WO2013015556A2 - 자기진단 기능을 구비한 수배전반의 이상 검출 방법 - Google Patents

자기진단 기능을 구비한 수배전반의 이상 검출 방법 Download PDF

Info

Publication number
WO2013015556A2
WO2013015556A2 PCT/KR2012/005713 KR2012005713W WO2013015556A2 WO 2013015556 A2 WO2013015556 A2 WO 2013015556A2 KR 2012005713 W KR2012005713 W KR 2012005713W WO 2013015556 A2 WO2013015556 A2 WO 2013015556A2
Authority
WO
WIPO (PCT)
Prior art keywords
arc
tracking
self
signal
diagnosis
Prior art date
Application number
PCT/KR2012/005713
Other languages
English (en)
French (fr)
Other versions
WO2013015556A3 (ko
Inventor
이윤학
Original Assignee
Lee Youn Hack
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Youn Hack filed Critical Lee Youn Hack
Publication of WO2013015556A2 publication Critical patent/WO2013015556A2/ko
Publication of WO2013015556A3 publication Critical patent/WO2013015556A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • G01R31/3274Details related to measuring, e.g. sensing, displaying or computing; Measuring of variables related to the contact pieces, e.g. wear, position or resistance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • H02H1/0023Using arc detectors sensing non electrical parameters, e.g. by optical, pneumatic, thermal or sonic sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0092Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks

Definitions

  • the present invention relates to a method for detecting an abnormality of a switchgear that detects an arc or an arc and tracking using a sensor and has a self-diagnosis function.
  • Electric fires are on the rise with the increase in the use of electric devices and electrical equipment. As a result, electric fires are damaging to people's lives and property as well as to the national economy. There is a great need for this.
  • high-voltage / low-voltage switchboards and switchboards of large consumers with high buildings and power usage are urgently required to develop devices and monitoring systems for early detection and detection of electric fires.
  • the insulation layer between the conductors is carbonized by micro discharge through the wire covering material in contact with the terminal block.
  • the leakage current gradually increases along this carbonization conductive path, and finally, the wire covering material ignites along with the tracking breakdown between the conductors, thereby causing an electrical fire in the distribution board.
  • more than half of electric fires cause electric fires and casualties by arcing and tracking.
  • the presence or absence of an arc was determined by digitizing and frequency analyzing a current waveform obtained by a current transformer of each phase.
  • the detection probability is high when the current in the feeder of the switchgear is a resistive component, but in the case of the capacitive by L and C and the load of the inductive component, it is impossible to accurately detect the arc waveform.
  • An electric arc refers to a symptom that occurs when an electrical short occurs due to a poor contact of an electric line or a poor covering between lines.
  • an arc occurs, a human accident and a property loss can occur due to fire damage, etc. Judgment is emerging as an important issue.
  • arc breakers used in North America, including the United States, are primarily Arc Fault Current Interrupters (AFCI) to detect arcs in low voltage lines in homes. These arc arcs are caused by short circuits in outlets, wire breaks, and poor contact. Shut off the current.
  • AFCI Arc Fault Current Interrupters
  • An effective detection method by a faulty arc is required so that a user can easily identify a failure in case of an electrical accident caused by a poor contact, a short circuit, or deterioration of a high voltage / low voltage line in a switchgear.
  • the present invention detects an arc and a tracking signal by using an ultraviolet sensor and a current sensor, and detects an abnormality of a switchgear having a self-diagnostic function for detecting the arc and tracking by using a fast Fourier transform and probabilistic statistical analysis. It is to provide.
  • the present invention is to provide an abnormality detection method of the switchgear with a self-diagnosis function for periodically testing the performance of the sensor.
  • the present invention is to provide a method for detecting abnormality of the switchgear having a self-diagnostic function for diagnosing the occurrence of abnormalities such as arc and tracking by monitoring the state of the switchgear in real time.
  • the abnormality detection method of the switchgear with a self-diagnosis function of the present invention for achieving the above object is an arc signal and a tracking signal through an ultraviolet sensor for detecting ultraviolet rays generated in the switchgear and a current sensor for measuring the live tracking current Detecting a signal; performing sampling on the arc signal and the tracking signal; performing digital filtering on the sampled signals using a digital finite impulse response lowpass filter; Outputting a peak magnitude and a peak frequency by performing a fast Fourier transform operation, calculating a unique detection element for the arc signal and the tracking signal using the output peak magnitude and peak frequency, and calculating the calculated detection element Is out of the setting range, and Diagnosing the occurrence of tracking and tracking; and diagnosing the occurrence of arc and tracking, and performing self-diagnosis of sensor performance by periodically measuring the voltage level of the pulse transformer voltage of the ultraviolet sensor and the signal input to the current sensor. And transmitting a diagnosis result for whether the arc and tracking occur and a self-diagnosis result for the sensor
  • the detection elements include factors such as occurrence frequency, duration, peak value, effective value, average value, kurtosis, skewness, standard deviation, and% THD (total hamonic distortion) for arc and tracking.
  • the step of detecting whether the arc and the tracking occurs it characterized in that the arc is generated when the occurrence of the arc occurs more than five times within 2 seconds.
  • the step of detecting whether the arc and tracking occurs characterized in that the diagnosis of the arc occurs when the arc duration is maintained for more than 4 seconds.
  • the step of detecting whether the arc and the tracking occurs characterized in that the tracking is generated if the tracking current continues to occur for more than 2 seconds.
  • the method may further include generating an alarm according to whether the arc and the tracking occur.
  • the performing of the self-diagnosis characterized in that the diagnosis of the performance of the ultraviolet sensor is reduced when the pulse transformer voltage falls below the minimum discharge start voltage.
  • the self-diagnostic step may include diagnosing an abnormality in the current sensor when the voltage level of the signal input to the current sensor is maintained below a reference value for a predetermined time.
  • the predetermined communication method also includes serial communication and optical communication such as RS-485.
  • the present invention uses the ultraviolet sensor and the current sensor to detect the arc and tracking signals, and through the fast Fourier transform and probabilistic statistical analysis of the detected signals generated in the high and low pressure contacts inside the switchgear and Tracking can be detected.
  • the present invention monitors and diagnoses the status of the switchgear in real time by monitoring the abnormal signs related to the arc and tracking occurrence of the switchgear can prevent accidents and property damage due to the expansion of the electric fire.
  • FIG. 1 is an example showing the configuration of a switchgear according to the present invention.
  • FIG. 2 is a block diagram showing an abnormality detection device of a switchgear according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a fault detection method of a switchgear having a self-diagnosis function according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a digital filtering process of FIG. 3.
  • FIG. 5 is a flowchart illustrating an FFT calculation process of FIG. 3.
  • FIG. 6 is a block diagram illustrating an abnormality detection device of a switchgear according to another embodiment of the present invention.
  • the present invention relates to a cable head, a metering out fit (MOF) connection, a power fuse (PF) connection, a vacuum circuit breaker (VCB) terminal block, each connection of a high voltage bushing of a transformer, and a high voltage bus connection.
  • Abnormal signals such as arc signals and tracking signals generated from high voltage parts such as low voltage parts such as busbar connections of transformers, low voltage side busbars, air circuit breakers, primary and secondary terminal blocks and connectors, distribution panel terminal blocks and connectors, etc.
  • the present invention relates to a method for detecting and monitoring and diagnosing a state of a switchgear.
  • FIG. 1 is an example showing the configuration of a switchgear according to the present invention.
  • the inner space of the main body 1 of the switchgear is separated up and down by the support (2).
  • Air circuit breakers (ACB) 10 automatic indoor section switches (ISS) 20, power fuses (PF) 30, lightning arresters on the upper side of the support (2) (Lightning Arrester: LA) 40 is disposed.
  • a transformer (TR) 50 and a metering out fit (MOF) 60 are installed at one side of the transformer 50 below the support 2.
  • the switchgear is a high voltage input through the high-voltage line is introduced into the power fuse 30 and the arrester 40 through the failure section automatic switchgear 20, the transformer transformer current transformer in the high pressure line through the power fuse 30 ( 60) is installed so that the voltage and current can be read for measuring the amount of power used.
  • the voltage and current values detected by the transformer transformer current transformer 60 are connected to the voltmeter and the ammeter and the low voltage shown on the secondary low voltage terminal of the transformer 50 is connected to the load via an air circuit breaker 10 connected by a cable.
  • an arc sensor and a tracking sensor are installed in the high voltage busbar contact portion, the transformer secondary side busbar contact portion, and the cable connection portion in the switchboard (see the asterisk in FIG. 1).
  • an integrated monitoring controller 70 for monitoring the operation of the switchgear is installed outside the body of the switchgear.
  • the integrated monitoring controller 70 includes an abnormality detection device 100 for diagnosing abnormality of the switchgear through the arc sensor 111 and the tracking sensor 121.
  • FIG. 2 is a block diagram showing an abnormality detection device of a switchgear according to an embodiment of the present invention.
  • the abnormality detection apparatus 100 of the switchboard includes an arc detector 110 and a tracking detector 120 for detecting the occurrence of arc and tracking.
  • the arc detector 110 includes the arc sensor 111 for detecting an arc signal.
  • the arc sensor 111 is a non-contact UV sensor, which uses the principle of the photoelectric effect of metal and gas.
  • the ultraviolet sensor detects ultraviolet rays generated by discharge or the like in the switchgear, and converts the generated ultraviolet rays into voltage signals (waveforms) and outputs them.
  • the noise signal for the ultraviolet light generated from the ultraviolet light is too strong to determine whether it is defective by extracting only the ultraviolet light generated from the electrical equipment. It becomes difficult.
  • the abnormality detection device of the switchgear is that the enclosure of the switchgear blocks external ultraviolet rays, and since the inside of the switchgear is almost unaffected by ultraviolet rays generated from the sun, it accurately detects ultraviolet rays due to an internal failure. You can do it.
  • the ultraviolet sensor used as the arc sensor 111 may quickly detect the ultraviolet component of the far arc and may detect a micro discharge such as a high pressure corona discharge.
  • the arc sensor 111 has an ultraviolet sensitivity of 185nm ⁇ 260nm and despite the small size can detect the abnormal phenomenon within 5m at a 120 ° angle of detection range of ultraviolet radiation quickly. have.
  • Table 1 parameter range unit Spectrum Response 185-260 nm Window material UV glass - Detection range 120 °, 5m °, m Discharge start voltage (including UV radiation) 280 Vdc, Max
  • the arc detector 110 includes an analog filter 112 that receives an arc signal output from an arc sensor 111 that detects ultraviolet rays generated from a discharge tube, and removes a noise signal from the received arc signal.
  • the analog filter 112 removes and outputs noise of an output waveform output from the ultraviolet sensor through analog low pass filtering.
  • the tracking detector 120 is a current sensor (tracking sensor) that measures a tracking current generated on the live line of the switchboard, and detects a tracking signal that is a micro discharge phenomenon of a low voltage line.
  • the tracking detector 121 includes current sensors 121, 122, and 123 for measuring currents of R, S, and T phases, respectively.
  • the voltage signal and the current signal transmitted from the analog filter 112 and the current sensors 121, 122, and 123, respectively, are analog to digital converters (ADC) of the digital signal processor 130. ) (Not shown).
  • ADC analog to digital converters
  • the ADC converts the voltage signal output from the arc sensor 111 and the current signals output from the current sensors 121 to 123 into digital signals by performing sampling in consideration of antialiasing.
  • the digital signal processor (DPS) 130 digitally filters the sampled arc signal and passes only a 1 kHz band, which is a frequency region of an arc sensor, which shows a defect pattern of an electrical equipment best among digitally converted signals. .
  • the digital signal processor 130 receives a signal and data output from the arc detector 110 and the tracking detector 120 as an input and performs a Fast Fourier Transform (FFT) operation and statistical analysis. To accurately detect the occurrence of arcing and tracking.
  • FFT Fast Fourier Transform
  • the digital signal processor 130 is input to extract peak values, peak frequencies, kurtosis, skewness, rms values, standard deviations, arc generation times and durations of arc signals and tracking signals. In order to find out the properties of the signals (arc signal and tracking signal), the magnitude and frequency of the input signal are calculated through FFT operation at predetermined intervals.
  • the digital signal processor 130 uses the magnitude and frequency of the input signal calculated through the FFT operation to generate the number of occurrences, duration, peak value, effective value, average value, kurtosis, skewness, and standard deviation for arcing and tracking. , Detection elements such as% THD are calculated.
  • the digital signal processing unit 130 checks whether the calculated detection element is out of the setting range, and generates an alarm according to the result of the check to control the breaker.
  • the digital signal processor 130 analyzes signals input through the arc detector 110 and the tracking detector 120 to build and verify a database through a detection algorithm to determine whether or not arc and tracking are generated. Such analytical data is transmitted to a remote monitoring device (not shown) to obtain information on risk factors and to prevent large accidents in advance.
  • the remote monitoring apparatus may be implemented as a server, a personal computer, a human machine interface (HMI), or the like.
  • the abnormality detection device 100 includes a communication unit 140 including a serial communication unit 141 such as RS-485 and an optical communication unit 142.
  • the serial communication unit 141 converts the sensor information and the respective data obtained by the digital signal processing unit 130 according to the communication control signal of the digital signal processing unit 130 into MOD-BUS standard data to monitor the remote monitoring device. To pass. Data transmitted to the remote monitoring device is processed for each information or use to determine the shape of the arc.
  • the optical communication unit 142 is used to improve the malfunction due to noise because a strong electromagnetic field is formed by a transformer and a plurality of charging devices installed in the switchgear can cause serious malfunction in the transmission and communication of the sensor output signal.
  • the optical communication unit 142 arranges the information and the data of the sensor acquired by the digital signal processing unit 130 into MOD-BUS standard data and transmits the data to the remote monitoring apparatus through the optical communication line.
  • the optical communication unit 142 includes a logic signal converter that converts logic information of the digital signal processor 130 into a pseudo emitter couple logic (PECL) signal.
  • the optical communication unit 142 includes an optical signal converter (optical transceiver) for converting the PECL signal into optical information and outputting the optical signal to an optical cable line.
  • the optical signal converter converts the received optical cable information into a PECL signal, and the converted PECL signal is converted into a logic signal by a logic signal converter and input to the digital signal processor 130.
  • the optical communication unit 142 enables the optical communication between the abnormality detection device 100 and the remote monitoring device, and the data transmitted to the remote monitoring device is processed for each information or use to determine the shape of the arc. Used.
  • the alarm means 150 according to the control of the digital signal processor 130 generates or stops an alarm for notifying the alarm.
  • the alarm means 150 may be implemented as a light emitting device such as a light emitting diode (LED) or a speaker.
  • LED light emitting diode
  • the abnormality detection apparatus 100 is provided with a display unit 160 for processing the data calculated by the digital signal processor 130 to display the result value and information related to the arc.
  • the abnormality detecting apparatus 100 includes a power supply unit 170 for supplying power to the abnormality detecting apparatus 100.
  • the power supply unit 170 is implemented as a DC / DC converter for converting the DC power input from the inside or outside to a DC power of a different voltage.
  • the self-diagnostic part 180 which performs self-diagnosis of the arc sensor 111 and the tracking sensor 121 is provided.
  • the self-diagnosis unit 180 periodically checks a voltage of a pulse transformer which is a part of the arc sensor 111 and checks whether the voltage falls below a minimum discharge start voltage. As a result of the check, when the voltage of the pulse transformer falls below a minimum discharge start voltage, the self-diagnosis unit 180 diagnoses that the accuracy of ultraviolet region detection for the arc sensor 111 is reduced.
  • the self-diagnostic unit 180 monitors the voltage level of the input signal input to each of the current sensors 121 to 123 of the tracking detector 120 at intervals of 10 seconds so that the voltage level is less than or equal to the reference value (lowest value) for 1 second. If it is maintained for a while, the tracking detection unit 120 diagnoses that there is an error.
  • the self-diagnostic unit 170 transmits a diagnosis result to the digital signal processor 130, and the digital signal processor 130 transmits the received diagnosis result to the display unit 170 through a serial communication unit 141.
  • the diagnosis result is displayed on the display unit 170.
  • FIG. 3 is a flowchart illustrating a fault detection method of a switchgear having a self-diagnosis function according to an embodiment of the present invention.
  • the digital signal processor 130 receives an arc signal and a current waveform from the arc sensor 111 and the current sensors 121 to 123, respectively (S101).
  • the arc sensor 111 detects ultraviolet rays generated by the arc generated in the discharge tube of the switchgear and outputs a voltage waveform corresponding to the detected ultraviolet intensity.
  • the current sensors 121 to 123 measure the current flowing in the live line of the switchgear and output the measured current waveform.
  • the digital signal processor 130 When the arc signal and the current signal (tracking signal) are input, the digital signal processor 130 performs digital filtering on the input arc signal and current signal (S102).
  • the arc signal and the current signal are input to the ADC of the digital signal processor 130, and the ADC samples the arc signal and the current signal, which are analog signals, every 100 kHz, and converts them into digital signals for storage in a memory (not shown). .
  • the ADC applies antialiasing to remove noise included in the arc signal and the current signal.
  • the digital finite impulse response (FIR) filter of the digital signal processor 130 reads the sampled signal and performs digital filtering.
  • the digital FIR filter passes only the 1 kHz to 10 kHz band, which is the frequency domain of the arc sensor 111.
  • the discharge characteristics of the arc sensor due to ultraviolet rays generated due to deterioration of deterioration mainly appear in the 1 kHz to 10 kHz band.
  • the detection of the FIR filter band in the 1 kHz band, the 1 to 10 kHz band, or the 10 kHz band makes it easy to distinguish the failure waveform and efficiently determine the defect.
  • the digital signal processor 130 After the digital filtering, the digital signal processor 130 performs an FFT operation on the filtered arc signal and the current signal to derive the peak magnitude and the peak frequency of the filtered arc signal and the current signal (S103).
  • the digital signal processing unit 130 calculates a unique detection element for the detected arc signal and the current signal using the peak magnitude and the peak frequency derived through the FFT operation (S104).
  • the detection elements are the frequency, duration, current rms, current slope, allowable current, short circuit current, arc peak value, arc rms value, arc kurtosis, arc skewness, arc standard deviation, average value, % THD, pulse width and the like.
  • the current rms value is calculated by Equation 1 below based on the image, inverse, and phase normal currents by the symmetric coordinate method.
  • Is calculated by substituting the value of the FFT size term 2 into I m2 .
  • Arc skewness is an index indicating how asymmetrically the arc generation distribution is, and is calculated by Equation 2.
  • the arc generation distribution is symmetric, and if the calculated arc skewness ⁇ 3 > 0, the right tail of the arc generation distribution is longer and the calculated arc skewness ⁇ 3 ⁇ 0 means the left tail of the arc generation distribution is longer.
  • the arc kurtosis indicates the sharpness of the arc generation distribution and is calculated by Equation 3 below.
  • the arc standard deviation is calculated by Equation 4 by storing the arc peak values of about four times at intervals of 100 ms in the memory.
  • the standard deviation value shows that the four peak values are separated by S from the average value.
  • the digital signal processor 130 checks whether the calculated detection element is within a setting range (S105).
  • the digital signal processor 130 diagnoses that arc and / or tracking does not occur and controls the self-diagnosis unit 180 to control the arc sensor 111. And self-diagnosis of the current sensors 121 to 123 (S106).
  • the self-diagnostic unit 180 periodically measures the voltage of the pulse transformer of the arc sensor 111 and checks whether the measured voltage is less than or equal to the minimum discharge start voltage. When the measured voltage is less than or equal to the minimum discharge start voltage, the self-diagnostic unit 180 diagnoses that the accuracy of ultraviolet region detection of the arc sensor 111 is lowered.
  • the self-diagnostic unit 180 measures the current level input to the current sensors 121 to 123 at intervals of a predetermined time (for example, 10 seconds), and the measured current level is equal to or less than the reference value (for example, 0). If it is maintained for a certain period of time (eg 1 second), the current sensor is diagnosed as having an abnormality. In addition, the self-diagnostic unit 180 checks the state of the sensors and notifies the digital signal processing unit 130 of the diagnosis result including the abnormality.
  • a predetermined time for example, 10 seconds
  • the reference value for example, 0
  • the digital signal processor 130 transmits the diagnosis result received from the self-diagnosis unit 180 to the remote monitoring device through the communication unit 140 (S107).
  • the digital signal processing unit 130 controls the alarm means 150 to generate an alarm (S108).
  • the digital signal processor 130 generates an alarm when the number of arc discharges occurs 5 times or more within 2 seconds, the arc duration continues for 4 seconds or more, or the tracking current continues for 2 seconds or more. In this case, the digital signal processor 130 repeatedly turns on / flashes the light emitting device at a predetermined time (for example, 0.5 seconds) and continues until the system is manually reset. Alternatively, the digital signal processor 130 transmits information on an alarm occurrence history to the remote monitoring apparatus through the communication unit 140.
  • FIG. 4 is a flowchart illustrating a digital filtering process of FIG. 3.
  • the digital signal processor 130 defines the FIR filter order (S201). Since the length of the signal input to the FIR filter must be finite, the length of the input signal is defined finitely. Therefore, in the present invention, the FIR filter order is defined as 128.
  • the digital signal processor 130 loads the FIR filter coefficients (S202).
  • the FIR filter coefficients S202.
  • the Hamming window filter coefficients are used as the FIR filter coefficients.
  • the digital signal processor 130 After loading the FIR filter coefficients, the digital signal processor 130 samples the arc signal and the current signals input from the arc sensor 111 and the current sensors 121 to 123 through the ADC (S203). At this time, the sampling frequency is 100kHz and the sampling period is 10ms.
  • the ADC removes high frequency components that distort the signals through anti-aliasing when the arc and current signals are input.
  • the ADC samples the arc signal and the current signals from which the high frequency component is removed, and converts the arc signals and the current signals into digital signals.
  • the digital FIR filter applies a transfer function of the digital FIR LPF to the sampled signal and passes only the 10 kHz band.
  • the digital FIR filter determines the number of arc discharges by counting pulses having a predetermined intensity or more by passing a band of 1 to 10 kHz by applying the number of digital discharge power transfer functions of the digital FIR LPF to the sampled signal.
  • Equation 5 The transfer function of the digital FIR LPF is expressed by Equation 5.
  • M is 128 in the order of the filter
  • X [n] is an arbitrary arc signal input to the ADC through the analog filter
  • y [n] is an arc signal in the 10 kHz band passing through the FIR filter.
  • the filter coefficient b k is obtained from the transfer function and substituted into the transfer function to calculate the output of the digital FIR filter.
  • the FIR filter design package (MATLAB M-File) provided by Texas Instruments (TI) was used to obtain filter coefficients b 0 to b 127 .
  • FIG. 5 is a flowchart illustrating an FFT calculation process of FIG. 3.
  • FFT calculation process is to extract peak value, peak frequency, kurtosis, skewness, duration, etc. of arc and tracking signals. Calculate the magnitude, frequency, etc.
  • the digital signal processor 130 sets the FFT point to 128 (S301).
  • a real FFT module using only a real part is used as a function for performing an FFT operation.
  • the FFT function used in the present invention is an RFFT32 function, and the equation is equal to the equation (6).
  • the part is a twiddle element, which is a complex operation, and the N points of this part are factors that determine the accuracy of the FFT operation.
  • N point is defined as 128.
  • the digital signal processor 130 loads the digital filtered result and designates a Hamming 128 window (S302, S303).
  • the digital signal processor 130 After designating the Hamming 128 window, the digital signal processor 130 receives data necessary for FFT operation as an input and performs RFFT32 operation on the digitally filtered arc signal and current signals (S304).
  • Data required for the FFT operation include FIR filter output data (Value of Filter_Out [ADC_cnt] Array Buffer), Hamming 128 window value (Hamming 128 array value), FFT size storage buffer pointer, Buffer pointer for FFT operation, Buffer length (512). Word).
  • the digital signal processor 130 derives the peak magnitude and the peak frequency of the detection signal (arc signal and tracking signal) through the FFT operation.
  • FIG. 6 is a block diagram illustrating an abnormality detection apparatus of a switchgear according to another embodiment of the present invention.
  • FIG. 6 shows an apparatus for detecting a failure occurring in the switchboard only by the arc signal.
  • FIG. 6 is identical in the remaining technical configuration except for the determination part by the tracking detection unit and the tracking current in the embodiment of FIG. 2.
  • the abnormality detection apparatus of the switchboard includes an arc detection unit 310 that detects generation of an arc.
  • the arc detector 310 includes the arc sensor 311 that detects an arc signal.
  • the arc sensor 311 is a non-contact UV sensor, which uses the principle of photoelectric effect of metal and gas.
  • the ultraviolet sensor detects ultraviolet rays generated by discharge or the like in the switchgear, and converts the generated ultraviolet rays into voltage signals (waveforms) and outputs them.
  • the arc detector 310 includes an analog filter 312 that receives an arc signal output from an arc sensor 311 that detects ultraviolet rays generated from a discharge tube, and removes a noise signal from the received arc signal.
  • the analog filter 312 removes and outputs noise of an output waveform output from the ultraviolet sensor through analog low pass filtering.
  • the voltage signal transmitted from the analog filter 312 is input to an analog / digital converter (ADC) (not shown) of the digital signal processor 330.
  • ADC analog / digital converter
  • the digital signal processor 330 digitally filters the sampled arc signal and passes a band of 1 to 10 kHz by a digital FIR filter among the digitally converted signals.
  • Preferred FIR filters may be in the 1 kHz band.
  • the digital signal processor 330 receives signals and data output from the arc detector 310 as inputs and performs fast Fourier transform calculation and statistical analysis to accurately detect the presence or absence of an arc.
  • the digital signal processor 330 may extract the peak value, peak frequency, kurtosis, skewness, standard deviation, number of arc occurrences, and duration of the arc signal through FFT calculation at predetermined intervals to determine the magnitude and frequency of the input signal. Calculate.
  • a self-diagnostic part as shown in FIG. 2 may be further included in FIG. 6.
  • the self-diagnosis unit periodically measures the voltage of the pulse transformer of the arc sensor 311 and checks whether the measured voltage is less than or equal to the minimum discharge start voltage. If the measured voltage is less than or equal to the minimum discharge start voltage, the self-diagnostic part diagnoses that the accuracy of ultraviolet region detection of the arc sensor 111 is lowered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

본 발명의 일실시예에 따른 이상 검출 방법은 수배전반 내에서 발생하는 자외선을 감지하는 자외선 센서와 트랙킹 전류를 측정하는 전류 센서를 통해 아크 신호 및 트랙킹 신호를 검출하여 샘플링을 수행하고, 샘플링된 신호들을 디지털 유한 임펄스 응답 저역통과필터를 통하여 디지털 필터링을 수행하며, 디지털 필터링된 신호들을 고속푸리에변환 연산하여 피크 크기와 피크 주파수를 산출하고, 이를 이용하여 아크 신호 및 트랙킹 신호에 대한 고유 검출 요소를 산출한다. 상기 산출된 검출 요소가 설정범위와 비교하여 아크 및 트랙킹 발생여부를 진단하고, 자외선 센서의 펄스트랜스포머 전압 및 상기 전류 센서로 입력되는 신호의 전압 레벨을 측정하여 자기진단을 수행하며, 진단결과를 원격 모니터링 장치로 전송한다.

Description

자기진단 기능을 구비한 수배전반의 이상 검출 방법
본 발명은 센서를 이용하여 아크 또는 아크 및 트랙킹을 검출하며 자기진단 기능을 구비한 수배전반의 이상 검출 방법에 관한 것이다.
수배전반에서는 내부의 부품 고장 및 절연 열화 등으로 인하여 예고 없이 정전 및 전기사고 등이 발생하여, 경제적 손실뿐만 아니라 사회에 미치는 영향이 커지게 되었으며, 전기기기의 장기간에 걸친 원활한 운용과 신뢰성 확보가 매우 중요한 문제가 되고 있다.
전기화재 예방을 위한 다각적인 노력에도 불구하고 전기기기 및 전기설비의 사용 증가로 화재 발생건수가 지속적으로 증가하고 있다.
전기 화재는 전기 기기나 전기설비 사용의 증가와 함께 점점 증가하고 있는 추세이며, 이로 인해 인명피해와 재산 피해는 물론 국가경제에도 큰 피해를 주고 있으므로 전기화재의 조기발견에 의한 화재의 미연의 방지에 대한 필요성이 크게 대두되고 있다. 특히 빌딩 및 전력사용량이 큰 대수용가의 고압/저압 배전반과 분전반의 경우, 전기화재의 현상과 조기 검출을 위한 장치와 감시 시스템의 개발이 절실하게 요구되고 있다.
전기화재 사고에 대응하기 위해 현재 설치된 배선용 차단기를 비롯한 각종 보호 장치는 부하회로에서 과전류 발생 시 회로를 차단하는 기능을 가지고 있지만, 빌딩 및 대수용가의 배전계통에 있어서 접촉불량에 의한 과열, 단선, 단락에 의한 아크 발생 및 절연피복재 열화에 의한 트랙킹현상 등은 배선용 차단기로는 사고의 해결이 불가능하다.
아크 화재의 경우, 지락이나 용량초과, 타 물건과의 접촉 등에 의해 비정상적인 전류가 흐르게 되어 고압/저압 배전반 내부의 부스바, 케이블, 전선 간의 접촉부, 단자 접촉부 등이 과열되고, 이로 인하여 다른 물체에 접촉함으로써 고장부위에서 선이 절단되어 차단되거나 부분적인 접촉으로 계속적인 반복적인 아크를 발생시키게 된다.
수배전반 주변의 먼지, 매연, 습기 등의 환경오염으로 단자대에 접촉된 전선 피복재를 통해서 도체 사이의 절연층이 미소방전에 의하여 탄화되는 현상이 발생된다. 이 탄화 도전로를 따라서 누설전류가 점차 증가하여 드디어는 도체 사이에 트랙킹 파괴와 함께 전선피복재가 발화함으로써 분전반의 전기화재가 발생하게 된다. 이와 같이 전기화재의 절반 이상이 아크 및 트랙킹에 의해 전기화재와 인명피해를 유발하고 있다.
종래의 아크 및 트랙킹 검출 방법은 각 상의 변류기에 의해서 얻어지는 전류 파형을 디지털화하여 주파수 분석함으로써 아크 유무를 판단하였다. 이 방법은 수배전반의 피더에서의 전류가 저항성 성분일 경우는 검출 확률이 높으나 L, C에 의한 용량성, 유도성 성분의 부하 등의 경우는 아크의 파형 분석으로는 정확한 검출이 불가능한 실정이다.
전기적 아크는 전기선연결의 접촉불량이나 선간 피복불량 등의 원인으로 전기적 쇼트가 발생시 나타나는 증상을 말하는데, 아크가 발생되면 화재 소손 등의 영향으로 인명사고와 재산손실이 발생될수 있어 아크의 판단 여부와 예측판단이 중요한 이슈로 떠오르고 있다.
미국을 비롯한 북미 지역에 사용되고 있는 종래의 아크 차단장치는 주로 가정의 저압선로 아크를 검출하는 AFCI(Arc Fault Current Interrupter)로서, 콘센트의 단락과 전선의 단선 및 접촉불량 등의 원인에 의해 발생하는 아크 전류를 차단한다.
수배전반 내에서 고압/저압선로의 접촉불량, 단락, 열화 등에 의해서 발생하는 전기 사고에 대하여 사용자가 쉽게 고장 유무를 파악할 수 있도록 불량 아크에 의한 효과적인 검출방법이 요구된다.
본 발명은 자외선 센서와 전류 센서를 이용하여 아크 및 트랙킹 신호 검출하고, 그 검출된 신호들을 고속 푸리에변환 및 확률적 통계 분석을 통해 아크 및 트랙킹을 검출하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법을 제공하기 위한 것이다.
또한, 본 발명은 센서의 성능을 주기적으로 테스트하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법을 제공하기 위한 것이다.
또한, 본 발명은 수배전반의 상태를 실시간으로 모니터링하여 아크 및 트랙킹과 같은 이상 발생을 진단하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법을 제공하기 위한 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 자기진단 기능을 구비한 수배전반의 이상 검출 방법은 수배전반 내 발생하는 자외선을 감지하는 자외선 센서와 활선의 트랙킹 전류를 측정하는 전류 센서를 통해 아크 신호 및 트랙킹 신호를 검출하는 단계와, 상기 아크 신호와 트랙킹 신호에 대해 샘플링을 수행하는 단계와, 상기 샘플링된 신호들을 디지털 유한 임펄스 응답 저역통과필터를 사용하여 디지털 필터링을 수행하는 단계와, 상기 디지털 필터링된 신호들을 고속푸리에변환 연산하여 피크 크기와 피크 주파수를 출력하는 단계와, 상기 출력되는 피크 크기와 피크 주파수를 이용하여 상기 아크 신호 및 트랙킹 신호에 대한 고유의 검출 요소를 산출하는 단계와, 상기 산출된 검출 요소가 설정범위를 벗어나는지를 확인하여 그 확인결과에 따라 아크 및 트랙킹 발생 여부를 진단하는 단계와, 상기 아크 및 트랙킹 발생 여부 진단 후, 상기 자외선 센서의 펄스트랜스포머 전압 및 상기 전류 센서로 입력되는 신호의 전압 레벨을 주기적으로 측정하여 센서 성능을 자기진단을 수행하는 단계와, 상기 아크 및 트랙킹 발생 여부에 대한 진단결과 및 상기 센서 성능에 대한 자기진단결과를 소정의 통신방식을 이용하여 원격 모니터링 장치로 전송하는 단계를 포함한다.
또한, 상기 검출 요소는, 아크 및 트랙킹에 대한 발생횟수, 지속시간, 피크값, 실효치, 평균값, 첨도, 왜도, 표준편차, % THD((Total hamonic distortion)와 같은 요소를 포함한다.
또한, 상기 아크 및 트랙킹 발생 여부 진단단계는, 아크 발생 횟수가 2초 이내에 5회 이상 발생하면 아크가 발생한 것으로 진단하는 것을 특징으로 한다.
또한, 상기 아크 및 트랙킹 발생 여부 진단단계는, 아크 지속 시간이 4초 이상 유지되는 경우 아크가 발생한 것으로 진단하는 것을 특징으로 한다.
또한, 상기 아크 및 트랙킹 발생 여부 진단단계는, 트랙킹 전류가 2초 이상 계속 발생하면 트랙킹이 발생한 것으로 진단하는 것을 특징으로 한다.
또한, 상기 아크 및 트랙킹 발생 여부에 따라 경보를 발생시키는 단계를 더 포함한다.
또한, 상기 자기진단 수행단계는, 상기 펄스트랜스포머 전압이 최저 방전 개시전압 이하로 떨어지면 자외선 센서의 성능이 저하된 것으로 진단하는 것을 특징으로 한다.
또한, 상기 자기진단 수행단계는, 상기 전류 센서로 입력되는 신호의 전압 레벨이 기준값 이하로 일정 시간 동안 유지되면 상기 전류 센서에 이상이 있는 것을 진단하는 것을 특징으로 한다.
또한, 상기 소정의 통신방식은, RS-485와 같은 시리얼 통신 및 광통신을 포함한다.
상술한 바와 같이, 본 발명은 자외선 센서와 전류 센서를 이용하여 아크 및 트랙킹 신호 검출하고, 그 검출된 신호들을 고속푸리에변환 및 확률적 통계 분석을 통해 수배전반 내부의 고압/저압 접촉부에서 발생하는 아크 및 트랙킹을 검출할 수 있다.
또한, 본 발명은 수배전반의 아크 및 트랙킹 발생과 관련한 이상 징후를 실시간으로 모니터링하므로 수배전반의 상태를 감시 및 진단하여 전기화재의 확대로 인한 인명사고 및 재산피해를 미리 예방할 수 있다.
또한, 수배전반 내부는 태양으로부터 발생되는 자외선의 영향을 거의 받지 않으므로 더욱 정확하게 자외선에 의한 전기 불량을 검출할 수 있다.
도 1은 본 발명과 관련된 수배전반의 구성을 도시한 일 예이다.
도 2는 본 발명의 실시예와 관련된 수배전반의 이상 검출 장치를 도시한 블록 구성도이다.
도 3은 본 발명의 실시예과 관련된 자기진단 기능을 구비한 수배전반의 이상 검출 방법을 도시한 흐름도이다.
도 4는 도 3의 디지털 필터링 과정을 도시한 흐름도이다.
도 5는 도 3의 FFT 연산 과정을 도시한 흐름도이다.
도 6은 본 발명의 다른 실시예에 의한 수배전반의 이상 검출 장치를 도시한 블록 구성도이다.
100: 이상 검출 장치
110, 310: 아크 검출부
111, 311: 아크 센서
120: 트랙킹 검출부
121, 122, 123: 전류센서
130, 330: 디지털 신호 처리부
140, 340: 통신부
150, 350: 알람수단
160, 360: 표시부
170: 전원공급부
180: 자기진단부
이하, 본 발명의 실시예를 첨부한 도면을 참조하여 상세하게 설명한다.
본 발명은 케이블 헤드, 계기용 변압 변류기(Metering Out Fit: MOF) 접속부, 전력 퓨즈(Power Fuse: PF) 연결부, 진공차단기(Vacuum Circuit Breaker: VCB) 단자대, 변압기 고압부싱의 각 접속부, 고압 모선 연결부 등과 같은 고압부와, 변압기 저압측 부스바 접속부, 기중차단기(Air Circuit Breakers), 1차 및 2차 단자대 및 접속부, 분전반 단자대 및 접속부 등의 저압부에서 발생하는 아크 신호 및 트랙킹 신호와 같은 이상신호를 검출하여 수배전반의 상태를 감시 및 진단하는 방법에 관한 것이다.
도 1은 본 발명과 관련된 수배전반의 구성을 도시한 일 예이다.
도 1을 참조하면, 수배전반의 본체(1) 의 내부 공간은 지지대(2)에 의해 상하로 분리된다. 상기 지지대(2)의 상측에는 기중차단기(Air Circuit Breakers: ACB)(10), 고장구간자동개폐기(Automatic Indoor Section Switch: AISS)(20), 전력 퓨즈(Power Fuse: PF)(30), 피뢰기(Lightning Arrester: LA)(40)가 배치된다. 그리고 상기 지지대(2)의 하측에는 변압기(Transformer: TR)(50)와 상기 변압기(50)의 일측에 계기용 변압 변류기(Metering Out Fit: MOF)(60)가 설치된다.
상기한 수배전반은 고압선로를 통해 입력되는 고압은 고장구간자동개폐기(20)를 거쳐 전력퓨즈(30)와 피뢰기(40)로 인입되고, 전력퓨즈(30)를 통한 고압라인에는 계기용 변압 변류기(60)를 설치하여 사용 전력량 측정을 위한 전압 및 전류를 검침할 수 있도록 연결된다. 상기 계기용 변압 변류기(60)에서 검출된 전압 및 전류값은 전압계 및 전류계에 인가되도록 연결되고 상기 변압기(50)의 2차측 저압단자에 나타난 저전압은 케이블로 연결되는 기중차단기(10)를 거쳐 부하측에 인가되도록 한다.
그리고 상기 수배전반 내 고압 모선 접촉부, 변압기 2차측 부스바 접촉부 및 케이블 접속부 등에 아크 센서와 트랙킹 센서가 설치된다(도 1의 별표 참조).
또한, 상기 수배전반의 몸체 외측에는 상기 수배전반의 동작을 감시하는 통합감시제어기(70)가 설치된다. 상기 통합감시제어기(70)에는 상기 아크센서(111)와 트랙킹 센서(121)를 통해 수배전반의 이상을 진단하는 이상 검출 장치(100)가 포함된다.
도 2는 본 발명의 실시예와 관련된 수배전반의 이상 검출 장치를 도시한 블록구성도이다.
도 2에 도시된 바와 같이, 본 발명에 따른 수배전반의 이상 검출 장치(100)는 아크 및 트랙킹의 발생을 감지하는 아크 검출부(110)와 트랙킹 검출부(120)를 구비한다.
상기 아크 검출부(110)는 아크 신호를 검출하는 상기 아크 센서(111)를 구비한다. 상기 아크 센서(111)는 비접촉형 자외선 센서(UVtron sensor)로, 금속과 가스의 광전효과의 원리를 이용한 것이다. 상기 자외선 센서는 수배전반 내에서 방전 등에 의해 발생하는 자외선을 검출하는 것으로, 발생한 자외선의 강도를 전압 신호(파형)로 변환하여 출력한다.
상기 아크 검출부(110)에 의하여 고장을 판별하는 경우 일반 태양의 영향을 받는 수배전함 외부에서는 자외선으로부터 발생되는 자외선에 대한 노이즈 신호가 너무 강하여 전기 설비로부터 발생되는 자외선만을 추출하여 불량인지를 판단하기가 곤란하게 된다.
본 발명의 일실시예에 따른 수배전반의 이상 검출 장치는 수배전반의 외함이 외부 자외선을 차단하는 점을 감안한 것으로서, 수배전반 내부는 태양으로부터 발생되는 자외선의 영향을 거의 받지 않으므로 내부 고장으로 인한 자외선을 정확하게 검출할 수 있게 된다.
즉, 내부에서 발생되는 이상 현상에 대하여 아크에 의한 자외선을 검출함으로써, 전기 불량을 용이하게 판단하고 검출할 수 있게 된다.
그리고 상기 아크 센서(111)로 사용되는 자외선 센서는 원거리 아크의 자외선 성분을 신속하게 감지할 수 있으며 고압 코로나 방전 같은 미소방전을 감지할 수 있다. 또한, 표 1에 도시된 바와 같이, 상기 아크 센서(111)는 185nm~260nm의 자외선 감도를 가지며 작은 사이즈에도 불구하고 자외선 방사의 감지 범위가 120° 각도에서 5m 이내의 이상 현상을 빠르게 감지할 수 있다.
표 1
파라미터 범위 단위
스텍트럼 응답 185 ~ 260 nm
윈도우 물질 UV 유리 -
감지범위 120°, 5m °, m
방전개시전압(UV방사 포함) 280 Vdc, Max
상기 아크 검출부(110)는 방전관에서 발생되는 자외선을 감지한 아크 센서(111)로부터 출력되는 아크 신호를 입력받고, 그 입력받은 아크 신호로부터 노이즈 신호를 제거하는 아날로그 필터(112)를 구비한다. 상기 아날로그 필터(112)는 자외선 센서로부터 출력되는 출력 파형의 노이즈를 아날로그 저역통과필터링을 통해 제거하여 출력한다.
상기 트랙킹 검출부(120)는 수배전반의 활선에 발생하는 트랙킹 전류를 측정하는 전류센서(Current Transducer: CT)(트랙킹 센서)로, 저압선로의 미소방전 현상인 트랙킹 신호를 검출한다. 그리고 상기 트랙킹 검출부(121)는 R상, S상, T상의 전류를 각각 측정하는 전류센서들(121, 122, 123)로 구성된다.
상기 아날로그 필터(112) 및 상기 전류센서들(121, 122, 123)로부터 각각 전달된 전압 신호 및 전류 신호는 디지털 신호 처리부(130)의 아날로그/디지털 컨버터(Analog to Digital Converter: 이하, ‘ADC’)(미도시)로 입력된다. 상기 ADC는 상기 아크 센서(111)로부터 출력되는 전압 신호 및 상기 전류센서들(121 내지 123)로부터 출력되는 전류 신호들을 안티 앨리어싱(anti aliasing)을 고려한 샘플링을 수행하여 디지털 신호로 변환하여 메모리(미도시)에 저장한다.
상기 디지털 신호 처리부(Digital Signal Porcessor: DPS)(130)는 상기 샘플링된 아크 신호를 디지털 필터링하여 디지털로 변환된 신호 중에서 전기 설비의 불량 패턴을 가장 잘 나타나는 아크 센서의 주파수 영역인 1kHz 대역만 통과시킨다.
또한, 상기 디지털 신호 처리부(130)는 상기 아크 검출부(110)와 트랙킹 검출부(120)로부터 출력되는 신호 및 데이터를 입력으로 받아 고속푸리에변환(Fast Fourier Transform: 이하 ‘FFT’) 연산 및 통계적 분석을 수행하여 아크 및 트랙킹의 발생 유무를 정확하게 검출한다.
상기 디지털 신호 처리부(130)는 아크 신호와 트랙킹 신호의 피크(peak)값, 피크 주파수(peak frequency), 첨도, 왜도, 실효값, 표준편차, 아크 발생 횟수와 지속시간 등을 추출하기 위해 입력신호(아크 신호 및 트랙킹 신호)의 속성을 알아내기 위해 소정 주기로 FFT 연산을 통해 입력신호의 크기와 주파수 등을 산출한다.
상기 디지털 신호 처리부(130)는 상기 FFT 연산을 통해 산출한 입력 신호의 크기와 주파수를 이용하여 아크 및 트랙킹에 대한 발생횟수, 지속시간, 피크값, 실효값, 평균값, 첨도, 왜도, 표준편차, % THD 등의 검출요소들을 산출한다.
상기 검출요소들의 산출이 완료되면, 상기 디지털 신호 처리부(130)는 상기 산출된 검출요소가 설정범위를 벗어나는지를 확인하고, 그 확인결과에 따라 경보를 발생시켜 차단기를 제어하게 한다.
그리고 상기 디지털 신호 처리부(130)는 상기 아크 검출부(110)와 트랙킹 검출부(120)를 통해 입력되는 신호들을 분석하여 아크 및 트랙킹의 발생 여부와 형태 등을 검출 알고리즘을 통해 데이터베이스를 구축하고 검증한다. 이러한 분석 데이터들은 원격 모니터링 장치(미도시)로 전송되어 위험요소에 대한 정보를 취득하여 사전에 대형사고를 예방하는데 사용된다. 상기 원격 모니터링 장치는 서버, 개인용 컴퓨터, 휴먼 머신 인터페이스(Human Machine Interface: HMI) 등으로 구현될 수 있다.
상기 이상 검출 장치(100)에는 RS-485와 같은 시리얼 통신부(141)와 광통신부(142)를 구비한 통신부(140)가 구비된다.
상기 시리얼 통신부(141)는 상기 디지털 신호 처리부(130)의 통신제어신호에 따라 디지털 신호 처리부(130)에 의해 취득된 센서의 정보 및 각 데이터들을 MOD-BUS 규격의 데이터로 변환하여 상기 원격 모니터링 장치로 전달한다. 상기 원격 모니터링 장치로 전달된 데이터들은 각 정보별 또는 용도별로 가공되어 아크의 형태를 파악하게 된다.
상기 광통신부(142)는 수배전반에 설치된 변압기 및 다수의 충전 기기에 의해 강한 전자계가 형성되어 센서출력 신호의 전송 및 통신에 심각한 오동작을 유발할 수 있어 노이즈로 인한 오동작을 개선하기 위해 사용되고 있다.
상기 광통신부(142)는 디지털 신호 처리부(130)로 취득된 센서의 정보 및 각 데이터들을 MOD-BUS 규격의 데이터로 정렬하여 광통신 라인을 통해 상기 원격 모니터링 장치로 전달한다. 상기 광통신부(142)는 디지털 신호 처리부(130)의 로직 정보를 PECL(Pseudo Emitter Couple Logic) 신호로 변환하는 로직신호 변환기를 포함한다. 그리고 상기 광통신부(142)는 상기 PECL 신호를 광정보로 변환하여 광케이블 라인으로 출력하는 광신호변환기(광트랜시버)를 포함한다. 상기 광신호변환기는 수신되는 광케이블 정보를 PECL 신호로 변환하고, 상기 변환된 PECL 신호는 로직신호 변환기에 의해 로직신호로 변환되어 디지털 신호 처리부(130)로 입력된다.
상기 광통신부(142)는 상기 이상 검출 장치(100)와 원격 모니터링 장치의 상호 간에 광통신이 가능토록 해주고, 상기 원격 모니터링 장치로 전달된 데이터들은 각 정보별 또는 용도별로 가공되어 아크의 형태를 파악하는데 사용된다.
상기 디지털 신호 처리부(130)의 제어에 따르는 알람수단(150)은 경보를 알리는 알람을 발생시키거나 중단시킨다. 상기 알람수단(150)은 LED(light emitting diode)와 같은 발광소자 또는 스피커 등으로 구현될 수 있다.
상기 이상 검출 장치(100)에는 디지털 신호 처리부(130)에 의해 연산된 데이터를 가공하여 아크와 관련한 결과값과 정보를 표시하는 표시부(160)가 구비된다.
상기 이상 검출 장치(100)는 상기 이상 검출 장치(100)에 전원을 공급하는 전원공급부(170)를 포함한다. 상기 전원공급부(170)는 내부 또는 외부에서 입력되는 직류전원을 다른 전압의 직류전원으로 변환하는 DC/DC 컨버터로 구현된다.
상기 아크 센서(111) 및 트랙킹 센서(121)의 자기진단을 수행하는 자기진단부(180)가 구비된다. 상기 자기진단부(180)는 아크 센서(111)의 일부분인 펄스트랜스포머(pulse transformer)의 전압을 주기적으로 확인하여 최저 방전 개시 전압 이하로 떨어지는지를 확인한다. 상기 확인결과 상기 펄스트랜스포머의 전압이 최저 방전 개시 전압 이하로 떨어지면 상기 자기진단부(180)는 상기 아크 센서(111)에 대한 자외선 영역검출의 정확도가 저하된 것으로 진단한다.
그리고 상기 자기진단부(180)는 트랙킹 검출부(120)의 각 전류 센서(121 내지123)로 입력되는 입력신호의 전압레벨을 10초 간격으로 감시하여 상기 전압레벨이 기준값(최저값) 이하로 1초 동안 유지되면 트랙킹 검출부(120)에 이상이 있는 것으로 진단한다.
상기 자기진단부(170)는 진단결과를 상기 디지털 신호 처리부(130)로 전달하고, 상기 디지털 신호 처리부(130)는 상기 전달받은 진단결과를 시리얼 통신부(141)를 통해 표시부(170)로 전송하여 표시부(170)에 진단결과를 표시한다.
도 3은 본 발명의 실시예과 관련된 자기진단 기능을 구비한 수배전반의 이상 검출 방법을 도시한 흐름도이다.
도 3을 참조하면, 디지털 신호 처리부(130)는 아크 센서(111) 및 전류 센서(121 내지 123)로부터 각각 아크 신호(arc waveform) 및 전류 신호(current waveform)를 입력받는다(S101). 여기서, 상기 아크 센서(111)는 수배전반의 방전관에서 발생되는 아크로 인해 발생하는 자외선을 감지하여 그 감지된 자외선 강도에 대응되는 전압 파형을 출력한다. 그리고 상기 전류 센서(121 내지 123)는 수배전반의 활선에 흐르는 전류를 측정하여 그 측정된 전류 파형을 출력한다.
상기 아크 신호 및 전류 신호(트랙킹 신호)가 입력되면, 상기 디지털 신호 처리부(130)는 상기 입력된 상기 아크 신호 및 전류 신호를 디지털 필터링을 수행한다(S102). 상기 아크 신호 및 전류 신호는 상기 디지털 신호 처리부(130)의 ADC로 입력되고, 상기 ADC는 아날로그 신호인 상기 아크 신호 및 전류 신호를 100kHz 주기로 샘플링하여 디지털 신호로 변환하여 메모리(미도시)에 저장한다. 그리고 상기 ADC는 안티 앨리어싱을 적용하여 상기 아크 신호 및 전류 신호에 포함된 노이즈를 제거한다.
상기 아크 신호 및 전류 신호를 샘플링하면 디지털 신호 처리부(130)의 디지털 유한 임펄스 응답(Finite Impulse Response: 이하 ‘FIR’) 필터는 상기 샘플링된 신호를 읽어와 디지털 필터링을 수행한다. 상기 디지털 FIR 필터는 아크 센서(111)의 주파수 영역인 1kHz ~ 10kHz대역만 통과시킨다.
본 발명의 일 실시예에 따른 실험치에 의하면, 졀연 열화 등으로 발생하는 자외선에 의한 아크센서의 방전 특성은 주로 1kHz ~ 10kHz 대역에서 나타난다.
따라서 FIR 필터 대역을 1kHz 대역, 또는 1 ~10kHz대역, 또는 10kHz 대역에서 검출하도록 하는 것이 고장 파형에 대한 판단 구분이 용이하고 효율적으로 불량을 판단할 수 있게 된다.
상기 디지털 필터링 후 상기 디지털 신호 처리부(130)는 상기 필터링된 아크 신호 및 전류 신호에 대해 FFT 연산을 수행하여 상기 필터링된 아크 신호 및 전류 신호의 피크 크기와 피크 주파수를 도출한다(S103).
또한, 상기 디지털 신호 처리부(130)는 상기 FFT 연산을 통해 도출된 피크 크기와 피크 주파수를 이용하여 상기 검출된 아크 신호 및 전류 신호에 대한 고유의 검출요소를 산출한다(S104). 여기서, 검출요소는 아크 및 트랙킹에 대한 발생횟수, 지속시간, 전류실효값, 전류 기울기, 허용 전류, 단락전류, 아크 피크값, 아크 실효값, 아크 첨도, 아크 왜도, 아크 표준편차, 평균값, %THD, 펄스폭 등을 포함한다.
상기 전류 실효값은 대칭좌표법에 의한 영상, 역,상 정상전류분에 의하여 아래 수학식 1에 의해 산출된다.
수학식 1
Figure PCTKR2012005713-appb-M000001
여기서, 영상전류 분인
Figure PCTKR2012005713-appb-I000001
는 직류 성분으로 FFT 연산을 통해 제거되었기 때문에 0으로 처리한다. 그리고,
Figure PCTKR2012005713-appb-I000002
는 FFT 크기 1항의 값을 Im1에 대입하여 계산하고,
Figure PCTKR2012005713-appb-I000003
는 FFT 크기 2항의 값을 Im2에 대입하여 계산한다.
아크 왜도는 아크 발생 분포가 얼마나 비대칭적으로 분포되어 있는지를 나타내는 지표로서, 수학식 2에 의해 산출된다.
수학식 2
Figure PCTKR2012005713-appb-M000002
상기 산출된 아크 왜도 α3 = 0이면 아크 발생 분포가 좌우대칭이고, 상기 산출된 아크 왜도 α3 > 0이면 아크 발생 분포의 오른쪽 꼬리가 더 긴 경우이며 상기 산출된 아크 왜도 α3 < 0이면 아크 발생 분포의 왼쪽 꼬리가 더 긴 경우이다.
상기 아크 첨도는 아크 발생 분포의 뾰족한 정도를 나타내는 것으로, 아래의 수학식 3에 의해 산출된다.
수학식 3
Figure PCTKR2012005713-appb-M000003
상기 산출된 아크 첨도
Figure PCTKR2012005713-appb-I000004
이면 분포가 종모양인 경우이다.
상기 산출된 아크 첨도
Figure PCTKR2012005713-appb-I000005
이면 분포가 뾰족한 경우이다.
상기 아크 표준 편차는 100ms 간격으로 4번 정도의 아크 피크 값들을 메모리에 저장해 놓고 약 500ms마다 수학식 4에 의해 산출된다.
수학식 4
Figure PCTKR2012005713-appb-M000004
이 표준 편차값에 의해 4번의 피크 값들이 평균값에서 S 만큼 떨어져 있음을 알 수 있다.
상기 검출요소가 산출되면, 상기 디지털 신호 처리부(130)는 상기 산출된 검출요소가 설정범위 내에 있는지를 확인한다(S105).
상기 확인결과, 상기 산출된 검출요소가 설정범위 내에 있으면, 상기 디지털 신호 처리부(130)는 아크 및/또는 트랙킹이 발생하지 않는 것으로 진단하여 자기진단부(180)를 제어하여 상기 아크 센서(111) 및 전류 센서들(121 내지 123)에 대한 자기진단을 수행한다(S106). 상기 자기진단부(180)는 아크 센서(111)의 펄스트랜스포머의 전압을 주기적으로 측정하여 그 측정된 전압이 최저 방전 개시 전압 이하인지를 확인한다. 상기 측정된 전압이 최저 방전 개시 전압 이하이면 상기 자기진단부(180)는 아크 센서(111)의 자외선 영역검출의 정확도가 저하되는 것으로 진단한다.
한편, 상기 자기진단부(180)는 전류 센서(121 내지 123)로 입력되는 전류 레벨을 소정 시간(예: 10초) 간격으로 측정하여, 그 측정된 전류 레벨이 기준값(예: 0) 이하로 일정 시간(예; 1초) 동안 유지되면 전류 센서에 이상이 있는 것으로 진단한다. 또한, 상기 자기진단부(180)는 센서들의 상태를 체크하여 그 이상 유무가 포함된 진단결과를 디지털 신호 처리부(130)에 알린다.
상기 자기진단이 완료되면, 상기 디지털 신호 처리부(130)는 자기진단부(180)로부터 전달받은 진단결과를 통신부(140)를 통해 원격 모니터링 장치로 전송한다(S107).
한편, 단계(S105)에서 상기 산출된 검출요소가 설정범위를 벗어나면 디지털 신호 처리부(130)는 알람수단(150)을 제어하여 경보를 발생시킨다(S108).
상기 디지털 신호 처리부(130)는 상기 아크 방전 횟수가 2초 이내에 5회 이상 발생하거나, 아크 지속 시간이 4초 이상 계속되거나, 트랙킹 전류가 2초 이상 계속 발생되면 경보를 발생시킨다. 이때, 상기 디지털 신호 처리부(130)는 발광소자를 일정 시간(예: 0.5초) 간격으로 점등/점멸을 반복적으로 수행하고, 수동으로 시스템이 리셋되기 전까지 계속된다. 또는, 상기 디지털 신호 처리부(130)는 통신부(140)를 통해 원격 모니터링 장치로 경보 발생 내역에 대한 정보를 전송한다.
도 4는 도 3의 디지털 필터링 과정을 도시한 흐름도이다.
먼저, 디지털 신호 처리부(130)는 FIR 필터 차수를 정의한다(S201). 여기서, 상기 FIR 필터로 입력되는 신호의 길이는 유한해야 하므로, 입력 신호의 길이를 유한하게 정의한다. 따라서, 본 발명에서는 FIR 필터 차수를 128로 정의한다.
상기 FIR 필터 차수가 정의되면 상기 디지털 신호 처리부(130)는 FIR 필터 계수를 로드한다(S202).여기서, 유한한 길이의 입력 신호를 사용함에 따른 신호의 불연속을 제거하기 위해(신호 양끝을 0으로 줄어들게 만들어야 하므로) FIR 필터 계수로 해밍 윈도우(Hamming window) 필터 계수가 사용된다.
상기 FIR 필터 계수를 로드한 후 상기 디지털 신호 처리부(130)는 ADC를 통해 아크 센서(111) 및 전류 센서들(121 내지 123)로부터 입력되는 아크 신호와 전류 신호들을 샘플링한다(S203). 이때, 샘플링 주파수는 100kHz이고, 샘플링 주기는 10ms이다.
상기 ADC는 상기 아크 신호 및 전류신호들이 입력되면 안티 앨리어싱(anti aliasing)을 거쳐 상기 신호들을 왜곡시키는 고주파수 성분을 제거한다. 그리고 상기 ADC는 상기 고주파수 성분이 제거된 아크 신호 및 전류 신호들을 소정 주기로 샘플링(sampling)하여 디지털 신호로 변환하여 저장한다.
상기 아크 신호 및 전류신호들을 샘플링하여 저장하면, 디지털 FIR 필터는 상기 샘플링된 신호에 디지털 FIR LPF의 전달함수를 적용하여 10kHz 대역만 통과시킨다.
본 발명의 다른 실시예에서는 디지털 FIR 필터는 상기 샘플링된 신호에 디지털 FIR LPF의 전 크 방전 횟수 전달함수를 적용하여 1 ~ 10kHz 대역을 통과시켜서 일정 세기 이상의 펄스를 계수하여 아크 방전 횟수를 판단한다.
또는, 상기 샘플링된 신호에 디지털 FIR LPF의 전달함수를 적용하여 1 ~ 10kHz 대역을 통과시킨 후, 1kHz 대역에서 형성되는 방전 횟수를 판단할 수 있다.
상기 디지털 FIR LPF의 전달함수는 수학식 5와 같다.
수학식 5
Figure PCTKR2012005713-appb-M000005
여기서, M은 필터의 차수(order)로 128이고, X[n]은 아날로그 필터를 거쳐 ADC로 입력된 임의의 아크 신호이며, y[n]은 FIR 필터를 통과한 10kHz대역의 아크 신호이다.
상기 전달함수에서 필터 계수 bk를 구하여 상기 전달함수에 대입하여 디지털 FIR 필터의 출력을 산출한다. 본 발명에서는 필터 계수인 b0~b127까지를 구하기 위해 TI(Texas Instrument)사에서 제공하는 FIR 필터 디자인 패키지(MATLAB M-File)를 활용하였다.
도 5는 도 3의 FFT 연산 과정을 도시한 흐름도이다.
FFT 연산 과정은 아크 및 트랙킹 신호의 피크(peak)값, 피크 주파수, 첨도, 왜도, 지속시간 등을 추출하기 위한 것으로, 입력 신호의 속성을 알아내기 위해 10ms의 주기로 FFT 연산을 통해 검출신호의 크기와 주파수 등을 산출한다.
도 5를 참조하면, 디지털 신호 처리부(130)는 FFT 포인트를 128로 설정한다(S301).
본 발명에서는 연산 속도의 성능을 향상하기 위해 FFT 연산을 수행하는 함수로 리얼 파트 부분만 연산하도록 하는 리얼 FFT 모듈을 사용하고 있다.
본 발명에서 사용하는 FFT 함수는 RFFT32 함수이고, 수학식은 수학식 6과 같다.
수학식 6
Figure PCTKR2012005713-appb-M000006
여기서,
Figure PCTKR2012005713-appb-I000006
부분은 트위들(twiddle) 요소로, 복소수 연산으로 진행되며 이 부분의 N 포인트가 FFT 연산의 정확도를 좌우하는 요소가 된다. 상기 N 포인트가 크면 클수록 연산 결과가 정확해지나 연산 속도가 문제가 될 수 있게 되므로 이값을 적절히 선정하여야 한다. 여기서는 N 포인트를 128로 정의한다.
상기 FFT 포인트가 설정되면 상기 디지털 신호 처리부(130)는 상기 디지털 필터링된 결과를 로드하고, 해밍 128 윈도우를 지정한다(S302, S303).
상기 해밍 128 윈도우를 지정한 후 상기 디지털 신호 처리부(130)는 FFT 연산에 필요한 데이터를 입력으로 받아, 디지털 필터링된 아크 신호 및 전류 신호들에 대해 RFFT32 연산을 수행한다(S304). 상기 FFT 연산에 필요한 데이터로는 FIR 필터 출력 데이터(Filter_Out [ADC_cnt] Array Buffer의 값), 해밍 128 윈도우 값(해밍128 어레이 값), FFT 크기 저장 버퍼 포인터, FFT 연산용 버퍼 포인터, 버퍼 길이(512 워드) 등이 있다.
상기 디지털 신호 처리부(130)는 상기한 FFT 연산을 통해 검출신호(아크 신호 및 트랙킹 신호)의 피크 크기와 피크 주파수를 도출한다.
도 6은 본 발명의 다른 실시예에 의한 수배전반의 이상 검출 장치를 도시한블럭 구성도이다.
도 6은 아크 신호만으로 수배전반 내에서 발생하는 고장을 검출하는 장치를 나타낸다.
도 6은 도 2의 실시예에서 트랙킹 검출부와 트랙킹전류에 의한 판단부분을 제외하면 나머지 기술적 구성은 동일하다.
도 6에 도시된 바와 같이, 본 발명에 따른 수배전반의 이상 검출 장치는 아크의 발생을 감지하는 아크 검출부(310)를 구비한다.
상기 아크 검출부(310)는 아크 신호를 검출하는 상기 아크 센서(311)를 구비한다. 상기 아크 센서(311)는 비접촉형 자외선 센서(UVtron sensor)로, 금속과 가스의 광전효과의 원리를 이용한 것이다. 상기 자외선 센서는 수배전반 내에서 방전 등에 의해 발생하는 자외선을 검출하는 것으로, 발생한 자외선의 강도를 전압 신호(파형)로 변환하여 출력한다.
상기 아크 검출부(310)는 방전관에서 발생되는 자외선을 감지한 아크 센서(311)로부터 출력되는 아크 신호를 입력받고, 그 입력받은 아크 신호로부터 노이즈 신호를 제거하는 아날로그 필터(312)를 구비한다. 상기 아날로그 필터(312)는 자외선 센서로부터 출력되는 출력 파형의 노이즈를 아날로그 저역통과필터링을 통해 제거하여 출력한다.
상기 아날로그 필터(312)로부터 전달된 전압 신호는 디지털 신호 처리부(330)의 아날로그/디지털 컨버터(ADC)(미도시)로 입력된다.
상기 디지털 신호 처리부(330)는 상기 샘플링된 아크 신호를 디지털 필터링하여 디지털로 변환된 신호 중에서 디지털 FIR 필터에 의하여 1 ~ 10kHz 대역을 통과시킨다.
바람직한 FIR 필터는 1kHz 대역일 수 있다.
상기 샘플링된 신호에 디지털 FIR LPF의 전달함수를 적용하여 1 ~ 10kHz 대역을 통과시킨 후, 형성되는 방전 횟수를 판단하여 불량 유무를 판단한다.
또한, 상기 디지털 신호 처리부(330)는 상기 아크 검출부(310)로부터 출력되는 신호 및 데이터를 입력으로 받아 고속푸리에변환 연산 및 통계적 분석을 수행하여 아크의 발생 유무를 정확하게 검출한다.
상기 디지털 신호 처리부(330)는 아크 신호의 피크값, 피크 주파수, 첨도, 왜도, 표준편차, 아크 발생 횟수와 지속시간 등을 추출하기 위해 소정 주기로 FFT 연산을 통해 입력신호의 크기와 주파수 등을 산출한다.
또 다른 일 실시예에서는 도 6에 도 2의 실시예와 같은 자기진단부를 더 구비할 수 있다.
자기진단부는 아크 센서(311)의 펄스트랜스포머의 전압을 주기적으로 측정하여 그 측정된 전압이 최저 방전 개시 전압 이하인지를 확인한다. 측정된 전압이 최저 방전 개시 전압 이하이면 자기진단부는 아크 센서(111)의 자외선 영역검출의 정확도가 저하되는 것으로 진단한다.

Claims (10)

  1. 수배전반 내 발생하는 자외선을 감지하는 자외선 센서와 활선의 트랙킹 전류를 측정하는 전류 센서를 통해 아크 신호 및 트랙킹 신호를 검출하는 단계와,
    상기 아크 신호와 트랙킹 신호에 대해 안티엘리어싱을 적용한 샘플링을 수행하는 단계와, 상기 샘플링된 신호들을 디지털 유한 임펄스 응답 저역통과필터를 사용하여 디지털 필터링을 수행하는 단계와,
    상기 디지털 필터링된 신호들을 고속푸리에변환 연산하여 피크 크기와 피크 주파수를 출력하는 단계와, 상기 출력되는 피크 크기와 피크 주파수를 이용하여 상기 아크 신호 및 트랙킹 신호에 대한 고유의 검출 요소를 산출하는 단계와,
    상기 산출된 검출 요소가 설정범위를 벗어나는지를 확인하여 그 확인결과에 따라 아크 및 트랙킹 발생여부를 진단하는 단계와, 상기 아크 및 트랙킹 발생여부 진단 후, 상기 자외선 센서의 펄스트랜스포머 전압 및 상기 전류 센서로 입력되는 신호의 전압 레벨을 주기적으로 측정하여 센서 성능을 자기진단하는 단계와,
    상기 아크 및 트랙킹 발생여부를 진단한 진단결과 및 상기 센서 성능을 자기진단한 자기진단결과를 소정의 통신방식을 이용하여 원격 모니터링 장치로 전송하는 단계를 포함하는 것을 특징으로 하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법.
  2. 제1항에 있어서,
    상기 검출 요소는, 아크 및 트랙킹에 대한 발생횟수, 지속시간, 피크값, 실효치, 평균값, 첨도, 왜도, 표준편차, % THD중 적어도 하나 이상의 요소를 포함하는 것을 특징으로 하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법.
  3. 제1항에 있어서,
    상기 아크 및 트랙킹 발생여부 진단단계는, 아크 발생 횟수가 2초 이내에 5회 이상 발생하면 아크가 발생한 것으로 진단하는 것을 포함하는 것을 특징으로 하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법.
  4. 제1항에 있어서,
    상기 아크 및 트랙킹 발생여부 진단단계는, 아크 지속 시간이 4초 이상 유지되는 경우 아크가 발생한 것으로 진단하는 것을 포함하는 것을 특징으로 하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법.
  5. 제1항에 있어서,
    상기 아크 및 트랙킹 발생여부 진단단계는, 트랙킹 전류가 2초 이상 계속 발생하면 트랙킹이 발생한 것으로 진단하는 것을 포함하는 것을 특징으로 하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법.
  6. 제1항에 있어서,
    상기 아크 및 트랙킹 발생여부에 따라 경보를 발생시키는 단계를 더 포함하는 것을 특징으로 하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법
  7. 제1항에 있어서,
    상기 자기진단 단계는, 상기 펄스트랜스포머 전압이 최저 방전 개시전압 이하로 떨어지면 자외선 센서의 성능이 저하된 것으로 진단하는 것을 포함하는 것을 특징으로 하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법.
  8. 제1항에 있어서,
    상기 자기진단 단계는, 상기 전류 센서로 입력되는 신호의 전압 레벨이 기준값 이하로 일정 시간 동안 유지되면 상기 전류 센서에 이상이 있는 것으로 진단하는 것을 포함하는 것을 특징으로 하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법.
  9. 제1항에 있어서,
    상기 소정의 통신방식은, RS-485와 같은 시리얼 통신 및 광통신을 포함하는 것을 특징으로 하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법.
  10. 수배전반 내 발생하는 자외선을 185nm~260nm의 자외선 감도를 가지는 자외선 센서를 통해 아크 신호를 검출하는 단계와,
    상기 아크 신호에 대해 샘플링을 수행하는 단계와, 상기 샘플링된 신호들을 1 ~ 10 kHz의 디지털 유한 임펄스 응답 저역통과필터를 사용하여 디지털 필터링을 수행하는 단계와,
    상기 디지털 필터링된 신호들을 고속푸리에변환 연산하여 피크 크기와 피크 주파수를 출력하는 단계와,
    상기 출력되는 피크 크기와 피크 주파수를 이용하여 상기 아크 신호에 대한 고유의 검출 요소를 산출하는 단계와,
    상기 산출된 검출 요소가 설정범위를 벗어나는지를 확인하여 그 확인결과에 따라 아크를 진단하는 단계와,
    상기 아크 발생여부 진단 후, 상기 자외선 센서에서 입력되는 신호의 전압 레벨을 주기적으로 측정하여 센서 성능을 자기진단하는 단계와,
    - 여기서 자기진단은 아크 센서의 펄스트랜스포머의 전압을 주기적으로 측정하여 그 측정된 전압이 최저 방전 개시 전압 이하인지를 진단하는 것을 특징으로 함.
    상기 아크를 진단한 진단결과 및 상기 센서 성능을 자기진단한 자기진단결과를 소정의 통신방식을 이용하여 원격 모니터링 장치로 전송하는 단계를 포함하는 것을 특징으로 하는 자기진단 기능을 구비한 수배전반의 이상 검출 방법.
PCT/KR2012/005713 2011-07-22 2012-07-18 자기진단 기능을 구비한 수배전반의 이상 검출 방법 WO2013015556A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110073028A KR101070832B1 (ko) 2011-07-22 2011-07-22 자기진단 기능을 구비한 수배전반의 이상 검출 방법
KR10-2011-0073028 2011-07-22

Publications (2)

Publication Number Publication Date
WO2013015556A2 true WO2013015556A2 (ko) 2013-01-31
WO2013015556A3 WO2013015556A3 (ko) 2013-03-21

Family

ID=45032439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005713 WO2013015556A2 (ko) 2011-07-22 2012-07-18 자기진단 기능을 구비한 수배전반의 이상 검출 방법

Country Status (2)

Country Link
KR (1) KR101070832B1 (ko)
WO (1) WO2013015556A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457558A (zh) * 2014-11-18 2015-03-25 国家电网公司 一种高压交流导线粗糙系数的估算方法
CN106199293A (zh) * 2016-08-31 2016-12-07 天津市鸿远电气股份有限公司 配电箱弧光检测装置
CN109085470A (zh) * 2018-08-03 2018-12-25 珠海知更电气有限公司 一种弧光传感装置和设备健康状况判断方法
CN112921294A (zh) * 2019-12-05 2021-06-08 核工业西南物理研究院 一种真空镀膜脉冲偏压膜电源的电弧检测器

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101232750B1 (ko) 2012-07-10 2013-02-13 김동현 비접촉 복합센서에 의한 아크 및 코로나방전을 감시진단하는 열화진단 시스템을 구비한 수배전반 및 전동기 제어반, 분전반
KR101213091B1 (ko) 2012-07-10 2012-12-24 주식회사 청석엔지니어링 전자파검출에 의한 수배전반 및 전동기 제어반, 분전반의 접속불량 및 단선여부를 감시진단하는 수배전반 및 전동기 제어반, 분전반
KR101301554B1 (ko) 2013-03-20 2013-09-04 디아이케이(주) 통합 cmd센서를 이용한 고장 및 열화진단 기능의 고압반,저압반,분전반,모터제어반
KR101334312B1 (ko) 2013-03-21 2013-11-29 주식회사 다인산전 아크플래시 사고에너지의 위험도 분석기능을 갖는 고압배전반, 저압배전반, 전동기제어반 및 분전반
KR101329182B1 (ko) 2013-03-21 2013-11-13 디아이케이(주) 부스바의 접속부 열화 진단 기능을 가지는 고압반, 저압반, 분전반 및 모터 제어반
KR101341107B1 (ko) * 2013-06-03 2014-01-03 옴니시스템 주식회사 능동형 안전진단 전력량계
KR101377190B1 (ko) * 2013-08-23 2014-03-24 (주)스템코 수배전반의 누설전류와 아크가 발생한 전압의 상 판단 장치 및 방법.
KR101379424B1 (ko) * 2013-10-08 2014-03-28 한빛이디에스(주) 진단 알고리즘을 내장한 부분 방전 진단 장치
KR101343341B1 (ko) * 2013-10-08 2013-12-20 한빛이디에스(주) 자가 진단 기능이 구비된 부분 방전 진단 장치
KR101460178B1 (ko) * 2014-05-19 2014-11-10 (주)에코파워텍 광통신 인터페이스의 비접촉 아크 감시 진단 기능을 갖는 배전반(고압반, 저압반, 모터 제어반, 분전반)
KR101477755B1 (ko) * 2014-06-12 2014-12-30 (주)원방엔지니어링 초음파 기반의 아크 및 코로나 방전 감시진단 시스템이 탑재된 고압반,저압반,분전반,모터제어반
KR101575200B1 (ko) * 2015-06-11 2015-12-21 정재기 자가 진단 및 알고리즘 진단이 가능한 부분방전 진단장치
KR101834933B1 (ko) * 2016-08-22 2018-03-06 이병택 배전반에서의 이상 상태 진단 및 모터 운전 방법
KR101723522B1 (ko) 2016-09-09 2017-04-05 주식회사 비츠로씨앤씨 아크 소멸을 위한 전력시스템
KR101928739B1 (ko) * 2017-06-30 2018-12-13 한국기술교육대학교 산학협력단 실시간 모니터링 시스템에서의 효율적인 데이터 전송 방법
KR102125902B1 (ko) 2020-01-16 2020-06-23 주식회사 우경일렉텍 수배전반의 조합된 감지신호를 이용한 사고 관리시스템
CN113379671A (zh) * 2021-02-23 2021-09-10 华北电力大学 一种开关类设备局部放电诊断系统及诊断方法
KR102525899B1 (ko) 2021-12-01 2023-04-25 정필근 일체형 감지센서를 이용한 수배전반 사고 토탈 관리시스템
CN117056813B (zh) * 2023-10-11 2024-01-09 国网山东省电力公司营销服务中心(计量中心) 一种用于智能断路器数据采集的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292489A (ja) * 2006-04-21 2007-11-08 Toshiba Corp 電気設備の絶縁異常診断システム
JP2010107289A (ja) * 2008-10-29 2010-05-13 Toshiba Corp 電気設備の絶縁異常診断方法および絶縁異常診断装置
KR100996627B1 (ko) * 2009-08-14 2010-11-29 (주)엘지산업 아크 센서가 적용된 고압/저압 배전반 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292489A (ja) * 2006-04-21 2007-11-08 Toshiba Corp 電気設備の絶縁異常診断システム
JP2010107289A (ja) * 2008-10-29 2010-05-13 Toshiba Corp 電気設備の絶縁異常診断方法および絶縁異常診断装置
KR100996627B1 (ko) * 2009-08-14 2010-11-29 (주)엘지산업 아크 센서가 적용된 고압/저압 배전반 시스템

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457558A (zh) * 2014-11-18 2015-03-25 国家电网公司 一种高压交流导线粗糙系数的估算方法
CN106199293A (zh) * 2016-08-31 2016-12-07 天津市鸿远电气股份有限公司 配电箱弧光检测装置
CN109085470A (zh) * 2018-08-03 2018-12-25 珠海知更电气有限公司 一种弧光传感装置和设备健康状况判断方法
CN109085470B (zh) * 2018-08-03 2021-12-21 珠海知更电气有限公司 一种弧光传感装置和设备健康状况判断方法
CN112921294A (zh) * 2019-12-05 2021-06-08 核工业西南物理研究院 一种真空镀膜脉冲偏压膜电源的电弧检测器

Also Published As

Publication number Publication date
WO2013015556A3 (ko) 2013-03-21
KR101070832B1 (ko) 2011-10-10

Similar Documents

Publication Publication Date Title
WO2013015556A2 (ko) 자기진단 기능을 구비한 수배전반의 이상 검출 방법
EP2453247B1 (en) Partial discharge coupler for application on high voltage generator bus works
US7489138B2 (en) Differential arc fault detection
WO2021251739A1 (ko) 아크 감지 시스템 및 방법
KR101070822B1 (ko) 수배전반의 이상 검출 장치
CN104380553B (zh) 保护继电装置的动作试验系统
CN115298554A (zh) 电路装置
KR20100049216A (ko) 배전시스템내의 아크 검출방법 및 이를 이용한 아크 발생 경보시스템
KR20180070208A (ko) 전력선 및 배전 설비의 이상 검출 시스템
KR101535923B1 (ko) 전력 케이블 탄화 및 전력기기 접속 방전 상태 감시를 통한 전력 품질 진단 기능을 갖는 수배전반
US20080068027A1 (en) Power line surge arrestor monitoring system
JP2006200898A (ja) 割込絶縁計測装置
KR100937363B1 (ko) 전력설비의 고장점 위치 파악 및 실시간 절연 상태 감지 기능을 갖는 수배전반
JP7127625B2 (ja) 部分放電検出装置および部分放電監視システム
WO2017116090A1 (ko) 가스절연개폐기 부분방전 진단 방법 및 장치
EP0415370A1 (en) Power apparatus, power transmission/distribution unit, and tripping method therefor
JP4279426B2 (ja) 高圧引込みケーブルのシールドテープ断線検出装置
CN209746073U (zh) 一种用于配电网接地故障监测的信息采集装置
SK39394A3 (en) Method and device for testing an electrical drive unit
WO2022075928A1 (en) Intelligent link box with early warning system for online monitoring of sheath bonding system and high voltage cable accessories
US11942896B2 (en) Protection device for a direct current electrical plant
JP2607623B2 (ja) 軽地絡発生ケーブルの判別方法
KR20240006294A (ko) 전력 설비의 결함 판정 방법 및 장치
TW552756B (en) Insulation diagnosis device
Orue et al. Making faults to protect power networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817143

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817143

Country of ref document: EP

Kind code of ref document: A2