WO2013018744A1 - チューブ状エチレン系樹脂多層フィルム - Google Patents

チューブ状エチレン系樹脂多層フィルム Download PDF

Info

Publication number
WO2013018744A1
WO2013018744A1 PCT/JP2012/069279 JP2012069279W WO2013018744A1 WO 2013018744 A1 WO2013018744 A1 WO 2013018744A1 JP 2012069279 W JP2012069279 W JP 2012069279W WO 2013018744 A1 WO2013018744 A1 WO 2013018744A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
resin
weight
copolymer
monomer unit
Prior art date
Application number
PCT/JP2012/069279
Other languages
English (en)
French (fr)
Inventor
浩之 諏訪
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013018744A1 publication Critical patent/WO2013018744A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/246All polymers belonging to those covered by groups B32B27/32 and B32B27/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes

Definitions

  • the present invention relates to a tubular ethylene-based resin multilayer film.
  • JP-A-6-345880 discloses a stretch hood film made of an ethylene-vinyl acetate copolymer
  • JP-A 2010-254963 discloses a stretch hood made of an ethylene- ⁇ -olefin copolymer. A film is disclosed.
  • stretch hood films have the same rate of recovery for recovery from stretched dimensions to the size that allows cargo and pallets to be bound together, as well as the ability to recover from tight binding, as well as conventional films. Tear strength and high impact strength may be required. Under such circumstances, the problem to be solved by the present invention is to provide a tubular ethylene-based resin multilayer film which is excellent in elongation recovery rate and elongation recovery force and excellent in tear strength and impact strength.
  • the present invention provides an ethylene resin (A) that satisfies all the following requirements (a1), (a2), and (a3): 50 to 100% by weight, And the following requirements (b1) and (b2) are all satisfied, ethylene-based resin (B) different from ethylene-based resin (A) 0 to 50% by weight Containing a core layer (however, the total amount of the ethylene resin (A) and the ethylene resin (B) is 100% by weight); Ethylene- ⁇ having a monomer unit based on ethylene and a monomer unit based on an ⁇ -olefin having 4 to 20 carbon atoms and satisfying all of the following requirements (c1), (c2) and (c3) -Having two surface layers containing the olefin copolymer (C), It is a tubular ethylene-based resin multilayer film in which a core layer is disposed between two surface layers.
  • Ethylene resin (A) (A1): The number of branches of 5 carbon atoms measured by 13 C-NMR is less than 0.1 per 1000 carbon atoms (a2): the activation energy of flow is 40 kJ / mol or more (a3) : Ethylene resin (B) having a density of 900 to 921 kg / m 3 (B1): Vicat softening point is 100 ° C. or less (b2): Melt flow rate measured by Method A under the conditions of a load of 21.18 N and a temperature of 190 ° C. is 0 according to the method defined in JIS K 7210-1995.
  • C1 Flow activation energy is less than 40 kJ / mol
  • C2 Melt flow measured by method A under conditions of a load of 21.18 N and a temperature of 190 ° C. according to the method defined in JIS K 7210-1995 The rate is 0.1 to 2 g / 10 min (c3): the density is 900 to 925 kg / m 3
  • the ethylene resin (A) is a polymer having a monomer unit based on ethylene as a main unit, and the content of the monomer unit based on ethylene is the total weight (100% by weight) of the ethylene resin (A). The amount of the polymer is 50% by weight or more.
  • the ethylene resin (A) include a high-pressure low-density polyethylene produced by a high-pressure radical polymerization method and an ethylene- ⁇ -olefin copolymer produced by a coordination polymerization method.
  • the ethylene resin (A) is preferably an ethylene- ⁇ -olefin copolymer having a monomer unit based on ethylene and a monomer unit based on an ⁇ -olefin having 3 to 20 carbon atoms.
  • the content of the monomer unit based on ethylene in the ethylene- ⁇ -olefin copolymer is usually 50 to 99% by weight with respect to the total weight (100% by weight) of the ethylene- ⁇ -olefin copolymer.
  • the content of the monomer unit based on the ⁇ -olefin having 3 to 20 carbon atoms is usually 1 to 50% by weight.
  • the ethylene- ⁇ -olefin copolymer can be obtained by copolymerizing ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
  • Examples of the ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4 -Methyl-1-pentene, 4-methyl-1-hexene and the like are mentioned, and 1-hexene and 1-octene are preferable.
  • the ⁇ -olefin having 3 to 20 carbon atoms may be used alone or in combination of two or more.
  • Examples of the ethylene- ⁇ -olefin copolymer include an ethylene-propylene copolymer, an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, an ethylene-1-octene copolymer, and an ethylene-1 -Butene-1-hexene copolymer, ethylene-1-butene-1-octene copolymer and the like, preferably ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-1 -Butene-1-hexene copolymer and ethylene-1-butene-1-octene copolymer.
  • the ethylene-based resin (A) has a carbon number of 5 (hereinafter sometimes referred to as “N C5 ”) measured by 13 C-NMR from the viewpoint of increasing tear strength and impact strength. Less than 0.1 per 1000 atoms. N C5 is preferably less than 0.05 per 1000 carbon atoms, more preferably less than 0.01 and most preferably zero.
  • N C5 of the ethylene-based resin (A) should be adjusted according to the polymerization conditions such as the selection of the production method such as gas phase polymerization and slurry polymerization, the selection of the polymerization catalyst, the polymerization temperature, the polymerization pressure, the type and addition amount of the comonomer. Can do.
  • N C5 can be obtained by the following method.
  • the sum of all peaks observed at 5 to 50 ppm is 1000, and the peak area of a peak having a peak top near 32.5 to 32.7 ppm Asked.
  • the peak area is a value corresponding to the number of branched methylene carbons having 5 carbon atoms (C ** in the following structural formula).
  • the molecular weight distribution (Mw / Mn) of the ethylene-based resin (A) is preferably 5 or more, more preferably 6 or more, and even more preferably 7 or more. Further, from the viewpoint of impact strength, tear strength, elongation recovery rate, and elongation recovery force, the molecular weight distribution of the ethylene-based resin (A) is preferably 25 or less, more preferably 20 or less.
  • the molecular weight distribution (Mw / Mn) is a value obtained by calculating a polystyrene-reduced weight average molecular weight (Mw) and number average molecular weight (Mn) by gel permeation chromatography, and dividing Mw by Mn.
  • the Mw / Mn can be changed, for example, depending on the hydrogen concentration or polymerization temperature during polymerization. When the hydrogen concentration or polymerization temperature is increased, an ethylene resin (A) having a large Mw / Mn is obtained.
  • the activation energy (Ea) of the flow of the ethylene-based resin (A) is 40 kJ / mol or more, preferably 50 kJ / mol or more, more preferably Is 55 kJ / mol or more, more preferably 60 kJ / mol or more.
  • Ea is preferably 100 kJ / mol or less, more preferably 90 kJ / mol or less.
  • the Ea can be changed by, for example, the hydrogen concentration or ethylene pressure during polymerization, and when the hydrogen concentration or ethylene pressure is lowered, an ethylene resin (A) having a large Ea is obtained.
  • the flow activation energy (Ea) is a master curve showing the dependence of the melt complex viscosity (unit: Pa ⁇ sec) at 190 ° C. on the angular frequency (unit: rad / sec) based on the temperature-time superposition principle. Is a numerical value calculated by the Arrhenius type equation from the shift factor (a T ) at the time of creating, and is obtained by the following method. First, melting complex viscosity-angular frequency curve of ethylene-based resin at temperatures of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (T, unit: ° C.) Is rad / sec).
  • the melt complex viscosity-angular frequency curve at each temperature (T) is superimposed on the melt complex viscosity-angular frequency curve of the ethylene copolymer at 190 ° C. determine the shift factor (a T) at a temperature (T).
  • a respective temperature (T), from a shift factor (a T) at each temperature (T), by the method of least squares [ln (a T)] and [1 / (T + 273.16) ] and the primary approximate expression (Equation (I) below) is calculated.
  • Ea is obtained from the slope m of the linear expression and the following expression (II).
  • pieces, 130 degreeC, 150 degreeC, 170 degreeC, and 190 degreeC is usually 0.99 or more.
  • the melt complex viscosity-angular frequency curve is measured using a viscoelasticity measuring apparatus (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics, Inc.), usually geometry: parallel plate, plate diameter: 25 mm, plate interval: 1. It is performed under the conditions of 5 to 2 mm, strain: 5%, angular frequency: 0.1 to 100 rad / sec. The measurement is performed in a nitrogen atmosphere, and it is preferable that an appropriate amount (for example, 1000 ppm) of an antioxidant is added to the measurement sample in advance.
  • a viscoelasticity measuring apparatus for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics, Inc.
  • the density of the ethylene-based resin (A), elongation recovery rate, elongation recovery force, in view of enhancing the tear strength and impact strength, is 900kg / m 3 ⁇ 921kg / m 3, preferably 910kg / m 3 ⁇ 915kg / m is 3.
  • this density is measured according to the A method (underwater substitution method) prescribed
  • the melt flow rate (MFR) of the ethylene-based resin (A) is usually 0.1 to 50 g / 10 minutes, and is 2 g / 10 minutes or less from the viewpoint of increasing tear strength, impact strength, and elongation recovery force. Is preferred.
  • the MFR is measured by the A method in accordance with JIS K7210-1995 under conditions of a temperature of 190 ° C. and a load of 21.18N.
  • the ethylene resin (A) preferably has a g * defined by the following formula (II) of 0.70 to 0.95.
  • g * [ ⁇ ] / ([ ⁇ ] GPC ⁇ g SCB *) (II) [Wherein [ ⁇ ] represents the intrinsic viscosity (unit: dl / g) of the ethylene-based resin and is defined by the following formula (II-I).
  • [ ⁇ ] GPC is defined by the following formula (II-II).
  • g SCB * is defined by the following formula (II-III).
  • [ ⁇ ] 23.3 ⁇ log ( ⁇ rel) (II-I) (In the formula, ⁇ rel represents the relative viscosity of the ethylene-based resin.)
  • [ ⁇ ] GPC 0.00046 ⁇ Mv 0.725 (II-II) (In the formula, Mv represents the viscosity average molecular weight of the ethylene-based resin.)
  • g SCB * (1-A) 1.725 (II-III) (In formula, A measures the content of the short chain branch in ethylene-type resin, and is defined by following formula (II-V).
  • [ ⁇ ] GPC represents the intrinsic viscosity (unit: dl / g) of a polymer that is assumed to have the same molecular weight distribution as that of the ethylene-based resin and that the molecular chain is linear.
  • g SCB * represents the contribution to g * caused by introducing short chain branching into the ethylene-based resin.
  • the formula (II-II) H The formula described in Tung Journal of Polymer Science, 36, 130 (1959), pages 287-294 was used.
  • the relative viscosity ( ⁇ rel) of the ethylene-based resin can be measured by the following method.
  • a sample solution is prepared by dissolving 100 mg of an ethylene-based resin at 135 ° C. in 100 ml of tetralin containing 0.5% by weight of butylhydroxytoluene (BHT) as a thermal degradation inhibitor.
  • BHT butylhydroxytoluene
  • the relative viscosity ( ⁇ rel) of the ethylene resin is calculated from the falling time of the sample solution measured using an Ubbelohde viscometer and the falling time of a blank solution made of tetralin containing only 0.5 wt% BHT. .
  • g * is an index representing the degree of contraction of a molecule in a solution caused by long chain branching. When the amount of long chain branching per molecular chain is large, the contraction of the molecular chain increases. Get smaller.
  • G * of the ethylene-based resin is preferably 0.70 to 0.95, more preferably 0.75 to 0.90, from the viewpoint of elongation recovery rate, elongation recovery force, tear strength, and impact strength. More preferably, it is 0.75 to 0.85. It is preferable that g * is 0.95 or less because the elongation recovery rate is excellent.
  • the molecular chain spreads sufficiently when the crystal is formed, so the probability of tie molecule formation is high, the relaxation time of the molecular chain is short, and the stretch recovery force It is excellent in tear strength and impact strength.
  • Examples of the ethylene resin preferably used as the ethylene resin (A) include ethylene resins described in JP-A-2008-106264.
  • the multilayer film of the present invention has a core layer containing the ethylene resin (A).
  • the core layer may contain only the ethylene-based resin (A) as a resin component, and may further contain other resins.
  • the layer include the polyethylene resin (A) and a Vicat softening point of 100 ° C. or lower, and a melt flow rate (MFR) of 0. And a layer containing an ethylene resin (B) different from the ethylene resin (A) at 1 to 7 g / 10 min.
  • MFR melt flow rate
  • the Vicat softening point of the ethylene-based resin (B) is preferably 40 ° C. or higher from the viewpoint of enhancing the anti-blocking property of the film.
  • the Vicat softening point is measured according to JIS K7206-1979.
  • the melt flow rate (MFR) of the ethylene-based resin (B) is preferably 5 g / 10 minutes or less, more preferably 2 g / 10 minutes or less, from the viewpoint of enhancing the film strength and elongation recovery force.
  • the MFR is measured by the A method in accordance with JIS K7210-1995 under conditions of a temperature of 190 ° C. and a load of 21.18N.
  • the ethylene-based resin (B) is an ethylene-based resin different from the ethylene-based resin (A), and an ethylene- ⁇ -olefin copolymer or ethylene homopolymer having a flow activation energy (Ea) of less than 40 kJ / mol.
  • a copolymer of ethylene and vinyl ester a copolymer of ethylene and unsaturated carboxylic acid, a copolymer of ethylene and unsaturated carboxylic acid ester, specifically, ethylene-propylene copolymer Polymer, ethylene-1-butene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-hexene copolymer, ethylene-1-octene copolymer, ethylene-1-decene copolymer , High pressure method low density polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene Methyl methacrylate copolymer and the like. These may be used alone or in combination of two or more.
  • the ethylene resin (B) preferably has a monomer unit based on ethylene and a monomer unit based on vinyl acetate, and the content of the monomer unit based on vinyl acetate is 3 to 40% by weight. And ethylene-vinyl acetate copolymer (however, the weight of the ethylene-vinyl acetate copolymer is 100% by weight).
  • the content of the monomer unit based on vinyl acetate in the ethylene-vinyl acetate copolymer is preferably 10% by weight or more, more preferably 15% by weight, from the viewpoint of increasing the flexibility of the film and the elongation recovery rate. That's it.
  • the content of monomer units based on vinyl acetate contained in the ethylene-vinyl acetate copolymer is 40% by weight or less, the film has excellent stretch recovery ability.
  • the ethylene-vinyl acetate copolymer is produced by polymerizing ethylene and vinyl acetate using a catalyst.
  • a catalyst examples thereof include a bulk polymerization method using a radical initiator and a solution polymerization method.
  • the tubular multilayer film of the present invention comprises a core layer containing the ethylene resin (A) 50 to 100% by weight and the ethylene resin (B) 0 to 50% by weight (however, the ethylene resin (A) and the ethylene resin).
  • the total amount of the resin (B) is 100% by weight).
  • the ethylene- ⁇ -olefin copolymer (C) is a copolymer having a monomer unit based on ethylene and a monomer unit based on an ⁇ -olefin having 4 to 20 carbon atoms.
  • the ethylene- ⁇ -olefin copolymer (C) can be obtained by copolymerizing ethylene and an ⁇ -olefin having 4 to 20 carbon atoms using an olefin polymerization catalyst.
  • Examples of the ethylene- ⁇ -olefin copolymer (C) include ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-1-octene copolymer, and ethylene-1-butene-1.
  • ethylene-1-butene-1-octene copolymer ethylene-1-butene-1-octene copolymer, and the like. From the viewpoint of increasing tear strength and impact strength, ethylene-1-hexene copolymer, ethylene-1-octene copolymer are preferable. It is a polymer.
  • the flow activation energy (Ea) of the ethylene- ⁇ -olefin copolymer (C) is less than 40 kJ / mol, preferably less than 38 kJ / mol. It is.
  • the flow activation energy (Ea) is obtained by the same method as the flow activation energy (Ea) of the ethylene-based resin (A).
  • the content of the monomer unit based on ethylene in the ethylene- ⁇ -olefin copolymer (C) is usually 50 with respect to the total weight (100% by weight) of the ethylene- ⁇ -olefin copolymer (C). ⁇ 99 wt%.
  • the content of the monomer unit based on the ⁇ -olefin having 4 to 20 carbon atoms is usually 1 to 50% by weight with respect to the total weight (100% by weight) of the ethylene- ⁇ -olefin copolymer.
  • the density of the ethylene- ⁇ -olefin copolymer (C) is 900 to 925 kg / m 3 and is preferably less than 922 kg / m 3 from the viewpoint of enhancing the flexibility of the film and the elongation recovery rate.
  • the density is measured by the same method as the density of the ethylene resin (A).
  • the melt flow rate (MFR) of the ethylene- ⁇ -olefin copolymer (C) is 0.1 to 2 g / 10 minutes, and preferably 1 g / 10 minutes or more from the viewpoint of improving workability and tear strength. .
  • the MFR is measured by the A method in accordance with JIS K7210-1995 under conditions of a temperature of 190 ° C. and a load of 21.18N.
  • the ethylene- ⁇ -olefin copolymer (C) can be produced by, for example, a solution polymerization method, a slurry polymerization method, a gas phase polymerization method, a high-pressure ion polymerization method, or the like.
  • the tubular multilayer film of the present invention comprises a core layer containing 50 to 100% by weight of the ethylene resin (A) and 0 to 50% by weight of the ethylene resin (B) and the ethylene- ⁇ -olefin copolymer. It is a film having two surface layers containing (C) and having a core layer disposed between the two surface layers.
  • Specific layer configurations include surface layer / core layer / surface layer, surface layer / layer ( ⁇ ) / core layer / surface layer, surface layer / layer ( ⁇ ) / core layer / layer ( ⁇ ) / surface layer, etc. Is mentioned.
  • at least one surface layer is arranged adjacent to the core layer. More preferably, the structure is a surface layer / core layer / surface layer.
  • the two surface layers of the present invention contain the same resin in the same content
  • the same resin may be contained in different contents, or different resins may be contained.
  • the resulting multilayer film is difficult to curl and easy to handle.
  • the layer ( ⁇ ) or the layer ( ⁇ ) is another layer that does not correspond to either the surface layer or the core layer.
  • the total amount of the ethylene-based resin (A) and the ethylene-based resin (B) contained in the core layer is preferably 80% by weight or more, with the total amount of the constituent components contained in the core layer being 100% by weight, More preferably, it is 90 weight% or more.
  • the core layer may contain a resin different from the ethylene resin (A) and the ethylene resin (B), various additives described later, and the like.
  • the content of the ethylene- ⁇ -olefin copolymer (C) contained in the surface layer is 100% by weight, preferably 70% by weight or more, based on the total amount of components contained in the surface layer. More preferably, it is 90 weight% or more.
  • the surface layer may contain a resin different from the ethylene- ⁇ -olefin copolymer (C), various additives described later, and the like.
  • the surface layer may contain an ethylene-based resin (A) as a resin different from the ethylene- ⁇ -olefin copolymer (C).
  • the thickness of the tubular multilayer film of the present invention is preferably 0.01 mm or more from the viewpoint of increasing tear strength and impact strength. Further, from the viewpoint of film covering workability, the thickness is preferably 0.3 mm or less, and more preferably in the range of 0.03 to 0.25 mm.
  • the ratio of the thickness of the core layer to the entire thickness of the tubular multilayer film of the present invention is preferably 30% or more and less than 90% from the viewpoint of enhancing the extrusion moldability, transparency of the resulting film, and heat sealability. Yes, more preferably 50% or more and less than 80%.
  • an antioxidant In the multilayer film of the present invention, an antioxidant, a light stabilizer, an ultraviolet absorber, a lubricant, an antiblocking agent, an antistatic agent, other resins, and the like are blended in the core layer and the surface layer as necessary. These may be used alone or in combination of two or more.
  • antioxidants examples include trivalent phosphorus atoms such as so-called hindered phenol compounds such as 2,6-dialkylphenol derivatives and 2-alkylphenol derivatives, phosphite compounds, and phosphonite compounds.
  • a phosphorus ester compound is mentioned.
  • These antioxidants may be used alone or in combination of two or more. In particular, from the viewpoint of stabilizing the hue, it is preferable to use a hindered phenol compound and a phosphorus ester compound in combination.
  • the layer containing the antioxidant when the weight of the resin in the layer is 100 parts by weight, the layer preferably contains 0.01 to 1 part by weight of an antioxidant, preferably 0.03 to 0. More preferably, 5 parts by weight is contained.
  • the antioxidant is preferably contained in both the core layer and the two surface layers.
  • Examples of the light stabilizer include hindered amine compounds having the structure described in JP-A-8-73667. Specific examples thereof include the trade names Tinuvin 622-LD, Kimasorb 944-LD (above Ciba. Specialty Chemicals Co., Ltd.), Hostabin N30, VP Sanduvor PR-31 (manufactured by Clariant, Inc.), Saiyasorb UV3529, Saiyasorb UV3346 (manufactured by Cytec, Inc.), and the like.
  • a sterically hindered amine ether compound having a structure described in JP-A-11-315067 can be mentioned, and specifically, trade name Tinuvin NOR371 (manufactured by Ciba Specialty Chemicals) can be mentioned.
  • the layer preferably contains 0.01 to 3 parts by weight of the light stabilizer, and 0.05 to 2 More preferably, it is contained in an amount of 0.1 to 1 part by weight.
  • the light stabilizer is preferably contained in both the core layer and the two surface layers.
  • the ultraviolet absorber examples include benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers, benzoate ultraviolet absorbers, and cyanoacrylate ultraviolet absorbers, and these may be used alone or in two types. You may use the above together.
  • the layer containing the ultraviolet absorber when the weight of the resin of the layer is 100 parts by weight, the layer preferably contains 0.01 to 3 parts by weight of the ultraviolet absorber, and 0.03 to 2 More preferably, it is contained in parts by weight.
  • the ultraviolet absorber is preferably contained in both the core layer and the two surface layers.
  • lubricant examples include fatty acids such as stearic acid, oleic acid, and lauric acid; fatty acid amides such as oleylamide, erucylamide, ricinolamide, and behenamide; glycerin esters of higher fatty acids; fatty acid esters such as sorbitan ester and n-butyl stearate Etc. can be used.
  • fatty acids such as stearic acid, oleic acid, and lauric acid
  • fatty acid amides such as oleylamide, erucylamide, ricinolamide, and behenamide
  • glycerin esters of higher fatty acids fatty acid esters such as sorbitan ester and n-butyl stearate Etc.
  • the anti-blocking agent synthetic silica such as dry silica and wet silica; natural silica such as diatomaceous earth; silicon resin; polymethyl methacrylate and the like can be used.
  • synthetic silica such as dry silica and wet silica
  • natural silica such as diatomaceous earth
  • silicon resin polymethyl methacrylate and the like
  • each layer containing an antiblocking agent when the weight of the resin of the layer is 100 parts by weight, it is preferable that the layer contains 0.2 to 5 parts by weight of an ultraviolet absorber.
  • the anti-blocking agent is preferably contained in one surface layer or both surface layers.
  • these components are mixed and / or melt-kneaded, and then made into a film by the production method described later.
  • the mixing method include a method of mixing them with a tumbler blender, a Henschel mixer or the like.
  • the melt-kneading method include a method of melt-kneading them with a single screw extruder or a multi-screw extruder, a method of melt-kneading them with a kneader, a Banbury mixer, or the like.
  • Examples of the method for producing the tubular multilayer film of the present invention include a co-extrusion blown film forming method and a co-extrusion T-die cast film forming method, and a co-extruded blown film forming method is preferable.
  • the extrusion molding temperature is usually 110 to 250 ° C.
  • the temperature is preferably 130 ° C or higher, and more preferably 140 ° C or higher.
  • it is 240 degrees C or less, More preferably, it is 220 degrees C or less, More preferably, it is 190 degrees C or less.
  • the tubular multilayer film of the present invention is excellent in elongation recovery rate and elongation recovery force.
  • the stretch recovery force in the direction perpendicular to the film forming direction (hereinafter referred to as TD direction) is 23 N / 50 mm width or more, and the stretch recovery rate of the dimensions is 70% or more.
  • the elongation recovery force and the elongation recovery rate are values obtained by the following methods, respectively.
  • [Elongation recovery power] A test piece having a width of 50 mm and a length of 140 mm is prepared so that the longitudinal direction is the TD direction, and two parallel marked lines are attached to the center of the test piece at a distance of 100 mm.
  • the film has a recovery rate of 70% or more in the TD direction, it is difficult for gaps to form between the film and heavy cargo during transportation and storage of heavy pallets. It is hard to cause collapse.
  • the bundled heavy cargoes can be tightly fixed, so during transportation or storage Less likely to collapse.
  • the tubular multilayer film of the present invention is useful as a stretch hood film.
  • Melt flow rate (MFR, unit: g / 10 minutes) According to the method defined in JIS K 7210-1995, the measurement was performed by the A method under the conditions of a load of 21.18 N and a temperature of 190 ° C.
  • Vicat softening point (unit: ° C) It measured according to JIS K7206-1979.
  • g * g * [ ⁇ ] / ([ ⁇ ] GPC ⁇ g SCB *) (II)
  • G * was determined by the formula (II). [ ⁇ ] was determined by the following method. First, a sample solution was prepared by dissolving 100 mg of an ethylene-based resin at 135 ° C. in 100 ml of tetralin containing 0.5% by weight of butylhydroxytoluene (BHT) as a thermal degradation inhibitor. The relative viscosity ( ⁇ rel) of the ethylene-based resin is calculated from the falling time of the sample solution measured using an Ubbelohde viscometer and the falling time of a blank solution made of tetralin containing only 0.5% by weight of BHT. did.
  • BHT butylhydroxytoluene
  • 1% SM [F / (t ⁇ l)] / [s / L0] / 10 6
  • F Load at 1% elongation (unit: N)
  • t Test piece thickness (unit: m)
  • l Specimen width (unit: m, 0.02)
  • L0 Chuck distance (unit: m, 0.06)
  • s 1% strain (unit: m, 0.0006)
  • Elongation recovery force (unit: N / 50mm width) A test piece having a width of 50 mm and a length of 140 mm was produced from the film formed so that the longitudinal direction was a direction (TD) perpendicular to the take-up direction. Two parallel marked lines were attached to the center of the test piece at a distance of 100 mm. Using two chucks of a tensile tester, hold the test piece at the marked line (with the chuck spacing of 100 mm), and stretch the test piece at room temperature under a tensile speed of 1000 mm / min until the chuck spacing is 200 mm.
  • Silica Sypolol 948 manufactured by Devison Corp .
  • 50% volume average particle size 55 ⁇ m
  • pore capacity 1.67 ml / g
  • specific surface area 325 m 2 / g
  • the obtained solid product was washed 4 times with 20.8 kg of toluene and 3 times with 24 liters of hexane. Thereafter, the washed solid product was dried to obtain a solid component (hereinafter referred to as a promoter support (a)).
  • the pre-polymerization catalyst component (1) and triisobutylaluminum were continuously supplied at a constant ratio so that the total powder weight of the fluidized bed was maintained at 80 kg and the average polymerization time was 4 hours.
  • a powder of an ethylene-1-hexene copolymer hereinafter referred to as PE-1) was obtained at a polymerization efficiency of 20.3 kg / hour.
  • extruder, die set temperature is 180 ° C.
  • inner layer, intermediate layer, and outer layer extrusion rate is 3 kg / hour, 9 kg / hour, 3 kg / hour, respectively
  • blow-up ratio (BUR) is 2.0 Co-extrusion inflation molding was performed under the conditions to obtain a multilayer film having a thickness of 100 ⁇ m.
  • Table 2 shows the physical property evaluation results of the obtained multilayer film.
  • LL-2 The basic physical properties of LL-2 are shown in Table 1. .
  • the evaluation results of the obtained film are shown in Table 2.
  • Example 5 In inflation molding, the resin introduced into the outer layer extruder and the inner layer extruder was a mixture of 75% by weight of LL-1 pellets and 25% by weight of PE-1 pellets, as in Example 1. went. The evaluation results of the obtained film are shown in Table 2.
  • Example 6 Inflation molding was performed in the same manner as in Example 1 except that the extrusion rates of the inner layer, the intermediate layer, and the outer layer were 5 kg / hour, 5 kg / hour, and 5 kg / hour, respectively.
  • the evaluation results of the obtained film are shown in Table 3.
  • Example 7 Inflation molding was performed in the same manner as in Example 1 except that the extrusion rates of the inner layer, the intermediate layer, and the outer layer were 2.1 kg / hour, 10.8 kg / hour, and 2.1 kg / hour, respectively. The evaluation results of the obtained film are shown in Table 3.
  • Example 1 Inflation molding was carried out in the same manner as in Example 1 except that the resin introduced into the intermediate layer extruder was changed to 100% by weight of EVA-1 pellets. Table 4 shows the evaluation results of the obtained film.
  • Polymerization was started by adding 123 mmol of aluminum. After 30 minutes while continuously supplying ethylene at 0.7 kg / hour, the temperature was raised to 50 ° C., and ethylene and hydrogen were supplied at 2.8 kg / hour and 8.5 liters (room temperature and normal pressure volume) / Hr, respectively. A total of 5.5 hours of prepolymerization was carried out by continuous feeding. After completion of the polymerization, the remaining solids purged with ethylene, butane, hydrogen gas and the like are vacuum-dried at room temperature, and a prepolymerized catalyst component in which 20.5 g of ethylene is preliminarily polymerized per 1 g of the promoter support (a) ( 2) was obtained.
  • PE-2 ethylene-1-hexene copolymer
  • tubular ethylene-based resin multilayer film which is excellent in elongation recovery rate and elongation recovery force and excellent in tear strength and impact strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

伸長回復率、伸長回復力に優れ、かつ引裂強度と衝撃強度に優れる多層フィルムを提供する。 要件(a1)と(a2)と(a3)を充足するエチレン系樹脂(A)50~100重量%、および要件(b1)と(b2)を充足し、エチレン系樹脂(A)と異なるエチレン系樹脂(B)0~50重量%を含有する芯層と、要件(c1)と(c2)と(c3)を充足するエチレン-α-オレフィン共重合体(C)を含有する二つの表面層とを有するチューブ状エチレン系樹脂多層フィルム。 (a1):NC5が炭素原子1000個あたり0.1未満 (a2):Eaが40kJ/mol以上 (a3):密度が900~921kg/m (b1):ビカット軟化点が100℃以下 (b2):MFRが0.1~5g/10分 (c1):Eaが40kJ/mol未満 (c2):MFRが0.1~2g/10分 (c3):密度が900~925kg/m

Description

チューブ状エチレン系樹脂多層フィルム
 本発明は、チューブ状エチレン系樹脂多層フィルムに関するものである。
 従来から、パレットに載せた貨物は、パレットストレッチ包装システムを用いて、パレットや貨物よりも小さなチューブ状フィルムを4周方向に引き伸ばして、これをパレットと貨物に被せ、貨物をパレットとともに結束することによって包装され、輸送されたり、保管されている。このような包装手段に用いられるストレッチフードフィルムは、充分に引き伸ばした状態から貨物とパレットをともに結束できる寸法まで復元し、きつく結束する力を有するものである。例えば、特開平6−345880号公報には、エチレン—酢酸ビニル共重合体からなるストレッチフードフィルムが開示され、特開2010−254963号公報には、エチレン−α−オレフィン共重合体からなるストレッチフードフィルムが開示されている。
 近年のストレッチフードフィルムには、引き伸ばした状態から貨物とパレットをともに結束できる寸法まで復元する伸長回復率や、きつく結束する伸長回復力を従来のフィルムと同程度有し、かつ、従来よりも高い引裂強度と高い衝撃強度が求められることがある。かかる状況のもと本発明が解決しようとする課題は、伸長回復率、伸長回復力に優れ、かつ引裂強度と衝撃強度に優れるチューブ状エチレン系樹脂多層フィルムを提供することにある。
 すなわち本発明は、下記要件(a1)と(a2)と(a3)の全てを充足するエチレン系樹脂(A)50~100重量%、
および下記要件(b1)と(b2)の全てを充足し、エチレン系樹脂(A)と異なるエチレン系樹脂(B)0~50重量%
を含有する芯層(ただし、エチレン系樹脂(A)とエチレン系樹脂(B)の合計量を100重量%とする)と、
エチレンに基づく単量体単位と炭素原子数4~20のα−オレフィンに基づく単量体単位とを有し、下記要件(c1)と(c2)と(c3)の全てを充足するエチレン−α−オレフィン共重合体(C)を含有する二つの表面層とを有し、
二つの表面層の間に芯層が配置されてなるチューブ状エチレン系樹脂多層フィルムである。
エチレン系樹脂(A)
(a1):13C−NMRにより測定される炭素原子数5の分岐数が炭素原子1000個あたり0.1未満である
(a2):流動の活性化エネルギーが40kJ/mol以上である
(a3):密度が900~921kg/mである
エチレン系樹脂(B)
(b1):ビカット軟化点が100℃以下である
(b2):JIS K 7210−1995に規定された方法に従い、荷重21.18N、温度190℃の条件でA法により測定したメルトフローレートが0.1~7g/10分である
エチレン−α−オレフィン共重合体(C)
(c1):流動の活性化エネルギーが40kJ/mol未満である
(c2):JIS K 7210−1995に規定された方法に従い、荷重21.18N、温度190℃の条件でA法により測定したメルトフローレートが0.1~2g/10分である
(c3):密度が900~925kg/mである
 エチレン系樹脂(A)は、エチレンに基づく単量体単位を主単位として有する重合体であり、エチレンに基づく単量体単位の含有量がエチレン系樹脂(A)の全重量(100重量%)に対して、50重量%以上の重合体である。エチレン系樹脂(A)としては、高圧ラジカル重合法で製造される高圧法低密度ポリエチレン、配位重合法等で製造されるエチレン−α−オレフィン共重合体などがあげられる。エチレン系樹脂(A)は、エチレンに基づく単量体単位と炭素原子数3~20のα−オレフィンに基づく単量体単位とを有するエチレン−α−オレフィン共重合体であることが好ましい。エチレン−α−オレフィン共重合体中のエチレンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常50~99重量%であり、炭素原子数3~20のα−オレフィンに基づく単量体単位の含有量は、通常1~50重量%である。
 エチレン−α−オレフィン共重合体は、エチレンと炭素原子数3~20のα−オレフィンとを共重合して得ることができる。炭素原子数3~20のα−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン等があげられ、好ましくは1−ヘキセン、1−オクテンである。また、上記の炭素原子数3~20のα−オレフィンは単独で用いてもよく、2種以上を併用してもよい。
 エチレン−α−オレフィン共重合体としては、例えば、エチレン−プロピレン共重合体、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−1−オクテン共重合体等があげられ、好ましくはエチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−1−オクテン共重合体である。
 エチレン系樹脂(A)は、引裂強度と衝撃強度を高める観点から13C−NMRにより測定される炭素原子数5の分岐数(以下、「NC5」と記載することがある。)が、炭素原子1000個あたり0.1未満である。NC5は、好ましくは炭素原子1000個あたり0.05未満であり、より好ましくは0.01未満であり、ゼロであることが最も好ましい。
 エチレン系樹脂(A)のNC5は、気相重合、スラリー重合などの製造方法の選択や、重合触媒の選択、重合温度、重合圧、コモノマーの種類や添加量などの重合条件によって調整することができる。
 NC5は、次の方法で求めることができる。窓関数にエクスポネンシャルを適用した13C−NMRスペクトルにおいて、5~50ppmに観測されるすべてのピークの総和を1000として、32.5~32.7ppmに付近にピークトップを有するピークのピーク面積を求めた。該ピーク面積は、炭素原子数5の分岐メチレン炭素の数(下記構造式中のC**)に相当する値である。
・・・・CH−CH−CH−・・・・
        └CH−CH−C**−CH−CH
 なお、前記炭素原子数5以上の分岐が結合したメチン炭素に由来するピークの位置は、測定装置および測定条件によりずれることがあるため、通常、測定装置および測定条件毎に、標品の測定を行って決定する。また、スペクトル解析には、窓関数として、負の指数関数を用いることが好ましい。
 フィルム加工性を高める観点から、エチレン系樹脂(A)の分子量分布(Mw/Mn)は5以上であることが好ましく、より好ましくは6以上であり、さらに好ましくは7以上である。また衝撃強度、引裂強度、伸長回復率、伸長回復力の観点から、エチレン系樹脂(A)の分子量分布は25以下であることが好ましく、より好ましくは20以下である。
なお、該分子量分布(Mw/Mn)とは、ゲル・パーミエイション・クロマトグラフ測定によってポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)とを求め、MwをMnで除した値(Mw/Mn)である。前記Mw/Mnは、例えば、重合時の水素濃度または重合温度により変更することができ、水素濃度または重合温度を高くすると、Mw/Mnが大きいエチレン系樹脂(A)が得られる。
 フィルムの伸長回復率、および伸長回復力を高める観点から、エチレン系樹脂(A)の流動の活性化エネルギー(Ea)は、40kJ/mol以上であり、好ましくは50kJ/mol以上であり、より好ましくは55kJ/mol以上であり、さらに好ましくは60kJ/mol以上である。また、引裂強度、衝撃強度の観点から、Eaは、好ましくは100kJ/mol以下であり、より好ましくは90kJ/mol以下である。前記Eaは、例えば、重合時の水素濃度またはエチレン圧により変更することができ、水素濃度またはエチレン圧を低くすると、Eaが大きいエチレン系樹脂(A)が得られる。
 流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位:Pa・sec)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(a)からアレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。まず、130℃、150℃、170℃および190℃夫々の温度(T、単位:℃)におけるエチレン系樹脂の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を測定する。次に温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線を、190℃でのエチレン系共重合体の溶融複素粘度−角周波数曲線に重ね合わせて各温度(T)でのシフトファクター(a)を求める。夫々の温度(T)と、各温度(T)でのシフトファクター(a)とから、最小自乗法により[ln(a)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出する。次に、該一次式の傾きmと下記式(II)とからEaを求める。
 ln(a) =m(1/(T+273.16))+n         (I)
 Ea = |0.008314×m|               (II)
  a:シフトファクター
  Ea:流動の活性化エネルギー(単位:kJ/mol)
  T :温度(単位:℃)
 上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
 なお、シフトファクター(a)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、曲線ごとに、角周波数をa倍に、溶融複素粘度を1/a倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
 溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5~2mm、ストレイン:5%、角周波数:0.1~100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。
 エチレン系樹脂(A)の密度は、伸長回復率、伸長回復力、引裂強度、および衝撃強度を高める観点から、900kg/m~921kg/mであり、好ましくは910kg/m~915kg/mである。なお、該密度は、JIS K6760−1995に記載のアニーリングを行った試料を用いて、JIS K7112−1995に規定されたA法(水中置換法)に従って測定される。
 エチレン系樹脂(A)のメルトフローレート(MFR)は、通常、0.1~50g/10分であり、引裂強度、衝撃強度、および伸長回復力を高める観点から2g/10分以下であることが好ましい。なお、該MFRは、JIS K7210−1995に従い、温度190℃および荷重21.18Nの条件でA法により測定される。
 エチレン系樹脂(A)は、下記式(II)で定義されるg*が0.70~0.95であることが好ましい。
 g*=[η]/([η]GPC×gSCB*)     (II)
[式中、[η]は、エチレン系樹脂の極限粘度(単位:dl/g)を表し、下記式(II−I)によって定義される。[η]GPCは、下記式(II−II)によって定義される。gSCB*は、下記式(II−III)によって定義される。
 [η]=23.3×log(ηrel)  (II−I)
(式中、ηrelは、エチレン系樹脂の相対粘度を表す。)
 [η]GPC=0.00046×Mv0.725   (II−II)
(式中、Mvは、エチレン系樹脂の粘度平均分子量を表す。)
 gSCB*=(1−A)1.725         (II−III)
(式中、Aは、エチレン系樹脂中の短鎖分岐の含量を測定し、下記式(II−V)によって定義される。
 A=((12×n+2n+1)×y)/((1000−2y−2)×14+(y+2)×15+y×13)   (II−V)
 式中、nは短鎖分岐の分岐炭素原子数を表し(例えばα−オレフィンとしてブテンを用いた場合はn=2、ヘキセンを用いた場合はn=4)、yはNMRないしは赤外分光より求められる炭素原子1000個あたりの短鎖分岐数を表す。)]
 なお、g*については、以下の文献を参考にした:Developments in Polymer Characterisation−4,.J.V..Dawkins,.Ed.,.Applied Science,London,.1983,Chapter.I,.「Characterization.of.Long Chain Branching in Polymers,」Th.G.Scholte著
 [η]GPCは、分子量分布がエチレン系樹脂と同一の分子量分布であって、かつ分子鎖が直鎖状であると仮定した重合体の極限粘度(単位:dl/g)を表す。
 gSCB*は、エチレン系樹脂に短鎖分岐を導入することによって生じるg*への寄与を表す。
 式(II−II)は、L.H.Tung著 Journal of Polymer Science,36,130(1959)287−294頁に記載の式を用いた。
 エチレン系樹脂の相対粘度(ηrel)は、次の方法で測定することができる。熱劣化防止剤としてブチルヒドロキシトルエン(BHT)を0.5重量%含むテトラリン100mlに、エチレン系樹脂100mgを135℃で溶解してサンプル溶液を調製する。ウベローデ型粘度計を用いて測定される前記サンプル溶液の降下時間と、0.5重量%のBHTのみを含むテトラリンからなるブランク溶液の降下時間から、エチレン系樹脂の相対粘度(ηrel)を算出する。
 エチレン系樹脂の粘度平均分子量(Mv)は、下式(II−IV)で定義される。a=0.725とした。
Figure JPOXMLDOC01-appb-I000001
 g*は、長鎖分岐に起因する、溶液中での分子の収縮度を表す指標であり、分子鎖あたりの長鎖分岐を含有する量が多ければ分子鎖の収縮は大きくなり、g*は小さくなる。エチレン系樹脂のg*は、伸長回復率、伸長回復力、引裂強度、衝撃強度の観点から、好ましくは0.70~0.95であり、より好ましくは0.75~0.90であり、さらに好ましくは0.75~0.85である。g*が0.95以下であると、伸長回復率に優れ、好ましい。また、g*が0.70以上であると、結晶を形成したときの分子鎖の広がりが十分であるため、タイ分子の生成確率が高く、また、分子鎖の緩和時間が短く、伸張回復力、引裂強度、衝撃強度に優れ、好ましい。
 エチレン系樹脂(A)として好ましく用いられるエチレン系樹脂としては、特開2008−106264号に記載されたエチレン系樹脂が挙げられる。
 本発明の多層フィルムは、前記エチレン系樹脂(A)を含有する芯層を有する。該芯層は、樹脂成分としてエチレン系樹脂(A)をのみを含んでいてもよく、さらに他の樹脂を含んでいてもよい。
 本発明の多層フィルムの芯層が他の樹脂を含む場合、該層の好ましい例として、前記ポリエチレン系樹脂(A)と、ビカット軟化点が100℃以下であり、メルトフローレート(MFR)が0.1~7g/10分であり、エチレン系樹脂(A)と異なるエチレン系樹脂(B)とを含有する層が挙げられる。このようなフィルムは、高い伸長回復力を保持したまま、さらに伸長回復率にも優れるものである。
 エチレン系樹脂(B)のビカット軟化点は、フィルムの抗ブロッキング性を高める観点から、好ましくは、40℃以上である。なお、該ビカット軟化点は、JIS K7206−1979に従い測定される。
 エチレン系樹脂(B)のメルトフローレート(MFR)は、フィルム強度、伸長回復力を高める観点から、好ましくは5g/10分以下であり、より好ましくは2g/10分以下である。なお、該MFRは、JIS K7210−1995に従い、温度190℃および荷重21.18Nの条件でA法により測定される。
 エチレン系樹脂(B)は、エチレン系樹脂(A)と異なるエチレン系樹脂であり、流動の活性化エネルギー(Ea)が40kJ/mol未満であるエチレン−α−オレフィン共重合体、エチレン単独重合体、エチレンとビニルエステルとの共重合体、エチレンと不飽和カルボン酸との共重合体、エチレンと不飽和カルボン酸エステルとの共重合体などが挙げられ、具体的には、エチレン−プロピレン共重合体、エチレン−1−ブテン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−1−デセン共重合体、高圧法低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体、エチレン−メタアクリル酸メチル共重合体等が例示される。これらは、単独で用いてもよく、2種以上を併用してもよい。
 エチレン系樹脂(B)として好ましくは、エチレンに基づく単量体単位と酢酸ビニルに基づく単量体単位とを有し、酢酸ビニルに基づく単量体単位の含有量が3~40重量%であるエチレン−酢酸ビニル共重合体(ただし、エチレン−酢酸ビニル共重合体の重量を100重量%とする)が挙げられる。
 エチレン−酢酸ビニル共重合体における酢酸ビニルに基づく単量体単位の含有量は、フィルムの柔軟性、および伸長回復率を高める観点から、好ましくは10重量%以上であり、さらに好ましくは15重量%以上である。エチレン−酢酸ビニル共重合体に含まれる酢酸ビニルに基づく単量体単位の含有量が40重量%以下であると、フィルムの伸張回復力に優れる。
 エチレン−酢酸ビニル共重合体は、エチレンと酢酸ビニルとを、触媒を用いて重合することにより製造される。例えば、ラジカル開始剤を用いた塊状重合法、溶液重合法等があげられる。
 本発明のチューブ状多層フィルムは、前記エチレン系樹脂(A)50~100重量%およびエチレン系樹脂(B)0~50重量%を含有する芯層(ただし、エチレン系樹脂(A)とエチレン系樹脂(B)の合計量を100重量%とする)を有するフィルムである。芯層に含有されるエチレン系樹脂(A)の含有量を増やすと、伸張回復力により優れる。また、エチレン系樹脂(A)の含有量を減らすと、柔軟性により優れる。
 エチレン−α−オレフィン共重合体(C)は、エチレンに基づく単量体単位と炭素原子数4~20のα−オレフィンに基づく単量体単位とを有する共重合体である。エチレン−α−オレフィン共重合体(C)は、オレフィン重合用触媒を用いてエチレンと炭素原子数4~20のα−オレフィンとを共重合して得ることができる。該エチレン−α−オレフィン共重合体(C)として、例えば、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−1−オクテン共重合体等があげられ、引裂強度、衝撃強度を高める観点から、好ましくはエチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体である。
 伸張回復力、衝撃強度、および引裂強度を高める観点から、エチレン−α−オレフィン共重合体(C)の流動の活性化エネルギー(Ea)は、40kJ/mol未満であり、好ましくは38kJ/mol未満である。該流動の活性化エネルギー(Ea)は、エチレン系樹脂(A)の流動の活性化エネルギー(Ea)と同じ方法で求められる。
 エチレン−α−オレフィン共重合体(C)中のエチレンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体(C)の全重量(100重量%)に対して、通常50~99重量%である。炭素原子数4~20のα−オレフィンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常1~50重量%である。
 エチレン−α−オレフィン共重合体(C)の密度は、900~925kg/mであり、フィルムの柔軟性、および伸長回復率を高める観点から、好ましくは922kg/m未満である。該密度は、エチレン系樹脂(A)の密度と同じ方法で測定される。
 エチレン−α−オレフィン共重合体(C)のメルトフローレート(MFR)は、0.1~2g/10分であり、加工性、引裂強度を高める観点から、好ましくは1g/10分以上である。なお、該MFRは、JIS K7210−1995に従い、温度190℃および荷重21.18Nの条件でA法により測定される。
 エチレン−α−オレフィン共重合体(C)は、例えば、溶液重合法、スラリー重合法、気相重合法、高圧イオン重合法等により製造することができる。
 本発明のチューブ状多層フィルムは、前記エチレン系樹脂(A)50~100重量%、および前記エチレン系樹脂(B)0~50重量%を含有する芯層と前記エチレン−α−オレフィン共重合体(C)を含有する二つの表面層とを有し、二つの表面層の間に芯層が配置されてなるフィルムである。具体的な層構成としては、表面層/芯層/表面層、表面層/層(α)/芯層/表面層、表面層/層(α)/芯層/層(β)/表面層などが挙げられる。好ましくは、少なくとも一方の表面層が芯層に隣接して配置されてなる構成である。また、より好ましくは、表面層/芯層/表面層となる構成である。また、前記エチレン系樹脂(A)50~100重量%と、前記エチレン系樹脂(B)0~50重量%の範囲内であれば、本発明の二つの表面層は、同じ樹脂を同じ含有量で含有してもよいし、同じ樹脂を異なる含有量で含有してもよいし、異なる樹脂を含有してもよい。二つの表面層が、同じ樹脂を同じ含有量で含有する場合、得られる多層フィルムがカールしにくく、ハンドリングしやすい。なお、層(α)または層(β)は、表面層および芯層の何れにも該当しない他の層である。
 前記芯層に含有されるエチレン系樹脂(A)およびエチレン系樹脂(B)の合計量は、芯層に含有される構成成分全量を100重量%として、好ましくは、80重量%以上であり、より好ましくは90重量%以上である。芯層には、エチレン系樹脂(A)およびエチレン系樹脂(B)と異なる樹脂や、後述する各種添加剤などを含んでもよい。
 また、表面層に含有されるエチレン−α−オレフィン共重合体(C)の含有量としては、表面層に含有される構成成分全量を100重量%として、好ましくは、70重量%以上であり、より好ましくは90重量%以上である。表面層には、エチレン−α−オレフィン共重合体(C)と異なる樹脂や、後述する各種添加剤などを含んでもよい。表面層には、エチレン−α−オレフィン共重合体(C)と異なる樹脂として、エチレン系樹脂(A)を含んでもよい。
 本発明のチューブ状多層フィルムの厚みは、引裂強度および衝撃強度を高める観点から、0.01mm以上であることが好ましい。また、フィルムの被覆作業性などの観点から、0.3mm以下が好ましく、0.03~0.25mmの範囲がより好ましい。
 本発明のチューブ状多層フィルム全体の厚みに対する前記芯層の厚みの割合としては、押出成形性、得られるフィルムの透明性およびヒートシール性を高める観点から、好ましくは、30%以上90%未満であり、より好ましくは、50%以上80%未満である。
 本発明の多層フィルムにおいて、前記芯層、および前記表面層に必要に応じて、酸化防止剤、光安定剤、紫外線吸収剤、滑剤、アンチブロッキング剤、帯電防止剤、他の樹脂などを配合してもよく、これらは単独で用いてもよく、2種以上を併用してもよい。
 上記の酸化防止剤としては、例えば、2,6−ジアルキルフェノール誘導体や2−アルキルフェノール誘導体などのいわゆるヒンダードフェノール系化合物、フォスファイト系化合物、フォスフォナイト系化合物などの3価のリン原子を含むリン系エステル化合物が挙げられる。これら酸化防止剤は、単独で用いても2種類以上を併用してもよい。特に色相安定化の観点から、ヒンダードフェノール系化合物とリン系エステル化合物を併用して用いることが好ましい。酸化防止剤が含有される各層において、該層の樹脂の重量を100重量部とするとき、該層に酸化防止剤が0.01~1重量部含有されることが好ましく、0.03~0.5重量部含有されることがより好ましい。酸化防止剤は、芯層および二つの表面層の全てに含有されることが好ましい。
 上記の光安定剤としては、例えば、特開平8−73667号公報に記載の構造を有するヒンダードアミン系化合物が挙げられ、具体的には、商品名チヌビン622−LD、キマソーブ944−LD(以上チバ・スペシャルティ・ケミカルズ社製)、ホスタビンN30、VP Sanduvor PR−31(以上クラリアント社製)、サイヤソーブUV3529、サイヤソーブUV3346(以上サイテック社製)などが挙げられる。さらには、特開平11−315067号公報に記載の構造を有する立体障害性アミンエーテル化合物が挙げられ、具体的には、商品名チヌビンNOR371(チバ・スペシャルティ・ケミカルズ社製)が挙げられる。光安定剤が含有される各層において、該層の樹脂の重量を100重量部とするとき、該層に光安定剤が0.01~3重量部含有されることが好ましく、0.05~2重量部含有されることがより好ましく、0.1~1重量部含有されることがさらに好ましい。光安定剤は、芯層および二つの表面層の全てに含有されることが好ましい。
 上記の紫外線吸収剤としては、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤等が挙げられ、これらは、単独で用いても2種類以上を併用してもよい。紫外線吸収剤が含有される各層において、該層の樹脂の重量を100重量部とするとき、該層に紫外線吸収剤が0.01~3重量部含有されることが好ましく、0.03~2重量部含有されることがより好ましい。紫外線吸収剤は、芯層および二つの表面層の全てに含有されることが好ましい。
 上記の滑剤としては、ステアリン酸、オレイン酸、ラウリン酸等の脂肪酸;オレイルアミド、エルシルアミド、リシノールアミド、ベヘンアミド等の脂肪酸アミド;高級脂肪酸のグリセリンエステル;ソルビタンエステル、n−ブチルステアレート等の脂肪酸エステル等を使用することができる。
 上記のアンチブロッキング剤としては、乾式シリカ、湿式シリカ等の合成シリカ;珪藻土等の天然シリカ;シリコン樹脂;ポリメチルメタアクリレート等を使用することができる。アンチブロッキング剤が含有される各層において、該層の樹脂の重量を100重量部とするとき、該層に紫外線吸収剤が0.2~5重量部含有されることが好ましい。アンチブロッキング剤は、一方の表面層、または両方の表面層に含有されることが好ましい。
 各層を構成する成分が複数ある場合は、それらの成分は、混合および/または溶融混練した後、後述の製造方法でフィルムとされる。混合方法としては、例えば、タンブラーブレンダー、ヘンシェルミキサーなどでそれらを混合する方法があげられる。また、溶融混練方法としては、例えば、単軸押出機や多軸押出機などでそれらを溶融混練する方法、ニーダーやバンバリーミキサーなどでそれらを溶融混練する方法などがあげられる。
 本発明のチューブ状多層フィルムの製造方法としては、例えば、共押出インフレーションフィルム成形法、共押出Tダイキャストフィルム成形法等が挙げられ、好ましくは、共押出インフレーションフィルム成形法である。
 フィルムの製造方法としてインフレーション成形法やTダイキャスト成形法などの押出成形を行う場合、押出成形温度は、通常、110~250℃である。フィルムと被包装体の密着性を高める観点から、好ましくは130℃以上であり、より好ましくは140℃以上である。また、フィルムの熱劣化を抑える観点から、好ましくは240℃以下であり、より好ましくは220℃以下であり、さらに好ましくは190℃以下である。
 本発明のチューブ状多層フィルムは伸長回復率、伸長回復力に優れる。具体的には、フィルム製膜方向と垂直な方向(以下TD方向と記す)の伸張回復力が23N/50mm巾以上、その寸法の伸長回復率が70%以上であることが好ましい。
 尚、伸長回復力、伸長回復率は、それぞれ以下の方法により求められる値である。
 〔伸長回復力〕
 長手方向が、TD方向となるように巾50mm、長さ140mmの試験片を作製し、該試験片中央部に100mm離れて平行な2本の標線をつける。引張試験機の二つのチャックにより、該試験片を標線部分で(チャック間を100mmとして)つかみ、常温下、引張速度1000mm/minの条件で、チャック間が200mmとなるまで試験片を延伸し(延伸倍率2.0倍)、そのまま5秒間保持後、チャック間を185mmに戻して、延伸倍率が1.85倍の状態とする。チャック間を185mmに戻してから1分後の張力を伸長回復力とする。
 〔伸長回復率〕
 伸長回復力を測定後、試験片をチャックからはずして、荷重を開放した後の標線間距離(L)を測定し、伸長回復率を次式により算出する。
 伸長回復率(%)=(1−(L−100)/100)×100
 伸張回復率は、伸長回復力測定を行い、荷重を開放した後、フィルムの長さがどの程度まで復元したかを示す指標である。
 フィルムのTD方向の伸長回復率が70%以上であると、重量貨物を載せたパレットの運搬中や保管中、フィルムと重量貨物の間に隙間が生じにくく、横方向に力を受けても荷崩れを起こしにくい。
 TD方向の伸長回復率が70%以上であり、かつ、伸長回復力が23N/50mm巾以上である場合には、結束した重量貨物同士を密に固定することができるため、運搬中や保管中等に荷崩れを起こしにくい。
 本発明のチューブ状多層フィルムは、ストレッチフードフィルムとして有用である。
 以下、実施例および比較例により本発明を説明する。
 実施例および比較例の物性は、次の方法に従って測定した。
(1)メルトフローレート(MFR、単位:g/10分)
 JIS K 7210−1995に規定された方法に従い、荷重21.18N、温度190℃の条件でA法により測定した。
(2)密度(単位:kg/m
JIS K7112−1995のうち、A法に規定された方法に従って測定した。なお、測定試料片は、JIS K6760−1995に記載の低密度ポリエチレンの方法に従いアニーリングを行い測定に用いた。
(3)分子量分布(Mw/Mn、単位:−)
 ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)~(9)により、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。
測定条件
(1)装置:Waters社製 150CV ALC/GPC
(2)分離カラム:昭和電工社製Shodex GPC AT−806MS
(3)温度:140℃
(4)溶媒:o−ジクロロベンゼン
(5)溶出溶媒流速:1.0ml/分
(6)試料濃度:1mg/ml
(7)測定注入量:400μl
(8)分子量標準物質:標準ポリスチレン(東ソー社製;分子量=6000000~500)
(9)検出器:示差屈折
(4)流動の活性化エネルギー(Ea、単位:kJ/mol)
 粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、130℃、150℃、170℃および190℃のそれぞれの温度において、下記測定条件で溶融複素粘度−角周波数曲線を測定し、次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5~2mm
ストレイン:5%
角周波数:0.1~100rad/秒
測定雰囲気:窒素下
(5)ビカット軟化点(単位:℃)
JIS K7206−1979に従い測定した。
(6)g*
 g*=[η]/([η]GPC×gSCB*)    (II)
 前記式(II)によってg*を求めた。
 [η]は以下の方法で求めた。まず、熱劣化防止剤としてブチルヒドロキシトルエン(BHT)を0.5重量%含むテトラリン100mlに、エチレン系樹脂100mgを135℃で溶解してサンプル溶液を調製した。ウベローデ型粘度計を用いて測定される前記サンプル溶液との降下時間と、0.5重量%のBHTのみを含むテトラリンからなるブランク溶液の降下時間から、エチレン系樹脂の相対粘度(ηrel)を算出した。算出した相対粘度(ηrel)を、式(II−I)に代入し、[η]を求めた。
 [η]=23.3×log(ηrel)  (II−I)
 [η]GPCは、以下の方法で求めた。前記の(3)分子量分布の測定結果より、粘度平均分子量(Mv)を算出した。算出したMvを式(II−II)に代入し、[η]GPCを求めた。
 [η]GPC=0.00046×Mv0.725   (II−II)
 gSCB*は、式(II−V)により求めたAを式(II−III)に代入して求めた。
 gSCB*=(1−A)1.725         (II−III)
式中、Aは、エチレン系樹脂中の短鎖分岐の含量を測定し、下記式(II−V)によって定義される。
 A=((12×n+2n+1)×y)/((1000−2y−2)×14+(y+2)×15+y×13)    (II−V)
 式中、nは短鎖分岐の分岐炭素原子数を表し(例えばα−オレフィンとしてブテンを用いた場合はn=2、ヘキセンを用いた場合はn=4)、yはNMRないしは赤外分光より求められる炭素原子1000個あたりの短鎖分岐数を表す。
なお、エチレン系樹脂中の短鎖分岐の分岐短鎖数nと、炭素原子1000個あたりの短鎖分岐数yの測定ならびに計算は、文献(Die Makromoleculare Chemie,177,449(1976)McRae,M.A.,Madams,W.F.)記載の方法に従い、α−オレフィン由来の特性吸収を利用して実施した。赤外吸収スペクトルは、赤外分光光度計(日本分光工業社製 FT−IR7300)を用いて測定した。
(7)NC5の算出方法
 炭素核磁気共鳴法によって、次の測定条件により、炭素核磁気共鳴スペクトル(13C−NMR)を測定し、下記算出法より求めた。
<測定条件>
装置:Bruker社製 AVANCE600
 測定プローブ:10mmクライオプローブ
 測定溶媒:1,2−ジクロロベンゼン/1,2−ジクロロベンゼン−d4
      =75/25(容積比)の混合液
 測定温度:130℃
 測定方法:プロトンデカップリング法
 パルス幅:45度
 パルス繰り返し時間:4秒
 測定基準:テトラメチルシラン
 窓関数 :エクスポネンシャルまたはガウシャン
 積算回数:2500回
<分岐度の算出方法>
炭素原子数5の分岐数の算出方法 (N C5 、単位:1/1000C)
 窓関数にエクスポネンシャルを適用した13C−NMRスペクトルにおいて、5~50ppmに観測されるすべてのピークの総和を1000として、32.5~32.7ppmに付近にピークトップを有するピークのピーク面積を求めた。
[フィルムの物性]
(8)剛性(1%SM)(単位:MPa)
 幅20mm、長さ120mmの短冊形試験片を、長手方向がフィルム引取り方向(MD)およびMD方向に対して直交する方向(TD)となるようにそれぞれ採取し、該試験片を用いて、チャック間60mm、引張速度5mm/minの条件で引張試験を行い、応力−歪曲線を測定した。該応力−歪曲線から、1%伸び時の荷重(単位:N)を求め、下記式から1%SMを求め、フィルムの剛性とした。
1%SM=[F/(t×l)]/[s/L0]/10
F:1%伸び時の荷重(単位:N)
t:試験片厚み(単位:m)
l:試験片幅(単位:m,0.02)
L0:チャック間距離(単位:m,0.06)
s:1%歪み(単位:m,0.0006)
(9)引裂強度(単位:kN/m)
ASTM D1922に規定された方法に従って測定した。
(10)衝撃強度(単位:kJ/m)
 振り子衝撃試験機(東洋精機製作所製)を用い、衝撃球(15mmφの半球)を用いて、67mmφの衝撃面の中心を衝撃球が打ち抜いたときの破壊エネルギーを衝撃強度として求めた。
(11)伸長回復力(単位:N/50mm巾)
 製膜したフィルムから、長手方向が、引取り方向に対して直交する方向(TD)となるように巾50mm、長さ140mmの試験片を作製した。該試験片中央部に100mm離れて平行な2本の標線をつけた。引張試験機の二つのチャックにより、該試験片を標線部分で(チャック間を100mmとして)つかみ、常温下で、引張速度1000mm/minの条件で、チャック間が200mmとなるまで試験片を延伸し(延伸倍率2.0倍)、そのまま5秒間保持後、チャック間を185mmに戻して、延伸倍率が1.85倍の状態とした。
チャック間を185mmに戻してから1分後の張力を伸長回復力とした。
(12)伸長回復率(単位:%)
 伸長回復力を測定後、試験片をチャックからはずして、荷重を開放した後の標線間距離(L)を測定し、伸長回復率を次式により算出した。
 伸長回復率(%)=(1−(L−100)/100)×100
[実施例1]
(1)助触媒担体の調製
 窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m/g)2.8kgとトルエン24kgとを入れて、撹拌した。その後、反応器を5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.9kgとトルエン1.4kgとの混合溶液を反応器の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体生成物をトルエン20.8kgで6回、洗浄を行った。その後、洗浄した固体生成物にトルエン7.1kgを加えスラリーとし、一晩静置した。
 上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50重量%)3.46kgとヘキサン2.05kgとを反応器に投入し、撹拌した。その後、反応器を5℃に冷却した後、3,4,5−トリフルオロフェノール1.55kgとトルエン2.88kgとの混合溶液を、反応器の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、HO0.221kgを反応器の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に80℃に昇温し、80℃で2時間撹拌した。撹拌後、室温にて、残量16Lまで上澄み液を抜き出し、トルエン11.6kgを投入し、次に、95℃に昇温し、4時間撹拌した。撹拌後、室温にて、上澄み液を抜き出し、固体生成物を得た。得られた固体生成物をトルエン20.8kgで4回、ヘキサン24リットルで3回、洗浄を行った。その後、洗浄した固体生成物を乾燥することにより、固体成分(以下、助触媒担体(a)と称する。)を得た。
(2)予備重合触媒成分(1)の調製
 予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド144mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次に上記助触媒担体(a)0.5kgを投入し、オートクレーブを31℃まで降温して系内が安定した後、エチレンを0.1kg、水素を0.1リットル(常温常圧体積)仕込み、続いてトリイソブチルアルミニウム207mmolを投入して重合を開始した。エチレンと水素をそれぞれ0.6kg/Hrと0.5リットル(常温常圧体積)で連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.6kg/時間と10.9リットル(常温常圧体積)/時間で連続供給することによって合計6時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて真空乾燥し、助触媒担体(a)1g当り37gのポリエチレンを含有する予備重合触媒成分(1)を得た。
(3)エチレン−1−ヘキセン共重合体の製造
 上記の予備重合触媒成分(1)を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンとの共重合を実施した。重合条件は、温度80℃、全圧2MPa、エチレンに対する水素のモル比を1.48%、エチレンに対する1−ヘキセンのモル比を1.70%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、流動床の総パウダー重量を80kgに維持し、平均重合時間が4時間となるように、上記予備重合触媒成分(1)と、トリイソブチルアルミニウムとを一定の割合で連続的に供給した。重合により、20.3kg/時間の重合効率でエチレン−1−ヘキセン共重合体(以下、PE−1と称する。)のパウダーを得た。
(4)エチレン−1−ヘキセン共重合体パウダーの造粒
 上記で得たPE−1のパウダーを、押出機(神戸製鋼所社製 LCM50)により、フィード速度50kg/時間、スクリュー回転数450rpm、ゲート開度4.2mm、サクション圧力0.2MPa、樹脂温度200~230℃条件で造粒することにより、PE−1のペレットを得た。PE−1のペレットの評価結果を表1に示す。
(5)フィルム成形
 スクリュー径40mmφの押出機3台からなる3層共押出インフレーション成形機(ダイ径100mm、リップ開度1.2mm)を用いて、以下の条件でインフレーション成形を行った。上記のPE−1のペレット100重量%を中間層用の押出機に導入し、市販のエチレン−1−ヘキセン共重合体(住友化学株式会社製 スミカセンE FV203[MFR=2g/10分、密度=912kg/m、分子量分布=2.0]:以下、LL−1とする。LL−1の基本物性を表1に示した。)100重量%を外層用押出機、および内層用押出機に導入し、押出機、ダイ設定温度を180℃とし、内層、中間層、および外層の押出量をそれぞれ3kg/時間、9kg/時間、3kg/時間とし、ブローアップレイシオ(BUR)を2.0の条件で共押出インフレーション成形を行い、厚み100μmの多層フィルムを得た。得られた多層フィルムの物性評価結果を表2に示した。
[実施例2]
 インフレーション成形において、中間層用押出機に導入する樹脂をPE−1のペレット50重量%と、市販のエチレン−酢酸ビニル共重合体(住友化学株式会社製エバテート H2020[MFR=1.5g/10分、酢酸ビニル含量15重量%:以下、EVA−1とする。EVA−1の基本物性を表1に示した。]のペレット50重量%との混合物とした以外は実施例1と同様に行った。得られたフィルムの評価結果を表2に示す。
[実施例3]
 インフレーション成形において、外層用押出機、および内層用押出機に導入する樹脂を市販のエチレン−1−ヘキセン共重合体(住友化学株式会社製 スミカセンE FV205[MFR=2g/10分、密度=921kg/m、分子量分布=2.9]:以下、LL−2とする。LL−2の基本物性を表1に示した。)のペレット100重量%とした以外は実施例1と同様に行った。得られたフィルムの評価結果を表2に示す。
[実施例4]
 インフレーション成形において、外層用押出機、および内層用押出機に導入する樹脂を市販のエチレン−1−ヘキセン共重合体(住友化学株式会社製 スミカセンE FV103[MFR=1g/10分、密度=905kg/m、分子量分布=6.6]:以下、LL−3とする。LL−3の基本物性を表1に示した。)のペレット100重量%とした以外は実施例1と同様に行った。得られたフィルムの評価結果を表2に示す。
[実施例5]
 インフレーション成形において、外層用押出機、および内層用押出機に導入する樹脂をLL−1のペレット75重量%と、PE−1のペレット25重量%との混合物とした以外は実施例1と同様に行った。得られたフィルムの評価結果を表2に示す。
[実施例6]
 インフレーション成形において、内層、中間層、および外層の押出量をそれぞれ5kg/時間、5kg/時間、5kg/時間とした以外は実施例1と同様に行った。得られたフィルムの評価結果を表3に示す。
[実施例7]
 インフレーション成形において、内層、中間層、および外層の押出量をそれぞれ2.1kg/時間、10.8kg/時間、2.1kg/時間とした以外は実施例1と同様に行った。得られたフィルムの評価結果を表3に示す。
[実施例8]
 インフレーション成形において、ブローアップレイシオ(BUR)を2.5の条件とし、得られるフィルムの厚みを100μmとした以外は実施例1と同様に行った。得られたフィルムの評価結果を表3に示す。
[比較例1]
 インフレーション成形において、中間層用押出機に導入する樹脂をEVA−1のペレット100重量%とした以外は実施例1と同様に行った。得られたフィルムの評価結果を表4に示す。
[比較例2]
(1)予備重合触媒成分(2)の調製
 予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン70リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド30.7mmolを投入し、オートクレーブを50℃まで昇温して撹拌を5時間行った。次にオートクレーブを30℃まで降温して系内が安定した後、エチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、上記助触媒担体(a)0.7kgを投入し、続いてトリイソブチルアルミニウム123mmolを投入して重合を開始した。エチレンを0.7kg/時間で連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ2.8kg/時間と8.5リットル(常温常圧体積)/Hrで連続供給することによって合計5.5時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、上記助触媒担体(a)1g当り20.5gのエチレンが予備重合された予備重合触媒成分(2)を得た。
(2)エチレン−1−ヘキセン共重合体の製造
 上記の予備重合触媒成分(2)を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施した。重合条件は、温度87℃、全圧を2MPa、エチレンに対する水素のモル比を0.63%、エチレンに対する1−ヘキセンのモル比を0.90%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、流動床の総パウダー重量を80kgに維持し、平均重合時間が4時間となるように、上記予備重合触媒成分(2)とトリイソブチルアルミニウムとを一定の割合で連続的に供給した。重合によりエチレン−1−ヘキセン共重合体(以下、PE−2と称する。)のパウダーを得た。
(3)エチレン−1−ヘキセン共重合体パウダーの造粒
 上記で得たPE−2のパウダーを、押出機(神戸製鋼所社製 LCM50)により、フィード速度50kg/時間、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.2MPa、樹脂温度200~230℃条件で造粒することにより、PE−2のペレットを得た。PE−2のペレットの評価結果を表1に示す。
(4)フィルム成形
 インフレーション成形において、中間層用押出機に導入する樹脂をPE−2のペレット100重量%とした以外は実施例1と同様に行った。得られたフィルムの評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明により、伸長回復率、伸長回復力に優れ、かつ引裂強度と衝撃強度に優れるチューブ状エチレン系樹脂多層フィルムを提供することができる。

Claims (4)

  1.  下記要件(a1)と(a2)と(a3)の全てを充足するエチレン系樹脂(A)50~100重量%、
    および下記要件(b1)と(b2)の全てを充足し、エチレン系樹脂(A)と異なるエチレン系樹脂(B)0~50重量%
    を含有する芯層(ただし、エチレン系樹脂(A)とエチレン系樹脂(B)の合計量を100重量%とする)と、
    エチレンに基づく単量体単位と炭素原子数4~20のα−オレフィンに基づく単量体単位とを有し、下記要件(c1)と(c2)と(c3)の全てを充足するエチレン−α−オレフィン共重合体(C)を含有する二つの表面層とを有し、
    二つの表面層の間に芯層が配置されてなるチューブ状エチレン系樹脂多層フィルム。
    エチレン系樹脂(A)
    (a1):13C−NMRにより測定される炭素原子数5の分岐数が炭素原子1000個あたり0.1未満である
    (a2):流動の活性化エネルギーが40kJ/mol以上である
    (a3):密度が900~921kg/mである
    エチレン系樹脂(B)
    (b1):ビカット軟化点が100℃以下である
    (b2):JIS K 7210−1995に規定された方法に従い、荷重21.18N、温度190℃の条件でA法により測定したメルトフローレートが0.1~7g/10分である
    エチレン−α−オレフィン共重合体(C)
    (c1):流動の活性化エネルギーが40kJ/mol未満である
    (c2):JIS K 7210−1995に規定された方法に従い、荷重21.18N、温度190℃の条件でA法により測定したメルトフローレートが0.1~2g/10分である
    (c3):密度が900~925kg/mである
  2.  前記エチレン系樹脂(A)が、エチレンに基づく単量体単位と炭素原子数3~20のα−オレフィンに基づく単量体単位とを有し、下記要件(a4)を充足するエチレン−α−オレフィン共重合体である第1項に記載のチューブ状エチレン系樹脂多層フィルム。
    (a4):数平均分子量に対する重量平均分子量で表される分子量分布が5~25である
  3.  前記エチレン系樹脂(B)が、エチレンに基づく単量体単位と酢酸ビニルに基づく単量体単位とを有するエチレン−酢酸ビニル共重合体であり、該エチレン−酢酸ビニル共重合体の重量を100重量%とするとき、酢酸ビニルに基づく単量体単位の含有量が3~40重量%であるエチレン−酢酸ビニル共重合体である第1項に記載のチューブ状エチレン系樹脂多層フィルム。
  4.  第1~3項のいずれか一項に記載のチューブ状エチレン系樹脂多層フィルムからなるストレッチフードフィルム。
PCT/JP2012/069279 2011-07-29 2012-07-24 チューブ状エチレン系樹脂多層フィルム WO2013018744A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-166771 2011-07-29
JP2011166771 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018744A1 true WO2013018744A1 (ja) 2013-02-07

Family

ID=47629267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069279 WO2013018744A1 (ja) 2011-07-29 2012-07-24 チューブ状エチレン系樹脂多層フィルム

Country Status (2)

Country Link
JP (1) JP2013049264A (ja)
WO (1) WO2013018744A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337802B2 (ja) * 2015-02-27 2018-06-06 日本ポリエチレン株式会社 ポリエチレン系多層フィルム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062953A (ja) * 2001-08-23 2003-03-05 Sumitomo Chem Co Ltd 多層押出成形体
JP2005271244A (ja) * 2004-03-23 2005-10-06 Sumitomo Chemical Co Ltd 多層フィルム
JP2006051657A (ja) * 2004-08-11 2006-02-23 Sumitomo Chemical Co Ltd 多層フィルム
JP2006150945A (ja) * 2004-10-28 2006-06-15 Sumitomo Chemical Co Ltd 多層フィルム
JP2010254963A (ja) * 2009-03-31 2010-11-11 Sumitomo Chemical Co Ltd フードストレッチ用チューブ状フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062953A (ja) * 2001-08-23 2003-03-05 Sumitomo Chem Co Ltd 多層押出成形体
JP2005271244A (ja) * 2004-03-23 2005-10-06 Sumitomo Chemical Co Ltd 多層フィルム
JP2006051657A (ja) * 2004-08-11 2006-02-23 Sumitomo Chemical Co Ltd 多層フィルム
JP2006150945A (ja) * 2004-10-28 2006-06-15 Sumitomo Chemical Co Ltd 多層フィルム
JP2010254963A (ja) * 2009-03-31 2010-11-11 Sumitomo Chemical Co Ltd フードストレッチ用チューブ状フィルム

Also Published As

Publication number Publication date
JP2013049264A (ja) 2013-03-14

Similar Documents

Publication Publication Date Title
US9126269B2 (en) Multilayer polyolefin blown film
US7951873B2 (en) Linear low density polymer blends and articles made therefrom
EP3645271B1 (en) Polyethylene laminates for use in flexible packaging materials
JP5117086B2 (ja) 多層フィルムおよび袋
TWI758318B (zh) 多層膜及包括其之層製品及製品
EP4010190B1 (en) Multilayer films that include at least five layers and methods of producing the same
EP3772415B1 (en) Multilayer films comprising polyethylene and barrier layers and methods of producing the same
JP4815820B2 (ja) ラミネート用フィルムおよび積層フィルム
JP4747779B2 (ja) 多層フィルム
CN115697700A (zh) 定向聚乙烯膜和包括其的制品
JP2023505965A (ja) 配向ポリエチレンフィルムおよびそれを含む物品
CN114761240B (zh) 具有至少三层的多层膜及其生产方法
EP3962998B1 (en) Polyethylene-based compositions and films and articles comprising the same
JP4797486B2 (ja) ポリエチレン系樹脂組成物、フィルムおよび袋
JP5842397B2 (ja) ポリオレフィン系樹脂組成物、フィルム、包装材、複室容器および蓋材
WO2013018744A1 (ja) チューブ状エチレン系樹脂多層フィルム
CN110650840A (zh) 层压结构和包含其的柔性包装材料
BR112019017200A2 (pt) películas de múltiplas camadas e métodos das mesmas
WO2013027844A1 (ja) チューブ状エチレン系樹脂多層フィルム
JP4403917B2 (ja) 多層フィルム
JP2013018266A (ja) エチレン系多層フィルム
CN115023346B (zh) 聚乙烯组合物
JP2012051119A (ja) 熱収縮性フィルム
CN116964111A (zh) 具有快速结晶速率的极低密度聚乙烯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820461

Country of ref document: EP

Kind code of ref document: A1