WO2013018213A1 - 位置ずれ検出器、ロボットハンド及びロボットシステム - Google Patents

位置ずれ検出器、ロボットハンド及びロボットシステム Download PDF

Info

Publication number
WO2013018213A1
WO2013018213A1 PCT/JP2011/067791 JP2011067791W WO2013018213A1 WO 2013018213 A1 WO2013018213 A1 WO 2013018213A1 JP 2011067791 W JP2011067791 W JP 2011067791W WO 2013018213 A1 WO2013018213 A1 WO 2013018213A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact member
contact
vibration
robot hand
detection unit
Prior art date
Application number
PCT/JP2011/067791
Other languages
English (en)
French (fr)
Inventor
亮一 永井
永田 英夫
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to CN201180073382.5A priority Critical patent/CN103814281A/zh
Priority to EP11870313.1A priority patent/EP2741065A4/en
Priority to PCT/JP2011/067791 priority patent/WO2013018213A1/ja
Publication of WO2013018213A1 publication Critical patent/WO2013018213A1/ja
Priority to US14/169,153 priority patent/US20140145458A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/082Grasping-force detectors
    • B25J13/083Grasping-force detectors fitted with slippage detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0028Gripping heads and other end effectors with movable, e.g. pivoting gripping jaw surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0061Force sensors associated with industrial machines or actuators
    • G01L5/0076Force sensors associated with manufacturing machines
    • G01L5/009Force sensors associated with material gripping devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39507Control of slip motion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40567Purpose, workpiece slip sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/30End effector
    • Y10S901/31Gripping jaw
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/46Sensing device

Definitions

  • the present invention relates to a displacement detector, a robot hand, and a robot system.
  • Patent Document 1 describes a slip sensor.
  • This slip sensor is configured so that a tuning fork is incorporated in a finger gripping an object, and vibration occurs in the tuning fork when a slip occurs between the finger and the object to be gripped.
  • the slip sensor is configured to detect the occurrence of slip by detecting this vibration.
  • An object of the present invention is to provide a misalignment detector, a robot hand, and a robot system capable of detecting that an object has deviated beyond a set range.
  • a contact member that contacts an object and deforms in accordance with the positional deviation of the object;
  • a regulating member that regulates deformation of the contact member that is larger than a predetermined size by contacting the deformed contact member;
  • a displacement detector including a vibration detection unit that detects vibration generated when the contact member comes into contact with the regulating member is applied.
  • a gripping claw for gripping an object;
  • a contact member that contacts the object gripped by the gripping claws and deforms in accordance with the positional displacement of the object;
  • a regulating member that regulates deformation of the contact member that is larger than a predetermined size by contacting the deformed contact member;
  • a robot hand provided with a vibration detection unit that detects vibration generated when the contact member comes into contact with the regulating member is applied.
  • a gripping claw that grips an object, a contact member that contacts the object gripped by the gripping claw and deforms when the object is displaced, and contacts the deformed contact member
  • a robotic hand having a regulating member that regulates deformation of the contact member that is larger than a predetermined size and a vibration detection unit that detects vibration generated when the contact member contacts the regulating member; If the signal based on the vibration detected by the vibration detection unit does not exceed a predetermined magnitude between the output of the command to close the gripping claw and the elapse of a predetermined time,
  • a robot system including a processing unit that determines that the gripping claw has failed to grip the object is applied.
  • the XYZ coordinate system shown in FIG. 1 is defined.
  • the XYZ coordinate system includes an X axis extending in one direction, a Y axis extending in a direction intersecting the X axis, and a Z axis extending in a direction intersecting the X axis and the Y axis.
  • This XYZ coordinate system can be an orthogonal coordinate system.
  • the robot hand 10 As shown in FIG. 1, the robot hand 10 according to the first embodiment of the present invention is provided, for example, at the tip of a robot arm 12.
  • the robot hand 10 has a base 13 and a pair of gripping claws 14 extending from the base 13 in the X-axis direction.
  • An object to be gripped by the robot hand 10 is gripped by a pair of gripping claws 14 that open and close in the Z-axis direction.
  • the robot hand 10 further includes a misalignment detector 20 provided on the side surface of one gripping claw 14. As shown in FIGS. 2A to 2C, the positional deviation detector 20 includes a contact member 22, a regulating member 24, and a vibration detection unit 26.
  • the contact member 22 can contact an object gripped by the gripping claws 14.
  • the contact member 22 has a shape in which an intermediate portion of one bar-like member is bent, and has elasticity.
  • the contact member can be made of metal or resin, for example.
  • the contact member 22 includes a fixed portion 22a extending in the positive direction (first direction) of the Y axis, and a contact portion 22b extending in the negative direction (second direction) of the Z axis from the distal end portion of the fixed portion 22a. And have.
  • the fixing portion 22a of the contact member 22 is fixed to the side surface of the gripping claw 14 by a bolt BLT1 via a support member (an example of a member to be fixed) 32 that is an angle member.
  • the fixing portion 22a is sandwiched between the support member 32 and the plate-like fixing member 34, and is fixed by fastening the fixing member 34 to the support member 32 with a bolt BLT2.
  • the fixing portion 22a On the surface of the fixing member 34 on the fixing portion 22a side, the fixing portion 22a is fitted, and a groove 36 extending in the Y-axis direction is formed. Therefore, when the bolt BLT2 that fixes the fixing member 34 is loosened, the contact member 22 can be moved along the groove 36 in the Y-axis direction.
  • the tip of the contact portion 22b of the contact member 22 can contact an object gripped by the gripping claws 14.
  • a friction member 38 having a friction coefficient larger than that of the object is provided at the tip of the contact portion 22b.
  • the friction member 38 can be made of rubber.
  • the regulating member 24 can regulate the deformation of the contact member 22 with a predetermined size or more by contacting the contact member 22.
  • the restricting member 24 is fixed to the support member 32 with bolts BLT3.
  • the restriction member 24 is formed with a hole 42 whose central axis is along the Z-axis direction.
  • the contact portion 22 b of the contact member 22 passes through the center of the hole 42.
  • the diameter of the hole 42 is a size corresponding to the allowable positional deviation amount of the object to be set. For example, when a positional deviation of 3 mm is allowed, the radius of the hole 42 is 3 mm.
  • the hole 42 formed in the restricting member 24 can be a notch as long as deformation of the contact member 22 can be restricted.
  • the vibration detection unit 26 can detect vibrations of the contact member 22 and the regulating member 24. For example, the electrical resistance of the vibration detection unit 26 changes according to the detected vibration.
  • the vibration detection unit 26 is provided, for example, on the surface of the fixing member 34 opposite to the fixed side surface. It is preferable that the vibration detection unit 26 is provided above the fixed portion 22a of the contact member 22 and on the positive direction side of the Y axis, in particular, in order to easily detect vibration. That is, it is preferable to provide at a location near the contact portion 22 b on the fixing member 34. A part of the contact member 22 may be enlarged to form a widened portion, and the vibration detector 26 may be provided in the widened portion instead of the fixed member 34.
  • the vibration detection unit 26 can be configured using, for example, a strain gauge (an example of a strain detection sensor) that detects a strain caused by vibration as a change in electrical resistance.
  • the change in the electrical resistance of the vibration detection unit 26 is converted into a change in voltage by the amplifier substrate 52 shown in FIG.
  • This change in voltage is converted from an analog signal to a digital signal by an A / D board 56 which is an A / D converter connected to the microcomputer 54, and is input to a processing unit 60 that processes data.
  • the processing unit 60 is realized by software executed by the microcomputer 54. Note that the processing unit can also be regarded as a part of the misregistration detector.
  • At least the robot hand 10 and the processing unit 60 constitute a robot system 64.
  • a gripping error signal is output from the processing unit 60.
  • the processing unit 60 executes gripping confirmation processing S1 for confirming whether or not the object has been gripped. Subsequently, the processing unit 60 executes a positional deviation detection process S2 for detecting a positional deviation after gripping an object.
  • the processing unit 60 executes the following process shown in FIG. 4B. (Step S1-1) The processing unit 60 acquires the voltage value V based on the electrical resistance value of the vibration detection unit 26 via the A / D board 56.
  • Step S1-2 As shown in FIG. 5, when the contact member 22 comes into contact with an object, the contact member 22 is deformed, and the voltage value V increases with a change in the electrical resistance of the vibration detection unit 26 (see B1 shown in FIG. 5). If the voltage value V is equal to or higher than the threshold value Vthr1 (see B2 shown in FIG. 5), it can be determined that the gripping claws 14 have gripped the object. Note that the threshold value Vthr1 is set to a size that is not detected by a minute deformation generated in the contact member 22 due to inertia when the gripping claws 14 are opened and closed.
  • step S1-3 the processing unit 60 determines that the contact member 22 has deformed due to contact with the object. Thereafter, step S1-4 is executed.
  • Step S1-3 The processing unit 60 determines that the object is gripped and outputs a gripping confirmation signal. Thereafter, the grip confirmation process S1 is terminated.
  • Step S1-4 The process returns to step S1-1 until a predetermined time T1 seconds elapses after the close command for closing the gripping claws 14 of the robot hand 10 is output. That is, step S1-1 and step S1-2 are repeated until time T1 seconds elapses.
  • step S1-5 if time T1 seconds have elapsed since the command to close the gripping claws 14 of the robot hand 10 was output, the process proceeds to step S1-5.
  • Step S1-5 The processing unit 60 outputs a gripping error signal indicating that the gripping of the object has failed. Thereafter, the grip confirmation process S1 is terminated. By outputting the gripping error signal, the robot hand 10 can stop the operation of holding the object, and can indicate to the field worker that the gripping of the object has failed.
  • Step S2-1 The processing unit 60 acquires the voltage value V based on the electrical resistance value of the vibration detection unit 26 via the A / D board 56.
  • Step S2-2 The processing unit 60 performs low-pass filter processing on the voltage value V to obtain a voltage value Vflt.
  • Step S2-3) The processing unit 60 differentiates the voltage value Vflt to obtain a voltage differential value Vdif.
  • Step S2-4 As shown in FIG. 6, when the position of the object starts to shift, the contact member 22 that contacts the object is deformed and vibration is generated along with the position shift of the object. The generated vibration appears as a change in electrical resistance of the vibration detection unit 26, and the voltage differential value Vdif based on this change in electrical resistance increases (see C1 shown in FIG. 6).
  • the contact portion 22b of the contact member 22 comes into contact with the regulating member 24 and an impact is generated. Then, the increase / decrease in the voltage differential value Vdif is reversed (see C2 in FIG.
  • the voltage differential value Vdif is within T2 seconds after the sign of the voltage differential value Vdif is reversed (see C3 in FIG. 6). Is equal to or greater than the threshold value Vthr2 (see C4 shown in FIG. 6), it can be determined that the position of the object has shifted.
  • the processing unit 60 determines that the contact member 22 is in contact with the regulating member 24 and the object is displaced more than the allowable displacement amount.
  • Condition A The absolute value
  • Condition B The inversion of the sign of the voltage differential value Vdif is detected during T2 seconds (predetermined period) before the condition A is satisfied. Thereafter, Step S2-5 is executed.
  • the processing unit 60 determines that the positional deviation amount of the object is within the allowable positional deviation amount, and returns to step S2-1.
  • Step S2-5) The processing unit 60 outputs a positional deviation detection signal.
  • the robot hand 10 temporarily moves the currently gripped object to another place and starts a gripping operation on the next object to be gripped. At that time, by increasing the gripping force, it can be dealt with so as not to be displaced again.
  • the misalignment detector 20 can be retrofitted to an existing gripping claw that does not have the misalignment detector 20.
  • the robot hand according to the second embodiment includes a misalignment detector 120.
  • the positional deviation detector 120 includes an X-axis contact member 122x and a Y-axis contact member 122y, an X-axis regulating member 124x and a Y-axis contact regulating member 124y, a vibration detector 126, and the like. have.
  • Each contact member 122x, 122y can contact the object gripped by the gripping claws 14.
  • Each contact member 122x, 122y is provided at intervals in the X-axis direction.
  • Each of the contact members 122x and 122y has a shape in which an intermediate portion of one bar-like member is bent, and has elasticity.
  • each of the contact members 122x and 122y includes a fixed portion 122a extending in the positive direction (first direction) of the Y axis, and a negative direction (second direction) of the Z axis from the distal end portion of the fixed portion 122a. And an extending contact portion 122b.
  • the fixing portions 122a of the contact members 122x and 122y are fixed to the side surfaces of the gripping claws 14 by bolts via support members 132 (an example of fixed members) that are angle members. Each fixing portion 122a is sandwiched between the support member 132 and the plate-like fixing member 134, and is fixed by fastening the fixing member 134 to the support member 132 with a bolt (not shown). On the surface of the fixing member 134 on the side of the fixing portion 122a, a groove 136 into which each fixing portion 122a is fitted is formed. Therefore, when the bolt is loosened, the contact members 122x and 122y can be moved in the Y-axis direction along the groove 136.
  • the tips of the contact portions 122b of the contact members 122x and 122y can contact the object gripped by the gripping claws 14.
  • a friction member 138 having a friction coefficient larger than that of the object is provided at the tip of each contact portion 122b.
  • the X-axis regulating member 124x and the Y-axis regulating member 124y are respectively fixed to the support member 132 with an interval in the X-axis direction.
  • the X-axis regulating member 124x is formed with a rectangular hole 142x whose longitudinal direction is the X-axis direction.
  • the contact portion 122b of the X-axis contact member 122x passes through the center of the hole 142x.
  • the Y-axis regulating member 124y is formed with a rectangular hole 142y whose longitudinal direction is the Y-axis direction.
  • the contact portion 122b of the Y-axis contact member 122y passes through the center of the hole 142y.
  • each hole 142x, 142y is twice the amount of positional displacement of the object to be set. For example, when setting a positional deviation of 3 mm in both the X-axis and Y-axis directions, the lengths of the holes 142x and 142y are 6 mm. By preparing a plurality of restricting members having different lengths of the holes 142x and 142y and exchanging them, the allowable positional deviation amount can be changed.
  • the widths of the holes 142x and 142y are slightly larger than the thickness of the contact members 122x and 122y passing through the holes 142x and 142y (for example, 1 to 10% larger than the thickness of the contact members 122x and 122y). Is set to
  • the vibration detection unit 126 can detect the vibration of the X-axis contact member 122x and the X-axis regulating member 124x and the vibration of the Y-axis contact member 122y and the Y-axis regulating member 124y, respectively.
  • the misalignment detector 120 includes the X-axis contact member 122x, the X-axis regulating member 124x, the Y-axis contact member 122y, and the Y-axis regulating member 124y.
  • the displacement of the object in the Y-axis direction can be detected.
  • the support member 132 may include an X-axis vibration detection unit that detects vibration in the X-axis direction and a Y-axis vibration detection unit that detects vibration in the Y-axis direction.
  • the present invention is not limited to the above-described embodiments, and modifications can be made without changing the gist of the present invention.
  • a case where the invention is configured by combining some or all of the above-described embodiments and modifications is also included in the technical scope of the present invention.
  • the A / D board can be connected to a PCI bus or the like of the robot controller.
  • the vibration detection unit may output a voltage based on the detected vibration, for example. However, when the vibration detector outputs a voltage, the amplifier board amplifies this voltage and outputs it. The vibration detection unit only needs to detect some change in response to vibration.
  • the vibration detection unit can also be configured using a piezoelectric element or the like that is another strain detection sensor. As the vibration detection unit, a sensor that can detect the magnitude of the vibration or impact of the contact member can be used.
  • the contact between the contact member and the regulating member is detected by the vibration detection unit, but any means capable of detecting the contact between the contact member and the regulating member may be used.
  • a contact is formed by a conductive contact member and a conductive regulating member, and when this contact is closed, it is detected that the contact member and the regulating member are in contact (the object is displaced). May be.
  • the contact portion of the contact member is arranged so as to pass through a hole formed in the center portion of the gripping claw in the Y-axis direction so as to contact the object at the center portion of the gripping claw in the Y-axis direction when viewed in plan from the Z-axis direction. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

 設定範囲以上に物体が位置ずれしたことを検出することが可能な位置ずれ検出器20、ロボットハンド10及びロボットシステム64を提供する。 位置ずれ検出器20は、物体に接触し、物体の位置ずれに伴って変形する接触部材22と、変形した接触部材22に接触することで接触部材22の予め決められた大きさ以上の変形を規制する規制部材24と、接触部材22が規制部材24に接触した際に生じる振動を検出する振動検出部26とを備える。

Description

位置ずれ検出器、ロボットハンド及びロボットシステム
 本発明は、位置ずれ検出器、ロボットハンド及びロボットシステムに関する。
 特許文献1には、すべり覚センサが記載されている。このすべり覚センサは、物体を把持する指に音叉を組み込み、把持すべき物体との間にすべりが生じた場合、音叉に振動が発生するように構成されている。すべり覚センサは、この振動を検知することにより、すべりの発生を知ることができるように構成されている。
特開昭61-56891号公報
 本発明は、設定範囲以上に物体が位置ずれしたことを検出することが可能な位置ずれ検出器、ロボットハンド及びロボットシステムを提供することを目的とする。
 上記課題を解決するため、本発明の一の観点によれば、物体に接触し、該物体の位置ずれに伴って変形する接触部材と、
 変形した前記接触部材に接触することで該接触部材の予め決められた大きさ以上の変形を規制する規制部材と、
 前記接触部材が前記規制部材に接触した際に生じる振動を検出する振動検出部とを備えた位置ずれ検出器が適用される。
 また、他の観点によれば、物体を把持する把持爪と、
 前記把持爪によって把持された前記物体に接触し、該物体の位置ずれに伴って変形する接触部材と、
 変形した前記接触部材に接触することで該接触部材の予め決められた大きさ以上の変形を規制する規制部材と、
 前記接触部材が前記規制部材に接触した際に生じる振動を検出する振動検出部とを備えたロボットハンドが適用される。
 また、他の観点によれば、物体を把持する把持爪、該把持爪によって把持された前記物体に接触し該物体の位置ずれに伴って変形する接触部材、変形した該接触部材に接触することで該接触部材の予め決められた大きさ以上の変形を規制する規制部材及び前記接触部材が該規制部材に接触した際に生じる振動を検出する振動検出部を有するロボットハンドと、
 前記把持爪が閉じる指令が出力されてから予め決められた時間が経過するまでの間に、前記振動検出部が検出した振動に基づく信号が予め決められた大きさ以上とならない場合には、前記把持爪が前記物体の把持に失敗したと判断する処理部とを備えたロボットシステムが適用される。
 本発明によれば、設定範囲以上に物体が位置ずれしたことを検出することができる。
本発明の第1の実施例に係るロボットハンドの構成図である。 同ロボットハンドが有する位置ずれ検出器の平面図である。 同ロボットハンドが有する位置ずれ検出器の正面図である。 同ロボットハンドが有する位置ずれ検出器の側面図である。 同ロボットハンドの動作を示す説明図である。 同ロボットハンドを含むロボットシステムの動作を示すフローチャートである。 同ロボットハンドが物体を把持する前のロボットシステムの動作を示すフローチャートである。 同ロボットハンドが物体を把持した後のロボットシステムの動作を示すフローチャートである。 同ロボットハンドが物体の把持を確認する際に振動検出部が出力する信号を示す波形図である。 同ロボットハンドが把持した物体が位置ずれした際に振動検出部が出力する信号を示す波形図である。 本発明の第2の実施例に係るロボットハンドの位置ずれ検出器の斜視図である。
 続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。なお、各図において、説明に関連しない部分は図示を省略する場合がある。
 説明の便宜上、図1に示すXYZ座標系を定義する。XYZ座標系は、一の方向に延びるX軸と、X軸と交差する方向に延びるY軸と、X軸及びY軸と交差する方向に延びるZ軸とからなる。このXYZ座標系は、直交座標系とすることができる。
〔第1の実施例〕
 本発明の第1の実施例に係るロボットハンド10は、図1に示すように、例えばロボットアーム12の先端部に設けられている。
 ロボットハンド10は、基部13と、基部13からX軸方向に延びる1対の把持爪14を有している。ロボットハンド10の把持対象となる物体は、Z軸方向に開閉する1対の把持爪14により把持される。
 ロボットハンド10は、更に、一方の把持爪14の側面に設けられた位置ずれ検出器20を有している。
 位置ずれ検出器20は、図2A~図2Cに示すように、接触部材22と、規制部材24と、振動検出部26とを有している。
 接触部材22は、把持爪14が把持した物体に接触することができる。接触部材22は、1本の棒状部材の中間部を折り曲げた形状をしており、弾性を有している。接触部材は、例えば、金属や樹脂により構成できる。
 詳細には、接触部材22は、Y軸の正方向(第1の方向)に延びる固定部22aと、固定部22aの先端部からZ軸の負方向(第2の方向)に延びる接触部22bとを有している。
 接触部材22の固定部22aは、アングル材である支持部材(被固定部材の一例)32を介して把持爪14の側面にボルトBLT1によって固定される。固定部22aは、支持部材32と、板状の固定部材34との間で挟まれ、固定部材34を支持部材32に対してボルトBLT2にて締め付けることにより固定される。固定部材34の固定部22aの側の面には、固定部22aが嵌り、Y軸方向に延びる溝36が形成されている。従って、固定部材34を固定するボルトBLT2を緩めると、溝36に沿って接触部材22をY軸方向に移動させることができる。
 接触部材22の接触部22bの先端部は、把持爪14が把持する物体に接触することができる。この接触部22bの先端部には、物体よりも摩擦係数が大きい摩擦部材38が設けられている。この摩擦部材38は、例えば物体が金属製のワークである場合には、ゴムとすることができる。
 規制部材24は、接触部材22に接触して接触部材22の予め決められた大きさ以上の変形を規制することができる。規制部材24は、支持部材32にボルトBLT3によって固定されている。規制部材24には、中心軸がZ軸方向に沿う孔42が形成されている。この孔42の中心部には、接触部材22の接触部22bが通っている。
 孔42の径は、設定する物体の許容位置ずれ量に応じた大きさとなっている。例えば、3mmの位置ずれを許容する場合には、孔42の半径を3mmとする。
 孔42の径が異なる規制部材を複数準備しておき、交換することにより、許容できる位置ずれ量を変更できる。孔42の径が異なる規制部材を複数準備するのではなく、孔42の径を調整するための機構を設けることも可能である。
 なお、規制部材24に形成された孔42は、接触部材22の変形を規制できれば、切り欠きとすることも可能である。
 振動検出部26は、接触部材22及び規制部材24の振動を検出することができる。振動検出部26は、検出した振動に応じて、例えば電気抵抗が変化する。
 振動検出部26は、例えば、固定部材34の固定側の面とは反対側の表面に設けられている。振動検出部26は、振動を検出しやすいように、特に、この表面の中でも接触部材22の固定部22aの上方かつY軸の正方向側に設けることが好ましい。つまり、固定部材34上の接触部22bに近い箇所に設けることが好ましい。
 接触部材22の一部を大きくして拡幅部を形成し、振動検出部26が固定部材34ではなく、この拡幅部に設けられてもよい。
 振動検出部26は、例えば、振動により生じた歪が電気抵抗の変化として検出される歪ゲージ(歪検出センサの一例)を用いて構成できる。
 振動検出部26の電気抵抗の変化は、図1に示すアンプ基板52によって電圧の変化に変換される。この電圧の変化は、マイクロコンピュータ54に接続されたA/D変換器であるA/Dボード56によって、アナログ信号からデジタル信号へと変換され、データを処理する処理部60に入力される。この処理部60は、マイクロコンピュータ54により実行されるソフトウェアによって実現される。
 なお、処理部は、位置ずれ検出器の一部として捉えることも可能である。
 また、少なくともロボットハンド10と、この処理部60とにより、ロボットシステム64が構成される。
 次に、ロボットハンド10の動作及びロボットハンド10の動作に伴う位置ずれ検出処理(ロボットシステム64の動作)について説明する。
 ロボットハンド10を制御する図示しない制御装置が把持爪14を閉じる指令(閉指令)を出力すると、図3の上段に示すようにロボットハンド10は一対の把持爪14にて物体OBJを把持する。把持した際にすべりが生じ、物体OBJの位置が許容される許容位置ずれ量以上にずれると、接触部材22が動いて(変形して)規制部材24に接触し、位置ずれが発生したことが検出され、処理部60(図1参照)から位置ずれ検出信号が出力される。
 一方、閉指令が出力された後、図3の下段に示すようにロボットハンド10が物体OBJを把持することができなかった場合には、物体OBJを把持することができなかったことが検出され、処理部60から把持エラー信号が出力される。
 図4Aに示すように、把持爪14を閉じる閉指令が出力された後、処理部60は、物体を把持したか否かを確認する把持確認処理S1を実行する。続いて処理部60は、物体を把持した後に位置ずれを検出する位置ずれ検出処理S2を実行する。
 把持確認処理S1では、処理部60は、図4Bに示す以下の処理を実行する。
(ステップS1-1)
 処理部60が、A/Dボード56を介して、振動検出部26の電気抵抗値に基づく電圧値Vを取得する。
(ステップS1-2)
 図5に示すように、物体に接触部材22が接触すると、接触部材22が変形し、振動検出部26の電気抵抗変化に伴い電圧値Vが増加する(同図5に示すB1参照)。電圧値Vが閾値Vthr1以上となれば(同図5に示すB2参照)、把持爪14が物体を把持したと判断できる。なお、閾値Vthr1は、把持爪14が開閉する際の慣性によって接触部材22に生じる微小な変形程度では検出しない大きさに設定しておく。
 処理部60は、電圧値Vが閾値Vthr1以上である場合には、接触部材22が物体と接触して変形したものと判断する。その後、ステップS1-3が実行される。
 一方、処理部60は、電圧値Vが閾値Vthr1未満である場合には、接触部材22が物体と接触していないものと判断する。その後、ステップS1-4が実行される。
(ステップS1-3)
 処理部60が、物体を把持したものと判断し、把持確認信号を出力する。その後、把持確認処理S1を終了する。
(ステップS1-4)
 ロボットハンド10の把持爪14を閉じる閉指令が出力されてから予め決められた時間T1秒経過するまで、ステップS1-1へ戻る。即ち、時間T1秒経過するまでは、ステップS1-1及びステップS1-2を繰り返すことになる。
 一方、ロボットハンド10の把持爪14を閉じる指令が出力されてから時間T1秒経過した場合には、ステップS1-5に進む。
(ステップS1-5)
 処理部60が、物体の把持に失敗したことを示す把持エラー信号を出力する。その後、把持確認処理S1を終了する。
 把持エラー信号を出力することにより、ロボットハンド10が物体を持する動作を中止し、現場作業者に物体の把持に失敗したことを提示できる。
 次に、位置ずれ検出処理S2では、処理部60は、図4Cに示す以下の処理を実行する。
(ステップS2-1)
 処理部60が、A/Dボード56を介して、振動検出部26の電気抵抗値に基づく電圧値Vを取得する。
(ステップS2-2)
 処理部60が、電圧値Vをローパスフィルタ処理して、電圧値Vfltを得る。
(ステップS2-3)
 処理部60が、電圧値Vfltを微分処理して、電圧微分値Vdifを得る。
(ステップS2-4)
 図6に示すように、物体の位置がずれ始めると、物体の位置ずれに伴って、物体に接触する接触部材22が変形して振動が発生する。発生した振動は振動検出部26の電気抵抗変化として現れ、この電気抵抗変化に基づく電圧微分値Vdifが増加する(同図6に示すC1参照)。許容位置ずれ量を超えて物体の位置がずれると、接触部材22の接触部22bは規制部材24に接触し、衝撃が発生する。すると、電圧微分値Vdifの増減が反転し(同図6に示すC2参照)、電圧微分値Vdifの符号が反転して(同図6に示すC3参照)からT2秒以内に、電圧微分値Vdifの絶対値が閾値Vthr2以上となるので(同図6に示すC4参照)、物体の位置がずれたものと判断できる。
 そこで処理部60は、次の2つの条件A、Bを満たしている場合には、接触部材22が規制部材24に接触し、許容位置ずれ量以上に物体が位置ずれしたと判断する。
(条件A)
 電圧微分値Vdifの絶対値|Vdif|が予め設定された閾値Vthr2以上となっていること。
(条件B)
 条件Aを満たす前のT2秒の間(予め決められた期間)に電圧微分値Vdifの符号の反転を検出していること。
 その後、ステップS2-5が実行される。
 一方、2つの条件A及び条件Bの少なくとも一方を満たしていない場合には、処理部60は物体の位置ずれ量が許容位置ずれ量以内であると判断し、ステップS2-1へ戻る。
(ステップS2-5)
 処理部60が位置ずれ検出信号を出力する。
 なお、位置ずれ検出信号が出力されると、ロボットハンド10は、現在把持している物体を一旦別の場所に移して、次の把持対象となる物体に対する把持動作を開始する。その際、把持力をより大きくすることで、再び位置ずれしないように対処できる。
 以上説明したように、本実施例によれば、許容位置ずれ量以上に物体が位置ずれしたことが検出される。
 なお、位置ずれ検出器20は、位置ずれ検出器20を有していない既存の把持爪に後付けすることが可能である。
〔第2の実施例〕
 続いて、本発明の第2の実施例に係るロボットハンドについて説明する。第1の実施例に係るロボットハンド10と同一の構成要素については、同じ符号を付して詳しい説明を省略する。
 第2の実施例に係るロボットハンドは、位置ずれ検出器120を備えている。
 位置ずれ検出器120は、図7に示すように、X軸用接触部材122x及びY軸用接触部材122yと、X軸用規制部材124x及びY軸用接規制部材124yと、振動検出部126とを有している。
 各接触部材122x、122yは、把持爪14が把持した物体に接触することができる。各接触部材122x、122yは、X軸方向に間隔をあけて設けられている。各接触部材122x、122yは、1本の棒状部材の中間部を折り曲げた形状をしており、弾性を有している。詳細には、各接触部材122x、122yは、Y軸の正方向(第1の方向)方向に延びる固定部122aと、固定部122aの先端部からZ軸の負方向(第2の方向)に延びる接触部122bとを有している。
 各接触部材122x、122yの固定部122aは、アングル材である支持部材(被固定部材の一例)132を介して把持爪14の側面にボルトによって固定される。各固定部122aは、支持部材132と、板状の固定部材134との間で挟まれ、固定部材134を支持部材132に対してボルト(不図示)にて締め付けることにより固定される。固定部材134の固定部122aの側の面には、各固定部122aが嵌る溝136が形成されている。従って、ボルトを緩めると、溝136に沿って各接触部材122x、122yをY軸方向に移動させることができる。
 各接触部材122x、122yの接触部122bの先端部は、把持爪14が把持する物体に接触することができる。この各接触部122bの先端部には、物体よりも摩擦係数が大きい摩擦部材138が設けられている。
 X軸用規制部材124x及びY軸用規制部材124yは、X軸方向に間隔をあけて、それぞれ支持部材132に固定されている。
 X軸用規制部材124xには、X軸方向が長手となる矩形状の孔142xが形成されている。この孔142xの中心部には、X軸用接触部材122xの接触部122bが通っている。
 Y軸用規制部材124yには、Y軸方向が長手となる矩形状の孔142yが形成されている。この孔142yの中心部には、Y軸用接触部材122yの接触部122bが通っている。
 各孔142x、142yの長手方向の長さは、設定する物体の位置ずれ量の2倍となっている。例えば、X軸及びY軸方向共に3mmの位置ずれを設定する場合には、各孔142x、142yの長さを6mmとする。
 各孔142x、142yの長さが異なる規制部材を複数準備しておき、交換することにより、許容できる位置ずれ量を変更できる。
 なお、各孔142x、142yの幅は、各孔142x、142yを通る接触部材122x、122yの太さよりも僅かに大きく(例えば、接触部材122x、122yの太さの1~10%大きく)なるように設定されている。
 振動検出部126は、X軸用接触部材122x及びX軸用規制部材124xの振動並びにY軸用接触部材122y及びY軸用規制部材124yの振動をそれぞれ検出することができる。
 本実施例に係る位置ずれ検出器120は、X軸用接触部材122x及びX軸用規制部材124x並びにY軸用接触部材122y及びY軸用規制部材124yを有しているので、X軸方向及びY軸方向の物体の位置ずれをそれぞれ検出できる。
 なお、X軸方向の振動を検出するX軸用振動検出部と、Y軸方向の振動を検出するY軸用振動検出部とがそれぞれ支持部材132に設けられてもよい。
 本発明は、前述の実施例に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能である。例えば、前述の実施例や変形例の一部又は全部を組み合わせて発明を構成する場合も本発明の技術的範囲に含まれる。
 例えば、前述の実施例においては、ロボットハンドを制御するロボット制御装置に処理部を設け、位置ずれを検出することも可能である。この場合、A/Dボードは、ロボット制御装置のPCIバス等に接続することができる。
 振動検出部は、検出した振動に基づいて、例えば電圧を出力しても良い。ただし、振動検出部が電圧を出力する場合は、アンプ基板は、この電圧を増幅して出力する。振動検出部は、振動に応じて何らかの変化が検出されるものであれば良い。
 また、振動検出部を、他の歪検出センサである圧電素子等を用いて構成することも可能である。振動検出部として、接触部材の振動や衝撃の大きさを検出できるセンサを用いることも可能である。
 また、前述の実施例においては、振動検出部によって、接触部材と規制部材との接触を検出していたが、接触部材と規制部材との接触を検出することができる任意の手段としてもよい。例えば、導電性を有する接触部材と導電性を有する規制部材とにより接点を構成し、この接点が閉じたことによって、接触部材と規制部材とが接触したこと(物体が位置ずれしたこと)を検出してもよい。
 接触部材の接触部は、Z軸方向から平面視して、把持爪のY軸方向中心部で物体に接触するように、把持爪のY軸方向中心部に形成された孔を通るように配置されてもよい。
10:ロボットハンド、12:ロボットアーム、13:基部、14:把持爪、20:位置ずれ検出器、22:接触部材、22a:固定部、22b:接触部、24:規制部材、26:振動検出部、32:支持部材、34:固定部材、36:溝、38:摩擦部材、42:孔、52:アンプ基板、54:マイクロコンピュータ、56:A/Dボード、60:処理部、64:ロボットシステム、120:位置ずれ検出器、122a:固定部、122b:接触部、122x:X軸用接触部材、122y:Y軸用接触部材、124x:X軸用規制部材、124y:Y軸用規制部材、126:振動検出部、132:支持部材、134:固定部材、136:溝、138:摩擦部材、142x:孔、142y:孔、OBJ:物体、BLT1、BLT2、BLT3:ボルト
 

Claims (15)

  1.  物体に接触し、該物体の位置ずれに伴って変形する接触部材と、
     変形した前記接触部材に接触することで該接触部材の予め決められた大きさ以上の変形を規制する規制部材と、
     前記接触部材が前記規制部材に接触した際に生じる振動を検出する振動検出部とを備えた位置ずれ検出器。
  2.  請求項1記載の位置ずれ検出器において、前記規制部材に、前記接触部材が通る孔又は切り欠きが形成されている位置ずれ検出器。
  3.  請求項2記載の位置ずれ検出器において、前記接触部材は、前記物体に接触し、前記物体よりも摩擦係数が大きい摩擦部材を先端部に有する位置ずれ検出器。
  4.  請求項3記載の位置ずれ検出器において、前記接触部材を被固定部材との間で挟んで固定する固定部材を更に備え、
     前記振動検出部が、前記固定部材に設けられた歪検出センサを用いて構成される位置ずれ検出器。
  5.  請求項4記載の位置ずれ検出器において、前記歪検出センサが、歪ゲージである位置ずれ検出器。
  6.  請求項5記載の位置ずれ検出器において、前記歪ゲージより得られた電圧値を微分した電圧微分値が入力される処理部を更に備え、
     前記処理部は、前記電圧微分値の絶対値が予め設定された閾値以上となっていることである条件Aと、該条件Aを満たす前の予め決められた期間に前記電圧微分値の符号の反転を検出していることである条件Bとをともに満たした場合に位置ずれしたと判断する位置ずれ検出器。
  7.  請求項1~3のいずれか1項に記載の位置ずれ検出器において、前記接触部材及び前記規制部材がそれぞれ導電性を有し、
     前記振動検出部に代えて、前記接触部材と前記規制部材とにより構成される接点を備えた位置ずれ検出器。
  8.  物体を把持する把持爪と、
     前記把持爪によって把持された前記物体に接触し、該物体の位置ずれに伴って変形する接触部材と、
     変形した前記接触部材に接触することで該接触部材の予め決められた大きさ以上の変形を規制する規制部材と、
     前記接触部材が前記規制部材に接触した際に生じる振動を検出する振動検出部とを備えたロボットハンド。
  9.  請求項8記載のロボットハンドにおいて、前記接触部材は、第1の方向に延び、前記把持爪に固定される固定部と、
     前記固定部から、前記第1の方向と交差する第2の方向に延び、前記物体に接触する接触部とを有するロボットハンド。
  10.  請求項9記載のロボットハンドにおいて、前記規制部材に、前記接触部材の接触部が通る孔又は切り欠きが形成されているロボットハンド。
  11.  請求項10記載のロボットハンドにおいて、前記接触部材の固定部を前記把持爪との間で挟んで固定する固定部材を更に有し、
     前記固定部材に、前記固定部が嵌り、前記第1の方向に延びる溝が形成されているロボットハンド。
  12.  請求項11記載のロボットハンドにおいて、前記振動検出部が、前記固定部材に設けられた歪検出センサを用いて構成されるロボットハンド。
  13.  請求項8~11のいずれか1項に記載のロボットハンドにおいて、前記接触部材及び前記規制部材がそれぞれ導電性を有し、
     前記振動検出部に代えて、前記接触部材と前記規制部材とにより構成される接点を備えたロボットハンド。
  14.  物体を把持する把持爪、該把持爪によって把持された前記物体に接触し該物体の位置ずれに伴って変形する接触部材、変形した該接触部材に接触することで該接触部材の予め決められた大きさ以上の変形を規制する規制部材及び前記接触部材が該規制部材に接触した際に生じる振動を検出する振動検出部を有するロボットハンドと、
     前記把持爪が閉じる指令が出力されてから予め決められた時間が経過するまでの間に、前記振動検出部が検出した振動に基づく信号が予め決められた大きさ以上とならない場合には、前記把持爪が前記物体の把持に失敗したと判断する処理部とを備えたロボットシステム。
  15.  請求項14記載のロボットシステムにおいて、前記振動検出部は、前記振動により生じた歪に基づいて信号を出力する歪検出センサを用いて構成され、
     前記処理部は、前記歪検出センサが出力する前記信号より得られた電圧値を微分した電圧微分値が入力され、該電圧微分値の絶対値が予め設定された閾値以上となっていることである条件Aと、該条件Aを満たす前の予め決められた期間に前記電圧微分値の符号が反転していることである条件Bとをともに満たした場合に位置ずれしたと判断するロボットシステム。
     
PCT/JP2011/067791 2011-08-03 2011-08-03 位置ずれ検出器、ロボットハンド及びロボットシステム WO2013018213A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180073382.5A CN103814281A (zh) 2011-08-03 2011-08-03 错位检测器、机器人手和机器人系统
EP11870313.1A EP2741065A4 (en) 2011-08-03 2011-08-03 POSITION CHANGE DETECTOR, ROBOT HAND AND ROBOT SYSTEM
PCT/JP2011/067791 WO2013018213A1 (ja) 2011-08-03 2011-08-03 位置ずれ検出器、ロボットハンド及びロボットシステム
US14/169,153 US20140145458A1 (en) 2011-08-03 2014-01-31 Positional displacement detector, robot hand, and robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067791 WO2013018213A1 (ja) 2011-08-03 2011-08-03 位置ずれ検出器、ロボットハンド及びロボットシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/169,153 Continuation US20140145458A1 (en) 2011-08-03 2014-01-31 Positional displacement detector, robot hand, and robot system

Publications (1)

Publication Number Publication Date
WO2013018213A1 true WO2013018213A1 (ja) 2013-02-07

Family

ID=47628775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067791 WO2013018213A1 (ja) 2011-08-03 2011-08-03 位置ずれ検出器、ロボットハンド及びロボットシステム

Country Status (4)

Country Link
US (1) US20140145458A1 (ja)
EP (1) EP2741065A4 (ja)
CN (1) CN103814281A (ja)
WO (1) WO2013018213A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105945999A (zh) * 2016-06-01 2016-09-21 淮南市鸿裕工业产品设计有限公司 一种抓取装置的接触感应调控模块
JP2021091041A (ja) * 2019-12-10 2021-06-17 国立大学法人 名古屋工業大学 振動センサを備えるロボットハンドおよびそれを備えるロボットシステム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017855A1 (de) * 2014-12-03 2016-06-09 Dürr Systems GmbH Handhabungseinrichtung zum Öffnen einer Klappe und entsprechendes Verfahren
EP3220148B1 (de) * 2016-03-17 2020-07-15 Siemens Healthcare Diagnostics Products GmbH Verfahren zur überwachung des transports von flüssigkeitsbehältern in einem automatischen analysegerät
CN105880904B (zh) * 2016-04-11 2017-09-19 浙江陆虎汽车有限公司 顶盖横梁防错导向检测机构
AT521085B1 (de) * 2018-04-11 2020-02-15 Trumpf Maschinen Austria Gmbh & Co Kg Verfahren zur Bewegungssteuerung eines Werkstücks
DE102019129417B4 (de) * 2019-10-31 2022-03-24 Sick Ag Verfahren zum automatischen Handhaben von Objekten

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853464A (ja) * 1971-11-04 1973-07-27
JPS536890A (en) * 1976-07-09 1978-01-21 Hitachi Ltd Contact sensor
JPS6156891A (ja) 1984-08-24 1986-03-22 日本電信電話株式会社 すべり覚センサ
JPS6259886A (ja) * 1985-09-11 1987-03-16 Fuji Facom Corp 移動体の接触検出装置
JPS63117242A (ja) * 1986-11-04 1988-05-21 Koyo Seiko Co Ltd ロボツトにおける把握状態検出装置
JPH04164589A (ja) * 1990-10-30 1992-06-10 Canon Inc ワーク把持装置
JPH07504270A (ja) * 1992-03-03 1995-05-11 ティーティーピー グループ ピーエルシー 機械的振動を使用する移動検出センサ
JPH102810A (ja) * 1996-06-19 1998-01-06 Honda Motor Co Ltd 応力測定装置
JP2010149262A (ja) * 2008-12-26 2010-07-08 Nihon Univ 把持部を有するロボットハンドシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173234A1 (en) * 1984-08-24 1986-03-05 The Perkin-Elmer Corporation Robotic grip assembly
US5616590A (en) * 1994-06-30 1997-04-01 Ciba-Geigy Corporation Plant microbicides
DE102006057881C5 (de) * 2006-12-08 2010-07-22 Norma Germany Gmbh Spannbare Schelle
WO2009144767A1 (ja) * 2008-05-29 2009-12-03 株式会社ハーモニック・ドライブ・システムズ 複合型センサおよびロボットハンド

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853464A (ja) * 1971-11-04 1973-07-27
JPS536890A (en) * 1976-07-09 1978-01-21 Hitachi Ltd Contact sensor
JPS6156891A (ja) 1984-08-24 1986-03-22 日本電信電話株式会社 すべり覚センサ
JPS6259886A (ja) * 1985-09-11 1987-03-16 Fuji Facom Corp 移動体の接触検出装置
JPS63117242A (ja) * 1986-11-04 1988-05-21 Koyo Seiko Co Ltd ロボツトにおける把握状態検出装置
JPH04164589A (ja) * 1990-10-30 1992-06-10 Canon Inc ワーク把持装置
JPH07504270A (ja) * 1992-03-03 1995-05-11 ティーティーピー グループ ピーエルシー 機械的振動を使用する移動検出センサ
JPH102810A (ja) * 1996-06-19 1998-01-06 Honda Motor Co Ltd 応力測定装置
JP2010149262A (ja) * 2008-12-26 2010-07-08 Nihon Univ 把持部を有するロボットハンドシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2741065A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105945999A (zh) * 2016-06-01 2016-09-21 淮南市鸿裕工业产品设计有限公司 一种抓取装置的接触感应调控模块
JP2021091041A (ja) * 2019-12-10 2021-06-17 国立大学法人 名古屋工業大学 振動センサを備えるロボットハンドおよびそれを備えるロボットシステム
WO2021117750A1 (ja) * 2019-12-10 2021-06-17 国立大学法人 名古屋工業大学 振動センサを備えるロボットハンドおよびそれを備えるロボットシステム
JP7446581B2 (ja) 2019-12-10 2024-03-11 国立大学法人 名古屋工業大学 振動センサを備えるロボットハンドおよびそれを備えるロボットシステム

Also Published As

Publication number Publication date
US20140145458A1 (en) 2014-05-29
CN103814281A (zh) 2014-05-21
EP2741065A1 (en) 2014-06-11
EP2741065A4 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2013018213A1 (ja) 位置ずれ検出器、ロボットハンド及びロボットシステム
US11597095B2 (en) Systems and methods for providing contact detection in an articulated arm
WO2020066063A1 (ja) エンドエフェクタ装置
JP4977825B2 (ja) 剪断力検出装置及び物体把持システム
WO2020194393A1 (ja) ロボットハンド、ロボットハンド制御方法及びプログラム
JPWO2013018213A1 (ja) 位置ずれ検出器、ロボットハンド及びロボットシステム
JP2006035329A (ja) 物体把持装置
JPWO2019065426A1 (ja) ロボットハンドおよびロボットハンド制御方法
Karako et al. High-speed ring insertion by dynamic observable contact hand
WO2020066061A1 (ja) エンドエフェクタおよびエンドエフェクタ装置
JP2005144573A (ja) ロボットハンドの把持力制御方法
JPH06226671A (ja) ロボットハンド制御装置
CN112654474B (zh) 末端执行器装置
JP2013094951A (ja) 把持装置及びロボット
US20230356414A1 (en) Gripper and robot having the same
US12017345B2 (en) End effector and end effector device
WO2020246009A1 (ja) 触覚センサ、ロボットハンド、及びロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011870313

Country of ref document: EP