WO2013017621A1 - Tube multicouche ameliore en materiau composite a matrice ceramique, gaine de combustible nucleaire en resultant et procedes de fabrication associes - Google Patents

Tube multicouche ameliore en materiau composite a matrice ceramique, gaine de combustible nucleaire en resultant et procedes de fabrication associes Download PDF

Info

Publication number
WO2013017621A1
WO2013017621A1 PCT/EP2012/065035 EP2012065035W WO2013017621A1 WO 2013017621 A1 WO2013017621 A1 WO 2013017621A1 EP 2012065035 W EP2012065035 W EP 2012065035W WO 2013017621 A1 WO2013017621 A1 WO 2013017621A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
tubular
tubular body
multilayer
layer
Prior art date
Application number
PCT/EP2012/065035
Other languages
English (en)
Inventor
Maxime Zabiego
Cédric SAUDER
Christophe Lorrette
Philippe GUEDENEY
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to JP2014523316A priority Critical patent/JP6140701B2/ja
Priority to CN201280038372.2A priority patent/CN103732388A/zh
Priority to KR1020147004316A priority patent/KR20140048995A/ko
Priority to RU2014107945/05A priority patent/RU2014107945A/ru
Priority to PL12742902T priority patent/PL2739465T3/pl
Priority to EP12742902.5A priority patent/EP2739465B1/fr
Priority to US14/236,189 priority patent/US9548139B2/en
Publication of WO2013017621A1 publication Critical patent/WO2013017621A1/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/10End closures ; Means for tight mounting therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/086Carbon interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to the field of ceramic matrix composite material parts.
  • the present invention relates to the field of fuel elements for a nuclear reactor and, more particularly, to an improved nuclear fuel cladding, to nuclear reactor fuel rods using such sheaths and to their methods of production.
  • Such an improved fuel sheath may, by way of example, be used to produce the "needle" geometry fuel elements (also called “rods") of the fourth generation RNR-G type reactors (for Fast Neutron Reactor and gas coolant).
  • PWR reactors for Pressurized Water Reactor
  • REB reactors for Boiling Water Reactor
  • RNR-Na reactors for Fast Neutron Reactor and Sodium Coolant Reactor
  • Ceramic matrix composite materials are particularly popular in many fields in because of their low density, their remarkable mechanical properties, in particular in terms of hardness, toughness, resistance to wear and resistance to mechanical and thermal shock, as well as their good behavior under neutron flux and high temperature for applications in the nuclear field.
  • high temperature is meant a temperature beyond which the thermomechanical behavior of the usual materials (steels of fast spectrum reactors and zirconium alloys of thermal spectrum reactors) is no longer satisfactory. This corresponds to a temperature of the order of 400 ° C. to 600 ° C. in nominal mode, and of the order of 1000 ° C. to 1200 ° C. in an accidental regime.
  • operating temperatures up to 1000 ° C in nominal regime, and up to 1600 ° C, or even 2000 ° C, for accidental transients.
  • a CMC material consists of a ceramic matrix, which is reinforced by a ceramic fiber structure on which is deposited an interphase material whose main role is to deflect the cracks generated within the matrix during mechanical stresses;
  • the matrix and the fibers may be of any known ceramic material, including carbon (carbon being considered, in this context, as a ceramic material), the interphase material may be pyrocarbon.
  • such materials are used in aeronautics to make brake discs or parts intended to enter the production of reactors operating at high temperature; they also enter into the production of parts for gas turbines; Finally, they enter, and this is the first application referred to in the context of this patent, in the production of cladding material for fuel elements and control rods of nuclear reactors.
  • CMC materials have one major drawback: they are not hermetic over their entire potential operating range. Thus, these materials are unsuitable for applications as pressure vessels or pressure lines, as is particularly the case of nuclear fuel cladding or heat exchanger tubes, because they offer no guarantee of hermeticity over their entire potential area of operation. For example, for a nuclear reactor fuel element, whose cladding constitutes the first barrier for confinement of the radioactive products generated during operation, the risk of a lack of hermeticity before dismantling is clearly a major drawback, which makes, a priori , CMC materials unsuitable for such use and unacceptable by a nuclear safety authority.
  • FIG. 1 illustrates the mechanical behavior of a CMC material of the type SiC f / SiC (for carbide matrix composite silicon fiber-reinforced silicon) subjected to a uniaxial tensile test, in a diagram representing the link between deformation (in abscissa) and stress (in ordinate).
  • the internal positioning of the metal layer ensuring hermeticity makes it sensitive to fuel aggression, namely the implantation, on a depth of the order of 10 micrometers, of fission products generated with high kinetic energies. at the periphery of the fuel, and the corrosion of the metal layer by thermochemical reaction with the fuel and / or the fission products.
  • a two-layer cladding presents the risk a collapse of the inner metal layer, likely to result from the loss of hermeticity of the CMC layer which, by its multi-cracking, would allow the external pressure of the coolant (which is a priori superior, at least at the beginning of irradiation, at the internal pressure of the filling gas of the fuel element) to be exerted directly on the inner metal layer, causing its excessive deformation, a priori preferably by a creep mechanism (known as "creep" -down "in the field of nuclear fuels, where the origin of creep is associated with high temperatures and neutron irradiation).
  • the object of the invention is to remedy at least partially the disadvantages mentioned above, relating to the embodiments of the prior art.
  • the inventors have set themselves the goal of designing a tubular piece made of CMC material which has a hermeticity further improved over tubular parts of the prior art, this part can be used as a nuclear fuel sheath. More particularly, the inventors have sought to extend the hermeticity range of a CMC-based tubular piece beyond the elastic limit of said material, preferably to the point of rupture of said CMC material.
  • a multilayer tubular part comprising a metal layer forming a metal tubular body and two layers of ceramic matrix composite material, covering the metal tubular body, characterized in that one of the two layers of ceramic matrix composite material covers the inner surface of the metal tubular body to form an inner tubular body, while the other of the two ceramic matrix composite layers covers the outer surface of the tubular body metal tubular body being thus sandwiched between the inner and outer tubular bodies, the tubular metal body having a mean thickness less than the average thicknesses of the inner and outer tubular bodies.
  • the tubular metal body may be of metal or metal alloy. It is specified that, in what precedes and what follows, a ceramic matrix composite material is a fiber-reinforced material.
  • the multilayer tubular piece may have a section in circular, oval, hexagonal, square section, the circular section being however preferred.
  • the inner and outer tubular bodies are not necessarily in the same “material”.
  • CMCs which are therefore "structures” (that is, a combination of materials, geometries and processes) more than “materials”
  • the inner and outer tubular bodies are in the same “material”
  • the metal tubular body has an average thickness of between 5% and 20% of the average thickness of the multilayer tubular piece.
  • a multilayer tubular piece according to the invention can be subjected to hermeticity constraints up to high temperatures and, so that it can maintain its hermetic integrity up to high temperatures, the criteria for choosing the constituent material of the tubular body.
  • metallic are:
  • thermochemical compatibility with the constituent CMC material of the inner and outer tubular bodies is thermochemical compatibility with the constituent CMC material of the inner and outer tubular bodies.
  • thermochemical compatibility criterion with respect to the media (fluids or solids ) intended to be in contact with the inner and outer tubular bodies.
  • the metal tubular body is made of a material chosen from niobium and its alloys, tantalum and its alloys, tungsten and its alloys, titanium and its alloys.
  • niobium alloys Nb-1Zr or Nb-1Zr-0.1Cr can be used; as a tungsten alloy, W-5Re can be used.
  • the choice of the metallic material is also fixed by the holding stress to the conditions of production of the piece tubular. Indeed, as we will see later, the proposed manufacturing method according to the invention requires the selected metal material to be able to withstand the conditions of development of the external CMC (which is designed on said metal layer), the elaboration temperatures external CMC can for example reach 1000 ° C.
  • the inner and outer tubular bodies are, for their part, preferably composite C f / C, C f / SiC or SiC f / SiC.
  • the CMC materials are hermetic only in a very small range which corresponds to the linear elastic range of the CMC material in question, because beyond this elastic limit, they undergo multi-cracking.
  • the particular arrangement of the layers of the multilayer tubular piece according to the invention makes it possible to maintain a hermeticity of the piece until the CMC materials break rather than on their only elastic domain.
  • the multilayer tubular piece according to the invention can provide a hermetic separation of two media (fluid or solid) (one being located outside the room and the other being located inside the room), even when there is a pressure differential between the inner and outer surfaces of the room and the mechanical loading resulting results in multi-cracking of one or both inner and outer bodies.
  • two media fluid or solid
  • the inner and outer tubular bodies are cracked, they lose their hermeticity, but they retain their mechanical strength. They can therefore continue to maintain the mechanical integrity of the metal tubular body, and consequently maintain the mechanical integrity of the multilayer tubular part as a whole, and the hermeticity of the part then rests on the metal tubular body.
  • Another object of the invention is a tubular structure having a closed cavity.
  • This structure comprises, on the one hand, a multilayer tubular piece as defined above, having one or two open ends, and, on the other hand, at least one cover for each open end, each cover being positioned at the level of an open end so as to completely close off said open end, each lid comprising an inner layer, made of metal or metal alloy, intended to be fixed to the metal tubular body of the multilayer tubular piece, and possibly an additional layer, made of a material composite ceramic matrix, intended to be fixed to the outer tubular body of the multilayer tubular member, the closed cavity of the structure being delimited by an inner wall of the multilayer tubular member and by an inner wall of each lid.
  • the multilayer tubular member comprises, at each open end, an annular zone in which the metal tubular body is not covered by the outer tubular body and in which each lid is formed of a bottom connected to an edge lateral, said lateral edge being adapted to cover said annular zone.
  • the structure is a nuclear fuel cladding capable of containing a nuclear fuel and the fission gases that the latter releases under irradiation.
  • the metal tubular body preferably has an average thickness of between 50 and 200 microns.
  • the criteria for choosing the constituent material of the metal tubular body are:
  • thermochemical compatibility with the constituent CMC material of the inner and outer tubular bodies
  • the criteria for choosing the constituent material of the inner and outer tubular bodies are the same as for the metal tubular body in terms of compatibility with irradiation and high temperatures, while the criterion of thermochemical compatibility is supplemented by requirements vis-à-vis -vis reactions with the fuel and fission products, for the inner tubular body, as well as with the coolant and its impurities, for the outer tubular body.
  • tubular metal body of the multilayer tubular part namely niobium and its alloys, tantalum and its alloys, tungsten and its alloys, titanium and its alloys, and preferred materials cited above for the inner and outer tubular bodies, namely a composite C / C, C / SiC or SiC / SiC, are suitable.
  • nuclear fuel element comprising nuclear fuel housed in the closed cavity of the structure tubular as defined above.
  • the nuclear fuel may be in the form of nuclear fuel pellets (uranium and / or plutonium and / or thorium, in the form of oxide, carbide, nitride, etc.); the nuclear fuel element can thus be a pencil or a needle.
  • the invention also relates to a method for manufacturing a multilayer tubular piece as defined above, which comprises the following successive steps:
  • the application of a treatment to induce the densification of the preform by forming a matrix in said preform the treatment being carried out at a temperature which is lower than the preform degradation temperature, lower than the degradation temperature; of the tubular metal body and less than the degradation temperature of the inner tubular body.
  • degradation temperature the temperature from which the material has thermomechanical performance incompatible with its rules of use for the intended application. Ultimately, this is the melting temperature, but the actual degradation temperature is likely to be lower: it depends on the thermochemical environment conditions that cause reactions between materials.
  • step a) of the above method may comprise the following successive steps: the production of a fiber preform based on continuous fibers on a cylindrical support member;
  • Consolidation as densification, may for example consist of CVI densification, that is to say, an infiltration of a precursor gas of the ceramic matrix in the fiber preform, carried out in a high temperature oven. Under the effect of the temperature and in contact with the fiber preform, the precursor gas decomposes and produces carbon or ceramic compounds (silicon carbide or others) that come to fill the porosity.
  • CVI densification that is to say, an infiltration of a precursor gas of the ceramic matrix in the fiber preform, carried out in a high temperature oven. Under the effect of the temperature and in contact with the fiber preform, the precursor gas decomposes and produces carbon or ceramic compounds (silicon carbide or others) that come to fill the porosity.
  • Densification and / or consolidation can also be obtained by a PIP type process, that is to say an impregnation of a solution of a precursor polymer of the ceramic matrix of the body. tubular internal to achieve, followed by pyrolysis of the precursor polymer at high temperature.
  • step b) comprises the vapor deposition of a layer of metal or metal alloy on the outer surface of the inner tubular body.
  • step b) comprises the following successive steps:
  • the metal tubular body can be manufactured by techniques known to those skilled in the art, for example by the cold rolling technique (preferably by HPTR rolling), hot rolling, spinning or extrusion.
  • the cold rolling technique has the advantage of adapting to many metals and alloys.
  • the plating can be carried out by techniques known to those skilled in the art, for example by the technique of cold or hot drawing, or by magnetic pulse.
  • This manufacturing process may further comprise, between steps a) and b), a step of surface treatment of the surface of the inner tubular body to reduce the roughness thereof.
  • a step of surface treatment of the surface of the inner tubular body to reduce the roughness thereof.
  • This may be for example a diamond grinding of the outer surface of the composite tube by the technique of "grinding without center”.
  • the invention also relates to a method of manufacturing a tubular structure as defined above.
  • This method of manufacturing a tubular structure comprises the manufacture of a multilayer tubular piece, according to the method of manufacturing a multilayer tubular piece described above, and the closing of the open end or ends of said piece by the placing a lid on each of these open ends and fixing said lid on the metal tubular body, each lid comprising an inner layer of metal or metal alloy and optionally an additional layer of ceramic matrix composite material.
  • Said method may, for example, include forming the multilayer tubular piece so that it comprises, at each of its open ends, an annular zone in which the metal tubular body is not covered by the outer tubular body, each annular zone being completely covered by the layer internal metal of a lid when attaching a lid on the open end corresponding to said annular zone.
  • This annular zone can be obtained by producing an outer tubular body of length less than the length of the metal tubular body during step c); it can also be obtained by removing a portion of the ceramic matrix composite material layer forming the outer tubular body so as to have an annular portion leaving the metal layer uncovered at the open end or ends of the metal tubular body. Once this annular zone is present, the lid can then be attached to the uncovered portion of the metal layer, and if the lid has a CMC outer layer, attach the CMC layer of the lid to the outer CMC layer of the metal layer. the part, by a method known to those skilled in the art, such as brazing, for example.
  • the metal layer which plays the role of hermetic layer
  • the metal layer is geometrically constrained by the composite layers and, since it has a small thickness compared to the composite layers, it participates only in a very limited way to the mechanical strength of the final part. In use condition, the load is supported myitarily by the composite layers of greater thicknesses. As illustrated in FIG. 1, this manufacturing method allows the part to be loaded beyond the elastic limit of the composite material used alone: the layers of composites can therefore crack, without the multilayer tubular part losing its hermetic properties.
  • the choice, optional but preferable, of identical materials for the two CMC layers makes it possible to guarantee that they do not impose significant differential deformations on the two faces of the metal layer that they frame. Let's not forget that the metal layer is thin compared to the two CMC layers and is therefore not very resistant.
  • the metal layer is thin with respect to the surrounding CMC layers, and because of its very good thermal conductivity, there is a small difference in temperature between its faces.
  • the hermeticity layer metal layer
  • the hermeticity layer is protected from thermochemical attacks of fuel and fission products , to whom she is "isolated". Indeed, there is no direct contact, apart from possible migrations of fission products through the internal CMC layer, which are naturally limited by the thickness of the internal CMC layer and by the control of its cracking. .
  • This protective layer is a layer of "porous solid seal” type, known to those skilled in the art.
  • This layer of "porous solid seal” type may for example have a fibrous or cellular structure, made of C and / or Sic, and having a high porosity, in order to accommodate, by its crushing, the expansion.
  • voluminal fuel without mechanical loading of the sheath, to promote the thermal transfer of fuel to the sheath, and to transport the fission gases released to the gaseous plenum located at the axial end of the fuel element).
  • the hermeticity layer is protected from the physical attacks caused by the fission products generated at the periphery of the fuel, whose energy of recoil creates damage that is absorbed by the internal CMC sheath, or even the possible protective layer.
  • the metal layer performs its hermeticity function which is required in particular to confine the radioactive products created by the irradiation of the nuclear fuel (uranium and / or plutonium and / or thorium, in the form of oxide, carbide, nitride , ... possibly loaded with minor actinides, such as americium, neptunium, curium .
  • the hermeticity layer is also protected from thermochemical attacks of the coolant and its impurities, with respect to which it is "isolated". There is no direct contact, except the possible migrations of impurities through the outer CMC layer, which are naturally limited by the thickness of the outer CMC layer and the control of its cracking.
  • the original design of the multilayer piece proposed in the context of this invention ensures the hermeticity function until dismantling: -
  • the reinforcement provided on both sides by the CMC layers dimensioned to ensure the mechanical strength of the part (sheathing) under all the usual stresses in operation;
  • FIG. 1 represents the behavior of a braided tubular SiC f / SiC composite 2D biased in uniaxial traction, the deformation being represented on the abscissa and the stress on the ordinate.
  • This tensile curve shows an elastic regime (proportionality between the stress and the deformation) extending up to a stress of about 80 MPa and a stress corresponding to 0.04% elongation, which delimits the usual operating range on which the hermeticity of the composite can be considered: beyond these values, there is multi-cracking of the matrix, which causes a loss hermeticity.
  • Figure 1 shows the breaking characteristics of the composite, for a stress of the order of 300 MPa and an elongation of the order of 0.9%.
  • Figure 1 illustrates a field of usual mechanical use of composites as nuclear fuel cladding, with stresses of up to about 200 MPa and deformations of the order of 0.5%.
  • a cladding of nuclear fuel element to preserve its hermeticity and its mechanical integrity in any design situation the material whose behavior is illustrated in Figure 1 satisfies the requirement of mechanical integrity (in the sense of a lack of rupture or excessive deformation of sheath), but only meets the hermeticity requirement on its elastic domain, more restricted than the field of use.
  • the object of the patent is to extend the hermeticity range of the nuclear fuel cladding, based on ceramic matrix composite (SiC f / SiC, in particular), beyond the mechanical use domain of this type of object: the three domains (accessible / used / targeted) are represented on the figure by a system of hatching.
  • FIG. 2 schematically represents, in a view in axial section, the multilayer tubular piece according to the invention.
  • FIGS. 3a and 3b respectively represent, in a view in axial section and in longitudinal sectional view, a nuclear fuel cladding according to the invention obtained by introducing a nuclear fuel inside a multilayer tubular structure according to FIG. invention.
  • the tubular part 1 comprises an outer layer of CMC material forming an outer tubular body 2, which covers a metal tubular body 3, which itself covers an inner layer of CMC material forming a internal tubular body 4.
  • this tubular piece can be used to make a nuclear fuel casing 10 for containing nuclear fuel to form a fuel element 100.
  • the nuclear fuel is introduced into the tubular part 1, as shown in FIG. 3a.
  • the space shown between the inner tubular body 4 and the nuclear fuel 5 may correspond to a gaseous medium or to a porous solid interface seal, which has the particular function:
  • the multilayer tubular part according to the invention is formed of tubular bodies or tubes which can therefore have two open ends or an open end (the other end being blind).
  • a way proposed according to the invention for closing the open ends of the tubular part 1 is to have an annular zone near the open ends in which the metal tubular body is not covered by the outer tubular body: the metal layer is thus accessible on the periphery of the open ends of the tubular piece.
  • This zone can be obtained by removing a portion of the outer layer forming the outer tubular body 2.
  • This closure can be obtained by fixing the first cover 6 on the annular zone by performing a weld 8 between the metal walls of the first cover and the annular zone.
  • the second cover is optional if the first cover (metal cover) satisfies all the constraints of closure of the tubular part, including the recovery of the background effect, well known to those skilled in the art.
  • the one or more covers are mounted and fixed on the tubular part so that there is a continuous connection, on the one hand, between the metal layer of the metal tubular body 3 and the first cover 6 (or with the inner metal part of the cover in the case of a single cover) and, on the other hand, between the outer tubular body 2 and the second cover 7 (or with the outer CMC material part of the cover in the case of a single lid).
  • Said continuous connections may for example be obtained by means of a weld, in the case of a connection between metals, or solder, in the case of a bond between CMC materials.
  • nuclear fuel sheath 10 shown diagrammatically in FIGS. 2a and 2b is shown cold and at the beginning of irradiation in a reactor, hence the presence of the space between the internal body 4 and the nuclear fuel 5 .
  • the nuclear fuel 5 is in the form of fuel pellets which are stacked inside the fuel sheath 10, the whole forming a fuel element 100.
  • the axial space between the nuclear fuel 5 and the first cover 6 is intended to be occupied by an axial positioning device (not shown) of the fuel pellet column (device typically comprising a spring, a spacer and / or holds).
  • the CMC materials of the outer and inner tubular bodies of the tubular piece may, for example, be ceramic matrix composites of SiCf / SiC, SiC f / TiC, SiC f / ZrC or SiC f / Ti 3 SiC 2 type , such as mentioned in document [6].
  • the hermeticity layer is made of metal or metal alloy: niobium and its alloys, tantalum and its alloys, tungsten and its alloys, titanium and its alloys; for example Nb-1Zr, Nb-1Zr-0.1C, Ta, W-5Re. It is important to note that, in order to ensure the integrity and properties of the object, the chemical compatibility of the metal or alloy with the CMC material used must be verified on the whole. the temperature range of use of the future tubular part, as well as the entire manufacturing temperature range of the CMC layers.
  • the values of the thicknesses of the different layers of the multilayer tubular part are preferably in the following ranges:
  • hermetic metal layer 50 to 200 ⁇ m
  • the thicknesses of the inner and outer CMC layers being chosen so that they are greater than that of the hermeticity layer, preferably at least 3 times greater than or equal to the thickness of the hermeticity layer. In fact, it is sought to minimize the thickness of the hermeticity layer and the overall thickness of the multilayer tubular part, in order to optimize the neutron.
  • the multilayer tubular part according to the invention has the advantage of using a large majority of ceramic matrix composite phases in place of a completely metallic part.
  • the metal layer here is only to guarantee the hermeticity of the overall piece. Indeed, for many applications envisaged (pressure vessel operating at high temperature, for example), the use of metal is prohibited because of its density and / or its low mechanical strength. at high temperature, and / or because of its neutron capture section, in the case of nuclear applications. It is therefore necessary to limit the thickness of the metal layer to a minimum.
  • step 6 the manufacture of the fibrous preform of the outer tubular body directly on the metal tubular body obtained in step 5, then its densification, and finally its optional final coating (this coating step being optional, but preferable) leading to the obtaining the multilayer piece.
  • the first stage of manufacture of the part is to develop a tube intended to form the tubular body of internal CMC material.
  • a fibrous reinforcement is shaped around a cylindrical mandrel chosen according to the nature of the composite to be developed.
  • a mandrel made of silica glass so that the mandrel can easily be removed at the end of the process by simple chemical dissolution.
  • a good internal surface condition of the inner tube as well as compliance with the ribs and tolerances are more accessible with this type of mandrel than with a graphite mandrel, conventionally used.
  • the shaping of the fibrous architecture of the reinforcement can be achieved by one of the techniques from the textile industry adapted to geometrical parts having an axis of revolution such as filament winding or 2D or 3D interlock braiding.
  • the thickness of the reinforcement (number of layers of braiding or winding) is chosen according to the thickness targeted for this inner tube.
  • the second step which is optional but preferable, consists in preparing the external surface of the inner composite tube thus obtained, rough and abrasive in nature, so as to obtain a surface having a maximum RMS roughness of 1 to 2 ⁇ m in order to allow a plating optimum of the future metal tube serving as hermetic layer on the inner composite tube.
  • CVD vapor phase deposition
  • PVD vapor phase deposition
  • this layer may also have the role of accommodating the differential deformations between the CMC composite tube and the metal layer placed on the external face at the next step of the process.
  • this layer may also have the role of accommodating the differential deformations between the CMC composite tube and the metal layer placed on the external face at the next step of the process.
  • a pyrocarbon type material can be used to make this layer.
  • the third step is to manufacture a metal tube that will be used as a hermeticity layer to achieve the metal tubular body of the multilayer piece.
  • the choice of the type of metal is very important for the intended application and will depend on the type of composite of the inner and outer tubes and the conditions of use. Indeed, it is particularly appropriate to choose a metal phase compatible with the ceramic phases of the composite, whether in the operating temperature range of the final part, but also in the range of the composite preparation temperatures according to the method of densification chosen.
  • the possible densification processes require processing temperatures close to 1000 ° C. It is therefore appropriate in this case to select only metals that have good chemical compatibility with the carbon and silicon carbide phases at 1000 ° C.
  • the metals proposed are niobium and its alloys (Nb-lZr, Nb-lZr-0, 1C), but also tantalum and its alloys, tungsten or titanium to a lesser extent.
  • the metal tube In order to limit the thickness of the metal tube to a minimum, it is chosen to use a technique of shaping the metal tube to the desired dimensions, which makes it possible to obtain a minimum thickness of up to 0.1 mm, see below. .
  • the inventors used a HPTR rolling bench, but other cold or hot rolling mills could also be used.
  • the aim is an internal diameter equal to the external diameter of the rectified composite inner tube, which is added a clearance so that the inner composite tube can be inserted on the metal tube, however this game is as small as possible to to facilitate the plating step which will be described below.
  • a diametral clearance of the order of 0.1 mm was used.
  • rolling has the effect of hardening the metal or alloy used. This hardening has the main consequence of increasing the hardness of the material and to limit its breaking strain.
  • the next step is to press the metal tube onto the inner composite tube.
  • This operation aims to guarantee an intimate contact between these two elements.
  • This plating can be obtained by several techniques. For example, controlled stretching of the metal tube on the inner composite tube may be used.
  • the inner composite tube is inserted into the metal tube thanks to the planned clearance; then, the metal tube is mechanically stressed in traction so that it retracts on the wall of the inner composite tube (fish effect).
  • plating techniques such as hot stretching or the magnetic pulse, which consists in using a high intensity magnetic field in order to press the metal tube onto the non-magnetic inner composite tube.
  • the bilayer tube once formed may optionally undergo a grinding of the roughness of its metallic outer surface or a phase deposit vapor of an additional layer, as previously described for the inner composite tube.
  • the last step is to make the outer composite tube.
  • the procedure is similar to that used for the manufacture of the inner composite layer.
  • the fiber reinforcement is first shaped by the same techniques as those mentioned previously (filament winding, 2D braiding or 3D interlock), and then is densified.
  • the outer composite tube is here directly shaped on the composite bilayer tube / metal developed.
  • a hermetically sealed multilayer ceramic matrix composite part is thus obtained until rupture as shown in FIG. 2.
  • this outer surface ie the outer composite tube
  • this outer surface can be rectified by centerless grinding or be covered with a layer additional.
  • the multilayer tubular piece thus produced can be used to carry out a fluid duct under pressure or even a pressure vessel, such as a nuclear fuel element sheath.
  • a nuclear fuel element sheath which is the application targeted primarily by the invention.
  • an internal CMC tube in this case an Si / F / SiC tube with an internal diameter of 7 mm and a thickness of 300 ⁇ m, optionally supplemented with the coating of the outer face of the tube. composite by a layer of a pyrocarbon material.
  • a tantalum metal tube having an inner diameter of 7.7 mm and a thickness of 100 ⁇ m is then produced, either by rolling followed by plating (by a magnetotroping or drawing process) on the internal CMC tube, or by developing a vapor deposition layer directly on the internal CMC tube.
  • the tantalum layer is then optionally covered with a layer of a pyrocarbon type material of a few hundred nanometers.
  • an outer SiC f / SiC composite tube 600 ⁇ m thick is produced directly on the part obtained in the preceding step, by shaping the SiC / SiC reinforcement and impregnating this reinforcement according to a usual method. optionally completed coating or grinding the outer face of this outer composite tube.
  • This latter coating made by vapor deposition (PVD or CVD), of a SiC type material, of a thickness of a few hundred nanometers, aims to provide a smooth surface state, if this corresponds to a requirement ( this may be necessary to reduce the pressure losses associated with the friction of the coolant along the sheath, for example).
  • the ends of the multilayer tubular part are disengaged by machining the outer CMC layer, for example over a length of 5 mm, without damaging the metal layer. under-acente.
  • One of the two ends of the tubular piece is then closed by welding a lid or metal cap 6 to the part of the metal tube previously freed (cover, for example, of a thickness of 100 ⁇ m obtained by stamping), and then brazing a cover of CMC material (for example SiC f / SiC) on the outer CMC tube.
  • a lid or metal cap 6 to the part of the metal tube previously freed (cover, for example, of a thickness of 100 ⁇ m obtained by stamping), and then brazing a cover of CMC material (for example SiC f / SiC) on the outer CMC tube.
  • CMC material for example SiC f / SiC
  • the cover CMC may be optional, provided to choose a metal, for the lid, having thermomechanical properties adequate in terms of refractoriness and resistance to internal pressure in normal and accidental operation.
  • a metal for the lid, having thermomechanical properties adequate in terms of refractoriness and resistance to internal pressure in normal and accidental operation.
  • this step of closing an end of the multilayer tubular structure can be made optional in the case where the steps previous ones are made so as to manufacture a blind tube (closed at one of its ends).
  • the nuclear fuel pellets 5 (which here have a diameter of 6.71 mm) are then inserted into the tubular structure, as well as to the insertion of the internals (spring, spacer and wedges), which are arranged between the pillar column and the lid (not shown in Figure 3b).
  • the innovation of the proposed solution lies in the multilayer character of the cladding concept, with the positioning of the metal layer, acting as a hermeticity layer, between two CMC layers meeting the requirements of refractoriness and mechanical strength in the case the realization of an advanced fuel element.
  • This particular positioning allows the implementation of a thin layer of hermeticity (50 to 200 ⁇ m) without risk of embrittlement by excessive deformation, up to high neutron temperatures and fluences, nor risk of damage by the fuel. nuclear energy and its fission products, leading to high burnup rates.
  • This solution proposes a sustainable mode of containment of fission products for a CMC material cladding fuel element. As such, it opens the prospects for the implementation of this type of cladding, whose refractoriness (with good neutron properties) must make it possible to increase the safety of the fuel element by guaranteeing its geometric integrity (guarantor of the control of the reactivity and the coolability of the reactor core) up to the very high temperatures of the accidental transients to be taken into account in its design.
  • the outer and inner tubes of CMC material not only play the role of mechanical reinforcement, but also refractory reinforcement to consolidate the holding of a conventional metal cladding accidental transients (thermal stability and creep resistance), which allows Achieving typically targeted safety objectives for the RNR-G pipeline or as part of a significant improvement in the high-temperature sheath strength of certain accidental transients in PWR, BWR and Na-RNR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

L'invention a trait à une pièce tubulaire multicouche (1) comprenant une couche métallique formant un corps tubulaire métallique (3) et deux couches en matériau composite à matrice céramique, recouvrant le corps tubulaire métallique, dans laquelle une des deux couches en matériau composite à matrice céramique recouvre la surface interne du corps tubulaire métallique pour former un corps tubulaire interne (4), tandis que l'autre des deux couches en matériau composite à matrice céramique recouvre la surface externe du corps tubulaire métallique pour former un corps tubulaire externe (2), le corps tubulaire métallique se trouvant ainsi pris en sandwich entre les corps tubulaires interne et externe. Le corps tubulaire métallique est en métal ou en alliage de métaux. Enfin, le corps tubulaire métallique a une épaisseur moyenne inférieure aux épaisseurs moyennes des corps tubulaires interne et externe. Une telle pièce peut notamment servir à réaliser des gaines de combustible nucléaire.

Description

TUBE MULTICOUCHE AMELIORE EN MATERIAU COMPOSITE A MATRICE CERAMIQUE, GAINE DE COMBUSTIBLE NUCLEAIRE EN RESULTANT ET PROCEDES DE FABRICATION ASSOCIES
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention se rapporte au domaine des pièces en matériau composite à matrice céramique. En particulier, la présente invention se rapporte au domaine des éléments combustibles pour réacteur nucléaire et, plus particulièrement, à une gaine de combustible nucléaire améliorée, aux crayons combustibles de réacteur nucléaire utilisant de telles gaines et à leurs procédés de réalisation.
Une telle gaine de combustible améliorée peut, à titre d'exemple, être utilisée pour réaliser les éléments combustibles à géométrie « aiguille » (également appelés « crayons ») des réacteurs de quatrième génération de type RNR-G (pour Réacteur à Neutrons Rapides et caloporteur Gaz) .
Elle peut également être utilisée dans d'autres réacteurs nucléaires, comme les réacteurs REP (pour Réacteur à Eau Pressurisée) , les réacteurs REB (pour Réacteur à Eau Bouillante) ou encore les réacteurs RNR-Na (pour Réacteur à Neutrons Rapides et caloporteur sodium) .
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Les matériaux composites à matrice céramique (également appelés matériaux CMC) sont particulièrement appréciés dans de nombreux domaines en raison de leur faible densité, de leurs propriétés mécaniques remarquables, notamment en termes de dureté, de ténacité, de tenue à l'usure et de résistance aux chocs mécaniques et thermiques, ainsi qu'en raison de leur bon comportement sous flux neutronique et à haute température pour des applications dans le domaine nucléaire. Par « haute température », on entend une température au-delà de laquelle le comportement thermomécanique des matériaux usuels (aciers des réacteurs à spectre rapide et alliages de zirconium des réacteurs à spectre thermique) n'est plus satisfaisant. Cela correspond à une température de l'ordre de 400°C à 600°C en régime nominal, et de l'ordre de 1000°C à 1200°C en régime accidentel. Ainsi, par exemple, pour les RNR-G, on vise des températures de fonctionnement atteignant 1000°C en régime nominal, et jusqu'à 1600°C, voire 2000°C, pour les transitoires accidentels.
On rappelle à ce propos qu'un matériau CMC est constitué d'une matrice céramique, qui est renforcée par une structure fibreuse en céramique sur laquelle est déposé un matériau d'interphase dont le rôle principal est de dévier les fissures générées au sein de la matrice lors de sollicitations mécaniques ; la matrice et les fibres peuvent être en tout matériau céramique connu, y compris en carbone (le carbone étant considéré, dans ce contexte, comme un matériau céramique), le matériau d'interphase pouvant quant à lui être du pyrocarbone.
A titre d'exemples, de tels matériaux sont utilisés dans l'aéronautique pour réaliser des disques de freins ou des pièces destinées à entrer dans la réalisation de réacteurs fonctionnant à haute température ; ils entrent également dans la réalisation de pièces pour les turbines à gaz ; ils entrent enfin, et c'est la première application visée dans le cadre de ce brevet, dans la réalisation de matériau de gainage pour les éléments combustibles et les barres de commande des réacteurs nucléaires.
Malgré leurs nombreux avantages, les matériaux CMC présentent cependant un inconvénient majeur : ils ne sont pas hermétiques sur l'ensemble de leur domaine de fonctionnement potentiel. Ainsi, ces matériaux sont inadaptés pour des applications en tant qu'enceinte en pression ou conduite en pression, comme c'est notamment le cas des gainages de combustible nucléaire ou des tubes d'échangeurs thermiques, car ils n'offrent aucune garantie d'herméticité sur l'ensemble de leur domaine de fonctionnement potentiel. Par exemple, pour un élément combustible de réacteur nucléaire, dont le gainage constitue la première barrière de confinement des produits radioactifs générés en fonctionnement, le risque d'un défaut d'herméticité avant démantèlement constitue clairement un inconvénient majeur, ce qui rend, a priori, les matériaux CMC inadaptés pour une telle utilisation et inacceptables par une autorité de sûreté nucléaire.
Le comportement spécifique des matériaux CMC vis-à-vis de l'exigence d'herméticité, qui constitue un enjeu majeur de ce brevet, est clairement illustré par la figure 1. La figure 1 illustre le comportement mécanique d'un matériau CMC de type SiCf/SiC (pour composite à matrice en carbure de silicium renforcé par une structure fibreuse en carbure de silicium) soumis à un essai de traction uniaxiale, dans un diagramme représentant le lien entre déformation (en abscisse) et contrainte (en ordonnée) . Cette figure met en évidence le fait que le matériau CMC de type SiCf/SiC qui est ici étudié présente une capacité d'allongement à rupture appréciable, de l'ordre de 0,9% pour une contrainte à rupture de l'ordre de 300 MPa, mais a cependant un domaine d'élasticité linéaire beaucoup plus réduit, avec un allongement de l'ordre de 0,04% et une limite élastique voisine de 80 MPa. Or, au-delà de leur limite d'élasticité, les matériaux CMC sont caractérisés par un mode d ' endommagement qualifié de « multi-fissuration matricielle », qui se traduit par l'apparition de nombreuses fissures. Ce mécanisme très singulier permet aux matériaux CMC d'atteindre des niveaux d'allongement à rupture tout à fait remarquables pour une céramique, mais écarte tout espoir auxdits matériaux de conserver une herméticité au-delà de cette limite élastique.
Si on compare les valeurs mentionnées ci- dessus (sur la base de la figure 1) aux conditions de fonctionnement usuellement requises pour un gainage de combustible nucléaire, par exemple des allongements de 0, 2 à 0,5% et des contraintes supérieures à 100 MPa, pouvant atteindre jusqu'à 200 MPa dans les conditions de dimensionnement les plus extrêmes, alors il est clair qu'un gainage CMC seul n'est pas à même de satisfaire l'exigence d'herméticité à laquelle il est strictement astreint par les réglementations de sûreté. Plusieurs travaux disponibles dans la littérature relatent la mise au point de procédés permettant d'étendre le domaine d'herméticité de pièces en composites à matrice céramique.
A titre d'exemples, les documents [1] à
[3] , dont les références sont disponibles à la fin de cette description, décrivent la fabrication d'une gaine de combustible nucléaire, composée d'un tube en matériau CMC recouvert d'une couche en céramique (pour les documents [1] et [3]), ou composée d'un tube en matériau CMC pris en sandwich entre une couche interne en céramique et une couche externe en céramique ( [2] ) .
Cependant, outre le fait que la réalisation d'une couche monolithique en céramique sur les longueurs usuelles d'une gaine de combustible nucléaire (supérieures à 1 mètre et pouvant atteindre jusqu'à 4 mètres) est particulièrement difficile (le document [2] mentionne en effet la réalisation de tronçons qu'il faut ensuite assembler, ce qui constitue un risque de fragilisation du composant final), l'herméticité des gaines décrites dans les documents [1] à [3] n'est valable que dans le domaine d'élasticité linéaire du multicouche ainsi formé, et en particulier dans le domaine d'élasticité de la céramique utilisée, qui est malheureusement très réduit. En l'occurrence, cela signifie que, si une fissure est initiée au sein du multicouche et plus particulièrement, au sein de la céramique monolithique assurant son herméticité (après un choc ou un endommagement mécanique au-delà de sa résistance élastique linéaire), l'herméticité est perdue, et la gaine se retrouve perméable. Ainsi, si l'on considère par exemple la figure 11 du document
[2] , on note que la défaillance de la céramique monolithique interne, qui assure l'herméticité, se produit au plus tard pour un allongement de l'ordre de 0,2% (correspondant au maximum de la courbe « contrainte versus déformation ») . De fait, en dépit de ses performances à rupture, le multicouche proposé dans le document [2] n'est pas apte à satisfaire le cahier des charges d'un élément combustible nucléaire, qui nécessite que l'herméticité du gainage soit garantie sur l'ensemble du domaine de fonctionnement, qui s'étend clairement au-delà des 0,2% de déformation.
Il est par ailleurs connu, pour la réalisation de conduites ou d'enceintes en pression (hors du domaine particulier des combustibles nucléaires), d'utiliser une structure en matériau CMC dont l'intérieur est tapissé d'une couche métallique (documents [4] et [5] ) . Toutefois, pour une application en tant que gainage d'un élément combustible nucléaire, une telle solution présente divers inconvénients.
De manière générale, le positionnement interne de la couche métallique assurant l'herméticité la rend sensible aux agressions du combustible, à savoir l'implantation, sur une profondeur de l'ordre de 10 micromètres, de produits de fission générés avec des énergies cinétiques élevées en périphérie du combustible, et la corrosion de la couche métallique par réaction thermochimique avec le combustible et/ou les produits de fission.
De manière plus spécifique au cas des réacteurs nucléaires à caloporteur pressurisé (de l'ordre de 70 bars en RNR-G et REB, et de l'ordre de 155 bars en REP) , un gainage bicouche (couche CMC assurant la tenue mécanique en externe et couche métallique assurant l'herméticité en interne) présente le risque d'un effondrement de la couche métallique interne, susceptible de résulter de la perte d'herméticité de la couche CMC qui, par sa multi- fissuration, permettrait à la pression externe du caloporteur (qui est a priori supérieure, au moins en début d'irradiation, à la pression interne du gaz de remplissage de l'élément combustible) de s'exercer directement sur la couche métallique interne, entraînant sa déformation excessive, a priori préfèrentiellement par un mécanisme de type fluage (connu sous le nom de « creep-down » dans le domaine des combustibles nucléaires, où l'origine du fluage est associée aux hautes températures et à l'irradiation neutronique) .
Ainsi, l'application de cette solution aux combustibles nucléaires (qui n'a, à notre connaissance, encore jamais été mise en œuvre), exigerait d'utiliser des épaisseurs importantes pour la couche métallique, ce qui limiterait considérablement le choix du matériau métallique (du fait de l'absorption neutronique des métaux réfractaires ) .
Au vu de ce qui précède, l'invention a pour but de remédier au moins partiellement aux inconvénients mentionnés ci-dessus, relatifs aux réalisations de l'art antérieur. En particulier, les Inventeurs se sont fixé comme but de concevoir une pièce tubulaire à base de matériau CMC qui ait une herméticité encore davantage améliorée par rapport aux pièces tubulaires de l'art antérieur, cette pièce pouvant être utilisée comme gaine de combustible nucléaire. Plus particulièrement, les Inventeurs ont cherché à étendre le domaine d'herméticité d'une pièce tubulaire à base de CMC au-delà de la limite élastique dudit matériau, de préférence jusqu'à rupture dudit matériau CMC.
EXPOSÉ DE L' INVENTION Ce but est atteint par l'invention qui propose, en premier lieu, une pièce tubulaire multicouche comprenant une couche métallique formant un corps tubulaire métallique et deux couches en matériau composite à matrice céramique, recouvrant le corps tubulaire métallique, caractérisée en ce qu'une des deux couches en matériau composite à matrice céramique recouvre la surface interne du corps tubulaire métallique pour former un corps tubulaire interne, tandis que l'autre des deux couches en matériau composite à matrice céramique recouvre la surface externe du corps tubulaire métallique pour former un corps tubulaire externe, le corps tubulaire métallique se trouvant ainsi pris en sandwich entre les corps tubulaires interne et externe, le corps tubulaire métallique ayant une épaisseur moyenne inférieure aux épaisseurs moyennes des corps tubulaires interne et externe .
Le corps tubulaire métallique peut être en métal ou en alliage de métaux. On précise que, dans ce qui précède et ce qui suit, un matériau composite à matrice céramique est un matériau à renfort fibreux.
La pièce tubulaire multicouche peut avoir une section en coupe circulaire, ovale, hexagonale, carrée..., les sections en coupe circulaire étant cependant préférées.
On précise que les corps tubulaires interne et externe ne sont pas nécessairement en un même « matériau ». A ce propos, il est important de noter que, comme les corps tubulaires interne et externe sont des CMC, qui sont donc des « structures » (c'est-à-dire une combinaison de matériaux, de géométries et de procédés) plus que des « matériaux », si l'on dit que les corps tubulaires interne et externe sont en un même « matériau », cela signifie qu'ils sont réalisés suivant le même procédé, avec le ou les mêmes types de fibres (même composition chimique, même diamètre) , revêtue de la même interphase (même composition chimique, même épaisseur, même procédé de revêtement), entrelacées de la même manière pour former le renfort (tressage 2D, 3D, enroulement filamentaire...) et avec la même matrice (même composition chimique, même procédé d'élaboration). Ainsi, a contrario, deux matériaux CMC constitués des mêmes fibres et de la même matrice, mais dont la préforme est réalisée différemment (par exemple, l'une par enroulement filamentaire des fibres et l'autre par tressage 2D des fibres) seront considérés comme deux matériaux différents.
De préférence, le corps tubulaire métallique a une épaisseur moyenne comprise entre 5 % et 20 % de l'épaisseur moyenne de la pièce tubulaire multicouche .
Une pièce tubulaire multicouche selon l'invention peut être soumise à des contraintes d'herméticité jusqu'à de hautes températures et, pour qu'elle puisse conserver son herméticité jusqu'à de hautes températures, les critères de choix du matériau constitutif du corps tubulaire métallique sont :
- une compatibilité avec ces hautes températures (marge à la fusion, absence de transformation allotropique, préservation de propriétés mécaniques satisfaisantes) ; et
- une compatibilité thermochimique avec le matériau CMC constitutif des corps tubulaires interne et externe.
En ce qui concerne les critères de choix du matériau constitutif des corps tubulaires interne et externe, ceux sont les mêmes que ceux retenus pour le corps tubulaire métallique, auxquels on ajoute un critère de compatibilité thermochimique vis-à-vis des milieux (fluides ou solides) destinés à être en contact avec les corps tubulaires interne et externe.
Ainsi, de préférence, le corps tubulaire métallique est en un matériau choisi parmi le niobium et ses alliages, le tantale et ses alliages, le tungstène et ses alliages, le titane et ses alliages. A titre d'exemple, comme alliages du niobium, on peut utiliser du Nb-lZr ou du Nb-lZr-0,lC ; comme alliage de tungstène, on peut utiliser le W-5Re. En fait, le choix du matériau métallique est aussi fixé par la contrainte de tenue aux conditions d'élaboration de la pièce tubulaire. En effet, comme nous le verrons plus loin, le procédé de fabrication proposé selon l'invention impose au matériau métallique choisi de pouvoir résister aux conditions d'élaboration du CMC externe (qui est conçu sur ladite couche métallique) , les températures d'élaboration du CMC externe pouvant par exemple atteindre 1000°C.
Les corps tubulaires interne et externe sont, quant à eux, de préférence en composite Cf/C, Cf/SiC ou SiCf/SiC.
Comme expliqué précédemment, les matériaux CMC ne sont hermétiques que dans un très faible domaine qui correspond au domaine d'élasticité linéaire du matériau CMC en question, car au-delà de cette limite d'élasticité, ils subissent des multi-fissurations . L'agencement particulier des couches de la pièce tubulaire multicouche selon l'invention permet de conserver une herméticité de la pièce jusqu'à rupture des matériaux CMC plutôt que sur leur seul domaine élastique.
Ainsi, si l'on utilise par exemple un composite SiCf/SiC pour les corps tubulaires interne et externe, il est possible, en référence à la figure 1, de conserver une herméticité jusqu'à atteindre la limite d'allongement à rupture du composite SiCf/SiC qui est de l'ordre de 0,9% pour une contrainte à rupture de l'ordre de 300 MPa (le domaine d'herméticité atteignable dans le cadre de l'invention est hachuré) .
En fait, la pièce tubulaire multicouche selon l'invention peut assurer une séparation hermétique de deux milieux (fluide ou solide) (l'un étant situé à l'extérieur de la pièce et l'autre étant situé à l'intérieur de la pièce), même lorsqu'il y a un différentiel de pression entre la surface interne et la surface externe de la pièce et que le chargement mécanique qui en résulte provoque une multi-fissuration de l'un ou des deux corps interne et externe. En effet, lorsque les corps tubulaires interne et externe sont fissurés, ils perdent leur herméticité, mais ils conservent leur résistance mécanique. Ils peuvent donc continuer à maintenir l'intégrité mécanique du corps tubulaire métallique, et par voie de conséquence, à maintenir l'intégrité mécanique de la pièce tubulaire multicouche dans son ensemble, et l'herméticité de la pièce repose alors sur le corps tubulaire métallique.
On précise que l'intégrité mécanique du matériau CMC s'entend dans le sens d'une absence de rupture de ce matériau.
Un autre objet de l'invention est une structure tubulaire présentant une cavité fermée.
Cette structure comprend, d'une part, une pièce tubulaire multicouche telle que définie ci- dessus, ayant une ou deux extrémités ouvertes, et, d'autre part, au moins un couvercle pour chaque extrémité ouverte, chaque couvercle étant positionné au niveau d'une extrémité ouverte de manière à obturer complètement ladite extrémité ouverte, chaque couvercle comprenant une couche interne, en métal ou en alliage de métaux, destinée à être fixée au corps tubulaire métallique de la pièce tubulaire multicouche, et éventuellement une couche supplémentaire, en matériau composite à matrice céramique, destinée à être fixée au corps tubulaire externe de la pièce tubulaire multicouche, la cavité fermée de la structure étant délimitée par une paroi interne de la pièce tubulaire multicouche et par une paroi interne de chaque couvercle .
De préférence, la pièce tubulaire multicouche comprend, au niveau de chaque extrémité ouverte, une zone annulaire dans laquelle le corps tubulaire métallique n'est pas recouvert par le corps tubulaire externe et dans laquelle chaque couvercle est formé d'un fond relié à un bord latéral, ledit bord latéral étant adapté pour recouvrir ladite zone annulaire .
Avantageusement, la structure est une gaine de combustible nucléaire apte à contenir un combustible nucléaire et les gaz de fission que ce dernier relâche sous irradiation. Dans ce cas, le corps tubulaire métallique a, de préférence, une épaisseur moyenne comprise entre 50 et 200 micromètres.
Pour un gainage d'élément combustible nucléaire, les critères de choix du matériau constitutif du corps tubulaire métallique sont :
- une compatibilité avec l'irradiation (faible section de capture neutronique et préservation de propriétés mécaniques satisfaisantes (c'est-à-dire, garantissant l'absence de défaillance systématique sur le domaine de dimensionnement du réacteur) jusqu'à des doses d'irradiation élevées (supérieures à 50 dpa (déplacements par atome) en spectre thermique et 100 dpa en spectre rapide) ) ; - une compatibilité avec les hautes températures (marge à la fusion, absence de transformation allotropique, préservation de propriétés mécaniques satisfaisantes) ;
- une compatibilité thermochimique avec le matériau CMC constitutif des corps tubulaires interne et externe ;
- une soudabilité permettant la réalisation d'une fermeture hermétique par jonction avec un couvercle aux extrémités ouvertes.
Les critères de choix du matériau constitutif des corps tubulaires interne et externe sont les mêmes que pour le corps tubulaire métallique en matière de compatibilité avec l'irradiation et les hautes températures, tandis que le critère de compatibilité thermochimique se complète d'exigences vis-à-vis des réactions avec le combustible et les produits de fission, pour le corps tubulaire interne, ainsi qu'avec le caloporteur et ses impuretés, pour le corps tubulaire externe.
Ainsi, les matériaux préférés cités ci- dessus pour le corps tubulaire métallique de la pièce tubulaire multicouche, à savoir le niobium et ses alliages, le tantale et ses alliages, le tungstène et ses alliages, le titane et ses alliages, et les matériaux préférés cités ci-dessus pour les corps tubulaires interne et externe, à savoir un composite C/C, C/SiC ou SiC/SiC, conviennent parfaitement.
Un autre objet de l'invention est un élément combustible nucléaire comprenant du combustible nucléaire logé dans la cavité fermée de la structure tubulaire telle que définie ci-dessus. Le combustible nucléaire peut être sous la forme de pastilles de combustible nucléaire (uranium et/ou plutonium et/ou thorium, sous forme d'oxyde, de carbure, de nitrure...) ; l'élément combustible nucléaire peut ainsi être un crayon ou une aiguille.
L'invention concerne également un procédé de fabrication d'une pièce tubulaire multicouche telle que définie ci-dessus, qui comprend les étapes successives suivantes :
a) fourniture d'un corps tubulaire en matériau composite à matrice céramique pour former le corps tubulaire interne ;
b) formation du corps tubulaire métallique sur le corps tubulaire interne ;
c) formation du corps tubulaire externe sur le corps tubulaire métallique, par la mise en œuvre des étapes successives suivantes :
- la réalisation d'une préforme fibreuse à base de fibres continues sur la surface externe du corps tubulaire métallique (par tressage de fils, par exemple) ;
- l'application d'un traitement pour induire la densification de la préforme par formation d'une matrice dans ladite préforme, le traitement étant réalisé à une température qui est inférieure à la température de dégradation de la préforme, inférieure à la température de dégradation du corps tubulaire métallique et inférieure à la température de dégradation du corps tubulaire interne. On entend par « température de dégradation » la température à partir de laquelle le matériau présente des performances thermomécaniques incompatibles avec ses règles d'usage pour l'application visée. De manière ultime, il s'agit de la température de fusion, mais la température de dégradation effective est susceptible d'être plus faible : elle dépend des conditions d'environnement thermochimique qui sont à l'origine de réactions entre matériaux. Ainsi, dans le cas d'une gaine de combustible nucléaire, on devra prendre en compte les formations d ' eutectiques avec le combustible et les produits de fission, ou encore les réactions de dissociation éventuellement induites par le fluide caloporteur, notamment en conditions accidentelles (où l'accroissement de température (au-delà de 1000°C, par exemple), d'une part, et l'apport éventuel de matières absentes en conditions nominales (entrée d'air, d'eau ou d'azote, du fait d'une brèche dans le circuit primaire du réacteur, par exemple), d'autre part, sont susceptibles d'activer des réactions thermochimiques potentiellement pénalisantes (oxydation ou hydruration à haute température, par exemple) ) .
Pour obtenir le corps tubulaire interne dont il est question à l'étape a), on peut utiliser un corps tubulaire préfabriqué, acheté dans le commerce. On peut également choisir de le réaliser. Dans ce cas, l'étape a) du procédé ci-dessus peut comprendre les étapes successives suivantes : - la réalisation d'une préforme fibreuse à base de fibres continues sur un élément support cylindrique ;
- l'application d'un traitement pour induire la consolidation de ladite préforme par formation d'une matrice dans la préforme, le traitement étant réalisé à une température qui est inférieure à la température de dégradation de la préforme et inférieure à la température de dégradation de l'élément support ;
- le retrait de l'élément support de la préforme consolidée par attaque chimique de la surface de contact du matériau de l'élément support avec la préforme consolidée ;
- la densification de la préforme consolidée réalisée à une température inférieure à la température de dégradation de la préforme consolidée.
La consolidation, de même que la densification, peuvent par exemple consister en une densification CVI, c'est-à-dire en une infiltration d'un gaz précurseur de la matrice céramique dans la préforme fibreuse, réalisée dans un four à température élevée. Sous l'effet de la température et au contact de la préforme fibreuse, le gaz précurseur se décompose et produit du carbone ou des composés céramiques (carbure de silicium ou autres) qui viennent combler la porosité .
La densification et/ou la consolidation peuvent en outre être obtenues par un procédé de type PIP, c'est-à-dire une imprégnation d'une solution d'un polymère précurseur de la matrice céramique du corps tubulaire interne à réaliser, suivie d'une pyrolyse du polymère précurseur à haute température.
Pour former le corps tubulaire métallique sur le corps tubulaire interne, on peut procéder de deux manières différentes.
Selon une première variante, l'étape b) comprend le dépôt en phase vapeur d'une couche en métal ou en alliage de métaux sur la surface externe du corps tubulaire interne.
Selon une deuxième variante, l'étape b) comprend les étapes successives suivantes :
- l'insertion du corps tubulaire interne dans un tube métallique en métal ou en alliage de métaux ;
- le plaquage de ce tube métallique sur la surface externe du corps tubulaire interne ;
- le recuit éventuel de la pièce ainsi formée .
Le corps tubulaire métallique peut être fabriqué par des techniques connues de l'homme du métier, par exemple par la technique du laminage à froid (de préférence par laminage HPTR) , du laminage à chaud, par filage ou par extrusion. La technique du laminage à froid présente l'avantage de s'adapter à de nombreux métaux et alliages.
Le plaquage peut être réalisé par des techniques connues de l'homme du métier, par exemple par la technique de l'étirage à froid ou à chaud, ou par impulsion magnétique.
Ce procédé de fabrication peut en outre comprendre, entre les étapes a) et b) , une étape de traitement de surface de la surface du corps tubulaire interne pour en réduire la rugosité. Il peut s'agir par exemple d'une rectification diamantée de la surface externe du tube composite par la technique de « rectification sans centre ».
Il est également possible de réaliser, entre les étapes a) et b) , d'une part, et entre les étapes b) et c) , d'autre part, une étape de dépôt d'une couche tampon en un matériau choisi pour assurer la compatibilité thermomécanique vis-à-vis des dilatations différentielles entre les deux corps adjacents.
L'invention concerne également un procédé de fabrication d'une structure tubulaire telle que définie ci-dessus. Ce procédé de fabrication d'une structure tubulaire comprend la fabrication d'une pièce tubulaire multicouche, selon le procédé de fabrication d'une pièce tubulaire multicouche décrit ci-dessus, et l'obturation de la ou des extrémités ouvertes de ladite pièce par le placement d'un couvercle sur chacune de ces extrémités ouvertes et la fixation dudit couvercle sur le corps tubulaire métallique, chaque couvercle comprenant une couche interne en métal ou en alliage de métaux et éventuellement une couche supplémentaire en matériau composite à matrice céramique.
Ledit procédé peut, par exemple, comprendre la mise en forme de la pièce tubulaire multicouche de manière à ce qu'elle comporte, au niveau de chacune de ses extrémités ouvertes, une zone annulaire dans laquelle le corps tubulaire métallique n'est pas recouvert par le corps tubulaire externe, chaque zone annulaire étant totalement recouverte par la couche interne métallique d'un couvercle lors de la fixation d'un couvercle sur l'extrémité ouverte correspondant à ladite zone annulaire.
Cette zone annulaire peut être obtenue en réalisant un corps tubulaire externe de longueur inférieure à la longueur du corps tubulaire métallique au cours de l'étape c) ; elle peut également être obtenue en retirant une portion de la couche en matériau composite à matrice céramique formant le corps tubulaire externe de sorte à avoir une portion annulaire laissant découverte la couche métallique au niveau de la ou des extrémités ouvertes du corps tubulaire métallique. Une fois qu'on a cette zone annulaire, on peut alors fixer le couvercle à la partie découverte de la couche métallique, et, si le couvercle comporte une couche externe en CMC, fixer la couche en CMC du couvercle à la couche CMC externe de la pièce, par un procédé connu de l'homme du métier, tel que le brasage, par exemple.
La disposition et les caractéristiques particulières des couches de la pièce tubulaire selon l'invention lui confèrent de nombreux avantages.
Tout d'abord, en disposant la couche métallique (qui joue le rôle de couche d'herméticité) entre deux couches CMC, cela revient à maintenir la couche d'herméticité entre deux renforts mécaniques qui, du fait de leur rigidité, la protègent des sollicitations thermomécaniques appliquées, d'une part, par le produit contenu dans la pièce tubulaire (le combustible nucléaire et les gaz de fission qu'il relâche sous irradiation en réacteur, par exemple) et, d'autre part, par le produit se trouvant à l'extérieur de la pièce tubulaire (le caloporteur, éventuellement pressurisé, par exemple), prévenant ainsi tout risque de déformation excessive susceptible de conduire à la détérioration de la couche d'herméticité.
Du fait du procédé de fabrication particulier, la couche métallique est contrainte géométriquement par les couches composites et, comme elle a une faible épaisseur par rapport aux couches composites, elle ne participe que de manière très limitée à la tenue mécanique de la pièce finale. En condition d'utilisation, la charge est supportée ma oritairement par les couches composites d'épaisseurs plus importantes. Comme illustré sur la figure 1, ce procédé de fabrication permet à la pièce d'être sollicitée au-delà de la limite élastique du matériau composite utilisé seul : les couches de composites peuvent donc se fissurer, sans que la pièce tubulaire multicouche ne perde ses propriétés d'herméticité.
En outre, le choix, optionnel mais préférable, de matériaux identiques pour les deux couches CMC permet de garantir qu'elles n'imposent pas des déformations différentielles importantes aux deux faces de la couche métallique qu'elles encadrent. N'oublions pas que la couche métallique est mince par rapport aux deux couches CMC et qu'elle est donc peu résistante .
Par ailleurs, comme la couche métallique est fine par rapport aux couches CMC qui l'entourent, et du fait de sa très bonne conductivité thermique, il y a un faible écart de température entre ses faces. Dans le cas particulier où la pièce tubulaire est utilisée comme gaine de combustible nucléaire, comme la couche d'herméticité (couche métallique) est disposée entre deux couches CMC, la couche d'herméticité est protégée des agressions thermochimiques du combustible et des produits de fission, vis-à-vis desquels elle est « isolée ». En effet, il n'y a pas de contact direct, hors les éventuelles migrations de produits de fission au travers de la couche de CMC interne, qui sont naturellement limitées par l'épaisseur de la couche CMC interne et par la maîtrise de sa fissuration. Il est possible de protéger encore davantage la couche d'herméticité en disposant une couche de protection sur la couche de CMC interne (corps tubulaire interne) ; la couche CMC n'est alors pas en contact direct avec le combustible. Cette couche de protection est une couche de type « joint solide poreux », connue de l'homme du métier. Cette couche de type « joint solide poreux » peut par exemple avoir une structure fibreuse ou alvéolaire, réalisée à base de C et/ou de Sic, et ayant une forte porosité, afin de permettre d'accommoder, par son écrasement, l'expansion volumique du combustible sans chargement mécanique de la gaine, de favoriser le transfert thermique du combustible vers la gaine, et de transporter les gaz de fission relâchés vers le plénum gazeux situé en extrémité axiale de l'élément combustible) . Grâce à cette disposition particulière, la couche d'herméticité est protégée des agressions physiques provoquées par les produits de fission générés en périphérie du combustible, dont l'énergie de recul crée des dommages qui sont absorbés par la gaine CMC interne, voire par l'éventuelle couche de protection. Ainsi, la couche métallique remplit sa fonction d'herméticité qui est notamment requise pour confiner les produits radioactifs créés par l'irradiation du combustible nucléaire (uranium et/ou plutonium et/ou thorium, sous forme d'oxyde, de carbure, de nitrure,... éventuellement chargé en actinides mineurs, tels que l'américium, le neptunium, le curium...) .
En étant disposée entre deux couches CMC, la couche d'herméticité est également protégée des agressions thermochimiques du caloporteur et de ses impuretés, vis-à-vis desquels elle est « isolée ». Il n'y a pas de contact direct, hors les éventuelles migrations des impuretés au travers de la couche de CMC externe, qui sont naturellement limitées par l'épaisseur de la couche CMC externe et par la maîtrise de sa fissuration.
Enfin, la fermeture de la gaine proposée en exemple à ses extrémités est facilitée, par rapport à une gaine munie d'une couche métallique intérieure, du fait de la possibilité de réaliser des opérations conventionnelles de soudage entre cette couche métallique et des moyens d'obturation classiques (couvercles et capots de fermeture) .
En résumé, la conception originale de la pièce multicouche proposée dans le cadre de cette invention permet d'assurer la fonction d'herméticité jusqu'au démantèlement : - en assurant l'intégrité mécanique de la couche métallique mince par le renfort apporté, sur ses deux faces, par les couches CMC dimensionnées de manière à garantir la tenue mécanique de la pièce (gainage) sous toutes les sollicitations usuelles en fonctionnement ;
- en assurant l'intégrité physico-chimique de la couche métallique mince vis-à-vis des agressions thermochimiques (du combustible et de ses produits de fission, d'une part, et du caloporteur et de ses impuretés, d'autre part) et physiques (endommagement par l'énergie de recul des fragments de fission créés en périphérie du combustible) , par la protection qu'apportent les couches CMC disposées sur ses deux faces ;
- en facilitant la fermeture hermétique de la pièce à ses extrémités ouvertes.
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des figures annexées 2, 3a et 3b.
BRÈVE DESCRIPTION DES DESSINS
La figure 1, déjà évoquée précédemment, représente le comportement d'un composite SiCf/SiC tubulaire tressé 2D sollicité en traction uniaxiale, la déformation étant représentée en abscisse et la contrainte en ordonnée. Cette courbe de traction met en évidence un régime élastique (proportionnalité entre la contrainte et la déformation) s 'étendant jusqu'à une contrainte d'environ 80 MPa et une contrainte correspondant à 0,04% d'allongement, qui délimite le domaine de fonctionnement usuel sur lequel l'herméticité du composite peut être envisagée : au- delà de ces valeurs, il y a multi-fissuration de la matrice, ce qui provoque une perte d'herméticité. Par ailleurs, la figure 1 met en évidence les caractéristiques à rupture du composite, pour une contrainte de l'ordre de 300 MPa et un allongement de l'ordre de 0,9%. Enfin, la figure 1 illustre un domaine d'usage mécanique usuel des composites comme gainage de combustible nucléaire, avec des contraintes pouvant atteindre de l'ordre de 200 MPa et des déformations de l'ordre de 0,5%. Un gainage d'élément combustible nucléaire devant préserver son herméticité et son intégrité mécanique en toute situation de dimensionnement , le matériau dont le comportement est illustré sur la figure 1 satisfait l'exigence d'intégrité mécanique (au sens d'une absence de rupture ou de déformation excessive de gaine) , mais ne respecte l'exigence d'herméticité que sur son domaine élastique, plus restreint que le domaine d'usage. De fait, l'objet du brevet est d'étendre le domaine d'herméticité de la gaine de combustible nucléaire, à base de composite à matrice céramique (SiCf/SiC, notamment), au-delà du domaine d'usage mécanique de ce type d'objet : les trois domaines (accessible/usage/visé) sont représentés sur la figure par un système de hachures.
La figure 2 représente, de manière schématique et selon une vue en coupe axiale, la pièce tubulaire multicouche selon l'invention. Les figures 3a et 3b représentent respectivement, selon une vue en coupe axiale et selon une vue en coupe longitudinale, une gaine de combustible nucléaire selon l'invention, obtenue en introduisant un combustible nucléaire à l'intérieur d'une structure tubulaire multicouche selon 1 ' invention .
Il est à noter que l'échelle entre les épaisseurs des différents corps tubulaires n'est pas respectée dans les figures 2, 3a et 3b. En effet, afin de visualiser correctement le corps tubulaire métallique, on représente son épaisseur comme comparable à celle des corps tubulaires interne et externe, qui sont en réalité beaucoup plus épais. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
En référence à la figure 2, la pièce tubulaire 1 selon l'invention comporte une couche externe en matériau CMC formant un corps tubulaire externe 2, qui recouvre un corps tubulaire métallique 3, qui lui-même recouvre une couche interne en matériau CMC formant un corps tubulaire interne 4.
De préférence, cette pièce tubulaire peut servir à réaliser une gaine de combustible nucléaire 10 destinée à contenir du combustible nucléaire pour former un élément combustible 100.
Dans ce cas, le combustible nucléaire est introduit dans la pièce tubulaire 1, comme représenté dans la figure 3a. L'espace représenté entre le corps tubulaire interne 4 et le combustible nucléaire 5 peut correspondre à un milieu gazeux ou bien encore à un joint d'interface solide poreux, qui a notamment pour fonction :
- d'accommoder par son écrasement l'expansion volumique du combustible sans chargement mécanique de la gaine ;
- de favoriser le transfert thermique du combustible vers la gaine ;
- de transporter les gaz de fission relâchés vers le plénum gazeux situé en extrémité axiale de l'élément combustible.
La pièce tubulaire multicouche selon l'invention est formée de corps tubulaires ou tubes qui peuvent donc présenter deux extrémités ouvertes ou une extrémité ouverte (l'autre extrémité étant borgne).
Pour réaliser une gaine de combustible nucléaire 10, il faut que le combustible nucléaire 5 se trouve au sein d'une enceinte fermée et il faut donc pour cela que les extrémités ouvertes de la pièce tubulaire 1 soient obturées.
Comme représenté dans la figure 3b, une manière proposée selon l'invention pour fermer les extrémités ouvertes de la pièce tubulaire 1 est de disposer d'une zone annulaire à proximité des extrémités ouvertes dans laquelle le corps tubulaire métallique n'est pas recouvert par le corps tubulaire externe : la couche métallique est ainsi accessible sur le pourtour des extrémités ouvertes de la pièce tubulaire. Cette zone peut être obtenue en retirant une portion de la couche externe formant le corps tubulaire externe 2. Il suffit ensuite de positionner un premier couvercle 6 métallique sur les deux extrémités ouvertes de la pièce tubulaire 1, de manière à recouvrir la couche métallique du corps tubulaire métallique dans la zone annulaire et à fermer le corps tubulaire métallique. Cette fermeture peut être obtenue en fixant ce premier couvercle 6 sur la zone annulaire en effectuant une soudure 8 entre les parois métalliques du premier couvercle et de la zone annulaire. On peut ensuite positionner, sur le premier couvercle, un second couvercle 7 en matériau CMC afin de fermer le corps tubulaire externe 2 de matériau CMC. On peut également utiliser un unique couvercle composé à la fois d'une couche de métal interne, recouverte d'une couche en matériau CMC.
Le second couvercle est optionnel si le premier couvercle (couvercle métallique) satisfait l'ensemble des contraintes de fermeture de la pièce tubulaire, notamment la reprise de l'effet de fond, bien connue de l'homme du métier.
De préférence, le ou les couvercles sont montés et fixés sur la pièce tubulaire de manière à ce qu'il y ait une liaison continue, d'une part, entre la couche métallique du corps tubulaire métallique 3 et le premier couvercle 6 (ou avec la partie métallique interne du couvercle dans le cas d'un unique couvercle) et, d'autre part, entre le corps tubulaire externe 2 et le second couvercle 7 (ou avec la partie en matériau CMC externe du couvercle dans le cas d'un unique couvercle) . Lesdites liaisons continues peuvent par exemple être obtenues par le biais d'une soudure, dans le cas d'une liaison entre des métaux, ou d'une brasure, dans le cas d'une liaison entre des matériaux CMC.
Il est à noter que la gaine de combustible nucléaire 10 schématisée dans les figues 2a et 2b est représentée à froid et en début d'irradiation en réacteur, d'où la présence de l'espace entre le corps interne 4 et le combustible nucléaire 5.
Le combustible nucléaire 5 est sous forme de pastilles combustibles qui sont empilées à l'intérieur de la gaine de combustible 10, le tout formant un élément combustible 100.
Il est à noter que l'espace axial entre le combustible nucléaire 5 et le premier couvercle 6 est destiné à être occupé par un dispositif de positionnement axial (non représenté) de la colonne de pastilles combustibles (dispositif comprenant typiquement un ressort, une entretoise et/ou des cales ) .
Les matériaux CMC des corps tubulaires externe et interne de la pièce tubulaire peuvent, par exemple, être des composites à matrice céramique de type SiCf/SiC, SiCf/TiC, SiCf/ZrC ou SiCf/Ti3SiC2, tels qu'évoqués dans le document [6].
La couche d'herméticité est en métal ou en alliage de métaux : le niobium et ses alliages, le tantale et ses alliages, le tungstène et ses alliages, le titane et ses alliages ; par exemple Nb-lZr, Nb-lZr- 0,1C, Ta, W-5Re. Il est important de noter que, afin de garantir l'intégrité et les propriétés de l'objet, la compatibilité chimique du métal ou de l'alliage avec le matériau CMC utilisé doit être vérifiée sur l'ensemble du domaine de température d'utilisation de la future pièce tubulaire, ainsi que sur l'ensemble du domaine de température de fabrication des couches CMC.
Les valeurs des épaisseurs des différentes couches de la pièce tubulaire multicouche sont, de préférence, comprises dans les intervalles suivants :
- couche CMC interne (corps tubulaire interne) : 0,2 à 0,5 mm ;
- couche métallique d'herméticité (corps tubulaire métallique) : 50 à 200 pm ;
- couche CMC externe (corps tubulaire externe) : 0,3 à 1 mm,
les épaisseurs des couches CMC interne et externe étant cependant choisies de manière à ce qu'elles soient supérieures à celle de la couche d'herméticité, de préférence au moins 3 fois supérieures ou égales à l'épaisseur de la couche d'herméticité. En fait, on cherche à minimiser l'épaisseur de la couche d'herméticité et de l'épaisseur globale de la pièce tubulaire multicouche, afin d'optimiser la neutronique.
La pièce tubulaire multicouche selon l'invention présente l'intérêt d'utiliser une grande majorité de phases composites à matrice céramique en lieu et place d'une pièce totalement métallique. La couche métallique n'a ici pour but que de garantir l'herméticité de la pièce globale. En effet, pour beaucoup d'applications envisagées (enceinte en pression fonctionnant à haute température, par exemple), l'utilisation de métal est à proscrire en raison de sa densité et/ou de sa faible tenue mécanique à haute température, et/ou en raison de sa section de capture neutronique, dans le cas d'applications nucléaires. Il est donc nécessaire de limiter l'épaisseur de la couche métallique au strict minimum.
La réalisation d'une pièce multicouche selon l'invention peut être décomposée en plusieurs étapes, à savoir :
1) la fabrication du corps tubulaire interne en matériau CMC ;
2) la préparation de la surface externe de ce corps tubulaire interne (cette étape étant optionnelle, mais préférable) ;
3) la fabrication du corps tubulaire métallique (tube d'herméticité) de faible épaisseur ;
4) le plaquage, ou toute autre technique de dépôt connue de l'homme du métier, du corps tubulaire métallique sur le corps tubulaire interne ;
5) la préparation de la surface externe du corps tubulaire métallique ainsi obtenu (cette étape étant optionnelle, mais préférable) ;
6) la fabrication de la préforme fibreuse du corps tubulaire externe directement sur le corps tubulaire métallique obtenu à l'étape 5, puis sa densification, et enfin son revêtement final éventuel (cette étape de revêtement étant optionnelle, mais préférable) conduisant à l'obtention de la pièce multicouche .
Il est à noter qu'il est également possible, au lieu de fabriquer le corps tubulaire interne et le corps tubulaire métallique, d'utiliser des tubes déjà conditionnés. La première étape de fabrication de la pièce consiste à élaborer un tube destiné à constituer le corps tubulaire en matériau CMC interne. Pour cela, un renfort fibreux est mis en forme autour d'un mandrin cylindrique choisi selon la nature du composite à élaborer .
Dans le cas de composites à renfort et à matrice de type carbone ou carbure de silicium, il est préférable d'utiliser un mandrin en verre de silice, de manière à ce que le mandrin puisse facilement être retiré en fin de procédé par simple dissolution chimique. En l'occurrence, un bon état de surface interne du tube interne ainsi que le respect des côtes et tolérances (qui sont des exigences fortes pour le gainage d'un élément combustible nucléaire notamment) sont plus accessibles avec cette nature de mandrin qu'avec un mandrin en graphite, classiquement utilisé.
Pour la fabrication de composites à matrice céramique utilisant des phases oxydes, la nature du mandrin devra être adaptée au procédé ultérieur de densification.
La mise en forme de l'architecture fibreuse du renfort peut être réalisée par une des techniques issues de l'industrie textile adaptées aux pièces géométriques possédant un axe de révolution telles que l'enroulement filamentaire ou le tressage 2D ou 3D interlock .
L'épaisseur du renfort (nombre de couches de tressage ou d'enroulement) est choisie selon l'épaisseur visée pour ce tube interne. Une fois que la mise en forme du renfort sur le mandrin est terminée, le renfort est densifié. Pour ce faire, on peut utiliser un procédé d'infiltration chimique en phase vapeur, également appelé CVI (pour « Chemical Vapor Infiltration » en anglais), bien connu de l'homme du métier, bien que d'autres procédés tels le frittage, le procédé PIP (pour « Polymer Infiltration Process » en anglais), les procédés en voie liquide ou mixtes peuvent également être employés.
Lorsque la densification du renfort est terminée, le mandrin ayant servi de support au renfort est retiré.
La seconde étape, qui est optionnelle mais préférable, consiste à préparer la surface externe du tube composite interne ainsi obtenu, rugueuse et abrasive par nature, de manière à obtenir une surface ayant une rugosité RMS maximale de 1 à 2 pm afin de permettre un plaquage optimal du futur tube métallique servant de couche d'herméticité sur le tube composite interne .
On peut pour cela procéder à un usinage de la surface externe du tube composite. L'expérience montre qu'une rectification diamantée de la surface externe du tube composite par la technique de « rectification sans centre » donne de bons résultats : des rugosités moyennes de surface d'environ 1 um peuvent être obtenues pour une surface ainsi rectifiée, contre 50 à 100 μιη sans préparation.
On peut également recourir à un dépôt en phase vapeur (CVD ou PVD) d'une couche d'une épaisseur de quelques centaines de nanomètres sur la surface externe dudit tube composite interne, ou encore déposer un revêtement céramique obtenu par voie liquide.
Selon le matériau choisi pour ladite couche, cette couche peut en outre avoir pour rôle d'accommoder les déformations différentielles entre le tube composite en CMC et la couche métallique mise en place en face externe à l'étape suivante du procédé. Par exemple, dans le cas d'un tube composite en SiCf/SiC, on peut utiliser un matériau de type pyrocarbone pour réaliser cette couche.
La troisième étape consiste à fabriquer un tube métallique que l'on utilisera comme couche d'herméticité pour réaliser le corps tubulaire métallique de la pièce multicouche. Le choix de la nature du métal est très important pour l'application visée et sera fonction du type de composite des tubes interne et externe et des conditions d'utilisation. En effet, il convient notamment de choisir une phase métallique compatible avec les phases céramiques du composite, que ce soit dans le domaine des températures de fonctionnement de la pièce finale, mais également dans le domaine des températures d'élaboration du composite suivant le procédé de densification choisi.
Dans le cas des composites Cf/C, Cf/SiC ou
SiCf/SiC par exemple, les procédés de densification possibles nécessitent des températures de mise en œuvre proches de 1000°C. Il convient donc dans ce cas de sélectionner uniquement les métaux qui présentent une bonne compatibilité chimique avec les phases carbone et carbure de silicium à 1000°C. Les métaux proposés sont le niobium et ses alliages (Nb-lZr, Nb-lZr-0 , 1C) , mais aussi le tantale et ses alliages, le tungstène ou le titane dans une moindre mesure.
Bien entendu, dans le cas de phases céramiques différentes, d'autres alliages seront peut- être plus appropriés.
Afin de limiter l'épaisseur du tube métallique au strict minimum, on choisit d'utiliser une technique de mise en forme du tube métallique aux cotes désirées, qui permet d'obtenir une épaisseur minimale jusqu'à 0,1 mm, voir en deçà. On peut par exemple utiliser la technique du laminage à froid, cette technique ayant l'avantage de s'adapter à de nombreux métaux et alliages. En l'occurrence, les Inventeurs ont utilisé un banc de laminage HPTR, mais d'autres bancs de laminage à froid ou à chaud pourraient également être utilisés. On pourrait également utiliser la technique du filage ou de l'extrusion.
Pour les cotes du tube métallique, on vise un diamètre interne égal au diamètre externe du tube interne composite rectifié, auquel on ajoute un jeu afin que le tube composite interne puisse être inséré sur le tube métallique, ce jeu étant toutefois le plus faible possible afin de faciliter l'étape de plaquage qui sera décrite ci-dessous. Pour les essais réalisés, un jeu diamétral de l'ordre de 0,1 mm a été utilisé. Il convient de rappeler ici que le laminage a pour effet d'écrouir le métal ou alliage utilisé. Cet écrouissage a pour principale conséquence d'augmenter la dureté du matériau et de limiter sa déformation à rupture. Afin de récupérer des propriétés du métal ou alliage proche des valeurs initiales, il est préférable de réaliser un recuit après le laminage, qui est propre à chaque matériau .
L'étape suivante consiste à venir plaquer le tube métallique sur le tube composite intérieur. Cette opération a pour but de garantir un contact intime entre ces deux éléments. Ce plaquage peut être obtenu par plusieurs techniques. Par exemple, on peut recourir à l'étirage contrôlé du tube métallique sur le tube composite interne. Pour cela, le tube composite interne est inséré dans le tube métallique grâce au jeu prévu ; puis, le tube métallique est sollicité mécaniquement en traction de façon à ce qu'il se rétracte sur la paroi du tube composite interne (effet poisson) .
D'autres techniques de plaquage peuvent être envisagées, telles que l'étirage à chaud ou encore l'impulsion magnétique, qui consiste à utiliser un champ magnétique de forte intensité afin de plaquer le tube métallique sur le tube composite interne non magnétique .
Il est également possible de remplacer les étapes de fabrication du tube métallique et de plaquage par une étape de dépôt en phase vapeur (CVD ou PVD) d'une couche métallique directement sur le tube composite interne.
Dans une cinquième étape, optionnelle mais préférable, le tube bicouche une fois formé peut éventuellement subir une rectification de la rugosité de sa surface externe métallique ou un dépôt en phase vapeur d'une couche supplémentaire, comme décrit précédemment pour le tube composite interne.
La dernière étape consiste à fabriquer le tube composite externe. La procédure est similaire à celle employée pour la fabrication de la couche composite interne. Le renfort fibreux est d'abord mis en forme par les mêmes techniques que celles évoquées précédemment (enroulement filamentaire, tressage 2D ou 3D interlock) , puis est densifié. Pour cette fabrication et contrairement à la première étape qui requiert l'utilisation d'un mandrin support temporaire, le tube composite externe est ici directement mis en forme sur le tube bicouche composite/métallique élaboré .
On obtient alors une pièce composite à matrice céramique multicouche hermétique jusqu'à rupture telle que celle représentée dans la figure 2.
Eventuellement, si l'on souhaite que la pièce finale présente une rugosité minimale sur sa surface externe, cette surface externe (c'est-à-dire le tube composite externe) peut être rectifiée par rectification sans centre ou être recouverte d'une couche supplémentaire.
La pièce tubulaire multicouche ainsi élaborée peut être utilisée pour réaliser une conduite de fluides sous pression ou bien encore une enceinte en pression, telle qu'une gaine d'élément combustible nucléaire. Nous allons décrire ci-dessous la réalisation d'une gaine d'élément combustible nucléaire, qui constitue l'application ciblée en priorité par l'invention. Comme décrit ci-dessus, on commence par élaborer un tube CMC interne, en l'occurrence un tube en SiCf/SiC de diamètre interne de 7 mm et d'épaisseur de 300 pm, éventuellement complété du revêtement de la face externe du tube composite par une couche d'un matériau de type pyrocarbone.
On élabore ensuite un tube métallique en tantale, de diamètre interne 7, 7 mm et de 100 pm d'épaisseur, soit par laminage suivi d'un plaquage (par un procédé de magnétoformage ou d'étirage) sur le tube CMC interne, soit par élaboration d'une couche par dépôt en phase vapeur directement sur le tube CMC interne .
La couche de tantale est ensuite éventuellement recouverte d'une couche d'un matériau de type pyrocarbone de quelques centaines de nanomètres.
Enfin, on réalise un tube composite externe en SiCf/SiC de 600 pm d'épaisseur directement sur la pièce obtenue à l'étape précédente, par mise en forme du renfort en SiC/SiC et imprégnation de ce renfort suivant un procédé usuel, éventuellement complété du revêtement ou de la rectification de la face externe de ce tube composite externe. Ce dernier revêtement, réalisé par dépôt en phase vapeur (PVD ou CVD) , d'un matériau de type SiC, d'une épaisseur de quelques centaines de nanomètres, vise à fournir un état de surface lisse, si ceci correspond à une exigence (cela peut être nécessaire pour réduire les pertes de charges associées au frottement du caloporteur le long de la gaine, par exemple) . Pour obtenir une structure multicouche (pièce multicouche dont les extrémités ouvertes sont obturées), on procède au dégagement des extrémités de la pièce tubulaire multicouche, par usinage de la couche CMC externe, par exemple sur une longueur de 5 mm, sans endommager la couche métallique sous- acente .
On procède ensuite à la fermeture de l'une des deux extrémités de la pièce tubulaire, par soudage d'un couvercle ou capot métallique 6 sur la partie du tube métallique dégagée précédemment (couvercle, par exemple, d'une épaisseur de 100 pm obtenu par emboutissage), puis brasage d'un couvercle en matériau CMC (par exemple en SiCf/SiC) sur le tube CMC externe. Dans la figure 3b, le cordon de soudure est repéré par la référence 8, tandis que le cordon de brasure est repéré par la référence 9.
On peut éventuellement combiner le couvercle métallique et le couvercle CMC en un seul capot .
Le couvercle CMC peut être optionnel, à condition de choisir un métal, pour le couvercle, présentant des propriétés thermomécaniques adéquates en termes de réfractarité et de tenue à la pression interne en fonctionnement normal et accidentel. On peut par exemple utiliser un couvercle métallique d'épaisseur 700 pm, obtenu par emboutissage ou usinage, soudé au tube métallique et brasé au tube CMC externe de la pièce tubulaire multicouche.
On notera que cette étape de fermeture d'une extrémité de la structure tubulaire multicouche peut être rendue optionnelle dans le cas où les étapes précédentes sont réalisées de manière à fabriquer un tube borgne (fermé à l'une de ses extrémités) .
On procède ensuite à l'insertion des pastilles de combustible nucléaire 5 (qui ont ici un diamètre de 6,71 mm) dans la structure tubulaire, ainsi qu'à l'insertion des internes (ressort, entretoise et cales), qui sont disposés entre la colonne de pastilles et le couvercle (non représentés dans la figure 3b) .
Enfin, on procède à la fermeture de l'autre extrémité ouverte de la pièce tubulaire, suivant la procédure décrite ci-dessus.
L'innovation de la solution proposée réside dans le caractère multicouche du concept de gainage, avec le positionnement de la couche métallique, jouant le rôle de couche d'herméticité, entre deux couches CMC répondant aux exigences de réfractarité et de tenue mécanique dans le cas de la réalisation d'un élément combustible avancé.
Ce positionnement particulier permet la mise en œuvre d'une couche d'herméticité de faible épaisseur (50 à 200 pm) sans risque de fragilisation par déformation excessive, jusqu'à des températures et fluences neutroniques élevées, ni risque d ' endommagement par le combustible nucléaire et ses produits de fission, jusqu'à des taux de combustion élevés .
Cette faible épaisseur de la couche métallique, d'une part, et l'absence d'interaction forte avec le combustible et ses produits de fission, d'autre part, permettent le recours à une gamme étendue de matériaux d'herméticité. Cette solution propose un mode de confinement durable des produits de fission pour un élément combustible à gainage à base de matériau CMC. A ce titre, elle ouvre les perspectives de mise en œuvre de ce type de gainages, dont la réfractarité (assortie de bonnes propriétés neutroniques ) doit permettre d'accroître la sûreté de l'élément combustible en garantissant sont intégrité géométrique (garante du contrôle de la réactivité et de la refroidissabilité du cœur du réacteur) jusqu'aux températures très élevées des transitoires accidentels à prendre en compte dans son dimensionnement.
Les tubes externe et interne en matériau CMC jouent non seulement le rôle de renfort mécanique, mais également de renfort réfractaire visant à consolider la tenue d'un gainage métallique conventionnel aux transitoires accidentels (stabilité thermique et résistance au fluage) , ce qui permet d'atteindre des objectifs de sûreté typiquement visés pour la filière RNR-G ou dans le cadre d'une amélioration importante de la tenue d'un gainage aux conditions de haute température de certains transitoires accidentels en REP, REB et RNR-Na .
BIBLIOGRAPHIE
US 5,182,077
Feinroth et al., "Water cooled nuclear reactor and fuel éléments therefor"
US 2006/0039524 Al
Feinroth et al . , "Multi-layered ceramie tube for fuel containment barrier and other applications in nuclear and fossil power plants"
US 5,681,511
Streckert et al., "Hermetic ceramic composite structures"
Spatz et al.
"Design of hybrid ceramic-metal tubes", Proceedings for HTCMC-7, pp. 572-578
US 2009/0101658 Al
Maile et al., "Pressure-résistant body that is supplied with fluid"
WO 2010/031925 A2
Cabrero et al., "Gaine de combustible nucléaire haute conductivité thermique et son procédé fabrication "

Claims

REVENDICATIONS
1. Pièce tubulaire multicouche (1) comprenant une couche métallique formant un corps tubulaire métallique (3) et deux couches en matériau composite à matrice céramique, recouvrant le corps tubulaire métallique, caractérisée en ce qu'une des deux couches en matériau composite à matrice céramique recouvre la surface interne du corps tubulaire métallique pour former un corps tubulaire interne (4), tandis que l'autre des deux couches en matériau composite à matrice céramique recouvre la surface externe du corps tubulaire métallique pour former un corps tubulaire externe (2), le corps tubulaire métallique se trouvant ainsi pris en sandwich entre les corps tubulaires interne et externe, le corps tubulaire métallique ayant une épaisseur moyenne inférieure aux épaisseurs moyennes des corps tubulaires interne et externe .
2. Pièce tubulaire multicouche selon la revendication 1, dans laquelle le corps tubulaire métallique (3) a une épaisseur moyenne comprise entre 5 % et 20 % de l'épaisseur moyenne de la pièce tubulaire multicouche.
3. Pièce tubulaire multicouche selon la revendication 1, dans laquelle le corps tubulaire métallique (3) est en un matériau choisi parmi le niobium et ses alliages, le tantale et ses alliages, le tungstène et ses alliages, le titane et ses alliages.
4. Pièce tubulaire multicouche selon la revendication 1, dans lequel les corps tubulaires interne (4) et externe (2) sont en composite Cf/C, Cf/SiC ou SiCf/SiC.
5. Structure tubulaire (10) présentant une cavité fermée, ladite structure comprenant une pièce tubulaire multicouche (1) telle que définie dans l'une quelconque des revendications 1 à 4, ayant une à deux extrémités ouvertes, et au moins un couvercle ( 7 ; 8) pour chaque extrémité ouverte, chaque couvercle étant positionné au niveau d'une extrémité ouverte de manière à obturer complètement ladite extrémité ouverte, chaque couvercle comprenant une couche interne, en métal ou en alliage de métaux, destinée à être fixée au corps tubulaire métallique de la pièce tubulaire multicouche, et éventuellement une couche supplémentaire, en matériau composite à matrice céramique, destinée à être fixée au corps tubulaire externe de la pièce tubulaire multicouche, la cavité fermée de la structure étant délimitée par une paroi interne de la pièce tubulaire multicouche et par une paroi interne de chaque couvercle .
6. Structure tubulaire (10) selon la revendication 5, dans laquelle la pièce tubulaire multicouche (1) comprend, au niveau de chaque extrémité ouverte, une zone annulaire dans laquelle le corps tubulaire métallique n'est pas recouvert par le corps tubulaire externe et dans laquelle chaque couvercle est formé d'un fond relié à un bord latéral, ledit bord latéral étant adapté pour recouvrir ladite zone annulaire .
7. Structure tubulaire selon la revendication 5 ou 6, dans lequel la structure est une gaine de combustible nucléaire apte à contenir un combustible nucléaire et les gaz de fission relâchés par ledit combustible nucléaire sous irradiation.
8. Structure tubulaire selon la revendication 7, dans laquelle le corps tubulaire métallique (3) a une épaisseur moyenne comprise entre 50 et 200 micromètres.
9. Elément combustible nucléaire (100) comprenant du combustible nucléaire (5) logé dans la cavité fermée d'une structure tubulaire (10) telle que définie dans l'une quelconque des revendications 5 à 8.
10. Procédé de fabrication d'une pièce tubulaire multicouche (1) telle que définie dans l'une quelconque des revendications 1 à 4, comprenant les étapes successives suivantes :
a) fourniture d'un corps tubulaire en matériau composite à matrice céramique pour former le corps tubulaire interne (4) ;
b) formation du corps tubulaire métallique (3) sur le corps tubulaire interne (4) ;
c) formation du corps tubulaire externe (2) sur le corps tubulaire métallique, par la mise en œuvre des étapes successives suivantes : - la réalisation d'une préforme fibreuse à base de fibres continues sur la surface externe du corps tubulaire métallique ;
- l'application d'un traitement pour induire la densification de la préforme par formation d'une matrice dans ladite préforme, le traitement étant réalisé à une température qui est inférieure à la température de dégradation de la préforme, inférieure à la température de dégradation du corps tubulaire métallique et inférieure à la température de dégradation du corps tubulaire interne.
11. Procédé de fabrication d'une pièce tubulaire multicouche (1) selon la revendication 10, dans lequel l'étape a) comprend les étapes successives suivantes :
- la réalisation d'une préforme fibreuse à base de fibres continues sur un élément support cylindrique ;
- l'application d'un traitement pour induire la consolidation de ladite préforme par formation d'une matrice dans la préforme, le traitement étant réalisé à une température qui est inférieure à la température de dégradation de la préforme et inférieure à la température de dégradation de l'élément support ;
- le retrait de l'élément support de la préforme consolidée par attaque chimique de la surface de contact du matériau de l'élément support avec la préforme consolidée ; - la densification de la préforme consolidée réalisée à une température inférieure à la température de dégradation de la préforme consolidée.
12. Procédé de fabrication d'une pièce tubulaire multicouche selon la revendication 11, dans lequel l'étape b) comprend le dépôt en phase vapeur d'une couche en métal ou en alliage de métaux sur la surface externe du corps tubulaire interne.
13. Procédé de fabrication d'une pièce tubulaire multicouche selon la revendication 11, dans lequel l'étape b) comprend les étapes successives suivantes :
- l'insertion du corps tubulaire interne
(4) dans un tube métallique en métal ou en alliage de métaux ;
- le plaquage de ce tube métallique sur la surface externe du corps tubulaire interne (4) ;
- le recuit éventuel de la pièce ainsi formée .
14. Procédé de fabrication d'une pièce tubulaire multicouche selon la revendication 10, qui comprend en outre, entre les étapes a) et b) , une étape de traitement de surface de la surface du corps tubulaire interne pour en réduire la rugosité.
15. Procédé de fabrication d'une structure tubulaire (10) telle que définie dans l'une quelconque des revendications 5 à 8, comprenant la fabrication d'une pièce tubulaire multicouche (1) selon le procédé tel que défini dans l'une quelconque des revendications 10 à 14 et l'obturation de la ou des extrémités ouvertes de ladite pièce (1) par le placement d'un couvercle ( 7 ; 8) sur chacune de ces extrémités ouvertes et la fixation dudit couvercle sur le corps tubulaire métallique (1), chaque couvercle comprenant une couche interne en métal ou en alliage de métaux et éventuellement une couche supplémentaire en matériau composite à matrice céramique.
16. Procédé de fabrication d'une structure tubulaire selon la revendication 15, comprenant la mise en forme de la pièce tubulaire multicouche de manière à ce qu'elle comporte, au niveau de chacune de ses extrémités ouvertes, une zone annulaire dans laquelle le corps tubulaire métallique n'est pas recouvert par le corps tubulaire externe, chaque zone annulaire étant totalement recouverte par la couche interne métallique d'un couvercle lors de la fixation d'un couvercle sur l'extrémité ouverte correspondant à ladite zone annulaire .
PCT/EP2012/065035 2011-08-01 2012-08-01 Tube multicouche ameliore en materiau composite a matrice ceramique, gaine de combustible nucleaire en resultant et procedes de fabrication associes WO2013017621A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014523316A JP6140701B2 (ja) 2011-08-01 2012-08-01 セラミックマトリックス複合材料で作られた改良された多層チューブ、その結果生じる核燃料クラッディングおよび関連する製造プロセス
CN201280038372.2A CN103732388A (zh) 2011-08-01 2012-08-01 改进的由陶瓷基体复合材料制成的多层管、产生的核燃料包壳及相关生产方法
KR1020147004316A KR20140048995A (ko) 2011-08-01 2012-08-01 세라믹 매트릭스 복합 재료로 만들어진 향상된 다층 튜브, 결과적인 핵연료 클래딩 및 관련된 제조 방법
RU2014107945/05A RU2014107945A (ru) 2011-08-01 2012-08-01 Усовершенствованная многослойная трубка из керамоматричного композиционного материала, изготовленная оболочка ядерного топлива и соответствующие способы изготовления
PL12742902T PL2739465T3 (pl) 2011-08-01 2012-08-01 Koszulka paliwowa z materiału kompozytowego o osnowie ceramicznej i powiązany sposób wytwarzania
EP12742902.5A EP2739465B1 (fr) 2011-08-01 2012-08-01 Gaine de combustible nucleaire en materiau composite a matrice ceramique et procede de fabrication associe
US14/236,189 US9548139B2 (en) 2011-08-01 2012-08-01 Multilayer tube in ceramic matrix composite material, resulting nuclear fuel cladding and associated manufacturing processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1157042 2011-08-01
FR1157042A FR2978697B1 (fr) 2011-08-01 2011-08-01 Tube multicouche ameliore en materiau composite a matrice ceramique, gaine de combustible nucleaire en resultant et procedes de fabrication associes

Publications (1)

Publication Number Publication Date
WO2013017621A1 true WO2013017621A1 (fr) 2013-02-07

Family

ID=46603969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/065035 WO2013017621A1 (fr) 2011-08-01 2012-08-01 Tube multicouche ameliore en materiau composite a matrice ceramique, gaine de combustible nucleaire en resultant et procedes de fabrication associes

Country Status (10)

Country Link
US (1) US9548139B2 (fr)
EP (1) EP2739465B1 (fr)
JP (1) JP6140701B2 (fr)
KR (1) KR20140048995A (fr)
CN (1) CN103732388A (fr)
FR (1) FR2978697B1 (fr)
HU (1) HUE037821T2 (fr)
PL (1) PL2739465T3 (fr)
RU (1) RU2014107945A (fr)
WO (1) WO2013017621A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818056A (zh) * 2013-12-27 2014-05-28 西北工业大学 SiC/SiC复合材料包壳管的多层结构及其制备方法
CN105390166A (zh) * 2014-08-22 2016-03-09 韩国原子力研究院 抗冷却剂泄漏事故的双冷核燃料棒
CN105960681A (zh) * 2014-03-12 2016-09-21 西屋电气有限责任公司 用于陶瓷涂层包壳的双重密封的燃料棒端塞
CN106104699A (zh) * 2014-03-12 2016-11-09 西屋电气有限责任公司 具有中间抗氧化层的陶瓷增强的锆合金核燃料包壳
FR3056604A1 (fr) * 2016-09-28 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication par dli-mocvd d'un composant nucleaire composite.
FR3056818A1 (fr) * 2016-09-28 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composant nucleaire composite et utilisations.
WO2018060644A1 (fr) 2016-09-28 2018-04-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composant nucléaire composite, procédé de fabrication par dli-mocvd et utilisations contre l'oxydation/hydruration
US10811146B2 (en) 2016-09-28 2020-10-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of using DLI-MOCVD to provide a nuclear reactor component with a coating of amorphous chromium carbide
CN112906274A (zh) * 2021-02-22 2021-06-04 中国核动力研究设计院 用于包壳材料退火仿真的可视化界面及方法
US11104994B2 (en) 2016-09-28 2021-08-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nuclear component with metastable Cr coating, DLI-MOCVD method for producing same, and uses for controlling oxidation/hydridation
US11404175B2 (en) 2018-07-16 2022-08-02 Westinghouse Electric Company Llc Silicon carbide reinforced zirconium based cladding
CN115745639A (zh) * 2022-10-13 2023-03-07 广东核电合营有限公司 金属增强碳化硅包壳管及其制造方法
US11634810B2 (en) 2016-09-28 2023-04-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process of manufacture a nuclear component with metal substrate by DLI-MOCVD and method against oxidation/hydriding of nuclear component
FR3135648A1 (fr) * 2022-05-19 2023-11-24 Irt Antoine De Saint Exupéry Pièce cylindrique à structure sandwich, procédé de fabrication d’une telle pièce et son utilisation pour le stockage de déchets radioactifs
EP4389724A1 (fr) * 2022-12-23 2024-06-26 Commissariat à l'énergie atomique et aux énergies alternatives Procédé de métallisation de la face interne d'un tube en une céramique ou un composite à matrice céramique

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466398B2 (en) * 2010-09-27 2016-10-11 Purdue Research Foundation Ceramic-ceramic composites and process therefor, nuclear fuels formed thereby, and nuclear reactor systems and processes operated therewith
FR2972448B1 (fr) 2011-03-07 2013-04-19 Commissariat Energie Atomique Procede de fabrication d'un composite a matrice ceramique
FR2984884B1 (fr) 2011-12-22 2014-08-08 Commissariat Energie Atomique Procede pour ameliorer la resistance mecanique d'un materiau composite a matrice ceramique sic/sic
US20140169516A1 (en) * 2012-12-14 2014-06-19 Global Nuclear Fuel - Americas, Llc Fuel rods with varying axial characteristics and nuclear fuel assemblies including the same
US10102930B2 (en) * 2013-11-13 2018-10-16 Framatome Inc. Nuclear fuel rod cladding including a metal nanomaterial layer
KR101539344B1 (ko) * 2014-08-06 2015-07-28 한국원자력연구원 금속핵연료심 및 피복관 사이에 형성된 금속 차단층을 포함하는 핵연료봉 및 이의 제조방법
WO2016084146A1 (fr) * 2014-11-26 2016-06-02 株式会社日立製作所 Barres de combustible de réacteur nucléaire groupées dans un ensemble combustible et ledit ensemble combustible
JP6385812B2 (ja) * 2014-12-17 2018-09-05 株式会社東芝 燃料棒と燃料集合体、および燃料棒の製造方法
JP2016135728A (ja) * 2015-01-23 2016-07-28 イビデン株式会社 管状体
US10777328B2 (en) * 2015-05-04 2020-09-15 Cerium Laboratories, Llc Enhanced surface treatments
KR102632660B1 (ko) * 2015-10-14 2024-02-01 바스프 에스이 세라믹 매트릭스 복합재를 포함하는 열투과성 튜브
US9982350B2 (en) * 2015-12-02 2018-05-29 Westinghouse Electric Company Llc Multilayer composite fuel clad system with high temperature hermeticity and accident tolerance
US10872701B2 (en) * 2016-06-10 2020-12-22 Westinghouse Electric Company Llc Zirconium-coated silicon carbide fuel cladding for accident tolerant fuel application
WO2018031596A2 (fr) * 2016-08-08 2018-02-15 General Atomics Composite sic-sic modifié et structures en couches monolithiques à base de sic
GB2553090A (en) * 2016-08-16 2018-02-28 Rolls Royce Power Eng Plc Method of manufacture
FR3059323B1 (fr) * 2016-11-29 2019-01-25 Safran Ceramics Ensemble d'une piece cmc assemblee sur un element metallique, procede de fabrication d'un tel ensemble
SI3364418T1 (sl) * 2017-02-21 2021-08-31 Westinghouse Electric Sweden Ab Sintrana peleta jedrskega goriva, gorivna palica, gorivni sestav in postopek izdelave sintrane pelete jedrskega goriva
CN107170502B (zh) * 2017-05-10 2019-06-21 核工业第八研究所 一种核燃料碳化硅陶瓷包壳管的制备方法
JP6917770B2 (ja) * 2017-05-15 2021-08-11 株式会社東芝 長繊維強化炭化ケイ素部材、その製造方法、および、原子炉構造部材
US10515728B2 (en) * 2017-09-18 2019-12-24 Westinghouse Electric Company Llc High temperature ceramic nuclear fuel system for light water reactors and lead fast reactors
JP7170431B2 (ja) * 2017-09-25 2022-11-14 株式会社東芝 容器および容器における開口部の閉塞方法
JP7068058B2 (ja) * 2018-06-14 2022-05-16 株式会社東芝 燃料被覆管および燃料被覆管の製造方法
CN109020589A (zh) * 2018-07-30 2018-12-18 西北工业大学 一种耐事故燃料核包壳管及制备方法
JP6868601B2 (ja) * 2018-11-01 2021-05-12 株式会社フェローテックマテリアルテクノロジーズ SiC繊維を内包する管状体およびその製造方法
US20200161010A1 (en) * 2018-11-20 2020-05-21 Westinghouse Electric Company Llc Coatings and Surface Modifications to Mitigate SiC Cladding During Operation in Light Water Reactors
CN111348932B (zh) * 2018-12-24 2022-03-22 核工业西南物理研究院 一种纯钨材料和绝缘陶瓷的连接方法
WO2021061268A1 (fr) 2019-09-25 2021-04-01 Free Form Fibers, Llc Tissus non tissés en micro-treillis et matériaux composites ou hybrides et composites renforcés avec ceux-ci
WO2021216875A1 (fr) * 2020-04-24 2021-10-28 Westinghouse Electric Company Llc Gaine de combustible nucléaire pour réacteurs rapides, ensembles associés et procédés de fabrication associés
CN112242204B (zh) * 2020-10-21 2022-05-13 中国科学院合肥物质科学研究院 一种钼基金属陶瓷核燃料芯块及其制备方法
CN113488205B (zh) * 2021-07-27 2023-08-15 西南科技大学 一种具有展平堆芯轴向功率功能的非均匀管式ma嬗变棒
EP4213161A1 (fr) * 2022-01-18 2023-07-19 Framatome Élément de combustible nucléaire contenant un c ur en matériau fissile et un couvercle de renforcement et son procédé de fabrication
CN115083629A (zh) * 2022-05-05 2022-09-20 中广核研究院有限公司 碳化硅纤维复合包壳及燃料组件
WO2023239740A1 (fr) * 2022-06-06 2023-12-14 Czero, Inc. Réacteurs et structures pour la prévention de dépôts solides

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228826A (en) * 1978-10-12 1980-10-21 Campbell Frank Jun Interlocking, laminated refractory for covering a pipe
US20060039524A1 (en) * 2004-06-07 2006-02-23 Herbert Feinroth Multi-layered ceramic tube for fuel containment barrier and other applications in nuclear and fossil power plants
US20090101658A1 (en) * 2006-05-10 2009-04-23 Karl Maile Pressure-Resistant Body That is Supplied With Fluid
US20090220040A1 (en) * 2008-02-29 2009-09-03 Ibiden Co., Ltd. Tubular body and method for producing the same
US20100263195A1 (en) * 2009-04-16 2010-10-21 Niccolls Edwin H Structural Components for Oil, Gas, Exploration, Refining and Petrochemical Applications

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538877Y2 (fr) * 1974-05-15 1978-03-08
JPH03188258A (ja) * 1989-12-14 1991-08-16 Sumitomo Metal Ind Ltd 耐食性に優れた表面処理鋼管とその製造方法
US5434896A (en) * 1990-09-04 1995-07-18 Combustion Engineering, Inc. Wear resistant coating for components of fuel assemblies and control assemblies, and method of enhancing wear resistance of fuel assembly and control assembly components using wear-resistant coating
US5182077A (en) 1991-04-15 1993-01-26 Gamma Engineering Corporation Water cooled nuclear reactor and fuel elements therefor
JPH05232289A (ja) * 1992-02-22 1993-09-07 Nuclear Fuel Ind Ltd 原子炉用燃料棒
US5681511A (en) 1996-09-11 1997-10-28 General Atomics Hermetic ceramic composite structures
US5997802A (en) * 1997-11-28 1999-12-07 The United States Of America As Represented By The United States Department Of Energy Directly susceptible, noncarbon metal ceramic composite crucible
DE10025628A1 (de) * 2000-05-24 2001-11-29 Sgl Carbon Ag Abwickelbare Bauteile aus Faserverbundwerkstoffen, Verfahren zu deren Herstellung und deren Verwendung
JP4467995B2 (ja) * 2004-01-21 2010-05-26 白川 利久 沸騰水型原子炉
US20070163250A1 (en) * 2004-03-03 2007-07-19 Sane Ajit Y Highly insulated exhaust manifold
FR2889765B1 (fr) * 2005-08-10 2011-06-24 Commissariat Energie Atomique Element combustible de type plaque macrostructuree
CN100355700C (zh) * 2006-01-24 2007-12-19 中国人民解放军国防科学技术大学 碳化硅纤维增强碳化硅复合材料制备方法
FR2936088B1 (fr) 2008-09-18 2011-01-07 Commissariat Energie Atomique Gaine de combustible nucleaire a haute conductivite thermique et son procede de fabrication.
JP5568785B2 (ja) * 2008-12-18 2014-08-13 株式会社グローバル・ニュークリア・フュエル・ジャパン 核燃料棒
FR2961623B1 (fr) * 2010-06-16 2013-08-30 Commissariat Energie Atomique Joint d'interface solide a porosite ouverte pour crayon de combustible nucleaire et pour barre de commande nucleaire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228826A (en) * 1978-10-12 1980-10-21 Campbell Frank Jun Interlocking, laminated refractory for covering a pipe
US20060039524A1 (en) * 2004-06-07 2006-02-23 Herbert Feinroth Multi-layered ceramic tube for fuel containment barrier and other applications in nuclear and fossil power plants
US20090101658A1 (en) * 2006-05-10 2009-04-23 Karl Maile Pressure-Resistant Body That is Supplied With Fluid
US20090220040A1 (en) * 2008-02-29 2009-09-03 Ibiden Co., Ltd. Tubular body and method for producing the same
US20100263195A1 (en) * 2009-04-16 2010-10-21 Niccolls Edwin H Structural Components for Oil, Gas, Exploration, Refining and Petrochemical Applications

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Design of hybrid ceramic-metal tubes", PROCEEDINGS FOR HTCMC-7, pages 572 - 578
CABRERO ET AL., GAINE DE COMBUSTIBLE NUCLÉAIRE À HAUTE CONDUCTIVITÉ THERMIQUE ET SON PROCÉDÉ DE FABRICATION
STRECKERT ET AL., HERMETIC CERAMIC COMPOSITE STRUCTURES

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818056A (zh) * 2013-12-27 2014-05-28 西北工业大学 SiC/SiC复合材料包壳管的多层结构及其制备方法
US10593434B2 (en) 2014-03-12 2020-03-17 Westinghouse Electric Company Llc Ceramic reinforced zirconium alloy nuclear fuel cladding with intermediate oxidation resistant layer
US10734121B2 (en) 2014-03-12 2020-08-04 Westinghouse Electric Company Llc Double-sealed fuel rod end plug for ceramic-containing cladding
CN105960681A (zh) * 2014-03-12 2016-09-21 西屋电气有限责任公司 用于陶瓷涂层包壳的双重密封的燃料棒端塞
CN106104699A (zh) * 2014-03-12 2016-11-09 西屋电气有限责任公司 具有中间抗氧化层的陶瓷增强的锆合金核燃料包壳
JP2017515094A (ja) * 2014-03-12 2017-06-08 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 燃料棒のセラミック含有被覆管に二重にシールされた端栓
JP2017515096A (ja) * 2014-03-12 2017-06-08 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 酸化防止中間層を有するセラミック強化ジルコニウム合金製原子燃料被覆管
EP3117440A4 (fr) * 2014-03-12 2017-10-25 Westinghouse Electric Company Llc Bouchon d'extrémité de barre de combustible à double étanchéité pour gainage contenant de la céramique
EP3117439A4 (fr) * 2014-03-12 2017-11-29 Westinghouse Electric Company Llc Gainage pour combustible nucléaire en alliage de zirconium renforcé de céramique avec une couche résistant à l'oxydation intermédiaire
CN105390166B (zh) * 2014-08-22 2017-08-22 韩国原子力研究院 抗冷却剂泄漏事故的双冷核燃料棒
CN105390166A (zh) * 2014-08-22 2016-03-09 韩国原子力研究院 抗冷却剂泄漏事故的双冷核燃料棒
US11104994B2 (en) 2016-09-28 2021-08-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nuclear component with metastable Cr coating, DLI-MOCVD method for producing same, and uses for controlling oxidation/hydridation
US11634810B2 (en) 2016-09-28 2023-04-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process of manufacture a nuclear component with metal substrate by DLI-MOCVD and method against oxidation/hydriding of nuclear component
WO2018060644A1 (fr) 2016-09-28 2018-04-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composant nucléaire composite, procédé de fabrication par dli-mocvd et utilisations contre l'oxydation/hydruration
US10811146B2 (en) 2016-09-28 2020-10-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of using DLI-MOCVD to provide a nuclear reactor component with a coating of amorphous chromium carbide
US11715572B2 (en) 2016-09-28 2023-08-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composite nuclear component, DLI-MOCVD method for producing same, and uses for controlling oxidation/hydridation
FR3056818A1 (fr) * 2016-09-28 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composant nucleaire composite et utilisations.
FR3056604A1 (fr) * 2016-09-28 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication par dli-mocvd d'un composant nucleaire composite.
US11545273B2 (en) 2016-09-28 2023-01-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nuclear reactor component having a coating of amorphous chromium carbide
US11404175B2 (en) 2018-07-16 2022-08-02 Westinghouse Electric Company Llc Silicon carbide reinforced zirconium based cladding
CN112906274B (zh) * 2021-02-22 2023-02-28 中国核动力研究设计院 用于包壳材料退火仿真的可视化界面及方法
CN112906274A (zh) * 2021-02-22 2021-06-04 中国核动力研究设计院 用于包壳材料退火仿真的可视化界面及方法
FR3135648A1 (fr) * 2022-05-19 2023-11-24 Irt Antoine De Saint Exupéry Pièce cylindrique à structure sandwich, procédé de fabrication d’une telle pièce et son utilisation pour le stockage de déchets radioactifs
CN115745639A (zh) * 2022-10-13 2023-03-07 广东核电合营有限公司 金属增强碳化硅包壳管及其制造方法
EP4389724A1 (fr) * 2022-12-23 2024-06-26 Commissariat à l'énergie atomique et aux énergies alternatives Procédé de métallisation de la face interne d'un tube en une céramique ou un composite à matrice céramique

Also Published As

Publication number Publication date
FR2978697B1 (fr) 2014-05-16
JP6140701B2 (ja) 2017-05-31
KR20140048995A (ko) 2014-04-24
JP2014526045A (ja) 2014-10-02
US9548139B2 (en) 2017-01-17
EP2739465B1 (fr) 2017-10-18
EP2739465A1 (fr) 2014-06-11
HUE037821T2 (hu) 2018-09-28
FR2978697A1 (fr) 2013-02-08
CN103732388A (zh) 2014-04-16
RU2014107945A (ru) 2015-09-10
US20140153688A1 (en) 2014-06-05
PL2739465T3 (pl) 2018-03-30

Similar Documents

Publication Publication Date Title
EP2739465B1 (fr) Gaine de combustible nucleaire en materiau composite a matrice ceramique et procede de fabrication associe
EP2583282B1 (fr) Joint d'interface solide a porosite ouverte pour crayon de combustible nucleaire
EP3117440B1 (fr) Bouchon d'extrémité de barre de combustible à double étanchéité pour gainage contenant de la céramique
EP2583284B1 (fr) Joint d'interface solide a porosite ouverte pour une barre de commande nucleaire
KR102572043B1 (ko) 고온 기밀성 및 사고 내성을 갖는 다층 복합물 연료 클래드 시스템
EP2625691B1 (fr) Aiguille de combustible nucleaire metallique comprenant une enveloppe avec des fils ou des fibres en carbure de silicium (sic)
EP3117439B1 (fr) Gainage pour combustible nucléaire en alliage de zirconium renforcé de céramique avec une couche résistant à l'oxydation intermédiaire
EP2486570B1 (fr) Corps d'assemblage de combustible nucleaire et un assemblage de combustible nucleaire comportant un tel corps
EP1913600B1 (fr) Element combustible de type plaque macrostructuree
SE515171C2 (sv) Bränsleelement motståndskraftiga mot hydridskador
FR2526213A1 (fr) Gaine composite pour element de combustible nucleaire
FR2526211A1 (fr) Gaine composite pour element de combustible nucleaire et element de combustible nucleaire
EP4389724A1 (fr) Procédé de métallisation de la face interne d'un tube en une céramique ou un composite à matrice céramique
WO2015063315A1 (fr) Combustible nucleaire encapsule et procede de fabrication associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742902

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014523316

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14236189

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012742902

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012742902

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147004316

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014107945

Country of ref document: RU

Kind code of ref document: A