WO2013021085A1 - Procedimiento, dispositivo e instalación para el tratamiento cualitativo organoléptico de los alcoholes - Google Patents

Procedimiento, dispositivo e instalación para el tratamiento cualitativo organoléptico de los alcoholes Download PDF

Info

Publication number
WO2013021085A1
WO2013021085A1 PCT/ES2012/070611 ES2012070611W WO2013021085A1 WO 2013021085 A1 WO2013021085 A1 WO 2013021085A1 ES 2012070611 W ES2012070611 W ES 2012070611W WO 2013021085 A1 WO2013021085 A1 WO 2013021085A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gases
alcohol
oxidizing agent
pressure
Prior art date
Application number
PCT/ES2012/070611
Other languages
English (en)
French (fr)
Inventor
Jose Luis Godoy Varo
Original Assignee
Jose Luis Godoy Varo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jose Luis Godoy Varo filed Critical Jose Luis Godoy Varo
Priority to ES201490012A priority Critical patent/ES2446374B1/es
Publication of WO2013021085A1 publication Critical patent/WO2013021085A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G3/00Preparation of other alcoholic beverages
    • C12G3/04Preparation of other alcoholic beverages by mixing, e.g. for preparation of liqueurs
    • C12G3/06Preparation of other alcoholic beverages by mixing, e.g. for preparation of liqueurs with flavouring ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols

Definitions

  • the present invention concerns the modification for its sensory and organoleptic softening of alcohols, originating from fermentation or other methods.
  • the destiny of the alcohol modified for its softening preferably concerns the application of the following three groups: A.- Al destined for human consumption, before or in the phase of elaboration of alcoholic beverages such as distillates, wines, spirits, etc.
  • B.- Al intended for cosmetics for dermatological contact such as fragrances, colognes, perfumes, deodorants, creams, soaps etc., either before, or in the stage of its preparation, as well as in the final phase of finishing of the product.
  • C- Al intended for the air fresheners sector, either in its liquid state, liquid for spraying or solid, either before, or in the stage of its elaboration, as well as in the final phase of the finishing of the product.
  • the present invention concerns the modification for the smoothing and improvement of the organoleptic sensory quality of at least one of the alcohols, derived or derived from fermentation from raw materials such as cereals or grain (barley, corn, oats, rye, spelled, wheat and rice), also like cassava, potatoes, bananas, beet molasses, molasses, fruits, etc. or other methods of obtaining alcohol, such as byproduct of the manufacture of saccharin and those of hydrocarbon derivatives.
  • the fate of the modified alcohol for its improvement in organoleptic quality preferably concerns the application of the following three groups:
  • C- Al intended for the air fresheners sector, either in its liquid state, liquid for spray or solid spray, either before, in the stage of its elaboration, or at the end of the product.
  • the method consists in the application of an oxidant, such as O2 in its pure state, or with a mixture of gases containing a part of O 2 , such as atmospheric air, alternating applications of positive pressure of said gas, for the administration of its oxidant, and of a subsequent application of a depression or vacuum for the extraction of a part of the gases present in the liquid that can act as inhibitors for the continuation of the reaction, or to favor the ventilation or renewal of the oxidant in the subsequent overpressure cycle.
  • an oxidant such as O2 in its pure state
  • gases containing a part of O 2 such as atmospheric air
  • alcohol has been disposed in industrial tanks by oxidation controlled by O2, while negative pressure values have been applied (continuously, or in repetitive cycles) in the same area or in others of the tank, either in the air chamber, as well as in direct contact with the liquid, thereby achieving an organoleptic softening of the treated product.
  • This method is also achievable when the product is already finished and packaged in the bottle to be able to be marketed, for this it is necessary that the cap or a part of the container have some gas permeability.
  • Such treatment produces a softening effect of the treated alcohols, regardless of the degree of alcohol they carry, leaving them with more appreciable and gentle organoleptic values compared to their previous original state, Appreciating more aromatic essences that are subsequently added for use in drinks, fragrances, cosmetics and air fresheners, without losing the degree of alcohol or the virtues of dissolution for which it is used.
  • Another advantage of this application made to alcohol is that after being treated allows a great saving in the amount of essence added to the maceration of products intended for fragrances. Since the treated alcohol allows a better appreciation of the added essences. Detailed description of some embodiments
  • Figs. 1 .01 to 1 .10 in an exemplary embodiment, and perhaps the most economical for this purpose, is the application of atmospheric gases, giving equal or superior results in said application to those exposed with O2 in a more or less state pure or other oxidative gases.
  • a tank 1 .01 has been arranged, with the alcohol to be treated 1 .02, with a connection covered by a permeable and selective gas membrane 1 .05 and connected to a mechanical system 1 .03 for the controlled administration of gases of values that comprise a range of atmospheric pressures, captured from the outside by the controlled combination of opening and closing of valves .07, depending on the position of the piston.
  • a connection taking advantage of the filler cap is also provided in the upper area of the same tank, also covered by another 1 .05 gas selective membrane and with a mechanism, in a vertical position, of compression-expansion of 1 .03 atmospheric gases equal to the previous one located horizontally.
  • Applying to the latter mechanism controlled counter pressures to the first lower hole with the atmospheric oxidizing gas. That is, confronted pressures are being applied, giving very positive results, with shorter application times to obtain the effects of alcohol softening.
  • a temperature control system is important in order to control the dissolution of O2 and the oxidation of alcohol, while preventing unwanted overpressures, or higher than desired solutions of O 2 in the liquid. .
  • temperatures of 20 Q C to 30 Q C are viable for this process, but it should also be noted that others higher or lower than those proposed are also possible in that process.
  • a passenger compartment 1 .09 has been shown as a sample of an area with the controlled ambient temperature.
  • a gas permeable tank 2.01 is available with said liquid, in this case alcohol with at least one flavoring substance, 2.02, as can also be a gas-tight deposit having some permeability in at least one of its overtures.
  • said reservoir will require pressurization systems 2.1 2 and vacuum 2.1 0, controlling the pressures or vacuums administered by pilot operated servo valves 2.09, which may be applied in controlled positive or negative pressurization cycles in the enclosure zone 2.07 of the tank 2.01 .
  • a pressure sensor 2.1 5 located in said inner zone, providing an oxidative gas 2.1 3, which in this case is atmospheric and then apply a depression or vacuum 2.1 1, extracting the gases that have reacted to promote ventilation and oxidant renewal.
  • the pressures administered in this example are 980 millibars at 1030 millibars of absolute pressure with times of 20 minutes in both the pressure and depression variables, alternating the circulating atmosphere by means of the valve 2.1 6 with an opening time of approximately 2 minutes, also the application times, as the pressure values can be variable, the number of repetitions of the process will be high enough to achieve the desired results.
  • the parameters and the data processing of the whole set are controlled by the computer system located in the control cabinet 2.14.
  • pressures can also be combined or contrasted in specific areas where selective gas membranes 2.06 have been located, and in this case they are the filling and emptying holes, controlling the pressures applied by means of 2.08 sensors, with the combination of the pressure that surrounds the gas permeable tank 2.07, controlled by the chamber pressure sensor 2.1 5.
  • the porosities of the gas permeable elements, 2.01 tanks, selective 2.06 gas membranes, etc. are also a conditioning factor.
  • a system for controlling the temperature inside the cabin 2.04 by means of data processing of the probe 2.05 is also provided.
  • a third embodiment illustrated by Figs. 3 from 3.01 to 3.52 and in another of the tests carried out for the purpose of this invention the location of two tanks has been arranged, one filled with the liquid to be treated 3.01 and another empty of liquid 3.44 but filled -in its air chamber- of an inert gas such as N 2 3.52 through valve 3.51.
  • a mechanical element 3.1 2 has been arranged that communicates both deposits. Said mechanical element incorporates at least one selective gas membrane 3.1 3 through which the liquid 3.06 circulates from the full tank 3.01 to the tank 3.44.
  • the transfer is carried out by means of the circulation pump 3.1 0 located in the bypass 3.43, applying a pressure and flow rate to the liquid 3.08 for its circulation inside the gas selective membrane 3.1 3 supported by the mechanical element 3.1 2 at the same time as a compressed atmospheric gas pressure 3.27 is applied by a gas compressor 3.32, and which provides a part of O 2 , controlling its pressure and flow rate by means of the pressure sensor 3.29 in combination with the pilot operated servo valve 3.28. With this combination it oxidizes the liquid and depending on the circulating flow of liquid 3.08, as well as that of the gas pressure 3.27 atmospheric compressed and temperature, a part of the O 2 may be dissolved in said liquid.
  • the second tank 3.44 circulates and fills the N 2 of the air chamber 3.46 monitored and controlled by means of a 3.02 pressure sensor and prevents evaporation of the liquid gases and possible aromas that it contains .
  • the remaining N 2 is directed to the lung 3.49.
  • said gas N 2 is directed to the first tank 3.01 occupying the empty area of the air chamber 3.07 supervised with the pressure sensor 3.02 creating a controlled over pressure to avoid evaporation of substances from the liquid.
  • the 02 treatment can be applied in the desired purity state, by administering the enriched 02 3.34 or dissolving it with the compressed gas 3.32 by combining the valves 3.33 and 3.31.
  • the second phase is carried out, which consists in inverting the process and extracting the unwanted gases.
  • the liquid circulation pump 3.41 is activated and bypass 3.42 is closed with the combination of the pilot operated servo valves 3.40 adjacent to said pump, circulating the liquid from the second tank 3.44 to the first tank 3.01, passing through the selective membrane of gases 3.13 of the mechanical element 3.1 2.
  • a vacuum controlled by a vacuum pump 3.38 is applied by controlling the application millibars by combining the vacuum sensor 3.37 and the pilot operated servo valve 3.36. It is also remarkable that bypass 3.43 will be operational for the circulation of the liquid to the first reservoir.
  • the mechanical element 4.03 with its selective gas membranes 4.05 is shown as an extension of the drawing at the moment when the vacuum 4.1 3 is applied, controlled by the pilot operated servo valve 4.14 to the liquid 4.20 which circulates in the direction of deposit 3.01.
  • the process can take the necessary time in the case that only one deposit is used, with a closed circuit, or repeat the necessary times in the case of two or more deposits, until the proposed results are obtained .
  • the control of flow rates, pressures and temperatures is necessary to obtain homogeneous results.
  • the liquid is directed to the accumulator tank, it is also possible to circulate the liquid through a closed circuit, which would only require a tank. Also in this case it should be noted that the process can take the necessary time in the case that only one deposit is used, with a closed circuit, or repeated as many times as necessary, in the case of two or more deposits, until they are obtained The proposed results. Similarly, the control of flow rates, pressures and temperatures is necessary to obtain homogeneous results. In this case, as in the previous ones, for a homogenization of the treatment, the control of the circulating flow through the selective gas membranes is necessary, as well as the values of applied pressures, as well as the control of the temperature of each of the parts of the set.
  • This figure is an elevation view and a liquid container can be seen with two systems for compression-expansion of gases, with valves and pressure sensors.
  • N Q 1 .08 Air chamber with positive or negative pressure to interact with the selective gas membrane, adjacent to the liquid.
  • This figure is an elevation view and it can be seen a container deposit placed inside a hyperbaric chamber, which It is connected to a pressure generator system higher than atmospheric and a pressure generator system lower than atmospheric. There are also valves and sensors for process control. N Q 2.01 Container or container container of the product to be treated.
  • N Q 2.1 0 Vacuum system with treatment values for depressions equal to or less than atmospheric pressure.
  • This figure is a perspective view and it can be seen as notable elements, two container tanks, one element mechanical for liquid treatment, a vacuum system, a pressurization system, an O 2 pressurization system two elements to heat-cool the gases to treatment, a system for pressure compensation between the two tanks. These elements are connected by pipes and control elements such as valves, sensors, transfer pumps.
  • N Q 3.23 Temperature sensor, outside air inlet control in the mechanical element.
  • N Q 3.24 Equipment to adjust the air inlet temperature.
  • N Q 3.28 Servo-piloted valve regulating the pressure to be administered.
  • N Q 3.29 Pressure sensor for air control to be administered.
  • N Q 3.34 Inert gas container such as Nitrogen.
  • N Q 3.42 By-pass pipe for changing the flow direction of the liquid.
  • N Q 3.43 By-pass pipe for changing the flow direction of the liquid.
  • N Q 3.47 Pipe for control of air pressure inside the tank.
  • N Q 3.48 Pipe for control of air pressure inside the tank.
  • N Q 3.50 Pressure sensor for lung reservoir N Q 3.51 Sectioning valve for compensation inert gas, such as Nitrogen.
  • N Q 3.52 Inert gas container such as Nitrogen.
  • FIG. 1 is a perspective view and is an example of a liquid treatment process. It is a detail only of the mechanical element and its connections, referring to Figure 3. In this case only vacuum is applied.
  • N Q 4.04 Metal separator ring between air chambers for treatment.
  • N Q 4.05 Gas selective membranes set.
  • N Q 4.1 1 Pipeline with pressure higher than atmospheric pressure, in this case it is closed.
  • N Q 4.1 5 External air outlet pipe of the mechanical element, in this case it is closed.
  • N Q 4.1 6 Air outlet control valve of the mechanical element, also closed.
  • N Q 4. 1 8 Air inlet control valve to the closed mechanical element.
  • N Q 4. 1 9 Extraction of the reacted gases.
  • N Q 4. 23 Oxygen that was dissolved in the liquid and has not reacted. N ⁇ 4. 24 Detail in section, of the process at the entrance of the mechanical element.
  • FIG. 1 is a perspective view and is an example of a liquid treatment process. It is a detail only of the mechanical element and its connections, referring to Figure 3. In this case only overpressure is applied to the inlet and vacuum to the outlet.
  • N Q 5.22 Liquid to be treated circulating inside the mechanical element.
  • FIG. 3 is a perspective view and is an example of a liquid treatment process. It is a detail only of the mechanical element and its connections, referring to Figure 3. In this case vacuum is applied to the outlet and to the inlet an aspiration of atmospheric pressure.
  • N Q 6.04 Metal separator ring between air chambers for treatment.
  • N Q 6.05 Selective gas membranes set.
  • Air outlet control valve of the mechanical element in this case it is also closed.
  • N Q 6.22 Liquid to be treated circulating inside the mechanical element.
  • N Q 6.23 Oxidizing gases that will react with the liquid.
  • N Q 6.26 Liquid treated circulating inside the mechanical element.
  • N Q 6.27 Oxygen that was dissolved in the liquid and has not reacted.
  • N ⁇ 6.28 Detail in section of the process at the entrance of the gases to the selective gas membrane located in the mechanical element.
  • This figure is a perspective view and is an example of the treatment process for the final container of a fragrance.
  • a pressure is applied in the air chamber to administer an oxidizing gas and a vacuum for the extraction of the gases generated in its reaction.
  • N Q 7.06 Rigid tube that attaches to the atomizer or to the flexible tube for pressure management.

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Birds (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Cosmetics (AREA)

Abstract

Procedimiento, dispositivo e instalación para el tratamiento cualitativo organoléptico de los alcoholes, que comprende administrar controladamente un oxidante al alcohol destinado a bebidas, fragancias, productos de cosmética y ambientadores; y una posterior extracción de una parte de los gases presentes en el líquido o en su cámara de aire.

Description

PROCEDIMIENTO, DISPOSITIVO E INSTALACIÓN PARA EL TRATAMIENTO CUALITATIVO ORGANOLÉPTICO DE LOS ALCOHOLES
Sector de la técnica
La presente invención concierne a la modificación para su suavizacion sensorial y organoléptica de los alcoholes, provenientes de la fermentación u otros métodos. El destino del alcohol modificado para su suavizacion concierne preferentemente a la aplicación de los tres grupos siguientes: A.- Al destinado al consumo humano, antes o en su fase de elaboración de bebidas alcohólicas como destilados, vinos, licores etc.
B.- Al destinado a la cosmética para su contacto dermatológico tales como son las fragancias, colonias, perfumes, desodorantes, cremas, jabones etc., ya sea antes, o en la fase de su elaboración, así como en la fase final del acabado del producto.
C- Al destinado al sector de los ambientadores, ya sea en su estado líquido, líquido para su pulverización o sólido, ya sea antes, o en la fase de su elaboración, así como en la fase final del acabado del producto.
Estado de la técnica anterior
Actualmente se desconoce la existencia de algún método de tratamiento cualitativo organoléptico de los alcoholes.
Si que son conocidos métodos de envejecimiento del vino y bebidas alcohólicas una vez elaboradas para su consumo, como la administración de O2 en estado más o menos puro al vino ya elaborado, mediante una micro-oxigenación.
Exposición de la invención
La presente invención concierne a la modificación para la suavizacion y mejora de la calidad sensorial organoléptica de al menos uno de los alcoholes, derivados o provenientes de la fermentación a partir de materias primas tal como cereales o grano (cebada, maíz, avena, centeno, escanda, trigo y arroz), también como mandioca, patatas, plátanos, melazas de remolacha, melazas, frutas, etc. u otros métodos de obtención del alcohol, tales como subproducto de la fabricación de la sacarina y los de derivados de hidrocarburos. El destino del alcohol modificado para su mejora en cuanto a calidad organoléptica, concierne preferentemente a la aplicación de los tres grupos siguientes:
A. - Al destinado al consumo humano, antes o en la fase de elaboración de una bebida alcohólica.
En este caso, y en al menos uno de los alcoholes tratados, con este método, como puede ser el etanol, permite una suavización del alcohol y que del mismo se obtengan unas prestaciones novedosas, tales como una menor irritación y astringencia producida por el alcohol en la posterior elaboración de una bebida. Aportando, al finalizar la misma, una mayor percepción cualitativa organoléptica de los aromas y sabores y una menor "punzón" y astringencia en boca, lo que en el sector de las bebidas se entiende como una bebida más abierta, redondeada, más estructurada y menos punzante, con menos nervio. Dicho tratamiento aplicado a alcoholes para consumo humano permite rebajar las esencias aplicadas en su maceración, permitiendo a la vez un ahorro muy notable de las mismas.
B. - Al destinado a la cosmética para su contacto dermatológico, tales como son las fragancias, colonias, perfumes, desodorantes, cremas, jabones etc., ya sea antes, en la fase de su elaboración, o en la fase final del acabado del producto.
En el caso de al menos uno de los alcoholes tratados con este método, destinado al de la cosmética, como puede ser el etanol, permite una mayor tolerancia dermatológica en pieles sensibles, así como una mayor percepción de los aromas que despiden las esencias en las colonias y perfumes, añadiéndole a ello una mayor durabilidad en piel con olores mas apreciables, suaves y duraderos. C- Al destinado al sector de los ambientadores, ya sea en su estado líquido, líquido para su pulverización en spray o sólido, ya sea antes, en la fase de su elaboración, o en la finalización del producto.
En el caso de al menos uno de los alcoholes tratados con este método, destinado al sector de los ambientadores, permite una mayor percepción de los olores dejando los ambientes con sensaciones más aromáticas frescas y suaves de las esencias aplicadas, añadiéndole a ello una mayor persistencia del producto.
Así, cuando en esta memoria descriptiva se hace referencia a una presión positiva se entenderá como una presión superior relativa en milibares a una anteriormente aplicada y cuando se indique una presión negativa se entenderá como una presión inferior relativa en milibares a una anteriormente aplicada. Habitualmente se entenderá como una presión en un rango de valores de presión iguales superiores o inferiores a los valores de presiones de la atmósfera terrestre. Se han efectuado varias pruebas para mejorar la suavización del alcohol, tal como sale de los procesos industriales (alrededor de 96 % de su volumen) ya sea rectificado o rebajado o con al menos uno de los compuestos aromatizantes disueltos. El método consiste en la aplicación de un oxidante, como puede ser el O2 en estado puro, o con mezcla de gases que contenga una parte de O2, como puede ser el aire atmosférico, alternando aplicaciones de presión positiva de dicho gas, para la administración de su oxidante, y de una ulterior aplicación de una depresión o vacío para la extracción de una parte de los gases presentes en el líquido que pueden actuar como inhibidores para la continuación de la reacción, o para favorecer la ventilación o renovación del oxidante en el posterior ciclo de sobre presión. Para la aplicación de dicho procedimiento se ha dispuesto el alcohol en depósitos industriales procediendo a su oxidación controlada mediante O2, al mismo tiempo que se han aplicado valores de presión negativa (de forma continua, o en ciclos repetitivos) en la misma zona o en otras del depósito, ya sea en la cámara de aire, así como en contacto directo con el líquido, consiguiendo con ello una suavización organoléptica del producto tratado. También es realizable este método cuando el producto está ya finalizado y envasado en el frasco para poderlo comercializar, para ello es preciso que el tapón o una parte del envase tenga cierta permeabilidad a los gases. Aquí también es posible aplicar el tratamiento en la zona de la cámara de aire, según ejemplo realizado en el dibujo de la Fig 7. Para ello será posible invertir la posición de la fragancia como para que la cámara de aire se sitúe en un extremo de la base de su cristal y donde el extremo del tubo interior quedará posicionado en dicha cámara. Una vez invertida sólo será necesario extraer el atomizador, que conecta con el tubo que conduce a la cámara de dosificación volumétrica. Con ello se tendrá acceso al tubo rígido que en cada pulsación traslada, en su interior, el volumen de líquido hacia el exterior. Dicho tubo, será preciso pulsarlo, como para vaciar la fragancia de la cámara volumétrica. Con posterioridad se acopla al tubo otro de características flexibles (con o sin filtro selectivo de gases), cuya función será la de la transmisión y extracción de los gases aplicados que se comunicarán con dicha la cámara de aire, abarcando el método de aplicación de esta patente. Hay que tener en cuenta que la cámara volumétrica lleva incorporada unos elementos mecánicos para su funcionamiento. Suele ser un muelle que presiona -en su estado de reposo- a una bolita hacia un cono que comunica con el tubo flexible que extrae la fragancia. Cabe destacar que dichos elementos mecánicos, en su punto de intersección, suelen ser permeables a los gases. Del mismo modo también se han utilizado y administrado otros gases como puede ser el Ozono puro o disuelto en otros gases y líquidos oxidantes como puede ser el Agua Oxigenada en diferentes concentraciones, etc., con posteriores combinaciones de una depresión o vacío controlado al líquido dando ello unos resultados similares a la aplicación del O2, puro o en una mezcla.
Dicho tratamiento produce un efecto de suavización de los alcoholes tratados, no importando el grado de alcohol que lleven, dejándolos con valores organolépticos más apreciables y suaves respecto a su anterior estado original, apreciándose más las esencias aromáticas que posteriormente se añaden para su uso en bebidas, fragancias, cosmética y ambientadores, sin que por ello se pierda el grado de alcohol ni las virtudes de disolución para las que se usa. Otra de las ventajas de dicha aplicación efectuada al alcohol, reside en que después de ser tratado permite un gran ahorro en la cantidad de esencia añadida a la maceración de productos destinados a las fragancias. Puesto que el alcohol tratado permite una mejor apreciación de las esencias añadidas. Descripción detallada de unos ejemplos de realización
La siguiente descripción de los ejemplos de realización ilustrados por las Figs. 1 de 1 .01 a 1 .10 debe considerarse como válida tanto por lo que se refiere a la instalación propuesta por el segundo aspecto de la invención como para los distintos elementos utilizados para aplicar el procedimiento propuesto por el primer aspecto de la invención para unos ejemplos de realización.
Haciendo en primer lugar referencia a las Figs. 1 .01 a 1 .10 en un ejemplo de realización, y tal vez la más económica para dicho efecto, es la aplicación de los gases atmosféricos, dando ello resultados iguales o superiores en dicha aplicación a los expuestos con O2 en estado más o menos puro u otros gases oxidativos. Para ello se ha dispuesto un depósito 1 .01 , con el alcohol a tratar 1 .02, con una conexión revestida por una membrana permeable y selectiva de gases 1 .05 y conectada a un sistema mecánico 1 .03 de administración controlada de gases de valores que comprenden un rango de presiones atmosféricas, captados del exterior mediante la combinación controlada de obertura y cierre de las válvulas 1 .07, dependiendo de la posición del émbolo,. Procediendo a administrar aplicaciones de presiones positivas, con tiempos predeterminados, alternando aplicaciones de depresiones, también con tiempos establecidos, en dichas cámaras 1 .08, aunque también es ventajoso abrir las válvulas 1 .07 en al menos uno de los cambios de presión, para una mejor renovación de los gases de las cámaras. Todo ello mediante el control según la información de los sensores de presión 1 .04 ubicados en la zona que comunican con las membranas selectiva de gases adyacentes al líquido, y que registra y procesa el sistema informático 1 .1 0 los valores predeterminados aplicados y secuenciales del proceso, tanto en sentido positivo como negativo. Los cambios y repeticiones de las presiones (positiva con otra negativa) proporcionan unos resultados muy satisfactorios para el objetivo de esta patente. Cabe destacar que para no originar presiones o vacíos inútiles en la zona de la cámara cercana al motor de accionamiento se ha dispuesto un orificio 1 .06 que comunica con el exterior.
En éste mismo ejemplo de aplicación se ha dispuesto en la zona superior del mismo depósito una conexión (aprovechando el tapón de llenado) también revestida por otra membrana selectiva de gases 1 .05 y con un mecanismo, en posición vertical, de compresión-expansión de los gases atmosféricos 1 .03 igual al anterior ubicado horizontalmente. Aplicándole a este último mecanismo unas presiones contrapuestas controladas al primer orificio inferior con el gas oxidante atmosférico. Es decir se están aplicando unas presiones confrontadas, dando unos resultados muy positivos, con tiempos más cortos de aplicación para obtener los efectos de suavización del alcohol. También es posible variar los valores de presión en ambas cámaras pudiéndose aplicar presiones iguales o similares en ambos orificios, como también es viable para el objeto de la invención aplicar más conexiones para su posterior presurización con sus variables.
También hay que destacar que valores de presiones superiores o inferiores a las atmosféricas también son prácticos para el tratamiento de esta invención.
Del mismo modo hay que señalar que un sistema de control de la temperatura es importante para así controlar la disolución del O2 y la oxidación del alcohol, al mismo tiempo que impide sobrepresiones no deseadas, o disoluciones mayores a las deseadas del O2 en el líquido. En este sentido, temperaturas de 20Q C a 30Q C son viables para dicho proceso, pero también cabe resaltar que otras superiores o inferiores a las propuestas también son posibles en dicho proceso. En este caso de ejemplo de aplicación de la Fig. 1 se ha representado un habitáculo 1 .09 a modo de muestra de una zona con la temperatura ambiental controlada. Es importante poner el acento en el echo que, el control de los valores de presión con tiempos determinados en cada una de las presiones aplicadas, ya sea en sentido positivo o negativo, y la combinación de la temperatura, tanto en el líquido como en el gas subministrado, permite una homogenización del tratamiento en los distintos depósitos del producto a tratar. Del mismo modo la repetición del proceso proporciona los resultados deseados.
En un segundo ejemplo de aplicación según Fig. 2 de 2.01 a 2.1 6 de las pruebas efectuadas para el objetivo de esta invención, también es posible aplicar este proceso en una cámara hiperbárica 2.03 en cuyo interior se disponga de un depósito permeable a los gases 2.01 con dicho líquido ,en este caso alcohol con al menos una substancia aromatizante, 2.02, como también puede ser un depósito hermético a los gases disponiendo de cierta permeabilidad en al menos una de sus oberturas. Para tal operativa dicho depósito precisará de unos sistemas de presurización 2.1 2 y de vacío 2.1 0, controlando las presiones o vacíos administrados mediante válvulas servo pilotadas 2.09, que podrán aplicarse en ciclos positivos o negativos controlados de presurización en la zona envolvente 2.07 del depósito 2.01 . Todo ello controlado por un sensor de presión 2.1 5 ubicado en dicha zona interior, aportando un gas oxidativo 2.1 3, que en este caso es atmosférico y para posteriormente aplicar una depresión o vacío 2.1 1 , extrayendo los gases que hayan reaccionado para favorecer la ventilación y renovación del oxidante. Las presiones administradas en este ejemplo son de 980 milibares a 1030 milibares de presión absoluta con tiempos de 20 minutos en las dos variables tanto la de presión como la de depresión, alternando la atmosférica circulante mediante la válvula 2.1 6 con un tiempo de obertura de aproximadamente 2 minutos, también los tiempos de aplicación, como los valores de presión pueden ser variables, el número de repeticiones del proceso será lo suficientemente elevado hasta conseguir los resultados deseados. Los parámetros y los procesamientos de datos de todo el conjunto están controlados por el sistema informático ubicado el armario de control 2.14. Estos últimos ejemplos de los datos de los valores de presión y tiempo de aplicación se han tomado con un tratamiento con gas atmosférico a un rango de presiones atmosféricas, pero hay que tener en cuenta que con aportación de gases más ricos en 02, habría que regular los tiempos de aplicación del mismo, dependiendo de su pureza y volumen de líquido a tratar.
Del mismo modo también pueden combinarse o contraponerse presiones en zonas específicas donde se hayan ubicado membranas selectivas de gases 2.06, y que en este caso son los orificios de llenado y de vaciado, controlando las presiones aplicadas mediante unos sensores 2.08, con la combinación de la presión que envuelve el depósito permeable a los gases 2.07, controlado por el sensor de presión de la cámara 2.1 5.
También son un condicionante del tratamiento las porosidades de los elementos permeables a los gases, depósitos 2.01 , membranas selectivas de gases 2.06, etc. Del mismo modo también es posible administrar en cualquier momento cantidades concretas de agua oxigenada, preferentemente muy disuelta, para con posterioridad proceder al vacío del entorno 2.07 o de las membranas selectiva de gases 2.06, para extraer los gases reactivos o disueltos 2.1 1 . En este ejemplo de aplicación de la invención también se ha previsto un sistema para el control de la temperatura del interior del habitáculo 2.04 mediante el procesamiento de datos de la sonda 2.05.
En un tercer ejemplo de realización ilustrado por las Figs. 3 de 3.01 a 3.52 y en otra de las pruebas efectuadas para el objetivo de esta invención se ha dispuesto la ubicación de dos depósitos, uno lleno con el líquido a tratar 3.01 y otro vacío de líquido 3.44 pero lleno -en su cámara de aire- de un gas inerte como puede ser el N2 3.52 a través de la válvula 3.51 . Se ha dispuesto un elemento mecánico 3.1 2 que comunica ambos depósitos. Dicho elemento mecánico lleva incorporado al menos una membrana selectiva de gases 3.1 3 por cuyo interior circula el líquido 3.06 del depósito lleno 3.01 al depósito 3.44. Se procede al trasvase mediante la bomba de circulación 3.1 0 ubicada en el bypass 3.43, aplicando una presión y caudal al líquido 3.08 para su circulación en el interior de la membrana selectiva de gases 3.1 3 soportada por el elemento mecánico 3.1 2 al mismo tiempo que se aplica una presión del gas atmosférico comprimido 3.27 por un compresor de gases 3.32, y que aporta una parte de O2, controlando su presión y caudal mediante el sensor de presión 3.29 en combinación con la válvula servo pilotada 3.28. Con dicha combinación se oxida el líquido y dependiendo del caudal circulante de líquido 3.08, así como la de la presión del gas 3.27 comprimido atmosférico y temperatura, una parte del O2 puede quedar disuelta en dicho líquido. Al mismo tiempo que circula y va llenando el segundo depósito 3.44 que va comprimiendo controladamente el N2 de la cámara de aire 3.46 supervisado y controlado por medio de un sensor de presión 3.02 e impide la evaporación de los gases del líquido y posibles aromas que contenga. El N2 sobrante se direcciona hacia el pulmón 3.49. Con posterioridad, dicho gas N2 se direcciona al depósito primero 3.01 ocupando la zona vacía de la cámara de aire 3.07 supervisado con el sensor de presión 3.02 creando una sobre presión controlada para así evitar la evaporación de substancias del líquido.
También es importante destacar que el tratamiento del 02 se puede aplicar en el estado de la pureza deseada, mediante la administración del 02 enriquecido 3.34 o disolviendo el mismo con el gas comprimido 3.32 mediante la combinación de las válvulas 3.33 y 3.31 .
Una vez evacuado el primer depósito de líquido con su primer tratamiento y transportado al segundo depósito, se procede a la segunda fase, que consiste en invertir el proceso y extraer los gases no deseados. En primer lugar se activa la bomba 3.41 de circulación de líquidos y se cierra el bypass 3.42 con la combinación de las válvulas servo pilotadas 3.40 adyacentes a dicha bomba, haciendo circular el líquido del segundo depósito 3.44 al primer depósito 3.01 , pasando por la membrana selectiva de gases 3.13 del elemento mecánico 3.1 2. Se procede a aplicar un vacío controlado mediante una bomba de vacío 3.38 controlando los milibares de aplicación mediante la combinación del sensor de vacío 3.37 y la válvula servo pilotada 3.36. También es remarcable que el bypass 3.43 estará operativo para la circulación del líquido hacia el primer depósito.
Según nos muestra la Fig. 4, se representa a modo de ampliación del dibujo, el elemento mecánico 4.03 con sus membranas selectivas de gases 4.05 en el momento en que se aplica el vacío 4.1 3 controlado mediante la válvula servo pilotada 4.14 al líquido 4.20 que circula en dirección al depósito 3.01 . Produciendo ello la aspiración en la cámara de aire 4.06 para la extracción de los gases 4.1 9 que han reaccionado, así como la extracción del posible O2 4.23 que estuviera disuelto por el efecto de la primera fase del tratamiento, dando con ello por acabado el primer ciclo del tratamiento de suavización de los alcoholes.
También es viable, en este ejemplo de aplicación del proceso, invertir y repetir las veces que se considere necesario el ciclo antes expuesto, pues dependerá del grado de suavización que se desee. Condicionada la celeridad del tratamiento por la combinación de las presiones de los gases, temperatura y del caudal de circulación de la presión de las bombas que transportan el líquido. En lo referente a la temperatura es importante que las mismas, tanto la de los líquidos 3.06 y 3.45 así como la de los gases administrados sean controladas.
Del mismo modo, las combinaciones de presiones, oberturas de válvula, o servo válvulas, niveles, bombas de trasiego, sondas, fluidos, etc., son controlados mediante sistemas informáticos con controladores del proceso en el cuadro 3.53.
En este ejemplo anterior que abarca dos depósitos, habría al menos dos variantes más de aplicación para la oxidación de los alcoholes. El primer ejemplo de esta variante de aplicación, como muestra la Fig. 5, sería cerrar el bypass 5.1 0 y 5.1 6 y 5.1 8, y hacer circular el líquido 5.20 por la membranas selectiva de gases 5.05 en dirección 5.01 a través del elemento mecánico 5.03, se procederá a una combinación de administración controlada 5.1 2 de gases oxidantes 5.1 1 , 5.23 y 5.1 9 con la posterior extracción de los gases resultantes 5.1 3 y 5.24
Primero la administración del O2 en la zona 5.06 del recorrido del líquido
5.22 por la membrana selectiva de gases (separada en dos zonas por un anillo metálico 5.04) adyacente a la segunda cámara 5.24, donde se le administraría un posterior vacío controlado 5.14 a la membrana selectiva de gases 5.05, para así extraer los gases resultantes de la reacción 5.25 o los gases disueltos en dicho líquido 5.26 y que no ha reaccionado o inclusive los gases sobrantes como el N2 si se han utilizado los gases de la atmósfera. Con posterioridad se direcciona el líquido hacia el depósito acumulador, también es posible hacer circular el líquido por un circuito cerrado con lo cual solo se precisaría de un depósito. También en este caso cabe destacar que el proceso puede durar el tiempo necesario en el caso de que sólo se use un depósito, con circuito cerrado, o repetir las veces necesarias en el caso de dos o más depósitos, hasta que se obtengan los resultados propuestos. Del mismo modo el control de caudales, presiones y de las temperaturas es necesario para obtener unos resultados homogéneos.
En un segundo ejemplo de aplicación, como muestra la Fig. 6, y que tal vez sería el que administraría menos cantidad de O2, se procedería a hacer circular en líquido 6.02 hacia su salida 6.20 procediendo en su paso por el circuito del elemento mecánico 6.03, a cerrar las válvulas 6.1 0, 6.1 2 y 6.1 6. Se aplica un vacío 6.1 3 controlado 6.14 en la zona 6.24 que está separada de la zona adyacente 6.06 por un disco metálico 6.04. Procediendo a la abertura de la válvula que comunica hacia el exterior atmosférico 6.18 obligando ello a que el gas atmosférico 6.1 7 circule por la primera cámara 6.06 y penetre 6.19 por la membranas selectivas de gases 6.05 y circule por el interior 6.22 al tiempo que oxida el líquido 6.22 pasando a ser liquido 6.26. El flujo de gas seguidamente atravesará de nuevo la membrana 6.05 hacia la última cámara del circuito 6.24 y los gases resultantes de la oxidación así como los disueltos se aspiran 6.25 y 6.27 hacia la toma de vacío 6.1 3. De las pruebas efectuadas se aprecia muy significativamente, con los sensores de presión 6.07 y 6.08, que el vacío, en la cámara 6.24 es muy superior al vacío de la cámara 6.06 debido a su perdida de carga.
Con posterioridad se direcciona el líquido hacia el depósito acumulador, también es posible hacer circular el líquido por un circuito cerrado con lo cual solo se precisaría de un depósito. También en este caso debe destacarse que el proceso puede durar el tiempo necesario en el caso de que solo se use un depósito, con circuito cerrado, o repetir las veces que haga falta, en el caso de dos o más depósitos, hasta que se obtengan los resultados propuestos. Del mismo modo el control de caudales, de presiones y de las temperaturas es necesario para obtener unos resultados homogéneos. En este caso, como en los anteriores, para una homogenización del tratamiento es preciso el control del caudal circulante por las membranas selectivas de gases, así como los valores de presiones aplicadas, como también el control de la temperatura de cada una de las partes del conjunto.
Breve descripción de los dibujos
Las anteriores, otras características y ventajas resultarán más evidentes a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, en los que:
Figura 1
Esta figura es una vista en alzado y se puede observar un recipiente contenedor de líquido con dos sistemas para compresión-expansión de los gases, con válvulas y sensores de presión.
NQ1 .01 Recipiente o depósito contenedor del producto a tratar.
NQ1 .02 Líquido a tratar.
NQ1 .03 Equipo con mecanismo de compresión y expansión de los gases atmosféricos
NQ1 .04 Sensor de presión para control de proceso.
NQ1 .05 Conjunto membranas selectiva de gases.
NQ1 .06 Orificio que comunica con la presión atmosférica.
NQ1 .07 Válvula para control de proceso.
NQ1 .08 Cámara con aire con presión positiva o negativa para interaccionar con la membrana selectiva de gases, adyacente al líquido.
NQ1 .09 Habitáculo con temperatura controlada.
NQ1 .10 Sistema informático para control de proceso.
Figura 2
Esta figura es una vista en alzado y en ella se puede observar un depósito contenedor colocado en el interior de una cámara hiperbárica, lo cual está conectado a un sistema generador de presión superior a la atmosférica y un sistema generador de presión inferior a la atmosférica. También se encuentran válvulas y sensores para control de proceso. NQ2.01 Recipiente o depósito contenedor del producto a tratar.
NQ2.02 Líquido a tratar.
NQ2.03 Cámara hiperbárica.
NQ2.04 Equipo para control de temperatura en el interior de la cámara hiperbárica.
NQ2.05 Sensor de temperatura.
NQ2.06 Conjunto de membranas selectivas de gases.
NQ2.07 Gas con presión positiva o negativa para interaccionar con el líquido.
NQ2.08 Sensor de presión para control de proceso dentro del depósito. NQ2.09 Válvula servo-pilotada para la regulación de la presión a administrar.
NQ2.1 0 Sistema de vacío, con valores de tratamiento de depresiones iguales o inferiores a la presión atmosférica.
NQ2.1 1 Conjunto tuberías para presiones inferiores a la atmosférica.
NQ2.1 2 Sistema de presurización positiva, con valores de tratamiento iguales o superiores a la presión atmosférica.
NQ2.1 3 Conjunto tuberías para presiones positivas, iguales o superiores a la atmosférica.
NQ2.14 Sistema informático para control de proceso.
NQ2.1 5 Sonda para el procesamiento de datos de la presión de la cámara hiperbárica.
NQ2.1 6 Válvula para la comunicación con la presión atmosférica.
Figura 3
Esta figura es una vista en perspectiva y en ella se pueden observar como elementos destacables, dos depósitos contenedores, un elemento mecánico para tratamiento del líquido, un sistema de vacío, un sistema de presurización, un sistema de presurización de O2 dos elementos para calentar- enfriar los gases a tratamiento, un sistema para compensación de presiones entre los dos depósitos. Estos elementos están unidos mediante tuberías y elementos de control como válvulas, sensores, bombas de trasiego.
NQ3.01 Recipiente o depósito contenedor del producto a tratar.
NQ3.02 Sensor de presión para control del proceso dentro del depósito. NQ3.03 Equipo para control de temperatura del líquido en el interior del depósito.
NQ3.04 Sensor de temperatura del líquido del depósito.
NQ3.05 Control de nivel de líquido del depósito.
NQ3.06 Líquido a tratar.
NQ3.07 Gas contenido en el depósito del líquido a tratar.
NQ3.08 Tubería general donde fluye el líquido.
NQ3.09 Válvula para control de sentido de flujo del líquido.
NQ3.1 0 Bomba de trasiego del líquido.
NQ3.1 1 Sonda de presión para líquido a procesar.
NQ3.1 2 Elemento mecánico para tratamiento del líquido.
NQ3.1 3 Conjunto membranas selectivas de gases.
NQ3.14 Separador entre cámaras de aire para tratamiento.
NQ3.1 5 Sensor de presión.
NQ3.1 5 Sensor de presión.
NQ3.1 6 Tubería salida al exterior de aire del elemento mecánico para tratamiento.
NQ3.1 7 Tubería salida de aire exterior del elemento mecánico.
NQ3.1 8 Tubería entrada de aire exterior del elemento mecánico.
NQ3.1 9 Válvula para by-pass entre cámaras del elemento mecánico.
NQ3.20 Válvula control de salida de aire del elemento mecánico.
NQ3.21 Válvula control de entrada de aire exterior del elemento mecánico.
NQ3.22 Aire contenido en el interior del elemento mecánico.
NQ3.23 Sensor de temperatura control entrada aire exterior en el elemento mecánico. NQ3.24 Equipo para ajustar la temperatura de entrada de aire.
NQ3.25 Conexión para entrada de aire exterior.
NQ3.26 Conexión de líquido para calentamiento o enfriamiento del aire de entrada.
NQ3.27 Tubería con presión superior a la presión atmosférica.
NQ3.28 Válvula servo-pilotada de regulación de la presión a administrar. NQ3.29 Sensor de presión para control de aire a administrar.
NQ3.30 Sensor de temperatura para control de aire a administrar.
NQ3.31 Válvula para control de aire a administrar.
NQ3.32 Sistema de presurizacion, con valores de tratamiento superiores a la presión atmosférica.
NQ3.33 Válvula para control de gas inerte a administrar, como puede ser
Nitrógeno.
NQ3.34 Recipiente de gas inerte, como puede ser Nitrógeno.
NQ3.35 Tubería con presión inferior a la presión atmosférica.
NQ3.36 Válvula servo-pilotada de regulación de vacío.
NQ3.37 Sensor de presión para control de vacío.
NQ3.38 Sistema de generación de vacío, con valores de tratamiento inferiores a la presión atmosférica.
NQ3.39 Tubería general donde fluye el líquido tratado.
NQ3.40 Válvula para control de sentido de flujo del líquido.
NQ3.41 Bomba de trasiego del líquido.
NQ3.42 Tubería by-pass para cambio de dirección de flujo del líquido. NQ3.43 Tubería by-pass para cambio de dirección de flujo del líquido. NQ3.44 Recipiente o depósito contenedor del producto tratado.
NQ3.45 Líquido a tratado.
NQ3.46 Aire contenido en el recipiente del líquido tratado.
NQ3.47 Tubería para control de presión de aire en el interior del depósito. NQ3.48 Tubería para control de presión de aire en el interior del depósito. NQ3.49 Recipiente pulmón para compensar las presiones de aire en los depósitos.
NQ3.50 Sensor de presión para depósito pulmón. NQ3.51 Válvula de seccionamiento para gas inerte de compensación, como puede ser Nitrógeno.
NQ3.52 Recipiente de gas inerte, como puede ser Nitrógeno.
NQ3.53 Sistema informático para control de proceso.
Figura 4
Esta figura es una vista en perspectiva y es un ejemplo de proceso de tratamiento de líquido. Es un detalle sólo del elemento mecánico y sus conexiones, referente a la Figura 3. En este caso solo se aplica vacío.
NQ4.01 Tubería con líquido a tratar.
NQ4.02 Sensor de presión para control del líquido a tratar.
NQ4.03 Elemento mecánico para tratamiento del líquido.
NQ4.04 Anillo metálico separador entre cámaras de aire para tratamiento. NQ4.05 Conjunto membranas selectiva de gases.
NQ4.06 Aire contenido en la cámara de aire para tratamiento.
NQ4.07 Sensor de presión.
NQ4.08 Sensor de presión.
NQ4.09 Tubería by-pass para unificar las presiones en la cámara de aire para tratamiento, en este caso está abierta.
NQ4.1 0 Válvula para by-pass entre cámaras del elemento mecánico, en este caso está abierta.
NQ4.1 1 Tubería con presión superior a la presión atmosférica, en este caso está cerrada.
NQ4.1 2 Válvula servo-pilotada de regulación de la presión a administrar, en este caso está cerrada
NQ4.1 3 Tubería con presión inferior a la presión atmosférica, en este caso está abierta.
NQ4.14 Válvula servo-pilotada de regulación de vacío, en este caso está actuando.
NQ4.1 5 Tubería salida de aire exterior del elemento mecánico, en este caso está cerrada. NQ4.1 6 Válvula control de salida de aire del elemento mecánico, también cerrada.
NQ4. 1 7 Tubería entrada de aire exterior al elemento mecánico cerrada.
NQ4. 1 8 Válvula control de entrada de aire al elemento mecánico cerrada. NQ4. 1 9 Extracción de los gases que han reaccionado.
NQ4. 20 Tubería con líquido tratado.
NQ4. 21 Sensor de presión para control del líquido tratado.
NQ4. 22 Líquido circulando por el interior del elemento mecánico.
NQ4. 23 Oxígeno que estaba disuelto en el líquido y que no ha reaccionado. N§4. 24 Detalle en sección, del proceso a la entrada del elemento mecánico.
N§4. 25 Detalle en sección, del proceso a la salida del elemento mecánico.
Figura 5
Esta figura es una vista en perspectiva y es un ejemplo de proceso de tratamiento de líquido. Es un detalle sólo del elemento mecánico y sus conexiones, referente a la Figura 3. En este caso solo se aplica sobrepresion a la entrada y vacío a la salida.
NQ5. .01 Tubería con líquido a tratar.
NQ5. .02 Sensor de presión para control del líquido a tratar.
NQ5. .03 Elemento mecánico para tratamiento del líquido.
NQ5. .04 Anillo metálico separador entre cámaras de aire para tratamiento.
NQ5. .05 Conjunto membranas selectivas de gases.
NQ5. .06 Aire contenido en la cámara de aire para tratamiento, en la zona de sobrepresion.
NQ5. .07 Sensor de presión de la zona de vacío.
NQ5. .08 Sensor de presión de la zona de sobrepresion.
NQ5. .09 Tubería by-pass para unificar las presiones en la cámara de aire para tratamiento, en este caso está cerrada.
NQ5. .1 0 Válvula para by-pass entre cámaras del elemento mecánico, en este caso está cerrada. NQ5.1 1 Tubería con presión superior a la presión atmosférica, en este caso está abierta.
NQ5.1 2 Válvula servo-pilotada de regulación de la presión a administrar, en este caso está actuando.
NQ5.1 3 Tubería con presión inferior a la presión atmosférica, en este caso está abierta.
NQ5.14 Válvula servo-pilotada de regulación de vacío, en este caso está actuando.
NQ5.1 5 Tubería salida de aire exterior del elemento mecánico, en este caso está cerrada.
NQ5.1 6 Válvula control de salida de aire del elemento mecánico, en este caso también está cerrada.
NQ5.1 7 Tubería entrada de aire exterior al elemento mecánico cerrada.
NQ5.1 8 Válvula control de entrada de aire al elemento mecánico cerrada.
NQ5.1 9 Entrada de gases a reaccionar.
NQ5.20 Tubería con líquido tratado.
NQ5.21 Sensor de presión para control del líquido tratado.
NQ5.22 Líquido a tratar circulando por el interior del elemento mecánico.
NQ5.23 Gases oxidantes que reaccionarán con el líquido.
NQ5.24 Aire contenido en la cámara de aire que ha reaccionado, en la zona de vacío.
NQ5.25 Extracción de los gases que han reaccionado.
NQ5.26 Líquido tratado circulando por el interior del elemento mecánico.
NQ5.27 Oxígeno que estaba disuelto en el líquido y que no ha reaccionado.
N§5.28 Detalle en sección, del proceso a la entrada del elemento mecánico.
N§5.29 Detalle en sección, del proceso a la salida del elemento mecánico.
Figura 6
Esta figura es una vista en perspectiva y es un ejemplo de proceso de tratamiento de líquido. Es un detalle sólo del elemento mecánico y sus conexiones, referente a la Figura 3. En este caso se aplica vacío a la salida y a la entrada una aspiración de la presión atmosférica.
NQ6.01 Tubería con líquido a tratar.
NQ6.02 Sensor de presión para control del líquido a tratar.
NQ6.03 Elemento mecánico para tratamiento del líquido.
NQ6.04 Anillo metálico separador entre cámaras de aire para tratamiento. NQ6.05 Conjunto membranas selectiva de gases.
NQ6.06 Aire contenido en la cámara de aire para tratamiento, en la zona de entrada de aire atmosférico.
NQ6.07 Sensor de presión de la zona de vacío.
NQ6.08 Sensor de presión de la de entrada de aire exterior.
NQ6.09 Tubería by-pass para unificar las presiones en la cámara de aire para tratamiento, en este caso está cerrada.
NQ6.1 0 Válvula para by-pass entre cámaras del elemento mecánico, en este caso está cerrada.
NQ6.1 1 Tubería con presión superior a la presión atmosférica, en este caso está cerrada.
NQ6.1 2 Válvula servo-pilotada de regulación de la presión a administrar, en este caso está cerrada.
NQ6.1 3 Tubería con presión inferior a la presión atmosférica, en este caso está abierta.
NQ6.14 Válvula servo-pilotada de regulación de vacío, en este caso está actuando.
NQ6.1 5 Tubería salida de aire exterior del elemento mecánico, en este caso está cerrada.
NQ6.1 6 Válvula control de salida de aire del elemento mecánico, en este caso también está cerrada.
NQ6.1 7 Tubería entrada de aire exterior al elemento mecánico, en este caso está abierta.
NQ6.1 8 Válvula control de entrada de aire al elemento mecánico, en este caso está abierta.
NQ6.1 9 Entrada de gases a reaccionar. NQ6.20 Tubería con líquido tratado.
NQ6.21 Sensor de presión para control del líquido tratado.
NQ6.22 Líquido a tratar circulando por el interior del elemento mecánico. NQ6.23 Gases oxidantes que reaccionarán con el líquido.
NQ6.24 Aire contenido en la cámara de aire que ha reaccionado, en la zona de vacío.
NQ6.25 Extracción de los gases que han reaccionado.
NQ6.26 Líquido tratado circulando por el interior del elemento mecánico. NQ6.27 Oxígeno que estaba disuelto en el líquido y que no ha reaccionado. N§6.28 Detalle en sección, del proceso a la entrada de los gases a la membrana selectiva de gases ubicada en el elemento mecánico. N§6.29 Detalle en sección, del proceso de salida de los gases de la membrana selectiva de gases ubicada en el elemento mecánico
Figura 7
Esta figura es una vista en perspectiva y es un ejemplo de proceso de tratamiento al envase final de una fragancia. En este caso se aplica, en la cámara de aire, una presión para administrar un gas oxidante y un vacío para la extracción de los gases generados en su reacción.
NQ7.01 Contenedor o envase de la fragancia.
NQ7.02 Líquido.
NQ7.03 Cámara de aire (invirtiendo la posición del contenedor).
NQ7.04 Extremo del tubo de aspiración del líquido del envase.
NQ7.05 Depósito volumétrico.
NQ7.06 Tubo rígido que se acopla al atomizador o al tubo flexible para la administración de las presiones.
NQ7.07 Atomizador.
NQ7.07a Atomizador extraído del tubo rígido. NQ7.08 Tubo flexible acoplado al tubo rígido 7.06.
NQ7.09 Filtro selectivo de gases.
NQ7.10 Tubo para la conexión al sistema de presurizacion.

Claims

REIVINDICACIONES
1 .- Procedimiento para el tratamiento cualitativo organoléptico de los alcoholes destinados a la preparación de bebidas alcohólicas, fragancias, colonias, productos de perfumería, cosméticos, dermatológicos y ambientadores, previamente o durante su elaboración, caracterizado porque comprende la introducción de un agente oxidante en un volumen prefijado de alcohol y un control del contenido del dicho agente oxidante permitiendo una extracción de una parte de los gases presentes en el líquido y/o en su cámara de aire.
2. - Método según la reivindicación 1 , caracterizado porque dicho control del contenido se efectúa mediante al menos un ciclo de depresión o vacío controlado en dicho volumen prefijado de alcohol.
3. - Método, según la reivindicación 2, caracterizado porque, en el caso de fragancias, colonias, productos de perfumería, cosméticos, dermatológicos, cremas y ambientadores, dicho proceso de introducción de agente oxidante y dicho control ulterior del alcohol, se realiza sobre el producto acabado.
4.- Método según la reivindicación 1 , caracterizado porque el agente oxidante utilizado es un gas escogido entre aire atmosférico, oxígeno y ozono.
5.- Método según la reivindicación 1 , caracterizado porque el agente oxidante utilizado es un líquido escogido entre agua oxigenada.
6.- Método según la reivindicación 1 , caracterizado porque dicha aplicación de agente oxidante gaseoso se realiza con unos valores de presión igual, superior o inferior al rango de presiones atmosféricas.
7- Método según la reivindicación 2, caracterizado porque dicha aplicación de agente oxidante gaseoso se realiza por una corriente de aire de unos valores de presión igual o inferior a la atmosférica.
8- Método según la reivindicación 1 caracterizado porque se administra el agente oxidante al alcohol líquido antes de que éste incorpore al menos un producto aromático.
9- Método según la reivindicación 1 caracterizado porque se administra el oxidante al líquido una vez a este se le ha añadido al menos un producto aromático.
10. -Método según la reivindicación 1 caracterizado porque se determina la temperatura del alcohol a tratar durante al menos parte de la ejecución del método.
1 1 . - Método según la reivindicación 1 , caracterizado porque dicho volumen prefijado de alcohol está definido por un depósito o por un conducto circulante.
12. - Dispositivo e instalación para el tratamiento cualitativo organoléptico de alcoholes, caracterizado porque comprende un conjunto mecánico con dos o mas cámaras comunicadas entre sí a través de al menos una membrana porosa selectiva a los gases y que además al menos una de estas membranas ayuda a delimitar un volumen por donde circula el alcohol a tratar y unos medios para administrar al menos un agente oxidante a como mínimo al menos una de las cámaras y extraer de forma controlada gases de alguna de al menos una de las cámaras.
13.- Máquina según la reivindicación 1 2, caracterizada porque dichos medios comprenden una bomba de vacío para extraer gases.
14.- Máquina según la reivindicación 1 2, caracterizada porque dichos medios comprenden aportar gases oxidantes comprimidos.
PCT/ES2012/070611 2011-08-08 2012-08-06 Procedimiento, dispositivo e instalación para el tratamiento cualitativo organoléptico de los alcoholes WO2013021085A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201490012A ES2446374B1 (es) 2011-08-08 2012-08-06 Procedimiento, dispositivo e instalación para el tratamiento cualitativo organoléptico de los alcoholes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201100925A ES2366849B2 (es) 2011-08-08 2011-08-08 Procedimiento, dispositivo e instalación para el tratamiento cualitativo organoléptico de los alcoholes.
ESP201100925 2011-08-08

Publications (1)

Publication Number Publication Date
WO2013021085A1 true WO2013021085A1 (es) 2013-02-14

Family

ID=44764581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070611 WO2013021085A1 (es) 2011-08-08 2012-08-06 Procedimiento, dispositivo e instalación para el tratamiento cualitativo organoléptico de los alcoholes

Country Status (3)

Country Link
AR (1) AR086531A1 (es)
ES (2) ES2366849B2 (es)
WO (1) WO2013021085A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2457098A1 (es) * 2014-02-27 2014-04-24 José Luis Godoy Varo Procedimiento, dispositivo e instalación para la inducción de respiración controlada mediante sensores químicos

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993604A (en) * 1973-06-07 1976-11-23 Firmenich S.A. Alicyclic compounds, their use and process for preparing same
US4978545A (en) * 1988-03-22 1990-12-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the controlled oxygenation of an alcoholic fermentation must or wort
US20060172041A1 (en) * 2005-01-28 2006-08-03 Farrell Patrick L Magnetic aerator
WO2008116021A1 (en) * 2007-03-19 2008-09-25 Zymes, Llc Organoleptic compounds with enhanced properties
WO2010046832A2 (en) * 2008-10-21 2010-04-29 Firmenich Sa Perfuming compositions and uses thereof
ES2354555A1 (es) * 2010-08-05 2011-03-16 Jose Luis Godoy Varo Procedimiento, dispositivo e instalacion para el control de la evolucion de unaa bebida alcoholica ubicada en un deposito.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993604A (en) * 1973-06-07 1976-11-23 Firmenich S.A. Alicyclic compounds, their use and process for preparing same
US4978545A (en) * 1988-03-22 1990-12-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the controlled oxygenation of an alcoholic fermentation must or wort
US20060172041A1 (en) * 2005-01-28 2006-08-03 Farrell Patrick L Magnetic aerator
WO2008116021A1 (en) * 2007-03-19 2008-09-25 Zymes, Llc Organoleptic compounds with enhanced properties
WO2010046832A2 (en) * 2008-10-21 2010-04-29 Firmenich Sa Perfuming compositions and uses thereof
ES2354555A1 (es) * 2010-08-05 2011-03-16 Jose Luis Godoy Varo Procedimiento, dispositivo e instalacion para el control de la evolucion de unaa bebida alcoholica ubicada en un deposito.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2457098A1 (es) * 2014-02-27 2014-04-24 José Luis Godoy Varo Procedimiento, dispositivo e instalación para la inducción de respiración controlada mediante sensores químicos

Also Published As

Publication number Publication date
ES2446374B1 (es) 2015-03-31
AR086531A1 (es) 2014-01-08
ES2366849A1 (es) 2011-10-26
ES2366849B2 (es) 2012-04-27
ES2446374A1 (es) 2014-03-07

Similar Documents

Publication Publication Date Title
ES2367484T3 (es) Método de esterilización con ozono mejorado.
US8236240B2 (en) Method and system for conducting vapor phase decontamination of sealable entities and their contents
US5480591A (en) Dynamic diffuser of a substance such as a perfume
JP2826286B2 (ja) キムチの貯蔵方法およびその貯蔵容器
CN101272811A (zh) 膜杀菌
ES2362426T3 (es) Aparato y procedimiento para humidificar una cámara de esterilización.
JP2009226048A (ja) アイソレータ
CN101218181A (zh) 用于制备氧水的装置和方法
CN1032297A (zh) 流通汽相消毒系统
JP2018503484A (ja) プラズマ処理装置および物品を処理する方法
JP2010246475A (ja) 食品保存庫
WO2013021085A1 (es) Procedimiento, dispositivo e instalación para el tratamiento cualitativo organoléptico de los alcoholes
ES2331685B1 (es) Procedimiento e instalacion para el control de la evolucion de vino embotellado cerrado con tapones.
WO2012017110A1 (es) Procedimiento, dispositivo e instalación para el control de la evolución de una bebida alcohólica ubicada en un depósito
US11759537B2 (en) Sterilizing method and sterilizer
JP4558311B2 (ja) 滅菌装置
ES2354555B2 (es) Procedimiento, dispositivo e instalacion para el control de la evolucion de unaa bebida alcoholica ubicada en un deposito.
KR20190043891A (ko) 스마트 디퓨저
JP2931379B2 (ja) 保存庫
JPS6374903A (ja) 酸素吸入装置
CN105595409B (zh) 一种控制气氛调控剂反应的装置
JP3234144U (ja) ユーザに健康な空気を提供するシステム(イン.エアボックス)
JP2602683B2 (ja) 解凍装置
ES2457098B2 (es) Procedimiento, dispositivo e instalación para la inducción de respiración controlada mediante sensores químicos
JPH01174366A (ja) 生鮮食品貯蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P201490012

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822155

Country of ref document: EP

Kind code of ref document: A1