WO2013015371A1 - Case division structure of power conversion device - Google Patents

Case division structure of power conversion device Download PDF

Info

Publication number
WO2013015371A1
WO2013015371A1 PCT/JP2012/069000 JP2012069000W WO2013015371A1 WO 2013015371 A1 WO2013015371 A1 WO 2013015371A1 JP 2012069000 W JP2012069000 W JP 2012069000W WO 2013015371 A1 WO2013015371 A1 WO 2013015371A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bus bar
case
flow path
conversion device
Prior art date
Application number
PCT/JP2012/069000
Other languages
French (fr)
Japanese (ja)
Inventor
賢市郎 中嶋
佐々木 要
篠原 秀一
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013015371A1 publication Critical patent/WO2013015371A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14322Housings specially adapted for power drive units or power converters wherein the control and power circuits of a power converter are arranged within the same casing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change

Definitions

  • the present invention relates to a power converter used for converting DC power into AC power or converting AC power into DC power.
  • a power conversion device has a function of converting AC power into DC power, or a function of converting AC power generated by a motor into DC power.
  • An example of a power converter is disclosed in Japanese Patent Application Laid-Open No. 2004-31866.
  • the inverter device incorporated in the inverter box is sealed with a lid and fixed with screws, and a liquid gasket is applied to the joint surface to improve airtightness, thereby suppressing moisture intrusion. Techniques to do this are disclosed.
  • a power converter includes a switching element that converts DC power into AC power, a bus bar assembly that includes an AC bus bar for transmitting AC power, a power module that includes the switching element, A control unit that outputs a control signal for controlling the switching element, a driver unit that outputs a drive signal of the switching element to the switching element using the control signal output by the control unit, a capacitor module that smoothes DC power, A capacitor module and a power module are accommodated, a first case portion having a coolant flow path for cooling the capacitor module and the power module therein, a bus bar assembly, a control portion, and a driver portion are accommodated. And a second case part joined to the case part.
  • the control terminal of the power module is joined to the driver part on the second case side from the case dividing surface where the first case part and the second case part are joined to each other, and the second case part is connected to the driver part.
  • a partition for separating the control unit is provided.
  • the second case portion has an opening on a surface different from the case dividing surface, and the AC terminal of the power module faces the bus bar assembly. It is preferable that one end portion of the AC bus bar and the AC terminal of the power module are joined to each other, and the other end portion of the AC bus bar different from the one end portion is extended from the opening.
  • the capacitor module is surrounded by the flow path and is disposed near the center of the first case portion.
  • the bus bar assembly includes a current sensor for detecting an alternating current flowing through the alternating current bus bar.
  • the case part has the inlet pipe and the outlet pipe of the flow path on the same surface different from the case dividing surface, and the signal terminals of the current sensor are along the extending direction of the same surface of the first case part. It is preferable that the signal terminals protrude toward the driver portion side.
  • the control unit supplies a control signal to the driver unit, and the driver unit supplies a drive pulse as a drive signal to the switching element. Is preferred.
  • the productivity at the time of assembling the power converter can be improved.
  • FIG. 1 is an external perspective view of a power conversion device 200.
  • FIG. 2 is an exploded perspective view of a power conversion device 200.
  • FIG. 2 is an exploded perspective view of a power conversion device 200.
  • FIG. 2 is an external perspective view of a flow path forming body 12 in which power modules 300U to 300W, a capacitor module 500, and a bus bar assembly 800 are assembled.
  • FIG. It is a figure which shows the flow-path formation body 12 of the state which removed the bus-bar assembly 800.
  • FIG. 3 is a perspective view of a flow path forming body 12.
  • FIG. 2 is a perspective view of a bus bar assembly 800.
  • FIG 3 is a diagram showing a flow path forming body 12 on which power modules 300U to 300W and a capacitor module 500 are mounted. It is a figure which shows the cross section of the power converter device. It is a figure which shows the cross section of the power converter device.
  • the main purpose is to stably store the inverter in the inverter box, and it is easy to assemble the power converter (for example, the inverter) itself.
  • the study was insufficient.
  • the technology disclosed in Japanese Patent Application Laid-Open No. 2004-31866 only discloses a simple process of assembling the inverter and then putting it in the inverter box and covering the inverter box. No mention is made of the configuration in which the inverters are gradually assembled hierarchically.
  • the process of putting the lid in the inverter box after assembling the inverter needs to be fixed and assembled somewhere when assembling the inverter, and the inverter is gradually hierarchized with the inverter in the inverter box. Compared with the assembly method, the production efficiency is very difficult.
  • capacitor terminals and AC bus bars which are important parts, are housed in the inverter box.
  • problems such as damage due to damage, and problems such as being difficult to repair because the damaged portion cannot be visually recognized.
  • an object of the present invention is to improve the reliability against noise while improving the productivity.
  • the water channel, the power semiconductor module, and the capacitor module are accommodated in the lower housing, and the assembly joint component (power module control terminal, capacitor module terminal, driver circuit board, control circuit board or If it is configured to house components such as a bus bar assembly, a space for various joining processes can be secured, and productivity is improved. More specifically, before joining the upper housing and the lower housing, it is possible to remove a physical obstacle when attaching the assembly joint component on the upper side and secure a sufficient working space. Even if it is going to adopt the welding structure, it is possible to secure the working space of the welding tool.
  • the power module, the driver circuit board, and the control circuit board are arranged hierarchically in the vertical direction in this way, since mixing of switching noise or the like becomes a big problem on the control circuit board side, the upper casing is mounted.
  • a structure in which two layers are further provided by providing a partition or the like and noise to the control circuit board is removed may be employed.
  • the case where the upper casing is made of two layers has been described, but it is sufficient if there is a configuration for shutting down noise between the driver circuit and the control circuit (for example, a partition wall, etc.). It doesn't matter if it has been.
  • FIG. 1 is a diagram showing a control block of a hybrid vehicle (hereinafter referred to as “HEV”).
  • HEV hybrid vehicle
  • Engine EGN and motor generator MG1 generate vehicle running torque.
  • Motor generator MG1 not only generates rotational torque but also has a function of converting mechanical energy applied from the outside to motor generator MG1 into electric power.
  • the motor generator MG1 is, for example, a synchronous machine or an induction machine, and operates as a motor or a generator depending on the operation method as described above.
  • motor generator MG1 When motor generator MG1 is mounted on an automobile, it is desirable to obtain a small and high output, and a permanent magnet type synchronous motor using a magnet such as neodymium is suitable. Further, the permanent magnet type synchronous motor generates less heat from the rotor than the induction motor, and is excellent for automobiles from this viewpoint.
  • the output torque on the output side of the engine EGN is transmitted to the motor generator MG1 via the power distribution mechanism TSM, and the rotation torque from the power distribution mechanism TSM or the rotation torque generated by the motor generator MG1 is transmitted via the transmission TM and the differential gear DEF. Transmitted to the wheels.
  • rotational torque is transmitted from the wheels to motor generator MG1, and AC power is generated based on the supplied rotational torque.
  • the generated AC power is converted to DC power by the power conversion device 200 as described later, and the high-voltage battery 136 is charged, and the charged power is used again as travel energy.
  • the inverter circuit 140 is electrically connected to the battery 136 via the DC connector 138, and power is exchanged between the battery 136 and the inverter circuit 140.
  • motor generator MG1 When motor generator MG1 is operated as a motor, inverter circuit 140 generates AC power based on DC power supplied from battery 136 via DC connector 138 and supplies it to motor generator MG1 via AC terminal 188.
  • the configuration including motor generator MG1 and inverter circuit 140 operates as a motor generator unit.
  • the vehicle can be driven only by the power of the motor generator MG1 by operating the motor generator unit as an electric unit by the electric power of the battery 136.
  • the battery 136 can be charged by operating the motor generator unit as a power generator unit by the power of the engine EGN or the power from the wheels to generate power.
  • the battery 136 is also used as a power source for driving an auxiliary motor.
  • the auxiliary motor is, for example, a motor for driving a compressor of an air conditioner or a motor for driving a control hydraulic pump.
  • DC power is supplied from the battery 136 to the auxiliary power module, and the auxiliary power module generates AC power and supplies it to the auxiliary motor.
  • the auxiliary power module has basically the same circuit configuration and function as the inverter circuit 140, and controls the phase, frequency, and power of alternating current supplied to the auxiliary motor.
  • the power conversion device 200 includes a capacitor module 500 for smoothing the DC power supplied to the inverter circuit 140.
  • the power conversion device 200 includes a communication connector 21 for receiving a command from a host control device or transmitting data representing a state to the host control device.
  • Power conversion device 200 calculates a control amount of motor generator MG1 by control circuit 172 based on a command input from connector 21, further calculates whether to operate as a motor or a generator, and based on the calculation result.
  • the control pulse is generated, and the control pulse is supplied to the driver circuit 174.
  • the driver circuit 174 generates a driving pulse for controlling the inverter circuit 140 based on the supplied control pulse.
  • an insulated gate bipolar transistor is used as a semiconductor element, and hereinafter abbreviated as IGBT.
  • the IGBT 328 and the diode 156 that operate as the upper arm, and the IGBT 330 and the diode 166 that operate as the lower arm constitute the series circuit 150 of the upper and lower arms.
  • the inverter circuit 140 includes the series circuit 150 corresponding to three phases of the U phase, the V phase, and the W phase of the AC power to be output.
  • the series circuit 150 of the upper and lower arms of each of the three phases outputs an alternating current from the intermediate electrode 169 that is the midpoint portion of the series circuit.
  • the intermediate electrode 169 is connected through an AC terminal 159 to an AC bus bar 802 described below, which is an AC power line to the motor generator MG1.
  • the collector electrode 153 of the IGBT 328 of the upper arm is electrically connected to the capacitor terminal 506 on the positive electrode side of the capacitor module 500 via the positive electrode terminal 157.
  • the emitter electrode of the IGBT 330 of the lower arm is electrically connected to the capacitor terminal 504 on the negative electrode side of the capacitor module 500 via the negative electrode terminal 158.
  • control circuit 172 receives a control command from the host control device via the connector 21, and based on this, the IGBT 328 that configures the upper arm or the lower arm of each phase series circuit 150 that constitutes the inverter circuit 140. And a control pulse that is a control signal for controlling the IGBT 330 is generated and supplied to the driver circuit 174.
  • the driver circuit 174 supplies a drive pulse for controlling the IGBT 328 and IGBT 330 constituting the upper arm or lower arm of each phase series circuit 150 to the IGBT 328 and IGBT 330 of each phase based on the control pulse.
  • IGBT 328 and IGBT 330 perform conduction or cutoff operation based on the drive pulse from driver circuit 174, convert DC power supplied from battery 136 into three-phase AC power, and supply the converted power to motor generator MG1. Is done.
  • the IGBT 328 includes a collector electrode 153, a signal emitter electrode 155, and a gate electrode 154.
  • the IGBT 330 includes a collector electrode 163, a signal emitter electrode 165, and a gate electrode 164.
  • a diode 156 is electrically connected between the collector electrode 153 and the emitter electrode 155.
  • a diode 166 is electrically connected between the collector electrode 163 and the emitter electrode 165.
  • IGBT 328, IGBT 330, diode 156, and diode 166 constitute a switching power semiconductor element.
  • a metal oxide semiconductor field effect transistor hereinafter abbreviated as MOSFET
  • MOSFET metal oxide semiconductor field effect transistor
  • the diode 156 and the diode 166 are unnecessary.
  • IGBT is suitable as the switching power semiconductor element.
  • a MOSFET is suitable as a switching power semiconductor element.
  • the capacitor module 500 includes a positive capacitor terminal 506, a negative capacitor terminal 504, a positive power terminal 509, and a negative power terminal 508.
  • the high-voltage DC power from the battery 136 is supplied to the positive-side power terminal 509 and the negative-side power terminal 508 via the DC connector 138, and the positive-side capacitor terminal 506 and the negative-side capacitor of the capacitor module 500.
  • the voltage is supplied from the terminal 504 to the inverter circuit 140.
  • the DC power converted from the AC power by the inverter circuit 140 is supplied to the capacitor module 500 from the positive capacitor terminal 506 and the negative capacitor terminal 504, and is connected to the positive power terminal 509 and the negative power terminal 508. Is supplied to the battery 136 via the DC connector 138 and accumulated in the battery 136.
  • the control circuit 172 includes a microcomputer (hereinafter referred to as “microcomputer”) for performing arithmetic processing on the switching timing of the IGBT 328 and the IGBT 330.
  • the input information to the microcomputer includes a target torque value required for the motor generator MG1, a current value supplied from the series circuit 150 to the motor generator MG1, and a magnetic pole position of the rotor of the motor generator MG1.
  • the target torque value is based on a command signal output from a host controller (not shown).
  • the current value is detected based on a detection signal from the current sensor 180.
  • the magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) such as a resolver provided in the motor generator MG1.
  • the current sensor 180 detects the current value of three phases, but the current value for two phases may be detected and the current for three phases may be obtained by calculation. .
  • the microcomputer in the control circuit 172 calculates the d-axis and q-axis current command values of the motor generator MG1 based on the target torque value, the calculated d-axis and q-axis current command values, and the detected d
  • the voltage command values for the d-axis and q-axis are calculated based on the difference between the current values for the axes and q-axis, and the calculated voltage command values for the d-axis and q-axis are calculated based on the detected magnetic pole position. It is converted into voltage command values for phase, V phase, and W phase.
  • the microcomputer generates a pulse-like modulated wave based on a comparison between the fundamental wave (sine wave) and the carrier wave (triangular wave) based on the voltage command values of the U phase, V phase, and W phase, and the generated modulation wave
  • the wave is output to the driver circuit 174 as a PWM (pulse width modulation) signal.
  • the driver circuit 174 When driving the lower arm, the driver circuit 174 outputs a drive signal obtained by amplifying the PWM signal to the gate electrode of the corresponding IGBT 330 of the lower arm. Further, when driving the upper arm, the driver circuit 174 amplifies the PWM signal after shifting the level of the reference potential of the PWM signal to the level of the reference potential of the upper arm, and uses this as a drive signal as a corresponding upper arm. Are output to the gate electrodes of the IGBTs 328 respectively.
  • the microcomputer in the control circuit 172 detects abnormality (overcurrent, overvoltage, overtemperature, etc.) and protects the series circuit 150. For this reason, sensing information is input to the control circuit 172. For example, information on the current flowing through the emitter electrodes of the IGBTs 328 and IGBTs 330 is input to the corresponding drive units (ICs) from the signal emitter electrode 155 and the signal emitter electrode 165 of each arm. Thereby, each drive part (IC) detects an overcurrent, and when an overcurrent is detected, the switching operation of the corresponding IGBT 328 and IGBT 330 is stopped, and the corresponding IGBT 328 and IGBT 330 are protected from the overcurrent.
  • ICs drive units
  • Information on the temperature of the series circuit 150 is input to the microcomputer from a temperature sensor (not shown) provided in the series circuit 150.
  • voltage information on the DC positive side of the series circuit 150 is input to the microcomputer.
  • the microcomputer performs over-temperature detection and over-voltage detection based on the information, and stops switching operations of all the IGBTs 328 and IGBTs 330 when an over-temperature or over-voltage is detected.
  • FIG. 3 is an external perspective view of a power conversion device 200 as an embodiment according to the present invention.
  • the power conversion device 200 according to the present embodiment has an effect that the planar shape is a rectangular parallelepiped shape, which can be reduced in size and can be easily attached to the vehicle.
  • the power converter 200 includes a lid 8, a housing 10, a flow path forming body 12, a cooling medium inlet pipe 13, a cooling medium outlet pipe 14, a lower cover 420, and a signal connector provided for connection to the outside. 21 is included.
  • “up” means the direction from the flow path forming body 12 toward the lid 8, and “down” means the opposite direction.
  • the lid 8 is fixed to the upper opening of the housing 10 in which circuit components constituting the power conversion device 200 are accommodated.
  • the flow path forming body 12 fixed to the lower part of the housing 10 holds a power module 300 and a capacitor module 500, which will be described later, and cools them with a cooling medium.
  • a cooling medium For example, water is often used as the cooling medium, and will be described as cooling water below.
  • the inlet pipe 13 and the outlet pipe 14 are provided on one side surface of the flow path forming body 12, and the cooling water supplied from the inlet pipe 13 flows into a flow path 19 to be described later in the flow path forming body 12 and from the outlet pipe 14. Discharged.
  • the AC interface 185 and the DC interface 137 are provided on the side surface of the housing 10.
  • the AC interface 185 is provided on the side surface where the pipes 13 and 14 are provided, and the DC interface 137 is provided on the side surface adjacent to the side surface where the AC interface 185 is provided.
  • the housing 10 and the flow path forming body 12 have a trapezoidal cross section, and the productivity when using a manufacturing method such as casting is very good.
  • FIG. 4 is an exploded perspective view of the power converter 200.
  • FIG. 5 is a view showing a state where the housing 10 is removed from the flow path forming body 12. Here, it demonstrates from FIG. 5 for convenience.
  • the housing 10 has two storage spaces, and is divided into an upper storage space and a lower storage space by a partition wall 10c.
  • the control circuit board 20 to which the connector 21 is fixed is stored in the upper storage space, and the driver circuit board 22 and a bus bar assembly 800 described later are stored in the lower storage space.
  • a control circuit 172 shown in FIG. 2 is mounted on the control circuit board 20, and a driver circuit 174 is mounted on the driver circuit board 22.
  • the control circuit board 20 and the driver circuit board 22 are connected by a flat cable (not shown), and the flat cable is drawn from the lower storage space to the upper storage space through the slit-shaped opening 10d formed in the partition wall 10c. It is.
  • the control circuit board 20 on which the control circuit 172 is mounted as described above is disposed inside the lid 8, that is, in the upper storage space of the housing 10.
  • the lid 8 has an opening for the connector 21. Low voltage DC power for operating the control circuit in the power converter 200 is supplied from the connector 21.
  • the flow path forming body 12 is formed with a flow path through which the cooling water flowing from the inlet pipe 13 flows.
  • the flow path forms a U-shaped flow path that flows along the three side surfaces of the flow path forming body 12.
  • the cooling water flowing in from the inlet pipe 13 flows into the flow path from one end of the U-shaped flow path, flows through the flow path, and then flows out from the outlet pipe 14 connected to the other end of the flow path. .
  • Three openings 402a to 402c are formed on the upper surface of the flow path, and the power modules 300U, 300V, and 300W incorporating the series circuit 150 (see FIG. 2) are inserted into the flow path from the openings 402a to 402c. Inserted.
  • the power module 300U includes a U-phase series circuit 150
  • the power module 300V includes a V-phase series circuit 150
  • the power module 300W includes a W-phase series circuit 150.
  • These power modules 300U to 300W have the same configuration and the same external shape.
  • the openings 402a to 402c are closed by the flange portions of the inserted power modules 300U to 300W.
  • a storage space 405 for storing electrical components is formed in the flow path forming body 12 so as to be surrounded by the U-shaped flow path.
  • the capacitor module 500 is stored in the storage space 405.
  • the capacitor module 500 stored in the storage space 405 is cooled by cooling water flowing in the flow path.
  • a bus bar assembly 800 to which AC bus bars 802U to 802W are attached is disposed above the capacitor module 500.
  • the bus bar assembly 800 is fixed to the upper surface of the flow path forming body 12.
  • a current sensor 180 is modularized and fixed to the bus bar assembly 800.
  • the driver circuit board 22 is disposed above the bus bar assembly 800 by being fixed to a support member 807a provided in the bus bar assembly 800. As described above, the control circuit board 20 and the driver circuit board 22 are connected by a flat cable. The flat cable is pulled out from the lower storage space to the upper storage space through a slit-shaped opening 10d formed in the partition wall 10c.
  • the power modules 300U to 300W, the driver circuit board 22 and the control circuit board 20 are hierarchically arranged in the height direction, and the control circuit board 20 is arranged at a place farthest from the high power system power modules 300U to 300W. Therefore, it is possible to reduce mixing of switching noise and the like on the control circuit board 20 side. Furthermore, since the driver circuit board 22 and the control circuit board 20 are arranged in different storage spaces partitioned by the partition wall 10c, the partition wall 10c functions as an electromagnetic shield and enters the control circuit board 20 from the driver circuit board 22. Noise can be reduced.
  • the housing 10 is formed with metal materials, such as aluminum, it is not limited to this.
  • control circuit board 20 is fixed to the partition wall 10c formed integrally with the housing 10, the mechanical resonance frequency of the control circuit board 20 is increased against external vibration. Therefore, it is difficult to be affected by vibration from the vehicle side, and reliability is improved.
  • FIG. 6 is an external perspective view in which the power modules 300U to 300W, the capacitor module 500, and the bus bar assembly 800 are assembled to the flow path forming body 12.
  • FIG. 7 shows a state where the bus bar assembly 800 is removed from the flow path forming body 12. The bus bar assembly 800 is bolted to the flow path forming body 12.
  • FIG. 8 is a perspective view of the flow path forming body 12.
  • the flow path forming body 12 has a rectangular parallelepiped shape in plan view, and an inlet pipe 13 and an outlet pipe 14 are provided on a side surface 12d thereof.
  • the side surface 12d is formed in a stepped portion where the pipes 13 and 14 are provided.
  • the flow path 19 is formed in a U shape so as to extend along the remaining three side surfaces 12a to 12c.
  • a rectangular opening 402a is formed at a position parallel to the side surface 12a, and a rectangular opening 402b is formed at a position parallel to the side surface 12b.
  • a rectangular opening 402c is formed at a position parallel to the side surface 12c.
  • the power modules 300U to 300W are inserted into the flow path 19 through these openings 402a to 402c.
  • the flow path forming body 12 is provided with a rectangular storage space 405 formed so that three sides are surrounded by the flow path 19.
  • the capacitor module 500 is stored in the storage space 405. Since the storage space 405 surrounded by the flow path 19 has a rectangular parallelepiped shape, the capacitor module 500 can be formed into a rectangular parallelepiped shape, and the productivity of the capacitor module 500 is improved.
  • FIG. 9 is a perspective view of the bus bar assembly 800.
  • Bus bar assembly 800 detects U, V, and W phase AC bus bars 802U, 802V, and 802W, a holding member 803 for holding and fixing AC bus bars 802U to 802W, and an AC current flowing through AC bus bars 802U to 802W.
  • AC bus bars 802U to 802W are each formed of a wide conductor.
  • a plurality of support members 807 a for holding the driver circuit board 22 are formed on the holding member 803 made of an insulating material such as resin so as to protrude upward from the holding member 803.
  • the current sensor 180 is parallel to the side surface 12d at a position close to the side surface 12d of the flow path forming body 12 when the bus bar assembly 800 is solidified on the flow path forming body 12.
  • the bus bar assembly 800 is disposed.
  • through holes 181 through which AC bus bars 802U to 802W are passed are formed on the side surfaces of the current sensor 180, respectively.
  • a sensor element is provided in a portion where the through hole 181 of the current sensor 180 is formed, and a signal terminal 182 a of each sensor element protrudes from the upper surface of the current sensor 180.
  • Each sensor element is arranged side by side in the extending direction of the current sensor 180, that is, in the extending direction of the side surface 12 d of the flow path forming body 12.
  • the AC bus bars 802U to 802W pass through the respective through holes 181 and their tip portions protrude in parallel.
  • the holding member 803 is formed with positioning protrusions 806a and 806b protruding upward.
  • the current sensor 180 is fixed to the holding member 803 by screwing.
  • the protrusions 806a and 806b are engaged with positioning holes formed in the frame of the current sensor 180, thereby positioning the current sensor 180. Is done.
  • the positioning protrusions 806a and 806b are engaged with the positioning holes formed on the driver circuit board 22 side, whereby the signal terminal 182a of the current sensor 180 is
  • the driver circuit board 22 is positioned in the through hole.
  • the signal terminal 182a is joined to the wiring pattern of the driver circuit board 22 by solder. As described above, the signal terminal 182 a protrudes from the current sensor 180 toward the driver circuit board 22. Thereby, a relative positional shift with respect to the driver circuit board 22 can be reduced, and positioning with the through hole is facilitated.
  • the holding member 803, the support member 807a, and the protrusions 806a and 806b are integrally formed of resin. As described above, since the holding member 803 has a function of positioning the current sensor 180 and the driver circuit board 22, assembly and solder connection work between the signal terminal 182a and the driver circuit board 22 are facilitated. Further, by providing the holding member 803 with a mechanism for holding the current sensor 180 and the driver circuit board 22, the number of components as the whole power conversion device can be reduced.
  • AC bus bars 802U to 802W are fixed to the holding member 803 so that the wide surface is horizontal.
  • each AC terminal 159 of the power modules 300U to 300W rises vertically toward the bus bar assembly and is joined to the connection portion 805 of each AC bus bar 802U to 802W.
  • a connecting portion 805 connected to each AC terminal 159 also stands vertically in the same direction as each AC terminal 159.
  • the connecting portion 805 has a concavo-convex shape at the tip, and has a shape in which heat concentrates on the concavo-convex portion during welding.
  • the AC bus bars 802U to 802W protruding from the through holes 181 of the current sensor 180 are connected to the side surface of the flow path forming body 12. 12d. Since each of the power modules 300U to 300W is disposed along the side surfaces 12a, 12b, and 12c of the flow path forming body 12, the connection portion 805 of the AC bus bars 802U to 802W corresponds to the side surfaces 12a to 12c of the bus bar assembly 800. Placed in position. As a result, as shown in FIG.
  • the U-phase AC bus bar 802U extends from the power module 300U disposed in the vicinity of the side surface 12b to the side surface 12d, and the V-phase AC bus bar 802V is disposed in the vicinity of the side surface 12a. Extending from module 300V to side surface 12d, W-phase AC bus bar 802W extends from power module 300W disposed in the vicinity of side surface 12c to side surface 12d.
  • FIG. 10 is a diagram showing the flow path forming body 12 in which the power modules 300U to 300W are fixed to the openings 402a to 402c and the capacitor module 500 is stored in the storage space 405.
  • the U-phase power module 300U is fixed to the opening 402b
  • the V-phase power module 300V is fixed to the opening 402a
  • the W-phase power module 300W is fixed to the opening 402c.
  • the capacitor module 500 is stored in the storage space 405, and the terminals on the capacitor side and the terminals of each power module are connected by welding or the like. Each terminal protrudes from the upper end surface of the flow path forming body 12, and a welding operation is performed by approaching a welding machine from above.
  • the positive and negative terminals 157 and 158 of the power modules 300U to 300W arranged in a U-shape are connected to capacitor terminals 503a to 503c provided to protrude from the upper surface of the capacitor module 500. Since the three power modules 300U to 300W are provided so as to surround the capacitor module 500, the positional relationship of the power modules 300U to 300W with respect to the capacitor module 500 is equivalent, and the capacitor terminals 503a to 503c having the same shape are used.
  • the capacitor module 500 can be connected in a well-balanced manner. For this reason, the circuit constants of the capacitor module 500 and the power modules 300U to 300W are easily balanced in each of the three phases, and the current can be easily taken in and out.
  • the capacitor terminals 503a to 503c are formed corresponding to the positive terminal 157 and the negative terminal 158 of each power module 300.
  • the capacitor terminals 503a to 503c have substantially the same shape, and an insulating sheet is provided between the negative electrode side capacitor terminal 504 and the positive electrode side capacitor terminal 506 constituting the capacitor terminals 503a to 503c, thereby ensuring insulation between the terminals. Has been.
  • the capacitor module 500 can be effectively cooled.
  • the power converter device 200 in this Embodiment is for vehicle-mounted, and is generally arrange
  • the bus bar assembly 800 is fixed above the capacitor module 500 as shown in FIG. I do.
  • the bus bars 802U to 802W connected to the terminals of the power modules 300U to 300W arranged in a U-shape are routed above the capacitor module 500 so as to be separated from the respective connection portions, thereby forming a flow path forming body. 12 is pulled out from the side surface 12d side. Therefore, the bus bar does not cross the power module, and the bus bars 802U to 802W can be concentrated in one place, that is, the region of the opening 10a of the housing 10 to which the AC interface 185 is attached while ensuring sufficient insulation. it can.
  • the power modules 300U to 300W can be moved away from the AC connector portion where heat is easily generated and the temperature is likely to rise, and heat is transferred to the power modules 300U to 300W via the bus bars 802U to 802W. Can be suppressed. Further, by arranging the bus bars 802U to 802W so as to avoid the upper side of the flow path 19, even when water leaks from the flow path 19, the possibility of electric leakage due to water leakage can be reduced.
  • bus bar assembly 800 is fixed to the flow path forming body 12 through which the cooling water flows, not only the temperature rise of the bus bar assembly 800 can be suppressed, but also the temperature of the current sensor 180 held by the bus bar assembly 800. The rise can be suppressed.
  • the sensor element provided in the current sensor 180 has a characteristic that is weak against heat, and the reliability of the current sensor 180 can be improved by adopting the above structure.
  • the driver circuit board 22 is fixed.
  • the power conversion device 200 mounted on the vehicle is easily affected by vibrations from the vehicle. Therefore, the plurality of support members 807a formed on the holding member 803 are configured to support not only the periphery of the driver circuit board 22, but also the vicinity of the center, thereby reducing the influence of vibration applied to the driver circuit board 22.
  • the resonance frequency of the driver circuit board 22 can be made higher than the frequency of vibration transmitted from the vehicle side. The influence of vibration can be reduced.
  • the driver circuit board 22 is screwed to the support member 807a.
  • the housing 10 is bolted to the flow path forming body 12 as shown in FIG. 5, and further, the upper storage space and the lower storage space of the housing 10 are partitioned.
  • the control circuit board 20 is fixed on the partition wall 10c.
  • the driver circuit board 22 in the lower storage space and the control circuit board 20 in the upper storage space are connected by a flat cable.
  • the partition wall 10c is formed with the slit-shaped opening 10d for drawing the flat cable from the lower storage space to the upper storage space.
  • the power modules 300U to 300W are arranged in a U shape along the three side surfaces 12b, 12a, and 12c of the flow path forming body 12, the power modules 300U to 300W are connected to the driver circuit board 22 from the power modules 300U to 300W.
  • the control terminals 310U, 310V, and 310W are also arranged in a U shape along the side corresponding to the side surfaces 12b, 12a, and 12c of the driver circuit board 22, as shown in FIG.
  • FIG. 5 shows a state where the tips of the control terminals 310U, 310V, 310W from the power modules 300U to 300W joined to the driver circuit board 22 are exposed through the driver circuit board 22.
  • the control signal for driving and controlling the power modules 300U to 300W is a high voltage, while the sensor signal of the current sensor 180 and the signal from the flat cable are low voltage.
  • the high-voltage wiring and the low-voltage wiring are preferably arranged separately.
  • the power modules 300U to 300W are arranged in a U shape along the side surfaces 12b, 12a, and 12c, the region near the side corresponding to the side surface 12d on the driver circuit board 22 is controlled. It can be used as a space away from the terminal.
  • the bus bars 802U to 802W that are detection targets of the current sensor 180 are concentrated on the side surface 12d side, the current sensor 180 is arranged in parallel near the side surface 12d.
  • the signal terminal 182a is disposed in a region in the vicinity of the side corresponding to the side surface 12d of the driver circuit board 22 described above, and a sufficient distance can be maintained from the high-voltage control terminal.
  • the flat cable is arranged on the side corresponding to the side surface 12c of the driver circuit board 22.
  • the board in the vicinity of the side surface 12d away from the control terminal so that the influence from the control terminal is reduced. It is connected to the.
  • the low-voltage signal pattern and the high-voltage signal pattern can be easily separated on the driver circuit board 22.
  • the low-voltage control circuit board 20 is disposed in the upper storage space separated by the partition wall 10c, and the flat cable is drawn from the lower storage space through the elongated slit-shaped opening 10d, whereby the control circuit board 20 is provided.
  • the effect of noise is reduced.
  • noise countermeasures are sufficiently taken.
  • the capacitor module 500 and the power modules 300U to 300W are arranged on the flow path forming body 12, and the work of fixing necessary components such as the bus bar assembly 800 and the substrate is performed in order from the bottom. Productivity and reliability are improved because it is configured so that it can be performed.
  • FIG. 11 is a view showing a cross section of the power conversion device 200, and is a cross-sectional view of the power conversion device 200 as viewed from the direction of the pipes 13 and 14.
  • the openings 402a to 402c formed in the flow path forming body 12 are closed by flanges 304b provided in the module cases 304 of the power modules 300U to 300W.
  • the heat radiation surface area where the fins 305 for heat radiation are provided is arranged in the flow path 19, and the lower end portion where the fins 305 are not provided is the protrusion 406 formed on the lower cover 420. It is stored inside the inner depression.
  • control terminals 310U and 310W of the power modules 300U and 300W are both joined to the driver circuit board 22 on the housing 10 side above the case dividing surface 12e.
  • control terminal 310V of the power module 300V is also joined to the driver circuit board 22 on the housing 10 side above the case dividing surface 12e.
  • the relatively heavy capacitor module 500 is arranged at the lower center of the power conversion device 200, so that the center of gravity balance of the power conversion device 200 is good. When the vibration is applied, the power conversion device 200 is not easily ramped.
  • the power conversion device 200 of this embodiment is connected to the power modules 300U to 300W, the flow path forming body 12, and the AC output terminals of the power modules 300U to 300W, and forms a flow path through the storage space 405.
  • Bus bars 802U to 802W drawn to the side surface 12d of the body 12 and the housing 10 are provided.
  • the housing 10 has an opening on the lower surface side, and terminals and signal lines of the power modules 300U to 300W, terminals of the capacitor module and bus bars 802U to 802W, After assembling and assembling and joining parts of the power converter such as a driver circuit board, the opening on the lower surface side of the housing 10 is closed with the upper surface of the flow path forming body 12.
  • the assembly / joint parts power module terminal, capacitor module terminal, driver circuit and bus bar above the flow path forming body 12 are covered. It is possible to remove a physical obstacle when attaching components (such as the assembly 800) and secure a sufficient working space. Needless to say, a space for operating the welding tool can be secured even if the welding structure is adopted.
  • the assembly / joining part exposed above the flow path forming body 12 protrudes from the upper end surface of the flow path forming body 12, and is soldered by approaching a soldering iron from above.
  • soldering operation which is easy to work
  • the power conversion device 200 is downsized. it can.
  • bus bars 802U to 802W are routed to the side surface 12d that is an empty space without straddling the flow path 19, the insulation of the bus bars 802U to 802W can be improved.
  • the housing 10 fixed to the flow path forming body 12 has two storage spaces, and is partitioned into an upper storage space and a lower storage space by a partition wall 10c.
  • the control circuit board 20 to which the connector 21 is fixed is stored in the upper storage space, and the driver circuit board 22 and the bus bar assembly 800 are stored in the lower storage space.
  • the driver circuit board 22 and the control circuit board 20 are arranged in different storage spaces partitioned by the partition wall 10c, so that the partition wall 10c functions as an electromagnetic shield and is mixed into the control circuit board 20 from the driver circuit board 22. Noise can be reduced.
  • the power conversion device 200 of the present embodiment includes a holding member 803 formed of an insulating material such as a resin, and a plurality of support members 807a for holding the driver circuit board 22 are held by the holding member 803. It is formed so as to protrude upward from 803.
  • the assembly can be performed in a state where there is no partition wall on the upper surface of the flow path forming body 12, and then the operation of covering the flow path forming body 12 with the housing 10 can be easily performed. .
  • connection part 805 of the AC bus bars 802U to 802W and the connection terminals 504 and 506 of the capacitor module 500 are respectively connected to the AC terminal 159 and the DC terminal (positive terminal 157, negative terminal 158) of the power module 300. )
  • Each connection portion has a concavo-convex shape at the tip, and heat is concentrated on the concavo-convex portion during welding.
  • each terminal protrudes from the upper end surface of the flow-path formation body 12, and has a structure which is easy to perform welding work by approaching a welding machine from upper direction.
  • the capacitor module 500 that is a heavy object is stored in a storage space 405 that is formed at substantially the center of the flow path forming body 12 and is surrounded by the flow path 19. It is possible to prevent heat from entering the capacitor module 500 from the outside. Moreover, since a heavy object is arrange
  • the current sensor 180 is arranged so that the sensor elements for detecting the current flowing through the bus bars 802U to 802W are arranged along the extending direction of the side surface 12d, the low-power sensor The signal line can be wired away from the high power system power modules 300U to 300W, and the influence of noise can be reduced.
  • the power conversion device described in the above-described embodiment and the system using this device solve various problems that are desired to be solved for commercialization.
  • One of the various problems solved by these embodiments is an improvement in productivity.
  • the above problem can be solved not only by the configuration described above but also by other configurations.

Abstract

A power conversion device is provided with: a bus bar assembly including an AC bus bar; a power module having a switching element; a controller; a driver unit for outputting the drive signal of the switching element; a capacitor module; a first case part for housing the capacitor module and the power module, the first case part having a coolant channel in the interior; and a second case part for housing the bus bar assembly, the controller, and the driver unit, the second case part being bonded to the first case part. A control terminal of the power module is bonded to the driver unit at a location further on the second case side relative to a case division surface at which the first case part and the second case part are bonded to each other. The second case part has a partition for separating the driver unit and the controller.

Description

電力変換装置のケース分割構造Case division structure of power converter
 本発明は直流電力を交流電力に変換しあるいは交流電力を直流電力に変換するために使用する電力変換装置に関する。 The present invention relates to a power converter used for converting DC power into AC power or converting AC power into DC power.
 一般に電力変換装置は、交流電力を直流電力に変換する機能、あるいは、モータが発生する交流電力を直流電力に変換する機能を備えている。電力変換装置の一例が、日本国特開2004-312866号公報に開示されている。日本国特開2004-312866号公報においては、インバータボックスに組み込まれたインバータ装置を蓋で密封してねじ止め固定し、接合面に液状ガスケットを塗布して気密性を高めることで水分浸入を抑制する技術が開示されている。 Generally, a power conversion device has a function of converting AC power into DC power, or a function of converting AC power generated by a motor into DC power. An example of a power converter is disclosed in Japanese Patent Application Laid-Open No. 2004-31866. In Japanese Patent Application Laid-Open No. 2004-31866, the inverter device incorporated in the inverter box is sealed with a lid and fixed with screws, and a liquid gasket is applied to the joint surface to improve airtightness, thereby suppressing moisture intrusion. Techniques to do this are disclosed.
日本国特開2004-312866号公報Japanese Unexamined Patent Publication No. 2004-31866
 しかしながら、日本国特開2004-312866号公報に開示されている技術においては、インバータボックスにインバータを入れた状態で組立作業を行おうとした場合には、内部部品を取り付ける際の作業スペースが狭くなるといった問題がある。 However, in the technique disclosed in Japanese Patent Application Laid-Open No. 2004-31866, when assembling work is performed with the inverter placed in the inverter box, the work space for attaching the internal parts is reduced. There is a problem.
 本発明の第1の態様によると、電力変換装置は、直流電力を交流電力に変換するスイッチング素子と、交流電力を伝達するための交流バスバーを含むバスバーアッセンブリと、スイッチング素子を有するパワーモジュールと、スイッチング素子を制御する制御信号を出力する制御部と、制御部により出力された制御信号を用いてスイッチング素子の駆動信号をスイッチング素子へ出力するドライバ部と、直流電力を平滑化するコンデンサモジュールと、コンデンサモジュールとパワーモジュールとを収納し、コンデンサモジュール及びパワーモジュールを冷却するための冷媒の流路を内部に有する第1のケース部と、バスバーアッセンブリと制御部とドライバ部とを収納し、第1のケース部に接合する第2のケース部とを備える。第1のケース部と第2のケース部とが互いに接合されるケース分割面より第2のケース側において、パワーモジュールの制御端子がドライバ部に接合され、第2のケース部は、ドライバ部と制御部とを分けるための隔壁を有する。
 本発明の第2の態様によると、第1の態様の電力変換装置において、第2のケース部は、ケース分割面とは異なる面に開口を有し、パワーモジュールの交流端子はバスバーアッセンブリに向かって突出し、交流バスバーの一方の端部と、パワーモジュールの交流端子とが互いに接合し、交流バスバーの、一方の端部とは異なる他方の端部が、開口から延設されることが好ましい。
 本発明の第3の態様によると、第1または第2の態様の電力変換装置において、コンデンサモジュールは、流路に囲まれ、かつ、第1のケース部の中央付近に配置されていることが好ましい。
 本発明の第4の態様によると、第1~第3のいずれかの態様の電力変換装置において、バスバーアッセンブリは、交流バスバーを流れる交流電流を検出するための電流センサを有し、第1のケース部は、流路の入口配管と出口配管とを、ケース分割面とは異なる同一の面に有し、電流センサの信号端子は、第1のケース部の同一の面の延在方向に沿って配置され、信号端子はドライバ部側に向かって突出していることが好ましい。
 本発明の第5の態様によると、第1の態様の電力変換装置において、制御部は、制御信号をドライバ部へ供給し、ドライバ部は、駆動信号として、駆動パルスをスイッチング素子へ供給することが好ましい。
According to a first aspect of the present invention, a power converter includes a switching element that converts DC power into AC power, a bus bar assembly that includes an AC bus bar for transmitting AC power, a power module that includes the switching element, A control unit that outputs a control signal for controlling the switching element, a driver unit that outputs a drive signal of the switching element to the switching element using the control signal output by the control unit, a capacitor module that smoothes DC power, A capacitor module and a power module are accommodated, a first case portion having a coolant flow path for cooling the capacitor module and the power module therein, a bus bar assembly, a control portion, and a driver portion are accommodated. And a second case part joined to the case part. The control terminal of the power module is joined to the driver part on the second case side from the case dividing surface where the first case part and the second case part are joined to each other, and the second case part is connected to the driver part. A partition for separating the control unit is provided.
According to the second aspect of the present invention, in the power conversion device of the first aspect, the second case portion has an opening on a surface different from the case dividing surface, and the AC terminal of the power module faces the bus bar assembly. It is preferable that one end portion of the AC bus bar and the AC terminal of the power module are joined to each other, and the other end portion of the AC bus bar different from the one end portion is extended from the opening.
According to the third aspect of the present invention, in the power conversion device of the first or second aspect, the capacitor module is surrounded by the flow path and is disposed near the center of the first case portion. preferable.
According to a fourth aspect of the present invention, in the power conversion device according to any one of the first to third aspects, the bus bar assembly includes a current sensor for detecting an alternating current flowing through the alternating current bus bar. The case part has the inlet pipe and the outlet pipe of the flow path on the same surface different from the case dividing surface, and the signal terminals of the current sensor are along the extending direction of the same surface of the first case part. It is preferable that the signal terminals protrude toward the driver portion side.
According to the fifth aspect of the present invention, in the power conversion device of the first aspect, the control unit supplies a control signal to the driver unit, and the driver unit supplies a drive pulse as a drive signal to the switching element. Is preferred.
 本発明によれば、電力変換装置の組立時の生産性を向上することができる。 According to the present invention, the productivity at the time of assembling the power converter can be improved.
ハイブリッド自動車の制御ブロックを示す図である。It is a figure which shows the control block of a hybrid vehicle. インバータ回路140の電気回路の構成を説明する図である。It is a figure explaining the structure of the electric circuit of the inverter circuit. 電力変換装置200の外観斜視図である。1 is an external perspective view of a power conversion device 200. FIG. 電力変換装置200の分解斜視図である。2 is an exploded perspective view of a power conversion device 200. FIG. 電力変換装置200の分解斜視図である。2 is an exploded perspective view of a power conversion device 200. FIG. パワーモジュール300U~300W、コンデンサモジュール500、バスバーアッセンブリ800が組み付けられた流路形成体12の外観斜視図である。2 is an external perspective view of a flow path forming body 12 in which power modules 300U to 300W, a capacitor module 500, and a bus bar assembly 800 are assembled. FIG. バスバーアッセンブリ800を外した状態の流路形成体12を示す図である。It is a figure which shows the flow-path formation body 12 of the state which removed the bus-bar assembly 800. FIG. 流路形成体12の斜視図である。3 is a perspective view of a flow path forming body 12. FIG. バスバーアッセンブリ800の斜視図である。2 is a perspective view of a bus bar assembly 800. FIG. パワーモジュール300U~300Wおよびコンデンサモジュール500が装着された流路形成体12を示す図である。FIG. 3 is a diagram showing a flow path forming body 12 on which power modules 300U to 300W and a capacitor module 500 are mounted. 電力変換装置200の断面を示す図である。It is a figure which shows the cross section of the power converter device. 電力変換装置200の断面を示す図である。It is a figure which shows the cross section of the power converter device.
 日本国特開2004-312866号公報に開示されている技術においては、あくまでインバータをインバータボックスに安定して格納することを主眼に置いたものであり、電力変換装置(例えばインバータ)自体の組み立て易さについては検討が不十分であった。そのため、日本国特開2004-312866号公報に開示されている技術においては、インバータを組み立てた後にインバータボックスに入れて蓋をするといった単純工程しか開示がなく、インバータボックスにインバータを入れた状態で徐々に階層的にインバータの組み立てを行うといった場合の構成については一切言及がなされていない。 In the technology disclosed in Japanese Patent Application Laid-Open No. 2004-31866, the main purpose is to stably store the inverter in the inverter box, and it is easy to assemble the power converter (for example, the inverter) itself. The study was insufficient. For this reason, the technology disclosed in Japanese Patent Application Laid-Open No. 2004-31866 only discloses a simple process of assembling the inverter and then putting it in the inverter box and covering the inverter box. No mention is made of the configuration in which the inverters are gradually assembled hierarchically.
 結果として、日本国特開2004-312866号公報に開示されている技術において、インバータボックスにインバータを入れた状態で組立作業を行おうとした場合には、内部部品を取り付ける際の作業スペースが狭くなるといった問題があった。 As a result, in the technique disclosed in Japanese Patent Application Laid-Open No. 2004-31866, when an assembling operation is performed with the inverter placed in the inverter box, the work space for attaching the internal parts is reduced. There was a problem.
 また、小型化または自動化に適した溶接構造を採用しようとしても溶接ツールが稼動するスペースがないといった問題があった。 Also, there was a problem that there was no space for the welding tool to operate even when trying to adopt a welding structure suitable for miniaturization or automation.
 更には、制御基板等への半田付け作業においても、半田付けツールのアクセススペースに制約が生じたり、基板へ制御ピンなどを半田接合した後のフィレット形状の確認ができないといった問題があった。 Furthermore, even in the soldering operation to the control board or the like, there are problems that the access space of the soldering tool is restricted, and the fillet shape cannot be confirmed after the control pins are soldered to the board.
 また、インバータを組み立てた後にインバータボックスに入れて蓋をするといった工程は、インバータを組み立てる際にどこかに固定して組み立てる必要があり、インバータボックスにインバータを入れた状態で徐々に階層的にインバータの組み立てを行う方式に比べ、非常に難しく、生産効率が非常に悪い。 Also, the process of putting the lid in the inverter box after assembling the inverter needs to be fixed and assembled somewhere when assembling the inverter, and the inverter is gradually hierarchized with the inverter in the inverter box. Compared with the assembly method, the production efficiency is very difficult.
 更に、日本国特開2004-312866号公報に開示されている技術においては、重要な部品であるキャパシタの端子や交流バスバーなどがインバータボックスに収納されるため、例えばそれらの部品を収納時に入れ損なって破損するといった問題や、破損した場合にその破損箇所を視認できず修理が難しくなるといった問題もあった。 Furthermore, in the technology disclosed in Japanese Patent Application Laid-Open No. 2004-31866, capacitor terminals and AC bus bars, which are important parts, are housed in the inverter box. There are also problems such as damage due to damage, and problems such as being difficult to repair because the damaged portion cannot be visually recognized.
 また、パワーモジュールとドライバ回路基板と制御回路基板とが高さ方向に階層的に配置される場合、制御回路基板側にスイッチングノイズ等が混入する恐れがあった。 In addition, when the power module, the driver circuit board, and the control circuit board are arranged hierarchically in the height direction, there is a possibility that switching noise or the like is mixed into the control circuit board side.
 上記従来技術の問題点に鑑み、本発明の目的は、生産性を向上させつつ、ノイズに対する信頼性をも向上させることにある。 In view of the above problems of the prior art, an object of the present invention is to improve the reliability against noise while improving the productivity.
 上記従来技術の問題点を解決するために、例えば、2つの筐体を有するインバータ装置であって、上側の筐体と下側の筐体との接合する面(ケース分割面)より上側において、ドライバ回路基板とパワーモジュールの制御端子とが接合されるように構成すればよい。このように構成することで、部品組立時の周辺への干渉等を防止し、ドライバ回路基板とパワーモジュールの制御端子とが接合することが容易となり、生産性向上が期待できる。 In order to solve the problems of the above prior art, for example, in an inverter device having two housings, on the upper side of the surface (case dividing surface) between the upper housing and the lower housing, What is necessary is just to comprise so that a driver circuit board and the control terminal of a power module may be joined. With this configuration, it is possible to prevent interference to the periphery at the time of assembling the components, and it is easy to join the driver circuit board and the control terminal of the power module, and an improvement in productivity can be expected.
 ここで、下側の筐体に水路とパワー半導体モジュールとコンデンサモジュールとを収納し、上側の筐体において、組立接合部品(パワーモジュールの制御端子、コンデンサモジュール端子、ドライバ回路基板、制御回路基板あるいはバスバーアッセンブリなどの部品)を収納するように構成すれば、種々の接合処理のための空間を確保することができ、生産性は向上する。より具体的に説明すれば、上側の筐体と下側の筐体を接合する前に、上側にある組立接合部品を取り付ける際の物理的障害を取り除き十分な作業スペースを確保することができる。溶接構造を採用しようとしても溶接ツールの稼動スペースの確保も可能である。 Here, the water channel, the power semiconductor module, and the capacitor module are accommodated in the lower housing, and the assembly joint component (power module control terminal, capacitor module terminal, driver circuit board, control circuit board or If it is configured to house components such as a bus bar assembly, a space for various joining processes can be secured, and productivity is improved. More specifically, before joining the upper housing and the lower housing, it is possible to remove a physical obstacle when attaching the assembly joint component on the upper side and secure a sufficient working space. Even if it is going to adopt the welding structure, it is possible to secure the working space of the welding tool.
 更に、このようにパワーモジュールとドライバ回路基板と制御回路基板とが上下方向に階層的に配置される場合、制御回路基板側にスイッチングノイズ等の混入が大きな問題となるため、上側の筐体を隔壁などを設けることで更に2層化し、制御回路基板へのノイズを除去させる構成をとればよい。 Furthermore, when the power module, the driver circuit board, and the control circuit board are arranged hierarchically in the vertical direction in this way, since mixing of switching noise or the like becomes a big problem on the control circuit board side, the upper casing is mounted. A structure in which two layers are further provided by providing a partition or the like and noise to the control circuit board is removed may be employed.
 なお、ここでは、上側筐体が2層化される場合を述べたが、ドライバ回路と制御回路の間にノイズをシャットダウンする構成(例えば隔壁など)があればよく、3層構造でもそれ以上分けられていたとしても構わない。 Here, the case where the upper casing is made of two layers has been described, but it is sufficient if there is a configuration for shutting down noise between the driver circuit and the control circuit (for example, a partition wall, etc.). It doesn't matter if it has been.
 以下、図を参照して本発明を実施するための形態について説明する。図1は、ハイブリッド自動車(以下「HEV」と記述する)の制御ブロックを示す図である。エンジンEGNおよびモータジェネレータMG1は車両の走行用トルクを発生する。また、モータジェネレータMG1は回転トルクを発生するだけでなく、モータジェネレータMG1に外部から加えられる機械エネルギーを電力に変換する機能を有する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a control block of a hybrid vehicle (hereinafter referred to as “HEV”). Engine EGN and motor generator MG1 generate vehicle running torque. Motor generator MG1 not only generates rotational torque but also has a function of converting mechanical energy applied from the outside to motor generator MG1 into electric power.
 モータジェネレータMG1は、例えば同期機あるいは誘導機であり、上述のごとく、運転方法によりモータとしても発電機としても動作する。モータジェネレータMG1を自動車に搭載する場合には、小型で高出力を得ることが望ましく、ネオジウムなどの磁石を使用した永久磁石型の同期電動機が適している。また、永久磁石型の同期電動機は誘導電動機に比べて回転子の発熱が少なく、この観点でも自動車用として優れている。 The motor generator MG1 is, for example, a synchronous machine or an induction machine, and operates as a motor or a generator depending on the operation method as described above. When motor generator MG1 is mounted on an automobile, it is desirable to obtain a small and high output, and a permanent magnet type synchronous motor using a magnet such as neodymium is suitable. Further, the permanent magnet type synchronous motor generates less heat from the rotor than the induction motor, and is excellent for automobiles from this viewpoint.
 エンジンEGNの出力側の出力トルクは動力分配機構TSMを介してモータジェネレータMG1に伝達され、動力分配機構TSMからの回転トルクあるいはモータジェネレータMG1が発生する回転トルクは、トランスミッションTMおよびデファレンシャルギアDEFを介して車輪に伝達される。一方、回生制動の運転時には、車輪から回転トルクがモータジェネレータMG1に伝達され、供給されてきた回転トルクに基づいて交流電力を発生する。発生した交流電力は後述するように電力変換装置200により直流電力に変換され、高電圧用のバッテリ136を充電し、充電された電力は再び走行エネルギーとして使用される。 The output torque on the output side of the engine EGN is transmitted to the motor generator MG1 via the power distribution mechanism TSM, and the rotation torque from the power distribution mechanism TSM or the rotation torque generated by the motor generator MG1 is transmitted via the transmission TM and the differential gear DEF. Transmitted to the wheels. On the other hand, during regenerative braking operation, rotational torque is transmitted from the wheels to motor generator MG1, and AC power is generated based on the supplied rotational torque. The generated AC power is converted to DC power by the power conversion device 200 as described later, and the high-voltage battery 136 is charged, and the charged power is used again as travel energy.
 次に電力変換装置200について説明する。インバータ回路140は、バッテリ136と直流コネクタ138を介して電気的に接続されており、バッテリ136とインバータ回路140との相互において電力の授受が行われる。モータジェネレータMG1をモータとして動作させる場合には、インバータ回路140は直流コネクタ138を介してバッテリ136から供給された直流電力に基づき交流電力を発生し、交流端子188を介してモータジェネレータMG1に供給する。モータジェネレータMG1とインバータ回路140からなる構成は電動発電ユニットとして動作する。 Next, the power conversion device 200 will be described. The inverter circuit 140 is electrically connected to the battery 136 via the DC connector 138, and power is exchanged between the battery 136 and the inverter circuit 140. When motor generator MG1 is operated as a motor, inverter circuit 140 generates AC power based on DC power supplied from battery 136 via DC connector 138 and supplies it to motor generator MG1 via AC terminal 188. . The configuration including motor generator MG1 and inverter circuit 140 operates as a motor generator unit.
 なお、本実施形態では、バッテリ136の電力によって電動発電ユニットを電動ユニットとして作動させることにより、モータジェネレータMG1の動力のみによって車両の駆動ができる。さらに、本実施形態では、電動発電ユニットを発電ユニットとしてエンジンEGNの動力或いは車輪からの動力によって作動させて発電させることにより、バッテリ136の充電ができる。 In the present embodiment, the vehicle can be driven only by the power of the motor generator MG1 by operating the motor generator unit as an electric unit by the electric power of the battery 136. Further, in the present embodiment, the battery 136 can be charged by operating the motor generator unit as a power generator unit by the power of the engine EGN or the power from the wheels to generate power.
 また、図1では省略したが、バッテリ136はさらに補機用のモータを駆動するための電源としても使用される。補機用のモータとしては例えば、エアコンディショナーのコンプレッサを駆動するモータ、あるいは制御用の油圧ポンプを駆動するモータである。バッテリ136から直流電力が補機用パワーモジュールに供給され、補機用パワーモジュールは交流電力を発生して補機用のモータに供給する。補機用パワーモジュールはインバータ回路140と基本的には同様の回路構成および機能を持ち、補機用のモータに供給する交流の位相や周波数、電力を制御する。なお、電力変換装置200は、インバータ回路140に供給される直流電力を平滑化するためのコンデンサモジュール500を備えている。 Although omitted in FIG. 1, the battery 136 is also used as a power source for driving an auxiliary motor. The auxiliary motor is, for example, a motor for driving a compressor of an air conditioner or a motor for driving a control hydraulic pump. DC power is supplied from the battery 136 to the auxiliary power module, and the auxiliary power module generates AC power and supplies it to the auxiliary motor. The auxiliary power module has basically the same circuit configuration and function as the inverter circuit 140, and controls the phase, frequency, and power of alternating current supplied to the auxiliary motor. The power conversion device 200 includes a capacitor module 500 for smoothing the DC power supplied to the inverter circuit 140.
 電力変換装置200は、上位の制御装置から指令を受けたりあるいは上位の制御装置に状態を表すデータを送信したりするための通信用のコネクタ21を備えている。電力変換装置200は、コネクタ21から入力される指令に基づいて制御回路172でモータジェネレータMG1の制御量を演算し、さらにモータとして運転するか発電機として運転するかを演算し、演算結果に基づいて制御パルスを発生し、その制御パルスをドライバ回路174へ供給する。ドライバ回路174は、供給された制御パルスに基づいて、インバータ回路140を制御するための駆動パルスを発生する。 The power conversion device 200 includes a communication connector 21 for receiving a command from a host control device or transmitting data representing a state to the host control device. Power conversion device 200 calculates a control amount of motor generator MG1 by control circuit 172 based on a command input from connector 21, further calculates whether to operate as a motor or a generator, and based on the calculation result. The control pulse is generated, and the control pulse is supplied to the driver circuit 174. The driver circuit 174 generates a driving pulse for controlling the inverter circuit 140 based on the supplied control pulse.
 次に、図2を用いてインバータ回路140の電気回路の構成を説明する。なお、以下で半導体素子として絶縁ゲート型バイポーラトランジスタを使用しており、以下略してIGBTと記す。上アームとして動作するIGBT328及びダイオード156と、下アームとして動作するIGBT330及びダイオード166とで、上下アームの直列回路150が構成される。インバータ回路140は、この直列回路150を、出力しようとする交流電力のU相、V相、W相の3相に対応して備えている。 Next, the configuration of the electric circuit of the inverter circuit 140 will be described with reference to FIG. In the following description, an insulated gate bipolar transistor is used as a semiconductor element, and hereinafter abbreviated as IGBT. The IGBT 328 and the diode 156 that operate as the upper arm, and the IGBT 330 and the diode 166 that operate as the lower arm constitute the series circuit 150 of the upper and lower arms. The inverter circuit 140 includes the series circuit 150 corresponding to three phases of the U phase, the V phase, and the W phase of the AC power to be output.
 これらの3相は、この実施の形態ではモータジェネレータMG1の電機子巻線の3相の各相巻線に対応している。3相のそれぞれの上下アームの直列回路150は、直列回路の中点部分である中間電極169から交流電流を出力する。この中間電極169は交流端子159を通して、モータジェネレータMG1への交流電力線である以下に説明の交流バスバー802と接続される。 These three phases correspond to the three-phase windings of the armature winding of the motor generator MG1 in this embodiment. The series circuit 150 of the upper and lower arms of each of the three phases outputs an alternating current from the intermediate electrode 169 that is the midpoint portion of the series circuit. The intermediate electrode 169 is connected through an AC terminal 159 to an AC bus bar 802 described below, which is an AC power line to the motor generator MG1.
 上アームのIGBT328のコレクタ電極153は、正極端子157を介してコンデンサモジュール500の正極側のコンデンサ端子506に電気的に接続されている。また、下アームのIGBT330のエミッタ電極は、負極端子158を介してコンデンサモジュール500の負極側のコンデンサ端子504に電気的に接続されている。 The collector electrode 153 of the IGBT 328 of the upper arm is electrically connected to the capacitor terminal 506 on the positive electrode side of the capacitor module 500 via the positive electrode terminal 157. The emitter electrode of the IGBT 330 of the lower arm is electrically connected to the capacitor terminal 504 on the negative electrode side of the capacitor module 500 via the negative electrode terminal 158.
 上述のように、制御回路172は上位の制御装置からコネクタ21を介して制御指令を受け、これに基づいてインバータ回路140を構成する各相の直列回路150の上アームあるいは下アームを構成するIGBT328やIGBT330を制御するための制御信号である制御パルスを発生し、ドライバ回路174に供給する。 As described above, the control circuit 172 receives a control command from the host control device via the connector 21, and based on this, the IGBT 328 that configures the upper arm or the lower arm of each phase series circuit 150 that constitutes the inverter circuit 140. And a control pulse that is a control signal for controlling the IGBT 330 is generated and supplied to the driver circuit 174.
 ドライバ回路174は、上記制御パルスに基づき、各相の直列回路150の上アームあるいは下アームを構成するIGBT328やIGBT330を制御するための駆動パルスを各相のIGBT328やIGBT330に供給する。IGBT328やIGBT330は、ドライバ回路174からの駆動パルスに基づき、導通あるいは遮断動作を行い、バッテリ136から供給された直流電力を三相交流電力に変換し、この変換された電力はモータジェネレータMG1に供給される。 The driver circuit 174 supplies a drive pulse for controlling the IGBT 328 and IGBT 330 constituting the upper arm or lower arm of each phase series circuit 150 to the IGBT 328 and IGBT 330 of each phase based on the control pulse. IGBT 328 and IGBT 330 perform conduction or cutoff operation based on the drive pulse from driver circuit 174, convert DC power supplied from battery 136 into three-phase AC power, and supply the converted power to motor generator MG1. Is done.
 IGBT328は、コレクタ電極153と、信号用エミッタ電極155と、ゲート電極154を備えている。また、IGBT330は、コレクタ電極163と、信号用のエミッタ電極165と、ゲート電極164を備えている。ダイオード156が、コレクタ電極153とエミッタ電極155との間に電気的に接続されている。また、ダイオード166が、コレクタ電極163とエミッタ電極165との間に電気的に接続されている。 The IGBT 328 includes a collector electrode 153, a signal emitter electrode 155, and a gate electrode 154. The IGBT 330 includes a collector electrode 163, a signal emitter electrode 165, and a gate electrode 164. A diode 156 is electrically connected between the collector electrode 153 and the emitter electrode 155. A diode 166 is electrically connected between the collector electrode 163 and the emitter electrode 165.
 上述したIGBT328、IGBT330、ダイオード156およびダイオード166は、スイッチング用パワー半導体素子を構成する。スイッチング用パワー半導体素子としては金属酸化物半導体型電界効果トランジスタ(以下略してMOSFETと記す)を用いてもよい。この場合はダイオード156やダイオード166は不要となる。直流電圧が比較的高い場合には、スイッチング用パワー半導体素子として、IGBTが適している。直流電圧が比較的低い場合には、スイッチング用パワー半導体素子として、MOSFETが適している。 The above-described IGBT 328, IGBT 330, diode 156, and diode 166 constitute a switching power semiconductor element. As the power semiconductor element for switching, a metal oxide semiconductor field effect transistor (hereinafter abbreviated as MOSFET) may be used. In this case, the diode 156 and the diode 166 are unnecessary. When the DC voltage is relatively high, IGBT is suitable as the switching power semiconductor element. When the DC voltage is relatively low, a MOSFET is suitable as a switching power semiconductor element.
 コンデンサモジュール500は、正極側のコンデンサ端子506と負極側のコンデンサ端子504と正極側の電源端子509と負極側の電源端子508とを備えている。バッテリ136からの高電圧の直流電力は、直流コネクタ138を介して、正極側の電源端子509や負極側の電源端子508に供給され、コンデンサモジュール500の正極側のコンデンサ端子506および負極側のコンデンサ端子504から、インバータ回路140へ供給される。 The capacitor module 500 includes a positive capacitor terminal 506, a negative capacitor terminal 504, a positive power terminal 509, and a negative power terminal 508. The high-voltage DC power from the battery 136 is supplied to the positive-side power terminal 509 and the negative-side power terminal 508 via the DC connector 138, and the positive-side capacitor terminal 506 and the negative-side capacitor of the capacitor module 500. The voltage is supplied from the terminal 504 to the inverter circuit 140.
 一方、交流電力からインバータ回路140によって変換された直流電力は、正極側のコンデンサ端子506や負極側のコンデンサ端子504からコンデンサモジュール500に供給され、正極側の電源端子509や負極側の電源端子508から直流コネクタ138を介してバッテリ136に供給され、バッテリ136に蓄積される。 On the other hand, the DC power converted from the AC power by the inverter circuit 140 is supplied to the capacitor module 500 from the positive capacitor terminal 506 and the negative capacitor terminal 504, and is connected to the positive power terminal 509 and the negative power terminal 508. Is supplied to the battery 136 via the DC connector 138 and accumulated in the battery 136.
 制御回路172は、IGBT328及びIGBT330のスイッチングタイミングを演算処理するためのマイクロコンピュータ(以下、「マイコン」と記述する)を備えている。マイコンへの入力情報としては、モータジェネレータMG1に対して要求される目標トルク値、直列回路150からモータジェネレータMG1に供給される電流値、及びモータジェネレータMG1の回転子の磁極位置がある。 The control circuit 172 includes a microcomputer (hereinafter referred to as “microcomputer”) for performing arithmetic processing on the switching timing of the IGBT 328 and the IGBT 330. The input information to the microcomputer includes a target torque value required for the motor generator MG1, a current value supplied from the series circuit 150 to the motor generator MG1, and a magnetic pole position of the rotor of the motor generator MG1.
 目標トルク値は、不図示の上位の制御装置から出力された指令信号に基づくものである。電流値は、電流センサ180による検出信号に基づいて検出されたものである。磁極位置は、モータジェネレータMG1に設けられたレゾルバなどの回転磁極センサ(不図示)から出力された検出信号に基づいて検出されたものである。本実施形態では、電流センサ180は3相の電流値を検出する場合を例に挙げているが、2相分の電流値を検出するようにし、演算により3相分の電流を求めても良い。 The target torque value is based on a command signal output from a host controller (not shown). The current value is detected based on a detection signal from the current sensor 180. The magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) such as a resolver provided in the motor generator MG1. In this embodiment, the current sensor 180 detects the current value of three phases, but the current value for two phases may be detected and the current for three phases may be obtained by calculation. .
 制御回路172内のマイコンは、目標トルク値に基づいてモータジェネレータMG1のd軸,q軸の電流指令値を演算し、この演算されたd軸,q軸の電流指令値と、検出されたd軸,q軸の電流値との差分に基づいてd軸,q軸の電圧指令値を演算し、この演算されたd軸,q軸の電圧指令値を、検出された磁極位置に基づいてU相、V相、W相の電圧指令値に変換する。そして、マイコンは、U相、V相、W相の電圧指令値に基づく基本波(正弦波)と搬送波(三角波)との比較に基づいてパルス状の変調波を生成し、この生成された変調波をPWM(パルス幅変調)信号としてドライバ回路174に出力する。 The microcomputer in the control circuit 172 calculates the d-axis and q-axis current command values of the motor generator MG1 based on the target torque value, the calculated d-axis and q-axis current command values, and the detected d The voltage command values for the d-axis and q-axis are calculated based on the difference between the current values for the axes and q-axis, and the calculated voltage command values for the d-axis and q-axis are calculated based on the detected magnetic pole position. It is converted into voltage command values for phase, V phase, and W phase. Then, the microcomputer generates a pulse-like modulated wave based on a comparison between the fundamental wave (sine wave) and the carrier wave (triangular wave) based on the voltage command values of the U phase, V phase, and W phase, and the generated modulation wave The wave is output to the driver circuit 174 as a PWM (pulse width modulation) signal.
 ドライバ回路174は、下アームを駆動する場合、PWM信号を増幅したドライブ信号を、対応する下アームのIGBT330のゲート電極に出力する。また、ドライバ回路174は、上アームを駆動する場合、PWM信号の基準電位のレベルを上アームの基準電位のレベルにシフトしてからPWM信号を増幅し、これをドライブ信号として、対応する上アームのIGBT328のゲート電極にそれぞれ出力する。 When driving the lower arm, the driver circuit 174 outputs a drive signal obtained by amplifying the PWM signal to the gate electrode of the corresponding IGBT 330 of the lower arm. Further, when driving the upper arm, the driver circuit 174 amplifies the PWM signal after shifting the level of the reference potential of the PWM signal to the level of the reference potential of the upper arm, and uses this as a drive signal as a corresponding upper arm. Are output to the gate electrodes of the IGBTs 328 respectively.
 また、制御回路172内のマイコンは、異常検知(過電流、過電圧、過温度など)を行い、直列回路150を保護している。このため、制御回路172にはセンシング情報が入力されている。例えば、各アームの信号用のエミッタ電極155及び信号用のエミッタ電極165からは各IGBT328とIGBT330のエミッタ電極に流れる電流の情報が、対応する駆動部(IC)に入力されている。これにより、各駆動部(IC)は過電流検知を行い、過電流が検知された場合には対応するIGBT328,IGBT330のスイッチング動作を停止させ、対応するIGBT328,IGBT330を過電流から保護する。 In addition, the microcomputer in the control circuit 172 detects abnormality (overcurrent, overvoltage, overtemperature, etc.) and protects the series circuit 150. For this reason, sensing information is input to the control circuit 172. For example, information on the current flowing through the emitter electrodes of the IGBTs 328 and IGBTs 330 is input to the corresponding drive units (ICs) from the signal emitter electrode 155 and the signal emitter electrode 165 of each arm. Thereby, each drive part (IC) detects an overcurrent, and when an overcurrent is detected, the switching operation of the corresponding IGBT 328 and IGBT 330 is stopped, and the corresponding IGBT 328 and IGBT 330 are protected from the overcurrent.
 直列回路150に設けられた温度センサ(不図示)からは直列回路150の温度の情報がマイコンに入力されている。また、マイコンには直列回路150の直流正極側の電圧の情報が入力されている。マイコンは、それらの情報に基づいて過温度検知及び過電圧検知を行い、過温度或いは過電圧が検知された場合には全てのIGBT328,IGBT330のスイッチング動作を停止させる。 Information on the temperature of the series circuit 150 is input to the microcomputer from a temperature sensor (not shown) provided in the series circuit 150. In addition, voltage information on the DC positive side of the series circuit 150 is input to the microcomputer. The microcomputer performs over-temperature detection and over-voltage detection based on the information, and stops switching operations of all the IGBTs 328 and IGBTs 330 when an over-temperature or over-voltage is detected.
 図3は本発明に係る実施の形態としての電力変換装置200の外観斜視図である。本実施の形態の電力変換装置200は、平面形状がほぼ正方形の直方体形状としたことにより小型化が図れ、また、車両への取り付けが容易となるという効果を有している。電力変換装置200は、蓋8、ハウジング10、流路形成体12、冷却媒体の入口配管13、冷却媒体の出口配管14、下カバー420及び外部との接続のために設けられた信号用のコネクタ21を含む。本実施形態においては、上とは、流路形成体12から蓋8に向かう方向を意味し、下とはその逆の方向を意味する。 FIG. 3 is an external perspective view of a power conversion device 200 as an embodiment according to the present invention. The power conversion device 200 according to the present embodiment has an effect that the planar shape is a rectangular parallelepiped shape, which can be reduced in size and can be easily attached to the vehicle. The power converter 200 includes a lid 8, a housing 10, a flow path forming body 12, a cooling medium inlet pipe 13, a cooling medium outlet pipe 14, a lower cover 420, and a signal connector provided for connection to the outside. 21 is included. In the present embodiment, “up” means the direction from the flow path forming body 12 toward the lid 8, and “down” means the opposite direction.
 蓋8は、電力変換装置200を構成する回路部品が収納されるハウジング10の上部開口部に固定される。ハウジング10の下部に固定される流路形成体12は、後述するパワーモジュール300及びコンデンサモジュール500を保持するとともに、冷却媒体によってこれらを冷却する。冷却媒体としては、例えば水が用いられる場合が多く、以下では冷却水として説明する。入口配管13および出口配管14は流路形成体12の一側面に設けられ、入口配管13から供給された冷却水は流路形成体12内の後述する流路19に流入し、出口配管14から排出される。 The lid 8 is fixed to the upper opening of the housing 10 in which circuit components constituting the power conversion device 200 are accommodated. The flow path forming body 12 fixed to the lower part of the housing 10 holds a power module 300 and a capacitor module 500, which will be described later, and cools them with a cooling medium. For example, water is often used as the cooling medium, and will be described as cooling water below. The inlet pipe 13 and the outlet pipe 14 are provided on one side surface of the flow path forming body 12, and the cooling water supplied from the inlet pipe 13 flows into a flow path 19 to be described later in the flow path forming body 12 and from the outlet pipe 14. Discharged.
 交流インターフェイス185および直流インターフェイス137は、ハウジング10の側面に設けられている。交流インターフェイス185は配管13,14が設けられている側面に設けられており、直流インターフェイス137は交流インターフェイス185が設けられた側面に隣接する側面に設けられている。 The AC interface 185 and the DC interface 137 are provided on the side surface of the housing 10. The AC interface 185 is provided on the side surface where the pipes 13 and 14 are provided, and the DC interface 137 is provided on the side surface adjacent to the side surface where the AC interface 185 is provided.
 また、ハウジング10及び流路形成体12は、断面が台形状の形態をしており、例えば鋳造等の製造方法を用いた際の生産性が非常に良い。 Further, the housing 10 and the flow path forming body 12 have a trapezoidal cross section, and the productivity when using a manufacturing method such as casting is very good.
 図4は電力変換装置200の分解斜視図である。図5は流路形成体12からハウジング10を外した状態を示す図である。ここでは、便宜上、図5から説明する。図5において、ハウジング10は2つの収納空間を有しており、隔壁10cによって上部収納空間と下部収納空間とに区画されている。上部収納空間にはコネクタ21が固定された制御回路基板20が収納され、下部収納空間にはドライバ回路基板22および後述するバスバーアッセンブリ800が収納される。制御回路基板20には図2に示した制御回路172が実装され、ドライバ回路基板22にはドライバ回路174が実装されている。制御回路基板20とドライバ回路基板22とは不図示のフラットケーブルによって接続されるが、そのフラットケーブルは隔壁10cに形成されたスリット状の開口10dを通って下部収納空間から上部収納空間へと引き出される。 FIG. 4 is an exploded perspective view of the power converter 200. FIG. 5 is a view showing a state where the housing 10 is removed from the flow path forming body 12. Here, it demonstrates from FIG. 5 for convenience. In FIG. 5, the housing 10 has two storage spaces, and is divided into an upper storage space and a lower storage space by a partition wall 10c. The control circuit board 20 to which the connector 21 is fixed is stored in the upper storage space, and the driver circuit board 22 and a bus bar assembly 800 described later are stored in the lower storage space. A control circuit 172 shown in FIG. 2 is mounted on the control circuit board 20, and a driver circuit 174 is mounted on the driver circuit board 22. The control circuit board 20 and the driver circuit board 22 are connected by a flat cable (not shown), and the flat cable is drawn from the lower storage space to the upper storage space through the slit-shaped opening 10d formed in the partition wall 10c. It is.
 また、ここでは、ハウジング10の下面と流路形成体12の上面(ケース分割面12e)とが接合される。 In addition, here, the lower surface of the housing 10 and the upper surface (case dividing surface 12e) of the flow path forming body 12 are joined.
 図4において、蓋8の内側の、すなわちハウジング10の上部収納空間には、上述したように制御回路172を実装した制御回路基板20が配置されている。蓋8には、コネクタ21用の開口が形成されている。電力変換装置200内の制御回路を動作させる低電圧の直流電力は、コネクタ21から供給される。 4, the control circuit board 20 on which the control circuit 172 is mounted as described above is disposed inside the lid 8, that is, in the upper storage space of the housing 10. The lid 8 has an opening for the connector 21. Low voltage DC power for operating the control circuit in the power converter 200 is supplied from the connector 21.
 詳細は後述するが、流路形成体12には、入口配管13から流入した冷却水が流れる流路が形成されている。流路は、流路形成体12の3つの側面に沿って流れるようなコの字形状の流路を形成している。入口配管13から流入した冷却水はコの字形状流路の一端から流路内に流入し、流路内を流れた後に、流路の他端に接続されている出口配管14から流出される。 Although details will be described later, the flow path forming body 12 is formed with a flow path through which the cooling water flowing from the inlet pipe 13 flows. The flow path forms a U-shaped flow path that flows along the three side surfaces of the flow path forming body 12. The cooling water flowing in from the inlet pipe 13 flows into the flow path from one end of the U-shaped flow path, flows through the flow path, and then flows out from the outlet pipe 14 connected to the other end of the flow path. .
 流路の上面には3つの開口部402a~402cが形成されており、直列回路150(図2参照)を内蔵したパワーモジュール300U,300V,300Wがそれらの開口部402a~402cから流路内に挿入される。パワーモジュール300UにはU相の直列回路150が内蔵され、パワーモジュール300VにはV相の直列回路150が内蔵され、パワーモジュール300WにはW相の直列回路150が内蔵されている。これらパワーモジュール300U~300Wは同一構成になっており、外観形状も同一形状である。開口部402a~402cは、挿入されたパワーモジュール300U~300Wのフランジ部によって塞がれる。 Three openings 402a to 402c are formed on the upper surface of the flow path, and the power modules 300U, 300V, and 300W incorporating the series circuit 150 (see FIG. 2) are inserted into the flow path from the openings 402a to 402c. Inserted. The power module 300U includes a U-phase series circuit 150, the power module 300V includes a V-phase series circuit 150, and the power module 300W includes a W-phase series circuit 150. These power modules 300U to 300W have the same configuration and the same external shape. The openings 402a to 402c are closed by the flange portions of the inserted power modules 300U to 300W.
 流路形成体12には、コの字形状の流路によって囲まれるように、電装部品を収納するための収納空間405が形成されている。本実施形態では、この収納空間405にコンデンサモジュール500が収納されている。収納空間405に収納されたコンデンサモジュール500は、流路内を流れる冷却水によって冷却される。コンデンサモジュール500の上方には、交流バスバー802U~802Wが装着されたバスバーアッセンブリ800が配置される。バスバーアッセンブリ800は、流路形成体12の上面に固定される。バスバーアッセンブリ800には、電流センサ180がモジュール化されて固定されている。 A storage space 405 for storing electrical components is formed in the flow path forming body 12 so as to be surrounded by the U-shaped flow path. In the present embodiment, the capacitor module 500 is stored in the storage space 405. The capacitor module 500 stored in the storage space 405 is cooled by cooling water flowing in the flow path. Above the capacitor module 500, a bus bar assembly 800 to which AC bus bars 802U to 802W are attached is disposed. The bus bar assembly 800 is fixed to the upper surface of the flow path forming body 12. A current sensor 180 is modularized and fixed to the bus bar assembly 800.
 ドライバ回路基板22は、バスバーアッセンブリ800に設けられた支持部材807aに固定されることにより、バスバーアッセンブリ800の上方に配置される。上述したように、制御回路基板20とドライバ回路基板22とはフラットケーブルによって接続される。フラットケーブルは隔壁10cに形成されたスリット状の開口10dを通って下部収納空間から上部収納空間へと引き出される。 The driver circuit board 22 is disposed above the bus bar assembly 800 by being fixed to a support member 807a provided in the bus bar assembly 800. As described above, the control circuit board 20 and the driver circuit board 22 are connected by a flat cable. The flat cable is pulled out from the lower storage space to the upper storage space through a slit-shaped opening 10d formed in the partition wall 10c.
 このように、パワーモジュール300U~300Wとドライバ回路基板22と制御回路基板20とが高さ方向に階層的に配置され、制御回路基板20が強電系のパワーモジュール300U~300Wから最も遠い場所に配置されるので、制御回路基板20側にスイッチングノイズ等が混入するのを低減することができる。さらに、ドライバ回路基板22と制御回路基板20とは隔壁10cによって区画された別の収納空間に配置されるため、隔壁10cが電磁シールドとして機能し、ドライバ回路基板22から制御回路基板20に混入するノイズを低減することができる。なお、ハウジング10はアルミ等の金属材で形成されているが、これに限定するものではない。 As described above, the power modules 300U to 300W, the driver circuit board 22 and the control circuit board 20 are hierarchically arranged in the height direction, and the control circuit board 20 is arranged at a place farthest from the high power system power modules 300U to 300W. Therefore, it is possible to reduce mixing of switching noise and the like on the control circuit board 20 side. Furthermore, since the driver circuit board 22 and the control circuit board 20 are arranged in different storage spaces partitioned by the partition wall 10c, the partition wall 10c functions as an electromagnetic shield and enters the control circuit board 20 from the driver circuit board 22. Noise can be reduced. In addition, although the housing 10 is formed with metal materials, such as aluminum, it is not limited to this.
 さらに、ハウジング10に一体に形成された隔壁10cに制御回路基板20が固定されるため、外部からの振動に対して制御回路基板20の機械的な共振周波数が高くなる。そのため、車両側からの振動の影響を受け難く、信頼性が向上する。 Furthermore, since the control circuit board 20 is fixed to the partition wall 10c formed integrally with the housing 10, the mechanical resonance frequency of the control circuit board 20 is increased against external vibration. Therefore, it is difficult to be affected by vibration from the vehicle side, and reliability is improved.
 次に、以下では、流路形成体12と、流路形成体12に固定されるコンデンサモジュール500およびバスバーアッセンブリ800についてより詳しく説明する。 Next, the flow path forming body 12, the capacitor module 500 and the bus bar assembly 800 fixed to the flow path forming body 12 will be described in more detail below.
 図6は、流路形成体12にパワーモジュール300U~300W、コンデンサモジュール500、バスバーアッセンブリ800を組み付けた外観斜視図である。図7は、流路形成体12からバスバーアッセンブリ800を外した状態を示す。バスバーアッセンブリ800は、流路形成体12にボルト固定される。 FIG. 6 is an external perspective view in which the power modules 300U to 300W, the capacitor module 500, and the bus bar assembly 800 are assembled to the flow path forming body 12. FIG. 7 shows a state where the bus bar assembly 800 is removed from the flow path forming body 12. The bus bar assembly 800 is bolted to the flow path forming body 12.
 まず、図8を参照しながら流路形成体12について説明する。図8は流路形成体12の斜視図である。流路形成体12は平面形状が略正方形の直方体を成し、その側面12dに入口配管13および出口配管14が設けられている。なお、側面12dは、配管13,14が設けられている部分が段差状に形成されている。流路19は、残りの3つの側面12a~12cに沿うようにコの字形状に形成されている。 First, the flow path forming body 12 will be described with reference to FIG. FIG. 8 is a perspective view of the flow path forming body 12. The flow path forming body 12 has a rectangular parallelepiped shape in plan view, and an inlet pipe 13 and an outlet pipe 14 are provided on a side surface 12d thereof. In addition, the side surface 12d is formed in a stepped portion where the pipes 13 and 14 are provided. The flow path 19 is formed in a U shape so as to extend along the remaining three side surfaces 12a to 12c.
 図8に示すように、流路形成体12の上面側には、側面12aに平行な位置に長方形の開口部402aが形成され、側面12bに平行な位置に長方形の開口部402bが形成され、側面12cに平行な位置に長方形の開口部402cが形成されている。これらの開口部402a~402cを通して、パワーモジュール300U~300Wが流路19内に挿入される。 As shown in FIG. 8, on the upper surface side of the flow path forming body 12, a rectangular opening 402a is formed at a position parallel to the side surface 12a, and a rectangular opening 402b is formed at a position parallel to the side surface 12b. A rectangular opening 402c is formed at a position parallel to the side surface 12c. The power modules 300U to 300W are inserted into the flow path 19 through these openings 402a to 402c.
 図8に示すように、流路形成体12には、3辺を流路19で囲まれるように形成され矩形状の収納空間405が設けられている。この収納空間405にコンデンサモジュール500が収納される。流路19で囲まれた収納空間405は直方体形状であるため、コンデンサモジュール500を直方体形状にすることができ、コンデンサモジュール500の生産性が良くなる。 As shown in FIG. 8, the flow path forming body 12 is provided with a rectangular storage space 405 formed so that three sides are surrounded by the flow path 19. The capacitor module 500 is stored in the storage space 405. Since the storage space 405 surrounded by the flow path 19 has a rectangular parallelepiped shape, the capacitor module 500 can be formed into a rectangular parallelepiped shape, and the productivity of the capacitor module 500 is improved.
 図9は、バスバーアッセンブリ800の斜視図である。バスバーアッセンブリ800は、U,V,W相の交流バスバー802U,802V,802Wと、交流バスバー802U~802Wを保持し固定するための保持部材803と、交流バスバー802U~802Wを流れる交流電流を検出するための電流センサ180と、を備えている。交流バスバー802U~802Wは、それぞれ幅広導体で形成されている。樹脂等の絶縁材料で形成された保持部材803には、ドライバ回路基板22を保持するための複数の支持部材807aが、保持部材803から上方に突出するように形成されている。 FIG. 9 is a perspective view of the bus bar assembly 800. Bus bar assembly 800 detects U, V, and W phase AC bus bars 802U, 802V, and 802W, a holding member 803 for holding and fixing AC bus bars 802U to 802W, and an AC current flowing through AC bus bars 802U to 802W. Current sensor 180. AC bus bars 802U to 802W are each formed of a wide conductor. A plurality of support members 807 a for holding the driver circuit board 22 are formed on the holding member 803 made of an insulating material such as resin so as to protrude upward from the holding member 803.
 電流センサ180は、前述した図6に示すようにバスバーアッセンブリ800を流路形成体12上に固体したときに、流路形成体12の側面12dに近接した位置で側面12dに平行となるように、バスバーアッセンブリ800に配置されている。図9に示すように、電流センサ180の側面には、交流バスバー802U~802Wを貫通させるための貫通孔181がそれぞれ形成されている。電流センサ180の貫通孔181が形成されている部分にはセンサ素子が設けられており、電流センサ180の上面から各センサ素子の信号端子182aが突出している。各センサ素子は、電流センサ180の延在方向、すなわち流路形成体12の側面12dの延在方向に並んで配置されている。交流バスバー802U~802Wは各貫通孔181を貫通し、その先端部分が平行に突出している。 As shown in FIG. 6, the current sensor 180 is parallel to the side surface 12d at a position close to the side surface 12d of the flow path forming body 12 when the bus bar assembly 800 is solidified on the flow path forming body 12. The bus bar assembly 800 is disposed. As shown in FIG. 9, through holes 181 through which AC bus bars 802U to 802W are passed are formed on the side surfaces of the current sensor 180, respectively. A sensor element is provided in a portion where the through hole 181 of the current sensor 180 is formed, and a signal terminal 182 a of each sensor element protrudes from the upper surface of the current sensor 180. Each sensor element is arranged side by side in the extending direction of the current sensor 180, that is, in the extending direction of the side surface 12 d of the flow path forming body 12. The AC bus bars 802U to 802W pass through the respective through holes 181 and their tip portions protrude in parallel.
 保持部材803には、位置決め用の突起部806a,806bが上方に向かって突出するように形成されている。電流センサ180はネジ止めにより保持部材803に固定されるが、その際に突起部806a,806bと電流センサ180の枠体に形成された位置決め孔とを係合させることで、電流センサ180の位置決めが行われる。さらに、ドライバ回路基板22を支持部材807aに固定する際に、ドライバ回路基板22側に形成された位置決め孔に位置決め用突起部806a,806bを係合させることで、電流センサ180の信号端子182aがドライバ回路基板22のスルーホールに位置決めされる。信号端子182aは、ドライバ回路基板22の配線パターンと半田によって接合される。上述したように、信号端子182aは電流センサ180からドライバ回路基板22に向かって突出している。これにより、ドライバ回路基板22との相対的な位置ずれを小さくでき、スルーホールとの位置決めが容易となる。 The holding member 803 is formed with positioning protrusions 806a and 806b protruding upward. The current sensor 180 is fixed to the holding member 803 by screwing. At this time, the protrusions 806a and 806b are engaged with positioning holes formed in the frame of the current sensor 180, thereby positioning the current sensor 180. Is done. Further, when the driver circuit board 22 is fixed to the support member 807a, the positioning protrusions 806a and 806b are engaged with the positioning holes formed on the driver circuit board 22 side, whereby the signal terminal 182a of the current sensor 180 is The driver circuit board 22 is positioned in the through hole. The signal terminal 182a is joined to the wiring pattern of the driver circuit board 22 by solder. As described above, the signal terminal 182 a protrudes from the current sensor 180 toward the driver circuit board 22. Thereby, a relative positional shift with respect to the driver circuit board 22 can be reduced, and positioning with the through hole is facilitated.
 本実施形態では、保持部材803、支持部材807a及び突起部806a,806bは、樹脂で一体に形成される。このように、保持部材803が電流センサ180とドライバ回路基板22との位置決め機能を備えることになるので、信号端子182aとドライバ回路基板22との間の組み付け及び半田接続作業が容易になる。また、電流センサ180とドライバ回路基板22を保持する機構を保持部材803に設けることで、電力変換装置全体としての部品点数を削減できる。 In this embodiment, the holding member 803, the support member 807a, and the protrusions 806a and 806b are integrally formed of resin. As described above, since the holding member 803 has a function of positioning the current sensor 180 and the driver circuit board 22, assembly and solder connection work between the signal terminal 182a and the driver circuit board 22 are facilitated. Further, by providing the holding member 803 with a mechanism for holding the current sensor 180 and the driver circuit board 22, the number of components as the whole power conversion device can be reduced.
 交流バスバー802U~802Wは幅広面が水平となるように保持部材803に固定されている。図6及び図7に示すように、パワーモジュール300U~300Wの各交流端子159は、バスバーアッセンブリに向かって垂直に立ち上がっており、各交流バスバー802U~802Wの接続部805に接合される。各交流端子159に接続される接続部805もまた各交流端子159と同じ向きに垂直に立ち上がっている。接続部805は先端が凹凸形状をしており、溶接時にこの凹凸部分に熱が集中するような形状となっている。 AC bus bars 802U to 802W are fixed to the holding member 803 so that the wide surface is horizontal. As shown in FIGS. 6 and 7, each AC terminal 159 of the power modules 300U to 300W rises vertically toward the bus bar assembly and is joined to the connection portion 805 of each AC bus bar 802U to 802W. A connecting portion 805 connected to each AC terminal 159 also stands vertically in the same direction as each AC terminal 159. The connecting portion 805 has a concavo-convex shape at the tip, and has a shape in which heat concentrates on the concavo-convex portion during welding.
 上述したように電流センサ180は流路形成体12の側面12dに平行に配置されているので、電流センサ180の貫通孔181から突出した各交流バスバー802U~802Wは、流路形成体12の側面12dに配置されることになる。各パワーモジュール300U~300Wは、流路形成体12の側面12a,12b,12cに沿って配置されるので、交流バスバー802U~802Wの接続部805は、バスバーアッセンブリ800の側面12a~12cに対応する位置に配置される。その結果、図6に示すように、U相交流バスバー802Uは側面12bの近傍に配置されたパワーモジュール300Uから側面12dまで延設され、V相交流バスバー802Vは側面12aの近傍に配置されたパワーモジュール300Vから側面12dまで延設され、W相交流バスバー802Wは側面12cの近傍に配置されたパワーモジュール300Wから側面12dまで延設される。 As described above, since the current sensor 180 is arranged in parallel to the side surface 12d of the flow path forming body 12, the AC bus bars 802U to 802W protruding from the through holes 181 of the current sensor 180 are connected to the side surface of the flow path forming body 12. 12d. Since each of the power modules 300U to 300W is disposed along the side surfaces 12a, 12b, and 12c of the flow path forming body 12, the connection portion 805 of the AC bus bars 802U to 802W corresponds to the side surfaces 12a to 12c of the bus bar assembly 800. Placed in position. As a result, as shown in FIG. 6, the U-phase AC bus bar 802U extends from the power module 300U disposed in the vicinity of the side surface 12b to the side surface 12d, and the V-phase AC bus bar 802V is disposed in the vicinity of the side surface 12a. Extending from module 300V to side surface 12d, W-phase AC bus bar 802W extends from power module 300W disposed in the vicinity of side surface 12c to side surface 12d.
 図10は、開口部402a~402cにパワーモジュール300U~300Wが固定され、収納空間405にコンデンサモジュール500が収納された流路形成体12を示す図である。図10に示す例では、開口部402bにU相のパワーモジュール300Uが固定され、開口部402aにV相のパワーモジュール300Vが固定され、開口部402cにW相のパワーモジュール300Wが固定される。その後、コンデンサモジュール500が収納空間405に収納され、コンデンサ側の端子と各パワーモジュールの端子とが溶接等により接続される。各端子は、流路形成体12の上端面から突出しており、上方から溶接機をアプローチして溶接作業が行われる。 FIG. 10 is a diagram showing the flow path forming body 12 in which the power modules 300U to 300W are fixed to the openings 402a to 402c and the capacitor module 500 is stored in the storage space 405. In the example shown in FIG. 10, the U-phase power module 300U is fixed to the opening 402b, the V-phase power module 300V is fixed to the opening 402a, and the W-phase power module 300W is fixed to the opening 402c. Thereafter, the capacitor module 500 is stored in the storage space 405, and the terminals on the capacitor side and the terminals of each power module are connected by welding or the like. Each terminal protrudes from the upper end surface of the flow path forming body 12, and a welding operation is performed by approaching a welding machine from above.
 なお、コの字形状に配置された各パワーモジュール300U~300Wの正極及び負極端子157,158は、コンデンサモジュール500の上面に突出して設けられたコンデンサ端子503a~503cと接続される。3つのパワーモジュール300U~300Wはコンデンサモジュール500を囲むように設けられているため、コンデンサモジュール500に対する各パワーモジュール300U~300Wの位置的関係が同等となり、同一形状のコンデンサ端子503a~503cを用いてバランス良くコンデンサモジュール500に接続することができる。そのため、コンデンサモジュール500とパワーモジュール300U~300Wとの回路定数が3相の各相においてバランスし易くなり、電流の出し入れがし易い構造となっている。 The positive and negative terminals 157 and 158 of the power modules 300U to 300W arranged in a U-shape are connected to capacitor terminals 503a to 503c provided to protrude from the upper surface of the capacitor module 500. Since the three power modules 300U to 300W are provided so as to surround the capacitor module 500, the positional relationship of the power modules 300U to 300W with respect to the capacitor module 500 is equivalent, and the capacitor terminals 503a to 503c having the same shape are used. The capacitor module 500 can be connected in a well-balanced manner. For this reason, the circuit constants of the capacitor module 500 and the power modules 300U to 300W are easily balanced in each of the three phases, and the current can be easily taken in and out.
 ここで、コンデンサ端子503a~503cは、各パワーモジュール300の正極端子157及び負極端子158に対応して形成される。コンデンサ端子503a~503cはほぼ同一の形状を成し、コンデンサ端子503a~503cを構成する負極側コンデンサ端子504と正極側コンデンサ端子506との間には絶縁シートが設けられ、端子間の絶縁が確保されている。 Here, the capacitor terminals 503a to 503c are formed corresponding to the positive terminal 157 and the negative terminal 158 of each power module 300. The capacitor terminals 503a to 503c have substantially the same shape, and an insulating sheet is provided between the negative electrode side capacitor terminal 504 and the positive electrode side capacitor terminal 506 constituting the capacitor terminals 503a to 503c, thereby ensuring insulation between the terminals. Has been.
 また、コンデンサモジュール500の3辺を囲むように流路19が設けられているため、コンデンサモジュール500を効果的に冷却することができる。ところで、本実施の形態における電力変換装置200は車載用であって、一般的にエンジンルーム内に配置される場合が多い。エンジンルーム内はエンジンや走行用モータなどからの熱により比較的高温となるため、電力変換装置200に対する周囲からの熱侵入が問題となる。しかし、コンデンサモジュール500は冷却水が流れる流路19によって3辺を囲まれているので、装置周囲からの熱侵入を効果的に遮断することができる。 Further, since the flow path 19 is provided so as to surround the three sides of the capacitor module 500, the capacitor module 500 can be effectively cooled. By the way, the power converter device 200 in this Embodiment is for vehicle-mounted, and is generally arrange | positioned in an engine room in many cases. Since the inside of the engine room becomes relatively high due to heat from the engine, the traveling motor, etc., heat intrusion from the surroundings to the power conversion device 200 becomes a problem. However, since the capacitor module 500 is surrounded on the three sides by the flow path 19 through which the cooling water flows, it is possible to effectively block heat intrusion from around the apparatus.
 図10に示すように流路形成体12にパワーモジュール300U~300Wおよびコンデンサモジュール500を配置したならば、図6に示すようにコンデンサモジュール500の上方にバスバーアッセンブリ800を固定し、端子の溶接作業を行う。本実施の形態では、コの字形状に配置されたパワーモジュール300U~300Wの端子に接続されるバスバー802U~802Wを、各接続部から離れるようにコンデンサモジュール500の上方に引き回し、流路形成体12の側面12d側から引き出すようにしている。そのため、バスバーがパワーモジュールを跨ぐようなことが無く、十分な絶縁性を確保しつつバスバー802U~802Wを一箇所、すなわち、交流インターフェイス185が取り付けられるハウジング10の開口10aの領域に集約することができる。 When the power modules 300U to 300W and the capacitor module 500 are arranged in the flow path forming body 12 as shown in FIG. 10, the bus bar assembly 800 is fixed above the capacitor module 500 as shown in FIG. I do. In the present embodiment, the bus bars 802U to 802W connected to the terminals of the power modules 300U to 300W arranged in a U-shape are routed above the capacitor module 500 so as to be separated from the respective connection portions, thereby forming a flow path forming body. 12 is pulled out from the side surface 12d side. Therefore, the bus bar does not cross the power module, and the bus bars 802U to 802W can be concentrated in one place, that is, the region of the opening 10a of the housing 10 to which the AC interface 185 is attached while ensuring sufficient insulation. it can.
 このようなバスバー構造とすることで、熱が発生して温度の上昇しやすい交流コネクタ部からパワーモジュール300U~300Wを遠ざけることができ、バスバー802U~802Wを介してパワーモジュール300U~300Wに伝熱されるのを抑制することができる。また、流路19の上方を避けるようにバスバー802U~802Wを配置することにより、流路19からの漏水が発生した場合でも、漏水に起因する漏電の可能性を低くすることができる。 With such a bus bar structure, the power modules 300U to 300W can be moved away from the AC connector portion where heat is easily generated and the temperature is likely to rise, and heat is transferred to the power modules 300U to 300W via the bus bars 802U to 802W. Can be suppressed. Further, by arranging the bus bars 802U to 802W so as to avoid the upper side of the flow path 19, even when water leaks from the flow path 19, the possibility of electric leakage due to water leakage can be reduced.
 また、バスバーアッセンブリ800を冷却水が流れる流路形成体12に固定する構造としたので、バスバーアッセンブリ800の温度上昇を抑えることができるのみならず、バスバーアッセンブリ800に保持された電流センサ180の温度上昇を抑えることができる。電流センサ180に設けられたセンサ素子は熱に弱い特性を有しており、上記のような構造とすることにより電流センサ180の信頼性を向上させることができる。 In addition, since the bus bar assembly 800 is fixed to the flow path forming body 12 through which the cooling water flows, not only the temperature rise of the bus bar assembly 800 can be suppressed, but also the temperature of the current sensor 180 held by the bus bar assembly 800. The rise can be suppressed. The sensor element provided in the current sensor 180 has a characteristic that is weak against heat, and the reliability of the current sensor 180 can be improved by adopting the above structure.
 図6に示すようにバスバーアッセンブリ800を流路形成体12に固定して端子溶接作業を行った後に、図5に示すように、バスバーアッセンブリ800の保持部材803に形成された支持部材807aに、ドライバ回路基板22を固定する。車両に搭載される電力変換装置200は、車両からの振動の影響を受けやすい。そのため、保持部材803に形成された複数の支持部材807aによって、ドライバ回路基板22の周辺部だけでなく中央部付近も支持する構成とし、ドライバ回路基板22に加わる振動の影響を低減している。 After the bus bar assembly 800 is fixed to the flow path forming body 12 as shown in FIG. 6 and the terminal welding operation is performed, the support member 807a formed on the holding member 803 of the bus bar assembly 800, as shown in FIG. The driver circuit board 22 is fixed. The power conversion device 200 mounted on the vehicle is easily affected by vibrations from the vehicle. Therefore, the plurality of support members 807a formed on the holding member 803 are configured to support not only the periphery of the driver circuit board 22, but also the vicinity of the center, thereby reducing the influence of vibration applied to the driver circuit board 22.
 例えば、支持部材807aによってドライバ回路基板22の中央部を支持することで、ドライバ回路基板22の共振周波数を車両側から伝達されてくる振動の周波数より高くすることができ、ドライバ回路基板22への振動の影響を低減できる。なお、ドライバ回路基板22は、支持部材807aにネジ止めされる。 For example, by supporting the central portion of the driver circuit board 22 by the support member 807a, the resonance frequency of the driver circuit board 22 can be made higher than the frequency of vibration transmitted from the vehicle side. The influence of vibration can be reduced. The driver circuit board 22 is screwed to the support member 807a.
 ドライバ回路基板22をバスバーアッセンブリ800の上方に固定した後に、図5に示すようにハウジング10を流路形成体12にボルト固定し、さらに、ハウジング10の上部収納空間と下部収納空間とを区画する隔壁10c上に制御回路基板20を固定する。下部収納空間のドライバ回路基板22と上部収納空間の制御回路基板20とは、フラットケーブルによって接続される。前述したように、隔壁10cには、フラットケーブルを下部収納空間から上部収納空間に引き出すためのスリット状開口10dが形成されている。 After the driver circuit board 22 is fixed above the bus bar assembly 800, the housing 10 is bolted to the flow path forming body 12 as shown in FIG. 5, and further, the upper storage space and the lower storage space of the housing 10 are partitioned. The control circuit board 20 is fixed on the partition wall 10c. The driver circuit board 22 in the lower storage space and the control circuit board 20 in the upper storage space are connected by a flat cable. As described above, the partition wall 10c is formed with the slit-shaped opening 10d for drawing the flat cable from the lower storage space to the upper storage space.
 パワーモジュール300U~300Wは、流路形成体12の3つの側面12b,12a,12cに沿ってコの字形状に配置されているため、ドライバ回路基板22に接続される各パワーモジュール300U~300Wからの制御端子310U,310V,310Wも、図5に示すようにドライバ回路基板22の側面12b,12a,12cに対応する辺に沿ってコの字形状に並んでいる。図5は、ドライバ回路基板22に接合されるパワーモジュール300U~300Wからの制御端子310U,310V,310Wの先端が、ドライバ回路基板22を貫通して露出している様子を示している。パワーモジュール300U~300Wを駆動制御するための制御信号は高電圧であり、一方、電流センサ180のセンサ信号やフラットケーブルによる信号は低電圧である。そして、低電圧系に対する高電圧系のノイズの影響を低減するために、高電圧系の配線と低電圧系の配線とを離して配置するのが好ましい。 Since the power modules 300U to 300W are arranged in a U shape along the three side surfaces 12b, 12a, and 12c of the flow path forming body 12, the power modules 300U to 300W are connected to the driver circuit board 22 from the power modules 300U to 300W. The control terminals 310U, 310V, and 310W are also arranged in a U shape along the side corresponding to the side surfaces 12b, 12a, and 12c of the driver circuit board 22, as shown in FIG. FIG. 5 shows a state where the tips of the control terminals 310U, 310V, 310W from the power modules 300U to 300W joined to the driver circuit board 22 are exposed through the driver circuit board 22. The control signal for driving and controlling the power modules 300U to 300W is a high voltage, while the sensor signal of the current sensor 180 and the signal from the flat cable are low voltage. In order to reduce the influence of high-voltage noise on the low-voltage system, the high-voltage wiring and the low-voltage wiring are preferably arranged separately.
 本実施の形態では、パワーモジュール300U~300Wを側面12b,12a,12cに沿ってコの字形状に配置しているため、ドライバ回路基板22上の側面12dに対応する辺付近の領域を、制御端子から離れているスペースとして利用することができる。本実施形態では、電流センサ180の検出対象であるバスバー802U~802Wを側面12d側に集約しているため、電流センサ180が側面12dの近傍に平行に配置される。  In the present embodiment, since the power modules 300U to 300W are arranged in a U shape along the side surfaces 12b, 12a, and 12c, the region near the side corresponding to the side surface 12d on the driver circuit board 22 is controlled. It can be used as a space away from the terminal. In the present embodiment, since the bus bars 802U to 802W that are detection targets of the current sensor 180 are concentrated on the side surface 12d side, the current sensor 180 is arranged in parallel near the side surface 12d. *
 そのため、信号端子182aは上述したドライバ回路基板22の側面12dに対応する辺付近の領域に配置され、高電圧系の制御端子から十分な距離を保つことができる。 Therefore, the signal terminal 182a is disposed in a region in the vicinity of the side corresponding to the side surface 12d of the driver circuit board 22 described above, and a sufficient distance can be maintained from the high-voltage control terminal.
 なお、ドライバ回路基板22において、フラットケーブルはドライバ回路基板22の側面12cに対応する辺に配置されるが、制御端子からの影響が少なくなるように、制御端子から離れた側面12d近傍の基板上に接続されている。これにより、ドライバ回路基板22上において、低電圧信号用のパターンと高電圧信号用のパターンとを容易に分離させることができる。 In the driver circuit board 22, the flat cable is arranged on the side corresponding to the side surface 12c of the driver circuit board 22. However, on the board in the vicinity of the side surface 12d away from the control terminal so that the influence from the control terminal is reduced. It is connected to the. As a result, the low-voltage signal pattern and the high-voltage signal pattern can be easily separated on the driver circuit board 22.
 また、低電圧系の制御回路基板20を、隔壁10cで分離した上部収納空間に配置すると共に、フラットケーブルを細長いスリット状の開口10dを介して下部収納空間から引き込むことにより、制御回路基板20へのノイズの影響を低減している。このように、本実施の形態の電力変換装置200では、ノイズ対策が十分に図られている。 Further, the low-voltage control circuit board 20 is disposed in the upper storage space separated by the partition wall 10c, and the flat cable is drawn from the lower storage space through the elongated slit-shaped opening 10d, whereby the control circuit board 20 is provided. The effect of noise is reduced. Thus, in the power conversion device 200 of the present embodiment, noise countermeasures are sufficiently taken.
 また、本実施の形態の電力変換装置200は、流路形成体12にコンデンサモジュール500およびパワーモジュール300U~300Wを配置し、バスバーアッセンブリ800、基板等の必要な部品を固定する作業を下から順に行えるような構成となっているため、生産性と信頼性が向上する。 Further, in the power conversion device 200 of the present embodiment, the capacitor module 500 and the power modules 300U to 300W are arranged on the flow path forming body 12, and the work of fixing necessary components such as the bus bar assembly 800 and the substrate is performed in order from the bottom. Productivity and reliability are improved because it is configured so that it can be performed.
 図11は電力変換装置200の断面を示す図であり、電力変換装置200を配管13,14方向から見た断面図である。流路形成体12に形成された開口部402a~402cは、パワーモジュール300U~300Wのモジュールケース304に設けられたフランジ304bによって塞がれる。 FIG. 11 is a view showing a cross section of the power conversion device 200, and is a cross-sectional view of the power conversion device 200 as viewed from the direction of the pipes 13 and 14. The openings 402a to 402c formed in the flow path forming body 12 are closed by flanges 304b provided in the module cases 304 of the power modules 300U to 300W.
 なお、フランジ304bと流路形成体12との間にはシール材が設けられ、気密性が確保されている。パワーモジュール300U~300Wは、放熱用のフィン305が設けられた放熱面領域が流路19内に配置され、フィン305が設けられていない下端部分は、下カバー420に形成された凸部406の内側窪みの内部に収納されている。 Note that a sealing material is provided between the flange 304b and the flow path forming body 12 to ensure airtightness. In the power modules 300U to 300W, the heat radiation surface area where the fins 305 for heat radiation are provided is arranged in the flow path 19, and the lower end portion where the fins 305 are not provided is the protrusion 406 formed on the lower cover 420. It is stored inside the inner depression.
 これにより、フィン305が形成されていない空間に冷却水が流れ込むのを、防止することができる。 Thereby, it is possible to prevent the cooling water from flowing into the space where the fins 305 are not formed.
 図11において、パワーモジュール300U,300Wの制御端子310U,310Wが、ともにケース分割面12eよりも上のハウジング10側でドライバ回路基板22に接合されていることが示されている。図11に図示されていないが、パワーモジュール300Vの制御端子310Vもまた、ケース分割面12eよりも上のハウジング10側でドライバ回路基板22に接合されている。 11 shows that the control terminals 310U and 310W of the power modules 300U and 300W are both joined to the driver circuit board 22 on the housing 10 side above the case dividing surface 12e. Although not shown in FIG. 11, the control terminal 310V of the power module 300V is also joined to the driver circuit board 22 on the housing 10 side above the case dividing surface 12e.
 本実施の形態の電力変換装置200では、図11に示すように比較的に重量の重いコンデンサモジュール500を電力変換装置200の下部中央に配置しているため、電力変換装置200の重心バランスが良く、振動が加わった際に電力変換装置200が暴れ難い。  In the power conversion device 200 according to the present embodiment, as shown in FIG. 11, the relatively heavy capacitor module 500 is arranged at the lower center of the power conversion device 200, so that the center of gravity balance of the power conversion device 200 is good. When the vibration is applied, the power conversion device 200 is not easily ramped. *
 上述してきた実施の形態につき、その主要な構成及び効果につき以下まとめる。 The following is a summary of the main configuration and effects of the embodiment described above.
 本実施形態の電力変換装置200は、パワーモジュール300U~300Wと、流路形成体12と、パワーモジュール300U~300Wの交流出力端子に接続され、かつ、収納空間405の上方を通って流路形成体12の側面12dに引き出されるバスバー802U~802Wと、ハウジング10と、を備える。 The power conversion device 200 of this embodiment is connected to the power modules 300U to 300W, the flow path forming body 12, and the AC output terminals of the power modules 300U to 300W, and forms a flow path through the storage space 405. Bus bars 802U to 802W drawn to the side surface 12d of the body 12 and the housing 10 are provided.
 ここで、ハウジング10は下面側に開口を有しており、流路形成体12の上面側にパワーモジュール300U~300Wの端子や信号線、あるいは、コンデンサモジュールの端子やバスバー802U~802W、あるいは、ドライバ回路基板等の電力変換装置の組立接合部品を組付けた後に、ハウジング10の下面側の開口を流路形成体12の上面で塞ぐ構造とする。 Here, the housing 10 has an opening on the lower surface side, and terminals and signal lines of the power modules 300U to 300W, terminals of the capacitor module and bus bars 802U to 802W, After assembling and assembling and joining parts of the power converter such as a driver circuit board, the opening on the lower surface side of the housing 10 is closed with the upper surface of the flow path forming body 12.
 これにより、部品組立時の周辺への干渉等を防ぐことが可能となり、電力変換装置200の生産性向上を図ることができる。 As a result, it is possible to prevent interference to the periphery when assembling the parts, and to improve the productivity of the power conversion device 200.
 より具体的に説明すれば、ハウジング10(上蓋)で流路形成体12をカバーする前に、流路形成体12の上側にある組立接合部品(パワーモジュール端子、コンデンサモジュール端子、ドライバ回路やバスバーアッセンブリ800などの部品)を取り付ける際の物理的障害を取り除き十分な作業スペースを確保することが可能となる。溶接構造を採用しようとしても溶接ツールが稼動するスペースも確保可能であることは言うまでもない。 More specifically, before the flow path forming body 12 is covered with the housing 10 (upper lid), the assembly / joint parts (power module terminal, capacitor module terminal, driver circuit and bus bar above the flow path forming body 12 are covered. It is possible to remove a physical obstacle when attaching components (such as the assembly 800) and secure a sufficient working space. Needless to say, a space for operating the welding tool can be secured even if the welding structure is adopted.
 なお、本実施形態においては、流路形成体12にパワーモジュール300U~300W、コンデンサモジュール500、バスバーアッセンブリ800、ドライバ回路基板22を順に積層固定する工程を想定したが、これに限定するものではない。 In the present embodiment, a process of sequentially laminating and fixing the power modules 300U to 300W, the capacitor module 500, the bus bar assembly 800, and the driver circuit board 22 to the flow path forming body 12 is assumed. However, the present invention is not limited to this. .
 さらに、流路形成体12より上部に露出された組立接合部品(例えば、電流センサ180の信号端子182aは流路形成体12の上端面から突出しており、上方から半田コテをアプローチして半田付け作業がしやすい構造となっている)の半田付け作業において、半田付けツールのアクセススペースの確保することができ、また、基板へ制御ピンなどを半田接合した後のフィレット形状の確認も容易に行うこともできる。このため、組立時の作業性向上が期待できる。 Further, the assembly / joining part exposed above the flow path forming body 12 (for example, the signal terminal 182a of the current sensor 180 protrudes from the upper end surface of the flow path forming body 12, and is soldered by approaching a soldering iron from above. In the soldering operation (which is easy to work), it is possible to secure the access space of the soldering tool, and easily check the fillet shape after soldering the control pins etc. to the board You can also. For this reason, improvement in workability at the time of assembly can be expected.
 また、ここで、パワーモジュール300U~300Wの交流出力端子に接続され、かつ、収納空間405の上方を通って流路形成体12の側面12dに引き出されるバスバー802U~802Wを設けるようにしたことにより、流路形成体12の側面から突出して設けられる部材、すなわち、バスバー802U~802Wに接続される交流コネクタと配管13,14が一つの面12dに集約されるため、電力変換装置200が小型化できる。 Further, here, by providing the bus bars 802U to 802W that are connected to the AC output terminals of the power modules 300U to 300W and are drawn out to the side surface 12d of the flow path forming body 12 through the storage space 405. Further, since the members provided protruding from the side surfaces of the flow path forming body 12, that is, the AC connectors and the pipes 13 and 14 connected to the bus bars 802U to 802W are concentrated on one surface 12d, the power conversion device 200 is downsized. it can.
 また、バスバー802U~802Wを、流路19を跨ぐことなく、空きスペースである側面12dに引き回すようにしているので、バスバー802U~802Wの絶縁性向上が図れる。 Further, since the bus bars 802U to 802W are routed to the side surface 12d that is an empty space without straddling the flow path 19, the insulation of the bus bars 802U to 802W can be improved.
 また、バスバー802U~802Wのコネクタ部とパワーモジュール300U~300Wとの距離が遠ざかるので、コネクタ部で発生する熱がパワーモジュール300U~300Wに伝熱されるのを低減することができる。 Further, since the distance between the connector portions of the bus bars 802U to 802W and the power modules 300U to 300W is increased, it is possible to reduce the heat generated in the connector portion from being transferred to the power modules 300U to 300W.
 本実施形態の電力変換装置200は、流路形成体12に固定されるハウジング10は2つの収納空間を有しており、隔壁10cによって上部収納空間と下部収納空間とに区画されている。上部収納空間にはコネクタ21が固定された制御回路基板20が収納され、下部収納空間にはドライバ回路基板22およびバスバーアッセンブリ800が収納される。 In the power conversion device 200 of the present embodiment, the housing 10 fixed to the flow path forming body 12 has two storage spaces, and is partitioned into an upper storage space and a lower storage space by a partition wall 10c. The control circuit board 20 to which the connector 21 is fixed is stored in the upper storage space, and the driver circuit board 22 and the bus bar assembly 800 are stored in the lower storage space.
 これにより、ドライバ回路基板22と制御回路基板20とは隔壁10cによって区画された別の収納空間に配置されるため、隔壁10cが電磁シールドとして機能し、ドライバ回路基板22から制御回路基板20に混入するノイズを低減することができる。 As a result, the driver circuit board 22 and the control circuit board 20 are arranged in different storage spaces partitioned by the partition wall 10c, so that the partition wall 10c functions as an electromagnetic shield and is mixed into the control circuit board 20 from the driver circuit board 22. Noise can be reduced.
 本実施形態の電力変換装置200は、樹脂等の絶縁材料で形成された保持部材803を備えており、当該保持部材803において、ドライバ回路基板22を保持するための複数の支持部材807aが保持部材803から上方に突出するように形成されている。 The power conversion device 200 of the present embodiment includes a holding member 803 formed of an insulating material such as a resin, and a plurality of support members 807a for holding the driver circuit board 22 are held by the holding member 803. It is formed so as to protrude upward from 803.
 このような支持部材807aを設けることで、流路形成体12の上面には隔壁が存在しない状態で組立を行い、その後ハウジング10にて流路形成体12を覆う作業を容易に行うことができる。 By providing such a support member 807a, the assembly can be performed in a state where there is no partition wall on the upper surface of the flow path forming body 12, and then the operation of covering the flow path forming body 12 with the housing 10 can be easily performed. .
 本実施形態の電力変換装置200において、交流バスバー802U~802Wの接続部805とコンデンサモジュール500の接続端子504と506は、それぞれパワーモジュール300の交流端子159と直流端子(正極端子157,負極端子158)に溶接等により接続される。各接続部は先端が凹凸形状をしており、溶接時にこの凹凸部分に熱が集中するような形状となっている。また各端子は、流路形成体12の上端面から突出しており、上方から溶接機をアプローチして溶接作業しやすい構造となっている。 In the power conversion device 200 of the present embodiment, the connection part 805 of the AC bus bars 802U to 802W and the connection terminals 504 and 506 of the capacitor module 500 are respectively connected to the AC terminal 159 and the DC terminal (positive terminal 157, negative terminal 158) of the power module 300. ) By welding or the like. Each connection portion has a concavo-convex shape at the tip, and heat is concentrated on the concavo-convex portion during welding. Moreover, each terminal protrudes from the upper end surface of the flow-path formation body 12, and has a structure which is easy to perform welding work by approaching a welding machine from upper direction.
 本実施形態の電力変換装置200において、重量物であるコンデンサモジュール500を、流路形成体12のほぼ中央に形成され、流路19により3面を囲まれた収納空間405に収納することにより、外部からコンデンサモジュール500への熱侵入を防止することができる。また、重量物が流路形成体12に配置されるため重心バランスが良くなり、外部から振動が加わった場合の電力変換装置200の暴れを防止できる。さらに、コンデンサモジュール500と3つのパワーモジュール300U~300Wとの接続関係を同等とすることができ、電流の出し入れがし易くなる。 In the power conversion device 200 of the present embodiment, the capacitor module 500 that is a heavy object is stored in a storage space 405 that is formed at substantially the center of the flow path forming body 12 and is surrounded by the flow path 19. It is possible to prevent heat from entering the capacitor module 500 from the outside. Moreover, since a heavy object is arrange | positioned in the flow-path formation body 12, a gravity center balance becomes good and the rampage of the power converter device 200 when a vibration is added from the outside can be prevented. Furthermore, the connection relationship between the capacitor module 500 and the three power modules 300U to 300W can be made equal, and current can be easily taken in and out.
 本実施形態の電力変換装置200において、バスバー802U~802Wを流れる電流を検出するセンサ素子が側面12dの延在方向に沿って配置されるように、電流センサ180を配置したので、弱電系のセンサ信号線を、強電系のパワーモジュール300U~300Wから離して配線でき、ノイズの影響を低減することができる。 In the power conversion device 200 of the present embodiment, since the current sensor 180 is arranged so that the sensor elements for detecting the current flowing through the bus bars 802U to 802W are arranged along the extending direction of the side surface 12d, the low-power sensor The signal line can be wired away from the high power system power modules 300U to 300W, and the influence of noise can be reduced.
 上記実施形態においては、ケース分割面12eより上側に組立接合部品(パワーモジュール300U~300Wの端子や信号線、あるいは、キャパシタの端子やバスバー)が構成されることを前提に説明してきたが、厳密な意味でケース分割面12eより上側になくてもよく、例えば、図12に示すように、ケース分割面12eより若干下側から上述の組立接合部品が層状に組み立てられる構成も考えられる。この場合でも、半田付け作業や溶接作業のツール形状などによっては、組立作業が楽になる。ただし、基本的にはケース分割面12eより上側にあることが望ましいのは言うまでもない。 In the above embodiment, the description has been made on the assumption that assembly / joining parts (terminals and signal lines of power modules 300U to 300W, or terminals and bus bars of capacitors) are configured above the case dividing surface 12e. In this sense, there is no need to be above the case dividing surface 12e. For example, as shown in FIG. 12, a configuration in which the above-described assembled joint components are assembled in layers from slightly below the case dividing surface 12e is also conceivable. Even in this case, depending on the tool shape of soldering work or welding work, assembly work becomes easy. However, it goes without saying that it is basically desirable to be above the case dividing surface 12e.
 上述した実施の形態に記載の電力変換装置およびこの装置を使用したシステムは、製品化のために解決することが望ましい色々な課題を解決している。これら実施の形態が解決している色々な課題の一つに、生産性向上の課題がある。上述した構成だけでなく、他の構成によっても上記課題が解決できる。 The power conversion device described in the above-described embodiment and the system using this device solve various problems that are desired to be solved for commercialization. One of the various problems solved by these embodiments is an improvement in productivity. The above problem can be solved not only by the configuration described above but also by other configurations.
 上述した各実施形態はそれぞれ単独に、あるいは組み合わせて用いても良い。それぞれの実施形態での効果を単独あるいは相乗して奏することができるからである。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The embodiments described above may be used alone or in combination. This is because the effects of the respective embodiments can be achieved independently or synergistically. In addition, the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2011年第162750号(2011年7月26日出願)
 
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application 2011-162750 (filed July 26, 2011)

Claims (5)

  1.  直流電力を交流電力に変換するスイッチング素子と、
     前記交流電力を伝達するための交流バスバーを含むバスバーアッセンブリと、
     前記スイッチング素子を有するパワーモジュールと、
     前記スイッチング素子を制御する制御信号を出力する制御部と、
     前記制御部により出力された前記制御信号を用いて前記スイッチング素子の駆動信号を前記スイッチング素子へ出力するドライバ部と、
     前記直流電力を平滑化するコンデンサモジュールと、
     前記コンデンサモジュールと前記パワーモジュールとを収納し、前記コンデンサモジュール及び前記パワーモジュールを冷却するための冷媒の流路を内部に有する第1のケース部と、
     前記バスバーアッセンブリと前記制御部と前記ドライバ部とを収納し、前記第1のケース部に接合する第2のケース部とを備え、
     前記第1のケース部と前記第2のケース部とが互いに接合されるケース分割面より前記第2のケース側において、前記パワーモジュールの制御端子が前記ドライバ部に接合され、
     前記第2のケース部は、前記ドライバ部と前記制御部とを分けるための隔壁を有する電力変換装置。
    A switching element that converts DC power to AC power;
    A bus bar assembly including an AC bus bar for transmitting the AC power;
    A power module having the switching element;
    A control unit that outputs a control signal for controlling the switching element;
    A driver unit that outputs a drive signal of the switching element to the switching element using the control signal output by the control unit;
    A capacitor module for smoothing the DC power;
    A first case portion that houses the capacitor module and the power module, and has a refrigerant flow path for cooling the capacitor module and the power module;
    The bus bar assembly, the control unit, and the driver unit are housed, and the second case unit is joined to the first case unit,
    The control terminal of the power module is joined to the driver part on the second case side from the case dividing surface where the first case part and the second case part are joined to each other,
    The second case unit is a power conversion device having a partition for separating the driver unit and the control unit.
  2.  請求項1に記載の電力変換装置において、
     前記第2のケース部は、前記ケース分割面とは異なる面に開口を有し、
     前記パワーモジュールの交流端子は前記バスバーアッセンブリに向かって突出し、
     前記交流バスバーの一方の端部と、前記パワーモジュールの前記交流端子とが互いに接合し、
     前記交流バスバーの、前記一方の端部とは異なる他方の端部が、前記開口から延設される電力変換装置。
    The power conversion device according to claim 1,
    The second case portion has an opening on a surface different from the case dividing surface,
    The AC terminal of the power module protrudes toward the bus bar assembly,
    One end of the AC bus bar and the AC terminal of the power module are joined together,
    The power conversion device in which the other end portion of the AC bus bar different from the one end portion is extended from the opening.
  3.  請求項1または2に記載の電力変換装置において、
     前記コンデンサモジュールは、前記流路に囲まれ、かつ、前記第1のケース部の中央付近に配置された電力変換装置。
    In the power converter device according to claim 1 or 2,
    The said capacitor | condenser module is a power converter device enclosed by the said flow path and arrange | positioned in the center vicinity of the said 1st case part.
  4.  請求項1~3のいずれか1項に記載の電力変換装置において、
     前記バスバーアッセンブリは、前記交流バスバーを流れる交流電流を検出するための電流センサを有し、
     前記第1のケース部は、前記流路の入口配管と出口配管とを、前記ケース分割面とは異なる同一の面に有し、
     前記電流センサの信号端子は、前記第1のケース部の前記同一の面の延在方向に沿って配置され、
     前記信号端子は前記ドライバ部側に向かって突出している電力変換装置。
    The power conversion device according to any one of claims 1 to 3,
    The bus bar assembly has a current sensor for detecting an alternating current flowing through the alternating current bus bar,
    The first case portion has an inlet pipe and an outlet pipe of the flow path on the same surface different from the case dividing surface,
    The signal terminal of the current sensor is disposed along the extending direction of the same surface of the first case portion,
    The power conversion device in which the signal terminal protrudes toward the driver unit side.
  5.  請求項1に記載の電力変換装置において、
     前記制御部は、前記制御信号を前記ドライバ部へ供給し、
     前記ドライバ部は、前記駆動信号として、駆動パルスを前記スイッチング素子へ供給する電力変換装置。
    The power conversion device according to claim 1,
    The control unit supplies the control signal to the driver unit,
    The driver unit is a power conversion device that supplies a driving pulse to the switching element as the driving signal.
PCT/JP2012/069000 2011-07-26 2012-07-26 Case division structure of power conversion device WO2013015371A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011162750A JP2013027259A (en) 2011-07-26 2011-07-26 Case division structure of electric power conversion apparatus
JP2011-162750 2011-07-26

Publications (1)

Publication Number Publication Date
WO2013015371A1 true WO2013015371A1 (en) 2013-01-31

Family

ID=47601208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069000 WO2013015371A1 (en) 2011-07-26 2012-07-26 Case division structure of power conversion device

Country Status (2)

Country Link
JP (1) JP2013027259A (en)
WO (1) WO2013015371A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139934A (en) * 2016-02-05 2017-08-10 株式会社デンソー Electric power conversion system
CN111697846A (en) * 2020-06-10 2020-09-22 中国第一汽车股份有限公司 Motor controller and vehicle
WO2020234029A1 (en) * 2019-05-20 2020-11-26 Valeo Equipements Electriques Moteur Electronic control system for electric machine and electric assembly
JP2021119740A (en) * 2019-08-23 2021-08-12 株式会社デンソー Power conversion device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9578788B2 (en) * 2013-03-15 2017-02-21 Atieva, Inc. Inverter power module packaging with cold plate
JP2016060226A (en) * 2014-09-12 2016-04-25 アイシン精機株式会社 Parking support device, parking support method, and control program
JP6903400B2 (en) * 2016-04-04 2021-07-14 東芝ライフスタイル株式会社 Laundry equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078855A (en) * 1998-08-31 2000-03-14 Aisin Aw Co Ltd Inverter
JP2002369550A (en) * 2001-06-11 2002-12-20 Hitachi Ltd Power converter and movable body therewith
JP2005341630A (en) * 2004-05-24 2005-12-08 Mitsubishi Electric Corp Power converter
JP2008029117A (en) * 2006-07-21 2008-02-07 Hitachi Ltd Power conversion device
JP2008029093A (en) * 2006-07-20 2008-02-07 Hitachi Ltd Power conversion equipment
JP2010010468A (en) * 2008-06-27 2010-01-14 Kokusan Denki Co Ltd Power control apparatus for vehicles
JP2010119299A (en) * 2008-03-11 2010-05-27 Hitachi Automotive Systems Ltd Power conversion device
JP2011067093A (en) * 2008-07-29 2011-03-31 Hitachi Automotive Systems Ltd Power converter
JP2011077464A (en) * 2009-10-02 2011-04-14 Hitachi Automotive Systems Ltd Semiconductor device, power semiconductor module, and power converter equipped with power semiconductor module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315073B2 (en) * 2009-02-02 2013-10-16 日立オートモティブシステムズ株式会社 Power converter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078855A (en) * 1998-08-31 2000-03-14 Aisin Aw Co Ltd Inverter
JP2002369550A (en) * 2001-06-11 2002-12-20 Hitachi Ltd Power converter and movable body therewith
JP2005341630A (en) * 2004-05-24 2005-12-08 Mitsubishi Electric Corp Power converter
JP2008029093A (en) * 2006-07-20 2008-02-07 Hitachi Ltd Power conversion equipment
JP2008029117A (en) * 2006-07-21 2008-02-07 Hitachi Ltd Power conversion device
JP2010119299A (en) * 2008-03-11 2010-05-27 Hitachi Automotive Systems Ltd Power conversion device
JP2010010468A (en) * 2008-06-27 2010-01-14 Kokusan Denki Co Ltd Power control apparatus for vehicles
JP2011067093A (en) * 2008-07-29 2011-03-31 Hitachi Automotive Systems Ltd Power converter
JP2011077464A (en) * 2009-10-02 2011-04-14 Hitachi Automotive Systems Ltd Semiconductor device, power semiconductor module, and power converter equipped with power semiconductor module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139934A (en) * 2016-02-05 2017-08-10 株式会社デンソー Electric power conversion system
WO2017135071A1 (en) * 2016-02-05 2017-08-10 株式会社デンソー Power conversion device
US10524375B2 (en) 2016-02-05 2019-12-31 Denso Corporation Electric power converter
WO2020234029A1 (en) * 2019-05-20 2020-11-26 Valeo Equipements Electriques Moteur Electronic control system for electric machine and electric assembly
FR3096549A1 (en) * 2019-05-20 2020-11-27 Valeo Equipements Electriques Moteur Electronic control system for electric machine and electric assembly
US20220209678A1 (en) * 2019-05-20 2022-06-30 Valeo Equipements Electriques Moteur Electronic control system for electric machine and electric assembly
JP2021119740A (en) * 2019-08-23 2021-08-12 株式会社デンソー Power conversion device
CN111697846A (en) * 2020-06-10 2020-09-22 中国第一汽车股份有限公司 Motor controller and vehicle
CN111697846B (en) * 2020-06-10 2021-08-24 中国第一汽车股份有限公司 Motor controller and vehicle

Also Published As

Publication number Publication date
JP2013027259A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP6818785B6 (en) Power semiconductor device and power conversion device using it
JP5508357B2 (en) Power converter
JP5563383B2 (en) Power converter
CN103703667B (en) Power-converting device
JP5455888B2 (en) Power converter for vehicle
JP5851372B2 (en) Power converter
WO2012090877A1 (en) Electrical power conversion device
JP5592496B2 (en) Power converter
WO2013015371A1 (en) Case division structure of power conversion device
WO2011125779A1 (en) Power conversion device
WO2011125781A1 (en) Power conversion device
JP5707279B2 (en) Power converter
JP5815063B2 (en) Power converter
WO2013080747A1 (en) Electromechanical electric drive device
WO2014083964A1 (en) Inverter device and inverter device integrated in motor
JP2014166043A (en) Electric power conversion apparatus
JP5802629B2 (en) Power converter
JP5857092B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12816999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12816999

Country of ref document: EP

Kind code of ref document: A1