WO2013018907A1 - 内燃機関油用潤滑油組成物 - Google Patents

内燃機関油用潤滑油組成物 Download PDF

Info

Publication number
WO2013018907A1
WO2013018907A1 PCT/JP2012/069911 JP2012069911W WO2013018907A1 WO 2013018907 A1 WO2013018907 A1 WO 2013018907A1 JP 2012069911 W JP2012069911 W JP 2012069911W WO 2013018907 A1 WO2013018907 A1 WO 2013018907A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
content
dispersant
composition
internal combustion
Prior art date
Application number
PCT/JP2012/069911
Other languages
English (en)
French (fr)
Inventor
保典 清水
裕 藤田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201280038401.5A priority Critical patent/CN103717720A/zh
Priority to EP12820418.7A priority patent/EP2740783A4/en
Priority to US14/236,190 priority patent/US20140194329A1/en
Priority to KR1020147002641A priority patent/KR20140058531A/ko
Priority to IN785CHN2014 priority patent/IN2014CN00785A/en
Priority to CA2843554A priority patent/CA2843554A1/en
Publication of WO2013018907A1 publication Critical patent/WO2013018907A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/56Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/045Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution and non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/44Boron free or low content boron compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron

Definitions

  • the present invention relates to a lubricating oil composition for an internal combustion engine, and more particularly to a lubricating oil composition for an internal combustion engine that has good wear resistance to an aluminum material even when the amount of metal derived from phosphorus or a metallic detergent is reduced.
  • exhaust gases include particulate substances (PM), hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO) x ) and the like, and the regulation values for PM and NOx are very strict.
  • a gasoline vehicle is equipped with a three-way catalyst, and a diesel vehicle is equipped with a diesel particulate filter (DPF). This cleans the exhaust gas and releases it to the atmosphere.
  • DPF diesel particulate filter
  • the present invention is a lubricating oil composition having excellent wear resistance against an aluminum material, and contains ZnDTP and a metal-based detergent containing a large amount of phosphorus while maintaining the wear resistance against the aluminum material. It is an object of the present invention to provide a lubricating oil composition for an internal combustion engine that can significantly reduce the above.
  • the inventor has determined the nitrogen content and boron content derived from the imide dispersant and the boronated imide dispersant. It was found that the purpose can be achieved by adjusting. The present invention has been completed based on such findings.
  • the present invention 1.
  • Nitrogen content (N mass%) derived from a fluorinated imide dispersant or a boronated imide dispersant and a non-borated imide dispersant is represented by the following formula (I) N ⁇ B + 0.05 (I) And that the phosphorus content (P mass%) and the metal detergent-derived metal component content (M mass%) satisfy any of the following A to C based on the total amount of the composition:
  • a lubricating oil composition for an internal combustion engine A: P ⁇ 0.03 and M ⁇ 0.05 B: P ⁇ 0.03 and 0.05 ⁇ M ⁇ 0.12 C: 0.03 ⁇ P ⁇ 0.06 and M ⁇ 0.05 2.
  • the sulfur type antiwear agent are represented by the following general formula (3): R 1 OOC-A 1 -S 2 -A 2 -COOR 2 (3) (Wherein R 1 and R 2 are each independently an oxygen atom, a sulfur atom, or a hydrocarbon group having 1 to 30 carbon atoms which may contain a nitrogen atom, A 1 and A 2 are each independently (It represents a divalent hydrocarbon group having 1 to 12 carbon atoms.)
  • a lubricating oil composition having excellent wear resistance to an aluminum material, which significantly reduces ZnDTP and metal-based detergents containing a large amount of phosphorus while maintaining wear resistance to the aluminum material.
  • a lubricating oil composition for an internal combustion engine can be provided. Therefore, it is possible to provide a lubricating oil composition for an internal combustion engine that can reduce the influence on the exhaust gas aftertreatment device while maintaining the wear resistance of the aluminum material.
  • the lubricating oil composition for internal combustion engines of the present invention comprises a boronated imide dispersant or a boronated imide dispersant and a non-borated imide dispersant, and the boronated imide dispersant in the composition
  • the boron content (B mass%) derived from and the nitrogen content (N mass%) derived from a boronated imide dispersant or a boronated imide dispersant and a non-borated imide dispersant are represented by the following formula (I ) N ⁇ B + 0.05 (I) It is the lubricating oil composition for internal combustion engines which satisfy
  • composition satisfying the above formula (I) can improve the wear resistance.
  • fills can further raise the said effect.
  • a borated imide dispersant and, if necessary, a non-borated imide dispersant are used.
  • the non-borated imide-based dispersant is usually referred to as an imide-based dispersant.
  • polybutenyl succinimide is preferable to use as the non-boronated imide dispersant. Examples of the polybutenyl succinimide include the following general formulas (1) and (2)
  • PIB in these general formulas represents a polybutenyl group, and the number average molecular weight thereof is usually 800 to 3500, preferably 900 to 2000. If the number average molecular weight is 800 or more, the dispersibility is not inferior, and if it is 3500 or less, the storage stability is not inferior. Further, n in the above general formulas (1) and (2) is usually an integer of 1 to 5, more preferably an integer of 2 to 4, so that the dispersibility is not inferior.
  • the method for producing the polybutenyl succinimide is not particularly limited, but can be produced by a known method.
  • it can be obtained by reacting polybutenyl succinic acid obtained by reacting polybutene and maleic anhydride at 100 to 200 ° C. with polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine and pentaethylenehexamine. Can do.
  • boronated imide dispersant used in the present invention a boronated polybutenyl obtained by allowing a boron compound to act on the non-borated imide dispersant exemplified in the general formulas (1) and (2). It is preferable to use succinimide.
  • Examples of the boron compound include boric acid, borates, and borate esters.
  • Examples of the boric acid include orthoboric acid, metaboric acid, and paraboric acid.
  • Examples of the borate include ammonium salts such as ammonium borate such as ammonium metaborate, ammonium tetraborate, ammonium pentaborate and ammonium octaborate.
  • Examples of borate esters include esters of boric acid and alkyl alcohols (preferably having 1 to 6 carbon atoms) such as monomethyl borate, dimethyl borate, trimethyl borate, monoethyl borate, diethyl borate, triethyl borate.
  • Preferred examples include monopropyl borate, dipropyl borate, tripropyl borate, monobutyl borate, dibutyl borate and tributyl borate.
  • the mass ratio B / N between the boron content B and the nitrogen content N is preferably 0.1 to 3, more preferably 0.2 to 2.
  • the content of the boronated succinimide dispersant and the non-borated succinimide dispersant (imide dispersant) is expressed by the formula (I). However, it is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass. If it is 0.1% by mass or more, good cleanability and dispersibility can be obtained, and if it is 15% by mass or less, effects of cleanliness and dispersibility commensurate with the content can be obtained.
  • the phosphorus content (P mass%) and the metal component content (M mass%) derived from the metallic detergent satisfy any of the above-mentioned A to C. It takes a thing.
  • a to C will be described below.
  • P ⁇ 0.03 and M ⁇ 0.05 That is, the phosphorus content is less than 0.03% by mass based on the total amount of the composition, and the metal component content derived from the metal detergent is less than 0.05% by mass.
  • the phosphorus content in the composition is less than 0.03% by mass, the poisoning action of the active sites of the three-way catalyst is suppressed, and the catalyst life can be extended.
  • the phosphorus content in the composition is preferably 0.01% by mass or less, more preferably 0.005% by mass or less, and particularly preferably 0.001% by mass or less.
  • the metal component derived from the metal detergent in the said composition is less than 0.05 mass%, it can suppress that the ash derived from a metal component deposits on DPF, and can extend the lifetime. Therefore, the content of the metal component in the composition is preferably 0.01% by mass or less, more preferably 0.005% by mass or less, and particularly preferably 0.001% by mass or less.
  • the phosphorus content in the composition is less than 0.03% by mass based on the total amount of the composition, and the content of the metal component derived from the metal detergent is 0.05% by mass or more and 0.12% by mass or less.
  • the phosphorus content in the composition is preferably 0.01% by mass or less, more preferably 0.005% by mass or less, and particularly preferably 0.001% by mass or less.
  • ZnDTP zinc dithiophosphate
  • the content of the metal component derived from the metal type detergent in the said composition is 0.05 mass% or more, the cleanability requested
  • the content of the metal component is 0.12% by mass or less, the ash content derived from the metal component is suppressed from being deposited on the DPF, and the lifetime can be extended. Therefore, the content of the metal component is preferably 0.05% by mass or more and 0.10% by mass or less, and particularly preferably 0.05 or more and 0.08% by mass or less.
  • the metal detergent that provides the metal component include sulfonates, phenates, salicylates, and naphthenates of alkali metals (Na, K, etc.) or alkaline earth metals (Ca, Mg, Ba, etc.). Of these, Ca sulfonate, Ca phenate, and Ca salicylate are preferable. Further, these metal-based detergents preferably have a base number of 0 to 500 mgKOH / g, more preferably 150 to 400 mgKOH / g, and particularly preferably 200 to 350 mgKOH / g by the perchloric acid method.
  • the said metal type detergent may be used individually by 1 type, and may be used in combination of 2 or more type. What is necessary is just to select suitably content of the said metal type detergent so that it may become content of the metal component derived from said metal type detergent.
  • the phosphorus content is 0.03% by mass or more and 0.06% by mass or less based on the total amount of the composition, and the content of the metal component derived from the metal detergent is less than 0.05% by mass.
  • the wear resistance can be further improved.
  • the phosphorus content is 0.06% by mass or less, the poisoning action of the active site of the three-way catalyst can be suppressed, and the catalyst life can be extended.
  • the phosphorus content is more preferably 0.03% by mass or more and 0.05% by mass or less.
  • Typical phosphorus antiwear agents include dithiophosphate metals such as zinc dithiophosphate (ZnDTP) and molybdenum dithiophosphate (MoDTP), phosphoric acid or phosphites (organic phosphate, organic phosphorous acid). Ester, alkyl or aryl acid phosphate, alkyl or aryl hydrogen phosphite, and amine salts thereof), thiophosphates, and thiophosphites.
  • dithiophosphate metals such as zinc dithiophosphate (ZnDTP) and molybdenum dithiophosphate (MoDTP)
  • phosphoric acid or phosphites organic phosphate, organic phosphorous acid. Ester, alkyl or aryl acid phosphate, alkyl or aryl hydrogen phosphite, and amine salts thereof), thiophosphates, and thiophosphites.
  • zinc dithiophosphate that is, zinc dihydrocarbyl dithiophosphate (the hydrocarbyl group is preferably an alkyl group having 1 to 18 carbon atoms, more preferably 2 to 12 carbon atoms, an alkenyl group, an arylalkyl group or an alkaryl group.
  • zinc dialkyldithiophosphate having a secondary alkyl group having 3 to 8 carbon atoms is preferred.
  • the content of the metal component derived from the metallic detergent in the composition is less than 0.05% by mass, the ash content derived from the metal component is suppressed from being deposited on the DPF, and the life thereof is extended. Can do. Therefore, the content of the metal component in the composition is preferably 0.01% by mass or less, more preferably 0.005% by mass or less, and particularly preferably 0.001% by mass or less.
  • the lubricating oil composition for internal combustion engines of the present invention preferably further contains a sulfur-based antiwear agent.
  • sulfur-based antiwear agent sulfur-based antiwear agents that do not contain phosphorus, such as sulfurized fats and oils, sulfurized fatty acids, sulfurized esters, sulfurized olefins, and dihydrocarbyl polysulfide are preferable.
  • R 1 OOC-A 1 -S 2 -A 2 -COOR 2 (3) (Wherein R 1 and R 2 are each independently an oxygen atom, a sulfur atom, or a hydrocarbon group having 1 to 30 carbon atoms which may contain a nitrogen atom, A 1 and A 2 are each independently (It represents a divalent hydrocarbon group having 1 to 12 carbon atoms.)
  • the disulfide compound represented by these is preferable.
  • sulfur-containing compound represented by the general formula (3) include bis (methoxycarbonylmethyl) disulfide, bis (ethoxycarbonylmethyl) disulfide, bis (n-propoxycarbonylmethyl) disulfide, bis (isopropoxycarbonylmethyl).
  • Disulfide bis (n-butoxycarbonylmethyl) disulfide, bis (n-octoxycarbonylmethyl) disulfide, bis (n-dodecyloxycarbonylmethyl) disulfide, bis (cyclopropoxycarbonylmethyl) disulfide, 1,1-bis ( 1-methoxycarbonylethyl) disulfide, 1,1-bis (1-methoxycarbonyl-n-propyl) disulfide, 1,1-bis (1-methoxycarbonyl-n-butyl) disulfide, 1,1- (1-methoxycarbonyl-n-hexyl) disulfide, 1,1-bis (1-methoxycarbonyl-n-octyl) disulfide, 1,1-bis (1-methoxycarbonyl-n-dodecyl) disulfide, 2,2 -Bis (2-methoxycarbonyl-n-propyl) disulfide, ⁇ , ⁇
  • the content of the above sulfur-based antiwear agent is preferably 0.05 to 5% by mass, more preferably 0.1 to 3% by mass, based on the total amount of the composition. If the blending amount is 0.05% by mass or more, sufficient wear resistance is obtained, and if it is 5% by mass or less, there is no possibility of corrosion.
  • the lubricating oil composition of the present invention is an additive used for a lubricating oil composition such as a conventionally known lubricating oil for an internal combustion engine as long as it does not impair the conditions such as the phosphorus content and metal components required by the present invention. May be blended.
  • a lubricating oil composition such as a conventionally known lubricating oil for an internal combustion engine
  • a lubricating oil composition such as a conventionally known lubricating oil for an internal combustion engine as long as it does not impair the conditions such as the phosphorus content and metal components required by the present invention. May be blended.
  • other friction reducing agents include ashless friction reducing agents such as fatty acid esters, aliphatic amines, and higher alcohols.
  • viscosity index improver examples include so-called non-dispersible viscosity index improvers such as various methacrylate esters or copolymers and hydrogenated products thereof, and various methacrylate esters containing nitrogen compounds. Examples thereof include so-called dispersed viscosity index improvers that are copolymerized.
  • non-dispersed or dispersed ethylene- ⁇ -olefin copolymers for example, propylene, 1-butene, 1-pentene etc.
  • hydrides thereof polyisobutylene and hydrogenated products thereof
  • styrene- Examples include diene hydrogenated copolymers, styrene-maleic anhydride copolymers, and polyalkylstyrenes.
  • the molecular weight (number average molecular weight) of these viscosity index improvers is, for example, 5,000 to 1,000,000, preferably 100,000 to 800,000 for dispersed and non-dispersed polymethacrylates, 800 to 5,000 for polyisobutylene or hydrides thereof, and ethylene- ⁇ . -800 to 300,000, preferably 10,000 to 200,000 for the olefin copolymer and its hydride.
  • antioxidants examples include phenol-based antioxidants and amine-based antioxidants.
  • phenolic antioxidants include 4,4′-methylenebis (2,6-di-t-butylphenol); 4,4′-bis (2,6-di-t-butylphenol); 4,4′- Bis (2-methyl-6-tert-butylphenol); 2,2′-methylenebis (4-ethyl-6-tert-butylphenol); 2,2′-methylenebis (4-methyl-6-tert-butylphenol); 4 4,4′-butylidenebis (3-methyl-6-tert-butylphenol); 4,4′-isopropylidenebis (2,6-di-tert-butylphenol); 2,2′-methylenebis (4-methyl-6- Nonylphenol); 2,2′-isobutylidenebis (4,6-dimethylphenol); 2,2′-methylenebis (4-methyl-6-cyclohexylphenol); 2,6-di t-butyl-4-methylphenol; 2,6
  • amine antioxidants include monooctyl diphenylamine; monoalkyl diphenylamines such as monononyl diphenylamine; 4,4′-dibutyldiphenylamine; 4,4′-dipentyldiphenylamine; 4,4′-dihexyldiphenylamine; 4,4′-diheptyldiphenylamine; 4,4′-dioctyldiphenylamine; dialkyldiphenylamines such as 4,4′-dinonyldiphenylamine; tetrabutyldiphenylamine; tetrahexyldiphenylamine; tetraoctyldiphenylamine; polyalkyldiphenylamine such as tetranonyldiphenylamine And naphthylamine type, specifically ⁇ -naphthylamine; phenyl- ⁇ -naphthylamine; and butylphenyl
  • dialkyldiphenylamine type and naphthylamine type are preferable.
  • the said antioxidant may select 1 type or may use it in combination of 2 or more type.
  • rust preventive examples include alkylbenzene sulfonate, dinonyl naphthalene sulfonate, alkenyl succinate, polyhydric alcohol ester and the like. What is necessary is just to select suitably the mixture ratio of the said other additive in the range normally used.
  • the lubricating oil composition of the present invention comprises a lubricating base oil (sometimes simply referred to as “base oil”) containing the various additives described above to obtain a lubricating oil composition having the desired performance.
  • base oil sometimes simply referred to as “base oil”
  • mineral oil mineral base oils
  • synthetic base oils synthetic oils
  • the mineral oil for example, a distillate obtained by atmospheric distillation of paraffinic crude oil, intermediate crude oil or naphthenic crude oil, or vacuum distillation residual oil, or Examples include refined oils obtained by refining according to a conventional method, such as solvent refined oils, hydrogenated refined oils, hydrocracked oils, dewaxed oils, and clay-treated oils. Furthermore, isomerized oils of waxes (such as slack wax) can also be used.
  • examples of synthetic oils include poly ⁇ -olefins, polybutenes, polybutenes, polyol esters, and alkylbenzenes, which are ⁇ -olefin oligomers having 8 to 14 carbon atoms.
  • 1 type of the said mineral oil may be used as a base oil, and may be used in combination of 2 or more type.
  • the said synthetic oil may be used 1 type and may be used in combination of 2 or more type.
  • one or more mineral oils and one or more synthetic oils may be used in combination.
  • 70 mass% or more is preferable and, as for content of the base oil in a composition, 80 mass% or more is more preferable.
  • the base oil has a kinematic viscosity at 100 ° C. of preferably 1.5 to 50 mm 2 / s, more preferably 3 to 30 mm 2 / s, and particularly preferably 3 to 15 mm 2 / s.
  • the base oil preferably has a viscosity index of 80 or more, more preferably 90 or more, and particularly preferably 100 or more. When the viscosity index is 80 or more, the viscosity change due to the temperature of the base oil is small, and stable lubricating performance is exhibited.
  • a base oil the thing whose sulfur content measured based on JISK2541 is 50 mass ppm or less is preferable. If the sulfur content is 50 mass ppm or less, there is an effect of improving the wear resistance of the low friction sliding material. A more preferable sulfur content is 30 mass ppm or less, and further 20 mass ppm or less.
  • the base oil % C A measured by a ring analysis 3.0 it is preferably used in view of stability less.
  • the% C A by ring analysis shows a proportion of aromatic content calculated by ring analysis n-d-M method (percentage). % C A is equal to or more than 3.0, indicate good oxidation stability. More preferable% C A is 1.0 or less, and further 0.5 or less.
  • composition and performance of a lubricating oil composition for internal combustion engines were measured by the following methods.
  • lubricating oil composition 1. Quantitative determination of boron, phosphorus and calcium Measured according to ASTM D5185. 2. Quantitative determination of nitrogen Measured according to JIS K2609. 3. Sulfur content Measured according to JIS K2541. ⁇ Performance of lubricating oil composition> 3.
  • Base oil 1 hydrorefined mineral oil (100N), 40 ° C. kinematic viscosity 21.0 mm 2 / s, 100 ° C. kinematic viscosity 4.5 mm 2 / s, viscosity index 127, sulfur content less than 5 mass ppm
  • Base oil 1 hydrorefined mineral oil (100N), 40 ° C. kinematic viscosity 21.0 mm 2 / s, 100 ° C. kinematic viscosity 4.5 mm 2 / s, viscosity index 127, sulfur content less than 5 mass ppm
  • Boronated imide 1 polybutenyl succinic acid monoimide borate: number average molecular weight of polybutenyl group 950, base number (perchloric acid method) 30.6 mgKOH / g, nitrogen content 1.8% by mass, boron Content 2.1% by mass
  • Boronated imide 2 polybutenyl succinic acid bisimide borate: number average mo
  • Tables 1 and 2 show the following.
  • the lubricating oil composition of the present invention satisfying the formula (I) is excellent in wear resistance against aluminum materials (Examples A1 to A10).
  • the wear resistance of the lubricating oil compositions of Examples A4 to A8 satisfying the formula (II) to the aluminum material is further excellent.
  • the lubricating oil composition not satisfying the formula (I) is inferior in abrasion resistance to the aluminum material as compared with the present invention of Examples A1 to A10 (Comparative Examples A1 to A8).
  • the lubricating oil compositions of the present invention (Examples A1 to A10) have good wear resistance even if they do not contain the P component, and the P component content and the metal component derived from the metal detergent Since both contents are extremely small, it is extremely excellent in the effect of preventing poisoning of the three-way catalyst and the effect of suppressing the decrease in the life of the DPF.
  • the components used for the preparation of the lubricating oil composition and the methods for measuring the composition and performance are the same as those in Examples A1 to A10 and Comparative Examples A1 to A8.
  • Tables 3 and 4 show the following.
  • the lubricating oil composition of the present invention satisfying the formula (I) has excellent wear resistance against aluminum materials (Examples B1 to B9).
  • the wear resistance of the lubricating oil compositions of Examples B5 to B8 satisfying the formula (II) to the aluminum material is further excellent.
  • any lubricating oil composition not satisfying the formula (I) is inferior in wear resistance to the aluminum material (Comparative Examples B1 to B7).
  • the lubricating oil compositions of the present invention (Examples B1 to B9) have good wear resistance even if they contain almost no P content, and the poison content of the three-way catalyst is extremely low because the P content is very small. Excellent prevention effect.
  • the content of the metal component derived from the metal-based detergent is 0.05% by mass or more and contains a metal detergent, so that the cleanability is very good, while the content of the metal component derived from the metal-based detergent is Since it is 0.12 mass% or less, the effect which suppresses the lifetime reduction of DPF is also favorable.
  • the components used for the preparation of the lubricating oil composition and the methods for measuring the composition and performance are the same as those in Examples A1 to A10 and Comparative Examples A1 to A8.
  • Tables 5 and 6 show the following.
  • the lubricating oil composition of the present invention satisfying the formula (I) has excellent wear resistance against aluminum materials (Examples C1 to C10).
  • the wear resistance of the lubricating oil compositions of Examples C5 to C8 satisfying the formula (II) to the aluminum material is further excellent.
  • any lubricating oil composition that does not satisfy the formula (I) is inferior in wear resistance to the aluminum material (Comparative Examples C1 to C8).
  • the lubricating oil compositions (Examples C1 to C10) of the present invention have a P content of 0.03% by mass or more, they are further excellent in wear resistance.
  • the P content is 0.06% by mass or less, the poisoning prevention effect of the three-way catalyst is also good. Moreover, since the metal content is less than 0.05% by mass, the effect of suppressing the decrease in the lifetime of the DPF is extremely excellent.
  • the lubricating oil composition for an internal combustion engine of the present invention is excellent in wear resistance against aluminum materials, and greatly maintains ZnDTP and metal detergent containing a large amount of phosphorus while maintaining wear resistance against aluminum materials.
  • a lubricating oil composition for an internal combustion engine that can be reduced can be provided. Therefore, it can be usefully used as a lubricating oil composition for an internal combustion engine that can reduce the influence on the exhaust gas aftertreatment device of the internal combustion engine using the aluminum material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

 ホウ素化イミド系分散剤もしくはホウ素化イミド系分散剤及び非ホウ素化イミド系分散剤を含有してなり、組成物中のホウ素化イミド系分散剤に由来するホウ素含有量(B質量%)とホウ素化イミド系分散剤もしくはホウ素化イミド系分散剤及び非ホウ素化イミド系分散剤に由来する窒素含有量(N質量%)とが下記の式(I) N ≧ B + 0.05 ・・・ (I)を満たし、かつ組成物全量基準でリンの含有量(P質量%)と金属系清浄剤由来の金属成分の含有量(M質量%)とが、下記の条件A~Cのいずれかを満たすことを特徴とする内燃機関用潤滑油組成物である。 A: P < 0.03 かつ M < 0.05 B: P < 0.03 かつ 0.05 ≦ M ≦ 0.12 C: 0.03 ≦ P ≦ 0.06 かつ M < 0.05 上記内燃機関用潤滑油組成物は、アルミ材に対する耐摩耗性を維持しながら、リン分を多量に含むZnDTPや金属系清浄剤を大幅に低減するとの効果を有する。

Description

内燃機関油用潤滑油組成物
 本発明は内燃機関用潤滑油組成物に関し、リン分や金属系清浄剤に由来する金属量を低減してもアルミ材に対する耐摩耗性が良好な内燃機関用潤滑油組成物に関するものである。
 近年、環境負荷低減を目的とし、自動車業界では排出ガスへの厳しい規制が次々と導入され、排出ガスの後処理装置の開発が行われている。排出ガスには,地球温暖化物質である二酸化炭素(CO2)以外にも、有害物質である粒子状物質(PM),炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等が含まれており、中でもPMやNOxの規制値は非常に厳しくなっている。これらの排出量削減策として、ガソリン車輌では三元触媒が装着され、ディーゼル車輌ではディーゼルパティキュレートフィルター(DPF)が装着されている。これにより排出ガスをクリーンにして,大気中に放出している。
 近年、エンジン油中のリン分が三元触媒の活性点を被毒し触媒機能を低下させること、また金属成分由来の灰分がDPFに堆積し寿命を短くすること等が報告されている。現在、エンジン油の規格であるILSAC規格やJASO規格にてリン量や灰分の上限値が制定され、これらを減量したエンジン油の開発が進められている。
 一方で、燃費向上の観点から、エンジンやミッション部品の非鉄化による軽量化が進められている。中でもアルミニウム合金、特に、Al-Si合金が多く採用されているが、耐摩耗剤には、ジチオリン酸亜鉛(ZnDTP)等のFeに対しての被膜形成が主反応の添加剤を使用しているため、Al-Si合金等のアルミ材への耐摩耗性の低下が懸念されている。
 そのため、アルミ材に対して良好な耐摩耗剤の研究が行われている(例えば、特許文献1参照)。しかし、これらの耐摩耗剤は、いずれも、リン分を多量に含むZnDTPと併用しなければ十分な効果が得られないものであり、排ガス後処理装置への悪影響が拭い去れていない状況にある。
 したがって、さらにリン分を減少し、若しくはリン分を含まなくとも、アルミ材に対して優れた耐摩耗性を有する内燃機関用潤滑油組成物の出現が切望されている。
特表2010-528155号公報
 本発明は、このような状況下で、アルミ材に対する耐摩耗性が優れる潤滑油組成物であって、アルミ材に対する耐摩耗性を維持しながら、リン分を多量に含むZnDTPや金属系清浄剤を大幅に低減することができる内燃機関用潤滑油組成物を提供することを目的とするものである。
 本発明者は、前記の好ましい内燃機関用潤滑油組成物を開発すべく鋭意研究を重ねた結果、イミド系分散剤とホウ素化イミド系分散剤とに由来する窒素含有量とホウ素含有量とを調整することによって、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、
1.ホウ素化イミド系分散剤もしくはホウ素化イミド系分散剤及び非ホウ素化イミド系分散剤を含有してなり、組成物中のホウ素化イミド系分散剤に由来するホウ素含有量(B質量%)とホウ素化イミド系分散剤もしくはホウ素化イミド系分散剤及び非ホウ素化イミド系分散剤に由来する窒素含有量(N質量%)とが下記の式(I)
  N ≧ B + 0.05   ・・・ (I)
を満たし、かつリンの含有量(P質量%)と金属系清浄剤由来の金属成分の含有量(M質量%)とが、組成物全量基準で下記のA~Cのいずれかを満たすことを特徴とする内燃機関用潤滑油組成物、
  A: P < 0.03 かつ M < 0.05
  B: P < 0.03 かつ 0.05 ≦ M ≦ 0.12
  C: 0.03 ≦ P ≦ 0.06 かつ M < 0.05
2.ホウ素化イミド系分散剤に由来するホウ素含有量(B質量%)とホウ素化イミド系分散剤もしくはホウ素化イミド系分散剤及び非ホウ素化イミド系分散剤に由来する窒素含有量(N質量%)とが下記の式(II)を満たすことを特徴とする上記1に記載の内燃機関用潤滑油組成物、
  N ≧ B + 0.1   ・・・ (II)
3.さらに、硫黄系耐摩耗剤を含有する上記1又は2に記載の内燃機関用潤滑油組成物、及び
4.硫黄系耐摩耗剤が、下記の一般式(3)
 R1OOC-A1-S2-A2-COOR2 ・・・(3)
(式中、R1及びR2は、それぞれ独立に、酸素原子、硫黄原子、又は窒素原子を含んでいてもよい炭素数1~30の炭化水素基、A1及びA2は、それぞれ独立に炭素数1~12の二価の炭化水素基を示す。)
で表わされるジスルフィド化合物である上記3に記載の内燃機関用潤滑油組成物、
を提供するものである。
 本発明によれば、アルミ材に対する耐摩耗性が優れる潤滑油組成物であって、アルミ材に対する耐摩耗性を維持しながら、リン分を多量に含むZnDTPや金属系清浄剤を大幅に低減することができる内燃機関用潤滑油組成物を提供することができる。
 したがって、アルミ材への耐摩耗性を維持しながら、排出ガス後処理装置への影響を軽減することができる内燃機関用潤滑油組成物を提供することができる。
 本発明の内燃機関用潤滑油組成物は、ホウ素化イミド系分散剤もしくはホウ素化イミド系分散剤及び非ホウ素化イミド系分散剤を含有してなり、組成物中のホウ素化イミド系分散剤に由来するホウ素含有量(B質量%)とホウ素化イミド系分散剤もしくはホウ素化イミド系分散剤および非ホウ素化イミド系分散剤に由来する窒素含有量(N質量%)とが下記の式(I)
 N ≧ B + 0.05   ・・・ (I)
を満たす内燃機関用潤滑油組成物である。
 上記式(I)を満たす組成物は、耐摩耗性を高めることができる。
 また、下記の式(II)
  N ≧ B + 0.1   ・・・ (II)
を満たす組成物は、前記効果をさらに高めることができる。
 前記のとおり、本発明においては、ホウ素化イミド系分散剤、及び必要に応じて非ホウ素化イミド系分散剤を用いる。
 上記非ホウ素化イミド系分散剤は、通常イミド系分散剤といわれるものである。当該非ホウ素化イミド系分散剤としては、ポリブテニルコハク酸イミドを用いることが好適である。上記ポリブテニルコハク酸イミドとしては、次の一般式(1)及び(2)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
で表される化合物が挙げられる。これら一般式におけるPIBは、ポリブテニル基を示し、その数平均分子量は、通常800~3500であり、好ましくは900~2000である。上記数平均分子量が800以上であれば、分散性が劣る恐れがなく、3500以下であれば、貯蔵安定性が劣る恐れもない。
また、上記一般式(1)及び(2)におけるnは、通常1~5の整数であり、より好ましくは2~4の整数であれば、分散性が劣る恐れはない。
 上記ポリブテニルコハク酸イミドの製造方法としては、特に限定はないが、公知の方法によって製造することができる。例えば、ポリブテンと無水マレイン酸とを100~200℃で反応させて得られるポリブテニルコハク酸を、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン及びペンタエチレンヘキサミン等のポリアミンと反応させることにより得ることができる。
 一方、本発明で用いるホウ素化イミド系分散剤としては、上記一般式(1)及び(2)で例示する非ホウ素化イミド系分散剤に、ホウ素化合物を作用させて得られるホウ素化ポリブテニルコハク酸イミドを用いることが好ましい。
上記ホウ素化合物としては、ホウ酸、ホウ酸塩及びホウ酸エステル等が挙げられる。上記ホウ酸としては、例えばオルトホウ酸、メタホウ酸及びパラホウ酸等が挙げられる。また、上記ホウ酸塩としては、アンモニウム塩等、例えばメタホウ酸アンモニウム、四ホウ酸アンモニウム、五ホウ酸アンモニウム及び八ホウ酸アンモニウム等のホウ酸アンモニウム等が好適例として挙げられる。また、ホウ酸エステルとしては、ホウ酸とアルキルアルコール(望ましくは炭素数1~6)とのエステル、例えばホウ酸モノメチル、ホウ酸ジメチル、ホウ酸トリメチル、ホウ酸モノエチル、ホウ酸ジエチル、ホウ酸トリエチル、ホウ酸モノプロピル、ホウ酸ジプロピル、ホウ酸トリプロピル、ホウ酸モノブチル、ホウ酸ジブチル及びホウ酸トリブチル等が好適例として挙げられる。
 なお、ホウ素化ポリブテニルコハク酸イミドにおけるホウ素含有量Bと窒素含有量Nとの質量比、B/Nは、0.1~3が好ましく、0.2~2であるものがより好ましい。
 なお、本発明に用いる内燃機関用潤滑油組成物において、上記ホウ素化コハク酸イミド系分散剤、及び非ホウ素化コハク酸イミド系分散剤(イミド系分散剤)の含有量は、前記式(I)を満たすことを除いては特に制限されないが、それぞれ0.1~15質量%が好ましく、0.5~10質量%であることがより好ましい。0.1質量%以上であれば良好な清浄性、分散性が得られ、15質量%以下であれば、含有量に見合う清浄性、分散性の効果が得られる。
 本発明の内燃機関用潤滑油組成物は、さらにリンの含有量(P質量%)及び金属系清浄剤由来の金属成分の含有量(M質量%)が、前記A~Cのいずれかを満たすことを要する。A~Cの各場合について以下に述べる。
 〔Aの場合〕
 Aの場合は、
 P < 0.03 かつ M < 0.05
 すなわち、組成物全量基準でリンの含有量が0.03質量%未満であり、かつ金属系清浄剤由来の金属成分の含有量が0.05質量%未満である。
 上記組成物中のリンの含有量が0.03質量%未満であれば、三元触媒の活性点の被毒作用が抑制され、触媒寿命を延長させることができる。従って組成物中のリンの含有量は、0.01質量%以下であることが好ましく、0.005質量%以下であることがより好ましく、0.001質量%以下であることが特に好ましい。
 また、上記組成物中の金属系清浄剤由来の金属成分が0.05質量%未満であれば、金属成分由来の灰分がDPFに堆積することが抑制され、その寿命を延長させることができる。従って組成物中の金属成分の含有量は、0.01質量%以下であることが好ましく、0.005質量%以下であることがより好ましく、0.001質量%以下であることが特に好ましい。
 組成物中のリンの含有量を0.03質量%未満にするためには、リンを含有する耐摩耗剤の配合量を制限し、もしくは配合しないことが必要である。従って、従来から、内燃機関用潤滑油の極めて優れた耐摩耗剤として、広く使用されているジチオリン酸亜鉛(ZnDTP)を配合することも制限され、もしくは禁止される。
 また、組成物中の金属系清浄剤由来の金属成分を0.05質量%未満にするには、金属系清浄剤の配合を、制限もしくは禁止することを要する。
 〔Bの場合〕
 Bの場合は、
 P < 0.03 かつ 0.05 ≦ M ≦ 0.12
 すなわち、組成物全量基準でリンの含有量が0.03質量%未満であり、金属系清浄剤由来の金属成分の含有量が0.05質量%以上0.12質量%以下である。
 上記組成物中のリンの含有量が0.03質量%未満であれば、三元触媒の活性点の被毒作用が抑制され、触媒寿命を延長させることができる。従って組成物中のリンの含有量は、0.01質量%以下であることが好ましく、0.005質量%以下であることがより好ましく、0.001質量%以下であることが特に好ましい。
 組成物中のリンの含有量を0.03質量%未満にするためには、リンを含有する耐摩耗剤の配合量を制限し、もしくは配合しないことが必要である。従って、従来から、内燃機関用潤滑油の極めて優れた耐摩耗剤として広く使用されているジチオリン酸亜鉛(ZnDTP)を配合することも制限され、もしくは禁止される。
 また、上記組成物中の金属系清浄剤由来の金属成分の含有量が0.05質量%以上であれば、内燃機関用潤滑油として要求される清浄性を、さらに高めることができる。一方、金属成分の含有量が0.12質量%以下であれば、金属成分由来の灰分がDPFに堆積することが抑制され、その寿命を延長させることができる。従って、金属成分の含有量は、0.05質量%以上0.10質量%以下であることが好ましく、0.05以上0.08質量%以下であることが特に好ましい。
 前記金属成分をもたらす金属系清浄剤としては、アルカリ金属(Na、K等)又はアルカリ土類金属(Ca、Mg、Ba等)のスルフォネート、フェネート、サリシレート及びナフテネートなどが好適なものとして挙げられる。中でもCaスルフォネート、Caフェネート、及びCaサリシレートが好ましい。また、これら金属系清浄剤は、塩基価が、過塩素酸法で0~500mgKOH/gのものが好ましく、150~400mgKOH/gのものがより好ましく、200~350mgKOH/gのものが特に好ましい。
 上記金属系清浄剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記金属系清浄剤の含有量は、上記の金属系清浄剤由来の金属成分の含有量になるように適宜選択すればよい。
 〔Cの場合〕
 Cの場合は、
 0.03 ≦P ≦ 0.06 かつ M < 0.05
 すなわち、組成物全量基準でリンの含有量が0.03質量%以上0.06質量%以下、かつ金属系清浄剤由来の金属成分の含有量が0.05質量%未満である。
 組成物中のリンの含有量が0.03質量%以上であれば、耐摩耗性をさらに高めることができる。一方リンの含有量が0.06質量%以下であれば、三元触媒の活性点の被毒作用を抑制することができ、触媒寿命を延長させることができる。このようなことからリンの含有量は、0.03質量%以上0.05質量%以下であることがより好ましい。
 前記リンの含有量は、リン系耐摩耗剤の配合量によって調整すればよい。代表的なリン系耐摩耗剤としては、ジチオリン酸亜鉛(ZnDTP)やジチオリン酸モリブデンリン(MoDTP)などのジチオリン酸金属類、リン酸もしくは亜リン酸エステル類(有機リン酸エステル、有機亜リン酸エステル、アルキルまたはアリールアシッドホスフェート、アルキルまたはアリールハイドロゲンホスファイト、及びこれらのアミン塩など)、チオリン酸エステル類、チオ亜リン酸エステル類が挙げられる。これらの中でも、ジチオリン酸亜鉛、すなわちジヒドロカルビルジチオリン酸亜鉛(ヒドロカルビル基が、好ましくは炭素数1~18、より好ましくは2~12のアルキル基、アルケニル基、アリールアルキル基、アルカリール基である。)が好ましく、特に、炭素数3~8の第2級アルキル基を有するジアルキルジチオリン酸亜鉛が好ましい。
 一方、上記組成物中の金属系清浄剤由来の金属成分の含有量が0.05質量%未満であれば、金属成分由来の灰分がDPFに堆積することが抑制され、その寿命を延長させることができる。従って組成物中の金属成分の含有量は、0.01質量%以下であることが好ましく、0.005質量%以下であることがより好ましく、0.001質量%以下であることが特に好ましい。
 本発明の内燃機関用潤滑油組成物においては、さらに硫黄系耐摩耗剤を含有することが好ましい。硫黄系耐摩耗剤としては、硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジヒドロカルビルポリサルファイドなどのリンを含まない硫黄系耐摩耗剤が好ましい。これらの中でも、下記の一般式(3)
  R1OOC-A1-S2-A2-COOR2 ・・・(3)
(式中、R1及びR2は、それぞれ独立に、酸素原子、硫黄原子、又は窒素原子を含んでいてもよい炭素数1~30の炭化水素基、A1及びA2は、それぞれ独立に炭素数1~12の二価の炭化水素基を示す。)
で表されるジスルフィド化合物が好ましい。
 上記一般式(3)で表わされる硫黄含有化合物の具体例としては、ビス(メトキシカルボニルメチル)ジスルフィド、ビス(エトキシカルボニルメチル)ジスルフィド、ビス(n-プロポキシカルボニルメチル)ジスルフィド、ビス(イソプロポキシカルボニルメチル)ジスルフィド、ビス(n-ブトキシカルボニルメチル)ジスルフィド、ビス(n-オクトキシカルボニルメチル)ジスルフィド、ビス(n-ドデシルオキシカルボニルメチル)ジスルフィド、ビス(シクロプロポキシカルボニルメチル)ジスルフィド、1,1-ビス(1-メトキシカルボニルエチル)ジスルフィド、1,1-ビス(1-メトキシカルボニル-n-プロピル)ジスルフィド、1,1-ビス(1-メトキシカルボニル-n-ブチル)ジスルフィド、1,1-ビス(1-メトキシカルボニル-n-ヘキシル)ジスルフィド、1,1-ビス(1-メトキシカルボニル-n-オクチル)ジスルフィド、1,1-ビス(1-メトキシカルボニル-n-ドデシル)ジスルフィド、2,2-ビス(2-メトキシカルボニル-n-プロピル)ジスルフィド、α,α-ビス(α-メトキシカルボニルベンジル)ジスルフィド、1,1-ビス(2-メトキシカルボニルエチル)ジスルフィド、1,1-ビス(2-エトキシカルボニルエチル)ジスルフィド、1,1-ビス(2-n-プロポキシカルボニルエチル)ジスルフィド、1,1-ビス(2-イソプロポキシカルボニルエチル)ジスルフィド、1,1-ビス(2-シクロプロポキシカルボニルエチル)ジスルフィド、1,1-ビス(2-メトキシカルボニル-n-プロピル)ジスルフィド、1,1-ビス(2-メトキシカルボニル-n-ブチル)ジスルフィド、1,1-ビス(2-メトキシカルボニル-n-ヘキシル)ジスルフィド、1,1-ビス(3-メトキシカルボニル-n-プロピル)ジスルフィド、2,2-ビス(3-メトキシカルボニル-n-ペンチル)ジスルフィド、1,1-ビス(2-メトキシカルボニル-1-フェニルエチル)ジスルフィドなどを挙げることができる。
 上記硫黄系耐摩耗剤の含有量は、組成物全量基準で、0.05~5質量%が好ましく、より好ましくは0.1~3質量%である。配合量が0.05質量%以上であれば十分な耐摩耗性が得られ、5質量%以下であれば、腐食が生ずる恐れがない。
 本発明の潤滑油組成物は、本発明が必要とする、上記のリン分、金属成分などの条件を損なわない範囲において、従来公知の内燃機関用潤滑油など潤滑油組成物に用いられる添加剤を配合しても良い。例えば、その他の摩擦低減剤、粘度指数向上剤、流動点降下剤、酸化防止剤、防錆剤等が挙げられる。
 上記その他の摩擦低減剤としては、脂肪酸エステル系、脂肪族アミン系、高級アルコール系などの無灰摩擦低減剤が挙げられる。
 上記粘度指数向上剤としては、各種メタクリル酸エステル又はこれらの任意の組合せに係る共重合体やその水添物等のいわゆる非分散型粘度指数向上剤、及び更に窒素化合物を含む各種メタクリル酸エステルを共重合させたいわゆる分散型粘度指数向上剤等が例示できる。
 また、非分散型又は分散型エチレン-α-オレフィン共重合体(α-オレフィンとしては、例えばプロピレン、1-ブテン、1-ペンテン等)及びその水素化物、ポリイソブチレン及びその水添物、スチレン-ジエン水素化共重合体、スチレン-無水マレイン酸エステル共重合体、並びにポリアルキルスチレン等が例示できる。これら粘度指数向上剤の分子量(数平均分子量)は、例えば分散型及び非分散型ポリメタクリレートでは5000~1000000、好ましくは100000~800000がよく、ポリイソブチレン又はその水素化物では800~5000、エチレン-α-オレフィン共重合体及びその水素化物では800~300000、好ましくは10000~200000である。
 上記酸化防止剤としては、フェノール系酸化防止剤やアミン系酸化防止剤が挙げられる。フェノール系酸化防止剤としては、例えば4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール);4,4’-ビス(2,6-ジ-t-ブチルフェノール);4,4’-ビス(2-メチル-6-t-ブチルフェノール);2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール);2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール);4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール);4,4’-イソプロピリデンビス(2,6-ジ-t-ブチルフェノール);2,2’-メチレンビス(4-メチル-6-ノニルフェノール);2,2’-イソブチリデンビス(4,6-ジメチルフェノール);2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール);2,6-ジ-t-ブチル-4-メチルフェノール;2,6-ジ-t-ブチル-4-エチルフェノール;2,4-ジメチル-6-t-ブチルフェノール;2,6-ジ-t-アミル-p-クレゾール;2,6-ジ-t-ブチル-4-(N,N’-ジメチルアミノメチルフェノール);4,4’-チオビス(2-メチル-6-t-ブチルフェノール);4,4’-チオビス(3-メチル-6-t-ブチルフェノール);2,2’-チオビス(4-メチル-6-t-ブチルフェノール);ビス(3-メチル-4-ヒドロキシ-5-t-ブチルベンジル)スルフィド;ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィド;n-オクタデシル-3-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)プロピオネート;2,2’-チオ[ジエチル-ビス-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]などが挙げられる。これらの中で、特にビスフェノール系及びエステル基含有フェノール系のものが好適である。
 また、アミン系酸化防止剤としては、例えばモノオクチルジフェニルアミン;モノノニルジフェニルアミンなどのモノアルキルジフェニルアミン系、4,4’-ジブチルジフェニルアミン;4,4’-ジペンチルジフェニルアミン;4,4’-ジヘキシルジフェニルアミン;4,4’-ジヘプチルジフェニルアミン;4,4’-ジオクチルジフェニルアミン;4,4’-ジノニルジフェニルアミンなどのジアルキルジフェニルアミン系、テトラブチルジフェニルアミン;テトラヘキシルジフェニルアミン;テトラオクチルジフェニルアミン;テトラノニルジフェニルアミンなどのポリアルキルジフェニルアミン系、及びナフチルアミン系のもの、具体的にはα-ナフチルアミン;フェニル-α-ナフチルアミン;さらにはブチルフェニル-α-ナフチルアミン;ペンチルフェニル-α-ナフチルアミン;ヘキシルフェニル-α-ナフチルアミン;ヘプチルフェニル-α-ナフチルアミン;オクチルフェニル-α-ナフチルアミン;ノニルフェニル-α-ナフチルアミンなどのアルキル置換フェニル-α-ナフチルアミンなどが挙げられる。これらの中でジアルキルジフェニルアミン系及びナフチルアミン系のものが好適である。
 上記酸化防止剤は、1種を選択し、又は2種以上を組み合わせて用いてもよい。とりわけ、フェノール系酸化防止剤を1種又は2種以上とアミン系酸化防止剤を1種又は2種以上とを組みあわせて用いることが好ましい。
 上記防錆剤としては、アルキルベンゼンスルフォネート、ジノニルナフタレンスルフォネート、アルケニルコハク酸エステル、多価アルコールエステル等が挙げられる。
 上記その他の添加剤の配合割合は、通常用いられる範囲で適宜選択すればよい。
 本発明の潤滑油組成物は、潤滑油基油(単に、「基油」と称することがある)に上記各種の添加剤を含有せしめて、目的の性能を有する潤滑油組成物を得る。
 本発明で用いる基油に特に制限はなく、従来使用されている公知の鉱物系基油(単に、「鉱油」と称することがある)及び合成系基油(単に、「合成油」と称することがある)の中から適宜選択して用いることができる。
 ここで、鉱油としては、例えばパラフィン基系原油、中間基系原油あるいはナフテン基系原油を常圧蒸留するか、又は常圧蒸留の残渣油を減圧蒸留して得られる留出油、あるいはこれを常法に従って精製することによって得られる精製油、例えば溶剤精製油、水添精製油、水素化分解油、脱ろう処理油、白土処理油などを挙げることができる。さらにはワックス類(スラックワックスなど)の異性化油も用いることができる。
 一方、合成油としては、例えば炭素数8~14のα-オレフィンオリゴマーであるポリα-オレフィン、ポリブテン、ポリオールエステル、アルキルベンゼンなどを挙げることができる。
 本発明においては、基油として、上記鉱油を1種用いてもよく、2種以上を組み合わせて用いてもよい。また、上記合成油を1種用いてもよく、2種以上を組み合わせて用いてもよい。さらには、鉱油1種以上と合成油1種以上とを組み合わせて用いてもよい。
 また、組成物中の基油の含有量は、70質量%以上が好ましく、80質量%以上がより好ましい。
 前記基油としては、100℃における動粘度が、1.5~50mm2/sが好ましく、より好ましくは3~30mm2/s、特に好ましくは3~15mm2/sである。100℃における動粘度が1.5mm2/s以上であると蒸発損失が少なく、また50mm2/s以下であると、粘性抵抗による動力損失が抑制され、燃費改善効果が良好に発揮される。
 また、この基油は、粘度指数が80以上、さらには90以上、特に100以上のものが好ましい。粘度指数が80以上であると、基油の温度による粘度変化が小さく、安定した潤滑性能を発揮する。
 また、基油としては、JIS K 2541に準拠して測定した硫黄分が50質量ppm以下であるものが好ましい。硫黄分が50質量ppm以下であれば、低摩擦摺動材料の耐摩耗性を高める効果がある。より好ましい硫黄分は、30質量ppm以下、さらには20質量ppm以下である。
 また、基油としては、環分析による%CAが3.0以下のものが安定性の面から好ましく用いられる。ここで、環分析による%CAとは、環分析n-d-M法にて算出した芳香族分の割合(百分率)を示す。%CAが、3.0以下であれば、良好な酸化安定性を示す。より好ましい%CAは1.0以下、さらには、0.5以下である。
 次に、本発明を、実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、内燃機関用潤滑油組成物(以下、単に「潤滑油組成物」と称することがある)の組成及び性能は、以下に示す方法で測定した。
<潤滑油組成物の組成>
1.ホウ素、リン、及びカルシウムの定量
 ASTM D5185に準拠して測定した。
2.窒素の定量
 JIS K2609に準拠して測定した。
3.硫黄分
 JIS K2541に準拠して測定した。
<潤滑油組成物の性能>
3.耐摩耗性の評価
 SRV摩擦試験機(往復動型摩擦試験機)を用い、下記の試験条件で、シリンダーとディスク間の摩擦試験を行い、シリンダーに発生した摩耗痕径を測定した。
 試験条件
 ・試験片  :シリンダー(標準材;SUJ2)、ディスク(Si含有アルミ:AA(アメリカアルミニウム協会)規格「A390」)
 ・試験温度 :130℃
 ・荷重   :200N
 ・振幅   :3.0mm
 ・振動数  :20Hz
 ・試験時間 :1時間
実施例A1~A10及び比較例A1~A8
 第1表及び第2表に示す組成の潤滑油組成物を調製し、その耐摩耗性の測定を行った。結果を第1表及び第2表に示す。
 潤滑油組成物の調製に用いた各成分は以下のとおりである。
(1)基油1:水素化精製鉱油(100N)、40℃動粘度21.0mm2/s、100℃動粘度4.5mm2/s、粘度指数127、硫黄含有量5質量ppm未満、
(2)ホウ素化イミド1:ポリブテニルコハク酸モノイミドホウ素化物:ポリブテニル基の数平均分子量950、塩基価(過塩素酸法)30.6mgKOH/g、窒素含有量1.8質量%、ホウ素含有量2.1質量%
(3)ホウ素化イミド2:ポリブテニルコハク酸ビスイミドホウ素化物:ポリブテニル基の数平均分子量950、塩基価(過塩素酸法)25mgKOH/g、窒素含有量1.2質量%、ホウ素含有量1.3質量%
(4)非ホウ素化イミド1:ポリブテニルコハク酸モノイミド:ポリブテニル基の数平均分子量950、塩基価(過塩素酸法)44mgKOH/g、窒素含有量2.1質量%、
(5)非ホウ素化イミド2:ポリブテニルコハク酸ビスイミド:ポリブテニル基の数平均分子量1300、塩基価(過塩素酸法)11.9mgKOH/g、窒素含有量1.0質量%、
(6)硫黄系耐摩耗剤:ビス(n-オクトキシカルボニルメチル)ジスルフイド、硫黄含有量158質量ppm
(7)金属系清浄剤:Caサリチレート、塩基価(過塩素酸法)270mgKOH/g
(8)リン系耐摩耗剤:ジチオアルキルジチオリン酸亜鉛:Zn含有量9.0質量%、リン含有量8.0質量%、硫黄含有量17.1質量%、アルキル基;第2級ブチル基と第2級ヘキシル基の混合物
(9)その他の添加剤:酸化防止剤(フェノール系酸化防止剤、及びアミン系酸化防止剤)、金属不活性化剤(アルキルベンゾトリアゾール)及び消泡剤(シリコーン系)との混合物。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 表1,2から以下のことが分かる。
(1) 式(I)を満たす本発明の潤滑油組成物は、アルミ材に対する耐摩耗性に優れている(実施例A1~A10)。特に、式(II)を満たす実施例A4~A8の潤滑油組成物のアルミ材に対する耐摩耗性は、さらに優れている。
 これに対して、式(I)を満たさない潤滑油組成物は、上記実施例A1~A10の本発明と比べてアルミ材に対する耐摩耗性は劣っている(比較例A1~A8)。
(2) 本発明の潤滑油組成物(実施例A1~A10)は、P分を含まなくても耐摩耗性が良好であり、また、P分含有量及び金属系清浄剤由来の金属成分の含有量が共に極めて少ないため、三元触媒の被毒を防止する効果及びDPFの寿命の低下を抑制する効果に極めて優れている。
実施例B1~B9及び比較例B1~B7
 第3表及び4に示す組成の潤滑油組成物を調製し、その耐摩耗性の測定を行った。結果を第3表及び第4表に示す。
 潤滑油組成物の調製に用いた各成分及び組成及び性能の測定方法は、前記実施例A1~A10及び比較例A1~A8の場合と同じである。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3,4から以下のことが分かる。
(1) 式(I)を満たす本発明の潤滑油組成物は、アルミ材に対する耐摩耗性が優れている(実施例B1~B9)。特に、式(II)を満たす実施例B5~B8の潤滑油組成物のアルミ材に対する耐摩耗性は、さらに優れている。
 これに対して、式(I)を満たさない潤滑油組成物は、いずれもアルミ材に対する耐摩耗性は劣っている(比較例B1~B7)。
(2) 本発明の潤滑油組成物(実施例B1~B9)は、P分を殆ど含まなくても耐摩耗性が良好であり、またP分含有量が極めて少ないため三元触媒の被毒防止効果に極めて優れる。また金属系清浄剤由来の金属成分の含有量が0.05質量%以上であって金属清浄剤を含むため清浄性が極めて良好であり、一方、金属系清浄剤由来の金属成分の含有量が0.12質量%以下であるので、DPFの寿命低下を抑制する効果も良好である。
実施例C1~C10及び比較例C1~C8
 第5表及び第6表に示す組成の内燃機関用潤滑油組成物を調製し、その耐摩耗性の測定を行った。結果を第5表及び第6表に示す。
 潤滑油組成物の調製に用いた各成分及び組成及び性能の測定方法は、前記実施例A1~A10及び比較例A1~A8の場合と同じである。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表5,6から以下のことが分かる。
(1) 式(I)を満たす本発明の潤滑油組成物は、アルミ材に対する耐摩耗性が優れている(実施例C1~C10)。特に、式(II)を満たす実施例C5~C8の潤滑油組成物のアルミ材に対する耐摩耗性は、さらに優れている。
 これに対して、式(I)を満たさない潤滑油組成物は、いずれもアルミ材に対する耐摩耗性は劣っている(比較例C1~C8)。
(2) 本発明の潤滑油組成物(実施例C1~C10)は、P分含有量が0.03質量%以上であるため、さらに一層耐摩耗性に優れている。また、P分含有量が0.06質量%以下であるため、三元触媒の被毒防止効果も良好である。また、金属分含有量が0.05質量%未満であるためDPFの寿命低下を抑制する効果にも極めて優れている。
 本発明の内燃機関用潤滑油組成物は、アルミ材に対する耐摩耗性が優れるものであり、アルミ材に対する耐摩耗性を維持しながら、リン分を多量に含むZnDTPや金属系清浄剤を大幅に低減することができる内燃機関用潤滑油組成物を提供することができる。
 したがって、アルミ材を用いる内燃機関の排出ガス後処理装置への影響を軽減することができる内燃機関用潤滑油組成物として有用に利用することができる。

Claims (4)

  1.  ホウ素化イミド系分散剤もしくはホウ素化イミド系分散剤及び非ホウ素化イミド系分散剤を含有してなり、組成物中のホウ素化イミド系分散剤に由来するホウ素含有量(B質量%)とホウ素化イミド系分散剤もしくはホウ素化イミド系分散剤及び非ホウ素化イミド系分散剤に由来する窒素含有量(N質量%)とが下記の式(I)
      N ≧ B + 0.05   ・・・ (I)
    を満たし、かつリンの含有量(P質量%)と金属系清浄剤由来の金属成分の含有量(M質量%)とが、組成物全量基準で下記のA~Cのいずれかを満たすことを特徴とする内燃機関用潤滑油組成物。
      A: P < 0.03 かつ M < 0.05
      B: P < 0.03 かつ 0.05 ≦ M ≦ 0.12
      C: 0.03 ≦ P ≦ 0.06 かつ M < 0.05
  2.  ホウ素化イミド系分散剤に由来するホウ素含有量(B質量%)とホウ素化イミド系分散剤もしくはホウ素化イミド系分散剤及び非ホウ素化イミド系分散剤に由来する窒素含有量(N質量%)とが下記の式(II)を満たすことを特徴とする請求項1に記載の内燃機関用潤滑油組成物。
       N ≧ B + 0.1   ・・・ (II)
  3.  さらに、硫黄系耐摩耗剤を含有する請求項1又は2に記載の内燃機関用潤滑油組成物。
  4.  硫黄系耐摩耗剤が、下記の一般式(3)
      R1OOC-A1-S2-A2-COOR2 ・・・(3)
    (式中、R1及びR2は、それぞれ独立に、酸素原子、硫黄原子、又は窒素原子を含んでいてもよい炭素数1~30の炭化水素基、A1及びA2は、それぞれ独立に炭素数1~12の二価の炭化水素基を示す。)
    で表わされるジスルフィド化合物である請求項3に記載の内燃機関用潤滑油組成物。
PCT/JP2012/069911 2011-08-03 2012-08-03 内燃機関油用潤滑油組成物 WO2013018907A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280038401.5A CN103717720A (zh) 2011-08-03 2012-08-03 内燃机用润滑油组合物
EP12820418.7A EP2740783A4 (en) 2011-08-03 2012-08-03 LUBRICANT COMPOSITION FOR A COMBUSTION ENGINE
US14/236,190 US20140194329A1 (en) 2011-08-03 2012-08-03 Lubricant composition for internal combustion engine oil
KR1020147002641A KR20140058531A (ko) 2011-08-03 2012-08-03 내연 기관유용 윤활유 조성물
IN785CHN2014 IN2014CN00785A (ja) 2011-08-03 2012-08-03
CA2843554A CA2843554A1 (en) 2011-08-03 2012-08-03 Lubricant composition for internal combustion engine oil

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-170582 2011-08-03
JP2011170580 2011-08-03
JP2011-170581 2011-08-03
JP2011170582 2011-08-03
JP2011-170580 2011-08-03
JP2011170581 2011-08-03

Publications (1)

Publication Number Publication Date
WO2013018907A1 true WO2013018907A1 (ja) 2013-02-07

Family

ID=47629420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069911 WO2013018907A1 (ja) 2011-08-03 2012-08-03 内燃機関油用潤滑油組成物

Country Status (7)

Country Link
US (1) US20140194329A1 (ja)
EP (1) EP2740783A4 (ja)
KR (1) KR20140058531A (ja)
CN (1) CN103717720A (ja)
CA (1) CA2843554A1 (ja)
IN (1) IN2014CN00785A (ja)
WO (1) WO2013018907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141077A1 (ja) * 2012-03-21 2013-09-26 出光興産株式会社 アルミ合金製エンジン用潤滑油組成物及び潤滑方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663382B1 (en) * 2018-12-06 2021-08-04 Oleon N.V. Sulphur-containing esterified polyol

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050717A1 (en) * 2006-10-23 2008-05-02 Idemitsu Kosan Co., Ltd. Lubricating oil composition for internal combustion engine
JP2008169228A (ja) * 2007-01-05 2008-07-24 Chevron Japan Ltd 潤滑油組成物
JP2009292998A (ja) * 2008-06-09 2009-12-17 Idemitsu Kosan Co Ltd 内燃機関用潤滑油組成物
JP2010100707A (ja) * 2008-10-22 2010-05-06 Idemitsu Kosan Co Ltd 内燃機関用潤滑油組成物
JP2010528155A (ja) 2007-05-24 2010-08-19 ザ ルブリゾル コーポレイション 無灰、無硫黄、無リンの磨耗剤を含む潤滑剤でアルミニウムシリケート複合材料表面を潤滑化する方法
JP2011084721A (ja) * 2009-09-15 2011-04-28 Idemitsu Kosan Co Ltd 摺動機構

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601315B2 (ja) * 2004-03-31 2010-12-22 出光興産株式会社 ディーゼルエンジン用潤滑油組成物
JP5027533B2 (ja) * 2007-03-19 2012-09-19 Jx日鉱日石エネルギー株式会社 潤滑油組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050717A1 (en) * 2006-10-23 2008-05-02 Idemitsu Kosan Co., Ltd. Lubricating oil composition for internal combustion engine
JP2008169228A (ja) * 2007-01-05 2008-07-24 Chevron Japan Ltd 潤滑油組成物
JP2010528155A (ja) 2007-05-24 2010-08-19 ザ ルブリゾル コーポレイション 無灰、無硫黄、無リンの磨耗剤を含む潤滑剤でアルミニウムシリケート複合材料表面を潤滑化する方法
JP2009292998A (ja) * 2008-06-09 2009-12-17 Idemitsu Kosan Co Ltd 内燃機関用潤滑油組成物
JP2010100707A (ja) * 2008-10-22 2010-05-06 Idemitsu Kosan Co Ltd 内燃機関用潤滑油組成物
JP2011084721A (ja) * 2009-09-15 2011-04-28 Idemitsu Kosan Co Ltd 摺動機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2740783A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141077A1 (ja) * 2012-03-21 2013-09-26 出光興産株式会社 アルミ合金製エンジン用潤滑油組成物及び潤滑方法
US9790450B2 (en) 2012-03-21 2017-10-17 Idemitsu Kosan Co., Ltd. Lubricating oil composition for engine made of aluminum alloy and lubrication method

Also Published As

Publication number Publication date
EP2740783A1 (en) 2014-06-11
KR20140058531A (ko) 2014-05-14
CN103717720A (zh) 2014-04-09
IN2014CN00785A (ja) 2015-04-03
US20140194329A1 (en) 2014-07-10
CA2843554A1 (en) 2013-02-07
EP2740783A4 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP6302458B2 (ja) 潤滑油組成物
CN106414687B (zh) 内燃机用润滑油组合物
JP5465938B2 (ja) 内燃機関用潤滑油組成物
CA2794662C (en) Natural gas engine lubricating oil compositions
JP6389458B2 (ja) 潤滑油組成物
JP2015042757A (ja) 潤滑油組成物
US8592356B2 (en) Lubricant composition for internal combustion engine
WO2013141077A1 (ja) アルミ合金製エンジン用潤滑油組成物及び潤滑方法
JP2013540879A (ja) 天然ガスエンジン用潤滑油組成物
MXPA06014910A (es) Composicion de aceite lubricante.
JP2018168344A (ja) 内燃機関用潤滑油組成物
WO2013018907A1 (ja) 内燃機関油用潤滑油組成物
JP2013049849A (ja) 内燃機関油用潤滑油組成物
JP2013049851A (ja) 内燃機関油用潤滑油組成物
JP2013049850A (ja) 内燃機関油用潤滑油組成物
JP2017210509A (ja) ガスエンジン油組成物
WO2023234295A1 (ja) 潤滑油組成物
JP6247820B2 (ja) アルミ合金製エンジン用潤滑油組成物及び潤滑方法
JP6247822B2 (ja) アルミ合金製エンジン用潤滑油組成物及び潤滑方法
JP6247821B2 (ja) アルミ合金製エンジン用潤滑油組成物及び潤滑方法
WO2023189697A1 (ja) 潤滑油組成物
JP2023150884A (ja) 潤滑油組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2843554

Country of ref document: CA

Ref document number: 20147002641

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012820418

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14236190

Country of ref document: US