US10385720B2 - Method for providing coolant to a movable airfoil - Google Patents

Method for providing coolant to a movable airfoil Download PDF

Info

Publication number
US10385720B2
US10385720B2 US15/036,856 US201415036856A US10385720B2 US 10385720 B2 US10385720 B2 US 10385720B2 US 201415036856 A US201415036856 A US 201415036856A US 10385720 B2 US10385720 B2 US 10385720B2
Authority
US
United States
Prior art keywords
vane
seal
platform
aperture
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/036,856
Other versions
US20160298484A1 (en
Inventor
John D. Teixeira
Thomas N. Slavens
Raymond Surace
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to US15/036,856 priority Critical patent/US10385720B2/en
Publication of US20160298484A1 publication Critical patent/US20160298484A1/en
Application granted granted Critical
Publication of US10385720B2 publication Critical patent/US10385720B2/en
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS. Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RTX CORPORATION reassignment RTX CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RAYTHEON TECHNOLOGIES CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling

Definitions

  • This disclosure relates to a gas turbine engine with an adjustable vane. More particularly, the disclosure relates to an adjustable vane sealing arrangement.
  • a gas turbine engine uses a compressor section that compresses air.
  • the compressed air is provided to a combustor section where the compressed air and fuel is mixed and burned.
  • the hot combustion gases pass through a turbine section to provide work that may be used for thrust or driving another system component.
  • a turbine section typically has one or more fixed stages and one or more rotatable stages.
  • a typical cooling scheme is to feed the cooling air though openings in fixed stator vanes. Such openings are situated directly over the attached airfoil, such that the cooling air enters directly into passages internal to the airfoil.
  • Inner and outer diameter platforms serve to constrain the stator vane relative to the static structure of the turbine section, and additionally serve to define the inner and outer diameter flow path boundaries.
  • variable stator vanes may be used in the fixed stage where the airfoil portion of the vanes is rotatable about a radial axis.
  • such turbine vanes include an airfoil and a cylindrical trunnion that connects the airfoil to a support structure, such as inner and outer cases, via a set of bushings or bearings. Cooling air may be provided to the airfoil through an aperture in the trunion. There is typically a gap between the moveable airfoil section and the support structure that permits the airfoil section to rotate freely without interference or binding with the support structure.
  • One or more actuators selectively rotates the airfoil section of the variable vanes about the trunions between desired positions.
  • a gas turbine engine with an adjustable vane includes a platform with a hole and an aperture.
  • a vane is supported for rotation relative to the platform by a trunion that is received in the hole.
  • the vane has an opening that is laterally spaced from the trunion and is in alignment with the aperture.
  • the vane includes an airfoil with a cooling passage in fluid communication with the opening.
  • the platforms include an outer platform having a boss.
  • the boss circumscribes the aperture.
  • the outer platform includes a groove that is opposite the boss and adjacent to the vane.
  • a seal is provided in the groove and is engageable with the vane.
  • a cooling source is in fluid communication with the outer platform.
  • a passageway extends through the boss to the groove and is configured to supply fluid from the cooling source to the seal to urge the seal into engagement with the vane.
  • the aperture is larger than the opening.
  • the seal circumscribes the aperture.
  • the vane is moveable between fully opened and closed positions.
  • the vane opening remains within the seal boundary in the fully opened and closed positions.
  • the opening is an entrance.
  • the cooling passage includes an exit opposite the entrance.
  • the platform includes an inner platform that has a recess that is in fluid communication with the exit.
  • the inner platform includes a groove that is opposite the vane.
  • a seal is provided in the groove and is engageable with the vane.
  • a cooling source is in fluid communication with the outer platform.
  • a passageway extends through the boss to the groove and is configured to supply fluid from the cooling source to the seal to urge the seal into engagement with the vane.
  • the aperture is larger than the opening.
  • the seal circumscribes the aperture.
  • the vane is moveable between fully opened and closed positions. The vane opening remains within the seal boundary in the fully opened and closed positions.
  • the vane is arranged within the turbine section.
  • a circumferential array of fixed and adjustable vanes is included.
  • an adjustable vane for a gas turbine engine in another exemplary embodiment, includes an airfoil that is arranged between opposing trunions extending from opposing sealing faces. An opening in one of the sealing faces is laterally spaced from one of the trunions.
  • the airfoil has a cooling passage that is in fluid communication with the opening.
  • an opening is provided on each of the sealing faces.
  • the trunions are not in fluid communication with the cooling passage.
  • bushings or bearings are supported on each of the trunions.
  • a method of cooling an adjustable vane for a gas turbine engine includes supporting a vane for rotation relative to a platform about a trunion, and energizing a seal provided between the platforms and the vane to seal a gap between the platforms and the vane.
  • the method includes the step of supplying cooling fluid to the vane from an area adjacent to the trunion.
  • the platform includes an inner platform and an outer platform.
  • the method includes the step of energizing a seal that is provided between at least one of the outer and inner platforms and the vane and engaging the vane with the seal.
  • the supplying step includes providing a cooling fluid to the interior of the vane.
  • FIG. 1 is a highly schematic view of an example turbojet engine.
  • FIG. 2 is a perspective view of a portion of a variable stage.
  • FIGS. 3A and 3B are top elevational views of the variable stator vane in the fully closed and fully opened positions, respectively.
  • FIG. 4 is a perspective view of a portion of a variable stage having fixed vanes with the variable vane removed.
  • FIG. 5 is an elevational view of the variable stator vane.
  • FIG. 6 is a cross-sectional view through the variable stator vane illustrating a sealing configuration.
  • FIG. 1 illustrates an example turbojet engine 10 .
  • the engine 10 generally includes a fan section 12 , a compressor section 14 , a combustor section 16 , a turbine section 18 , an augmentor section 19 and a nozzle section 20 .
  • the compressor section 14 , combustor section 16 and turbine section 18 are generally referred to as the core engine.
  • An axis A of the engine 10 is generally disposed and extends longitudinally through the sections.
  • An outer engine duct structure 22 and an inner cooling liner structure 24 provide an annular secondary fan bypass flow path 26 around a primary exhaust flow path E.
  • FIG. 2 illustrates a portion of a variable stator vane stage 28 , which is provided in the turbine section 14 , for example.
  • the disclosed variable stator vane can be used in the fan or compressor sections, if desired.
  • the disclosed variable stator vane arrangement can be applied to turbojets, low bypass turbofans, high bypass turbofans, geared turbofans, two spool engines, three spool engines, augmented engines, and/or engines with one or more bypass streams.
  • a case 30 supports an array of circumferentially arranged fixed and adjustable stator vanes 36 , 38 extending between radially spaced apart inner and outer platforms 32 , 34 .
  • the outer platform 34 includes a circumferential channel 40 arranged between forward and aft rails 42 , 44 .
  • a cooling source 46 is in fluid communication with the channel 40 to supply cooling fluid to the fixed and adjustable vanes 36 , 38 .
  • the adjustable vane 38 includes outer and inner trunnions 48 , 50 ( FIG. 5 ) each received in a corresponding hole 54 in the inner and outer platforms 32 , 34 , as best shown in FIG. 4 .
  • Each trunion 48 , 50 may have a bushing or a bearing between it and the inner and outer platforms 32 , 34 .
  • a controller 56 commands an actuator 58 connected to a linkage 60 that is coupled to the outer trunnion 48 .
  • the actuator rotates the airfoil 51 of the adjustable vane 38 between fully closed and fully opened positions, shown in FIGS. 3A and 3B , respectively, to control the flow of fluid through the engine's core flow path.
  • Cooling fluid is communicated from the cooling source 46 through an aperture 64 extending through a boss 62 in the outer platform 34 , as shown in FIG. 2 .
  • the adjustable vane 38 includes an opening 66 that provides an entrance to a cooling passage 68 within the airfoil 51 , shown in FIG. 5 .
  • the airfoil may include multiple film cooling holes 70 in the exterior airfoil surface 72 that are in fluid communication with the cooling passage 68 .
  • the aperture 64 is larger than the opening 66 such that when the adjustable vane 38 is moved between the fully opened and closed positions, the opening 66 remains within the aperture 64 .
  • the outer platform 34 includes a groove 74 opposite the boss 62 .
  • a seal 76 is arranged within the groove 74 and is engageable with a sealing surface 80 of the adjustable vane 38 .
  • the seal 76 circumscribes the aperture 64 and seals an end wall gap 77 provided between the sealing face 80 and the outer platform 34 .
  • Passageways 78 fluidly connect the channel 40 and the groove 74 to supply cooling fluid from the cooling source 46 to the groove 74 , which energizes the seal 76 and urges the seal 76 into engagement with the sealing face 80 .
  • the inner platform 32 includes a recess 84 that receives the cooling fluid from an exit 82 of the cooling passage 68 .
  • a passageway 178 fluidly connects the recess 84 to a groove 174 in the inner platform 32 .
  • a seal 176 is arranged within the groove 174 and circumscribes the recess 84 . The seal 176 is energized by the cooling fluid to urge the seal 176 into engagement with the sealing face 180 to seal the end wall gap 177 .
  • the disclosed sealing arrangement enables cooling fluid to be efficiently communicated to the adjustable vane while minimizing leakage of the cooling air. Transferring the cooling fluid to the adjustable vane at an area adjacent to the trunnion rather than through the trunnion enables an efficient and simple sealing arrangement with a feed area that is not limited by the trunion geometry.

Abstract

A gas turbine engine with an adjustable vane includes a platform with a hole and an aperture. A vane is supported for rotation relative to the platform by a trunion that is received in the hole. The vane has an opening that is laterally spaced from the trunion and is in alignment with the aperture. The vane includes an airfoil with a cooling passage in fluid communication with the opening.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Provisional Application No. 61/908,387, which was filed on Nov. 25, 2013 and is incorporated herein by reference.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
This invention was made with government support with the United States Navy under Contract No.: N00014-09-D-0821-0006. The government therefore has certain rights in this invention.
BACKGROUND
This disclosure relates to a gas turbine engine with an adjustable vane. More particularly, the disclosure relates to an adjustable vane sealing arrangement.
A gas turbine engine uses a compressor section that compresses air. The compressed air is provided to a combustor section where the compressed air and fuel is mixed and burned. The hot combustion gases pass through a turbine section to provide work that may be used for thrust or driving another system component.
In general, it is often the case that the temperature of the gases passing through the flow path of a turbine stage may exceed a maximum allowable temperature of the turbine vane material, and therefore it is necessary to provide a continuous supply of cooling air to the interior of the airfoil in order to limit its maximum temperature. A turbine section typically has one or more fixed stages and one or more rotatable stages. A typical cooling scheme is to feed the cooling air though openings in fixed stator vanes. Such openings are situated directly over the attached airfoil, such that the cooling air enters directly into passages internal to the airfoil. Inner and outer diameter platforms serve to constrain the stator vane relative to the static structure of the turbine section, and additionally serve to define the inner and outer diameter flow path boundaries.
In certain designs, variable stator vanes may be used in the fixed stage where the airfoil portion of the vanes is rotatable about a radial axis. In one embodiment, such turbine vanes include an airfoil and a cylindrical trunnion that connects the airfoil to a support structure, such as inner and outer cases, via a set of bushings or bearings. Cooling air may be provided to the airfoil through an aperture in the trunion. There is typically a gap between the moveable airfoil section and the support structure that permits the airfoil section to rotate freely without interference or binding with the support structure. One or more actuators selectively rotates the airfoil section of the variable vanes about the trunions between desired positions.
SUMMARY
In one exemplary embodiment, a gas turbine engine with an adjustable vane includes a platform with a hole and an aperture. A vane is supported for rotation relative to the platform by a trunion that is received in the hole. The vane has an opening that is laterally spaced from the trunion and is in alignment with the aperture. The vane includes an airfoil with a cooling passage in fluid communication with the opening.
In a further embodiment of the above, the platforms include an outer platform having a boss. The boss circumscribes the aperture.
In a further embodiment of any of the above, the outer platform includes a groove that is opposite the boss and adjacent to the vane. A seal is provided in the groove and is engageable with the vane.
In a further embodiment of any of the above, a cooling source is in fluid communication with the outer platform. A passageway extends through the boss to the groove and is configured to supply fluid from the cooling source to the seal to urge the seal into engagement with the vane.
In a further embodiment of any of the above, the aperture is larger than the opening. The seal circumscribes the aperture.
In a further embodiment of any of the above, the vane is moveable between fully opened and closed positions. The vane opening remains within the seal boundary in the fully opened and closed positions.
In a further embodiment of any of the above, the opening is an entrance. The cooling passage includes an exit opposite the entrance. The platform includes an inner platform that has a recess that is in fluid communication with the exit.
In a further embodiment of any of the above, the inner platform includes a groove that is opposite the vane. A seal is provided in the groove and is engageable with the vane.
In a further embodiment of any of the above, a cooling source is in fluid communication with the outer platform. A passageway extends through the boss to the groove and is configured to supply fluid from the cooling source to the seal to urge the seal into engagement with the vane.
In a further embodiment of any of the above, the aperture is larger than the opening. The seal circumscribes the aperture. The vane is moveable between fully opened and closed positions. The vane opening remains within the seal boundary in the fully opened and closed positions.
In a further embodiment of any of the above, the vane is arranged within the turbine section.
In a further embodiment of any of the above, a circumferential array of fixed and adjustable vanes is included.
In another exemplary embodiment, an adjustable vane for a gas turbine engine includes an airfoil that is arranged between opposing trunions extending from opposing sealing faces. An opening in one of the sealing faces is laterally spaced from one of the trunions. The airfoil has a cooling passage that is in fluid communication with the opening.
In a further embodiment of the above, an opening is provided on each of the sealing faces.
In a further embodiment of any of the above, the trunions are not in fluid communication with the cooling passage.
In a further embodiment of any of the above, bushings or bearings are supported on each of the trunions.
In one exemplary embodiment, a method of cooling an adjustable vane for a gas turbine engine includes supporting a vane for rotation relative to a platform about a trunion, and energizing a seal provided between the platforms and the vane to seal a gap between the platforms and the vane.
In a further embodiment of any of the above, the method includes the step of supplying cooling fluid to the vane from an area adjacent to the trunion.
In a further embodiment of any of the above, the platform includes an inner platform and an outer platform. The method includes the step of energizing a seal that is provided between at least one of the outer and inner platforms and the vane and engaging the vane with the seal.
In a further embodiment of any of the above, the supplying step includes providing a cooling fluid to the interior of the vane.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosure can be further understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
FIG. 1 is a highly schematic view of an example turbojet engine.
FIG. 2 is a perspective view of a portion of a variable stage.
FIGS. 3A and 3B are top elevational views of the variable stator vane in the fully closed and fully opened positions, respectively.
FIG. 4 is a perspective view of a portion of a variable stage having fixed vanes with the variable vane removed.
FIG. 5 is an elevational view of the variable stator vane.
FIG. 6 is a cross-sectional view through the variable stator vane illustrating a sealing configuration.
The embodiments, examples and alternatives of the preceding paragraphs, the claims, or the following description and drawings, including any of their various aspects or respective individual features, may be taken independently or in any combination. Features described in connection with one embodiment are applicable to all embodiments, unless such features are incompatible.
DETAILED DESCRIPTION
FIG. 1 illustrates an example turbojet engine 10. The engine 10 generally includes a fan section 12, a compressor section 14, a combustor section 16, a turbine section 18, an augmentor section 19 and a nozzle section 20. The compressor section 14, combustor section 16 and turbine section 18 are generally referred to as the core engine. An axis A of the engine 10 is generally disposed and extends longitudinally through the sections. An outer engine duct structure 22 and an inner cooling liner structure 24 provide an annular secondary fan bypass flow path 26 around a primary exhaust flow path E.
FIG. 2 illustrates a portion of a variable stator vane stage 28, which is provided in the turbine section 14, for example. It should be understood that the disclosed variable stator vane can be used in the fan or compressor sections, if desired. The disclosed variable stator vane arrangement can be applied to turbojets, low bypass turbofans, high bypass turbofans, geared turbofans, two spool engines, three spool engines, augmented engines, and/or engines with one or more bypass streams.
A case 30 supports an array of circumferentially arranged fixed and adjustable stator vanes 36, 38 extending between radially spaced apart inner and outer platforms 32, 34. The outer platform 34 includes a circumferential channel 40 arranged between forward and aft rails 42, 44. A cooling source 46 is in fluid communication with the channel 40 to supply cooling fluid to the fixed and adjustable vanes 36, 38.
The adjustable vane 38 includes outer and inner trunnions 48, 50 (FIG. 5) each received in a corresponding hole 54 in the inner and outer platforms 32, 34, as best shown in FIG. 4. Each trunion 48, 50 may have a bushing or a bearing between it and the inner and outer platforms 32, 34.
Returning to FIG. 2, a controller 56 commands an actuator 58 connected to a linkage 60 that is coupled to the outer trunnion 48. The actuator rotates the airfoil 51 of the adjustable vane 38 between fully closed and fully opened positions, shown in FIGS. 3A and 3B, respectively, to control the flow of fluid through the engine's core flow path.
Cooling fluid is communicated from the cooling source 46 through an aperture 64 extending through a boss 62 in the outer platform 34, as shown in FIG. 2. The adjustable vane 38 includes an opening 66 that provides an entrance to a cooling passage 68 within the airfoil 51, shown in FIG. 5. The airfoil may include multiple film cooling holes 70 in the exterior airfoil surface 72 that are in fluid communication with the cooling passage 68. The aperture 64 is larger than the opening 66 such that when the adjustable vane 38 is moved between the fully opened and closed positions, the opening 66 remains within the aperture 64.
Referring to FIG. 6, the outer platform 34 includes a groove 74 opposite the boss 62. A seal 76 is arranged within the groove 74 and is engageable with a sealing surface 80 of the adjustable vane 38. The seal 76 circumscribes the aperture 64 and seals an end wall gap 77 provided between the sealing face 80 and the outer platform 34. Passageways 78 fluidly connect the channel 40 and the groove 74 to supply cooling fluid from the cooling source 46 to the groove 74, which energizes the seal 76 and urges the seal 76 into engagement with the sealing face 80.
Another sealing arrangement is provided at the opposing end of the vane 38. The inner platform 32 includes a recess 84 that receives the cooling fluid from an exit 82 of the cooling passage 68. A passageway 178 fluidly connects the recess 84 to a groove 174 in the inner platform 32. A seal 176 is arranged within the groove 174 and circumscribes the recess 84. The seal 176 is energized by the cooling fluid to urge the seal 176 into engagement with the sealing face 180 to seal the end wall gap 177.
The disclosed sealing arrangement enables cooling fluid to be efficiently communicated to the adjustable vane while minimizing leakage of the cooling air. Transferring the cooling fluid to the adjustable vane at an area adjacent to the trunnion rather than through the trunnion enables an efficient and simple sealing arrangement with a feed area that is not limited by the trunion geometry.
It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.
Although the different examples have specific components shown in the illustrations, embodiments of this invention are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.
Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of the claims. For that reason, the following claims should be studied to determine their true scope and content.

Claims (11)

What is claimed is:
1. A gas turbine engine with an adjustable vane, comprising:
an inner and outer platform, the outer platform having a hole, an aperture, and a boss circumscribing the aperture; and
a vane is supported for rotation relative to the outer platform by a trunion received in the hole, the vane has an opening laterally spaced from the trunion and in alignment with the aperture, the vane includes an airfoil with a cooling passage in fluid communication with the opening, wherein the outer platform includes a groove opposite the boss adjacent to the vane, and a seal is provided in the groove and is engageable with the vane; and
a cooling source in fluid communication with the outer platform, a passageway extending through the boss to the groove and configured to supply fluid from the cooling source to the seal to urge the seal into engagement with the vane.
2. A gas turbine engine with an adjustable vane, comprising:
an inner and outer platform, the outer platform having a hole, an aperture, and a boss circumscribing the aperture; and
a vane is supported for rotation relative to the outer platform by a trunion received in the hole, the vane has an opening laterally spaced from the trunion and in alignment with the aperture, the vane includes an airfoil with a cooling passage in fluid communication with the opening, wherein the outer platform includes a groove opposite the boss adjacent to the vane, and a seal is provided in the groove and is engageable with the vane; and
wherein the aperture is larger than the opening, the seal circumscribes the aperture to define a seal boundary.
3. The gas turbine engine according to claim 2, wherein the vane is moveable between fully opened and closed positions, the vane opening remaining within the seal boundary in the fully opened and closed positions.
4. A gas turbine engine with an adjustable vane, comprising:
a platform with a hole and an aperture;
a vane is supported for rotation relative to the platform by a trunion received in the hole, the vane has an opening laterally spaced from the trunion and in alignment with the aperture, the vane includes an airfoil with a cooling passage in fluid communication with the opening, wherein the opening is an entrance, and the cooling passage includes an exit opposite the entrance, the platform includes an inner platform having a recess in fluid communication with the exit, wherein the inner platform includes a groove opposite the vane, and a seal is provided in the groove and is engageable with the vane; and
wherein the aperture is larger than the opening, the seal circumscribes the aperture to define a seal boundary, the vane is moveable between fully opened and closed positions, the vane opening remaining within the seal boundary in the fully opened and closed positions.
5. The gas turbine engine according to claim 4, comprising a cooling source in fluid communication with the outer platform, a passageway extending through a boss to the groove and configured to supply fluid from the cooling source to the seal to urge the seal into engagement with the vane.
6. The gas turbine engine according to claim 1, comprising a turbine section, the vane arranged within the turbine section.
7. The gas turbine engine according to claim 6, the vane is an adjustable vane arranged in a circumferential array of fixed and adjustable vanes.
8. A method of cooling a vane for a gas turbine engine, comprising:
supporting the vane for rotation relative to a platform about a trunion; and
energizing a seal provided between the platform and the vane by supplying fluid from a cooling source to the seal to urge the seal into engagement with the vane to seal a gap between the platform and the vane.
9. The method according to claim 8, comprising the step of supplying cooling fluid to the vane from an area adjacent to the trunion.
10. The method according to claim 9, comprising supporting the vane for rotation relative to an inner platform and an outer platform, the platform is one of the inner platform and the outer platform, and comprising a step of energizing a second seal provided between an other of the outer and inner platforms and the vane and engaging the vane with the second seal.
11. The method according to claim 8, comprising supplying a cooling fluid to an interior of the vane.
US15/036,856 2013-11-25 2014-11-03 Method for providing coolant to a movable airfoil Active 2036-04-21 US10385720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/036,856 US10385720B2 (en) 2013-11-25 2014-11-03 Method for providing coolant to a movable airfoil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361908387P 2013-11-25 2013-11-25
PCT/US2014/063647 WO2015108606A2 (en) 2013-11-25 2014-11-03 A method for providing coolant to a movable airfoil
US15/036,856 US10385720B2 (en) 2013-11-25 2014-11-03 Method for providing coolant to a movable airfoil

Publications (2)

Publication Number Publication Date
US20160298484A1 US20160298484A1 (en) 2016-10-13
US10385720B2 true US10385720B2 (en) 2019-08-20

Family

ID=53543599

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/036,856 Active 2036-04-21 US10385720B2 (en) 2013-11-25 2014-11-03 Method for providing coolant to a movable airfoil

Country Status (3)

Country Link
US (1) US10385720B2 (en)
EP (1) EP3090146B8 (en)
WO (1) WO2015108606A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961978B2 (en) * 2015-01-30 2021-03-30 GE Renewable Techologies Turbine unit for hydraulic installation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026597A1 (en) * 2013-08-21 2015-02-26 United Technologies Corporation Variable area turbine arrangement with secondary flow modulation
EP2949871B1 (en) * 2014-05-07 2017-03-01 United Technologies Corporation Variable vane segment
FR3099204B1 (en) * 2019-07-24 2022-12-23 Safran Aircraft Engines TURBOMACHINE RECTIFIER STAGE WITH COOLING AIR LEAK PASSAGE WITH VARIABLE SECTION DEPENDING ON BLADE ORIENTATION

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE850681C (en) * 1945-02-13 1952-09-25 Maschf Augsburg Nuernberg Ag Adjustable diffuser for flow machines, especially gas turbines
DE1041739B (en) * 1955-06-17 1958-10-23 Schweizerische Lokomotiv Adjustable guide vane ring for axial turbo machines, especially axial gas turbines
US4214852A (en) * 1978-04-20 1980-07-29 General Electric Company Variable turbine vane assembly
US4657476A (en) 1984-04-11 1987-04-14 Turbotech, Inc. Variable area turbine
US4798515A (en) 1986-05-19 1989-01-17 The United States Of America As Represented By The Secretary Of The Air Force Variable nozzle area turbine vane cooling
US4856962A (en) * 1988-02-24 1989-08-15 United Technologies Corporation Variable inlet guide vane
US5184459A (en) 1990-05-29 1993-02-09 The United States Of America As Represented By The Secretary Of The Air Force Variable vane valve in a gas turbine
US5207556A (en) 1992-04-27 1993-05-04 General Electric Company Airfoil having multi-passage baffle
US5517817A (en) 1993-10-28 1996-05-21 General Electric Company Variable area turbine nozzle for turbine engines
US6913440B2 (en) 2002-08-06 2005-07-05 Avio S.P.A. Variable-geometry turbine stator blade, particularly for aircraft engines
US7104756B2 (en) 2004-08-11 2006-09-12 United Technologies Corporation Temperature tolerant vane assembly
US20080190114A1 (en) 2007-02-08 2008-08-14 Raymond Surace Gas turbine engine component cooling scheme
US20090148282A1 (en) * 2007-12-10 2009-06-11 Mccaffrey Michael G 3d contoured vane endwall for variable area turbine vane arrangement
US20100247293A1 (en) 2007-05-24 2010-09-30 Mccaffrey Michael G Variable area turbine vane arrangement
US7866158B2 (en) 2007-12-05 2011-01-11 United Technologies Corporation Exhaust liner attachment arrangement
US20120093632A1 (en) 2010-10-15 2012-04-19 General Electric Company Variable turbine nozzle system
US8257035B2 (en) 2007-12-05 2012-09-04 Siemens Energy, Inc. Turbine vane for a gas turbine engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1041739A (en) * 1912-10-22 William G Chipley Tire.
US850681A (en) * 1906-07-23 1907-04-16 George Lawrence Smith Fire and temperature alarm or indicator.

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE850681C (en) * 1945-02-13 1952-09-25 Maschf Augsburg Nuernberg Ag Adjustable diffuser for flow machines, especially gas turbines
DE1041739B (en) * 1955-06-17 1958-10-23 Schweizerische Lokomotiv Adjustable guide vane ring for axial turbo machines, especially axial gas turbines
US4214852A (en) * 1978-04-20 1980-07-29 General Electric Company Variable turbine vane assembly
US4657476A (en) 1984-04-11 1987-04-14 Turbotech, Inc. Variable area turbine
US4798515A (en) 1986-05-19 1989-01-17 The United States Of America As Represented By The Secretary Of The Air Force Variable nozzle area turbine vane cooling
US4856962A (en) * 1988-02-24 1989-08-15 United Technologies Corporation Variable inlet guide vane
US5184459A (en) 1990-05-29 1993-02-09 The United States Of America As Represented By The Secretary Of The Air Force Variable vane valve in a gas turbine
US5207556A (en) 1992-04-27 1993-05-04 General Electric Company Airfoil having multi-passage baffle
US5517817A (en) 1993-10-28 1996-05-21 General Electric Company Variable area turbine nozzle for turbine engines
US6913440B2 (en) 2002-08-06 2005-07-05 Avio S.P.A. Variable-geometry turbine stator blade, particularly for aircraft engines
US7104756B2 (en) 2004-08-11 2006-09-12 United Technologies Corporation Temperature tolerant vane assembly
US20080190114A1 (en) 2007-02-08 2008-08-14 Raymond Surace Gas turbine engine component cooling scheme
US20100247293A1 (en) 2007-05-24 2010-09-30 Mccaffrey Michael G Variable area turbine vane arrangement
US7866158B2 (en) 2007-12-05 2011-01-11 United Technologies Corporation Exhaust liner attachment arrangement
US8257035B2 (en) 2007-12-05 2012-09-04 Siemens Energy, Inc. Turbine vane for a gas turbine engine
US20090148282A1 (en) * 2007-12-10 2009-06-11 Mccaffrey Michael G 3d contoured vane endwall for variable area turbine vane arrangement
US8105019B2 (en) 2007-12-10 2012-01-31 United Technologies Corporation 3D contoured vane endwall for variable area turbine vane arrangement
US20120093632A1 (en) 2010-10-15 2012-04-19 General Electric Company Variable turbine nozzle system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ESPACE.net. Translation of DE 1041739 B, Aug. 30, 2018. *
ESPACE.net. Translation of DE 850681 C, retrieved Sep. 23, 2018. *
International Search Report for PCT/US2014/063647 dated Aug. 12, 2015.
The Extended European Search Report for EP Application No. 14878556.1, dated Sep. 19, 2017.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961978B2 (en) * 2015-01-30 2021-03-30 GE Renewable Techologies Turbine unit for hydraulic installation

Also Published As

Publication number Publication date
WO2015108606A3 (en) 2015-10-08
EP3090146A2 (en) 2016-11-09
EP3090146A4 (en) 2017-10-18
US20160298484A1 (en) 2016-10-13
EP3090146B1 (en) 2021-01-06
WO2015108606A2 (en) 2015-07-23
EP3090146B8 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
US11208913B2 (en) Gas turbine engine having minimum cooling airflow
US9976435B2 (en) Blade tip clearance systems
US10053999B2 (en) Radial position control of case supported structure with axial reaction member
US10329939B2 (en) Blade tip clearance control system including BOAS support
US10487751B2 (en) Switching bleed valve for a gas turbine engine
US20170167507A1 (en) Method and system for a pitch change mechanism hydraulic fluid transfer sleeve
EP3273035B1 (en) Gas turbine engine with heat pipe for thermal energy dissipation
US11118480B2 (en) Mid turbine frame including a sealed torque box
US9803559B2 (en) Variable vane and seal arrangement
US10385720B2 (en) Method for providing coolant to a movable airfoil
US10132193B2 (en) Gas turbine engine duct assembly
US9140212B2 (en) Gas turbine engine with reverse-flow core having a bypass flow splitter
US10557371B2 (en) Gas turbine engine variable vane end wall insert
US11041445B2 (en) Metering valve assembly and method of assembly thereof
US20180334962A1 (en) Active bleed flow modulation
US11181004B2 (en) Confinement of a rope seal about a passage using a backing plate
US10378451B2 (en) Large displacement high temperature seal
US10473037B2 (en) Passively-driven bleed source switching
US10520097B2 (en) Multi-flowpath fluid control valve
US20160230675A1 (en) Fan flow control valve

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:054062/0001

Effective date: 20200403

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:055659/0001

Effective date: 20200403

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: RTX CORPORATION, CONNECTICUT

Free format text: CHANGE OF NAME;ASSIGNOR:RAYTHEON TECHNOLOGIES CORPORATION;REEL/FRAME:064714/0001

Effective date: 20230714