WO2013018586A1 - Optical glass - Google Patents

Optical glass Download PDF

Info

Publication number
WO2013018586A1
WO2013018586A1 PCT/JP2012/068717 JP2012068717W WO2013018586A1 WO 2013018586 A1 WO2013018586 A1 WO 2013018586A1 JP 2012068717 W JP2012068717 W JP 2012068717W WO 2013018586 A1 WO2013018586 A1 WO 2013018586A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
optical glass
optical
glass
molding
Prior art date
Application number
PCT/JP2012/068717
Other languages
French (fr)
Japanese (ja)
Inventor
田中 大介
岡野 寛
陵 富樫
俊剛 八木
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to CN201280037738.4A priority Critical patent/CN103717542A/en
Publication of WO2013018586A1 publication Critical patent/WO2013018586A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Definitions

  • the present invention has a low glass transition temperature (Tg), a refractive index (n d ) of 1.60 to 1.80 or less, an Abbe number ( ⁇ d ) in the range of 30 to 60, and a rare earth It relates to an optical glass having a low content.
  • n d refractive index
  • Abbe number Abbe number
  • a rare earth oxide such as La 2 O 3 or Nb 2 O 5 is high.
  • the molding method by press molding of optical elements made of glass is mainly a method of press-molding glass (preform) by reheating and softening to a predetermined shape, and a molten glass is added dropwise after heating the mold.
  • a direct press method for molding is known.
  • Tg glass transition temperature
  • the surface of the mold it is necessary that the surface of the mold be accurately transferred to glass. Therefore, if the glass transition temperature (Tg) is high, the oxidation of the mold is promoted and the life of the mold is shortened. Since it becomes short, it is an important characteristic that the glass used for the mold press has a low glass transition temperature (Tg).
  • Patent Document 1 the glass having a composition of SiO 2 -B 2 O 3 -ZnO- RO-R 1 2 O system is disclosed.
  • the optical constant ranges in this publication are the refractive index (n d ) of 1.60 to 1.70 and the Abbe number ( ⁇ d ) of 40 to 55, the optical target of the present invention. Does not match the constant.
  • Patent Document 2 discloses a glass having a refractive index (n d ) of 1.69 to 1.74, an Abbe number ( ⁇ d ) of 40 to 55, and a glass transition temperature (Tg) of 500 ° C. or lower.
  • n d refractive index
  • ⁇ d Abbe number
  • Tg glass transition temperature
  • the present invention comprehensively eliminates the disadvantages found in such optical glass, and provides an optical glass having a desired optical constant, a low glass transition temperature (Tg), and suitable for a mold press. Is the purpose.
  • the present inventors have used SiO 2 and B 2 O 3 in combination with an appropriate amount of RO component and restrained it within a predetermined content range. It has been found that an optical glass having an optical constant of 5 and a low glass transition temperature (Tg) suitable for a mold press can be obtained. Specifically, the present invention provides the following.
  • the refractive index (n d ) is in the range of 1.60 to 1.80, the Abbe number ( ⁇ d ) is in the range of 30 to 60, and the glass transition temperature (Tg) is 600 ° C. or less.
  • Ln 2 O 3 Ln is one or more selected from La, Y, Yb, Gd
  • Bi 2 O 3 Ta 2 O 5 , GeO 2
  • WO 3 Optical glass whose total amount is 20% or less and whose content of Nb 2 O 5 is 20% or less.
  • RO is one or more selected from Mg, Ca, Zn, Sr, and Ba
  • the optical glass molded body according to (6), wherein the hot working includes at least one selected from the group consisting of direct press molding, reheat press, and redraw molding.
  • An optical glass substrate comprising the optical glass molded body according to any one of (6) to (9).
  • (11) A preform for optical elements, comprising the optical glass molded body according to any one of (6) to (9).
  • an optical glass having a desired optical constant, a low glass transition temperature (Tg), and suitable for a mold press.
  • each component constituting the optical glass of the present invention will be described below.
  • the content of each component is expressed in mass% with respect to the total mass of the glass based on oxide.
  • the “oxide standard” means that the oxide, composite salt, metal fluoride, etc. used as a raw material of the glass component of the present invention are all decomposed and changed into oxides when melted. It is the composition which described each component contained in glass by making the total mass of an oxide into 100 mass%.
  • the SiO 2 component is an essential component effective for increasing the viscosity of the glass and improving the devitrification resistance. However, if the content is too small, the above effects are insufficient, and if the content is too large, the glass transition temperature (Tg) increases and the meltability deteriorates. Accordingly, the content of the SiO 2 component is preferably 10%, more preferably 12% or more, and most preferably 14%. The content of the SiO 2 component is preferably 50%, more preferably 29%, and most preferably 27%.
  • the B 2 O 3 component is an effective component for enhancing the stability of glass as a glass-forming oxide component.
  • the content of the B 2 O 3 component is preferably 30%, more preferably 18%, and most preferably 16%.
  • the three components may preferably contain more than 0%, more preferably 4% or more, and most preferably 6% or more.
  • the RO component (R is one or more selected from the group consisting of Mg, Ca, Zn, Sr, and Ba) improves the glass forming ability and improves the refractive index and stability of the glass. , An essential ingredient. However, when there are too many these total amounts, stability of glass will be impaired and devitrification resistance will deteriorate easily. Therefore, the upper limit of the total amount of RO components is preferably 60%, more preferably 58%, and most preferably 56%. On the other hand, in order to easily obtain the effects of the present invention, the RO components are contained in total, preferably more than 10%, more preferably 36% or more, and most preferably 38% or more.
  • the BaO component is an effective component for adjusting the optical constant.
  • the upper limit of the BaO component content is preferably 60%, more preferably 44%, and most preferably 42%.
  • the content of the BaO component is preferably 10%, more preferably 14%, still more preferably 23%, Most preferably, the lower limit is 24%.
  • the CaO component is an effective component for adjusting optical constants and improving devitrification resistance. However, if the amount is too large, chemical durability may be deteriorated. Therefore, the content of the CaO component is preferably 60%, more preferably 42%, and most preferably 12%. On the other hand, in order to easily realize the optical characteristics required for the glass of the present invention, the CaO component may be preferably contained in an amount exceeding 0%, more preferably 2% or more, and most preferably 3% or more.
  • the ZnO component is a component that has an effect of lowering the glass transition temperature (Tg). However, if the amount is too large, the devitrification resistance may deteriorate. Accordingly, the content of the ZnO component is preferably 20%, more preferably 11%, and most preferably 9%. On the other hand, in order to stably produce the glass of the present invention, the ZnO component may be preferably contained in an amount of more than 0%, more preferably 0.3% or more, and most preferably 0.5% or more.
  • the SrO component is an effective component for adjusting the optical constant, like the BaO component and the CaO component.
  • the content of the SrO component is preferably 20%, more preferably 6%, and most preferably 4%.
  • the SrO component is preferably more than 0%, more preferably 0.5% or more, most preferably 1.0% or more. May be.
  • the MgO component is a component that can be added for the purpose of adjusting the optical constant according to the application. However, if the amount is too large, the devitrification resistance may deteriorate. Therefore, the upper limit of the content of the MgO component is preferably 20%, more preferably 10%, still more preferably 7%, and most preferably 3%.
  • the glass transition temperature (Tg) substantially lowered, and a component having an effect of promoting dissolution when dissolving the mixed glass raw materials.
  • the upper limit of the content of the Li 2 O component is preferably 20%, more preferably 11%, and most preferably 9%.
  • the Li 2 O component may be contained preferably in excess of 0%, more preferably 1% or more, and most preferably 2% or more.
  • the Na 2 O component is an effective component for improving the meltability of glass and lowering the glass transition temperature (Tg). However, if the amount is too large, chemical durability may be deteriorated. Accordingly, the upper limit of the content of the Na 2 O component is preferably 20%, more preferably 16%, and most preferably 12%.
  • the K 2 O component is a component that has an effect of reducing the glass transition temperature (Tg). However, if the amount is too large, chemical durability may be deteriorated. Therefore, the upper limit of the content of the K 2 O component is preferably 20%, more preferably 15%, still more preferably 10%, and most preferably 3%.
  • the ZrO 2 component is a component having an effect of adjusting the optical constant and improving the devitrification resistance. However, if the amount is too large, the devitrification resistance may deteriorate. Therefore, the content of the ZrO 2 component is preferably 20%, more preferably 12%, and most preferably 10%.
  • the ZrO 2 component may not be contained, but from the viewpoint of improving devitrification resistance, the lower limit of the content of the ZrO 2 component is preferably more than 0%, more preferably 0.6%, Preferably, 0.8% may be set as the lower limit value.
  • the TiO 2 component is an effective component for imparting high refractive index and high dispersion characteristics to the glass and adjusting the optical constant. However, if the amount is too large, devitrification resistance or light transmittance may be deteriorated. Therefore, the upper limit of the content of the TiO 2 component is preferably 20%, more preferably 16%, and most preferably 14%. On the other hand, in order to easily realize the optical characteristics required for the glass of the present invention, the TiO 2 component is preferably contained in excess of 0%, more preferably 3% or more, and most preferably 5% or more.
  • the Al 2 O 3 component is an effective component for improving chemical durability. However, if the amount is too large, the devitrification resistance may deteriorate. Accordingly, the upper limit of the content of the Al 2 O 3 component is preferably 20%, more preferably 7%, and most preferably 5%.
  • the Al 2 O 3 component may not be contained, but from the viewpoint of improving chemical durability, the lower limit of the content of the Al 2 O 3 component is preferably more than 0%, more preferably 0. The lower limit may be 3%, more preferably 0.5%.
  • the P 2 O 5 component is an effective component for resistance to devitrification. However, if the amount is too large, chemical durability may be deteriorated. Therefore, the content of the P 2 O 5 component is preferably 20%, more preferably 6%, and most preferably 4%.
  • the La 2 O 3 component is an effective component for increasing the refractive index of glass and reducing the dispersion.
  • the content of La 2 O 3 component is preferably 20%, more preferably 10%, still more preferably 3%, and most preferably 0.5%.
  • the Gd 2 O 3 component is a component that has an effect of increasing the refractive index of the glass and reducing the dispersion. However, if the amount is too large, the raw material is very expensive and the material cost of the optical glass becomes high. Therefore, the content of the Gd 2 O 3 component is preferably 20%, more preferably 10%, still more preferably 3%, and most preferably 0.5%.
  • the Yb 2 O 3 component is a component that has an effect of increasing the refractive index of the glass and lowering the dispersion. However, if the amount is too large, the devitrification resistance tends to deteriorate. Moreover, since the raw material is very expensive, the material cost of optical glass becomes high. Therefore, the content of the Yb 2 O 3 component is preferably 20%, more preferably 10%, still more preferably 7%, and most preferably 3%.
  • the Nb 2 O 5 component is a component having an effect of imparting a high refractive index and high dispersion characteristics to glass and improving devitrification resistance.
  • the content of the Nb 2 O 5 component is preferably 20%, more preferably 10%, still more preferably 5%, and most preferably 0.5%.
  • the Ta 2 O 5 component is a component that has an effect of increasing the refractive index of glass, improving chemical durability, and improving devitrification resistance. However, when there is too much the quantity, devitrification resistance will deteriorate. Accordingly, the content of the Ta 2 O 5 component is preferably 20%, more preferably 10%, and most preferably 3%.
  • the Bi 2 O 3 component is a component that has an effect of increasing the refractive index of the glass and lowering the glass transition temperature (Tg). However, when there is too much the quantity, devitrification resistance will deteriorate easily. Therefore, the content of the Bi 2 O 3 component is preferably 20%, more preferably 10%, and most preferably 3%.
  • the GeO 2 component is a component having an effect of increasing the refractive index and improving devitrification resistance. However, if the amount is too large, the raw material is very expensive, and the material cost of the optical glass becomes high. Accordingly, the content of the GeO 2 component is preferably 20%, more preferably 10%, and most preferably 3%.
  • the Y 2 O 3 component increases the refractive index of the glass, a component having an effect of lowering dispersion.
  • the upper limit of the content of the Y 2 O 3 component is preferably 20%, more preferably 10%, still more preferably 7%, and most preferably 3%.
  • the WO 3 component is an optional component that increases the refractive index of the glass and improves the chemical durability of the glass.
  • the devitrification resistance of the glass can be increased by making its content 20% or less. . Therefore, the upper limit of the content of the WO 3 component is preferably 20%, more preferably 10%, and most preferably 3%.
  • the Sb 2 O 3 component can be optionally added for defoaming during glass melting. However, if the amount is too large, the light transmittance may be deteriorated. Accordingly, the upper limit of the content of the Sb 2 O 3 component is preferably 1%, more preferably 0.8%, and most preferably 0.7%.
  • the Sb 2 O 3 component may not be contained, but from the viewpoint of promoting defoaming during glass melting, the lower limit of the content of the Sb 2 O 3 component is preferably more than 0%, more preferably The lower limit may be 0.01%, more preferably 0.03%.
  • the present inventor can easily satisfy the above-mentioned required optical constants by appropriately adjusting the total content of SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 in the glass composition system of the present invention. I found out. However, if the total content is too small, the above effects are insufficient, and if the total content is too large, it is difficult to obtain the above-described optical constant. Therefore, the total content of SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 is preferably 0.1%, more preferably 15%, and most preferably 20%. The total content is preferably 90%, more preferably 50%, and most preferably 45%.
  • this value is preferably 1.0 or more, more preferably 1.1 or more, still more preferably 1.2 or more, and most preferably 1.5 or more. From the viewpoint of maintaining high devitrification resistance, this value is preferably 5.00, more preferably 4.00, even more preferably 3.50, and even more preferably 3.00.
  • the Ln 2 O 3 (Ln is one or more selected from La, Y, Yb, and Gd) component is an effective component that has a large effect of increasing the refractive index of the glass and achieving low dispersion.
  • the upper limit of this total amount is preferably 20%, more preferably 16%, and most preferably 12%.
  • Bi 2 O 3 component, Ta 2 O 5 component, GeO 2 component and WO 3 component are components useful for adjusting optical constants, but these have a concern of deteriorating colorability, and due to a recent increase in prices. There is a risk that the cost of the entire glass will be significantly increased. Therefore, the total amount of Bi 2 O 3 , Ta 2 O 5 , GeO 2 and WO 3 is preferably 20%, more preferably 16%, and most preferably 12%.
  • Ln 2 O 3 (Ln is one or more selected from La, Y, Yb, Gd) component, Bi 2 O 3 component, Ta 2 O 5 component, GeO
  • the total amount of the two components and the WO 3 component is 20% or less, more preferably 16%, and most preferably 12%.
  • the optical glass of the present invention is useful for various optical elements and optical designs.
  • the optical glass such as lenses, prisms, mirrors, and the like using the means such as precision press molding from the optical glass of the present invention.
  • the optical system in these optical devices is miniaturized while realizing high-definition and high-precision imaging characteristics. Can be achieved.
  • the optical glass of the present invention has both high refractive index and low dispersion characteristics and low-temperature softening properties, it becomes possible to create an aspheric lens by mold press molding, which can greatly contribute to miniaturization of the optical system. it can.
  • preforms are prepared by hot working and / or cold working in the same manner as conventional optical glass, and they are molded press-molded. May be.
  • the optical glass of the present invention is formed by forming a molded product as a thin substrate by a technique such as hot forming, for example, direct press, mold press or redraw method, separately from the conventional preform forming method, and the substrate is formed into a lens by a post process. It can be finished into an optical element such as.
  • the above-described substrate may be produced by cold processing such as cutting, punching, grinding, polishing, or the like, or a combination of cold processing and the above-described hot processing on a hot-formed plate material.
  • the method for producing the optical element from the substrate is not particularly limited, but the shape of the molding die may be transferred to the substrate by mold press molding together with the substrate, or obtained by cutting the substrate in advance.
  • An optical element may be produced by molding a preform.
  • the optical glass of the present invention can be used not only for an optical system such as a camera but also for an LED sealing glass, a camera lens for a high pixel mobile phone, and the like.
  • composition of Examples (No. 1 to No. 168) of the Glasses of the Present Invention, Refractive Index (n d ), Abbe Number ( ⁇ d ), Glass Transition Temperature (Tg), and Bending Point (At) of These Glasses are shown in Tables 1 to 23.
  • the composition of each component is expressed in mass% based on oxide.
  • optical glasses (No. 1 to No. 168) of the examples of the present invention shown in Tables 1 to 23 are prepared from conventional optical glass raw materials such as oxides, hydroxides, carbonates, nitrates, etc. Weighing, mixing, and mixing in a platinum crucible at the composition ratio of each example shown in Table 23, melting at 1000 to 1300 ° C. for 3 to 5 hours depending on the meltability of the composition, clarification, After stirring and homogenizing, it was obtained by casting into a mold or the like and gradually cooling.
  • the refractive index (n d ) and Abbe number ( ⁇ d ) were measured for the optical glass obtained at a slow cooling rate of ⁇ 25 ° C./hour.
  • the glass transition temperature (Tg) was measured by the method described in Japan Optical Glass Industry Association Standard JOGIS08-2003 (Measurement Method of Thermal Expansion of Optical Glass). However, a sample having a length of 50 mm and a diameter of 4 mm was used as a test piece.
  • the yield point (At) is measured by the method described in Japan Optical Glass Industry Association Standard JOGIS08-2003 (Measurement Method of Thermal Expansion of Optical Glass), and the elongation of the glass stops. The temperature at which contraction starts was set. Further, a sample having a length of 50 mm and a diameter of 4 mm was used as a test piece.
  • the optical glasses (No. 1 to No. 168) of the examples of the present invention all have optical constants (refractive index (n d ) and Abbe number ( ⁇ d ) within a desired range. )) And a glass transition temperature (Tg) in the range of 470 to 600 ° C., it was suitable for precision mold press molding.
  • Comparative Examples A to C having the composition shown in Table 24, glass was produced under the same conditions as in the above Examples, and the glass produced by the same evaluation method was evaluated.
  • the comparative examples (No. A, No. B) have a refractive index (n d ) of 1.73 to less than 1.75 and an Abbe number ( ⁇ d ) of less than 40 to 50, but La 2 O 3 , Nb 2 Since O 5 was contained, the performance required in the present invention and the low material cost were not satisfied.
  • the comparative example C remove
  • the optical glass of the present invention is a glass having a composition of SiO 2 —B 2 O 3 —TiO 2 —ZrO 2 —CaO—Li 2 O and containing no lead, arsenic, or fluorine. It has an optical constant in the range of refractive index (n d ) of 1.60 to less than 1.80, Abbe number ( ⁇ d ) of 30 to 60, and a transition temperature (Tg) of 600 ° C. or less. Since it is suitable for mold press molding, it is very useful industrially.

Abstract

Provided is optical glass which has low glass transition temperature (Tg) and specific optical constants that are a refractive index (nd) of 1.60-1.80 and an Abbe number (νd) within the range of 30-60, while containing less rare earth elements. The optical glass has a refractive index (nd) within the range of 1.60-1.80, an Abbe number (νd) within the range of 30-60 and a glass transition temperature (Tg) of 600˚C or less, while containing, in mass% based on oxides, 20% or less of Ln2O3 (wherein Ln represents one or more elements selected from among La, Y, Yb and Gd), Bi2O3, Ta2O5, GeO2 and WO3 in total and 20% or less of Nb2O5. Preferably, the optical glass additionally contains, in mass% based on oxides, 10-50% of SiO2, 30% or less of B2O3, more than 0% but 20% or less of TiO2 and 10-60% (inclusive) of RO (wherein R represents one or more elements selected from among Mg, Ca, Zn, Sr and Ba).

Description

光学ガラスOptical glass
 本発明は、ガラス転移温度(Tg)が低く、屈折率(n)が1.60~1.80以下、アッベ数(ν)が30~60の範囲の光学定数を有し、かつ希土類の含有量が低い光学ガラスに関する。 The present invention has a low glass transition temperature (Tg), a refractive index (n d ) of 1.60 to 1.80 or less, an Abbe number (ν d ) in the range of 30 to 60, and a rare earth It relates to an optical glass having a low content.
 屈折率(n)が1.70を超え、かつアッベ数で40を超えるような高屈折率低分散の光学ガラスでは、一般にLa等の希土類酸化物やNb等を高い含有率にすることで、目的の光学定数を有する光学ガラスを作製することが主流となっている。 In a high refractive index and low dispersion optical glass having a refractive index (n d ) exceeding 1.70 and an Abbe number exceeding 40, generally a rare earth oxide such as La 2 O 3 or Nb 2 O 5 is high. By making the content, it is the mainstream to produce an optical glass having a target optical constant.
 希土類であるLaやGd等は、近年供給国の一局集中や輸出規制の問題があり、安定な供給が懸念されている。同様に、Nb等も近年原料価格が高騰しているため、光学ガラスは、これらの原料を含有しないか含有量の少ない組成範囲で、高屈折率及び低分散の領域の光学定数を有することが望まれている。 La 2 O 3 and Gd 2 O 3, which are rare earths, have recently been subject to centralized supply countries and export restrictions, and there is concern about stable supply. Similarly, since the raw material prices of Nb 2 O 5 and the like have been rising in recent years, the optical glass has an optical constant of a high refractive index and low dispersion region in a composition range not containing these raw materials or having a small content. It is desirable to have.
 ガラスからなる光学素子のプレス成型による成形方法は、主にガラス(プリフォーム)を再加熱・軟化させて所定の形状にプレス成型する方式と、金型を加熱した上に熔融ガラスを滴下しプレス成型するダイレクトプレス方式が知られている。これらの方式のプレス成型は、いずれもプレス金型をガラス転移温度(Tg)の近傍、又はそれ以上の温度に加熱する必要がある。特に、モールドプレスの場合には、金型の表面が精密にガラスに転写されることを要するので、ガラス転移温度(Tg)が高いと金型の酸化等が促進するために金型の寿命が短くなることから、モールドプレスに用いられるガラスは、低いガラス転移温度(Tg)を有することが重要な特性である。 The molding method by press molding of optical elements made of glass is mainly a method of press-molding glass (preform) by reheating and softening to a predetermined shape, and a molten glass is added dropwise after heating the mold. A direct press method for molding is known. In any of these types of press molding, it is necessary to heat the press die to a temperature near or above the glass transition temperature (Tg). In particular, in the case of a mold press, it is necessary that the surface of the mold be accurately transferred to glass. Therefore, if the glass transition temperature (Tg) is high, the oxidation of the mold is promoted and the life of the mold is shortened. Since it becomes short, it is an important characteristic that the glass used for the mold press has a low glass transition temperature (Tg).
 特許文献1には、SiO―B―ZnO―RO―R O系の組成からなるガラスが開示されている。しかし、この公報で目的としている光学定数の範囲は、屈折率(n)が1.60から1.70、アッベ数(ν)が40から55であるため、本発明の目的としている光学定数とは合致しない。 Patent Document 1, the glass having a composition of SiO 2 -B 2 O 3 -ZnO- RO-R 1 2 O system is disclosed. However, since the optical constant ranges in this publication are the refractive index (n d ) of 1.60 to 1.70 and the Abbe number (ν d ) of 40 to 55, the optical target of the present invention. Does not match the constant.
 特許文献2には、屈折率(n)が1.69から1.74、アッベ数(ν)が40から55の範囲にあり、ガラス転移温度(Tg)が500℃以下のガラスが開示されているが、LaやNbが相当量含まれるため、上記本発明における要求を十分に満たすことができない。 Patent Document 2 discloses a glass having a refractive index (n d ) of 1.69 to 1.74, an Abbe number (ν d ) of 40 to 55, and a glass transition temperature (Tg) of 500 ° C. or lower. However, since a considerable amount of La 2 O 3 or Nb 2 O 5 is contained, the above-described requirements in the present invention cannot be sufficiently satisfied.
特開平11-029338号公報JP-A-11-029338 特開2008-179500号公報JP 2008-179500 A
 本発明は、このような光学ガラスに見られる諸欠点を総合的に解消し、所望の光学定数を有し、ガラス転移温度(Tg)が低く、かつモールドプレスに適した光学ガラスを提供することが目的である。 The present invention comprehensively eliminates the disadvantages found in such optical glass, and provides an optical glass having a desired optical constant, a low glass transition temperature (Tg), and suitable for a mold press. Is the purpose.
 本発明者は、上記課題を解決するために、鋭意試験研究を重ねた結果、SiO及びBと適量のRO成分を併用して所定の含有量の範囲内に抑えることで、上述の光学定数を有し、かつガラス転移温度(Tg)が低くモールドプレスに適した光学ガラスが得られることを見出した。具体的には、本発明では以下のものを提供する。 As a result of intensive studies and studies to solve the above-mentioned problems, the present inventors have used SiO 2 and B 2 O 3 in combination with an appropriate amount of RO component and restrained it within a predetermined content range. It has been found that an optical glass having an optical constant of 5 and a low glass transition temperature (Tg) suitable for a mold press can be obtained. Specifically, the present invention provides the following.
(1) 屈折率(n)が1.60~1.80の範囲にあり、アッベ数(ν)が30~60の範囲にあり、ガラス転移温度(Tg)が600℃以下であり、かつ酸化物基準の質量%で、Ln(Lnは、La、Y、Yb、Gdから選択される1種以上)、Bi、Ta、GeO、及びWOの合計量が20%以下、Nbの含有量が20%以下である光学ガラス。
(2) 酸化物基準の質量%で、
SiO:10%~50%、
:30%以下、
RO(Rは、Mg、Ca、Zn、Sr、Baから選択される1種以上)を10%以上60%以下
を含有する(1)に記載の光学ガラス。
(3) 酸化物基準の質量%で、
BaO:0%~60%、
CaO:0%~60%、
ZnO:0%~20%、
SrO:0%~20%、
MgO:0%~20%、
LiO:0%~20%、
NaO:0%~20%、
O:0%~20%、
ZrO:0%~20%、
TiO:0%~20%、
Al:0%~20%、
:0%~20%、
Nb:0%~20%、
Ta:0%~20%、
La:0%~20%、
Gd:0%~20%、
GeO:0%~20%、
:0%~20%、
Yb:0%~20%、
WO:0%~20%、
Bi:0%~20%、
Sb:0%~1%、
である(1)又は(2)に記載の光学ガラス。
(4) 酸化物基準の質量%表示で、SiO+B+Al+Pの合計含有量が0.1%~90%である(1)~(3)のいずれかに記載の光学ガラス。
(5) 酸化物基準の質量%表示で、(MgO+CaO+ZnO+SrO+BaO)/(SiO+B+Al+P)≧1.0である(1)~(4)のいずれかに記載の光学ガラス。
(6) (1)~(5)のいずれかに記載の光学ガラスを、熱間加工を含む加工工程により成形して得られる光学ガラス成形体。
(7) 前記熱間加工が、ダイレクトプレス成形、リヒートプレス及びリドロー成形からなる群から選択される1種以上を含む(6)の光学ガラス成形体。
(8) (1)~(5)のいずれかに記載の光学ガラスを、冷間加工を含む加工工程により成形して得られる光学ガラス成形体。
(9) 前記冷間加工が、切断、研削、研磨からなる群から選択される1種以上を含む(8)の光学ガラス成形体。
(10) (6)~(9)のいずれかの光学ガラス成形体からなる、光学ガラス基板。
(11) (6)~(9)のいずれかの光学ガラス成形体からなる、光学素子用プリフォーム。
(12) (10)の光学ガラス基板を熱間加工及び/又は冷間加工してなる光学素子用プリフォーム。
(13) (11)又は(12)のプリフォームを、モールドプレス成形を含む加工工程により成形してなる光学素子。
(14) (10)の基板を、モールドプレス成形を含む加工工程により成形してなる光学素子。
(1) The refractive index (n d ) is in the range of 1.60 to 1.80, the Abbe number (ν d ) is in the range of 30 to 60, and the glass transition temperature (Tg) is 600 ° C. or less. In addition, by mass% based on oxide, Ln 2 O 3 (Ln is one or more selected from La, Y, Yb, Gd), Bi 2 O 3 , Ta 2 O 5 , GeO 2 , and WO 3 Optical glass whose total amount is 20% or less and whose content of Nb 2 O 5 is 20% or less.
(2)% by mass based on oxide,
SiO 2 : 10% to 50%,
B 2 O 3 : 30% or less,
The optical glass according to (1), wherein RO (R is one or more selected from Mg, Ca, Zn, Sr, and Ba) is contained in an amount of 10% to 60%.
(3)% by mass based on oxide,
BaO: 0% to 60%,
CaO: 0% to 60%,
ZnO: 0% to 20%,
SrO: 0% to 20%,
MgO: 0% to 20%,
Li 2 O: 0% to 20%,
Na 2 O: 0% to 20%,
K 2 O: 0% to 20%,
ZrO 2 : 0% to 20%,
TiO 2 : 0% to 20%,
Al 2 O 3 : 0% to 20%,
P 2 O 5 : 0% to 20%,
Nb 2 O 5 : 0% to 20%,
Ta 2 O 5 : 0% to 20%,
La 2 O 3 : 0% to 20%,
Gd 2 O 3 : 0% to 20%
GeO 2 : 0% to 20%,
Y 2 O 3 : 0% to 20%
Yb 2 O 3 : 0% to 20%
WO 3 : 0% to 20%,
Bi 2 O 3 : 0% to 20%,
Sb 2 O 3 : 0% to 1%
The optical glass according to (1) or (2).
(4) Any of (1) to (3), wherein the total content of SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 is 0.1% to 90% in terms of mass% based on the oxide The optical glass described in 1.
(5) In any one of (1) to (4), (MgO + CaO + ZnO + SrO + BaO) / (SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 ) ≧ 1.0 in terms of mass% based on oxide. Optical glass.
(6) An optical glass molded body obtained by molding the optical glass according to any one of (1) to (5) by a processing step including hot working.
(7) The optical glass molded body according to (6), wherein the hot working includes at least one selected from the group consisting of direct press molding, reheat press, and redraw molding.
(8) An optical glass molded body obtained by molding the optical glass according to any one of (1) to (5) by a processing step including cold working.
(9) The optical glass molded body according to (8), wherein the cold working includes at least one selected from the group consisting of cutting, grinding, and polishing.
(10) An optical glass substrate comprising the optical glass molded body according to any one of (6) to (9).
(11) A preform for optical elements, comprising the optical glass molded body according to any one of (6) to (9).
(12) A preform for an optical element obtained by hot working and / or cold working the optical glass substrate of (10).
(13) An optical element formed by molding the preform of (11) or (12) by a processing step including mold press molding.
(14) An optical element formed by molding the substrate of (10) by a processing step including mold press molding.
 本発明によれば、所望の光学定数を有し、ガラス転移温度(Tg)が低く、かつモールドプレスに適した光学ガラスを提供することが可能となる。 According to the present invention, it is possible to provide an optical glass having a desired optical constant, a low glass transition temperature (Tg), and suitable for a mold press.
 以下、本発明を具体的に説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, the present invention will be specifically described, but the present invention is not limited to the following embodiments.
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物基準のガラス全質量に対する質量%で表示されるものとする。ここで「酸化物基準」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が溶融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。 The composition range of each component constituting the optical glass of the present invention will be described below. In the present specification, unless otherwise specified, the content of each component is expressed in mass% with respect to the total mass of the glass based on oxide. Here, the “oxide standard” means that the oxide, composite salt, metal fluoride, etc. used as a raw material of the glass component of the present invention are all decomposed and changed into oxides when melted. It is the composition which described each component contained in glass by making the total mass of an oxide into 100 mass%.
 SiO成分は、ガラスの粘度を高め、耐失透性を向上させるのに有効な、必須成分である。しかし、その含有量が少なすぎると上記効果が不十分であり、その含有量が多すぎるとガラス転移温度(Tg)の上昇や熔融性の悪化を招く。従って、SiO成分の含有量は、好ましくは10%、より好ましくは12%以上、最も好ましくは14%を下限とする。また、SiO成分の含有量は、好ましくは50%、より好ましくは29%、最も好ましくは27%を上限とする。 The SiO 2 component is an essential component effective for increasing the viscosity of the glass and improving the devitrification resistance. However, if the content is too small, the above effects are insufficient, and if the content is too large, the glass transition temperature (Tg) increases and the meltability deteriorates. Accordingly, the content of the SiO 2 component is preferably 10%, more preferably 12% or more, and most preferably 14%. The content of the SiO 2 component is preferably 50%, more preferably 29%, and most preferably 27%.
 B成分は、ガラス形成酸化物成分として、ガラスの安定性を高めるのに有効な成分である。しかし、その量が多すぎるとかえって耐失透性が悪化し、かつ化学的耐久性が悪化する恐れがある。従って、B成分の含有量は、好ましくは30%、より好ましくは18%、最も好ましくは16%を上限とする。
 なお、本発明の光学ガラスは、B成分を含有しなくとも、所望の特性を満たすことは可能であるが、本発明の光学ガラスを安定的に生産するためには、B成分を、好ましくは0%超、より好ましくは4%以上、最も好ましくは6%以上含有してもよい。
The B 2 O 3 component is an effective component for enhancing the stability of glass as a glass-forming oxide component. However, if the amount is too large, the devitrification resistance deteriorates and the chemical durability may deteriorate. Accordingly, the content of the B 2 O 3 component is preferably 30%, more preferably 18%, and most preferably 16%.
The optical glass of the present invention, without containing B 2 O 3 component, it is possible to meet the desired properties, in order to produce stably optical glass of the present invention, B 2 O The three components may preferably contain more than 0%, more preferably 4% or more, and most preferably 6% or more.
 RO成分(Rは、Mg、Ca、Zn、Sr、Baからなる群より選択される1種以上)は、ガラスの形成能を向上させ、ガラスの屈折率や安定性を向上させる効果があるため、必須の成分である。しかし、これらの合計量が多すぎると、ガラスの安定性が損なわれることで、耐失透性が悪化しやすくなる。したがって、RO成分の合計量を、好ましくは60%、より好ましくは58%、最も好ましくは56%を上限とする。一方で、本発明の効果を容易に得るために、RO成分を合計で、好ましくは10%超、より好ましくは36%以上、最も好ましくは38%以上含有する。 The RO component (R is one or more selected from the group consisting of Mg, Ca, Zn, Sr, and Ba) improves the glass forming ability and improves the refractive index and stability of the glass. , An essential ingredient. However, when there are too many these total amounts, stability of glass will be impaired and devitrification resistance will deteriorate easily. Therefore, the upper limit of the total amount of RO components is preferably 60%, more preferably 58%, and most preferably 56%. On the other hand, in order to easily obtain the effects of the present invention, the RO components are contained in total, preferably more than 10%, more preferably 36% or more, and most preferably 38% or more.
 BaO成分は、光学定数の調整に有効な成分である。しかし、その含有量が多すぎると、耐失透性が悪化しやすい。従って、BaO成分の含有量は、好ましくは60%、より好ましくは44%、最も好ましくは42%を上限とする。一方で、BaO成分の含有量が少なすぎると耐失透性を高める効果を得ることが難しいため、BaO成分の含有量は、好ましくは10%、より好ましくは14%、さらに好ましくは23%、最も好ましくは24%を下限とする。 The BaO component is an effective component for adjusting the optical constant. However, when there is too much the content, devitrification resistance tends to deteriorate. Therefore, the upper limit of the BaO component content is preferably 60%, more preferably 44%, and most preferably 42%. On the other hand, if the content of the BaO component is too small, it is difficult to obtain an effect of increasing the devitrification resistance. Therefore, the content of the BaO component is preferably 10%, more preferably 14%, still more preferably 23%, Most preferably, the lower limit is 24%.
 CaO成分は、光学定数の調整及び耐失透性の改善に有効な成分である。しかし、その量が多すぎると、化学的耐久性が悪化する恐れがある。従って、CaO成分の含有量は、好ましくは60%、より好ましく42%、最も好ましくは12%を上限とする。一方で、本発明のガラスに要求される光学特性を容易に実現するために、CaO成分を、好ましくは0%超、より好ましくは2%以上、最も好ましくは3%以上含有してもよい。 The CaO component is an effective component for adjusting optical constants and improving devitrification resistance. However, if the amount is too large, chemical durability may be deteriorated. Therefore, the content of the CaO component is preferably 60%, more preferably 42%, and most preferably 12%. On the other hand, in order to easily realize the optical characteristics required for the glass of the present invention, the CaO component may be preferably contained in an amount exceeding 0%, more preferably 2% or more, and most preferably 3% or more.
 ZnO成分は、ガラス転移温度(Tg)を低くする効果がある成分である。しかし、その量が多すぎると、耐失透性が悪化する恐れがある。従って、ZnO成分の含有量は、好ましくは20%、より好ましくは11%、最も好ましくは9%を上限とする。一方で、本発明のガラスを安定的に生産するためには、ZnO成分を、好ましくは0%超、より好ましくは0.3%以上、最も好ましくは0.5%以上含有してもよい。 The ZnO component is a component that has an effect of lowering the glass transition temperature (Tg). However, if the amount is too large, the devitrification resistance may deteriorate. Accordingly, the content of the ZnO component is preferably 20%, more preferably 11%, and most preferably 9%. On the other hand, in order to stably produce the glass of the present invention, the ZnO component may be preferably contained in an amount of more than 0%, more preferably 0.3% or more, and most preferably 0.5% or more.
 SrO成分は、BaO成分やCaO成分と同じく、光学定数の調整に有効な成分である。しかし、その量が多すぎると、耐失透性が悪化する恐れがある。従って、SrO成分の含有量は、好ましくは20%、より好ましくは6%、最も好ましくは4%を上限とする。一方で、本発明のガラスに要求される光学特性を容易に実現するためには、SrO成分を、好ましくは0%超、より好ましくは0.5%以上、最も好ましくは1.0%以上含有してもよい。 The SrO component is an effective component for adjusting the optical constant, like the BaO component and the CaO component. However, if the amount is too large, the devitrification resistance may deteriorate. Therefore, the content of the SrO component is preferably 20%, more preferably 6%, and most preferably 4%. On the other hand, in order to easily realize the optical characteristics required for the glass of the present invention, the SrO component is preferably more than 0%, more preferably 0.5% or more, most preferably 1.0% or more. May be.
 MgO成分は、光学定数の調整で用途に応じて調整する目的で添加できる成分である。しかし、その量が多すぎると、耐失透性が悪化する恐れがある。従って、MgO成分の含有量は、好ましくは20%、より好ましくは10%、さらに好ましくは7%、最も好ましくは3%を上限とする。 MgO component is a component that can be added for the purpose of adjusting the optical constant according to the application. However, if the amount is too large, the devitrification resistance may deteriorate. Therefore, the upper limit of the content of the MgO component is preferably 20%, more preferably 10%, still more preferably 7%, and most preferably 3%.
 LiO成分は、ガラス転移温度(Tg)を大幅に下げ、かつ、混合されたガラス原料を溶解する際の溶解を促進する効果を有する成分である。しかし、その量が多すぎると、耐失透性及び化学的耐久性が悪化する恐れがある。従って、LiO成分の含有量は、好ましくは20%、より好ましくは11%、最も好ましくは9%を上限とする。一方で、本発明のガラスを安定的に生産するためには、LiO成分を、好ましくは0%超、より好ましくは1%以上、最も好ましくは2%以上含有してもよい。 Li 2 O component, the glass transition temperature (Tg) substantially lowered, and a component having an effect of promoting dissolution when dissolving the mixed glass raw materials. However, if the amount is too large, devitrification resistance and chemical durability may be deteriorated. Therefore, the upper limit of the content of the Li 2 O component is preferably 20%, more preferably 11%, and most preferably 9%. On the other hand, in order to stably produce the glass of the present invention, the Li 2 O component may be contained preferably in excess of 0%, more preferably 1% or more, and most preferably 2% or more.
 NaO成分は、ガラスの熔融性を向上させると共に、ガラス転移温度(Tg)を下げるのに有効な成分である。しかし、その量が多すぎると化学的耐久性が悪化する恐れがある。従って、NaO成分の含有量は、好ましくは20%、より好ましくは16%、最も好ましくは12%を上限とする。 The Na 2 O component is an effective component for improving the meltability of glass and lowering the glass transition temperature (Tg). However, if the amount is too large, chemical durability may be deteriorated. Accordingly, the upper limit of the content of the Na 2 O component is preferably 20%, more preferably 16%, and most preferably 12%.
 KO成分は、ガラス転移温度(Tg)を低下させる効果がある成分である。しかし、その量が多すぎると、化学的耐久性が悪化する恐れがある。従って、KO成分の含有量は、好ましくは20%、より好ましくは15%、さらに好ましくは10%、最も好ましくは3%を上限とする。 The K 2 O component is a component that has an effect of reducing the glass transition temperature (Tg). However, if the amount is too large, chemical durability may be deteriorated. Therefore, the upper limit of the content of the K 2 O component is preferably 20%, more preferably 15%, still more preferably 10%, and most preferably 3%.
 ZrO成分は、光学定数を調整し耐失透性を改善する効果がある成分である。しかし、その量が多すぎると、耐失透性が悪化する恐れがある。従って、ZrO成分の含有量は、好ましくは20%、より好ましくは12%、最も好ましくは10%を上限とする。なお、ZrO成分は含有しなくてもよいが、耐失透性を改善する観点から、ZrO成分の含有量の下限値を、好ましくは0%超、より好ましくは0.6%、さらに好ましくは0.8%を下限値としてもよい。 The ZrO 2 component is a component having an effect of adjusting the optical constant and improving the devitrification resistance. However, if the amount is too large, the devitrification resistance may deteriorate. Therefore, the content of the ZrO 2 component is preferably 20%, more preferably 12%, and most preferably 10%. The ZrO 2 component may not be contained, but from the viewpoint of improving devitrification resistance, the lower limit of the content of the ZrO 2 component is preferably more than 0%, more preferably 0.6%, Preferably, 0.8% may be set as the lower limit value.
 TiO成分は、ガラスに高屈折率及び高分散の特性を与え、光学定数を調整するために有効な成分である。しかし、その量が多すぎると、耐失透性又は光線透過率が悪化する恐れがある。従って、TiO成分の含有量は、好ましくは20%、より好ましくは16%、最も好ましくは14%を上限とする。一方で、本発明のガラスに要求される光学特性を容易に実現するためには、TiO成分を、好ましくは0%超、より好ましくは3%以上、最も好ましくは5%以上含有する。 The TiO 2 component is an effective component for imparting high refractive index and high dispersion characteristics to the glass and adjusting the optical constant. However, if the amount is too large, devitrification resistance or light transmittance may be deteriorated. Therefore, the upper limit of the content of the TiO 2 component is preferably 20%, more preferably 16%, and most preferably 14%. On the other hand, in order to easily realize the optical characteristics required for the glass of the present invention, the TiO 2 component is preferably contained in excess of 0%, more preferably 3% or more, and most preferably 5% or more.
 Al成分は、化学的耐久性を向上させるのに有効な成分である。しかし、その量が多すぎると、耐失透性が悪化する恐れがある。従って、Al成分の含有量は、好ましくは20%、より好ましくは7%、最も好ましくは5%を上限とする。なお、Al成分は含有しなくてもよいが、化学的耐久性を向上させる観点から、Al成分の含有量の下限値を、好ましくは0%超、より好ましくは0.3%、さらに好ましくは0.5%を下限値としてもよい。 The Al 2 O 3 component is an effective component for improving chemical durability. However, if the amount is too large, the devitrification resistance may deteriorate. Accordingly, the upper limit of the content of the Al 2 O 3 component is preferably 20%, more preferably 7%, and most preferably 5%. The Al 2 O 3 component may not be contained, but from the viewpoint of improving chemical durability, the lower limit of the content of the Al 2 O 3 component is preferably more than 0%, more preferably 0. The lower limit may be 3%, more preferably 0.5%.
 P成分は、耐失透性に有効な成分である。しかし、その量が多すぎると、化学的耐久性が悪化する恐れがある。従って、P成分の含有量は、好ましくは20%、より好ましくは6%、最も好ましくは4%を上限とする。 The P 2 O 5 component is an effective component for resistance to devitrification. However, if the amount is too large, chemical durability may be deteriorated. Therefore, the content of the P 2 O 5 component is preferably 20%, more preferably 6%, and most preferably 4%.
 La成分は、ガラスの屈折率を高め、低分散化させるのに有効な成分である。しかし、La成分はコストの高い原料であるため、その量が多すぎると光学ガラスの材料コストを増やしてしまう恐れがある。従って、La成分の含有量は、好ましくは20%、より好ましくは10%、さらに好ましくは3%、最も好ましくは0.5%を上限とする。 The La 2 O 3 component is an effective component for increasing the refractive index of glass and reducing the dispersion. However, since the La 2 O 3 component is a high-cost raw material, if the amount is too large, the material cost of the optical glass may be increased. Therefore, the content of La 2 O 3 component is preferably 20%, more preferably 10%, still more preferably 3%, and most preferably 0.5%.
 Gd成分は、ガラスの屈折率を高め、低分散化させる効果がある成分である。しかしその量が多すぎると、原料が非常に高価であるため、光学ガラスの材料コストが高くなる。従って、Gd成分の含有量は、好ましくは20%、より好ましくは10%、さらに好ましくは3%、最も好ましくは0.5%を上限とする。 The Gd 2 O 3 component is a component that has an effect of increasing the refractive index of the glass and reducing the dispersion. However, if the amount is too large, the raw material is very expensive and the material cost of the optical glass becomes high. Therefore, the content of the Gd 2 O 3 component is preferably 20%, more preferably 10%, still more preferably 3%, and most preferably 0.5%.
 Yb成分は、ガラスの屈折率を高め、低分散化させる効果がある成分である。しかし、その量が多すぎると耐失透性が悪化しやすくなる。また、原料が非常に高価であるため、光学ガラスの材料コストが高くなる。従って、Yb成分の含有量は、好ましくは20%、より好ましくは10%、さらに好ましくは7%、最も好ましくは3%を上限とする。 The Yb 2 O 3 component is a component that has an effect of increasing the refractive index of the glass and lowering the dispersion. However, if the amount is too large, the devitrification resistance tends to deteriorate. Moreover, since the raw material is very expensive, the material cost of optical glass becomes high. Therefore, the content of the Yb 2 O 3 component is preferably 20%, more preferably 10%, still more preferably 7%, and most preferably 3%.
 Nb成分は、ガラスに高屈折率、高分散特性を与え、耐失透性を改善する効果のある成分である。しかし、その量が多すぎると、原料が非常に高価であるため、光学ガラスの材料コストが高くなる。従って、Nb成分の含有量は、好ましくは20%、より好ましくは10%、さらに好ましくは5%、最も好ましくは0.5%を上限とする。 The Nb 2 O 5 component is a component having an effect of imparting a high refractive index and high dispersion characteristics to glass and improving devitrification resistance. However, if the amount is too large, the raw material is very expensive, and the material cost of the optical glass becomes high. Therefore, the content of the Nb 2 O 5 component is preferably 20%, more preferably 10%, still more preferably 5%, and most preferably 0.5%.
 Ta成分は、ガラスの屈折率を高め、化学的耐久性を向上し、耐失透性を改善する効果がある成分である。しかし、その量が多すぎると、耐失透性が悪化する。従って、Ta成分の含有量は、好ましくは20%、より好ましくは10%、最も好ましくは3%を上限とする。 The Ta 2 O 5 component is a component that has an effect of increasing the refractive index of glass, improving chemical durability, and improving devitrification resistance. However, when there is too much the quantity, devitrification resistance will deteriorate. Accordingly, the content of the Ta 2 O 5 component is preferably 20%, more preferably 10%, and most preferably 3%.
 Bi成分は、ガラスの屈折率を高め、ガラスの転移温度(Tg)を下げる効果がある成分である。しかし、その量が多すぎると、耐失透性が悪化しやすくなる。従って、Bi成分の含有量は、好ましくは20%、より好ましくは10%、最も好ましくは3%を上限とする。 The Bi 2 O 3 component is a component that has an effect of increasing the refractive index of the glass and lowering the glass transition temperature (Tg). However, when there is too much the quantity, devitrification resistance will deteriorate easily. Therefore, the content of the Bi 2 O 3 component is preferably 20%, more preferably 10%, and most preferably 3%.
 GeO成分は、屈折率を高め、耐失透性を改善させる効果がある成分である。しかし、その量が多すぎると、原料が非常に高価であるため、光学ガラスの材料コストが高くなる。従って、GeO成分の含有量は、好ましくは20%、より好ましくは10%、最も好ましくは3%を上限とする。 The GeO 2 component is a component having an effect of increasing the refractive index and improving devitrification resistance. However, if the amount is too large, the raw material is very expensive, and the material cost of the optical glass becomes high. Accordingly, the content of the GeO 2 component is preferably 20%, more preferably 10%, and most preferably 3%.
 Y成分は、ガラスの屈折率を高め、低分散化させる効果がある成分である。しかし、その量が多すぎると、耐失透性が悪化しやすくなる。また、原料が非常に高価であるため、光学ガラスの材料コストが高くなる。従って、Y成分の含有量は、好ましくは20%、より好ましくは10%、さらに好ましくは7%、最も好ましくは3%を上限とする。 Y 2 O 3 component increases the refractive index of the glass, a component having an effect of lowering dispersion. However, when there is too much the quantity, devitrification resistance will deteriorate easily. Moreover, since the raw material is very expensive, the material cost of optical glass becomes high. Therefore, the upper limit of the content of the Y 2 O 3 component is preferably 20%, more preferably 10%, still more preferably 7%, and most preferably 3%.
 WO成分は、ガラスの屈折率を高め、ガラスの化学的耐久性を向上させる任意成分であるが、その含有量を20%以下にすることで、ガラスの耐失透性を高めることが出来る。従って、WO成分の含有量は、好ましくは20%、より好ましくは10%、最も好ましくは3%を上限とする。 The WO 3 component is an optional component that increases the refractive index of the glass and improves the chemical durability of the glass. However, the devitrification resistance of the glass can be increased by making its content 20% or less. . Therefore, the upper limit of the content of the WO 3 component is preferably 20%, more preferably 10%, and most preferably 3%.
 Sb成分は、ガラス熔融時の脱泡のために任意に添加しうる。しかし、その量が多すぎると、光線透過率が悪化する恐れがある。従って、Sb成分の含有量は、好ましくは1%、より好ましくは0.8%、最も好ましくは0.7%を上限とする。なお、Sb成分は含有しなくてもよいが、ガラス熔融時の脱泡を促進させる観点から、Sb成分の含有量の下限値を、好ましくは0%超、より好ましくは0.01%、さらに好ましくは0.03%を下限値としてもよい。 The Sb 2 O 3 component can be optionally added for defoaming during glass melting. However, if the amount is too large, the light transmittance may be deteriorated. Accordingly, the upper limit of the content of the Sb 2 O 3 component is preferably 1%, more preferably 0.8%, and most preferably 0.7%. The Sb 2 O 3 component may not be contained, but from the viewpoint of promoting defoaming during glass melting, the lower limit of the content of the Sb 2 O 3 component is preferably more than 0%, more preferably The lower limit may be 0.01%, more preferably 0.03%.
 本発明者は、本発明のガラス組成系において、SiO+B+Al+Pの合計含有量を適宜調節することにより、上述の要求光学定数を容易に満たすことが可能であることを見出した。しかし、この合計含有量が少なすぎると、上記効果が不十分であり、合計含有量が多すぎると上述の光学定数を得ることが困難になる。よって、SiO+B+Al+Pの合計含有量は、好ましくは0.1%、より好ましくは15%、最も好ましくは20%を下限とする。また、この合計含有量は、好ましくは90%、より好ましくは50%、最も好ましくは45%を上限とする。 The present inventor can easily satisfy the above-mentioned required optical constants by appropriately adjusting the total content of SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 in the glass composition system of the present invention. I found out. However, if the total content is too small, the above effects are insufficient, and if the total content is too large, it is difficult to obtain the above-described optical constant. Therefore, the total content of SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 is preferably 0.1%, more preferably 15%, and most preferably 20%. The total content is preferably 90%, more preferably 50%, and most preferably 45%.
 本発明の光学ガラスは、質量%で、SiO成分、B成分、Al成分及びP成分の合計量に対する、MgO成分、CaO成分、SrO成分、BaO成分及びZnOの合計量の比、すなわち(MgO+CaO+ZnO+SrO+BaO)/(SiO+B+Al+P)値が1.0以上であることが好ましい。この値を1.0以上にすることで、所望の屈折率を得易くすることができる。従ってこの値は、好ましくは1.0以上、より好ましくは1.1以上、さらに好ましくは、1.2以上、最も好ましくは1.5以上とする。なお、この値は、高い耐失透性を維持する観点から、好ましくは5.00、より好ましくは4.00、さらに好ましくは3.50、さらに好ましくは3.00を上限としてもよい。 In the optical glass of the present invention, the MgO component, the CaO component, the SrO component, the BaO component, and the ZnO with respect to the total amount of the SiO 2 component, the B 2 O 3 component, the Al 2 O 3 component, and the P 2 O 5 component in mass%. It is preferable that the ratio of the total amount, that is, (MgO + CaO + ZnO + SrO + BaO) / (SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 ) is 1.0 or more. By setting this value to 1.0 or more, a desired refractive index can be easily obtained. Accordingly, this value is preferably 1.0 or more, more preferably 1.1 or more, still more preferably 1.2 or more, and most preferably 1.5 or more. From the viewpoint of maintaining high devitrification resistance, this value is preferably 5.00, more preferably 4.00, even more preferably 3.50, and even more preferably 3.00.
 Ln(Lnは、La、Y、Yb、Gdから選択される1種以上)成分は、ガラスの屈折率を高め、低分散化を図る効果が大きい有効な成分ではある。しかし、これらの合計量が多すぎると、原料が非常に高価であるため、光学ガラスの材料コストが高くなる。従って、この合計量は、好ましくは20%、より好しくは16%、最も好ましくは12%を上限とする。 The Ln 2 O 3 (Ln is one or more selected from La, Y, Yb, and Gd) component is an effective component that has a large effect of increasing the refractive index of the glass and achieving low dispersion. However, if the total amount is too large, the raw material is very expensive and the material cost of the optical glass is increased. Therefore, the upper limit of this total amount is preferably 20%, more preferably 16%, and most preferably 12%.
 Bi成分、Ta成分、GeO成分及びWO成分は、光学定数の調整に有用な成分であるが、これらは着色性を悪化させる懸念があり、また近年の価格高騰により、ガラス全体のコストを大幅に上げる恐れがある。よって、Bi、Ta、GeO及びWOの合計量は、好ましくは20%、より好ましくは16%、最も好ましくは12%を上限とする。 Bi 2 O 3 component, Ta 2 O 5 component, GeO 2 component and WO 3 component are components useful for adjusting optical constants, but these have a concern of deteriorating colorability, and due to a recent increase in prices. There is a risk that the cost of the entire glass will be significantly increased. Therefore, the total amount of Bi 2 O 3 , Ta 2 O 5 , GeO 2 and WO 3 is preferably 20%, more preferably 16%, and most preferably 12%.
 さらに、ガラス全体のコストを低減させる観点から、Ln(Lnは、La、Y、Yb、Gdから選択される1種以上)成分、Bi成分、Ta成分、GeO成分及びWO成分の合計量が20%以下、より好しく16%、最も好ましくは12%を上限とする。 Furthermore, from the viewpoint of reducing the cost of the whole glass, Ln 2 O 3 (Ln is one or more selected from La, Y, Yb, Gd) component, Bi 2 O 3 component, Ta 2 O 5 component, GeO The total amount of the two components and the WO 3 component is 20% or less, more preferably 16%, and most preferably 12%.
[プリフォーム及び光学素子]
 本発明の光学ガラスは、様々な光学素子及び光学設計に有用であるが、その中でも特に、本発明の光学ガラスから、精密プレス成形等の手段を用いて、レンズやプリズム、ミラー等の光学素子を作製することに使用できる。これにより、カメラやプロジェクタ等のような、光学素子に可視光を透過させる光学機器に用いたときに、高精細で高精度な結像特性を実現しつつ、これら光学機器における光学系の小型化を図ることができる。特に、本発明の光学ガラスは、高屈折率低分散の特性と低温軟化性を兼ね備えるため、非球面レンズをモールドプレス成形により作成することが可能となり、光学系の小型化に大きく寄与することができる。
[Preforms and optical elements]
The optical glass of the present invention is useful for various optical elements and optical designs. Among them, the optical glass such as lenses, prisms, mirrors, and the like using the means such as precision press molding from the optical glass of the present invention. Can be used to make. As a result, when used in an optical device that transmits visible light to an optical element, such as a camera or projector, the optical system in these optical devices is miniaturized while realizing high-definition and high-precision imaging characteristics. Can be achieved. In particular, since the optical glass of the present invention has both high refractive index and low dispersion characteristics and low-temperature softening properties, it becomes possible to create an aspheric lens by mold press molding, which can greatly contribute to miniaturization of the optical system. it can.
 ここで、本発明の光学ガラスからなる光学素子を作製するために、従来の光学ガラスと同様の方法で熱間加工及び/又は冷間加工によりプリフォームを作成して、それらをモールドプレス成形してもよい。 Here, in order to produce an optical element made of the optical glass of the present invention, preforms are prepared by hot working and / or cold working in the same manner as conventional optical glass, and they are molded press-molded. May be.
 本発明の光学ガラスは、従来のプリフォーム作成方法とは別に、熱間成形、例えばダイレクトプレス、モールドプレス又はリドロー法等の手法で薄い基板として成形品を作成し、その基板を後工程によりレンズ等の光学素子に仕上げることができる。 The optical glass of the present invention is formed by forming a molded product as a thin substrate by a technique such as hot forming, for example, direct press, mold press or redraw method, separately from the conventional preform forming method, and the substrate is formed into a lens by a post process. It can be finished into an optical element such as.
 ここで、上述の基板は、熱間成形された板材に対する、切断、くり抜き、研削、研磨等の冷間加工によって、又は冷間加工と上述の熱間加工との組み合わせによって作製しても良い。 Here, the above-described substrate may be produced by cold processing such as cutting, punching, grinding, polishing, or the like, or a combination of cold processing and the above-described hot processing on a hot-formed plate material.
 基板から光学素子を作製する方法は、特に限定されるものではないが、基板ごとモールドプレス成形することで成形型の形状を基板に転写してもよく、あるいは、基板をあらかじめ切断することによって得られるプリフォームを成形して光学素子を作製してもよい。 The method for producing the optical element from the substrate is not particularly limited, but the shape of the molding die may be transferred to the substrate by mold press molding together with the substrate, or obtained by cutting the substrate in advance. An optical element may be produced by molding a preform.
 さらに、本発明の光学ガラスは、カメラ等の光学系に用いるだけでなく、LED用封止ガラスや高画素携帯電話用カメラレンズ等にも用いることができる。 Furthermore, the optical glass of the present invention can be used not only for an optical system such as a camera but also for an LED sealing glass, a camera lens for a high pixel mobile phone, and the like.
 以下、本発明の実施例について述べるが、本発明はこれら実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples.
 本発明のガラスの実施例(No.1~No.168)の組成と、これらのガラスの屈折率(n)、アッベ数(ν)、ガラス転移温度(Tg)及び屈伏点(At)を表1~表23に示した。表中、各成分の組成は酸化物基準の質量%で表示するものとする。 Composition of Examples (No. 1 to No. 168) of the Glasses of the Present Invention, Refractive Index (n d ), Abbe Number (ν d ), Glass Transition Temperature (Tg), and Bending Point (At) of These Glasses Are shown in Tables 1 to 23. In the table, the composition of each component is expressed in mass% based on oxide.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表1~表23に示した本発明の実施例の光学ガラス(No.1~No.168)は、酸化物、水酸化物、炭酸塩、硝酸塩等の通常の光学ガラス用原料を表1~表23に示した各実施例の組成の割合となるように秤量し、混合し、白金るつぼに投入し、組成による溶融性に応じて、1000~1300℃で、3~5時間溶融、清澄、攪拌して均質化した後、金型等に鋳込み徐冷することによって得た。 The optical glasses (No. 1 to No. 168) of the examples of the present invention shown in Tables 1 to 23 are prepared from conventional optical glass raw materials such as oxides, hydroxides, carbonates, nitrates, etc. Weighing, mixing, and mixing in a platinum crucible at the composition ratio of each example shown in Table 23, melting at 1000 to 1300 ° C. for 3 to 5 hours depending on the meltability of the composition, clarification, After stirring and homogenizing, it was obtained by casting into a mold or the like and gradually cooling.
 屈折率(n)及びアッベ数(ν)は、徐冷降温速度を-25℃/時にして得られた光学ガラスについて測定した。 The refractive index (n d ) and Abbe number (ν d ) were measured for the optical glass obtained at a slow cooling rate of −25 ° C./hour.
 ガラス転移温度(Tg)は、日本光学硝子工業会規格JOGIS08-2003(光学ガラスの熱膨張の測定方法)に記載された方法により測定した。ただし試験片として長さ50mm、直径4mmの試料を使用した。 The glass transition temperature (Tg) was measured by the method described in Japan Optical Glass Industry Association Standard JOGIS08-2003 (Measurement Method of Thermal Expansion of Optical Glass). However, a sample having a length of 50 mm and a diameter of 4 mm was used as a test piece.
 屈伏点(At)は、ガラス転移温度(Tg)と同様に、日本光学硝子工業会規格JOGIS08-2003(光学ガラスの熱膨張の測定方法)に記載された方法により測定し、ガラスの伸びが止まり、収縮が始まる温度とした。また、試験片として長さ50mm、直径4mmの試料を使用した。 Like the glass transition temperature (Tg), the yield point (At) is measured by the method described in Japan Optical Glass Industry Association Standard JOGIS08-2003 (Measurement Method of Thermal Expansion of Optical Glass), and the elongation of the glass stops. The temperature at which contraction starts was set. Further, a sample having a length of 50 mm and a diameter of 4 mm was used as a test piece.
 表1~表23に見られるとおり、本発明の実施例の光学ガラス(No.1~No.168)は、すべて所望の範囲内の光学定数(屈折率(n)及びアッベ数(ν))を有しており、かつ、ガラス転移温度(Tg)が470~600℃の範囲にあるために精密モールドプレス成形に適していた。 As can be seen from Tables 1 to 23, the optical glasses (No. 1 to No. 168) of the examples of the present invention all have optical constants (refractive index (n d ) and Abbe number (ν d ) within a desired range. )) And a glass transition temperature (Tg) in the range of 470 to 600 ° C., it was suitable for precision mold press molding.
 これに対し、表24に示す組成の比較例A~Cの各試料について、上記実施例と同じ条件でガラスを作製し、同一の評価方法により作製したガラスを評価した。比較例(No.A、No.B)の屈折率(n)は1.73~1.75未満、アッベ数(ν)が40~50未満ではあるが、La、Nbが含有されているため、本発明において要求される性能や、低い材料コストを満たすものではなかった。また、比較例Cは、ガラス転移温度(Tg)が600℃以下の範囲から外れた。このため、比較例Cも、本発明において要求される性能を満たすものではなかった。 On the other hand, for each sample of Comparative Examples A to C having the composition shown in Table 24, glass was produced under the same conditions as in the above Examples, and the glass produced by the same evaluation method was evaluated. The comparative examples (No. A, No. B) have a refractive index (n d ) of 1.73 to less than 1.75 and an Abbe number (ν d ) of less than 40 to 50, but La 2 O 3 , Nb 2 Since O 5 was contained, the performance required in the present invention and the low material cost were not satisfied. Moreover, the comparative example C remove | deviated from the range whose glass transition temperature (Tg) is 600 degrees C or less. For this reason, Comparative Example C also did not satisfy the performance required in the present invention.
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく、多くの改変を当業者により成し得ることが理解されよう。 Although the present invention has been described in detail for the purpose of illustration, this embodiment is only for the purpose of illustration, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. It will be understood.
 以上、述べたとおり、本発明の光学ガラスは、組成がSiO-B-TiO-ZrO-CaO-LiO系であり、かつ、鉛、ヒ素、弗素を含まないガラスであって、屈折率(n)が1.60~1.80未満、アッベ数(ν)が30~60の範囲の光学定数を有し、転移温度(Tg)が600℃以下であり精密モールドプレス成形に適しているため、産業上非常に有用である。 As described above, the optical glass of the present invention is a glass having a composition of SiO 2 —B 2 O 3 —TiO 2 —ZrO 2 —CaO—Li 2 O and containing no lead, arsenic, or fluorine. It has an optical constant in the range of refractive index (n d ) of 1.60 to less than 1.80, Abbe number (ν d ) of 30 to 60, and a transition temperature (Tg) of 600 ° C. or less. Since it is suitable for mold press molding, it is very useful industrially.

Claims (14)

  1.  屈折率(n)が1.60~1.80の範囲にあり、アッベ数(ν)が30~60の範囲にあり、ガラス転移温度(Tg)が600℃以下であり、かつ酸化物基準の質量%で、Ln(Lnは、La、Y、Yb、Gdから選択される1種以上)、Bi、Ta、GeO、及びWOの合計量が20%以下、Nbの含有量が20%以下である光学ガラス。 Refractive index (n d ) is in the range of 1.60 to 1.80, Abbe number (ν d ) is in the range of 30 to 60, glass transition temperature (Tg) is 600 ° C. or lower, and oxide The total amount of Ln 2 O 3 (Ln is one or more selected from La, Y, Yb, and Gd), Bi 2 O 3 , Ta 2 O 5 , GeO 2 , and WO 3 in the reference mass%. Optical glass having a Nb 2 O 5 content of 20% or less and 20% or less.
  2.  酸化物基準の質量%で、
    SiO:10%~50%、
    :30%以下、
    RO(Rは、Mg、Ca、Zn、Sr、Baから選択される1種以上)を10%以上60%以下
    を含有する請求項1に記載の光学ガラス。
    % By mass based on oxide,
    SiO 2 : 10% to 50%,
    B 2 O 3 : 30% or less,
    The optical glass according to claim 1, wherein RO (R is one or more selected from Mg, Ca, Zn, Sr, and Ba) is contained in an amount of 10% to 60%.
  3.  酸化物基準の質量%で、
    BaO:0%~60%、
    CaO:0%~60%、
    ZnO:0%~20%、
    SrO:0%~20%、
    MgO:0%~20%、
    LiO:0%~20%、
    NaO:0%~20%、
    O:0%~20%、
    ZrO:0%~20%、
    TiO:0%~20%、
    Al:0%~20%、
    :0%~20%、
    Nb:0%~20%、
    Ta:0%~20%、
    La:0%~20%、
    Gd:0%~20%、
    GeO:0%~20%、
    :0%~20%、
    Yb:0%~20%、
    WO:0%~20%、
    Bi:0%~20%、
    Sb:0%~1%、
    である請求項1又は2に記載の光学ガラス。
    % By mass based on oxide,
    BaO: 0% to 60%,
    CaO: 0% to 60%,
    ZnO: 0% to 20%,
    SrO: 0% to 20%,
    MgO: 0% to 20%,
    Li 2 O: 0% to 20%,
    Na 2 O: 0% to 20%,
    K 2 O: 0% to 20%,
    ZrO 2 : 0% to 20%,
    TiO 2 : 0% to 20%,
    Al 2 O 3 : 0% to 20%,
    P 2 O 5 : 0% to 20%,
    Nb 2 O 5 : 0% to 20%,
    Ta 2 O 5 : 0% to 20%,
    La 2 O 3 : 0% to 20%,
    Gd 2 O 3 : 0% to 20%
    GeO 2 : 0% to 20%,
    Y 2 O 3 : 0% to 20%
    Yb 2 O 3 : 0% to 20%
    WO 3 : 0% to 20%,
    Bi 2 O 3 : 0% to 20%,
    Sb 2 O 3 : 0% to 1%
    The optical glass according to claim 1 or 2.
  4.  酸化物基準の質量%表示で、SiO+B+Al+Pの合計含有量が0.1%~90%である請求項1~3のいずれかに記載の光学ガラス。 The optical glass according to any one of claims 1 to 3, wherein the total content of SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 is 0.1% to 90% in terms of mass% based on the oxide. .
  5.  酸化物基準の質量%表示で、(MgO+CaO+ZnO+SrO+BaO)/(SiO+B+Al+P)≧1.0である請求項1~4のいずれかに記載の光学ガラス。 5. The optical glass according to claim 1, wherein (MgO + CaO + ZnO + SrO + BaO) / (SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 ) ≧ 1.0 in terms of mass% based on oxide.
  6.  請求項1~5のいずれかに記載の光学ガラスを、熱間加工を含む加工工程により成形して得られる光学ガラス成形体。 An optical glass molded body obtained by molding the optical glass according to any one of claims 1 to 5 by a processing step including hot working.
  7.  前記熱間加工が、ダイレクトプレス成形、リヒートプレス及びリドロー成形からなる群から選択される1種以上を含む請求項6の光学ガラス成形体。 The optical glass molded body according to claim 6, wherein the hot working includes at least one selected from the group consisting of direct press molding, reheat press, and redraw molding.
  8.  請求項1~5のいずれかに記載の光学ガラスを、冷間加工を含む加工工程により成形して得られる光学ガラス成形体。 An optical glass molded body obtained by molding the optical glass according to any one of claims 1 to 5 by a processing step including cold working.
  9.  前記冷間加工が、切断、研削、研磨からなる群から選択される1種以上を含む請求項8の光学ガラス成形体。 The optical glass molded body according to claim 8, wherein the cold working includes at least one selected from the group consisting of cutting, grinding, and polishing.
  10.  請求項6~9のいずれかの光学ガラス成形体からなる、光学ガラス基板。 An optical glass substrate comprising the optical glass molded body according to any one of claims 6 to 9.
  11.  請求項6~9のいずれかの光学ガラス成形体からなる、光学素子用プリフォーム。 A preform for an optical element comprising the optical glass molded body according to any one of claims 6 to 9.
  12.  請求項10の光学ガラス基板を熱間加工及び/又は冷間加工してなる光学素子用プリフォーム。 An optical element preform formed by hot working and / or cold working the optical glass substrate of claim 10.
  13.  請求項11又は12のプリフォームを、モールドプレス成形を含む加工工程により成形してなる光学素子。 An optical element formed by molding the preform according to claim 11 or 12 by a processing step including mold press molding.
  14.  請求項10の基板を、モールドプレス成形を含む加工工程により成形してなる光学素子。  An optical element formed by molding the substrate of claim 10 by a processing step including mold press molding.
PCT/JP2012/068717 2011-07-29 2012-07-24 Optical glass WO2013018586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280037738.4A CN103717542A (en) 2011-07-29 2012-07-24 Optical glass

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-166136 2011-07-29
JP2011166136 2011-07-29
JP2011242806 2011-11-04
JP2011-242806 2011-11-04
JP2012090121 2012-04-11
JP2012-090121 2012-04-11

Publications (1)

Publication Number Publication Date
WO2013018586A1 true WO2013018586A1 (en) 2013-02-07

Family

ID=47629113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068717 WO2013018586A1 (en) 2011-07-29 2012-07-24 Optical glass

Country Status (3)

Country Link
JP (1) JP2013234104A (en)
CN (1) CN103717542A (en)
WO (1) WO2013018586A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104909560A (en) * 2014-03-14 2015-09-16 株式会社住田光学玻璃 Optical Glass, Preform for Precision Press Molding, and Optical Element
EP3431453A1 (en) * 2017-07-03 2019-01-23 CDGM Glass Co. Ltd. Heavy-lanthanum flint optical glass
CN110204194A (en) * 2019-06-28 2019-09-06 成都光明光电股份有限公司 A kind of optical glass and its gas preform, element and instrument
CN110563328A (en) * 2019-10-11 2019-12-13 湖北戈碧迦光电科技股份有限公司 Heavy flint glass and preparation method and application thereof
DE102020108867A1 (en) 2020-03-31 2021-09-30 Schott Ag Melting jar and its use

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013612A1 (en) * 2014-07-24 2016-01-28 日本電気硝子株式会社 Glass with high refractive index
WO2016068124A1 (en) * 2014-10-27 2016-05-06 Hoya株式会社 Optical glass, optical element and optical glass material
WO2016068125A1 (en) * 2014-10-27 2016-05-06 Hoya株式会社 Optical glass, optical element and optical glass material
JP6727692B2 (en) * 2014-10-29 2020-07-22 株式会社オハラ Optical glass, preforms and optical elements
CN104445924A (en) * 2014-11-21 2015-03-25 柳州创宇科技有限公司 Optical glass free of clarifying agent and optical element
CN104496174A (en) * 2014-11-21 2015-04-08 柳州创宇科技有限公司 Optical glass with high refractive index and optical element
CN104944770B (en) * 2015-06-17 2017-12-08 成都光明光电股份有限公司 Especial dispersion optical glass
US20210114918A1 (en) * 2017-02-01 2021-04-22 Ohara Inc. Optical glass, preform and optical element
CN107098579B (en) * 2017-05-15 2020-07-17 湖北戈碧迦光电科技股份有限公司 Environment-friendly lanthanum crown optical glass and preparation method thereof
CN107010827A (en) * 2017-05-15 2017-08-04 湖北戈碧迦光电科技股份有限公司 Environment protection dense-crown optical glass and preparation method thereof
CN107010826B (en) * 2017-05-15 2020-06-26 湖北戈碧迦光电科技股份有限公司 Environment-friendly lanthanum flint optical glass and preparation method thereof
CN107417095A (en) * 2017-05-16 2017-12-01 湖北戈碧迦光电科技股份有限公司 H ZBaF class optical glass and preparation method thereof
CN107140825A (en) * 2017-07-10 2017-09-08 成都光明光电股份有限公司 Optical glass
CN107935379A (en) * 2017-11-20 2018-04-20 柳州市奥康眼镜有限公司 A kind of optical glass having high refractive index and preparation method thereof
CN108793741B (en) * 2018-07-10 2021-04-20 山东康友光电科技股份有限公司 Structurally-enhanced high-refractive-index oxide glass and preparation method thereof
CN108706870B (en) * 2018-07-10 2021-06-08 齐鲁工业大学 Structurally enhanced high-refractive-index oxide glass
CN111217519A (en) * 2018-11-27 2020-06-02 宜城市泳瑞玻璃科技有限公司 Environment-friendly optical glass
US11407673B2 (en) * 2018-11-30 2022-08-09 Corning Incorporated High index glasses
CN112142324B (en) * 2020-09-28 2022-04-15 成都光明光电股份有限公司 Optical glass, glass preform and optical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344542A (en) * 1999-05-06 2000-12-12 Carl Zeiss:Fa Lead-free optical glass
JP2006137628A (en) * 2004-11-11 2006-06-01 Hoya Corp Optical glass, glass material for press molding and its manufacturing method, and optical component and its manufacturing method
JP2009263141A (en) * 2008-03-31 2009-11-12 Ohara Inc Optical glass, optical element and optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344542A (en) * 1999-05-06 2000-12-12 Carl Zeiss:Fa Lead-free optical glass
JP2006137628A (en) * 2004-11-11 2006-06-01 Hoya Corp Optical glass, glass material for press molding and its manufacturing method, and optical component and its manufacturing method
JP2009263141A (en) * 2008-03-31 2009-11-12 Ohara Inc Optical glass, optical element and optical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104909560A (en) * 2014-03-14 2015-09-16 株式会社住田光学玻璃 Optical Glass, Preform for Precision Press Molding, and Optical Element
EP3431453A1 (en) * 2017-07-03 2019-01-23 CDGM Glass Co. Ltd. Heavy-lanthanum flint optical glass
CN110204194A (en) * 2019-06-28 2019-09-06 成都光明光电股份有限公司 A kind of optical glass and its gas preform, element and instrument
CN110563328A (en) * 2019-10-11 2019-12-13 湖北戈碧迦光电科技股份有限公司 Heavy flint glass and preparation method and application thereof
DE102020108867A1 (en) 2020-03-31 2021-09-30 Schott Ag Melting jar and its use
US11964909B2 (en) 2020-03-31 2024-04-23 Schott Ag Sealing glass and use thereof

Also Published As

Publication number Publication date
CN103717542A (en) 2014-04-09
JP2013234104A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
WO2013018586A1 (en) Optical glass
JP6341836B2 (en) Optical glass and optical element
JP6037501B2 (en) Optical glass, optical element, and method for producing glass molded body
JP6188553B2 (en) Optical glass, preform material and optical element
JP2009203135A (en) Optical glass, optical element and preform for precision press molding
JP6694229B2 (en) Glass
JP6046376B2 (en) Optical glass
JP6363141B2 (en) Optical glass, preform material and optical element
JP5875572B2 (en) Optical glass, preform material and optical element
JP2014034472A (en) Optical glass, optical element, and method of producing glass molding
JP2015164885A (en) optical glass, lens preform and optical element
JP2009269770A (en) Optical glass, preform for precision press molding and optical element
TWI666187B (en) Optical glass, optical element, and method for manufacturing glass mold material
TW201731785A (en) Optical glass, preform material and optical element
JP6352647B2 (en) Optical glass, lens preform and optical element
JP2019194155A (en) Optical glass, lens preform and optical element
TW201441174A (en) Optical glass, preform material and optical element
JP6635667B2 (en) Optical glass, lens preform and optical element
JP6309786B2 (en) Optical glass, lens preform and optical element
JP5988427B2 (en) Optical glass, optical element, and method for producing glass molded body
JP2009286674A (en) Optical glass, preform for precision press molding, and optical element
TWI673245B (en) Optical glass, preforms and optical components
JP6049591B2 (en) Optical glass, preform material and optical element
JP2013139346A (en) Optical glass, preform, and optical element
JP2017057121A (en) Optical glass, preform and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819279

Country of ref document: EP

Kind code of ref document: A1