mechanism causes an inert gas having a pressure higher than the pressure in the furnace to circulate also in the seal chamber that isolates the opening on the proximal end of the gap between the support tube and the sensor protection tube from the outside. Gas leakage from the base end side opening of the gap can be almost completely prevented.
- the seal ring is made of any one of fluorine rubber, silicone rubber, chloroprene rubber, and nitrile rubber.
- the upper limit of the operating temperature range of these elastomer materials is at least 100 ° C or higher, and is relatively high compared to other elastomer materials, so that the temperature becomes high due to gas atmosphere and heat conduction from the furnace. This is because a long life can be expected when it is used as a seal material inside the support tube.
- the seal ring is provided at an axial position of the sensor protection tube that is equal to or lower than the upper limit value of the operating temperature range of the elastomer material employed for the seal ring. If a seal ring is provided at the above axial position, the employed elastomer material will not exceed its operating temperature range during operation of the measuring device, and the seal ring will be exposed to high temperatures above the upper limit early. It is possible to prevent damage.
- the seal ring is composed of a plurality of rubber rings adjacent in the axial direction.
- the seal ring that divides the space portion is constituted by two or more rubber rings, the airtightness between the space portions is more reliably compared to the case where the seal ring is constituted by one rubber ring. Can increase the sex.
- the tip of the sensor protection tube can be moved into and out of the furnace without leaking the atmospheric gas in the furnace to the outside, the sensor protection tube is used only when temperature measurement is necessary.
- the life of the sensor protection tube can be extended by allowing the tip of the sensor to protrude into the furnace and immersing the tip of the sensor protection tube in a standby position outside the furnace during other time periods.
- FIG.1 and FIG.2 is side surface sectional drawing of the in-furnace temperature measuring apparatus 1 which concerns on embodiment of this invention.
- FIG. 1 shows a state where the sensor protection tube 4 is in the standby position
- FIG. 2 shows a state where the sensor protection tube 4 is in the temperature measurement position.
- the left side of FIGS. 1 and 2 is referred to as “furnace side” or “front end side”
- the right side is referred to as “reverse furnace side” (meaning opposite to the furnace) or “base end side”.
- the gas distribution apparatus 9 is abbreviate
- the measuring apparatus 1 of the present embodiment is an “airtight type” capable of measuring the temperature in the furnace while hermetically sealing the atmosphere gas in the furnace, and as shown in FIGS. 1 and 2, the coal gasification furnace A support tube 3 attached to the outer surface of the furnace wall 2, a sensor protection tube 4 movably inserted in the axial direction (left and right direction in FIG. 1) inside the support tube 3, And a temperature sensor 5 housed therein.
- the measuring device 1 includes a seal member 6 that hermetically seals a gap between the support tube 3 and the sensor protection tube 4, and the sensor protection tube 4 can be moved in and out in the axial direction while maintaining the sealing state.
- a driving device 7 for driving for driving.
- the measuring device 1 includes an axially expandable / contractible seal chamber 8 that hermetically isolates the proximal end opening of the gap between the support tube 3 and the sensor protection tube 4 from the outside, and the support tube 3 and the seal chamber. 8 is provided with a gas flow device 9 (see FIG. 1) for circulating a high-pressure inert gas.
- the coal gasification furnace to which the measuring apparatus 1 of the present embodiment is attached is an integrated coal gasification combined cycle (IGCC) or an integrated coal gasification fuel cell (IGFC).
- IGCC integrated coal gasification combined cycle
- IGFC integrated coal gasification fuel cell
- This is a component of plant equipment such as combined cycle), and oxygen or air is supplied under pressure to partially oxidize coal in the furnace to generate coal gas mainly composed of CO and H2.
- the coal gas generated in the coal gasification furnace is supplied as fuel for a gas turbine or the like after impurities are removed by a gas purification device at a later stage, and combined power generation is performed.
- the support tube 3 is made of a tubular material having a hollow cross section and a circular shape.
- the support tube 3 has a furnace wall tube portion 3A attached to the outer surface of the furnace wall 2 in a cantilever manner so as to communicate coaxially with the measurement hole 2A of the furnace wall 2, and the furnace wall tube portion 3A.
- Each of the tube portions 3A and 3B has a joint flange 12 integrally with the tube end portion.
- Each pipe part 3A, 3B is joined coaxially so that the inner peripheral surface may be continuous in the axial direction by joining the joint flanges 12, 12 to each other and fastening them with bolts.
- the sensor protective tube 4 has an outer peripheral diameter smaller than the inner peripheral diameter of the support tube 3 and is made of a hollow and circular tube material having a larger length than the support tube 3, and the inside of the tube is a temperature sensor. 5 accommodation spaces.
- the sensor protective tube 4 includes a main body portion 13 that occupies most of the protective tube 4, a cover cylinder 14 provided on the distal end side (left side in FIG. 1) of the main body portion 13, and a proximal end of the main body portion 13. And a mounting plug 15 provided on the side (the right side in FIG. 1).
- the main body portion 13 is made of a metal material (for example, 50Co-30Cr-20Fe) having higher heat resistance than stainless steel.
- the cover cylinder 14 directly exposed in the furnace is made of a metal material (for example, pure chromium) having corrosion resistance superior to that of the main body portion 13 with respect to the atmosphere gas of the coal gasification furnace.
- pure chromium iridium and ceramics are also examples of materials that have a proven record of resistance to extremely hot (about 1600 ° C) and highly corrosive gas atmospheres such as coal gasifiers. is there. Therefore, you may comprise the cover cylinder 14 with these materials.
- the main body portion 13 does not necessarily need to be formed of a metal material having high heat resistance over the entire length thereof. For example, only the portion close to the furnace wall 2 where the temperature during temperature measurement is 100 to 1000 ° C. For other parts that are made of this material and whose temperature during temperature measurement is 100 ° C or less, an inexpensive SUS material (for example, SUS316) is used, and the shaft ends of these parts are connected and integrated. You may decide to do it. Thereby, compared with the case where the whole main-body part 13 is comprised with a metal material with high heat resistance, manufacturing cost can be reduced more.
- the cover cylinder 14 of the present embodiment has a connecting portion by screwing made of a set screw or the like at the base end portion, and the connecting portion is screwed coaxially with the distal end opening of the main body portion 13.
- the body portion 13 is detachable. Therefore, even if the cover cylinder 14 is damaged by the atmospheric gas in the furnace and the tip of the sensor protection tube 4 loses the isolation function, it is sufficient to replace only the cover cylinder 14. Can also be used.
- the attachment plug 15 includes a compression fitting that hermetically closes the proximal end opening of the main body portion 13, and the proximal end portion of the temperature sensor 5 is connected to the attachment plug 15 in a penetrating state.
- the temperature sensor 5 is composed of an elongated thermocouple that extends over almost the entire length inside the sensor protective tube 4, and extends from the through portion of the mounting plug 15 to the vicinity of the tip of the cover cylinder 14.
- the temperature sensitive part of the temperature sensor 5 is disposed at a position corresponding to the cover cylinder 14 constituting the tip of the sensor protection tube 4.
- the temperature sensor 5 of the present embodiment includes a sheath thermocouple in which a pair of parallel electric heating wires 16, 16 separated by a fixed interval are housed inside a sheath tube (metal-coated tube) 17.
- the inside of the sheath tube 17 is filled with an inorganic insulating material 18.
- the sheath tube 17 and the electrothermal element wire 16 that are the constituent materials of the sheath thermocouple are also heat resistant for each predetermined range in the axial direction in consideration of the temperature distribution in the axial direction during temperature measurement inside the sensor protection tube 4. Constituent materials having different performances may be adopted, and shaft ends of these constituent materials may be connected and integrated.
- the base end portion of the temperature sensor 5 is exposed to the outside of the sensor protective tube 4 from the through portion of the mounting plug 15, and the combustion control unit (Not shown).
- This combustion control unit calculates the furnace temperature based on the voltage change detected by the temperature sensor 5, and sets the combustion amount in the coal gasification furnace so that the furnace temperature approaches the optimum temperature (about 1600 ° C). Increase or decrease, and feedback control of the furnace temperature is executed.
- the seal member 6 of the present embodiment is configured by a plurality (two in the illustrated example) of seal rings 6 ⁇ / b> A and 6 ⁇ / b> B arranged at intervals in the axial direction.
- the two seal rings 6A and 6B are made of, for example, a rubber ring made of fluoro rubber having a heat resistant temperature of about 150 ° C., and a plurality of space portions 21A are formed in the gap between the support tube 3 and the sensor protection tube 4 in the axial direction. , 21B.
- first seal ring 6A the seal ring on the side close to the furnace (left side in FIG. 1)
- second seal ring 6B the next seal ring
- space portion 21A the space portion closer to the furnace
- space portion 21B the space portion far from the furnace
- connection pipe portion 3B of the support pipe 3 is provided with a gas supply port 22, and the supply port 22 communicates with the first space portion 21A.
- the connecting pipe portion 3 ⁇ / b> B of the support pipe 3 is hermetically covered with a cylindrical gas flow pipe 23.
- the flow pipe 23 covers the connection pipe part 3B in the axial range from the vicinity of the base end side of the gas supply port 22 to the base end edge of the connection pipe part 3B. At the end on the furnace side.
- An intake hole 26 and an exhaust hole 27 are provided in a portion of the connection pipe portion 3B in the gas flow pipe 23, and the holes 26 and 27 communicate with the second space portion 21B.
- the seal chamber 8 includes a disk-shaped fixed wall portion 29 closer to the furnace, a disk-shaped movable wall portion 30 far from the furnace, and the wall portions 29, 20. It is comprised from the expansion-contraction cylinder 31 which can be expanded-contracted to the axial direction attached to the both ends of the axial direction at each.
- the fixed wall portion 29 is fixed to a gantry 36 of the drive device 7 described later, and the linear slider 39 of the drive device 7 is attached to the lower end portion of the movable wall portion 30. For this reason, when the linear slider 39 moves in the axial direction, the relative distance in the axial direction of the movable wall portion 30 with respect to the fixed wall portion 29 changes, whereby the telescopic cylinder 31 expands and contracts in the axial direction.
- the gas flow pipe 23 penetrates the central portion of the fixed wall portion 29 in an airtight manner, and a portion on the base end side from the penetration portion is accommodated in the seal chamber 8. Therefore, the base end side opening of the gap between the support tube 3 and the sensor protective tube 4, that is, the space portion that opens to the counter-reactor side (right side in FIG. 1) when viewed from the second seal ring 6B in the gap,
- the seal chamber 8 is hermetically isolated from the outside.
- the base end portion of the sensor protective tube 4 passes through the central portion of the movable wall portion 30 and protrudes to the outside of the seal chamber 8, and a mounting flange 32 is fixed to the protruding end portion.
- the mounting flange 32 is bolted to the surface side of the movable wall portion 30, whereby the central portion of the movable wall portion 30 is airtightly closed by the mounting flange 32. Accordingly, when the movable wall portion 30 is moved in the axial direction by the linear slider 39, the sensor protection tube 4 is also moved in the same direction in the axial direction.
- An intake port 33 and an exhaust port 34 are formed on the furnace side surface of the fixed wall portion 29 in the seal chamber 8.
- the telescopic cylinder 31 of this embodiment consists of a hollow cylinder with a bellows structure, and this bellows cylinder is made of, for example, a heat-resistant rubber material or a thin stainless steel material.
- the telescopic cylinder 31 is not necessarily limited to the bellows structure, and an inner / outer double cylinder structure (not shown) in which the inner cylinder is inserted in the outer cylinder so as to be airtight and slidable in the axial direction. )).
- the driving device (driving mechanism) 7 includes a gantry 36 placed on the floor, a motor 37 installed on the gantry 36, and an output that is rotationally driven by the motor 37.
- a shaft 38 and a linear slider 39 that moves along the output shaft 38 are provided.
- the output shaft 38 is composed of a ball screw extending parallel to the axis of the support tube 3 and the sensor protection tube 4.
- the ball screw 38 is screwed into a screw hole formed in the proximal end side wall portion of the linear slider 39.
- the gas flow device (gas flow mechanism) 9 is a supply pipe for supplying an inert gas (nitrogen gas in the present embodiment) to the space portions 21 ⁇ / b> A and 21 ⁇ / b> B in the support pipe 3 and the seal chamber 8.
- a path system 41 and a discharge pipe system 42 for discharging the supplied inert gas from the space portion 21B and the seal chamber 8 to the outside are provided.
- the supply pipe line system 41 has an upstream end connected to an inert gas compressor 43 and branches in three directions on the downstream side. The downstream ends of the branch pipes branching in three directions are connected to the gas supply port 22, the intake port 24, and the intake port 33, respectively.
- the discharge pipe system 42 is connected to an inert gas drain chamber 44 at the downstream end, and is bifurcated on the upstream side.
- the upstream end of each branch pipe branched in two is connected to the exhaust port 25 and the exhaust port 34, respectively. Accordingly, the inert gas discharged from the compressor 43 is supplied to the gas supply port 22 of the support tube 3, the intake port 24 of the gas distribution tube 23, and the intake port 33 of the seal chamber 8 through the supply line system 41.
- the inert gas supplied from the gas supply port 22 flows through the inside of the first space portion 21A toward the front end in the axial direction. It flows into the furnace through the measurement hole 2A from the opening on the tip side of the portion 21A.
- the inert gas supplied from the intake port 24 of the gas flow pipe 23 passes through the inside of the gas flow pipe 23 and enters the intake hole 26, and flows into the second space portion 21B. Further, the inert gas that has flowed into the second space portion 21 ⁇ / b> B is discharged into the gas flow pipe 23 from the exhaust hole 27, and flows into the discharge pipe system 42 through the exhaust port 25.
- the inert gas supplied from the inlet 33 of the seal chamber 8 circulates inside the seal chamber 8.
- the inert gas circulated inside the seal chamber 8 reaches the exhaust port 34 of the seal chamber 8 and flows into the exhaust pipe line system 42 from the exhaust port 34.
- the gas flow device 9 of this embodiment includes a pressure control unit 45 that sets the supply pressure of the inert gas higher than the pressure in the furnace.
- the pressure control unit 45 includes control valves 46 and 47 provided in the pipeline systems 41 and 42 and a differential pressure gauge 48 that controls the opening degree of the control valves 46 and 47.
- the differential pressure gauge 48 reduces the opening degree of the control valve 46 of the supply line system 41 and discharges the discharge line when the differential pressure ⁇ P exceeds a predetermined set value (for example, 100 kPa). By increasing the opening degree of the control valve 47 of the system 42, the differential pressure ⁇ P is decreased to approach the set value. Conversely, the differential pressure gauge 48 increases the opening degree of the control valve 46 of the supply pipe line system 41 and the opening degree of the control valve 47 of the discharge pipe line system 42 when the differential pressure ⁇ P becomes less than the set value. Is decreased to increase the differential pressure ⁇ P and approach the set value.
- a predetermined set value for example, 100 kPa
- the pressure control unit 45 performs pressure control for adjusting the opening degree of the control valves 46 and 47 so that the differential pressure ⁇ P between the apparatus internal pressure P2 and the furnace internal pressure P1 always maintains a predetermined set value. Do. For this reason, the inert gas supplied from the supply pipe line system 41 is always slightly higher than the furnace pressure P1 by a set value, and thereby the inert gas flowing into the first space portion 21A. Hence flows into the furnace.
- the gas flow device 9 is activated in advance regardless of the axial position of the sensor protective tube 4. For this reason, the internal pressure P2 of each space part 21A, 21B in the support tube 3 and the seal chamber 8 is previously maintained at a pressure higher than the furnace pressure P1, thereby sealing the atmosphere gas in the furnace in an airtight manner. Held in a state.
- the sensor protective tube is arranged so that the entire cover cylinder 14 is in a standby position (position in FIG. 1) accommodated in the measurement hole 2A of the furnace wall 2. 4 axial positions are set.
- the driving device 7 moves the sensor protection tube 4 along the axial direction to the furnace side, and the cover cylinder 14 projects from the measurement hole 2A into the furnace.
- the temperature is set at the temperature position (the position in FIG. 2), and the measurement of the furnace temperature is started at this temperature measurement position.
- the combustion control unit described above calculates the furnace temperature from the voltage change detected by the temperature sensor 5 at the temperature measuring position where the cover cylinder 14 protrudes into the furnace, and the coal gas is based on the calculated furnace temperature. Feedback control of the combustion amount of the furnace. Thereafter, when the measurement of the furnace temperature is completed, the sensor protection tube 4 is moved to the counter-furnace side along the axial direction by the driving device 7 and returned to the original standby position, and the sensor protection is performed until the next temperature measurement timing is reached. The axial position of the tube 4 is held at the standby position.
- the moving speed of the sensor protective tube 4 by the driving device 7 is set to a low speed that does not damage the cover cylinder 14 due to thermal shock (for example, in the case of pure chromium, 1 to 200 mm / sec) is preferable.
- the front end edge of the cover cylinder 14 coincides with the inner surface of the furnace wall 2 at the standby position, but the front end edge of the cover cylinder 14 is immersed closer to the counter-furnace side than the inner surface of the furnace wall 2.
- a position to be moved (for example, a position to be immersed in the support tube 3) may be set as a standby position.
- the moving speed of the sensor protection tube 4 is set to a relatively high speed, and the cover cylinder 14 is attached to the furnace wall 2.
- the cover cylinder 14 of the sensor protection tube 4 is moved in and out in the axial direction from the measurement hole 2A into the furnace while maintaining the sealed state by the seal member 6. Since it is driven freely, the cover cylinder 14 of the sensor protection tube 4 can be moved into and out of the furnace without leaking the atmospheric gas in the furnace to the outside. Therefore, it is possible to measure the temperature in the furnace in which the cover cylinder 14 of the sensor protection tube 4 protrudes into the furnace only when necessary, and the cover cylinder 14 is immersed in a standby position outside the furnace during other times. Thus, by using this measurement method, the life of the sensor protection tube 4 can be extended.
- the measuring apparatus 1 of this embodiment since the cover cylinder 14 has higher corrosion resistance than the main body portion 13, the durability of the tip portion of the sensor protective tube 4 exposed to the furnace during temperature measurement is improved. In addition, even if the cover cylinder 14 is damaged, it is sufficient to remove the cover cylinder 14 from the main body portion 13 and replace it. Therefore, the maintenance cost of the measuring apparatus 1 can be reduced compared with the case where the sensor protection tube 4 is entirely replaced. There is an advantage that it can be reduced.
- the first and second seal rings 6A and 6B are arranged at an interval in the axial direction, so that the relative movement in the axial direction of the sensor protection tube 4 with respect to the support tube 3 is reduced. It is performed smoothly. Further, according to the measuring apparatus 1 of the present embodiment, the gas circulation device 9 supplies the inert gas having a pressure higher than the furnace pressure P1 to the first space portion 21A and circulates it to the furnace side, so that the first seal ring 6A is not directly exposed to the atmospheric gas in the furnace, and the first seal ring 6A is not damaged early.
- the gas circulation device 9 also circulates the inert gas having a pressure higher than the furnace pressure P1 in the second space portion 21B, even if the first seal ring 6A is damaged, the second seal ring The sealing state between the support tube 3 and the sensor protection tube 4 is maintained by 6B. Therefore, gas leakage from the furnace can be prevented more reliably.
- circulates each space part 21A, 21B also has a function which air-cools the support tube 3 and the sensor protection tube 4, and prevents the thermal damage of each seal ring 6A, 6B effectively by this air cooling. be able to.
- a stretchable seal chamber 8 that isolates the base side opening of the gap between the support tube 3 and the sensor protective tube 4 from the outside is provided, and a gas flow device 9 is provided.
- an inert gas having a pressure higher than the furnace pressure P1 is also circulated in the seal chamber 8, so that gas leakage from the proximal end opening of the gap can be prevented almost completely.
- the support tube 3 is divided into a furnace-side furnace wall tube portion 3A and a counter-furnace-side connection tube portion 3B, and both the tube portions 3A and 3B are connected to each other via a joining flange 12.
- a structure that connects coaxially is adopted. For this reason, if the connecting pipe part 3B is separated from the furnace wall pipe part 3A, the measuring apparatus 1 can be detached from the furnace wall pipe part 3A as a whole, and therefore the measuring apparatus 1 can be easily attached to and detached from the furnace wall 2.
- the through-hole of the movable wall part 30 of the seal chamber 8 is airtightly closed by the mounting flange 32 provided in the through-hole of the sensor protection tube 4, By removing the flange 32 from the movable wall portion 30, only the sensor protective tube 4 can be extracted to the reaction furnace side. For this reason, it is possible to easily perform maintenance work on the sensor protection tube 4 such as replacement work of the deteriorated cover cylinder 14.
- FIG. 5 is a side sectional view of the in-furnace temperature measuring apparatus 1 according to the first modification of the above embodiment.
- the measurement apparatus 1 of this modification differs from the measurement apparatus 1 (FIGS. 1 and 2) of the above embodiment in that the seal chamber 8 is omitted while leaving the gas flow device 9. Since the seal chamber 8 is omitted, the inert gas is supplied from the supply pipeline 41 of the gas distribution device 9 only to the space portions 21A and 21B in the support tube 3 and flows into the space portion 21B. The gas is discharged through the discharge line system 42.
- a plurality (two in the illustrated example) of seal rings 6A and 6B are arranged in the gap between the support tube 3 and the sensor protection tube 4 with an interval in the axial direction.
- This is the same as the above embodiment. Accordingly, the same effect as the measurement device 1 of the above embodiment is achieved in that the relative movement in the axial direction of the sensor protection tube 4 with respect to the support tube 3 is smoothly performed. Since the other configuration of the measuring apparatus 1 of the first modification is the same as that of the measuring apparatus 1 of the above embodiment, the same reference numerals as those in FIG. .
- FIG. 6 is a side sectional view of the in-furnace temperature measuring apparatus 1 according to the second modification of the above embodiment.
- the difference between the measurement apparatus 1 of this modification and the measurement apparatus 1 (FIGS. 1 and 2) of the above embodiment is that both the seal chamber 8 and the gas flow device 9 are omitted.
- a plurality (two in the illustrated example) of seal rings 6A and 6B are arranged in the gap between the support tube 3 and the sensor protection tube 4 with an interval in the axial direction.
- This is the same as the above embodiment. Accordingly, the same effect as the measurement device 1 of the above embodiment is achieved in that the relative movement in the axial direction of the sensor protection tube 4 with respect to the support tube 3 is smoothly performed. Since the other configuration of the measurement apparatus 1 of this modification is the same as that of the measurement apparatus 1 of the above embodiment, the same reference numerals as those in FIG.
- FIG. 7 is a partially enlarged view of the sensor protective tube 4 showing a modification of the seal rings 6A and 6B.
- the plurality of seal rings 6A and 6B that hermetically seal the gap between the support tube 3 and the sensor protection tube 4 are one rubber ring.
- one seal portion may be constituted by a plurality of rubber rings 6x, 6y, 6z close to each other in the axial direction.
- the rubber rings made of fluororubber are used as the seal rings 6A and 6B.
- silicone rubber, chloroprene rubber, nitrile rubber are used. It is also possible to employ a rubber ring made up of or the like. The operating temperature ranges of these materials are as follows. Fluoro rubber: -50 to 300 ° C Silicone rubber: -120 to 280 ° C Chloroprene rubber: -60 to 120 ° C Nitrile rubber: -50 to 120 ° C
- the axial positions of the plurality of seal rings 6A and 6B may be determined.
- the upper limit of the operating temperature range is 120 ° C. Therefore, when these materials are used, a sensor that is lower than the upper limit temperature even when the measuring device 1 is in operation. What is necessary is just to provide seal ring 6A, 6B in the axial direction position of the protective tube 4.
- the seal rings 6A and 6B are provided in the axial position of the sensor protective tube 4 that is equal to or lower than the upper limit value of the operating temperature range of the elastomer material adopted for the seal rings 6A and 6B, the adopted elastomer material However, it is possible to prevent the seal rings 6A and 6B from being damaged at an early stage by being exposed to a high temperature exceeding the upper limit value without exceeding the temperature range during operation of the measuring apparatus 1.
- the above embodiment is merely an example, and does not limit the scope of rights of the present invention.
- the scope of the present invention is defined by the terms of the claims, and all modifications within the scope and equivalents of the claims are included in the present invention.
- the measuring apparatus 1 of the present invention can be applied universally to a furnace in which gas is generated. It may be used in a gasification furnace for fuel other than coal, or a combustion furnace for simply burning the fuel.
- the seal rings 6A and 6B interposed between the support tube 3 and the sensor protection tube 4 are not limited to two of the example of a figure, You may decide to provide only one. And three or more may be provided.
- the seal member 6 in the gap between the support tube 3 and the sensor protection tube 4 is not limited to the above seal rings 6A and 6B, but for example as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2005-43057), It may be a refractory such as glass wool filled in the gap.
- a sensor protection tube containing a temperature sensor is inserted into a support tube connected to the measurement hole leading to the furnace, and the temperature inside the furnace is measured by projecting the tip of the sensor protection tube into the furnace from the measurement hole.
- a way to A first step of waiting the tip of the sensor protective tube at a standby position outside the furnace in a state where the gap between the support tube and the sensor protective tube is hermetically sealed;
- a second step of measuring the furnace temperature by moving the sensor protective tube to the furnace side along the axial direction while projecting the sensor protection tube while maintaining the sealed state of the gap;
- In-furnace temperature measurement method In-furnace temperature measurement method.
- the sensor protective tube while maintaining the sealed state of the gap, the sensor protective tube is moved to the furnace side along the axial direction so that the tip portion protrudes into the furnace, and the furnace temperature is measured ( (Second step), while maintaining the sealed state of the gap, the sensor protective tube whose temperature has been measured is moved to the counter-reactor side along the axial direction to return to the original standby position (third step).
- the sensor protection tube can have a longer life than the conventional measurement method in which the tip of the sensor protection tube is always exposed in the furnace.
- the moving speed of the sensor protective tube in the second and third steps is set to a low speed that does not cause damage due to thermal shock at the tip of the protective tube.
- the reason for this is that if the moving speed of the sensor protective tube is set to a low speed as described above, unforeseen damage to the protective tube associated with moving the tip of the sensor protective tube into and out of the furnace can be prevented. Because.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
また、この種の燃焼炉やガス化炉では、腐食性の強いガスや固体燃料の溶融灰が内部で発生するという特質がある。
従って、内部でガスが発生する燃焼炉やガス化炉では、炉内の雰囲気ガスを漏洩させないで炉内温度を測定可能な、気密型の炉内温度測定装置が必要である。
特に、石炭ガス化炉では、前述の通り炉内が高温かつ高圧であり、強い腐食性を有する雰囲気であることから、センサ保護管の先端部の劣化が非常に進行し易いという特質があり、通常の燃焼炉に比べてセンサ保護管の耐久性を如何に向上させるかが問題であった。
このため、温度測定が必要な時だけセンサ保護管の先端部を炉内に突出させ、それ以外の時間帯はセンサ保護管の先端部を炉外の待機位置に没入させることにより、センサ保護管の長寿命化を図ることができる。
この場合、前記ガス流通機構が、前記各シールリングの炉側に位置する前記各空間部分に、炉内圧力よりも高圧の不活性ガスをそれぞれ流通させるので、複数のシールリングと空間部分について、炉に近い側から順に第1、第2……とナンバリングするとすれば、第1空間部分を流通する不活性ガスは、この空間部分から測定孔を通って炉内に入り込む。
このため、第1シールリングが炉内のガス雰囲気に直接晒されることによる、第1シールリングの損傷を未然に防止することができる。
なお、各空間部分を流通する不活性ガスには、支持管やセンサ保護管を空冷する機能もあり、これによって各シールリングの熱損傷が有効に防止される。
この場合、カバー筒体が本体部分よりも耐腐食性が高いので、測温時に炉内に晒されるセンサ保護管の先端部の耐久性が向上する。また、仮にカバー筒体が損傷しても、これを本体部分から取り外して交換すればよいので、センサ保護管を全体的に交換する場合に比べて、測定装置のメンテナンスコストを低減することができる。
この場合、上記ガス流通機構が、支持管とセンサ保護管との間の隙間の基端側開口を外部と隔離するシール室にも、炉内圧力より高圧の不活性ガスを流通させるので、当該隙間の基端側開口からのガス漏洩をほぼ完全に防止することができる。
その理由は、これらのエラストマー材料の使用温度範囲の上限値は、少なくとも100°C以上であり、その他のエラストマー材料に比べて比較的高いので、炉内からのガス雰囲気や熱伝導によって高温になり易い支持管内部のシール材料として採用した場合に、長寿命化を期待できるからである。
上記の軸方向位置にシールリングを設けることにすれば、採用したエラストマー材料が測定装置の稼働中にその使用温度範囲を超えることがなく、シールリングが上限値以上の高温に晒されて早期に損傷するのを未然に防止することができる。
この場合、空間部分を区画するシールリングが2連以上のゴムリングで構成されることになるので、シールリングを1本のゴムリングで構成する場合に比べて、より確実に空間部分同士の気密性を高めることができる。
〔測定装置の全体構成〕
図1及び図2は、本発明の実施形態に係る炉内温度測定装置1の側面断面図である。また、図1は、センサ保護管4が待機位置にある状態を示し、図2は、センサ保護管4が測温位置にある状態を示している。
なお、本明細書においては、図1及び図2の左側を「炉側」或いは「先端側」といい、右側を「反炉側」(炉の反対側の意味)或いは「基端側」という。また、図2では、図示の簡略化のためガス流通装置9を省略している。
更に、この測定装置1は、支持管3とセンサ保護管4との間の隙間の基端側開口を外部と気密に隔離する軸方向に伸縮自在なシール室8と、支持管3やシール室8の内部に高圧の不活性ガスを流通させるガス流通装置9(図1参照)とを備える。
この石炭ガス化炉で発生した石炭ガスは、後段のガス精製装置で不純物質が除去された後、ガスタービン等の燃料として供給され、複合発電が行われる。
上記測定装置1の構成部材のうち、支持管3は、断面中空でかつ円形の管材よりなる。この支持管3は、炉壁2の測定孔2Aに同軸心状に連通するように、炉壁2の外面に片持ち状に取り付けられた炉壁管部3Aと、この炉壁管部3Aの端部に接続された接続管部3Bとから構成され、この各管部3A,3Bは接合フランジ12を管端部に一体に有している。
各管部3A,3Bは、互いの接合フランジ12,12同士を接合させてボルト締結することにより、内周面が軸方向で連続するように同軸心状に接合されている。
このセンサ保護管4は、当該保護管4の大部分を占める本体部分13と、この本体部分13の先端側(図1の左側)に設けられたカバー筒体14と、本体部分13の基端側(図1の右側)に設けられた取付プラグ15とを備える。
なお、石炭ガス化炉のような、非常に高温(約1600°C)でかつ還元による腐食性の強いガス雰囲気に対して耐性実績のある材料としては、純クロムの他に、イリジウム及びセラミックスもある。従って、これらの材料でカバー筒体14を構成してもよい。
従って、石炭ガス化炉の雰囲気ガスに関しては、センサ保護管4の先端部を構成するカバー筒体14の材料としては、純クロムが最も好ましい。
これにより、本体部分13の全体を耐熱性の高い金属材料で構成する場合に比べて、製作コストをより低減することができる。
このため、カバー筒体14が炉内の雰囲気ガスによって損傷し、センサ保護管4の先端部が隔離機能を喪失しても、カバー筒体14だけを交換すれば足り、本体部分13についてはその後も使用することができる。
温度センサ5は、センサ保護管4の内部でほぼ全長に亘って延びる細長い熱電対よりなり、取付プラグ15の貫通部からカバー筒体14の先端近傍まで至っている。この温度センサ5の感温部分は、センサ保護管4の先端部を構成するカバー筒体14に対応する位置に配置されている。
なお、シース熱電対の構成材料となるシース管17や電熱素線16についても、センサ保護管4の内部の測温時における軸方向の温度分布を考慮して、軸方向の所定範囲ごとに耐熱性能が異なる構成材料を採用し、これらの構成材料の軸端同士を接続して一体化することにしてもよい。
この燃焼制御部は、温度センサ5が検出した電圧変化に基づいて炉内温度を算出し、この炉内温度が最適温度(約1600°C)に近づくように石炭ガス化炉での燃焼量を増加又は減少させて、炉内温度のフィードバック制御を実行する。
図1及び図2に示すように、本実施形態のシール部材6は、軸方向に間隔をおいて配置された複数(図例では2つ)のシールリング6A,6Bにより構成されている。
この2つのシールリング6A,6Bは、例えば耐熱温度が150°C程度のフッ素ゴム製のゴムリングよりなり、支持管3とセンサ保護管4との間の隙間を軸方向で複数の空間部分21A,21Bに分断している。
また、各シールリング6A,6Bの炉側に位置する2つの空間部分21A,21Bのうち、炉に近い方の空間部分を第1空間部分21Aといい、炉から遠い方の空間部分を第2空間部分21Bという。
また、支持管3の接続管部3Bは、円筒状のガス流通管23によって気密に被覆されている。この流通管23は、ガス供給口22の基端側近傍から接続管部3Bの基端縁に至る軸方向範囲で当該接続管部3Bを被覆しており、吸気口24と排気口25とを炉側の端部に有する。接続管部3Bにおけるガス流通管23内の部分には、吸気孔26と排気孔27が設けられおり、この各孔26,27は第2空間部分21Bと連通している。
固定壁部29は、後述する駆動装置7の架台36に固定されており、可動壁部30は、その下端部に駆動装置7のリニアスライダ39が取り付けられている。このため、リニアスライダ39が軸方向に移動すると、固定壁部29に対する可動壁部30の軸方向の相対距離が変化し、これによって伸縮筒体31が軸方向に伸縮する。
従って、支持管3とセンサ保護管4との間の隙間の基端側開口、すなわち、当該隙間における第2シールリング6Bから見て反炉側(図1の右側)に開口する空間部分が、シール室8によって外部と気密に隔離されている。
センサ保護管4の基端部は、可動壁部30の中央部を貫通してシール室8の外部に突出しており、この突出端部に取付フランジ32が固定されている。
なお、シール室8における固定壁部29の炉側の面には、吸気口33と排気口34が形成されている。
もっとも、伸縮筒体31は、必ずしもベローズ構造のものに限定されるものではなく、外筒体の内部に内筒体を気密でかつ軸方向摺動自在に挿通した内外二重筒構造(図示せず)のものであってもよい。
図1及び図2に示すように、駆動装置(駆動機構)7は、床面に載置された架台36と、この架台36に設置されたモータ37と、このモータ37によって回転駆動される出力軸38と、この出力軸38に沿って移動するリニアスライダ39とを備えている。
上記出力軸38は、支持管3及びセンサ保護管4の軸心と平行に延びるボールねじよりなる。このボールねじ38は、リニアスライダ39の基端側壁部に形成されたねじ孔に螺合している。
図1に示すように、ガス流通装置(ガス流通機構)9は、支持管3内の各空間部分21A,21Bとシール室8に不活性ガス(本実施形態では窒素ガス)を供給する供給管路系41と、供給した不活性ガスを空間部分21Bやシール室8から外部に排出する排出管路系42とを備えている。
このうち、供給管路系41は、上流端が不活性ガスのコンプレッサ43に接続されており、下流側において三方に分岐している。この三方に分岐する各分岐管の下流端は、ガス供給口22、吸気口24及び吸気口33にそれぞれ接続されている。
従って、コンプレッサ43から吐出する不活性ガスは、供給管路系41を通じて、支持管3のガス供給口22、ガス流通管23の吸気口24及びシール室8の吸気口33にそれぞれ供給される。
一方、ガス流通管23の吸気口24から供給された不活性ガスは、ガス流通管23の内部を通って吸気孔26に入り込み、第2空間部分21Bの内部に流通する。また、第2空間部21Bの内部に流通した不活性ガスは、排気孔27からガス流通管23の内部に排出され、排気口25を通って排出管路系42に流入する。
この圧力制御部45は、各管路系41,42に設けた制御弁46,47と、各制御弁46,47の開度を制御する差圧計48とからなる。差圧計48は、炉内に通じる第1計測管49と排出管路系42に通じる第2計測管50とを有し、この計測管49,50で検出された装置内圧力(シール室8の圧力)P2と炉内圧力P1との差圧ΔP(=P1-P2)に基づいて、各制御弁46,47の開度を調整する。
逆に、差圧計48は、上記差圧ΔPが設定値未満になった場合には、供給管路系41の制御弁46の開度を上げかつ排出管路系42の制御弁47の開度を下げることにより、差圧ΔPを増加させて設定値に近づける。
このため、供給管路系41から供給される不活性ガスは、常に、炉内圧力P1よりも設定値分だけ若干高圧となっており、これにより、第1空間部分21Aに流入した不活性ガスが確実に炉内に流れ込むようになっている。
次に、図1及び図2を参照しつつ、本実施形態の測定装置1を用いて行う炉内温度の測定方法を説明する。
まず、本実施形態では、センサ保護管4の軸方向位置に関係なく、予めガス流通装置9を作動させている。このため、支持管3内の各空間部分21A,21Bとシール室8の内部圧力P2は炉内圧力P1よりも予め高圧に保持されており、これによって炉内の雰囲気ガスを気密にシールするシール状態に保持されている。
次に、炉内温度の測定が必要なタイミングになると、駆動装置7によってセンサ保護管4を軸方向に沿って炉側に移動させ、カバー筒体14を測定孔2Aから炉内に突出する測温位置(図2の位置)にセットし、この測温位置において炉内温度の測定を開始する。
その後、炉内温度の測定が完了すると、駆動装置7によってセンサ保護管4を軸方向に沿って反炉側に移動させて元の待機位置に戻し、次の温度測定のタイミングになるまでセンサ保護管4の軸方向位置を当該待機位置に保持する。
そこで、上記の測定方法を行う場合には、駆動装置7によるセンサ保護管4の移動速度を、カバー筒体14が熱衝撃によって損傷しない程度の低速度(例えば純クロムの場合には、1~200mm/秒)に設定することが好ましい。
この場合、カバー筒体14の先端縁が炉壁2の内面に到達するまでの軸方向範囲では、センサ保護管4の移動速度を比較的高速に設定し、カバー筒体14が炉壁2の内面から突出する軸方向範囲では、センサ保護管4の移動速度を上記の低速度に設定することが好ましい。このようにセンサ保護管4の移動速度を切り替えるようにすれば、カバー筒体14の待機位置を反炉側にずらすこと伴う移動時間の増加を抑制することができる。
以上の通り、本実施形態の測定装置1によれば、シール部材6によるシール状態を維持しつつ、センサ保護管4のカバー筒体14を測定孔2Aから炉内に向けて軸方向に出退自在に駆動するようにしたので、炉内の雰囲気ガスを外部に漏洩させないで、センサ保護管4のカバー筒体14を炉内に出退させることができる。
このため、必要な時だけセンサ保護管4のカバー筒体14を炉内に突出させ、それ以外の時間帯はカバー筒体14を炉外の待機位置に没入させる炉内温度の測定方法が可能となり、この測定方法を採用することによってセンサ保護管4を長寿命化できる。
また、本実施形態の測定装置1によれば、ガス流通装置9が、炉内圧力P1より高圧の不活性ガスを第1空間部分21Aに供給して炉側に流通させるので、第1シールリング6Aが炉内の雰囲気ガスに直接晒されることがなく、第1シールリング6Aが早期に損傷することがない。
なお、各空間部分21A,21Bを流通する不活性ガスには、支持管3やセンサ保護管4を空冷する機能もあり、この空冷により、各シールリング6A,6Bの熱損傷を有効に防止することができる。
このため、接続管部3Bを炉壁管部3Aから分離すると、測定装置1を全体的に炉壁管部3Aから取り外すことができるので、炉壁2に対する測定装置1の脱着が容易である。
このため、劣化したカバー筒体14の取り換え作業等の、センサ保護管4に対するメンテナンス作業を容易に行うことができる。
図5は、上記実施形態の第1の変形例に係る炉内温度測定装置1の側面断面図である。
この変形例の測定装置1が上記実施形態の測定装置1(図1及び図2)と異なるところは、ガス流通装置9を残しつつ、シール室8が省略されている点にある。
シール室8が省略されているので、ガス流通装置9の供給管路系41から、支持管3内の各空間部分21A,21Bのみに不活性ガスが供給され、空間部分21Bに流入した不活性ガスは排出管路系42にて排出されるようになっている。
なお、第1の変形例の測定装置1の他の構成については、上記実施形態の測定装置1と同様であるから、図5に図1と同じ参照符号を付して詳細な説明を省略する。
図6は、上記実施形態の第2の変形例に係る炉内温度測定装置1の側面断面図である。
この変形例の測定装置1が上記実施形態の測定装置1(図1及び図2)と異なるところは、シール室8及びガス流通装置9の双方が省略されている点にある。
なお、この変形例の測定装置1の他の構成については、上記実施形態の測定装置1と同様であるから、図6に図1と同じ参照符号を付して詳細な説明を省略する。
図7は、シールリング6A,6Bの変形例を示すセンサ保護管4の部分拡大図である。
上述の実施形態(第1及び第2変形例を含む。)では、支持管3とセンサ保護管4との間の隙間を気密にシールする複数のシールリング6A,6Bが、1本のゴムリングで構成されていたが、図6に示すように、軸方向に近接する複数本のゴムリング6x,6y,6zにより、1箇所のシール部分を構成することにしてもよい。
図6のように、空間部分21A,21Bを区画するシールリング6A,6Bを2連以上のゴムリング6x,6y,6zで構成すれば、シールリング6A,6Bを1本のゴムリングで構成する上述の実施形態の場合に比べて、より確実に空間部分21A,21B同士の気密性を高めることができる。
上述の実施形態(第1~第3変形例を含む。)では、シールリング6A,6Bとして、フッ素ゴム製のゴムリングを採用しているが、その他にも、シリコーンゴム、クロロプレンゴム、ニトリルゴム等よりなるゴムリングを採用することもできる。
これらの材質の使用温度範囲は、それぞれ次のようになっている。
フッ素ゴム : -50~300°C
シリコーンゴム :-120~280°C
クロロプレンゴム: -60~120°C
ニトリルゴム : -50~120°C
例えば、クロロプレンゴムやニトリルゴムの場合は、使用温度範囲の上限が120°Cであるから、これらの材質を採用する場合には、測定装置1の稼働中でもその上限温度以下となるような、センサ保護管4の軸方向位置にシールリング6A,6Bを設けることにすればよい。
上記実施形態は例示であって本発明の権利範囲を制限するものではない。本発明の権利範囲は特許請求の範囲によって示され、特許請求の範囲の構成と均等の範囲内のすべての変更が本発明に含まれる。
例えば、上記実施形態では、石炭ガス化炉に本発明の測定装置1を適用した場合を例示したが、本発明の測定装置1は、内部でガスが発生する炉に対して汎用的に適用でき、石炭以外の燃料のガス化炉や、その燃料を単に燃焼させる燃焼炉に使用してもよい。
更に、支持管3とセンサ保護管4との間の隙間のシール部材6としては、上記シールリング6A,6Bだけでなく、例えば特許文献1(特開2005-43057号公報)に示すような、その隙間に充填したグラスウール等の耐火物であってもよい。
本発明の炉内温度測定装置に関する権利範囲は特許請求の範囲によって規定されているが、その装置による炉内温度測定方法を定義すると、次の通りである。
炉内に通じる測定孔に接続された支持管内に、温度センサが収容されたセンサ保護管を挿通し、このセンサ保護管の先端部を前記測定孔から炉内に突出させて炉内温度を測定する方法であって、
前記支持管と前記センサ保護管との間の隙間を気密にシールした状態で、前記センサ保護管の先端部を炉外の待機位置で待機させる第1のステップと、
前記隙間のシール状態を維持しつつ、前記センサ保護管を軸方向に沿って炉側に移動させてその先端部を炉内に突出させ、炉内温度を測定する第2のステップと、
前記隙間のシール状態を維持しつつ、温度測定が完了した前記センサ保護管を軸方向に沿って反炉側に移動させて元の前記待機位置に戻す第3のステップと、を含むことを特徴とする炉内温度測定方法。
測定方法1において、前記第2及び第3のステップにおける前記センサ保護管の移動速度は、当該保護管の先端部に熱衝撃による損傷が生じない程度の低速度に設定されていることが好ましい。
その理由は、センサ保護管の移動速度を上記程度の低速度に設定すれば、センサ保護管の先端部を炉内に出退させることに伴う、当該保護管の不測の損傷を未然に防止できるからである。
測定方法1又は2の各ステップにおいて、最も炉側のシールリングの炉側に位置する空間部分に炉内圧力よりも高圧の不活性ガスを流通させることが好ましい。
このようにすれば、空間部分を流通する不活性ガスが当該空間部分から測定孔を通って炉内に入り込むので、最も炉側のシールリングが炉内のガス雰囲気に直接晒されることによる、当該シールリングの損傷を未然に防止することができる。
2 炉壁
2A 測定孔
3 支持管
4 センサ保護管
5 温度センサ
6 シール部材
6A 第1シールリング
6B 第2シールリング
7 駆動装置(駆動機構)
8 シール室
9 ガス流通装置(ガス流通機構)
13 本体部分
14 カバー筒体
21A 第1空間部分
21B 第2空間部分
Claims (7)
- 内部でガスが発生する炉の炉内温度測定装置であって、
炉内に通じる測定孔に連通する支持管と、
先端を炉側に向けて前記支持管内に軸方向移動自在に挿通されたセンサ保護管と、
前記支持管と前記センサ保護管との間の隙間を気密にシールする、当該隙間を軸方向で複数の空間部分に分断するように間隔をおいて配置された複数のシールリングと、
感温部分が前記センサ保護管の先端部に対応するように、当該保護管の内部に収容された温度センサと、
前記シールリングによるシール状態を維持しつつ、前記センサ保護管の先端部を前記測定孔から炉内に向けて軸方向に出退自在に駆動する駆動機構と、
を備えていることを特徴とする炉内温度測定装置。 - 前記各シールリングの炉側に位置する前記各空間部分に、炉内圧力よりも高圧の不活性ガスをそれぞれ流通させるガス流通機構を、更に備えていることを特徴とする炉内温度測定装置。
- 前記センサ保護管の先端部は、当該保護管のその他の本体部分よりも高い耐腐食性を有し、その本体部分に対して同軸心状でかつ着脱自在に取り付け可能なカバー筒体よりなる請求項1又は2に記載の炉内温度測定装置。
- 前記隙間の基端側開口を外部と気密に隔離するシール室を更に備え、
前記ガス流通機構は、前記シール室にも前記不活性ガスを流通させる流通路を有する請求項2又は3に記載の炉内温度測定装置。 - 前記シールリングは、フッ素ゴム、シリコーンゴム、クロロプレンゴム或いはニトリルゴムのうちのいずれかよりなる請求項1~4のいずれか1項に記載の炉内温度測定装置。
- 前記シールリングに採用するエラストマー材料の使用温度範囲の上限値以下となる前記センサ保護管の軸方向位置に、前記シールリングが設けられている請求項1~5のいずれか1項に記載の炉内温度測定装置。
- 前記シールリングは、軸方向に近接する複数本のゴムリングよりなる請求項1~6のいずれか1項に記載の炉内温度測定装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/126,783 US9243961B2 (en) | 2011-08-11 | 2012-03-02 | In-furnace temperature measurement device |
DE112012003319.1T DE112012003319B4 (de) | 2011-08-11 | 2012-03-02 | Vorrichtung zum Messen einer ofeninternen Temperatur |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-176144 | 2011-08-11 | ||
JP2011176144A JP5764008B2 (ja) | 2010-08-31 | 2011-08-11 | 炉内温度測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013021671A1 true WO2013021671A1 (ja) | 2013-02-14 |
Family
ID=46169536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/055392 WO2013021671A1 (ja) | 2011-08-11 | 2012-03-02 | 炉内温度測定装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9243961B2 (ja) |
JP (1) | JP5764008B2 (ja) |
DE (1) | DE112012003319B4 (ja) |
WO (1) | WO2013021671A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2884250A1 (en) * | 2013-12-16 | 2015-06-17 | ENDRESS + HAUSER WETZER GmbH + Co. KG | Stand-alone pressurizations system |
CN106248230A (zh) * | 2016-10-18 | 2016-12-21 | 天津市中环温度仪表有限公司 | 煤气化制氢装置的伸缩式热电偶 |
CN106568517A (zh) * | 2016-10-18 | 2017-04-19 | 天津市中环温度仪表有限公司 | 具有自防护切断功能的伸缩式热电偶 |
WO2022044218A1 (ja) * | 2020-08-27 | 2022-03-03 | 中国電力株式会社 | 温度測定装置 |
JP7564978B1 (ja) | 2024-03-29 | 2024-10-09 | 株式会社神鋼環境ソリューション | 貯留槽 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9880110B2 (en) | 2014-03-26 | 2018-01-30 | Paneratech, Inc. | Material erosion monitoring system and method |
JP6010675B1 (ja) * | 2015-10-01 | 2016-10-19 | 株式会社プランテック | ごみ焼却炉の温度検出装置およびごみ焼却炉の温度検出方法 |
JP6677556B2 (ja) * | 2016-03-31 | 2020-04-08 | 光洋サーモシステム株式会社 | 熱処理装置 |
WO2018089044A1 (en) * | 2016-11-08 | 2018-05-17 | Paneratech, Inc. | Material erosion monitoring system and method |
US10267719B2 (en) * | 2017-04-24 | 2019-04-23 | Jose Maria Las Navas Garcia | Method for automatic thermogravimetric volatile analysis of coal and coke |
EP3412973B1 (en) * | 2017-06-07 | 2024-02-28 | Electrolux Appliances Aktiebolag | Oven comprising an assembly for detecting operating parameters within the oven cavity |
DE102018111790A1 (de) * | 2018-05-16 | 2019-11-21 | Anton Paar Provetec Gmbh | Stopfen für Automatische Destillationsmessungen |
CN112534250B (zh) * | 2018-08-10 | 2024-06-28 | 陶瓷氧化物制造商私人有限公司 | 熔炉氧气探针 |
JP7276675B2 (ja) * | 2018-11-16 | 2023-05-18 | 株式会社Ihi | 熱交換システム |
JP7001726B2 (ja) * | 2020-03-13 | 2022-01-20 | 光洋サーモシステム株式会社 | 熱処理装置 |
DE102020135068B4 (de) * | 2020-12-29 | 2024-07-25 | Chemin Gmbh | Diagnosevorrichtung, rauchgasführendes System, Verfahren und Verwendung |
CN113125020B (zh) * | 2021-04-21 | 2022-04-05 | 刘建松 | 一种防堵型红外测温仪 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5244568Y2 (ja) * | 1973-02-22 | 1977-10-11 | ||
JPS5950324A (ja) * | 1982-09-16 | 1984-03-23 | Nippon Steel Corp | 高炉等シヤフト炉内の温度測定装置のリ−ド線のシ−ル構造 |
JPH0421931U (ja) * | 1990-06-15 | 1992-02-24 | ||
JPH09126907A (ja) * | 1995-11-06 | 1997-05-16 | Kawasou Denki Kogyo Kk | 炉内の連続測温装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2834003A1 (de) | 1978-08-03 | 1980-02-28 | Hoechst Ag | Verfahren und vorrichtung zur messung physikalischer groessen in fliessfaehigen medien |
DE2907281A1 (de) | 1979-02-24 | 1980-09-04 | Ruhrchemie Ag | Apparatur und verfahren zur messung der temperatur in reaktoren, die bei ueber 1400 grad celsius betrieben werden |
LU83086A1 (fr) * | 1981-01-23 | 1982-09-10 | Wurth Paul Sa | Support pour une sonde de haut-fourneau |
US4602767A (en) | 1984-06-22 | 1986-07-29 | Westinghouse Electric Corp. | Thermocouple apparatus for in situ annealing of a pressure vessel |
JP2521463Y2 (ja) | 1991-09-26 | 1996-12-25 | 株式会社ジャパンエナジー | 炉内温度測定装置 |
JP2005043057A (ja) | 2003-07-22 | 2005-02-17 | Kurimoto Ltd | 炉内温度測定装置 |
US9885615B2 (en) * | 2014-01-02 | 2018-02-06 | Watlow Electric Manufacturing Company | Movable contact sensor assembly having sealed construction |
-
2011
- 2011-08-11 JP JP2011176144A patent/JP5764008B2/ja active Active
-
2012
- 2012-03-02 US US14/126,783 patent/US9243961B2/en active Active
- 2012-03-02 WO PCT/JP2012/055392 patent/WO2013021671A1/ja active Application Filing
- 2012-03-02 DE DE112012003319.1T patent/DE112012003319B4/de active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5244568Y2 (ja) * | 1973-02-22 | 1977-10-11 | ||
JPS5950324A (ja) * | 1982-09-16 | 1984-03-23 | Nippon Steel Corp | 高炉等シヤフト炉内の温度測定装置のリ−ド線のシ−ル構造 |
JPH0421931U (ja) * | 1990-06-15 | 1992-02-24 | ||
JPH09126907A (ja) * | 1995-11-06 | 1997-05-16 | Kawasou Denki Kogyo Kk | 炉内の連続測温装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2884250A1 (en) * | 2013-12-16 | 2015-06-17 | ENDRESS + HAUSER WETZER GmbH + Co. KG | Stand-alone pressurizations system |
CN106248230A (zh) * | 2016-10-18 | 2016-12-21 | 天津市中环温度仪表有限公司 | 煤气化制氢装置的伸缩式热电偶 |
CN106568517A (zh) * | 2016-10-18 | 2017-04-19 | 天津市中环温度仪表有限公司 | 具有自防护切断功能的伸缩式热电偶 |
WO2022044218A1 (ja) * | 2020-08-27 | 2022-03-03 | 中国電力株式会社 | 温度測定装置 |
JP7564978B1 (ja) | 2024-03-29 | 2024-10-09 | 株式会社神鋼環境ソリューション | 貯留槽 |
Also Published As
Publication number | Publication date |
---|---|
US20140105249A1 (en) | 2014-04-17 |
US9243961B2 (en) | 2016-01-26 |
JP5764008B2 (ja) | 2015-08-12 |
JP2012073234A (ja) | 2012-04-12 |
DE112012003319T5 (de) | 2014-04-30 |
DE112012003319T8 (de) | 2014-05-22 |
DE112012003319B4 (de) | 2022-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5764008B2 (ja) | 炉内温度測定装置 | |
US8771604B2 (en) | Gasifier liner | |
CN104254671B (zh) | 与管一体的半套管式金属密封件 | |
US8443830B2 (en) | Heater built-in valve | |
EP2188569B1 (en) | Flexure seal for fuel injection nozzle | |
EP2902605B1 (en) | A fuel manifold and fuel injector arrangement for a gas turbine engine | |
US20120163957A1 (en) | Device for supporting a turbine ring, turbine having such a device, and turbine engine having such a turbine | |
EP1553391A1 (en) | Methods and apparatus for installing process instruments probes | |
EP3219933A1 (en) | Boas segmented heat shield | |
IL193378A0 (en) | A sealing device for a gas inlet to an oven or the like | |
US10161314B2 (en) | Vented buffer air supply for intershaft seals | |
EP2657610B1 (en) | A combustor and a method for assembling the combustor | |
RU2474743C2 (ru) | Устройство с двойной трубой | |
SE434129B (sv) | Sett att avlegsna kolhaltiga material fran gasturbinhalrum | |
US10385720B2 (en) | Method for providing coolant to a movable airfoil | |
US20170299062A1 (en) | Sealing device for seal runner face | |
JP6831042B1 (ja) | 温度測定装置 | |
JP6824685B2 (ja) | バーナ装置、バーナ装置の冷却媒体制御方法 | |
RU2349818C1 (ru) | Клапан для регулирования расхода горячего газа | |
JP6799455B2 (ja) | ガスタービンエンジン | |
RU2251041C1 (ru) | Дроссельное устройство | |
RU2346166C1 (ru) | Газотурбинная установка | |
JP2008202897A (ja) | 炉内ガス漏洩防止装置 | |
KR20110107380A (ko) | 진공 유닛용 연결 장치 | |
RU2296260C1 (ru) | Быстродействующее высокотемпературное дроссельное устройство |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12821667 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14126783 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120033191 Country of ref document: DE Ref document number: 112012003319 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12821667 Country of ref document: EP Kind code of ref document: A1 |