WO2013017806A1 - Formulation a base de carbure de zirconium, son utilisation, procede de fabrication et kit associe. - Google Patents

Formulation a base de carbure de zirconium, son utilisation, procede de fabrication et kit associe. Download PDF

Info

Publication number
WO2013017806A1
WO2013017806A1 PCT/FR2012/051837 FR2012051837W WO2013017806A1 WO 2013017806 A1 WO2013017806 A1 WO 2013017806A1 FR 2012051837 W FR2012051837 W FR 2012051837W WO 2013017806 A1 WO2013017806 A1 WO 2013017806A1
Authority
WO
WIPO (PCT)
Prior art keywords
formulation
zirconium carbide
carbide powder
mixtures
formulation according
Prior art date
Application number
PCT/FR2012/051837
Other languages
English (en)
Inventor
Fabienne Audubert
Gaétan MARTINET
Alexandre Maitre
Sylvie FOUCAUD
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Universite De Limoges
Ecole Nationale Superieure De Ceramique Industrielle
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Universite De Limoges, Ecole Nationale Superieure De Ceramique Industrielle, Centre National De La Recherche Scientifique filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2013017806A1 publication Critical patent/WO2013017806A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal

Definitions

  • the present invention belongs to the field of ceramics based on metal carbide.
  • It relates more particularly to a formulation based on zirconium carbide, its use for the manufacture of a ceramic, the manufacturing process of the formulation and the associated manufacturing kit.
  • the Neutrons Rapids Nuclear Reactor requires the design of a nuclear fuel to combine several properties.
  • the nuclear fuel must have a high density of heavy atoms and a high thermal conductivity.
  • the composition chosen is a ceramic based on a mixed carbide of uranium and plutonium (U, Pu) C.
  • the fuel must best contain the nuclear fission gases. This can be achieved by controlling its microstructure, in particular to adapt its porosity to best contain the fission gases during the irradiation of the nuclear fuel.
  • ZrC zirconium carbide
  • This metal carbide has indeed mechanical and thermal properties that are close to those of plutonium carbide or uranium, particularly a high reactivity with respect to oxygen leading to the formation of metal oxides.
  • the metal carbide ceramics are generally manufactured by a powder metallurgy process in which the carbothermal reduction of a metal oxide powder is carried out. The carbide obtained is then sintered to obtain the ceramic.
  • a low porosity ceramic namely a relative density well above 90%. It generally does not allow to obtain ceramics with greater porosity, controlled, and / or homogeneous size, even when porogens are used.
  • the inventors propose not to sinter a powder directly in order to manufacture a ceramic based on zirconium carbide (dry process), but to use a suspension of zirconium carbide (wet process). ).
  • this suspension must meet several criteria. On the one hand, its stability must be as good as possible or at least easy to restore, especially in the perspective of sintering this suspension. This represents a real difficulty because the high density of zirconium carbide promotes the deposition of its grains in the form of sediment.
  • the zirconium carbide has the disadvantage that its oxidizable character (from 800 ° C) or hydroxylatable is very marked. This can induce a significant difference in its stoichiometry (by partial replacement of carbon atoms by oxygen atoms, which can lead to the formation of oxycarbide) or even its total oxidation, unlike a carbide such as silicon carbide (SiC) whose phenomenon is limited by formation of a passivation layer comprising SiO 2. The suspension must therefore best avoid this stoichiometric difference which causes the degradation of the thermomechanical performance of the zirconium carbide ceramic obtained after sintering.
  • SiC silicon carbide
  • One of the aims of the invention is therefore to provide a formulation based on zirconium carbide meeting the above criteria.
  • the present invention thus relates to a formulation comprising, in percentage by volume, 13% to 20% of a zirconium carbide powder, 2 of a steric dispersant and 75% ci. 85% of an organic solvent selected from an alcohol, a ketone, a carboxylic acid or mixtures thereof.
  • the formulation of the invention is most often in the form of an organic suspension. This is particularly the case when this formulation has just been manufactured.
  • the formulation of the invention has a composition (nature and proportion of components) which makes it possible to limit or even to avoid oxidation. zirconium carbide while allowing to obtain an organic suspension as stable as possible.
  • a suspension is a relatively homogeneous mixture in which a powder, whose average grain size is greater than 1 ⁇ m, is dispersed in a continuous liquid phase.
  • the stability of the organic suspension resulting from the formulation of the invention may decrease after a longer or shorter time, which results in particular in a partial sedimentation of the zirconium carbide powder.
  • the formulation can therefore be found in all or possibly partially in the form of an organic suspension.
  • the sedimentation of the zirconium carbide powder can be complete.
  • Stability can advantageously be restored by regenerating all or part of the organic suspension by stirring the formulation, for example with stirring using ultrasound or preferably with mechanical stirring.
  • the organic solvent it contains may optionally meet one or more criteria such that:
  • a low surface tension which increases the wetting of the solvent in order to promote the formation of the suspension preferably, the organic solvent is then methyl ethyl ketone
  • a low reactivity with respect to the zirconium carbide powder in order to limit or even avoid the formation of oxide or hydroxide preferably, the organic solvent is then methyl ethyl ketone
  • the organic solvent is preferably selected from ethanol, n-octanol, ethylene glycol, oleic acid, acetone, methyl ethyl ketone or mixtures thereof. Even more preferentially, it is ethylene glycol whose decomposition temperature is about 300 ° C.
  • the dispersant of the formulation of the invention has a steric effect: it is a molecule (most often a polymer) which binds more or less strongly to the surface of the grains of the carbide powder. zirconium, repulsive forces between these interacting molecules to limit or even avoid the aggregation of powder grains and thus promote the stability of the organic suspension.
  • the steric dispersant is chemically inert with respect to the zirconium carbide powder and the organic solvent. It is miscible with the organic solvent.
  • the reactive function can thus be -OH or -C 4 H 6 NO.
  • it is chosen from a derivative of glycol, polyethylene glycol (PEG) (preferably of molecular weight between 200 g / mol and 1000 g / mol, more preferably of a molecular weight of 400 g / mol ( PEG 400)), the polyvinyl pirrolydone, polyvinyl methacrylate or mixtures thereof.
  • PEG polyethylene glycol
  • the polyethylene glycol (PEG) or the polyvinyl pirrolydone is in solution in the ethylene glycol and / or the polyvinyl methacrylate is in solution in oleic acid.
  • the steric dispersant represents 3% by volume of the formulation, which has the advantage of conferring a stability equivalent to that of higher dispersant fractions (such as 15% or 20%) while limiting the organic filler of the zirconium carbide formulation for the manufacture of a ceramic.
  • the formulation of the invention comprises ethylene glycol as organic solvent and PEG 400 (preferably 3% by volume of the formulation) as a steric dispersant.
  • zirconium carbide powder contained in the formulation of the invention can be such that the distribution of the average size of its grains is monomodal, namely that this distribution is centered on a value, which favors the stability of the organic suspension.
  • This distribution can be determined by a method known to those skilled in the art such as laser diffraction, or according to the method defined by the ISO 15901-1: 2005 standard, using for example a high-frequency X-ray microtomograph. resolution or a high energy radiograph tomograph.
  • the average grain size of the zirconium carbide powder may be from 5 ⁇ m to 10 ⁇ m (preferably about 5 ⁇ m).
  • the zirconium carbide powder represents 15% by volume of the formulation of the invention when the organic solvent is ethylene glycol.
  • the present invention also relates to the use of a formulation as defined above, for the manufacture of a ceramic comprising zirconium carbide, in which, for example, the formulation is sintered in order to obtain the ceramic.
  • Ceramic may in particular be used in the composition of a material simulating a nuclear fuel.
  • the use of the invention may comprise a prior step during which the formulation is subjected to agitation so that the formulation is present, in whole or in part, in the form of an organic suspension.
  • the present invention also relates to a process for the manufacture of the formulation as defined above, in which, in percentage by volume of the formulation, 13% to 20% of a zirconium carbide powder is mixed with a primary composition comprising 2 a steric dispersant and
  • the prior embodiment of a primary composition makes it possible to promote the miscibility of the steric dispersant in the organic solvent, in order to obtain the most homogeneous formulation possible after mixing this primary composition with the zirconium carbide powder.
  • the present invention furthermore relates to a ready-to-use kit for the manufacture of a formulation using the method as defined above, the kit comprising in percentage by volume of the formulation:
  • a first compartment containing 13% to 20% of a zirconium carbide powder
  • a second compartment containing a primary composition comprising 2 of a hindered dispersant and 75% ci. 85% of an organic solvent selected from an alcohol, a ketone, a carboxylic acid or mixtures thereof.
  • Figure 1 shows the evolution of the relative height of organic suspensions as a function of time.
  • a zirconium carbide powder is available which has a purity of 99.5%, a specific surface area of 0.77 m 2 / g and a density of 6.73.
  • the distribution of the Its average grain size is bimodal, centered on 1.5 ym and 12 ym with an average grain size of 4.3 ym and 9.2 ym, respectively.
  • the zirconium carbide powder is mixed with ethanol (dispersion solvent) and then sieved by means of a nylon filter cloth (sold by Fisherbrand, reference B15033).
  • the fabric has calibrated holes of 5 ⁇ m to 10 ⁇ m, a chemical inertness to alcohols and good resistance to abrasion by powders.
  • a programmer is coupled to the ultrasonic wave generator to control the pulse sequences.
  • the sequence chosen is as follows: 3 seconds of pulses at the power of 120 W followed by 10 seconds of rest of the system. This sequence is carried out for a period of 5 minutes and is followed by a rest period of 5 minutes.
  • the filtrate recovered after sieving is dried in air at room temperature. Due to its low evaporation temperature (close to 70 ° C), ethanol allows the powder to dry quickly after sieving.
  • the sieved powder of zirconium carbide obtained is such that the distribution of the average size of its grains is monomodal, centered on 4.3 ⁇ m and spreading from 1.5 ⁇ m to 6.2 ⁇ m.
  • solvent ethylene glycol
  • the introduction of the sieved powder into the primary composition is done gradually in small amounts.
  • This example shows that the choice of an organic solvent according to the invention promotes the stability of an organic suspension of zirconium carbide.
  • organic solvents are hexane (HEX), toluene (TOL), ethylene glycol (EG), ethanol (ETH), oleic acid (AO), methyl ethyl ketone (MEK), tetrahydrofuran (THF).
  • HEX hexane
  • TOL toluene
  • EG ethylene glycol
  • ETH ethanol
  • AO oleic acid
  • MEK methyl ethyl ketone
  • THF tetrahydrofuran
  • the seven mixtures are introduced into test tubes in order to compare the sedimentation rate of the zirconium carbide.
  • This example shows the influence of the mean grain size distribution of the zirconium carbide powder on the stability of an organic suspension of zirconium carbide.
  • Three suspensions are produced by mixing, in percentage by volume, 15% of zirconium carbide powders having three different particle sizes with a primary composition comprising 3% of PEG 400 and 82% of ethylene glycol (EG).
  • a primary composition comprising 3% of PEG 400 and 82% of ethylene glycol (EG).
  • Zirconium carbide powders have the following mean grain size distributions:
  • the results illustrated in FIG. 1 show that the stability of the organic suspension is favored by a monomodal distribution of the average grain size of the zirconium carbide powder. This stability is all the more important as the average size decreases, to be preferably 5 ⁇ m.
  • the formulation of the invention makes it possible to obtain a sufficiently stable organic suspension of zirconium carbide that does not undergo a significant difference in its stoichiometry, which makes it suitable for use with a view to obtaining a ceramic based on zirconium carbide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Formulation comprenant, en pourcentage en volume, 13% à20% d'une poudre de carbure de zirconium, 2% à 5% d'un dispersant à effet stérique et 75% à 85% d'un solvant organique choisi parmi un alcool, une cétone, un acide carboxylique ou leurs mélanges. L'invention concerne également l'utilisation, notamment pour la fabrication d'une céramique, le procédé et le kit associé à la formulation.

Description

FORMULATION A BASE DE CARBURE DE ZIRCONIUM, SON UTILISATION, PROCEDE DE FABRICATION ET KIT ASSOCIE.
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention appartient au domaine des céramiques à base de carbure métallique.
Elle concerne plus particulièrement une formulation à base de carbure de zirconium, son utilisation pour la fabrication d'une céramique, le procédé de fabrication de la formulation et le kit de fabrication associé.
ETAT DE LA TECHNIQUE
Parmi les réacteurs nucléaires de prochaine génération (en particulier les réacteurs dits de Génération IV) , le Réacteur nucléaire à Neutrons Rapides (RNR) nécessite de concevoir un combustible nucléaire devant combiner plusieurs propriétés .
Le combustible nucléaire doit ainsi présenter une forte densité en atomes lourds et une conductivité thermique élevée. À cet effet, la composition retenue est une céramique à base d'un carbure mixte d'uranium et de plutonium (U,Pu)C.
Par ailleurs, le combustible doit confiner au mieux les gaz de fission nucléaire. Cela peut être réalisé en contrôlant sa microstructure, afin notamment d'adapter sa porosité pour y confiner au mieux les gaz de fission pendant l'irradiation du combustible nucléaire. Afin d'optimiser ces propriétés sans toutefois manipuler les matières nucléaires que sont l'uranium et le plutonium, il a été proposé d'utiliser une céramique à base de carbure de zirconium (ZrC) en tant que simulant. Ce carbure métallique possède en effet des propriétés mécaniques et thermiques qui sont proches de celles du carbure de plutonium ou d'uranium, en particulier une forte réactivité vis-à-vis de l'oxygène menant à la formation d'oxydes métalliques.
Les céramiques à base de carbure métallique sont généralement fabriquées par un procédé de métallurgie des poudres dans lequel on effectue la réduction carbothermique d'une poudre d'oxyde métallique. Le carbure obtenu est ensuite fritté pour obtenir la céramique.
Toutefois, ce type de procédé peut entraîner la pollution de l'environnement de travail par dispersion de la poudre d'oxyde ou de carbure utilisée.
Par ailleurs, il est surtout adapté à la fabrication d'une céramique de faible porosité, à savoir d'une densité relative bien supérieure à 90 %. Il ne permet généralement pas d'obtenir des céramiques à porosité plus importante, contrôlée, et/ou de taille homogène, même lorsque des porogènes sont utilisés.
EXPOSE DE L' INVENTION
Afin de répondre à ces limitations, les inventeurs proposent de ne pas fritter directement une poudre en vue de la fabrication d'une céramique à base de carbure de zirconium (voie sèche), mais d'utiliser une suspension de carbure de zirconium (voie humide) .
Toutefois, cette suspension doit remplir plusieurs critères . D'une part, sa stabilité doit être aussi bonne que possible ou tout du moins facile à rétablir, notamment dans la perspective de fritter cette suspension. Ceci représente une réelle difficulté, car la densité importante du carbure de zirconium favorise le dépôt de ses grains sous forme de sédiment .
D'autre part, le carbure de zirconium a pour inconvénient que son caractère oxydable (dès 800 °C) ou hydroxylable est très marqué. Ceci peut induire un écart important dans sa stœchiométrie (par remplacement partiel d'atomes de carbone par des atomes d'oxygène, ce qui peut conduire à la formation d' oxycarbure) voire son oxydation totale, au contraire d'un carbure tel que le carbure de silicium (SiC) dont le phénomène est limité par formation d'une couche de passivation comprenant Si02- La suspension doit donc éviter au mieux cet écart à la stœchiométrie qui provoque la dégradation des performances thermomécaniques de la céramique de carbure de zirconium obtenue après frittage.
Un des buts de l'invention est donc de fournir une formulation à base de carbure de zirconium répondant aux critères précités.
La présente invention concerne ainsi une formulation comprenant, en pourcentage en volume, 13 % à 20 % d'une poudre de carbure de zirconium, 2 d'un dispersant à effet stérique et 75 % ci. 85 % d'un solvant organique choisi parmi un alcool, une cétone, un acide carboxylique ou leurs mélanges .
La formulation de l'invention se présente le plus souvent sous forme d'une suspension organique. C'est notamment le cas lorsque cette formulation vient d'être fabriquée .
Les inventeurs ont découvert que la formulation de l'invention a une composition (nature et proportion des composants) qui permet de limiter voire d'éviter l'oxydation du carbure de zirconium tout en permettant d'obtenir une suspension organique la plus stable possible.
Au sens de l'invention, une suspension est un mélange relativement homogène dans lequel une poudre, dont la taille moyenne des grains est supérieure à 1 ym, est dispersée dans une phase continue liquide.
La stabilité de la suspension organique issue de la formulation de l'invention peut diminuer au bout d'un temps plus ou moins long, ce qui se traduit notamment par une sédimentation partielle de la poudre de carbure de zirconium.
La formulation peut donc se trouver en tout ou éventuellement en partie sous forme de suspension organique.
Au bout d'un temps encore plus long, la sédimentation de la poudre de carbure de zirconium peut être totale.
La stabilité peut avantageusement être rétablie en régénérant tout ou partie de la suspension organique par l'agitation de la formulation, par exemple avec une agitation à l'aide d'ultrasons ou de préférence avec une agitation mécanique.
Concernant la composition de la formulation de l'invention, le solvant organique qu'elle contient peut éventuellement répondre à un ou plusieurs critères tel (s) que :
- une viscosité élevée à 25 °C qui est comprise entre
15 mPa.s et 23 mPa.s (préférentiellement entre 20 mPa.s et 23 mPa.s) favorisant le comportement newtonien et la stabilité de la suspension organique ;
- une tension de surface faible qui augmente le caractère mouillant du solvant dans le but de favoriser la formation de la suspension (de préférence, le solvant organique est alors la méthyle éthyle cétone) ; - une faible réactivité vis-à-vis de la poudre de carbure de zirconium afin de limiter voire éviter la formation d'oxyde ou d'hydroxyde ;
- une faible température de décomposition de manière à pouvoir être éliminé au cours d'une étape de calcination précédant une étape de frittage. A cet effet, le solvant organique est de préférence choisi parmi l'éthanol, le n-octanol, l'éthylène glycol, l'acide oléique, l'acétone, la méthyle éthyle cétone ou leurs mélanges. Encore plus préférentiellement , il s'agit de l'éthylène glycol dont la température de décomposition est d'environ 300 °C.
Le dispersant de la formulation de l'invention est quant à lui à effet stérique : il s'agit d'une molécule (le plus souvent un polymère) qui se lie plus ou moins fortement à la surface des grains de la poudre de carbure de zirconium, les forces de répulsion entre ces molécules en interaction permettant de limiter voire éviter l'agrégation des grains de poudre et donc de favoriser la stabilité de la suspension organique.
Le dispersant à effet stérique est chimiquement inerte vis-à-vis de la poudre de carbure de zirconium et du solvant organique. Il est miscible avec le solvant organique.
Préférentiellement , il comprend au moins un groupement alkyle linéaire ou ramifié, de 8 à 42 atomes de carbone et au moins une fonction réactive apte à favoriser la liaison par adsorption du dispersant avec les grains de la poudre de carbure de zirconium. La fonction réactive peut ainsi être -OH ou -C4H6NO.
Encore plus préférentiellement , il est choisi parmi un dérivé du glycol, le polyéthylène glycol (PEG) (préférentiellement de masse moléculaire comprise entre 200 g/mol et 1000 g/mol, encore plus préférentiellement d'une masse moléculaire de 400 g/mol (PEG 400)), le polyvinyle pirrolydone, le polyvinyle de méthacrylate ou leurs mélanges.
Afin de favoriser la compatibilité chimique et la miscibilité du dispersant à effet stérique avec le solvant organique, de préférence, le polyéthylène glycol (PEG) ou le polyvinyle pirrolydone est en solution dans l'éthylène glycol et/ou le polyvinyle de méthacrylate est en solution dans l'acide oléique.
Selon un mode particulier de réalisation, le dispersant à effet stérique représente 3 % en volume de la formulation, ce qui a pour avantage de conférer une stabilité équivalente à celle de fractions supérieures de dispersant (telles que 15 % ou 20 %) tout en limitant la charge organique de la formulation à base de carbure de zirconium en vue de la fabrication d'une céramique.
Ainsi, selon un mode de réalisation particulièrement avantageux, la formulation de l'invention comprend de l'éthylène glycol en tant que solvant organique et du PEG 400 (de préférence 3 % en volume de la formulation) en tant que dispersant à effet stérique.
Concernant la poudre de carbure de zirconium contenue dans la formulation de l'invention, elle peut être telle que la distribution de la taille moyenne de ses grains est monomodale, à savoir que cette distribution est centrée sur une valeur, ce qui favorise la stabilité de la suspension organique .
Cette distribution peut être déterminée par une méthode connue de l'homme du métier telle que la diffraction laser, ou selon la méthode définie par la norme ISO 15901-1 : 2005, à l'aide par exemple d'un microtomographe à rayons X haute résolution ou d'un tomographe radiographe haute énergie. La taille moyenne des grains de la poudre de carbure de zirconium peut être comprise entre 5 ym et 10 ym (de préférence environ 5 ym) .
Selon un mode de réalisation particulier permettant d'obtenir une suspension particulièrement stable, la poudre de carbure de zirconium représente 15 % en volume de la formulation de l'invention lorsque le solvant organique est l'éthylène glycol.
La présente invention concerne également l'utilisation d'une formulation telle que définie précédemment, pour la fabrication d'une céramique comprenant du carbure de zirconium, dans laquelle, par exemple, on fritte la formulation afin d'obtenir la céramique.
La céramique peut notamment entrer dans la composition d'un matériau simulant un combustible nucléaire.
Le cas échéant, l'utilisation de l'invention peut comprendre une étape préalable au cours de laquelle la formulation est soumise à une agitation afin que la formulation se présente, en tout ou partie, sous forme d'une suspension organique.
La présente invention concerne par ailleurs un procédé de fabrication de la formulation telle que définie précédemment, dans lequel on mélange, en pourcentage en volume de la formulation, 13 % à 20 % d'une poudre de carbure de zirconium avec une composition primaire comprenant 2 d'un dispersant à effet stérique et
75 % ci. 85 % d'un solvant organique choisi parmi un alcool, une cétone, un acide carboxylique ou leurs mélanges.
La réalisation préalable d'une composition primaire permet de favoriser la miscibilité du dispersant à effet stérique dans le solvant organique, afin d'obtenir la formulation la plus homogène possible après mélange de cette composition primaire avec la poudre de carbure de zirconium. La présente invention concerne en outre un kit prêt à l'emploi pour la fabrication d'une formulation à l'aide du procédé tel que défini précédemment, le kit comportant en pourcentage en volume de la formulation :
un premier compartiment contenant 13 % à 20 % d'une poudre de carbure de zirconium ;
un deuxième compartiment contenant une composition primaire comprenant 2 d'un dispersant à effet stérique et 75 % ci. 85 % d'un solvant organique choisi parmi un alcool, une cétone, un acide carboxylique ou leurs mélanges .
EXPOSE DETAILLE DE L'INVENTION
D'autres objets, caractéristiques et avantages de l'invention vont maintenant être précisés dans la description qui suit d'un mode de réalisation particulier de l'invention, donnée à titre illustratif et non limitatif, suivie d'exemples comparatifs en référence à la Figure 1 annexée .
BREVE DESCRIPTION DES FIGURES
La Figure 1 représente l'évolution de la hauteur relative de suspensions organiques en fonction du temps.
EXPOSE DE MODES DE REALISATION PARTICULIERS
1. Fabrication d'une suspension organique.
1.1. Tamisage préalable de la poudre de carbure de zirconium.
On dispose d'une poudre de carbure de zirconium qui présente une pureté de 99,5 %, une surface spécifique de 0,77 m2/g et une densité de 6,73. La distribution de la taille moyenne de ses grains est bimodale, centrée sur 1,5 ym et 12 ym avec une taille moyenne de grains respectivement égale à 4,3 ym et 9,2 ym.
La poudre de carbure de zirconium est mélangée à de l'éthanol (solvant de dispersion), puis tamisée au moyen d'une toile de filtration en nylon (commercialisée par la société Fisherbrand, référence B15033) .
La toile présente des trous calibrés de 5 ym à 10 ym, une inertie chimique vis-à-vis des alcools et une bonne résistance à l'abrasion par les poudres.
Elle tapisse un entonnoir qui débouche sur un récipient de profondeur réduite qui développe une grande surface de contact à l'air, de manière à optimiser le temps de séchage du filtrat obtenu.
Un générateur d'ondes ultrasonores, résonnant à 20 kHz
± 50 Hz et possédant une longueur d'onde de 105 ym, est directement immergé dans le mélange à filtrer, afin de créer un système de filtration dynamique. Il permet d'éliminer les agglomérats mous, de limiter l'obturation des mailles de la toile par les particules les plus grossières et permet un brassage constant et régulier du mélange à filtrer.
Un programmateur est couplé au générateur d' ondes ultrasonores de manière à contrôler les séquences d'impulsions. La séquence retenue est la suivante : 3 secondes d'impulsions à la puissance de 120 W suivies de 10 secondes de repos du système. Cette séquence est réalisée pendant une durée de 5 minutes et est suivie d'un temps de repos de 5 minutes.
Le filtrat récupéré à l'issue du tamisage est séché à l'air à température ambiante. De par sa basse température d' évaporation (proche de 70 °C) , l'éthanol permet un séchage rapide de la poudre après tamisage.
La poudre tamisée de carbure de zirconium obtenue est telle que la distribution de la taille moyenne de ses grains est monomodale, centrée sur 4,3 ym et s' étalant de 1,5 ym à 6, 2 ym.
1.2. Obtention d'une suspension organique de carbure de zirconium.
Dans un récipient en verre sous agitation magnétique, on mélange dans l'ordre suivant :
75 % ci. 85 % en volume de solvant (éthylène glycol) ;
- 2 en volume d'agent dispersant (PEG) ; puis après obtention de la composition primaire,
15 % à 20 % en volume de la poudre tamisée de carbure de zirconium.
L' introduction de la poudre tamisée dans la composition primaire se fait progressivement par petites quantités .
L'agitation mécanique est poursuivie entre 12 heures et 24 heures.
Le polyéthylène glycol (PEG) , de masse volumique comprise entre 200 g/mol et 1000 g/mol, a été choisi comme dispersant. Ce choix se justifie notamment par sa miscibilité totale avec l' éthylène glycol dont la viscosité est d'environ 20 mPa.s à 25 °C. 2. Exemple comparatif 1 : solvant.
Cet exemple montre que le choix d'un solvant organique conformément à l'invention favorise la stabilité d'une suspension organique de carbure de zirconium.
On réalise sept mélanges comprenant chacun en pourcentage en volume 99 % d'un solvant organique et 1 % d'une poudre de carbure de zirconium.
Ces solvants organiques sont l'hexane (HEX) , le toluène (TOL) , l' éthylène glycol (EG) , l'éthanol (ETH) , l'acide oléique (AO) , la méthyle éthyle cétone (MEK) , le tétrahydrofurane (THF) .
Les sept mélanges sont introduits dans des tubes à essai afin de comparer la vitesse de sédimentation du carbure de zirconium.
Après 10 minutes, on constate que les mélanges contenant ETH, TOL, HEX ou THF présentent essentiellement une couche sédimentée (ou fortement concentrée) de carbure de zirconium au fond du tube.
En revanche, les mélanges contenant EG, AO ou MEK conformément à une formulation de 1 ' invention présentent quant à eux une part importante de carbure de zirconium en suspension et donc une vitesse de sédimentation faible. 3. Exemple comparatif 2 : distribution de la taille moyenne des grains de la poudre de carbure de zirconium.
Cet exemple montre l'influence de la distribution de la taille moyenne des grains de la poudre de carbure de zirconium sur la stabilité d'une suspension organique de carbure de zirconium.
On réalise trois suspensions en mélangeant, en pourcentage en volume, 15 % de poudres de carbure de zirconium présentant trois granulométries différentes à une composition primaire comprenant 3 % de PEG 400 et 82 % d'éthylène glycol (EG) .
Les poudres de carbure de zirconium présentent les distributions de la taille moyenne des grains suivantes :
Poudre A : distribution multimodale (poudre polydispersée non tamisée dans laquelle la taille moyenne des agglomérats = 10 ym, agrégats = 5 ym, cristallites = 1 ym)
Poudre B : distribution monomodale (poudre monodisperse avec une taille moyenne des grains = 10 ym) Poudre C : distribution monomodale (poudre monodisperse avec une taille moyenne des grains = 5 ym) Selon le même protocole opératoire utilisé dans l'exemple comparatif précédent dans lequel on réalise une suspension (partie 1.2), on évalue dans un tube à essais la vitesse de sédimentation de chacune des trois suspensions A, B et C correspondantes. Pour cela, on mesure en fonction du temps la hauteur relative de la suspension, à savoir la hauteur de la suspension à un temps donné divisée par sa hauteur initiale.
Les résultats illustrés par la Figure 1 font apparaître que la stabilité de la suspension organique est favorisée par une distribution monomodale de la taille moyenne des grains de la poudre de carbure de zirconium. Cette stabilité est d'autant plus importante que la taille moyenne diminue, pour être de préférence de 5 ym.
Il ressort notamment de la description qui précède que la formulation de l'invention permet d'obtenir une suspension organique de carbure de zirconium suffisamment stable et ne subissant pas d'écart important de sa stœchiométrie, ce qui la rend apte à être utilisée en vue de l'obtention d'une céramique à base de carbure de zirconium.

Claims

REVENDICATIONS
1) Formulation comprenant, en pourcentage en volume, 13 % à 20 % d'une poudre de carbure de zirconium, 2 "6 cL 5 "6 d 1 un dispersant à effet stérique et 75 % 3. 85 % d'un solvant organique choisi parmi un alcool, une cétone, un acide carboxylique ou leurs mélanges. 2) Formulation selon la revendication 1, dans laquelle ladite formulation se présente, en tout ou partie, sous forme d'une suspension organique.
3) Formulation selon la revendication 1 ou 2, dans laquelle la poudre de carbure de zirconium est telle que la distribution de la taille moyenne de ses grains est monomodale .
4) Formulation selon l'une quelconque des revendications précédentes, dans laquelle la taille moyenne des grains de la poudre de carbure de zirconium est comprise entre 5 ym et 10 ym
5) Formulation selon l'une quelconque des revendications précédentes, dans laquelle le dispersant à effet stérique comprend au moins un groupement alkyle linéaire ou ramifié, de 8 à 42 atomes de carbones et au moins une fonction réactive apte à favoriser la liaison par adsorption du dispersant avec les grains de la poudre de carbure de zirconium.
6) Formulation selon la revendication 5, dans laquelle le dispersant à effet stérique est choisi parmi un dérivé du glycol, le polyéthylène glycol (PEG) , le polyvinyle pirrolydone, le polyvinyle de méthacrylate ou leurs mélanges.
7) Formulation selon la revendication 6, dans laquelle le polyéthylène glycol (PEG) a une masse moléculaire comprise entre 200 g/mol et 1000 g/mol.
8) Formulation selon la revendication 7, dans laquelle le polyéthylène glycol (PEG) a une masse moléculaire de 400 g/mol (PEG 400) . 9) Formulation selon l'une quelconque des revendications précédentes, dans laquelle le solvant organique est choisi parmi l'éthanol, le n-octanol, l'éthylène glycol, l'acide oléique, l'acétone, la méthyle éthyle cétone ou leurs mélanges. 10) Formulation selon l'une quelconque des revendications 6 à 9, dans laquelle le polyéthylène glycol (PEG) ou le polyvinyle pirrolydone est en solution dans l'éthylène glycol et/ou le polyvinyle de méthacrylate est en solution dans l'acide oléique. 11) Utilisation d'une formulation telle que définie selon l'une quelconque des revendications 1 à 10, pour la fabrication d'une céramique comprenant du carbure de zirconium.
12) Utilisation selon la revendication 11, dans laquelle on fritte ladite formulation afin d'obtenir ladite céramique . 13) Utilisation selon la revendication 11 ou 12, dans laquelle ladite céramique entre dans la composition d'un matériau simulant un combustible nucléaire.
14) Procédé de fabrication d'une formulation telle que définie selon l'une quelconque des revendications 1 à 10, dans lequel on mélange, en pourcentage en volume de ladite formulation, 13 % à 20 % d'une poudre de carbure de zirconium avec une composition primaire comprenant 2 % à 5 % d'un dispersant à effet stérique et 75 % ci. 85 % d'un solvant organique choisi parmi un alcool, une cétone, un acide carboxylique ou leurs mélanges.
15) Kit prêt à l'emploi pour la fabrication d'une formulation à l'aide du procédé tel que défini selon la revendication 14, le kit comportant en pourcentage en volume de ladite formulation :
un premier compartiment contenant 13 % à 20 % d'une poudre de carbure de zirconium ;
un deuxième compartiment contenant une composition primaire comprenant 2 d'un dispersant à effet stérique et 75 % ci. 85 % d'un solvant organique choisi parmi un alcool, une cétone, un acide carboxylique ou leurs mélanges .
PCT/FR2012/051837 2011-08-02 2012-08-02 Formulation a base de carbure de zirconium, son utilisation, procede de fabrication et kit associe. WO2013017806A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1157089A FR2978760B1 (fr) 2011-08-02 2011-08-02 Formulation a base de carbure de zirconium, son utilisation, procede de fabrication et kit associe.
FR1157089 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013017806A1 true WO2013017806A1 (fr) 2013-02-07

Family

ID=46717899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/051837 WO2013017806A1 (fr) 2011-08-02 2012-08-02 Formulation a base de carbure de zirconium, son utilisation, procede de fabrication et kit associe.

Country Status (2)

Country Link
FR (1) FR2978760B1 (fr)
WO (1) WO2013017806A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1440956A1 (fr) * 2003-01-24 2004-07-28 Seco Tools Ab Procédé de production de matériaux durs à base de carbure de tungstène
US20060040064A1 (en) * 2004-06-08 2006-02-23 Marik Dombsky Method of forming composite ceramic targets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1440956A1 (fr) * 2003-01-24 2004-07-28 Seco Tools Ab Procédé de production de matériaux durs à base de carbure de tungstène
US20060040064A1 (en) * 2004-06-08 2006-02-23 Marik Dombsky Method of forming composite ceramic targets

Also Published As

Publication number Publication date
FR2978760A1 (fr) 2013-02-08
FR2978760B1 (fr) 2013-08-16

Similar Documents

Publication Publication Date Title
EP1301302A1 (fr) Pate chargee de poudre metallique et produits metalliques obtenus avec cette pate
WO2020152414A1 (fr) Composition et procédé pour fabriquer des pièces constituées par des céramiques oxydes ou des pièces hybrides par une technique de stéréolithographie
EP2474000B1 (fr) Procede de preparation d'un combustible nucleaire poreux a base d'au moins un actinide mineur
EP2016635A1 (fr) Mélange cobroyé d'un matériau actif et d'un matériau de conduction, ses procédés de préparation et ses applications
EP1059134A1 (fr) Procédé de préparation de poudres métalliques, poudres métalliques ainsi préparees, et compacts incluant ces poudres
EP2448885A1 (fr) Procede d'obtention de propergols solides composites aluminises; propergols solides composites aluminises
EP3215331B1 (fr) Procédé de densification de poudres de polyarylene-éther-cétone (paek), utilisation d'une telle poudre densifiée, et objet fabriqué à partir d'une telle poudre
CA2702021A1 (fr) Utilisation de la technique de frittage flash pour la synthese et la densification d'iodoapatites
WO2016097171A1 (fr) Procede de fabrication d'une pastille d'au moins un oxyde metallique
CA2822454A1 (fr) Poudre d'un alliage a base d'uranium et de molybdene utile pour la fabrication de combustibles nucleaires et de cibles destinees a la production de radioisotopes
WO2013017806A1 (fr) Formulation a base de carbure de zirconium, son utilisation, procede de fabrication et kit associe.
FR3056576A1 (fr) Procede de fabrication de diglyceroxyde de calcium
EP1644300B1 (fr) Procede de preparation de couches de zircone dopee a l'oxyde d'yttrium
EP1971986A1 (fr) Procede de fabrication d'un materiau dense pour combustible nucleaire
EP2376592A1 (fr) Materiau composite photochrome
WO2013167448A1 (fr) Utilisation d'un alliage metallique complexe a base d'aluminium pour la stereolithographie
FR2918214A1 (fr) Dispersion de materiaux composites, notamment pour des piles a combustible
FR3086953A1 (fr) Billes frittees en carbure(s) de tungstene
EP1048037A1 (fr) Materiau absorbant neutronique composite et procede de fabrication de ce materiau
BE1013494A3 (fr) Procede de fabrication de granules de materiau combustible nucleaire.
FR2959246A1 (fr) Poudre composite et utilisation de cette poudre pour constituer des materiaux d'electrode
FR3068169B1 (fr) Procede de preparation de pastilles d'un combustible dense mixte a base d'uranium, de plutonium et eventuellement d'actinide(s) mineur(s)
EP0166662A1 (fr) Procédé de préparation de matériaux composites pour le stockage et le transport de l'énergie
FR3131296A1 (fr) Matériau inorganique, particulaire et poreux, à base d’un vanadate ou phosphovanadate de plomb, utile pour la capture d’iode gazeux, son procédé de préparation et ses utilisations
FR2536571A1 (fr) Procede de fabrication de pastilles de combustible nucleaire contenant un absorbant neutronique temporaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12748752

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12748752

Country of ref document: EP

Kind code of ref document: A1