WO2013020396A1 - 一种以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶石的循环制备方法 - Google Patents

一种以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶石的循环制备方法 Download PDF

Info

Publication number
WO2013020396A1
WO2013020396A1 PCT/CN2012/074948 CN2012074948W WO2013020396A1 WO 2013020396 A1 WO2013020396 A1 WO 2013020396A1 CN 2012074948 W CN2012074948 W CN 2012074948W WO 2013020396 A1 WO2013020396 A1 WO 2013020396A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
cryolite
reactor
acid
aluminum
Prior art date
Application number
PCT/CN2012/074948
Other languages
English (en)
French (fr)
Inventor
陈学敏
杨军
周志
余跃明
叶清东
Original Assignee
深圳市新星轻合金材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市新星轻合金材料股份有限公司 filed Critical 深圳市新星轻合金材料股份有限公司
Priority to GB1316355.5A priority Critical patent/GB2502496B/en
Publication of WO2013020396A1 publication Critical patent/WO2013020396A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/023Boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/50Fluorides
    • C01F7/54Double compounds containing both aluminium and alkali metals or alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/68Aluminium compounds containing sulfur
    • C01F7/74Sulfates
    • C01F7/76Double salts, i.e. compounds containing, besides aluminium and sulfate ions, only other cations, e.g. alums
    • C01F7/762Ammonium or alkali metal aluminium sulfates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/18Electrolytes

Definitions

  • the invention relates to a method for preparing elemental boron, in particular to a recyclable preparation method for producing elemental boron with sodium fluoroborate as intermediate material and simultaneously producing low molecular ratio sodium cryolite.
  • the raw materials are mainly boric acid and magnesium powder.
  • the industrial boric acid is placed on a stainless steel plate and placed in a tube furnace.
  • the boronic anhydride is pulverized to 80 mesh, and the magnesium powder is thoroughly mixed with the ratio of 3:1 (mass ratio), and then charged into the reaction tube under vacuum, in the tube In the furnace, the reduction reaction is carried out at 850 ⁇ 900 °C to reduce the boron trioxide to elemental boron.
  • the material is soaked in water for two days, and then boiled in hydrochloric acid for four hours to remove impurities such as magnesium oxide, and then washed with water to remove acid.
  • impurities such as magnesium oxide
  • the above-mentioned boron powder may be added to five times the mass of boron trioxide, and then heated to 800-850 ° C in a reaction furnace under vacuum. And keep it for 3 ⁇ 4 hours, then take out the material and use water to remove excess boronic anhydride. After pickling and washing with water, it is filtered and dried to obtain boron powder with a boron content of more than 90%.
  • the main characteristics of the above two methods are low yield, high preparation cost, and the content of the obtained product is generally less than 90%.
  • the invention provides a cyclic preparation method for producing elemental boron by using sodium fluoroborate as an intermediate material and synchronizing the production of sodium cryolite, comprising the following steps:
  • a method for preparing a low molecular weight low temperature aluminum electrolyte (sodium cryolite) having a molecular weight of 126 and a method for extracting and utilizing fluorine in a sodium cryolite
  • the protection method of fluorite resource extension, the by-product sodium cryolite has a good application prospect, and can recycle the by-product sodium cryolite.
  • the process flow is simple, short and clean, the overall manufacturing cost is low, the production efficiency is high, and the environmental pollution is reduced.
  • the aluminum is liquid aluminum, is added to the reactor in a dropping manner, or the aluminum metal is first placed in the reactor, and after being melted, the reactor is flow-dried.
  • Sodium fluoroborate the completion degree of the reaction can be greater than or equal to 95%.
  • the inert gas is argon.
  • the element boron is produced.
  • it has the characteristics of simple preparation process, high production yield and boron content of more than 90%, and can be used as an intermediate material for further production of various boride and boron metal alloys.
  • the fluorine element in the sodium cryolite can be recycled and utilized, it is beneficial to realize the extension of the life of the fluorite resource and reduce the pollution to the environment.
  • FIG. 1 is a process route diagram for preparing elemental boron and sodium cryolite according to the present invention.
  • FIG. 2 is a process flow diagram of the preparation of elemental boron and sodium cryolite according to the present invention.
  • 0.62 tons of boric acid or 0.35 tons of boric anhydride is placed in the reaction vessel, and 4 tons of hydrofluoric acid having a mass percentage of 20% is added to react at 10CTC to form fluoroboric acid; and 3 tons of mass percent of fluoroboric acid is added to 20 %
  • the sodium carbonate aqueous solution reacts to form sodium fluoroborate, which is concentrated, crystallized and rinsed to obtain 0.95 tons of sodium fluoroborate intermediate material; 0.95 tons of dried sodium fluoroborate is placed in another reactor, and vacuum is applied to argon gas.
  • the temperature is raised to 700 ° C, and the aluminum liquid is slowly added dropwise to the reactor according to the reaction ratio, and the mixture is stirred rapidly.
  • the reaction is completed to form elemental boron and sodium cryolite; the molten liquid sodium cryolite is extracted, cooled and broken.
  • the obtained aqueous solution of hydrofluoric acid can be recycled to the front end for leaching boric acid or boron oxide, thereby achieving the purpose of recycling the intermediate raw material sodium fluoroborate.
  • 0.62 tons of boric acid or 0.35 tons of boric anhydride is placed in the reaction vessel, and 4 tons of hydrofluoric acid having a mass percentage of 20% is added to react at 10CTC to form fluoroboric acid; and 3 tons of mass percent of fluoroboric acid is added to 20
  • the sodium carbonate aqueous solution is reacted to form sodium fluoroborate. After concentration, crystallization and rinsing, 0.95 tons of sodium fluoroborate intermediate material is obtained.
  • the aluminum is placed in another reactor according to the reaction ratio, and argon gas is introduced after vacuuming. The temperature was raised to 700 °C, and the dry flow dynamic sodium fluoroborate 0.95 ton was added to the reactor in a meterable flow manner, and the mixture was stirred rapidly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本发明公开了一种以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶石的循环制备方法,包括如下步骤:A)往硼酸或硼酐中加入氢氟酸反应生成氟硼酸;B)往氟硼酸中加入碳酸钠溶液,浓缩结晶得到氟硼酸钠;C)将氟硼酸钠放入反应器中,加入铝反应生成单质硼和钠冰晶石;或者将铝放入反应器中,加入氟硼酸钠反应生成单质硼和钠冰晶石;D)将钠冰晶石抽出,与浓硫酸送入旋转反应釜中,反应生成氟化氢气体以及硫酸铝钠,收集氟化氢气体并溶于水得到氢氟酸;E)所获得的氢氟酸循环至步骤A中用于对硼酸或硼酐实施浸取。本发明可对副产物钠冰晶石循环利用,缩短了单质硼制备的工艺流程,降低了综合生产成本,提高了生产效率,减少了环境污染。

Description

一种以氟硼酸钠为中间原料生产单质硼并同步产出 钠冰晶石的循环制备方法
技术领域
本发明涉及单质硼的制备方法,尤其涉及一种以氟硼酸钠为中间原料生产单 质硼并同步产出低分子比的钠冰晶石的可循环制备方法。
背景技术
工业上生产元素硼一般为下述两种方法:
( 1 ) 镁还原法: 原料主要是硼酸和镁粉, 将工业硼酸置于不锈钢盘上, 装 入管式炉中, 在减压条件下匀速升温至 25CTC ,使硼酸脱水生成硼酐: 2H3B03=B203+3H20; 将硼酐粉碎至 80 目, 与镁粉按 3: 1 (质量比) 的配料比 充分混合后装入反应管中, 在真空条件下, 在管式炉中, 于 850~900°C进行还原 反应,使三氧化二硼还原为元素硼,此反应是热反应,很快就能完成: B203+3Mg =3MgO+2B; 将反应完成的物料用水浸泡两天, 然后在盐酸中煮沸四小时, 以除 去氧化镁等杂质, 再经水洗去酸, 为了除去杂质需要在相同条件下重复一次酸洗 和水洗, 即得硼含量为 85%左右的硼粉, 为了提高硼的质量, 进一步把镁除掉, 可将上述硼粉加入五倍质量的三氧化二硼混匀后,在真空条件下反应炉内加热至 800~850°C, 并保持 3~4小时, 然后取出物料, 用水去过量的硼酐, 再经酸洗和 水洗后, 过滤, 烘干, 即得硼含量大于 90%的硼粉。
(2) 铝还原法: 通常是以工业品硼砂为原料, 在常压下置于温度在 750°C 以上的熔炉里脱去 10个结晶水成无水物四硼酸钠, 经冷却、 粗碎、 细碎后, 按一定配比与硫磺、 铝粉充分混合, 投入铸铁反应炉, 在高温下反应: Na2B407+4Al=4B+Na2Al204+Al203; 冷却后将熔块从炉中取出并粉碎, 先用 盐酸浸洗, 再用氢氟酸浸洗, 然后水洗和碱洗 (用 5%的 NaOH溶液), 最后 再用水洗, 经分离、 干燥即得元素硼。
以上两种方法主要的特点是得率低,制备成本高, 所得产品的含量一般低于 90%。
工业上制备氟铝酸钠(钠冰晶石)的制备方法一般为合成法: 将无水氢氟酸 与氢氧化铝反应,生成氟铝酸,然后在高温下与氢氧化钠反应,再经过滤、烘干、 熔融、破碎,制得氟铝酸钠产品,其反应如下: 6HF+A1(0H)3 =A1F3-3HF+3H20 , A1F3-3HF+3K0H =Na3AlF6+3H20;用此法合成的钠冰晶石其相对分子量为 209.94, 分子式为: AlF3.mNaF (m=3.0) , 熔点为 1000°C, 一般地用工业合成法制得的钠 冰晶石其分子比为 m=2.0~3.0之间, 难以获得分子比 m=1.0~1.5之间较为纯净的 低分子量钠冰晶石。
发明内容
为解决现有技术中如何大规模工业化生产获取较为纯净的低分子比钠冰晶 石制备的问题, 以满足低温铝电解工业对电解质的需求, 发明人在中间原料的选 择以及副产物的循环处理方面进行了大量的探索,预料不到地发现, 以氟硼酸钠 为中间原料采取热化学还原的方法生产单质硼的同时可同步产出分子比 m=1.0 的低分子量钠冰晶石, 并且若对该钠冰晶石实施进一步的化学反应, 可实现循环 生产单质硼的目的。本发明工艺简单,与传统的流行制备方法比较,制造成本低, 所获得的产品质量高, 并可实现副产物的循环利用, 提高了生产效率并减少了环 境的污染。
本发明提供一种以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶石的 循环制备方法, 包括如下步骤:
A) 往硼酸或硼酐中加入氢氟酸, 在 100~200°C反应生成氟硼酸; 涉及的化学反 应为:
H3B03+4HF =HBF4+3H20, B203+8HF =2HBF4+3H20 ;
B) 往氟硼酸中加入碳酸钠水溶液反应生成氟硼酸钠溶液, 经浓縮、 结晶、 漂洗 ; 涉 及 的 化 学 反 应 为 :
Figure imgf000004_0001
C) 将干燥的氟硼酸钠放入反应器中, 抽真空后通入惰性气体, 升温至 700-1000 °C , 往反应器中加入铝, 快速搅拌, 反应 4~6h, 生成单质硼和钠冰 晶石; 或者将金属铝放入反应器中, 抽真空后通入惰性气体, 升温至 700~1000°C,往反应器中加入干燥可流动的氟硼酸钠,快速搅拌,反应 4~6h, 生成单质硼和钠冰晶石; 涉及的化学反应为: NaBF4+Al = B+AlF3.NaF;
D) 将熔融的液态钠冰晶石抽出, 冷却后破碎与浓硫酸一起定量送入旋转反应釜 中, 在 400~500°C环境下反应, 生成氟化氢气体以及硫酸铝钠, 收集氟化氢 气体并溶于水得到氢氟酸水溶液; 硫酸铝钠经破碎后与氢氧化钠的水溶液混 合反应, 分离固体氢氧化铝后得到硫酸钠的水溶液; 涉及的化学反应为:
AlF NaF+2H;S04 = 4HFf +Na.Al(S04):
NaAl(SG4)i十 3N.aOH =2 a2SO (OH¾
E) 所获得的氢氟酸水溶液循环至前端用于对硼酸或硼酐实施浸取, 以达到循环 制备中间原料氟硼酸钠的目的。
采用上述技术方案,达到如下目的: 发明了一种制备分子量为 126 的低分 子比低温铝电解质(钠冰晶石)的制备方法、发明一种将钠冰晶石中的氟元素循 环提取利用的对地下萤石资源延伸的保护方法, 副产物钠冰晶石的应用前景好, 可对副产物钠冰晶石循环利用。与传统的单质硼制备方法相比较,工艺流程简单、 短洁、 综合制造成本低、 生产效率高, 减少了对环境的污染。
作为本发明的进一步改进, 所述步骤 C 中, 铝为液态铝, 以滴加的方式加 入反应器中, 或者先将金属铝放入反应器中, 经融熔后向反应器流加干燥的氟硼 酸钠, 本反应的完成度可达大于或等于 95%。
作为本发明的进一步改进, 所述步骤 C中, 惰性气体为氩气。
本发明的有益效果是:发明了一种可用于大规模工业化生产低分子比 m=1.0 的低分子量(钠冰晶石)的工艺制备方法, 以满足低温铝电解工业对电解质的需 求; 本发明同步产出了元素硼, 与现有技术比较, 其具备制备工艺简单、 生产得 率高、硼含量大于 90%的特点,可作为进一步生产各类硼化物和硼金属合金的中 间原料。 同时, 由于钠冰晶石中的氟元素可循环提取利用, 对实现萤石资源寿命 的延伸有益, 减少了对环境的污染。
附图说明
图 1 为本发明单质硼和钠冰晶石制备的工艺路线图。
图 2为本发明单质硼和钠冰晶石制备的工艺流程图。
具体实施方式
下面通过具体实施例对本发明做进一步详细说明。
实施例一
将 0.62吨硼酸或 0.35吨硼酐置于反应釜中, 加入 4吨质量百分含量为 20% 的氢氟酸, 在 10CTC反应生成氟硼酸; 往氟硼酸中加入 3吨质量百分含量为 20% 的碳酸钠水溶液反应生成氟硼酸钠, 经浓縮、 结晶、漂洗后得到氟硼酸钠中间原 料 0.95吨; 将 0.95吨干燥的氟硼酸钠放入另一反应器中, 抽真空后通入氩气, 升温至 700°C, 按反应比例往反应器中缓慢滴加铝液, 快速搅拌, 反应 5h后反 应完全, 生成单质硼和钠冰晶石; 将熔融的液态钠冰晶石抽出, 冷却后破碎, 称 重, 与按反应比例加入的浓硫酸一起定量送入旋转反应釜中, 在 400~500°C环境 下反应, 生成氟化氢气体以及硫酸铝钠, 收集氟化氢气体并溶于水得到氢氟酸; 所获得的氢氟酸水溶液可循环至前端用于对硼酸或氧化硼实施浸取,从而实现循 环制备中间原料氟硼酸钠的目的。
实施例二
将 0.62吨硼酸或 0.35吨硼酐置于反应釜中, 加入 4吨质量百分含量为 20% 的氢氟酸, 在 10CTC反应生成氟硼酸; 往氟硼酸中加入 3吨质量百分含量为 20% 的碳酸钠水溶液反应生成氟硼酸钠, 经浓縮、 结晶、漂洗后得到氟硼酸钠中间原 料 0.95 吨; 按反应比例称取铝置于另一反应器中, 抽真空后通入氩气, 升温至 700 °C , 将干燥流动态的氟硼酸钠 0.95吨以可计量流动的方式加入反应器中, 快 速搅拌, 反应 5h后反应完全, 生成单质硼和钠冰晶石; 将熔融的液态钠冰晶石 抽出, 冷却后破碎, 称重, 与按反应比例加入的浓硫酸一起定量送入旋转反应釜 中, 在 400~500°C环境下反应, 生成氟化氢气体以及硫酸铝钠, 收集氟化氢气体 并溶于水得到氢氟酸;所获得的氢氟酸水溶液可循环至前端用于对硼酸或氧化硼 实施浸取, 从而实现循环制备中间原料氟硼酸钠的目的。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能 认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都 应当视为属于本发明的保护范围。

Claims

1. 一种以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶石的循环制备方 法, 其特征在于, 包括如下步骤:
A) 往硼酸或硼酐中加入氢氟酸, 在 100~200°C反应生成氟硼酸;
B) 往氟硼酸中加入碳酸钠水溶液反应生成氟硼酸钠溶液, 经浓縮、 结晶、 漂洗 后得到氟硼酸钠中间原料;
C) 将干燥的氟硼酸钠放入反应器中, 抽真空后通入惰性气体, 升温至 700-1000 °C , 往反应器中加入铝, 快速搅拌, 反应 4~6h, 生成单质硼和钠冰晶 石;或者将金属铝放入反应器中,抽真空后通入惰性气体,升温至 700~1000°C, 往反应器中加入干燥可流动的氟硼酸钠, 快速搅拌, 反应 4~6h, 生成单质硼和 钠冰晶石;
D) 将熔融的液态钠冰晶石抽出, 冷却后破碎与浓硫酸一起定量送入旋转反应釜 中, 在 400~500°C环境下反应, 生成氟化氢气体以及硫酸铝钠, 收集氟化氢气体 并溶于水得到氢氟酸水溶液; 硫酸铝钠经破碎后与氢氧化钠的水溶液混合反应, 分离固体氢氧化铝后得到硫酸钠的水溶液;
E) 所获得的氢氟酸水溶液循环至前端用于对硼酸或氧化硼实施浸取, 以达到循 环制备中间原料氟硼酸钠的目的。
2. 根据权利要求 1所述的以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶 石的循环制备方法, 其特征在于: 所述步骤 C中, 铝为液态铝, 以滴加的方 式加入反应器中或者将干燥流动态的氟硼酸钠以可计量流动的方式加入反应 器中。
3. 根据权利要求 1所述的以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶 石的循环制备方法, 其特征在于: 所述步骤 C中, 惰性气体为氩气。
PCT/CN2012/074948 2012-02-24 2012-04-29 一种以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶石的循环制备方法 WO2013020396A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1316355.5A GB2502496B (en) 2012-02-24 2012-04-29 Method for preparing boron and co-producing sodium cryolite using sodium fluoborate as intermediate material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100436774A CN102583420B (zh) 2012-02-24 2012-02-24 一种以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶石的循环制备方法
CN201210043677.4 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013020396A1 true WO2013020396A1 (zh) 2013-02-14

Family

ID=46472783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074948 WO2013020396A1 (zh) 2012-02-24 2012-04-29 一种以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶石的循环制备方法

Country Status (6)

Country Link
US (1) US8557209B2 (zh)
EP (1) EP2631217B1 (zh)
CN (1) CN102583420B (zh)
ES (1) ES2655490T3 (zh)
GB (1) GB2502496B (zh)
WO (1) WO2013020396A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2666889A1 (en) * 2012-05-23 2013-11-27 Shenzhen Sunxing Light Alloys Materials Co., Ltd Sodium cryolite for aluminum electrolysis industry and preparation method thereof
CN114933321A (zh) * 2022-05-24 2022-08-23 淄博馨泽新材料科技有限公司 一种氟铝钾钠的配方及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159590A1 (zh) * 2012-05-23 2012-11-29 深圳市新星轻合金材料股份有限公司 铝电解过程中的电解质补充体系及其制备方法
CN109179444B (zh) * 2018-10-11 2020-08-25 武汉科技大学 一种无定形硼粉的制备方法
CN113955765B (zh) * 2021-12-22 2022-03-01 苏州欣诺科生物科技有限公司 四氟硼酸银的制备方法
CN115650248B (zh) * 2022-11-15 2024-05-31 山东重山光电材料股份有限公司 一种硼-10酸生产废液中硼-10的回收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810683A (en) * 1954-09-16 1957-10-22 Callery Chemical Co Production of elemental boron by fused salt electrolysis
WO2003051773A1 (en) * 2001-12-19 2003-06-26 Groupe Minutia Inc. Process for the production of elemental boron by solid state reaction
JP2006104055A (ja) * 2004-10-08 2006-04-20 Rohm & Haas Co 水素化ホウ素ナトリウムの直接元素合成
CN101863662A (zh) * 2010-07-15 2010-10-20 武汉工程大学 纳米硼粉的制备方法
CN102180474A (zh) * 2010-11-23 2011-09-14 王嘉兴 一种用硼泥洗液制备单质硼和三氯化铝的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2692186A (en) * 1953-06-25 1954-10-19 Kamlet Jonas Manufacture of sodium fluoride low in silica content
JPS4537133B1 (zh) * 1967-07-26 1970-11-25
CN102211777A (zh) * 2011-03-05 2011-10-12 兰州理工大学 一种纯硼的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810683A (en) * 1954-09-16 1957-10-22 Callery Chemical Co Production of elemental boron by fused salt electrolysis
WO2003051773A1 (en) * 2001-12-19 2003-06-26 Groupe Minutia Inc. Process for the production of elemental boron by solid state reaction
JP2006104055A (ja) * 2004-10-08 2006-04-20 Rohm & Haas Co 水素化ホウ素ナトリウムの直接元素合成
CN101863662A (zh) * 2010-07-15 2010-10-20 武汉工程大学 纳米硼粉的制备方法
CN102180474A (zh) * 2010-11-23 2011-09-14 王嘉兴 一种用硼泥洗液制备单质硼和三氯化铝的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2666889A1 (en) * 2012-05-23 2013-11-27 Shenzhen Sunxing Light Alloys Materials Co., Ltd Sodium cryolite for aluminum electrolysis industry and preparation method thereof
CN114933321A (zh) * 2022-05-24 2022-08-23 淄博馨泽新材料科技有限公司 一种氟铝钾钠的配方及其制备方法

Also Published As

Publication number Publication date
GB2502496A (en) 2013-11-27
EP2631217A1 (en) 2013-08-28
EP2631217B1 (en) 2017-10-25
CN102583420B (zh) 2013-03-13
ES2655490T3 (es) 2018-02-20
CN102583420A (zh) 2012-07-18
GB201316355D0 (en) 2013-10-30
US8557209B2 (en) 2013-10-15
GB2502496B (en) 2014-04-23
US20130095024A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
WO2013023460A1 (zh) 以钠基钛硼氟盐混合物为中间原料生产硼化钛并同步产出钠冰晶石的循环制备方法
WO2019080487A1 (zh) 一种含锂铝电解质晶型改变方法
WO2013131317A1 (zh) 以钾基钛硼氟盐混合物为中间原料生产硼化钛并同步产出钾冰晶石的循环制备方法
WO2013020396A1 (zh) 一种以氟硼酸钠为中间原料生产单质硼并同步产出钠冰晶石的循环制备方法
US8753421B2 (en) Method for cyclically preparing titanium sponge and coproducing potassium cryolite using potassium fluotitanate as intermediate material
EP2631309B1 (en) Method for cyclically preparing titanium sponge and coproducing sodium cryolite using sodium fluotitanate as intermediate material
US8562931B2 (en) Method for cyclically preparing monomer boron and coproducing potassium cryolite using potassium fluoborate as intermediate material
CN105002521B (zh) 一种利用含氟矿物脱除电解锰体系中杂质镁的方法
CN106629800A (zh) 一种利用氟硅酸废液生产冰晶石的方法
CN101318680B (zh) 一种生产冰晶石的方法
CN106673029A (zh) 一种利用水氯镁石生产高纯无水氯化镁的方法
CN114480835A (zh) 混合稀土精矿的分解方法和组合物的用途
CN116855762B (zh) 一种从铝电解废阴极中回收锂的方法
JP7479780B1 (ja) フッ化リチウムアルミニウム溶解液の製造方法
CN102530977A (zh) 氟硅酸-硼砂法生产氟硼酸钾
CN111847384A (zh) 一种无水氟化氢的制备方法
CN103539181A (zh) 利用钾长石制取冰晶石的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1316355

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120429

WWE Wipo information: entry into national phase

Ref document number: 1316355.5

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822824

Country of ref document: EP

Kind code of ref document: A1