WO2013080747A1 - Electromechanical electric drive device - Google Patents

Electromechanical electric drive device Download PDF

Info

Publication number
WO2013080747A1
WO2013080747A1 PCT/JP2012/078561 JP2012078561W WO2013080747A1 WO 2013080747 A1 WO2013080747 A1 WO 2013080747A1 JP 2012078561 W JP2012078561 W JP 2012078561W WO 2013080747 A1 WO2013080747 A1 WO 2013080747A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
housing
power
electric drive
case
Prior art date
Application number
PCT/JP2012/078561
Other languages
French (fr)
Japanese (ja)
Inventor
和人 大山
宮崎 英樹
勝洋 星野
鈴木 康介
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013080747A1 publication Critical patent/WO2013080747A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a machine-electric integrated electric drive apparatus in which a rotating electrical machine and a power conversion device for driving the electric machine are integrally provided.
  • Patent Document 1 discloses a machine-electric integral type electric drive apparatus in which a rotating electrical machine (hereinafter, a motor, a generator, and a motor generator are collectively referred to as a rotating electrical machine) and a power conversion device are integrally provided.
  • a rotating electrical machine hereinafter, a motor, a generator, and a motor generator are collectively referred to as a rotating electrical machine
  • a power conversion device are integrally provided.
  • the switching element power module, the smoothing capacitor, and the control board are disposed in this order from the case bottom side.
  • the switching element power module is mounted on a heat sink provided in the case.
  • the machine-electric integrated type power converter that controls the rotating electric machine, not only the switching element power module but also the electronic components (especially, the smoothing capacitor which easily rises in temperature) used in the power converter are efficiently cooled It is desirable to do.
  • the rotating electric machine attached with a power conversion device is housed in an engine room, Ambient temperature tends to be high.
  • the machine-electric integrated type electric drive apparatus has a rotary electric machine having a rotor, a stator, and a housing in which a first refrigerant flow path is formed to hold the stator, and an inverter circuit.
  • a mechanical-electrical integrated type electric drive device comprising a fixed power conversion device, the power conversion device comprising a smoothing capacitor provided on the DC input side of the inverter circuit, a second refrigerant flow path, and a smoothing
  • An inverter case having a flow path forming portion in which a concave portion in which a capacitor is disposed is formed, and a bottomed cylindrical module case accommodating a power semiconductor element for power conversion, at least a part of the module case And a plurality of power semiconductor modules disposed in the second refrigerant flow path, and the power conversion device includes a bottom surface portion of the concave portion in which the smoothing capacitor is disposed. Characterized in that it is fixed to the housing so as to contact the outer periphery of the grayed.
  • condenser module which is a circuit component provided in the power converter device can be cooled more effectively by utilizing the cooling system by the side of rotation electrical machinery.
  • FIG. 2 is a view showing a control block of a hybrid vehicle equipped with the electric drive device of the present embodiment.
  • FIG. 2 is a block diagram for explaining a power conversion device 200. It is a figure explaining the composition of the electric circuit of inverter circuit 140.
  • FIG. It is an external appearance perspective view of the electric drive 1 in this embodiment.
  • FIG. 5 is a perspective view showing a state in which rotating electrical machine 900 and power conversion device 200 are separated.
  • FIG. 5 is a perspective view showing a state in which rotating electrical machine 900 and power conversion device 200 are separated.
  • FIG. 10 is a cross-sectional view of a rotary electric machine 900.
  • FIG. 2 is a view showing the flow of a refrigerant in the electric drive device 1;
  • FIG. 6 is an exploded perspective view of the power conversion device 200.
  • FIG. 6 is an exploded perspective view of the power conversion device 200.
  • FIG. 7 is a plan view of a case 12; It is a figure which shows the bottom side of case 12. As shown in FIG. It is the perspective view which looked at case 12 from the bottom side.
  • It is a perspective view of power module 300U.
  • It is a perspective view of power module 300U.
  • FIG. 6 is an external perspective view of a capacitor module 500.
  • FIG. 6 is an external perspective view of a capacitor module 500.
  • FIG. 14 is a plan view showing a state in which power modules 300U to 300W, a capacitor module 500, and an AC bus bar 802 are attached to case 12;
  • FIG. 17 is a perspective view showing in detail the connection between the terminals of power modules 300U-300W and AC bus bars 802U-802W.
  • FIG. 10 is a cross-sectional view showing a power conversion device 200 and a part of a rotating electrical machine 900 to which the power conversion device 200 is attached. It is a figure which shows the AA cross section of FIG. It is a figure which shows the internal structure of the power converter device 200, Comprising: It is an external appearance perspective view which deleted case 12 and the lid 8 from the power converter device 200.
  • FIG. FIG. 6 is a horizontal sectional view of the case 12 at the centers of the inlet pipe 13 and the outlet pipe 14; It is a schematic diagram for demonstrating arrangement
  • FIG. 1 is a diagram showing a control block of a hybrid vehicle (hereinafter referred to as "HEV").
  • HEV hybrid vehicle
  • Engine EGN and rotating electric machine 900 generate a traveling torque of the vehicle.
  • the rotary electric machine 900 not only generates rotational torque, but also has a function of converting mechanical energy externally applied to the rotary electric machine 900 into electric power.
  • the rotary electric machine 900 is, for example, a synchronous machine or an induction machine, and as described above, operates as a motor or a generator according to the operation method.
  • a permanent magnet synchronous motor using a magnet such as neodymium is suitable.
  • the permanent magnet type synchronous motor has less heat generation of the rotor as compared with the induction motor, and is also excellent for automobiles in this respect.
  • the output torque on the output side of the engine EGN is transmitted to the rotary electric machine 900 via the power distribution mechanism TSM.
  • the rotational torque from the power distribution mechanism TSM or the rotational torque generated by the rotary electric machine 900 is transmitted to the wheels via the transmission TM and the differential gear DEF.
  • rotational torque is transmitted from the wheels to the rotating electrical machine 900, and AC power is generated based on the supplied rotational torque.
  • the generated AC power is converted into DC power by the power conversion device 200 as described later, and charges the high voltage battery 136.
  • the charged power is used again as traveling energy.
  • the inverter circuit 140 is electrically connected to the battery 136 via a direct current connector (not shown), and power exchange between the battery 136 and the inverter circuit 140 is performed.
  • the inverter circuit 140 When the rotary electric machine 900 is operated as a motor, the inverter circuit 140 generates AC power based on DC power supplied from the battery 136 via a DC connector (not shown).
  • the AC power is supplied to rotating electric machine 900 via AC bus bars 802 (802U to 802W).
  • the vehicle by operating the rotary electric machine 900 as a motor by the electric power of the battery 136, the vehicle can be driven only by the power of the rotary electric machine 900. Furthermore, in the present embodiment, the battery 136 is charged by operating the rotary electric machine 900 as a generator by the power of the engine 120 or the power from the wheels.
  • the battery 136 is also used as a power source for driving a motor for the accessory.
  • the auxiliary motor include a motor that drives a compressor of an air conditioner, and a motor that drives a hydraulic pump for control.
  • DC power is supplied from the battery 136 to the accessory power module, and the accessory power module generates alternating current power and supplies it to the accessory motor.
  • the accessory power module has basically the same circuit configuration and function as the inverter circuit 140, and controls the phase, frequency, and power of alternating current supplied to the accessory motor.
  • Power conversion device 200 includes capacitor module 500 for smoothing DC power supplied to inverter circuit 140.
  • the power conversion device 200 includes a communication connector 21 for receiving a command from a higher control device (not shown) or transmitting data representing a state to the higher control device.
  • the power conversion device 200 calculates the control amount of the rotary electric machine 900 by the control circuit 172 based on the command input from the connector 21. Furthermore, the power conversion device 200 calculates whether to operate as a motor or to operate as a generator, generates a control pulse based on the calculation result, and supplies the control pulse to the driver circuit 174.
  • the driver circuit 174 generates a drive pulse for controlling the inverter circuit 140 based on the supplied control pulse.
  • an insulated gate bipolar transistor is used as a semiconductor element, and hereinafter abbreviated as IGBT.
  • a series circuit 150 of the upper and lower arms is configured by the IGBT 328 and the diode 156 operating as the upper arm, and the IGBT 330 and the diode 166 operating as the lower arm.
  • the inverter circuit 140 includes the series circuit 150 corresponding to three phases of U-phase, V-phase, and W-phase of AC power to be output.
  • a series circuit 150 of upper and lower arms of each of the three phases outputs an alternating current from an intermediate electrode 169 which is a middle point portion of the series circuit.
  • the intermediate electrode 169 is connected through an AC terminal 159 to an AC bus bar 802 described below, which is an AC power line to the rotary electric machine 900.
  • the collector electrode 153 of the IGBT 328 of the upper arm is electrically connected to the capacitor terminal 506 on the positive electrode side of the capacitor module 500 via the positive electrode terminal 157.
  • the emitter electrode of the lower arm IGBT 330 is electrically connected to the capacitor terminal 504 on the negative electrode side of the capacitor module 500 through the negative electrode terminal 158.
  • control circuit 172 receives a control command from the host control device via the connector 21, generates a control pulse based on this, and supplies it to the driver circuit 174.
  • the control pulse is a control signal for controlling the IGBT 328 or IGBT 330 which constitutes the upper arm or the lower arm of the series circuit 150 of each phase provided in the inverter circuit 140.
  • the driver circuit 174 supplies drive pulses for controlling the IGBTs 328 and IGBTs 330 constituting the upper arm or lower arm of the series circuit 150 of each phase to the IGBTs 328 and IGBTs 330 of each phase based on the control pulse.
  • the IGBTs 328 and IGBTs 330 conduct or cut off based on the drive pulse from the driver circuit 174, and convert the DC power supplied from the battery 136 into three-phase AC power. The converted power is supplied to the rotating electric machine 900.
  • the IGBT 328 includes a collector electrode 153, a signal emitter electrode 155, and a gate electrode 154.
  • the IGBT 330 further includes a collector electrode 163, an emitter electrode 165 for signal, and a gate electrode 164.
  • a diode 156 is electrically connected between the collector electrode 153 and the emitter electrode 155.
  • a diode 166 is electrically connected between the collector electrode 163 and the emitter electrode 165.
  • a metal oxide semiconductor type field effect transistor (hereinafter abbreviated as a MOSFET) may be used as the switching power semiconductor element.
  • MOSFET metal oxide semiconductor type field effect transistor
  • the diode 156 and the diode 166 become unnecessary.
  • an IGBT is suitable when the DC voltage is relatively high
  • a MOSFET is suitable when the DC voltage is relatively low.
  • the capacitor module 500 includes a positive side capacitor terminal 506, a negative side capacitor terminal 504, a positive side power supply terminal 509, and a negative side power supply terminal 508.
  • the battery 136 is connected to the power supply terminals 509 and 508, and high voltage DC power is input from the battery 136 and is output to the inverter circuit 140 from the capacitor terminals 506 and 504.
  • DC power converted from AC power by the inverter circuit 140 is supplied from the capacitor terminals 506 and 504 to the capacitor module 500, and supplied from the power terminals 509 and 508 to the battery 136 via the DC connector 138. It is accumulated.
  • the control circuit 172 includes a microcomputer (hereinafter referred to as a “microcomputer”) for arithmetically processing the switching timing of the IGBT 328 and the IGBT 330.
  • a microcomputer for arithmetically processing the switching timing of the IGBT 328 and the IGBT 330.
  • As input information to the microcomputer there are a target torque value required for the rotary electric machine 900, a current value supplied from the series circuit 150 to the rotary electric machine 900, and a magnetic pole position of a rotor of the rotary electric machine 900.
  • the target torque value is based on a command signal output from a not-shown upper controller.
  • the current value is detected based on a detection signal from the current sensor 180.
  • the magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) such as a resolver provided in the rotary electric machine 900.
  • a rotating magnetic pole sensor not shown
  • the case where the current sensor 180 detects current values of three phases is taken as an example, but current values of two phases may be detected and currents of three phases may be obtained by calculation. .
  • the microcomputer in control circuit 172 calculates the d-axis and q-axis current command values of rotary electric machine 900 based on the target torque value, and the calculated d-axis and q-axis current command values and detected d
  • the voltage command values of d axis and q axis are calculated based on the difference between the current values of the axis and q axis, and the calculated voltage command values of d axis and q axis are calculated based on the detected magnetic pole position. Convert to voltage command value of phase, V phase and W phase.
  • the microcomputer generates a pulse-like modulated wave based on the comparison between the fundamental wave (sine wave) and the carrier wave (triangular wave) based on the voltage command values of U phase, V phase and W phase, and the generated modulation
  • the wave is output to the driver circuit 174 as a PWM (pulse width modulation) signal.
  • the driver circuit 174 When driving the lower arm, the driver circuit 174 outputs a drive signal obtained by amplifying the PWM signal to the gate electrode of the IGBT 330 of the corresponding lower arm. Also, when driving the upper arm, the driver circuit 174 shifts the level of the reference potential of the PWM signal to the level of the reference potential of the upper arm, amplifies the PWM signal, and uses it as a drive signal to drive the corresponding upper arm. Output to the gate electrodes of the IGBTs 328 of FIG.
  • the microcomputer in the control circuit 172 performs abnormality detection (overcurrent, overvoltage, overtemperature, etc.) to protect the series circuit 150. Therefore, sensing information is input to the control circuit 172. For example, from the emitter electrode 155 for signals of each arm and the emitter electrode 165 for signals, information of the current flowing to the emitter electrodes of the IGBTs 328 and IGBTs 330 is input to the corresponding driver (IC).
  • each drive unit (IC) performs overcurrent detection, and when an overcurrent is detected, stops the switching operation of the corresponding IGBT 328 and IGBT 330 and protects the corresponding IGBT 328 and IGBT 330 from the overcurrent.
  • Information on the temperature of the series circuit 150 is input to the microcomputer from a temperature sensor (not shown) provided in the series circuit 150. Also, information on the voltage on the DC positive side of the series circuit 150 is input to the microcomputer. The microcomputer performs over temperature detection and over voltage detection based on the information, and stops the switching operation of all the IGBTs 328 and IGBTs 330 when the over temperature or the over voltage is detected.
  • FIG. 4 is an external perspective view of the electric drive device 1 in the present embodiment.
  • the electric drive device 1 has an integrated structure of the rotary electric machine 900 and the power conversion device 200 shown in FIG. 5 and 6 show a state in which the rotating electrical machine 900 and the power conversion device 200 are separated.
  • the rotary electric machine 900 has a housing 912, a front bracket 908, and a rear bracket 910 as exterior parts, and they are usually made by die-casting or casting of metal typified by aluminum.
  • the power conversion device 200 is fixed to the outer peripheral surface of the housing 912 which is the radial position of the rotary electric machine 900.
  • a front bracket 908 and a rear bracket 910 are provided at both axial ends of the housing 912.
  • a rotor shaft 920 protrudes from the center of the front bracket 908.
  • the case 12 in which the circuit component which comprises the power converter device 200 is accommodated has comprised substantially cubic shape, and the cover 8 is being fixed to the upper opening part. Although details will be described later, a channel for flowing the cooling medium is formed in the case 12, and an inlet pipe 13 for introducing the cooling medium and an outlet pipe for discharging the cooling medium are formed on the side wall of the case 12 14 is provided.
  • the connector 21 described above is exposed to the outside from the openings 12 h and 8 a (see FIGS. 5 and 6) formed in the side wall 12 b of the case 12 and the lid 8.
  • the AC terminals 902U, 902V and 902W of the rotary electric machine 900 are disposed on the mounting surface 912e of the housing 912 to which the case 12 is fixed, and the concave shape is adjacent to the AC terminals 902U, 902V and 902W.
  • the bottom surface portion 405f is formed to project further than the lower ends of the side walls 12a to 12d provided on four sides of the case 12.
  • a lower cover 420 covers the bottom side of the flow path.
  • the case 12 of the power conversion device 200 contacts only the housing 912 of the rotary electric machine 900. Therefore, on the side of the rotary electric machine 900, machining for securing the attachment surface accuracy may be performed only on the housing 912, and the other front brackets 908 and rear brackets 910 become unnecessary, thereby improving productivity.
  • the bottom surface side of the case 12 is formed with a surface 12 e which is recessed from the bottom surface portion 405 f separately from the above-described bottom surface portion 405 f.
  • a through hole 12i is formed in the surface 12e, and the AC bus bars 802U, 802V, 802W are bent from the upper side to the lower side of the through hole 12i.
  • the AC bus bars 802U, 802V, 802W are connected to AC terminals 902U, 902V, 902W disposed on the mounting surface 912e of the housing 912.
  • FIG. 7 is a cross-sectional view of the rotary electric machine 900.
  • a stator 940 provided with armature windings for three phases is fixed to a center bracket 909.
  • the rotor shaft 920 to which the rotor 930 is fixed is rotatably held by the front bracket 908 and the rear bracket 910 at both ends.
  • the rotor 930 is housed with a slight clearance in the radial direction so as to be rotatable in the stator 940.
  • a groove is formed on the outer periphery of the center bracket 909 so as to surround the stator 940.
  • the center bracket 909 is housed inside the housing 912, and the grooves of the center bracket 909 and the inner peripheral surface of the housing 912 form flow paths 919b and 919c.
  • the flow path 919 b and the flow path 919 c are connected to form one connected flow path 919. That is, the center bracket 909 and the housing 912 form a motor housing having a flow passage 919.
  • the stator 940 is cooled by the refrigerant by holding the stator 940 on the inner peripheral side of the motor housing provided with such a flow path.
  • AC terminals 902U to 902W are provided so as to project from surface 912e of housing 912, to which corresponding armature windings of stator 940 are connected.
  • FIG. 8 is a view showing the flow of the refrigerant in the electric drive device 1, and the arrow shows the flow of the refrigerant.
  • the refrigerant is supplied from an inlet pipe 13 provided in the case 12 of the power conversion device 200, and flows into a flow path (details will be described later) formed in the case.
  • the refrigerant having flowed through the flow path of the case 12 is discharged from the outlet pipe 14.
  • the outlet pipe 14 is connected to the inlet pipe 913 provided on the outer periphery of the housing 912 of the rotary electric machine 900 via the relay member 14 a, and the refrigerant discharged from the outlet pipe 14 is shown in FIG. It flows into the flow path 919b.
  • the refrigerant flows in the order of the flow path 919b and the flow path 919c, and is discharged from the outlet pipe 914 provided on the outer periphery of the housing 912 and connected to the flow path 919c.
  • the refrigerant flows through the flow path of the case 12 and the flow paths 919b and 919c of the rotary electric machine 900, thereby cooling the circuit components and the rotary electric machine 900 provided in the case 12 and the stator of the rotary electric machine 900. 940 is cooled.
  • the flow of the refrigerant is connected from power conversion device 200 to rotary electric machine 900 by using relay member 14a which is a communication pipe, but relay member 14a is used.
  • relay member 14a which is a communication pipe, but relay member 14a is used.
  • the refrigerant for example, water, LLC (long life coolant: antifreeze liquid) is often used, but in the following, it will be described as cooling water
  • FIG. 9 and 10 are exploded perspective views of the power conversion device 200.
  • FIG. The case 12 is a rectangular solid having a substantially square planar shape, and an upper storage space for storing the control circuit board 20, the driver circuit board 22, the AC bus bars 802U, 802V, 802W, etc., and a flow path forming portion 12g are formed. And a lower storage space.
  • the control circuit 172 shown in FIG. 2 is mounted on the control circuit board 20 having the connector 21, and the driver circuit 174 is mounted on the driver circuit board 22.
  • the control circuit board 20 and the driver circuit board 22 are connected by a flat cable 25.
  • the top opening of the case 12 is covered by a lid 8. Openings 8a and 12h for the connector 21 are formed in the lid 8 and the case 12 as shown in FIG. Low voltage DC power for operating the control circuit in the power conversion device 200 is supplied from the connector 21.
  • a flow passage 19 (see FIG. 12) through which the cooling water flows is formed in the flow passage forming portion 12g.
  • the flow path 19 is formed in a U shape flowing parallel to the three side walls (side walls 12 a to 12 c shown in FIG. 6) of the case 12, and the cooling water is provided on the side wall 12 d of the case 12. It flows into the flow path from the inlet pipe 13 and flows out from the outlet pipe 14 provided on the side wall 12 d.
  • the portion where the pipes 13 and 14 are provided is formed in a step-like shape.
  • FIG. 11 is a plan view of the case 12, and FIG. 12 is a view showing the bottom side of the case 12.
  • FIG. 13 is a perspective view of the case 12 as viewed from the bottom side.
  • Power modules 300U, 300V, 300W incorporating the electronic components constituting the series circuit 150 of FIG. 3 are inserted into the flow path 19 from the openings 400a to 400c (see FIG. 9).
  • the power module 300U incorporates the U-phase series circuit 150
  • the power module 300V incorporates the V-phase series circuit 150
  • the power module 300W incorporates the W-phase series circuit 150.
  • These three power modules 300U to 300W have the same configuration, and the external shape is also the same.
  • the openings 402a to 402c are closed by the flanges of the inserted power modules 300U to 300W.
  • the storage space 405 is formed so as to be surrounded by a U-shaped flow passage 19.
  • the side surfaces 405a to 405d of the storage space 405 are formed to be substantially in contact with the side surfaces of the capacitor module 500 disposed on the bottom surface portion 405f.
  • the condenser module 500 stored in the storage space 405 is cooled by the cooling water flowing in the flow path 19.
  • the gap between the side surface of the capacitor module 500 and the side surfaces 405a to 405d may be filled with gel or grease.
  • the direct current terminals 509 and 508 provided in the capacitor module 500 protrude from 12j of the case 12 and are connected to the battery 136 by direct current wiring (not shown).
  • a U-shaped opening 404 is formed on the lower surface 12 e of the flow path forming portion 12 g along the flow path 19.
  • the opening 404 is closed by a U-shaped lower cover 420.
  • a seal member 409e is provided between the lower cover 420 and the surface 12e of the case 12 to maintain airtightness.
  • the outer peripheral surface of the bottom surface portion 405f of the storage space 405 protrudes below the surface 12e of the flow path forming portion 12g.
  • the channel 19 having a U-shape is divided into three channel sections 19a, 19b and 19c depending on the flow direction of the cooling water.
  • the first flow passage section 19a is provided along the side wall 12a opposite to the side wall 12d provided with the pipes 13, 14 and the second flow passage section 19b is on one side of the side wall 12a.
  • the third flow path section 19c is provided along the side wall 12c adjacent to the other side of the side wall 12a.
  • the upstream flow passage section 19 b is in communication with the communication passage 12 k to which the inlet pipe 13 is attached.
  • the downstream flow passage section 19 c communicates with the communication passage 12 m to which the outlet pipe 14 is attached.
  • the cooling water flows from the inlet pipe 13 into the flow path section 19b, and flows in the order of the flow path section 19b, the flow path section 19a, and the flow path section 19c as shown by the broken arrow. It is drained.
  • the opening 402a described above is formed at a position facing the flow passage section 19a on the upper surface of the flow passage forming portion so that the longitudinal direction is parallel to the side wall 12a.
  • the opening 402 b is formed at a position facing the flow passage section 19 b on the upper surface of the flow passage forming portion so that the longitudinal direction is parallel to the side wall 12 b.
  • the opening 402 c is formed at a position facing the flow passage section 19 c on the upper surface of the flow passage forming portion so that the longitudinal direction is parallel to the side wall 12 c.
  • the power modules 300U to 300W are inserted into the flow path 19 through the openings 402a to 402c. Seal members 409a to 409c are provided between the power modules 300U to 300W and the case 12 to maintain airtightness.
  • the lower cover 420 is formed with a projection 406 projecting in the direction of the bottom of the case 12 at a position facing the above-described openings 402a to 402c.
  • these convex portions 406 are concave when viewed from the flow path 19 side, and the lower end portions of the power modules 300U to 300W inserted from the openings 402a to 402c are in these concaves. Get in. Since the case 12 is formed so that the opening 404 and the openings 402a to 402c face each other, the case 12 is configured to be easily manufactured by aluminum casting.
  • AC bus bars 802U to 802W are disposed above the capacitor module 500 and in the upper storage space of the case 12.
  • One end of each of the AC bus bars 802U to 802W is connected to the AC terminal 320B of the corresponding power module, and the other end is an AC provided in the mounting surface 912e of the housing 912 through the through hole 12i formed in the flow path forming portion 12g. It is connected to the terminals 902U to 902W (see FIG. 5).
  • insulating sheet 950 is provided between AC bus bars 802U to 802W and flow path forming portion 12g.
  • the alternating current bus bars 802U to 802W can measure the current value by a current sensor 180 (not shown).
  • the heat from the AC terminals 902U to 902W of the rotary electric machine 900 may be transferred to the AC bus bars 802U to 802W, and the AC bus bars 802U to 802W may be heated to a high temperature.
  • the AC bus bars 802U to 802W pass through the through holes 12i provided not between the flow path 19 and the storage space 405 but between the side wall 12a of the flow path forming portion 12g and the flow path 19. It is connected to the AC terminals 902U to 902W of the rotary electric machine 900. Therefore, the influence of heat transferred from AC terminals 902U to 902W on capacitor module 500 can be reduced.
  • the driver circuit board 22 is disposed above the AC bus bars 802U to 802W, and the control circuit board 20 and the driver circuit board 22 are connected by the flat cable 25.
  • power modules 300U to 300W, driver circuit board 22 and control circuit board 20 are arranged hierarchically in the case height direction, and control circuit board 20 is farthest from power modules 300U to 300W of high-power system. Since the circuit is disposed, the mixing of switching noise and the like on the control circuit board 20 side can be reduced.
  • the case 12 is formed of a metal material such as aluminum.
  • the power modules 300U to 300W used for the inverter circuit 140 will be described with reference to FIGS. 14 to 16.
  • the power modules 300U-300W all have the same structure, and the structure of the power module 300U will be representatively described. 14 to 16, the signal terminal 325U corresponds to the gate electrode 154 and the signal emitter electrode 155 disclosed in FIG. 3, and the signal terminal 325L corresponds to the gate electrode 164 and the emitter electrode 165 disclosed in FIG. .
  • the direct current positive electrode terminal 315B is the same as the positive electrode terminal 157 disclosed in FIG. 3, and the direct current negative electrode terminal 319B is the same as the negative electrode terminal 158 disclosed in FIG.
  • the AC terminal 320B is the same as the AC terminal 159 disclosed in FIG.
  • FIG. 16 is a circuit diagram showing a circuit configuration of power module 300U.
  • the collector electrode of the IGBT 328 on the upper arm side and the cathode electrode of the diode 156 on the upper arm side are connected via the conductor plate 315.
  • the collector electrode of the lower arm IGBT 330 and the cathode electrode of the lower arm diode 166 are connected via the conductor plate 320.
  • the emitter electrode of the IGBT 328 on the upper arm side and the anode electrode of the diode 156 on the upper arm side are connected via the conductor plate 318.
  • the emitter electrode of the lower arm IGBT 330 and the anode electrode of the lower arm diode 166 are connected via the conductor plate 319.
  • the conductor plates 318 and 320 are connected by an intermediate electrode 329.
  • An upper and lower arm series circuit is formed by such a circuit configuration.
  • the bottomed cylindrical module case 304 which is a CAN-type cooler shown in FIGS. 14 and 15, power semiconductor elements (IGBT 328, IGBT 330, diode 156, diode which constitute the series circuit 150 of the upper and lower arms shown in FIG. 166) is stored.
  • a sealing resin 351 is filled in a gap in the module case 304, and the power semiconductor elements and the like contained therein are sealed by the sealing resin 351.
  • the module case 304 is made of a member having electrical conductivity, such as an aluminum alloy material (Al, AlSi, AlSiC, Al-C, etc.), and is integrally molded in a jointless state.
  • the bottomed cylindrical module case 304 has a structure in which no opening is provided other than the insertion port 306, and the insertion port 306 is formed with a flange 304B.
  • the opposing wide surfaces of the flat module case 304 constitute a first heat radiating surface 307A and a second heat radiating surface 307B.
  • a plurality of fins 305 are formed on the first heat radiating surface 307A and the second heat radiating surface 307B so as to be uniformly distributed.
  • the power semiconductor elements (IGBT 328, IGBT 330, diode 156, diode 166) in the module case 304 are disposed to face the heat dissipation surfaces 307A and 307B.
  • Three surfaces (two side surfaces and a bottom surface) connecting the first heat radiating surface 307A and the second heat radiating surface 307B are narrower than the first heat radiating surface 307A and the second heat radiating surface 307B.
  • the shape of the module case 304 does not have to be an accurate rectangular parallelepiped, and the corner portion may have a curved surface as shown in FIGS.
  • a metal DC positive electrode wire 315A and a DC negative electrode wire 319A for electrically connecting to the capacitor module 500 are provided. 157) and a direct current negative electrode terminal 319B (158).
  • a metal AC wire 320A for supplying AC power to the rotary electric machine 900 is provided, and an AC terminal 320B (159) is formed at the tip thereof.
  • metal signal wires 324U and 324L for electrically connecting with the driver circuit 174 are provided outside the insertion port 306, and the signal terminals 325U (154, 155) and the signal terminals are provided at the tip thereof. 325L (164, 165) are respectively formed.
  • the signal wiring 324U is connected to the IGBT 328, and the signal wiring 324L is connected to the IGBT 330.
  • the direct current positive wiring 315A, the direct current negative wiring 319A, the alternating current wiring 320A, the signal wiring 324U and the signal wiring 324L are integrally molded as the auxiliary mold body 600 in a state of being mutually insulated by the wiring insulating portion 608 molded of resin material. Be done.
  • the wire insulating portion 608 also functions as a support member for supporting each wire, and the resin material used for this is suitably a thermosetting resin or a thermoplastic resin having insulation.
  • One end of the DC positive wire 315A, the DC negative wire 319A, the AC wire 320A, the signal wire 324U and the signal wire 324L of the auxiliary mold body 600 is metal-joined to the upper and lower arm series circuit as shown in FIG.
  • TIG welding can be used.
  • the wiring insulating portion 608 is fixed to the module case 304 by the screw 309.
  • the sealing resin 351 is filled in the gap in the module case 304, and the electronic components constituting the upper and lower arm series circuit 150 are sealed in the module case 304.
  • the metal-bonded connection portion is also sealed in the module case 304 by the sealing resin 351.
  • a necessary insulation distance can be stably secured between the connection portion and the module case 304, so that the power module 300U can be miniaturized as compared with the case where the sealing is not performed.
  • FIG. 17 and 18 are external perspective views of the capacitor module 500.
  • FIG. in the capacitor module 500 a plurality of capacitor cells are provided.
  • Capacitor terminals 503 a to 503 c are provided on the top surface of the capacitor module 500 so as to protrude.
  • the capacitor terminals 503a to 503c are provided to correspond to the positive electrode terminal 157 and the negative electrode terminal 158 of each of the power modules 300U to 300W.
  • the capacitor terminals 503a to 503c have the same shape.
  • An insulating sheet 507 is provided between the negative electrode side capacitor terminal 504 and the positive electrode side capacitor terminal 506 which constitute each of the capacitor terminals 503a to 503c, and insulation between the terminals is secured.
  • Power supply terminals 508 (N) and 509 (P) are provided on the side surface 500 d side of the capacitor module 500.
  • the side surfaces 500a, 500b, 500c, and 500d of the capacitor module 500 are side surfaces 405a, 405b, 405c, and 405d of the storage space 405 of the flow path forming portion 12g. To face.
  • FIG. 19 is a plan view showing a state in which power modules 300U to 300W, capacitor module 500, and AC bus bar 802 are attached to case 12.
  • the capacitor module 500 is accommodated in the accommodation space 405, and the power modules 300U to 300W are inserted into the openings 402a to 402c of the flow path forming portion 12g.
  • One ends of the AC bus bars 802U to 803W are connected to the AC terminals 320B of the power modules 300U to 300W.
  • FIG. 20 shows a connection portion 805 of DC positive electrode terminal 315B, DC negative electrode terminal 319B and AC terminal 320B of power modules 300U to 300W, positive electrode side capacitor terminal 506, negative electrode side capacitor terminal 504 of capacitor module 500, and AC bus bars 802U to 802W.
  • 4 is a perspective view showing in detail the connection state of FIG.
  • the DC positive electrode terminal 315B is welded to the positive electrode side capacitor terminal 506, and the DC negative electrode terminal 319B is welded to the negative electrode side capacitor terminal 504.
  • AC terminal 320B is welded to connection portion 805 of the bus bar.
  • the tips of the DC positive terminal 315B, the DC negative terminal 319B, the positive side capacitor terminal 506, the negative side capacitor terminal 504, and the connecting portion 805 have a concavo-convex shape, and such a shape that heat is concentrated on the concavo-convex portion during welding. It has become.
  • FIG. 21 to 23 are diagrams for explaining the connection structure between power conversion device 200 and rotary electric machine 900 in electric drive 1.
  • FIG. 21 is a cross-sectional view showing power conversion device 200 and part of rotary electric machine 900 to which power conversion device 200 is attached.
  • FIG. 22 is a cross-sectional view taken along line AA of FIG.
  • FIG. 23 is a diagram showing the internal structure of power conversion device 200, and is an external perspective view of power conversion device 200 with case 12 and lid 8 removed.
  • the signal terminals 325U and 325L of the power modules 300U to 300W are inserted into through holes of the driver circuit board 22 disposed above the power modules 300U to 300W (upper storage space), and are soldered or the like. It is connected.
  • the gate electrode 154 and the signal emitter electrode 155 of the upper arm and the gate electrode 164 and the signal emitter electrode 165 of the lower arm shown in FIG. 3 are connected to the driver circuit 174.
  • the AC bus bars 802U to 802W are connected to the AC terminals 320B of the power modules 300U to 300W to which the connection parts 805 provided at their one ends correspond.
  • These AC bus bars 802U to 802W are extended from the AC terminals 320B of the power modules 300U to 300W toward the through holes 12i formed in the flow path forming portion 12g as shown in FIGS. It is bent in an L-shape toward the bottom of the case 12 at the portion of the hole 12i.
  • the end portions of the bent alternating current bus bars 802U to 802W are fixed to the alternating current terminals 902U to 902W by bolts 905.
  • connection positions of AC bus bars 802U-W and AC terminals 902U-W are shown by the region outside U-shaped channel 19, that is, by region BC and region AD in FIG. It is provided in an area outside the rectangular area to be Therefore, since the flow path 19 through which the cooling water flows is formed between the AC bus bars 802U to 802W which have become high temperature and the capacitor module 500, the thermal influence on the capacitor module 500 can be reduced.
  • alternating current bus bars 802U to 802W are brought into contact with flow path forming portion 12g via an insulating member such as insulating sheet 950.
  • an insulating member such as insulating sheet 950.
  • AC bus bars 802U to 802W are indirectly contacted with flow path forming portion 12g outside flow path 19 in the portion where power module 300V is arranged.
  • the contact location is not limited to this.
  • the positions of the alternating current terminals 902U to 902W are on the side wall 12b side, through holes for passing the alternating current bus bars 802U to 802W are formed on the outside of the opening 402b. Make it That is, the connection between the AC bus bars 802U to 802W and the AC terminals 902U to 902W is performed outside the flow path 19.
  • the substantially L-shaped alternating current bus bars 802U to 802W are respectively formed as one member, but a plurality of members may be connected.
  • the AC bus bars 802U to 802W are likely to become hot because current flows for driving the rotary electric machine 900, and the peripheral members may be affected by heat.
  • the capacitor module 500 is not directly disposed in the cooling water of the flow path 19 as in the power modules 300U to 300W, attention must be paid to thermal effects.
  • the side surfaces 500a to 500c of the capacitor module 500 are close to and opposed to the side surfaces 405a to 405c near the flow path 19, respectively. Therefore, the heat radiation from the side surfaces 500a to 500c is effectively performed, but the other surfaces of the capacitor module 500 are inferior in heat radiation.
  • the outer peripheral surface of bottom portion 405f with which bottom surface 500f of capacitor module 500 is in contact is cooled by cooling water of housing 912.
  • the mounting surface 912 e is more in contact with the surface 912 f formed on the mounting surface 912 e.
  • the capacitor module 500 is also cooled by the cooling water flowing through the flow path 919 (919b, 919c) formed by the housing 912.
  • FIG. 24 is a horizontal sectional view of the case 12 in which the power modules 300U to 300W and the capacitor module 500 are disposed, at the centers of the inlet pipe 13 and the outlet pipe 14.
  • the U-shaped flow path 19 is formed in the flow path forming portion 12g of the case 12, and the flow path section 19b formed along the side wall 12b on the left side of the figure has a U phase A power module 300U is disposed.
  • a V-phase power module 300V is disposed in the flow path section 19a formed along the side wall 12a opposite to the side wall 12d on which the inlet pipe 13 and the outlet pipe 14 are provided, on the right side wall 12c.
  • the W-phase power module 300W is disposed in the flow passage section 19c formed along the same.
  • a U-shaped flow path 19 is formed along the three side walls 12a to 12c of the case 12 having a substantially square planar shape, and the power modules 300U to 300W are arranged in the flow path sections 19a to 19c.
  • flat power modules 300U to 300W are arranged in parallel to the side walls 12a to 12c.
  • the capacitor module 500 which is an electrical component, is stored in the central region (storage space 405) surrounded by the flow path 19.
  • FIG. 25 is a schematic diagram for explaining the arrangement of power modules 300U to 300W.
  • the power modules 300U to 300W have the same structure and the same shape.
  • the width (length in plan view) of the side walls 12b and 12c of the case 12 needs to be at least the sum of the length L1 along the flow path of the power modules 300U to 300W and the length L2 of the communication paths 12k and 12m. is there.
  • at least the dimension L1 is required for the side wall 12a.
  • the power module is disposed in the region S1 between the pair of power modules 300U and 300W. It is preferable to arrange the power module 300V so that a part of 300V is included.
  • the lateral dimension (width dimension of the side wall 12 a) of the arrangement space in FIG. 25 is at least about L 1 + 2 ⁇ L 3, where L 3 is the thickness of the power module. Therefore, if L3 and L4 are set so that the longitudinal dimension L1 + L2 + (L3-L4) becomes almost the same as L1 + L3, the area in plan view can be made smaller and it can be made substantially square Become.
  • the flow passage section 19a is formed to pass through the region between the power modules 300U and 300W as shown in FIG. In the example shown in FIG. 24, the distance between the power modules 300U and 300W is slightly larger than the dimension L1 of the power module 300V due to the restriction by the dimensions of the capacitor module 500.
  • the flow of cooling water from the inlet pipe 13 to the flow path section 19 b and the flow path from the flow path section 19 c to the outlet pipe 14 becomes linear. Can be made as small as possible. Moreover, while being able to suppress that the installation space of the apparatus by protrusion of piping becomes large, the improvement of a vehicle-mounted property can be aimed at. Furthermore, when the pipes 13 and 14 are press-fit into the communication paths 12k and 12m, since the press-fitting operation is performed on only one surface of the housing, workability and productivity are improved.
  • the capacitor module 500 can be cooled effectively.
  • the electric drive 1 is generally disposed in the engine room in many cases. Since the inside of the engine room becomes relatively high temperature due to the heat from the engine, the rotating electric machine 900 and the like, heat intrusion from the surroundings to the power conversion device 200 becomes a problem.
  • the capacitor module 500 is surrounded on three sides by the flow path 19 through which the cooling water flows, it is possible to effectively block heat intrusion from the periphery of the apparatus.
  • the outer peripheral surface of the bottom surface portion 405f on which the capacitor module 500 is mounted is brought into contact with the housing 912 in which the cooling water flows.
  • the cooling effect of the capacitor module 500 can be further enhanced.
  • FIG. 26 is a cross-sectional view of the electric drive 1 perpendicular to the axial direction, as viewed from the front bracket 908 direction.
  • the openings 402a to 402c formed in the flow path forming portion 12g are closed by the flange 304B provided on the module case 304 of the power modules 300U to 300W.
  • the heat dissipation surfaces 307A and 307B on which the fins 305 for heat dissipation are formed are disposed in the flow path 19, and the lower end portion on which the fins 305 are not provided is a convex portion formed on the lower cover 420 It is housed inside the inner recess of 406. Thereby, it is possible to prevent the cooling water from flowing into the space where the fins 305 are not formed, and it is possible to prevent the lowering of the cooling effect.
  • the relatively heavy capacitor module 500 is disposed at the lower center of the power conversion device 200. Therefore, the center-of-gravity balance of the power conversion device 200 is good, and when vibration is applied, the power conversion device 200 part is hard to go wild, which is very suitable for the mechanical-electrical integrated structure.
  • power conversion device 200 is fixed such that bottom surface portion 405f different from side walls 12a to 12c of case 12 is in contact with surface 912f of mounting surface 912e provided in the radial direction of the rotating electrical machine of housing 912 There is.
  • the bottom surface portion 405f may be in direct contact with the surface 912f, or may be in indirect contact with a heat release sheet (not shown), grease or the like interposed therebetween.
  • the bottom surface 500f not facing the flow path 19 of the capacitor module 500 is cooled by the cooling water flowing in the flow paths 919b and 919c of the housing 912 housing the rotary electric machine 900.
  • the capacitor module 500 can perform double cooling using not only the cooling water flowing through the flow path 19 of the power conversion device 200 but also the cooling water flowing through the flow paths 919 b and 919 c of the rotary electric machine 900. As a result, the cooling effect of the capacitor module 500 is improved.
  • the mounting position of the power converter 200 on the housing 912 will be described with reference to FIGS.
  • the bottom surface portion 405 f of the case 12 is in contact with the surface 912 f of the housing 912.
  • the flow passage 919 of the housing 912 is formed in a ring shape in the circumferential direction of the housing 912, and a part of the heat of the capacitor module 500 passes through the bottom portion 405f and the surface 912f as shown by arrow H. The heat is dissipated to the cooling water of the flow path 919.
  • the distance in the radial direction between the bottom portion 405f of the case 12 and the axis J of the rotary electric machine 900 is reduced as close as possible to the flow path 919 of the housing 912. Is good.
  • case 12 so that the position of the central axis of rotating electric machine 900 (the foot of the perpendicular drawn from axis J of rotating electric machine 900 to surface 912f) enters the contact area between surface 912f and bottom portion 405f of case 12. May be secured to the housing 912. More preferably, the central position of the bottom surface portion 405f (the central position with respect to the horizontal position in FIG. 26) coincides with the position of the axis J of the rotary electric machine 900. With such an arrangement, the difference between the minimum distance Rmin and the maximum distance Rmax is minimized with respect to the distance from the bottom surface 500f of the capacitor module 500 to the flow path 919 of the rotary electric machine 900. As a result, the cooling balance in the bottom surface 500 f of the capacitor module 500 is improved.
  • the three side surfaces 500a to 500c are cooled by the cooling water of the flow path sections 19a to 19c, and the bottom surface 500f is cooled using the cooling water flowing through the housing 912 can do. And when it considers regarding the remaining two faces 500g and 500d (refer to Drawing 17), it becomes as follows.
  • the side wall 12d of the case 12 needs to be fixed to the mounting surface 912e provided on the housing 912.
  • the side wall 12d is provided with the inlet pipe 13 and the outlet pipe 14 for the cooling water, this is an obstacle when attaching the case 12 to the housing 912, and can not be said to be the best choice. Therefore, the side surface 500d of the capacitor module facing the side wall 12d is not suitable for double cooling (cooling by the coolant in the flow path 19 and cooling by the coolant in the flow path 919).
  • the driver circuit board 22 and the control circuit board 20 are arranged on the upper side of the surface 500g, the driver circuit board 22 and the control circuit board 20, the signal terminals 325U and 325L and the direct current positive terminal 315B of the auxiliary molded body 600, the direct current negative terminal 319B, the alternating current terminal 320B, and the alternating current bus bar 802U. -802 W etc. are arranged. Therefore, it is difficult to bring the surface 500g into direct or indirect contact with the surface 912f of the mounting surface 912e. Therefore, the side surface 500g of the capacitor module facing the side wall 12g is not suitable for double cooling.
  • the surface 912f of the housing 912 can be easily contacted via the bottom surface portion 405f.
  • the shape of three power modules 300U to W is flat, and power modules 300U to 300W are side walls 12a to 12c of case 12 as shown in FIG. Are arranged along the flow path 19 so as to be parallel to each other.
  • the bottom surface portion 405 f of the case 12 and the lower cover 420 can be disposed on the bottom surface 500 f side of the capacitor module 500.
  • the housing 912 of the rotary electric machine 900 can be easily brought into contact with it. It can be cooled using the cooling water flowing through.
  • the electromechanical integrated electric drive apparatus 1 described in the present embodiment has the following effects.
  • the electric drive device 1 has the rotary electric machine 900 having the motor housing (center bracket 909, housing 912) having the rotor 930, the stator 940, and the flow path 919 formed therein and holding the stator 940, and the inverter circuit 140. And a power converter 200 fixed to the outer periphery of the housing 912. Power conversion device 200 has a flow in which smoothing capacitor module 500 provided on the DC input side of inverter circuit 140 and storage space 405 which is a recess in which flow path 19 and capacitor module 500 are arranged are formed.
  • the power conversion device 200 is fixed to the housing 912 such that the bottom surface portion 405f of the storage space 405 in which the capacitor module 500 is disposed is in contact with the outer periphery of the housing 912.
  • the capacitor module 500 is cooled by the refrigerant flowing through the flow passage 19 of the flow passage forming portion 12g, and is also cooled by the refrigerant flowing through the flow passage 919 via the bottom surface portion 405f and the housing 912. As a result, the cooling performance for the capacitor module 500 can be improved.
  • the motor housing is configured by the center bracket 909 and the housing 912 to form the flow passage 919, the motor housing may be one component.
  • the AC bus bars 802U to 802W are directly connected to the AC terminals 902U to 902W of the rotary electric machine 900, the same function and effect can be achieved by a configuration in which the connection is made via a cable instead of direct connection.
  • the flow path 19 includes the flow path sections 19b and 19c provided in parallel to sandwich the capacitor module 500, and the flow path section 19a connecting the opposite ends of the flow path sections 19b and 19c.
  • the storage space 405 is preferably arranged in the area surrounded by the flow path sections 19a to 19c. As described above, by surrounding the storage space 405 in which the capacitor module 500 is disposed by the flow path sections 19a to 19c, the heat dissipation effect from the capacitor module 500 to the refrigerant flowing in the flow path 19 can be enhanced, and the power converter Heat entering the capacitor module 500 from around 200 can be reduced.
  • the power modules are arranged in each of the three flow path sections 19a to 19c, but two power supply sections may be arranged in the flow path section 19b and one may be arranged in the flow path section 19c. Further, the present invention can be applied not only to three phases but also to two phases or six phases.
  • a plurality of AC terminals 902U to 902W connected to the armature winding of the rotary electric machine 900 are respectively disposed, and the AC bus bars 802U to 802W provided in the power conversion device 200 are
  • the power modules 300U-300W extend from the power modules 300U-300W across the flow path 19 to an area outside the area surrounded by the flow path sections 19a-19c, and are connected to the AC terminals in the outer area.
  • the AC terminals 902U to 902W become high temperature due to heat generation of the armature winding, and the temperatures of the AC bus bars 802U to 802W connected to the AC terminals 902U to 902W also rise.
  • the connection portion is a region outside the region surrounded by the flow path sections 19a to 19c, the radiant heat from the connection portion is blocked by the flow path formation portion 12g, and the thermal influence on the capacitor module 500 is It can be prevented.
  • the power conversion device 200 When attaching the power conversion device 200 to the housing 912 of the rotary electric machine 900, the power conversion device 200 is fixed only to the housing 912 so that machining for securing the mounting surface accuracy is a housing Productivity can be improved by performing only 912.
  • the relay member 14a which is a communication pipe connecting the flow passage 919 and the flow passage 19, is provided, and the refrigerant supplied to the flow passage 19 is led to the flow passage 919 through the relay member 14a.
  • the flow path 19 is formed in a U-shape, but only parallel flow paths such as the flow path sections 19 b and 19 c are provided, and the pipes 13 and 14 are not provided. The end may be penetrated to the outside of the case and the both ends may be connected by piping.
  • Electric drive device 12 Case 12a-12d: Side wall 12i: Through hole 19, 1919, 919b, 919c: Flow path 19a-19c: Flow path section 20: Control circuit board 22: Driver circuit Substrate, 136: battery, 140: inverter circuit, 200: power converter, 300 U to 300 W: power module, 304: module case, 405: storage space, 405 a to 405 d: side surface, 405 f: bottom portion, 500: capacitor module, 507, 950: Insulating sheet, 802, 802 U to 802 W: AC bus bar, 900: rotary electric machine, 902 U to 902 W: AC terminal, 908: front bracket, 909: center bracket, 910: rear bracket, 912: housing, 930: rotor , 940: Stator

Abstract

In order to provide an electromechanical electric drive device that is capable of effective cooling by means of a capacitor module provided to a power conversion device, this electric drive device (1) is the result of integrating a rotary electric machine (900) and a power conversion device (200). A pathway (919) is formed at the rotary electric machine (900) by means of a center bracket (909) and a housing (912). The power conversion device (200) is affixed at the outer periphery of the housing (912). The case (12) of the power conversion device (200) is provided with a pathway forming section (12g) at which a pathway (19) and a housing space (405) at which the capacitor module (500) is disposed are formed. Also, the power conversion device (200) is affixed to the housing (912) in a manner so that the bottom surface section (405f) of the housing space (405) at which the capacitor module (500) is disposed contacts the outer periphery of the housing (912).

Description

機電一体型の電動駆動装置Machine-electric integrated electric drive
 本発明は、回転電機とそれを駆動するための電力変換装置とが一体に設けられた機電一体型の電動駆動装置に関する。 The present invention relates to a machine-electric integrated electric drive apparatus in which a rotating electrical machine and a power conversion device for driving the electric machine are integrally provided.
 回転電機(以下では、モータ、ジェネレータ、及びモータジェネレータを総称して回転電機と呼ぶことにする)と電力変換装置とが一体に設けられた機電一体型の電動駆動装置として、例えば、特許文献1に記載されるものがある。特許文献1に記載の例では、モータハウジングに取り付けられるケース内に、ケース底部側からスイッチング素子パワーモジュール、平滑コンデンサ、制御基板の順に配置されている。スイッチング素子パワーモジュールは、ケースに設けられたヒートシンクに載置されている。 For example, Patent Document 1 discloses a machine-electric integral type electric drive apparatus in which a rotating electrical machine (hereinafter, a motor, a generator, and a motor generator are collectively referred to as a rotating electrical machine) and a power conversion device are integrally provided. There is what is described in. In the example described in Patent Document 1, in the case attached to the motor housing, the switching element power module, the smoothing capacitor, and the control board are disposed in this order from the case bottom side. The switching element power module is mounted on a heat sink provided in the case.
特開2003-199363号公報Unexamined-Japanese-Patent No. 2003-199363
 しかしながら、回転電機を制御する機電一体型の電力変換装置においては、スイッチング素子パワーモジュールだけでなく、電力変換装置に使用される電子部品(特に、温度上昇しやすい平滑コンデンサ)も合せて効率良く冷却することが望ましい。例えば、回転電機が発生する回転トルクにより車両を走行する電気自動車や、エンジンとモータの両方の出力に基づいて走行するハイブリット自動車では、電力変換装置が取り付けられた回転電機はエンジンルームに収納され、周囲環境温度が高くなりやすい。 However, in the machine-electric integrated type power converter that controls the rotating electric machine, not only the switching element power module but also the electronic components (especially, the smoothing capacitor which easily rises in temperature) used in the power converter are efficiently cooled It is desirable to do. For example, in an electric car traveling a vehicle with a rotational torque generated by a rotating electric machine, and a hybrid car traveling based on outputs of both an engine and a motor, the rotating electric machine attached with a power conversion device is housed in an engine room, Ambient temperature tends to be high.
 請求項1の発明による機電一体型の電動駆動装置は、ロータ、ステータ、および第1の冷媒流路が形成されてステータを保持するハウジングを有する回転電機と、インバータ回路を有しハウジングの外周に固定される電力変換装置と、を備えた機電一体型の電動駆動装置であって、電力変換装置は、インバータ回路の直流入力側に設けられた平滑用コンデンサと、第2の冷媒流路と平滑コンデンサが配置される凹部とが形成された流路形成部を有するインバータケースと、電力変換用のパワー半導体素子が収納された有底筒状のモジュールケースを有し、該モジュールケースの少なくとも一部が第2の冷媒流路内に配置される複数のパワー半導体モジュールと、を備え、電力変換装置は、平滑コンデンサが配置された凹部の底面部がハウジングの外周に接触するように該ハウジングに固定されていることを特徴とする。 The machine-electric integrated type electric drive apparatus according to the invention of claim 1 has a rotary electric machine having a rotor, a stator, and a housing in which a first refrigerant flow path is formed to hold the stator, and an inverter circuit. A mechanical-electrical integrated type electric drive device comprising a fixed power conversion device, the power conversion device comprising a smoothing capacitor provided on the DC input side of the inverter circuit, a second refrigerant flow path, and a smoothing An inverter case having a flow path forming portion in which a concave portion in which a capacitor is disposed is formed, and a bottomed cylindrical module case accommodating a power semiconductor element for power conversion, at least a part of the module case And a plurality of power semiconductor modules disposed in the second refrigerant flow path, and the power conversion device includes a bottom surface portion of the concave portion in which the smoothing capacitor is disposed. Characterized in that it is fixed to the housing so as to contact the outer periphery of the grayed.
 本発明によれば、回転電機側の冷却系を利用することで、電力変換装置に設けられた回路部品であるコンデンサモジュールをより効果的に冷却することができる。 ADVANTAGE OF THE INVENTION According to this invention, the capacitor | condenser module which is a circuit component provided in the power converter device can be cooled more effectively by utilizing the cooling system by the side of rotation electrical machinery.
本実施の形態の電動駆動装置が搭載されたハイブリッド自動車の制御ブロックを示す図である。FIG. 2 is a view showing a control block of a hybrid vehicle equipped with the electric drive device of the present embodiment. 電力変換装置200を説明するブロック図である。FIG. 2 is a block diagram for explaining a power conversion device 200. インバータ回路140の電気回路の構成を説明する図である。It is a figure explaining the composition of the electric circuit of inverter circuit 140. FIG. 本実施形態における電動駆動装置1の外観斜視図である。It is an external appearance perspective view of the electric drive 1 in this embodiment. 回転電機900と電力変換装置200とを分離した状態を示す斜視図である。FIG. 5 is a perspective view showing a state in which rotating electrical machine 900 and power conversion device 200 are separated. 回転電機900と電力変換装置200とを分離した状態を示す斜視図である。FIG. 5 is a perspective view showing a state in which rotating electrical machine 900 and power conversion device 200 are separated. 回転電機900の断面図である。FIG. 10 is a cross-sectional view of a rotary electric machine 900. 電動駆動装置1における冷媒の流れを示す図である。FIG. 2 is a view showing the flow of a refrigerant in the electric drive device 1; 電力変換装置200の分解斜視図である。FIG. 6 is an exploded perspective view of the power conversion device 200. 電力変換装置200の分解斜視図である。FIG. 6 is an exploded perspective view of the power conversion device 200. ケース12の平面図である。FIG. 7 is a plan view of a case 12; ケース12の底面側を示す図である。It is a figure which shows the bottom side of case 12. As shown in FIG. ケース12を底面側から見た斜視図である。It is the perspective view which looked at case 12 from the bottom side. パワーモジュール300Uの斜視図である。It is a perspective view of power module 300U. パワーモジュール300Uの斜視図である。It is a perspective view of power module 300U. パワーモジュール300Uの回路構成を示す回路図である。It is a circuit diagram showing the circuit composition of power module 300U. コンデンサモジュール500の外観斜視図である。FIG. 6 is an external perspective view of a capacitor module 500. コンデンサモジュール500の外観斜視図である。FIG. 6 is an external perspective view of a capacitor module 500. ケース12にパワーモジュール300U~300W、コンデンサモジュール500、交流バスバー802が組みつけられた状態を示す平面図である。FIG. 14 is a plan view showing a state in which power modules 300U to 300W, a capacitor module 500, and an AC bus bar 802 are attached to case 12; パワーモジュール300U~300Wの各端子と交流バスバー802U~802Wとの接続状態を詳細に示す斜視図である。FIG. 17 is a perspective view showing in detail the connection between the terminals of power modules 300U-300W and AC bus bars 802U-802W. 電力変換装置200と、電力変換装置200が取り付けられている回転電機900の一部とを示す断面図である。FIG. 10 is a cross-sectional view showing a power conversion device 200 and a part of a rotating electrical machine 900 to which the power conversion device 200 is attached. 図21のA-A断面を示す図である。It is a figure which shows the AA cross section of FIG. 電力変換装置200の内部構造を示す図であって、電力変換装置200からケース12と蓋8を削除した外観斜視図である。It is a figure which shows the internal structure of the power converter device 200, Comprising: It is an external appearance perspective view which deleted case 12 and the lid 8 from the power converter device 200. FIG. ケース12を、入口配管13および出口配管14の中心で水平に断面した図である。FIG. 6 is a horizontal sectional view of the case 12 at the centers of the inlet pipe 13 and the outlet pipe 14; パワーモジュール300U~300Wの配置を説明するための模式図である。It is a schematic diagram for demonstrating arrangement | positioning of power modules 300U-300W. 電動駆動装置1を軸方向に対して垂直に断面した図である。It is the figure which cut the electric drive 1 perpendicularly to the direction of an axis.
 以下、図を参照して本発明を実施するための形態について説明する。図1は、ハイブリッド自動車(以下「HEV」と記述する)の制御ブロックを示す図である。エンジンEGNおよび回転電機900は車両の走行用トルクを発生する。また、回転電機900は回転トルクを発生するだけでなく、回転電機900に外部から加えられる機械エネルギーを電力に変換する機能を有する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a control block of a hybrid vehicle (hereinafter referred to as "HEV"). Engine EGN and rotating electric machine 900 generate a traveling torque of the vehicle. Furthermore, the rotary electric machine 900 not only generates rotational torque, but also has a function of converting mechanical energy externally applied to the rotary electric machine 900 into electric power.
 回転電機900は、例えば同期機あるいは誘導機であり、上述のごとく、運転方法によりモータとしても発電機としても動作する。回転電機900を自動車に搭載する場合には、小型で高出力を得ることが望ましく、ネオジウムなどの磁石を使用した永久磁石型の同期電動機が適している。また、永久磁石型の同期電動機は誘導電動機に比べて回転子の発熱が少なく、この観点でも自動車用として優れている。 The rotary electric machine 900 is, for example, a synchronous machine or an induction machine, and as described above, operates as a motor or a generator according to the operation method. When the rotary electric machine 900 is mounted on a car, it is desirable to obtain a small size and high output, and a permanent magnet synchronous motor using a magnet such as neodymium is suitable. Further, the permanent magnet type synchronous motor has less heat generation of the rotor as compared with the induction motor, and is also excellent for automobiles in this respect.
 エンジンEGNの出力側の出力トルクは、動力分配機構TSMを介して回転電機900に伝達される。そして、動力分配機構TSMからの回転トルクあるいは回転電機900が発生する回転トルクは、トランスミッションTMおよびデファレンシャルギアDEFを介して車輪に伝達される。一方、回生制動の運転時には、車輪から回転トルクが回転電機900に伝達され、供給されてきた回転トルクに基づいて交流電力を発生する。発生した交流電力は、後述するように電力変換装置200により直流電力に変換され、高電圧用のバッテリ136を充電する。充電された電力は、再び走行エネルギーとして使用される。 The output torque on the output side of the engine EGN is transmitted to the rotary electric machine 900 via the power distribution mechanism TSM. The rotational torque from the power distribution mechanism TSM or the rotational torque generated by the rotary electric machine 900 is transmitted to the wheels via the transmission TM and the differential gear DEF. On the other hand, during the regenerative braking operation, rotational torque is transmitted from the wheels to the rotating electrical machine 900, and AC power is generated based on the supplied rotational torque. The generated AC power is converted into DC power by the power conversion device 200 as described later, and charges the high voltage battery 136. The charged power is used again as traveling energy.
 次に、図2を参照して、電力変換装置200について説明する。インバータ回路140は、バッテリ136と直流コネクタ(不図示)を介して電気的に接続されており、バッテリ136とインバータ回路140との相互において電力の授受が行われる。回転電機900をモータとして動作させる場合には、インバータ回路140は直流コネクタ(不図示)を介してバッテリ136から供給された直流電力に基づき交流電力を発生する。その交流電力は、交流バスバー802(802U~802W)を介して回転電機900に供給される。 Next, the power converter 200 will be described with reference to FIG. The inverter circuit 140 is electrically connected to the battery 136 via a direct current connector (not shown), and power exchange between the battery 136 and the inverter circuit 140 is performed. When the rotary electric machine 900 is operated as a motor, the inverter circuit 140 generates AC power based on DC power supplied from the battery 136 via a DC connector (not shown). The AC power is supplied to rotating electric machine 900 via AC bus bars 802 (802U to 802W).
 なお、本実施形態では、バッテリ136の電力によって回転電機900をモータとして作動させることにより、回転電機900の動力のみによって車両の駆動ができる。さらに、本実施形態では、エンジン120の動力或いは車輪からの動力によって、回転電機900を発電機として作動させることにより、バッテリ136の充電を行う。 In the present embodiment, by operating the rotary electric machine 900 as a motor by the electric power of the battery 136, the vehicle can be driven only by the power of the rotary electric machine 900. Furthermore, in the present embodiment, the battery 136 is charged by operating the rotary electric machine 900 as a generator by the power of the engine 120 or the power from the wheels.
 また、図1では省略したが、バッテリ136はさらに補機用のモータを駆動するための電源としても使用される。補機用のモータとしては例えば、エアコンディショナーのコンプレッサを駆動するモータ、あるいは制御用の油圧ポンプを駆動するモータなどがある。バッテリ136から直流電力が補機用パワーモジュールに供給され、補機用パワーモジュールは交流電力を発生して補機用のモータに供給する。補機用パワーモジュールはインバータ回路140と基本的には同様の回路構成および機能を持ち、補機用のモータに供給する交流の位相や周波数、電力を制御する。なお、電力変換装置200は、インバータ回路140に供給される直流電力を平滑化するためのコンデンサモジュール500を備えている。 Although not shown in FIG. 1, the battery 136 is also used as a power source for driving a motor for the accessory. Examples of the auxiliary motor include a motor that drives a compressor of an air conditioner, and a motor that drives a hydraulic pump for control. DC power is supplied from the battery 136 to the accessory power module, and the accessory power module generates alternating current power and supplies it to the accessory motor. The accessory power module has basically the same circuit configuration and function as the inverter circuit 140, and controls the phase, frequency, and power of alternating current supplied to the accessory motor. Power conversion device 200 includes capacitor module 500 for smoothing DC power supplied to inverter circuit 140.
 電力変換装置200は、上位の制御装置(不図示)から指令を受けたり、あるいは上位の制御装置に状態を表すデータを送信したりするための通信用のコネクタ21を備えている。電力変換装置200は、コネクタ21から入力される指令に基づいて制御回路172で回転電機900の制御量を演算する。さらに、電力変換装置200は、モータとして運転するか発電機として運転するかを演算し、演算結果に基づいて制御パルスを発生し、その制御パルスをドライバ回路174へ供給する。ドライバ回路174は、供給された制御パルスに基づいて、インバータ回路140を制御するための駆動パルスを発生する。 The power conversion device 200 includes a communication connector 21 for receiving a command from a higher control device (not shown) or transmitting data representing a state to the higher control device. The power conversion device 200 calculates the control amount of the rotary electric machine 900 by the control circuit 172 based on the command input from the connector 21. Furthermore, the power conversion device 200 calculates whether to operate as a motor or to operate as a generator, generates a control pulse based on the calculation result, and supplies the control pulse to the driver circuit 174. The driver circuit 174 generates a drive pulse for controlling the inverter circuit 140 based on the supplied control pulse.
 次に、図3を用いてインバータ回路140の電気回路の構成を説明する。なお、以下で半導体素子として絶縁ゲート型バイポーラトランジスタを使用しており、以下略してIGBTと記す。上アームとして動作するIGBT328及びダイオード156と、下アームとして動作するIGBT330及びダイオード166とで、上下アームの直列回路150が構成される。インバータ回路140は、この直列回路150を、出力しようとする交流電力のU相、V相、W相の3相に対応して備えている。 Next, the configuration of the electric circuit of the inverter circuit 140 will be described with reference to FIG. In the following, an insulated gate bipolar transistor is used as a semiconductor element, and hereinafter abbreviated as IGBT. A series circuit 150 of the upper and lower arms is configured by the IGBT 328 and the diode 156 operating as the upper arm, and the IGBT 330 and the diode 166 operating as the lower arm. The inverter circuit 140 includes the series circuit 150 corresponding to three phases of U-phase, V-phase, and W-phase of AC power to be output.
 これらの3相は、この実施の形態では回転電機900の電機子巻線の3相の各相巻線に対応している。3相のそれぞれの上下アームの直列回路150は、直列回路の中点部分である中間電極169から交流電流を出力する。この中間電極169は、交流端子159を通して、回転電機900への交流電力線である以下に説明の交流バスバー802と接続される。 These three phases correspond to the three-phase windings of the armature winding of the rotary electric machine 900 in this embodiment. A series circuit 150 of upper and lower arms of each of the three phases outputs an alternating current from an intermediate electrode 169 which is a middle point portion of the series circuit. The intermediate electrode 169 is connected through an AC terminal 159 to an AC bus bar 802 described below, which is an AC power line to the rotary electric machine 900.
 上アームのIGBT328のコレクタ電極153は、正極端子157を介してコンデンサモジュール500の正極側のコンデンサ端子506に電気的に接続されている。また、下アームのIGBT330のエミッタ電極は、負極端子158を介してコンデンサモジュール500の負極側のコンデンサ端子504に電気的に接続されている。 The collector electrode 153 of the IGBT 328 of the upper arm is electrically connected to the capacitor terminal 506 on the positive electrode side of the capacitor module 500 via the positive electrode terminal 157. The emitter electrode of the lower arm IGBT 330 is electrically connected to the capacitor terminal 504 on the negative electrode side of the capacitor module 500 through the negative electrode terminal 158.
 上述のように、制御回路172は上位の制御装置からコネクタ21を介して制御指令を受け、これに基づいて制御パルスを発生し、ドライバ回路174に供給する。この制御パルスは、インバータ回路140に設けられた各相の直列回路150の上アームあるいは下アームを構成するIGBT328やIGBT330を制御するための制御信号である。 As described above, the control circuit 172 receives a control command from the host control device via the connector 21, generates a control pulse based on this, and supplies it to the driver circuit 174. The control pulse is a control signal for controlling the IGBT 328 or IGBT 330 which constitutes the upper arm or the lower arm of the series circuit 150 of each phase provided in the inverter circuit 140.
 ドライバ回路174は、上記制御パルスに基づき、各相の直列回路150の上アームあるいは下アームを構成するIGBT328やIGBT330を制御するための駆動パルスを各相のIGBT328やIGBT330に供給する。IGBT328やIGBT330は、ドライバ回路174からの駆動パルスに基づき、導通あるいは遮断動作を行い、バッテリ136から供給された直流電力を三相交流電力に変換する。この変換された電力は回転電機900に供給される。 The driver circuit 174 supplies drive pulses for controlling the IGBTs 328 and IGBTs 330 constituting the upper arm or lower arm of the series circuit 150 of each phase to the IGBTs 328 and IGBTs 330 of each phase based on the control pulse. The IGBTs 328 and IGBTs 330 conduct or cut off based on the drive pulse from the driver circuit 174, and convert the DC power supplied from the battery 136 into three-phase AC power. The converted power is supplied to the rotating electric machine 900.
 IGBT328は、コレクタ電極153と、信号用エミッタ電極155と、ゲート電極154を備えている。また、IGBT330は、コレクタ電極163と、信号用のエミッタ電極165と、ゲート電極164を備えている。ダイオード156が、コレクタ電極153とエミッタ電極155との間に電気的に接続されている。また、ダイオード166が、コレクタ電極163とエミッタ電極165との間に電気的に接続されている。 The IGBT 328 includes a collector electrode 153, a signal emitter electrode 155, and a gate electrode 154. The IGBT 330 further includes a collector electrode 163, an emitter electrode 165 for signal, and a gate electrode 164. A diode 156 is electrically connected between the collector electrode 153 and the emitter electrode 155. In addition, a diode 166 is electrically connected between the collector electrode 163 and the emitter electrode 165.
 スイッチング用パワー半導体素子としては金属酸化物半導体型電界効果トランジスタ(以下略してMOSFETと記す)を用いてもよい、この場合はダイオード156やダイオード166は不要となる。スイッチング用パワー半導体素子としては、IGBTは直流電圧が比較的高い場合に適していて、MOSFETは直流電圧が比較的低い場合に適している。 A metal oxide semiconductor type field effect transistor (hereinafter abbreviated as a MOSFET) may be used as the switching power semiconductor element. In this case, the diode 156 and the diode 166 become unnecessary. As a switching power semiconductor element, an IGBT is suitable when the DC voltage is relatively high, and a MOSFET is suitable when the DC voltage is relatively low.
 コンデンサモジュール500は、正極側のコンデンサ端子506と負極側のコンデンサ端子504と正極側の電源端子509と負極側の電源端子508とを備えている。電源端子509,508にはバッテリ136が接続されており、バッテリ136から高電圧の直流電力が入力され、コンデンサ端子506,504からインバータ回路140へ出力される。 The capacitor module 500 includes a positive side capacitor terminal 506, a negative side capacitor terminal 504, a positive side power supply terminal 509, and a negative side power supply terminal 508. The battery 136 is connected to the power supply terminals 509 and 508, and high voltage DC power is input from the battery 136 and is output to the inverter circuit 140 from the capacitor terminals 506 and 504.
 一方、インバータ回路140によって交流電力から変換された直流電力は、コンデンサ端子506,504からコンデンサモジュール500に供給され、電源端子509,508から直流コネクタ138を介してバッテリ136に供給され、バッテリ136に蓄積される。 On the other hand, DC power converted from AC power by the inverter circuit 140 is supplied from the capacitor terminals 506 and 504 to the capacitor module 500, and supplied from the power terminals 509 and 508 to the battery 136 via the DC connector 138. It is accumulated.
 制御回路172は、IGBT328及びIGBT330のスイッチングタイミングを演算処理するためのマイクロコンピュータ(以下、「マイコン」と記述する)を備えている。マイコンへの入力情報としては、回転電機900に対して要求される目標トルク値、直列回路150から回転電機900に供給される電流値、及び回転電機900の回転子の磁極位置がある。 The control circuit 172 includes a microcomputer (hereinafter referred to as a “microcomputer”) for arithmetically processing the switching timing of the IGBT 328 and the IGBT 330. As input information to the microcomputer, there are a target torque value required for the rotary electric machine 900, a current value supplied from the series circuit 150 to the rotary electric machine 900, and a magnetic pole position of a rotor of the rotary electric machine 900.
 目標トルク値は、不図示の上位の制御装置から出力された指令信号に基づくものである。電流値は、電流センサ180による検出信号に基づいて検出されたものである。磁極位置は、回転電機900に設けられたレゾルバなどの回転磁極センサ(不図示)から出力された検出信号に基づいて検出されたものである。本実施形態では、電流センサ180は3相の電流値を検出する場合を例に挙げているが、2相分の電流値を検出するようにし、演算により3相分の電流を求めても良い。 The target torque value is based on a command signal output from a not-shown upper controller. The current value is detected based on a detection signal from the current sensor 180. The magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) such as a resolver provided in the rotary electric machine 900. In the present embodiment, the case where the current sensor 180 detects current values of three phases is taken as an example, but current values of two phases may be detected and currents of three phases may be obtained by calculation. .
 制御回路172内のマイコンは、目標トルク値に基づいて回転電機900のd軸,q軸の電流指令値を演算し、この演算されたd軸,q軸の電流指令値と、検出されたd軸,q軸の電流値との差分に基づいてd軸,q軸の電圧指令値を演算し、この演算されたd軸,q軸の電圧指令値を、検出された磁極位置に基づいてU相、V相、W相の電圧指令値に変換する。そして、マイコンは、U相、V相、W相の電圧指令値に基づく基本波(正弦波)と搬送波(三角波)との比較に基づいてパルス状の変調波を生成し、この生成された変調波をPWM(パルス幅変調)信号としてドライバ回路174に出力する。 The microcomputer in control circuit 172 calculates the d-axis and q-axis current command values of rotary electric machine 900 based on the target torque value, and the calculated d-axis and q-axis current command values and detected d The voltage command values of d axis and q axis are calculated based on the difference between the current values of the axis and q axis, and the calculated voltage command values of d axis and q axis are calculated based on the detected magnetic pole position. Convert to voltage command value of phase, V phase and W phase. Then, the microcomputer generates a pulse-like modulated wave based on the comparison between the fundamental wave (sine wave) and the carrier wave (triangular wave) based on the voltage command values of U phase, V phase and W phase, and the generated modulation The wave is output to the driver circuit 174 as a PWM (pulse width modulation) signal.
 ドライバ回路174は、下アームを駆動する場合、PWM信号を増幅したドライブ信号を、対応する下アームのIGBT330のゲート電極に出力する。また、ドライバ回路174は、上アームを駆動する場合、PWM信号の基準電位のレベルを上アームの基準電位のレベルにシフトしてからPWM信号を増幅し、これをドライブ信号として、対応する上アームのIGBT328のゲート電極にそれぞれ出力する。 When driving the lower arm, the driver circuit 174 outputs a drive signal obtained by amplifying the PWM signal to the gate electrode of the IGBT 330 of the corresponding lower arm. Also, when driving the upper arm, the driver circuit 174 shifts the level of the reference potential of the PWM signal to the level of the reference potential of the upper arm, amplifies the PWM signal, and uses it as a drive signal to drive the corresponding upper arm. Output to the gate electrodes of the IGBTs 328 of FIG.
 また、制御回路172内のマイコンは、異常検知(過電流、過電圧、過温度など)を行い、直列回路150を保護している。このため、制御回路172にはセンシング情報が入力されている。例えば、各アームの信号用のエミッタ電極155及び信号用のエミッタ電極165からは各IGBT328とIGBT330のエミッタ電極に流れる電流の情報が、対応する駆動部(IC)に入力されている。これにより、各駆動部(IC)は過電流検知を行い、過電流が検知された場合には対応するIGBT328,IGBT330のスイッチング動作を停止させ、対応するIGBT328,IGBT330を過電流から保護する。 The microcomputer in the control circuit 172 performs abnormality detection (overcurrent, overvoltage, overtemperature, etc.) to protect the series circuit 150. Therefore, sensing information is input to the control circuit 172. For example, from the emitter electrode 155 for signals of each arm and the emitter electrode 165 for signals, information of the current flowing to the emitter electrodes of the IGBTs 328 and IGBTs 330 is input to the corresponding driver (IC). Thus, each drive unit (IC) performs overcurrent detection, and when an overcurrent is detected, stops the switching operation of the corresponding IGBT 328 and IGBT 330 and protects the corresponding IGBT 328 and IGBT 330 from the overcurrent.
 直列回路150に設けられた温度センサ(不図示)からは直列回路150の温度の情報がマイコンに入力されている。また、マイコンには直列回路150の直流正極側の電圧の情報が入力されている。マイコンは、それらの情報に基づいて過温度検知及び過電圧検知を行い、過温度或いは過電圧が検知された場合には全てのIGBT328,IGBT330のスイッチング動作を停止させる。 Information on the temperature of the series circuit 150 is input to the microcomputer from a temperature sensor (not shown) provided in the series circuit 150. Also, information on the voltage on the DC positive side of the series circuit 150 is input to the microcomputer. The microcomputer performs over temperature detection and over voltage detection based on the information, and stops the switching operation of all the IGBTs 328 and IGBTs 330 when the over temperature or the over voltage is detected.
 図4は本実施形態における電動駆動装置1の外観斜視図である。電動駆動装置1は、図1に示した回転電機900と電力変換装置200とを一体構造としたものである。また、図5,6は回転電機900と電力変換装置200とを分離した状態を示したものである。詳細は後述するが、回転電機900は外装部品としてハウジング912、フロントブラケット908、リヤブラケット910を有しており、それらは、通常アルミに代表される金属のダイカストや鋳造で作られる。 FIG. 4 is an external perspective view of the electric drive device 1 in the present embodiment. The electric drive device 1 has an integrated structure of the rotary electric machine 900 and the power conversion device 200 shown in FIG. 5 and 6 show a state in which the rotating electrical machine 900 and the power conversion device 200 are separated. Although details will be described later, the rotary electric machine 900 has a housing 912, a front bracket 908, and a rear bracket 910 as exterior parts, and they are usually made by die-casting or casting of metal typified by aluminum.
 図4に示すように、電力変換装置200は、回転電機900の径方向位置であるハウジング912の外周面に固定されている。ハウジング912の軸方向両端にはフロントブラケット908、リヤブラケット910が設けられている。フロントブラケット908の中央からはロータシャフト920が突出している。 As shown in FIG. 4, the power conversion device 200 is fixed to the outer peripheral surface of the housing 912 which is the radial position of the rotary electric machine 900. At both axial ends of the housing 912, a front bracket 908 and a rear bracket 910 are provided. A rotor shaft 920 protrudes from the center of the front bracket 908.
 電力変換装置200を構成する回路部品が収納されるケース12は、略立方体形状を成しており、上部開口部に蓋8が固定されている。詳細は後述するが、ケース12には冷却媒体を流すための流路が形成されており、ケース12の側壁には冷却媒体を流入するための入口配管13および冷却媒体を排出するための出口配管14が設けられている。上述したコネクタ21は、ケース12の側壁12bおよび蓋8に形成された開口12h,8a(図5,6参照)から外部に露出している。 The case 12 in which the circuit component which comprises the power converter device 200 is accommodated has comprised substantially cubic shape, and the cover 8 is being fixed to the upper opening part. Although details will be described later, a channel for flowing the cooling medium is formed in the case 12, and an inlet pipe 13 for introducing the cooling medium and an outlet pipe for discharging the cooling medium are formed on the side wall of the case 12 14 is provided. The connector 21 described above is exposed to the outside from the openings 12 h and 8 a (see FIGS. 5 and 6) formed in the side wall 12 b of the case 12 and the lid 8.
 図5に示すように、ケース12が固定されるハウジング912の取り付け面912eには回転電機900の交流端子902U,902V,902Wが配置され、交流端子902U,902V,902Wに隣接するように凹部状の平坦な面912fが形成されている。ケース12をハウジング912に固定すると、ケース12の底面側に形成された底面部405fが面912fに接触するような構成になっている。なお、放熱シートやグリス等を挟んで間接的に接触するような構成としても良い。図6に示すように、底面部405fは、ケース12の四方に設けられた側壁12a~12dの下端よりも突出するように形成されている。420は流路の底面側を覆っている下カバーである。 As shown in FIG. 5, the AC terminals 902U, 902V and 902W of the rotary electric machine 900 are disposed on the mounting surface 912e of the housing 912 to which the case 12 is fixed, and the concave shape is adjacent to the AC terminals 902U, 902V and 902W. The flat surface 912 f of the When the case 12 is fixed to the housing 912, the bottom surface portion 405f formed on the bottom surface side of the case 12 is in contact with the surface 912f. In addition, it is good also as a structure which contacts indirectly, sandwiching a thermal radiation sheet | seat, grease, etc. As shown in FIG. 6, the bottom surface portion 405f is formed to project further than the lower ends of the side walls 12a to 12d provided on four sides of the case 12. A lower cover 420 covers the bottom side of the flow path.
 このように、本実施の形態では、電力変換装置200と回転電機900とを一体化する際に、電力変換装置200のケース12が回転電機900のハウジング912のみに接触するような構成としている。そのため、回転電機900側においては、取付面精度を確保する為の機械加工はハウジング912にのみに行えば良く、その他のフロントブラケット908やリヤブラケット910には不要となるため生産性が向上する。 As described above, in the present embodiment, when the power conversion device 200 and the rotary electric machine 900 are integrated, the case 12 of the power conversion device 200 contacts only the housing 912 of the rotary electric machine 900. Therefore, on the side of the rotary electric machine 900, machining for securing the attachment surface accuracy may be performed only on the housing 912, and the other front brackets 908 and rear brackets 910 become unnecessary, thereby improving productivity.
 ケース12の底面側には、上述した底面部405fとは別に、底面部405fよりも窪んでいる面12eが形成されている。この面12eには貫通穴12iが形成されており、この貫通穴12iを上側から下側へと交流バスバー802U,802V,802Wが折れ曲がっている。交流バスバー802U,802V,802Wは、ハウジング912の取り付け面912eに配置された交流端子902U,902V,902Wと接続されている。 The bottom surface side of the case 12 is formed with a surface 12 e which is recessed from the bottom surface portion 405 f separately from the above-described bottom surface portion 405 f. A through hole 12i is formed in the surface 12e, and the AC bus bars 802U, 802V, 802W are bent from the upper side to the lower side of the through hole 12i. The AC bus bars 802U, 802V, 802W are connected to AC terminals 902U, 902V, 902W disposed on the mounting surface 912e of the housing 912.
 図7は、回転電機900の断面図である。3相分の電機子巻線が設けられたステータ940は、センターブラケット909に固定されている。ロータ930が固定されたロータシャフト920は、両端がフロントブラケット908およびリヤブラケット910に回転自在に保持されている。ロータ930は、ステータ940内で回転自在となるように半径方向に若干の隙間を設けて収納されている。 FIG. 7 is a cross-sectional view of the rotary electric machine 900. A stator 940 provided with armature windings for three phases is fixed to a center bracket 909. The rotor shaft 920 to which the rotor 930 is fixed is rotatably held by the front bracket 908 and the rear bracket 910 at both ends. The rotor 930 is housed with a slight clearance in the radial direction so as to be rotatable in the stator 940.
 センターブラケット909の外周には、溝がステータ940を囲むような形状で形成されている。センターブラケット909はハウジング912の内側に収納され、センターブラケット909の溝とハウジング912の内周面とにより流路919b,919cが形成される。流路919bと流路919cとは連結しており、一つの繋がった流路919を形成している。すなわち、センターブラケット909とハウジング912とにより、流路919を備えたモータハウジングが形成されている。そして、このような流路を備えたモータハウジングの内周側にステータ940を保持することにより、冷媒によるステータ940の冷却が行われている。交流端子902U~902Wはハウジング912の面912eから突出するように設けられており、各々にはステータ940の対応する電機子巻線が接続されている。 A groove is formed on the outer periphery of the center bracket 909 so as to surround the stator 940. The center bracket 909 is housed inside the housing 912, and the grooves of the center bracket 909 and the inner peripheral surface of the housing 912 form flow paths 919b and 919c. The flow path 919 b and the flow path 919 c are connected to form one connected flow path 919. That is, the center bracket 909 and the housing 912 form a motor housing having a flow passage 919. Then, the stator 940 is cooled by the refrigerant by holding the stator 940 on the inner peripheral side of the motor housing provided with such a flow path. AC terminals 902U to 902W are provided so as to project from surface 912e of housing 912, to which corresponding armature windings of stator 940 are connected.
 図8は電動駆動装置1における冷媒の流れを示す図であり、矢印は冷媒の流れを示している。冷媒は、電力変換装置200のケース12に設けられた入口配管13から供給され、ケース内に形成された流路(詳細は後述する)へと流入する。ケース12の流路を流れた冷媒は出口配管14から排出される。出口配管14は中継部材14aを介して回転電機900のハウジング912の外周に設けられた入口配管913と接続されており、出口配管14から排出された冷媒は、入口配管913から図7に示した流路919bへと流入する。そして、冷媒は流路919b、流路919cの順に流れ、ハウジング912の外周に設けられて流路919cに連結している出口配管914から排出される。 FIG. 8 is a view showing the flow of the refrigerant in the electric drive device 1, and the arrow shows the flow of the refrigerant. The refrigerant is supplied from an inlet pipe 13 provided in the case 12 of the power conversion device 200, and flows into a flow path (details will be described later) formed in the case. The refrigerant having flowed through the flow path of the case 12 is discharged from the outlet pipe 14. The outlet pipe 14 is connected to the inlet pipe 913 provided on the outer periphery of the housing 912 of the rotary electric machine 900 via the relay member 14 a, and the refrigerant discharged from the outlet pipe 14 is shown in FIG. It flows into the flow path 919b. Then, the refrigerant flows in the order of the flow path 919b and the flow path 919c, and is discharged from the outlet pipe 914 provided on the outer periphery of the housing 912 and connected to the flow path 919c.
 このように、冷媒がケース12の流路および回転電機900の流路919b、919cを流れることで、ケース12内に設けられた回路部品および回転電機900が冷却されると共に、回転電機900のステータ940が冷却される。なお、本実施の形態では、図8に示すように、連通配管である中継部材14aを用いて冷媒の流れを電力変換装置200から回転電機900まで一つに連結したが、中継部材14aを使わずに電力変換装置200および回転電機900のそれぞれに、個別に冷媒を流入・排出させてもなんら問題は無い。また、冷媒としては、例えば水、LLC(ロング・ライフ・クーラント:不凍液)が用いられる場合が多いが、以下では冷却水として説明する Thus, the refrigerant flows through the flow path of the case 12 and the flow paths 919b and 919c of the rotary electric machine 900, thereby cooling the circuit components and the rotary electric machine 900 provided in the case 12 and the stator of the rotary electric machine 900. 940 is cooled. In the present embodiment, as shown in FIG. 8, the flow of the refrigerant is connected from power conversion device 200 to rotary electric machine 900 by using relay member 14a which is a communication pipe, but relay member 14a is used. There is no problem in causing the refrigerant to flow in and out individually to each of the power conversion device 200 and the rotary electric machine 900. In addition, as the refrigerant, for example, water, LLC (long life coolant: antifreeze liquid) is often used, but in the following, it will be described as cooling water
 次に、電力変換装置200の詳細構造について説明する。図9,10は電力変換装置200の分解斜視図である。ケース12は、平面形状が略正方形の直方体を成し、制御回路基板20、ドライバ回路基板22、交流バスバー802U,802V,802W等が収納される上部収納空間と、流路形成部12gが形成された下部収納空間とを有している。コネクタ21を有する制御回路基板20には図2に示した制御回路172が実装され、ドライバ回路基板22にはドライバ回路174が実装されている。制御回路基板20とドライバ回路基板22とはフラットケーブル25によって接続される。ケース12の上部開口は、蓋8によって覆われる。蓋8とケース12には、図4に示したようにコネクタ21用の開口8a,12hが形成されている。電力変換装置200内の制御回路を動作させる低電圧の直流電力は、コネクタ21から供給される。 Next, the detailed structure of power converter 200 will be described. 9 and 10 are exploded perspective views of the power conversion device 200. FIG. The case 12 is a rectangular solid having a substantially square planar shape, and an upper storage space for storing the control circuit board 20, the driver circuit board 22, the AC bus bars 802U, 802V, 802W, etc., and a flow path forming portion 12g are formed. And a lower storage space. The control circuit 172 shown in FIG. 2 is mounted on the control circuit board 20 having the connector 21, and the driver circuit 174 is mounted on the driver circuit board 22. The control circuit board 20 and the driver circuit board 22 are connected by a flat cable 25. The top opening of the case 12 is covered by a lid 8. Openings 8a and 12h for the connector 21 are formed in the lid 8 and the case 12 as shown in FIG. Low voltage DC power for operating the control circuit in the power conversion device 200 is supplied from the connector 21.
 詳細は後述するが、流路形成部12gには冷却水が流れる流路19(図12参照)が形成されている。流路19は、ケース12の3つの側壁(図6に示した側壁12a~12c)に対して平行に流れるコの字形状に形成されており、冷却水は、ケース12の側壁12dに設けられた入口配管13から流路内に流入し、側壁12dに設けられた出口配管14から流出する。なお、側壁12dは、配管13,14が設けられている部分が段差状に形成されている。 Although details will be described later, a flow passage 19 (see FIG. 12) through which the cooling water flows is formed in the flow passage forming portion 12g. The flow path 19 is formed in a U shape flowing parallel to the three side walls (side walls 12 a to 12 c shown in FIG. 6) of the case 12, and the cooling water is provided on the side wall 12 d of the case 12. It flows into the flow path from the inlet pipe 13 and flows out from the outlet pipe 14 provided on the side wall 12 d. In the side wall 12d, the portion where the pipes 13 and 14 are provided is formed in a step-like shape.
 図11はケース12の平面図であり、図12はケース12の底面側を示す図である。また、図13は、ケース12を底面側から見た斜視図である。流路19が形成された流路形成部12gの上面側には、流路19と連通する3つの開口部402a~402cが形成されている。それらの開口部400a~400cから、図3の直列回路150を構成する電子部品を内蔵したパワーモジュール300U,300V,300Wが流路19内に挿入される(図9参照)。パワーモジュール300UにはU相の直列回路150が内蔵され、パワーモジュール300VにはV相の直列回路150が内蔵され、パワーモジュール300WにはW相の直列回路150が内蔵されている。これら3つのパワーモジュール300U~300Wは同一構成になっており、外観形状も同一形状である。開口部402a~402cは、挿入されたパワーモジュール300U~300Wのフランジ部によって塞がれる。 FIG. 11 is a plan view of the case 12, and FIG. 12 is a view showing the bottom side of the case 12. As shown in FIG. FIG. 13 is a perspective view of the case 12 as viewed from the bottom side. On the upper surface side of the flow path forming portion 12g in which the flow path 19 is formed, three openings 402a to 402c communicating with the flow path 19 are formed. Power modules 300U, 300V, 300W incorporating the electronic components constituting the series circuit 150 of FIG. 3 are inserted into the flow path 19 from the openings 400a to 400c (see FIG. 9). The power module 300U incorporates the U-phase series circuit 150, the power module 300V incorporates the V-phase series circuit 150, and the power module 300W incorporates the W-phase series circuit 150. These three power modules 300U to 300W have the same configuration, and the external shape is also the same. The openings 402a to 402c are closed by the flanges of the inserted power modules 300U to 300W.
 流路形成部12gの中央部には、コンデンサモジュール500が収納される凹部である収納空間405が形成されている。収納空間405は、コの字形状の流路19によって囲まれるように形成されている。収納空間405の各側面405a~405dは、底面部405f上に配置されたコンデンサモジュール500の側面とほぼ接触するように形成されている。収納空間405に収納されたコンデンサモジュール500は、流路19内を流れる冷却水によって冷却される。なお、コンデンサモジュール500の側面と側面405a~405dとの接触状態をより向上させるために、コンデンサモジュール500の側面と側面405a~405dとの隙間にゲルやグリースを充填するようにしても良い。コンデンサモジュール500に設けられた直流端子509、508は、ケース12の12jから突出し直流配線(不図示)でバッテリ136に接続される。 A storage space 405, which is a recess for storing the capacitor module 500, is formed at the center of the flow path forming portion 12g. The storage space 405 is formed so as to be surrounded by a U-shaped flow passage 19. The side surfaces 405a to 405d of the storage space 405 are formed to be substantially in contact with the side surfaces of the capacitor module 500 disposed on the bottom surface portion 405f. The condenser module 500 stored in the storage space 405 is cooled by the cooling water flowing in the flow path 19. In order to further improve the contact between the side surface of the capacitor module 500 and the side surfaces 405a to 405d, the gap between the side surface of the capacitor module 500 and the side surfaces 405a to 405d may be filled with gel or grease. The direct current terminals 509 and 508 provided in the capacitor module 500 protrude from 12j of the case 12 and are connected to the battery 136 by direct current wiring (not shown).
 図12,13に示すように、流路形成部12gの下側の面12eには流路19に沿うようにコの字形状の開口部404が形成されている。開口部404は、コの字形状の下カバー420によって塞がれる。下カバー420とケース12の面12eとの間にはシール部材409eが設けられ、気密性が保たれている。なお、収納空間405の底面部405fの外周面は、流路形成部12gの面12eよりも下側に突出している。 As shown in FIGS. 12 and 13, a U-shaped opening 404 is formed on the lower surface 12 e of the flow path forming portion 12 g along the flow path 19. The opening 404 is closed by a U-shaped lower cover 420. A seal member 409e is provided between the lower cover 420 and the surface 12e of the case 12 to maintain airtightness. The outer peripheral surface of the bottom surface portion 405f of the storage space 405 protrudes below the surface 12e of the flow path forming portion 12g.
 コの字形状を成す流路19は、冷却水の流れる方向によって3つの流路区間19a,19b,19cに分けられる。詳細は後述するが、第1の流路区間19aは、配管13,14が設けられた側壁12dと対向する側壁12aに沿って設けられ、第2の流路区間19bは側壁12aの一方の側に隣接する側壁12bに沿って設けられ、第3の流路区間19cは側壁12aの他方の側に隣接する側壁12cに沿って設けられている。上流側の流路区間19bは、入口配管13が取り付けられた連通路12kと連通している。下流側の流路区間19cは、出口配管14が取り付けられた連通路12mと連通している。図12に示すように、冷却水は入口配管13から流路区間19bに流入し、破線矢印で示すように流路区間19b、流路区間19a、流路区間19cの順に流れ、出口配管14から流出される。 The channel 19 having a U-shape is divided into three channel sections 19a, 19b and 19c depending on the flow direction of the cooling water. Although the details will be described later, the first flow passage section 19a is provided along the side wall 12a opposite to the side wall 12d provided with the pipes 13, 14 and the second flow passage section 19b is on one side of the side wall 12a. The third flow path section 19c is provided along the side wall 12c adjacent to the other side of the side wall 12a. The upstream flow passage section 19 b is in communication with the communication passage 12 k to which the inlet pipe 13 is attached. The downstream flow passage section 19 c communicates with the communication passage 12 m to which the outlet pipe 14 is attached. As shown in FIG. 12, the cooling water flows from the inlet pipe 13 into the flow path section 19b, and flows in the order of the flow path section 19b, the flow path section 19a, and the flow path section 19c as shown by the broken arrow. It is drained.
 上述した開口部402aは、長手方向が側壁12aと平行となるように、流路形成部上面の流路区間19aに対向する位置に形成されている。開口部402bは、長手方向が側壁12bと平行となるように、流路形成部上面の流路区間19bに対向する位置に形成されている。開口部402cは、長手方向が側壁12cと平行となるように、流路形成部上面の流路区間19cに対向する位置に形成されている。これらの開口部402a~402cを通して、パワーモジュール300U~300Wが流路19内に挿入される。パワーモジュール300U~300Wとケース12との間にはシール部材409a~409cが設けられ気密性が保たれている。 The opening 402a described above is formed at a position facing the flow passage section 19a on the upper surface of the flow passage forming portion so that the longitudinal direction is parallel to the side wall 12a. The opening 402 b is formed at a position facing the flow passage section 19 b on the upper surface of the flow passage forming portion so that the longitudinal direction is parallel to the side wall 12 b. The opening 402 c is formed at a position facing the flow passage section 19 c on the upper surface of the flow passage forming portion so that the longitudinal direction is parallel to the side wall 12 c. The power modules 300U to 300W are inserted into the flow path 19 through the openings 402a to 402c. Seal members 409a to 409c are provided between the power modules 300U to 300W and the case 12 to maintain airtightness.
 図10に示すように、下カバー420には、上述した開口部402a~402cと対向する位置に、ケース12の底部方向に突出する凸部406がそれぞれ形成されている。図9からも分かるように、これらの凸部406は流路19側から見ると窪みとなっており、開口部402a~402cから挿入されたパワーモジュール300U~300Wの下端部分が、これらの窪みに入り込む。ケース12は、開口部404と開口部402a~402cとが対向するように形成されているので、アルミ鋳造により製造し易い構成になっている。 As shown in FIG. 10, the lower cover 420 is formed with a projection 406 projecting in the direction of the bottom of the case 12 at a position facing the above-described openings 402a to 402c. As can be seen from FIG. 9, these convex portions 406 are concave when viewed from the flow path 19 side, and the lower end portions of the power modules 300U to 300W inserted from the openings 402a to 402c are in these concaves. Get in. Since the case 12 is formed so that the opening 404 and the openings 402a to 402c face each other, the case 12 is configured to be easily manufactured by aluminum casting.
 コンデンサモジュール500の上方およびケース12の上部収納空間には、交流バスバー802U~802Wが配置されている。各交流バスバー802U~802Wの一端は対応するパワーモジュールの交流端子320Bに接続され、他端は流路形成部12gに形成された貫通穴12iを通ってハウジング912の取り付け面912eに設けられた交流端子902U~902Wに接続される(図5参照)。貫通穴12iの部分においては、交流バスバー802U~802Wと流路形成部12gとの間に絶縁シート950が設けられている。尚、交流バスバー802U~802Wは、図示しない電流センサ180により電流値を測定できるようになっている。 AC bus bars 802U to 802W are disposed above the capacitor module 500 and in the upper storage space of the case 12. One end of each of the AC bus bars 802U to 802W is connected to the AC terminal 320B of the corresponding power module, and the other end is an AC provided in the mounting surface 912e of the housing 912 through the through hole 12i formed in the flow path forming portion 12g. It is connected to the terminals 902U to 902W (see FIG. 5). In the portion of through hole 12i, insulating sheet 950 is provided between AC bus bars 802U to 802W and flow path forming portion 12g. The alternating current bus bars 802U to 802W can measure the current value by a current sensor 180 (not shown).
 回転電機900の動作状況によって、交流バスバー802U~802Wに回転電機900の交流端子902U~902Wからの熱が伝熱し、交流バスバー802U~802Wが炙られ高温になる場合がある。しかし本実施形態では、交流バスバー802U~802Wが、流路19と収納空間405の間ではなく、流路形成部12gの側壁12aと流路19との間のに設けられた貫通穴12iを通って回転電機900の交流端子902U~902Wと接続されている。このため、交流端子902U~902Wから伝達される熱のコンデンサモジュール500への影響を低減することができる。 Depending on the operating condition of the rotary electric machine 900, the heat from the AC terminals 902U to 902W of the rotary electric machine 900 may be transferred to the AC bus bars 802U to 802W, and the AC bus bars 802U to 802W may be heated to a high temperature. However, in the present embodiment, the AC bus bars 802U to 802W pass through the through holes 12i provided not between the flow path 19 and the storage space 405 but between the side wall 12a of the flow path forming portion 12g and the flow path 19. It is connected to the AC terminals 902U to 902W of the rotary electric machine 900. Therefore, the influence of heat transferred from AC terminals 902U to 902W on capacitor module 500 can be reduced.
 上述したように、ドライバ回路基板22は、交流バスバー802U~802Wの上方に配置され、制御回路基板20とドライバ回路基板22とはフラットケーブル25によって接続されている。このように、パワーモジュール300U~300Wとドライバ回路基板22と制御回路基板20とがケース高さ方向に階層的に配置され、制御回路基板20が強電系のパワーモジュール300U~300Wから最も遠い場所に配置されるので、制御回路基板20側にスイッチングノイズ等が混入するのを低減することができる。なお、ケース12はアルミ等の金属材で形成されている。 As described above, the driver circuit board 22 is disposed above the AC bus bars 802U to 802W, and the control circuit board 20 and the driver circuit board 22 are connected by the flat cable 25. In this manner, power modules 300U to 300W, driver circuit board 22 and control circuit board 20 are arranged hierarchically in the case height direction, and control circuit board 20 is farthest from power modules 300U to 300W of high-power system. Since the circuit is disposed, the mixing of switching noise and the like on the control circuit board 20 side can be reduced. The case 12 is formed of a metal material such as aluminum.
 図14乃至図16を用いて、インバータ回路140に使用されるパワーモジュール300U~300Wの詳細構成を説明する。上記パワーモジュール300U~300Wはいずれも同じ構造であり、代表してパワーモジュール300Uの構造を説明する。尚、図14乃至図16において、信号端子325Uは図3に開示したゲート電極154および信号用エミッタ電極155に対応し、信号端子325Lは図3に開示したゲート電極164およびエミッタ電極165に対応する。また、直流正極端子315Bは図3に開示した正極端子157と同一のものであり、直流負極端子319Bは図3に開示した負極端子158と同一のものである。さらにまた、交流端子320Bは図2に開示した交流端子159と同じものである。 The detailed configuration of the power modules 300U to 300W used for the inverter circuit 140 will be described with reference to FIGS. 14 to 16. The power modules 300U-300W all have the same structure, and the structure of the power module 300U will be representatively described. 14 to 16, the signal terminal 325U corresponds to the gate electrode 154 and the signal emitter electrode 155 disclosed in FIG. 3, and the signal terminal 325L corresponds to the gate electrode 164 and the emitter electrode 165 disclosed in FIG. . Further, the direct current positive electrode terminal 315B is the same as the positive electrode terminal 157 disclosed in FIG. 3, and the direct current negative electrode terminal 319B is the same as the negative electrode terminal 158 disclosed in FIG. Furthermore, the AC terminal 320B is the same as the AC terminal 159 disclosed in FIG.
 図16は、パワーモジュール300Uの回路構成を示す回路図である。上アーム側のIGBT328のコレクタ電極と上アーム側のダイオード156のカソード電極は、導体板315を介して接続される。同様に、下アーム側のIGBT330のコレクタ電極と下アーム側のダイオード166のカソード電極は、導体板320を介して接続される。また、上アーム側のIGBT328のエミッタ電極と上アーム側のダイオード156のアノード電極は、導体板318を介して接続される。同様に、下アーム側のIGBT330のエミッタ電極と下アーム側のダイオード166のアノード電極は、導体板319を介して接続される。導体板318と320は中間電極329によって接続される。こうした回路構成により上下アーム直列回路が形成される。 FIG. 16 is a circuit diagram showing a circuit configuration of power module 300U. The collector electrode of the IGBT 328 on the upper arm side and the cathode electrode of the diode 156 on the upper arm side are connected via the conductor plate 315. Similarly, the collector electrode of the lower arm IGBT 330 and the cathode electrode of the lower arm diode 166 are connected via the conductor plate 320. Further, the emitter electrode of the IGBT 328 on the upper arm side and the anode electrode of the diode 156 on the upper arm side are connected via the conductor plate 318. Similarly, the emitter electrode of the lower arm IGBT 330 and the anode electrode of the lower arm diode 166 are connected via the conductor plate 319. The conductor plates 318 and 320 are connected by an intermediate electrode 329. An upper and lower arm series circuit is formed by such a circuit configuration.
 図14,15に示すCAN型冷却器である有底筒状のモジュールケース304内には、図16に示した上下アームの直列回路150を構成するパワー半導体素子(IGBT328、IGBT330、ダイオード156、ダイオード166)が収納されている。モジュールケース304内の隙間には封止樹脂351が充填され、収納されているパワー半導体素子等は封止樹脂351により封止されている。 In the bottomed cylindrical module case 304 which is a CAN-type cooler shown in FIGS. 14 and 15, power semiconductor elements (IGBT 328, IGBT 330, diode 156, diode which constitute the series circuit 150 of the upper and lower arms shown in FIG. 166) is stored. A sealing resin 351 is filled in a gap in the module case 304, and the power semiconductor elements and the like contained therein are sealed by the sealing resin 351.
 モジュールケース304は、電気伝導性を有する部材、例えばアルミ合金材料(Al,AlSi,AlSiC,Al-C等)で構成され、かつ、つなぎ目の無い状態で一体に成形される。有底筒状のモジュールケース304は、挿入口306以外に開口を設けない構造であり、挿入口306にはフランジ304Bが形成されている。また、図14,15に示されるように、扁平なモジュールケース304の対向する広い面は、第1放熱面307A及び第2放熱面307Bを構成している。第1放熱面307Aおよび第2放熱面307Bには、複数のフィン305がそれぞれ均一に分布するように形成されている。 The module case 304 is made of a member having electrical conductivity, such as an aluminum alloy material (Al, AlSi, AlSiC, Al-C, etc.), and is integrally molded in a jointless state. The bottomed cylindrical module case 304 has a structure in which no opening is provided other than the insertion port 306, and the insertion port 306 is formed with a flange 304B. Further, as shown in FIGS. 14 and 15, the opposing wide surfaces of the flat module case 304 constitute a first heat radiating surface 307A and a second heat radiating surface 307B. A plurality of fins 305 are formed on the first heat radiating surface 307A and the second heat radiating surface 307B so as to be uniformly distributed.
 モジュールケース304内の各パワー半導体素子(IGBT328、IGBT330、ダイオード156、ダイオード166)は、これらの放熱面307A,307Bに対向するように配置されている。第1放熱面307Aと第2放熱面307Bと繋ぐ3つの面(2つの側面と底面)は、第1放熱面307A及び第2放熱面307Bより幅が狭い。モジュールケース304の形状は、正確な直方体である必要が無く、角の部分が図14,15に示す如く曲面を成していても良い。 The power semiconductor elements (IGBT 328, IGBT 330, diode 156, diode 166) in the module case 304 are disposed to face the heat dissipation surfaces 307A and 307B. Three surfaces (two side surfaces and a bottom surface) connecting the first heat radiating surface 307A and the second heat radiating surface 307B are narrower than the first heat radiating surface 307A and the second heat radiating surface 307B. The shape of the module case 304 does not have to be an accurate rectangular parallelepiped, and the corner portion may have a curved surface as shown in FIGS.
 このような形状の金属製のケースを用いることで、モジュールケース304を水や油などの冷却媒体が流れる流路19内に挿入しても、冷媒に対するシールをフランジ304Bにて確保できるため、冷却媒体がモジュールケース304の内部に侵入するのを簡易な構成で防ぐことができる。 By using a metal case of such a shape, even if the module case 304 is inserted into the flow path 19 through which a cooling medium such as water or oil flows, a seal against the refrigerant can be secured by the flange 304B. A medium can be prevented from invading the inside of the module case 304 with a simple configuration.
 モジュールケース304の挿入口306の外側には、コンデンサモジュール500と電気的に接続するための金属製の直流正極配線315Aおよび直流負極配線319Aが設けられており、その先端部に直流正極端子315B(157)と直流負極端子319B(158)がそれぞれ形成されている。また、回転電機900に交流電力を供給するための金属製の交流配線320Aが設けられており、その先端に交流端子320B(159)が形成されている。 On the outside of the insertion opening 306 of the module case 304, a metal DC positive electrode wire 315A and a DC negative electrode wire 319A for electrically connecting to the capacitor module 500 are provided. 157) and a direct current negative electrode terminal 319B (158). In addition, a metal AC wire 320A for supplying AC power to the rotary electric machine 900 is provided, and an AC terminal 320B (159) is formed at the tip thereof.
 さらに、挿入口306の外側には、ドライバ回路174と電気的に接続するための金属製の信号配線324Uおよび324Lが設けられており、その先端部に信号端子325U(154,155)と信号端子325L(164,165)がそれぞれ形成されている。本実施形態では、図16に示す如く、信号配線324UはIGBT328と接続され、信号配線324LはIGBT330と接続される。 Furthermore, metal signal wires 324U and 324L for electrically connecting with the driver circuit 174 are provided outside the insertion port 306, and the signal terminals 325U (154, 155) and the signal terminals are provided at the tip thereof. 325L (164, 165) are respectively formed. In the present embodiment, as shown in FIG. 16, the signal wiring 324U is connected to the IGBT 328, and the signal wiring 324L is connected to the IGBT 330.
 直流正極配線315A、直流負極配線319A、交流配線320A、信号配線324Uおよび信号配線324Lは、樹脂材料で成形された配線絶縁部608によって相互に絶縁された状態で、補助モールド体600として一体に成型される。配線絶縁部608は、各配線を支持するための支持部材としても作用し、これに用いる樹脂材料は、絶縁性を有する熱硬化性樹脂かあるいは熱可塑性樹脂が適している。これにより、直流正極配線315A、直流負極配線319A、交流配線320A、信号配線324Uおよび信号配線324Lの間の絶縁性を確保でき、高密度配線が可能となる。 The direct current positive wiring 315A, the direct current negative wiring 319A, the alternating current wiring 320A, the signal wiring 324U and the signal wiring 324L are integrally molded as the auxiliary mold body 600 in a state of being mutually insulated by the wiring insulating portion 608 molded of resin material. Be done. The wire insulating portion 608 also functions as a support member for supporting each wire, and the resin material used for this is suitably a thermosetting resin or a thermoplastic resin having insulation. As a result, the insulation between the DC positive wiring 315A, the DC negative wiring 319A, the AC wiring 320A, the signal wiring 324U, and the signal wiring 324L can be secured, and high density wiring can be achieved.
 補助モールド体600の直流正極配線315A、直流負極配線319A、交流配線320A、信号配線324Uおよび信号配線324Lは、図16に示す如く一端が上下アーム直列回路に金属接合される。この金属接合には、たとえばTIG溶接などを用いることができる。一体に成型された補助モールド体600は、配線絶縁部608がネジ309によってモジュールケース304に固定される。 One end of the DC positive wire 315A, the DC negative wire 319A, the AC wire 320A, the signal wire 324U and the signal wire 324L of the auxiliary mold body 600 is metal-joined to the upper and lower arm series circuit as shown in FIG. For this metal bonding, for example, TIG welding can be used. In the integrally molded auxiliary mold body 600, the wiring insulating portion 608 is fixed to the module case 304 by the screw 309.
 その後、モジュールケース304内の隙間には封止樹脂351が充填され、上下アーム直列回路150を構成する電子部品はモジュールケース304内に封止される。その結果、金属接合された接続部も、封止樹脂351によりモジュールケース304内で封止される。これにより、接続部とモジュールケース304との間で必要な絶縁距離を安定的に確保することができるため、封止しない場合と比較してパワーモジュール300Uの小型化が実現できる。 Thereafter, the sealing resin 351 is filled in the gap in the module case 304, and the electronic components constituting the upper and lower arm series circuit 150 are sealed in the module case 304. As a result, the metal-bonded connection portion is also sealed in the module case 304 by the sealing resin 351. As a result, a necessary insulation distance can be stably secured between the connection portion and the module case 304, so that the power module 300U can be miniaturized as compared with the case where the sealing is not performed.
 図17,18は、コンデンサモジュール500の外観斜視図である。コンデンサモジュール500内には複数のコンデンサセルが設けられている。コンデンサモジュール500の上面には、コンデンサ端子503a~503cが突出するように設けられている。コンデンサ端子503a~503cは、各パワーモジュール300U~300Wの正極端子157及び負極端子158に対応するように設けられている。コンデンサ端子503a~503cは同一形状をしている。各コンデンサ端子503a~503cを構成する負極側コンデンサ端子504と正極側コンデンサ端子506との間には絶縁シート507が設けられ、端子間の絶縁が確保されている。 17 and 18 are external perspective views of the capacitor module 500. FIG. In the capacitor module 500, a plurality of capacitor cells are provided. Capacitor terminals 503 a to 503 c are provided on the top surface of the capacitor module 500 so as to protrude. The capacitor terminals 503a to 503c are provided to correspond to the positive electrode terminal 157 and the negative electrode terminal 158 of each of the power modules 300U to 300W. The capacitor terminals 503a to 503c have the same shape. An insulating sheet 507 is provided between the negative electrode side capacitor terminal 504 and the positive electrode side capacitor terminal 506 which constitute each of the capacitor terminals 503a to 503c, and insulation between the terminals is secured.
 コンデンサモジュール500の側面500d側には電源端子508(N),509(P)が設けられている。コンデンサモジュール500を図11に示す収納空間405の底面部405fに配置すると、コンデンサモジュール500の側面500a,500b,500c,500dが流路形成部12gの収納空間405の側面405a,405b,405c,405dに対向する。 Power supply terminals 508 (N) and 509 (P) are provided on the side surface 500 d side of the capacitor module 500. When the capacitor module 500 is disposed on the bottom surface portion 405f of the storage space 405 shown in FIG. 11, the side surfaces 500a, 500b, 500c, and 500d of the capacitor module 500 are side surfaces 405a, 405b, 405c, and 405d of the storage space 405 of the flow path forming portion 12g. To face.
 図19は、ケース12にパワーモジュール300U~300W、コンデンサモジュール500、交流バスバー802が組みつけられた状態を示す平面図である。収納空間405にコンデンサモジュール500が収納され、流路形成部12gの開口部402a~402cにパワーモジュール300U~300Wが挿入される。交流バスバー802U~803Wの一端は、パワーモジュール300U~300Wの交流端子320Bに接続されている。 FIG. 19 is a plan view showing a state in which power modules 300U to 300W, capacitor module 500, and AC bus bar 802 are attached to case 12. As shown in FIG. The capacitor module 500 is accommodated in the accommodation space 405, and the power modules 300U to 300W are inserted into the openings 402a to 402c of the flow path forming portion 12g. One ends of the AC bus bars 802U to 803W are connected to the AC terminals 320B of the power modules 300U to 300W.
 図20は、パワーモジュール300U~300Wの直流正極端子315B、直流負極端子319B及び交流端子320B、コンデンサモジュール500の正極側コンデンサ端子506,負極側コンデンサ端子504、および交流バスバー802U~802Wの接続部805の接続状態を、詳細に示す斜視図である。各パワーモジュール300U~300Wとコンデンサモジュール500との接続部においては、直流正極端子315Bが正極側コンデンサ端子506溶接され、直流負極端子319Bが負極側コンデンサ端子504と溶接されている。また、パワーモジュール300U~300Wと交流バスバー802U~802Wとの接続部においては、交流端子320Bがバスバーの接続部805に溶接されている。尚、直流正極端子315B,直流負極端子319B,正極側コンデンサ端子506,負極側コンデンサ端子504,接続部805は先端が凹凸形状をしており、溶接時にこの凹凸部分に熱が集中するような形状となっている。 FIG. 20 shows a connection portion 805 of DC positive electrode terminal 315B, DC negative electrode terminal 319B and AC terminal 320B of power modules 300U to 300W, positive electrode side capacitor terminal 506, negative electrode side capacitor terminal 504 of capacitor module 500, and AC bus bars 802U to 802W. 4 is a perspective view showing in detail the connection state of FIG. At the connection between each of the power modules 300U to 300W and the capacitor module 500, the DC positive electrode terminal 315B is welded to the positive electrode side capacitor terminal 506, and the DC negative electrode terminal 319B is welded to the negative electrode side capacitor terminal 504. Further, at the connection portion between power modules 300U-300W and AC bus bars 802U-802W, AC terminal 320B is welded to connection portion 805 of the bus bar. The tips of the DC positive terminal 315B, the DC negative terminal 319B, the positive side capacitor terminal 506, the negative side capacitor terminal 504, and the connecting portion 805 have a concavo-convex shape, and such a shape that heat is concentrated on the concavo-convex portion during welding. It has become.
 図21~23は、電動駆動装置1における電力変換装置200と回転電機900との接続構造を説明する図である。図21は、電力変換装置200と、電力変換装置200が取り付けられている回転電機900の一部とを示す断面図である。図22は、図21のA-A断面図である。図23は、電力変換装置200の内部構造を示す図であって、電力変換装置200からケース12と蓋8を削除した外観斜視図である。 21 to 23 are diagrams for explaining the connection structure between power conversion device 200 and rotary electric machine 900 in electric drive 1. FIG. 21 is a cross-sectional view showing power conversion device 200 and part of rotary electric machine 900 to which power conversion device 200 is attached. FIG. 22 is a cross-sectional view taken along line AA of FIG. FIG. 23 is a diagram showing the internal structure of power conversion device 200, and is an external perspective view of power conversion device 200 with case 12 and lid 8 removed.
 図23に示すように、パワーモジュール300U~300Wの信号端子325U,325Lは、パワーモジュール300U~300Wの上方(上部収納空間)に配置されたドライバ回路基板22のスルーホールに挿入され、半田等で接続されている。これにより図3に示した上アームのゲート電極154および信号用エミッタ電極155と下アームのゲート電極164および信号用エミッタ電極165がドライバ回路174に接続される。 As shown in FIG. 23, the signal terminals 325U and 325L of the power modules 300U to 300W are inserted into through holes of the driver circuit board 22 disposed above the power modules 300U to 300W (upper storage space), and are soldered or the like. It is connected. Thus, the gate electrode 154 and the signal emitter electrode 155 of the upper arm and the gate electrode 164 and the signal emitter electrode 165 of the lower arm shown in FIG. 3 are connected to the driver circuit 174.
 交流バスバー802U~802Wは、図19,20に示すように、それらの一端に設けられた接続部805が対応するパワーモジュール300U~300Wの交流端子320Bに接続されている。これらの交流バスバー802U~802Wは、図21,23に示すように、パワーモジュール300U~300Wの交流端子320Bから流路形成部12gに形成された貫通穴12iの方向に引き延ばされ、その貫通穴12iの部分でケース12底面方向へL字形状に折り曲げられている。そして、折り曲げられた各交流バスバー802U~802Wの端部は、ボルト905により交流端子902U~902Wに固定されている。 As shown in FIGS. 19 and 20, the AC bus bars 802U to 802W are connected to the AC terminals 320B of the power modules 300U to 300W to which the connection parts 805 provided at their one ends correspond. These AC bus bars 802U to 802W are extended from the AC terminals 320B of the power modules 300U to 300W toward the through holes 12i formed in the flow path forming portion 12g as shown in FIGS. It is bent in an L-shape toward the bottom of the case 12 at the portion of the hole 12i. The end portions of the bent alternating current bus bars 802U to 802W are fixed to the alternating current terminals 902U to 902W by bolts 905.
 図22に示すように、交流端子902U~902Wには回転電機900の3相電機子巻線が接続されている。そのため、本実施の形態のように交流バスバー802U~802Wを交流端子902U~902Wに直に接続する構造の場合、3相電機子巻線からの伝熱で交流バスバー802U~802Wが炙られるおそれがある。 As shown in FIG. 22, three-phase armature windings of the rotary electric machine 900 are connected to the AC terminals 902U to 902W. Therefore, in the case of the structure in which AC bus bars 802U to 802W are directly connected to AC terminals 902U to 902W as in the present embodiment, there is a possibility that AC bus bars 802U to 802W may be twisted by heat transfer from the three phase armature winding. is there.
 ところが、本実施の形態では、交流バスバー802U~Wと交流端子902U~Wとの接続位置が、コの字形状流路19の外側の領域、すなわち、図12の領域BCと領域ADとで示される矩形領域よりも外側の領域に設けられている。そのため、高温となった交流バスバー802U~802Wとコンデンサモジュール500との間に冷却水の流れる流路19が形成されているため、コンデンサモジュール500への熱影響を低減することができる。 However, in the present embodiment, the connection positions of AC bus bars 802U-W and AC terminals 902U-W are shown by the region outside U-shaped channel 19, that is, by region BC and region AD in FIG. It is provided in an area outside the rectangular area to be Therefore, since the flow path 19 through which the cooling water flows is formed between the AC bus bars 802U to 802W which have become high temperature and the capacitor module 500, the thermal influence on the capacitor module 500 can be reduced.
 さらに、本実施の形態では、図21に示す貫通穴12iの領域において、交流バスバー802U~802Wを、絶縁シート950のような絶縁部材を介して流路形成部12gに接触させるようにした。このような構造とすることで、回転電機900の3相電機子巻線からの伝熱があったとしても、その熱は接触している流路形成部12gから流路19を流れる冷却水へと放熱され、交流バスバー802U~802Wの温度上昇を抑えることができる。 Further, in the present embodiment, in the region of through hole 12i shown in FIG. 21, alternating current bus bars 802U to 802W are brought into contact with flow path forming portion 12g via an insulating member such as insulating sheet 950. With such a structure, even if heat is transferred from the three-phase armature winding of the rotary electric machine 900, the heat is transferred from the flow path forming portion 12g in contact to the cooling water flowing in the flow path 19. Thus, the temperature rise of the AC bus bars 802U to 802W can be suppressed.
 なお、本実施の形態では、交流端子902U~902Wの配置の都合上、パワーモジュール300Vが配置されている部分の流路19の外側において交流バスバー802U~802Wを流路形成部12gに間接接触させたが、接触場所はここに限定されるものではない。例えば、交流端子902U~902Wの位置が側壁12bの側にあった場合、開口部402bの外側に交流バスバー802U~802Wを通す貫通穴を形成し、その部分において流路形成部12gに接触させるようにする。すなわち、流路19の外側において、交流バスバー802U~802Wと交流端子902U~902Wとの接続を行わせる。 In the present embodiment, for convenience of arrangement of AC terminals 902U to 902W, AC bus bars 802U to 802W are indirectly contacted with flow path forming portion 12g outside flow path 19 in the portion where power module 300V is arranged. However, the contact location is not limited to this. For example, when the positions of the alternating current terminals 902U to 902W are on the side wall 12b side, through holes for passing the alternating current bus bars 802U to 802W are formed on the outside of the opening 402b. Make it That is, the connection between the AC bus bars 802U to 802W and the AC terminals 902U to 902W is performed outside the flow path 19.
 なお、本実施の形態では略L字状の交流バスバー802U~802Wをそれぞれ一つの部材としたが、複数の部材を繋いで構成してもかまわない。また不図示の電流センサ180などを通過してもなんら問題は無い。一般に、交流バスバー802U~802Wは回転電機900を駆動する為の電流が流れるので高温になりやすく、周辺の部材に熱の影響を与えてしまうことがある。特に、コンデンサモジュール500は、パワーモジュール300U~300Wのように流路19の冷却水中に直接配置されているわけではないので、熱影響に関する注意が必要である。 In this embodiment, the substantially L-shaped alternating current bus bars 802U to 802W are respectively formed as one member, but a plurality of members may be connected. In addition, there is no problem in passing through the current sensor 180 and the like (not shown). In general, the AC bus bars 802U to 802W are likely to become hot because current flows for driving the rotary electric machine 900, and the peripheral members may be affected by heat. In particular, since the capacitor module 500 is not directly disposed in the cooling water of the flow path 19 as in the power modules 300U to 300W, attention must be paid to thermal effects.
 ところで、コンデンサモジュール500の側面500a~500cは、流路19の近くの側面405a~405cに近接して対向している。そのため、側面500a~500cからの放熱は効果的に行われるが、コンデンサモジュール500のその他の面については放熱の点で劣っている。 The side surfaces 500a to 500c of the capacitor module 500 are close to and opposed to the side surfaces 405a to 405c near the flow path 19, respectively. Therefore, the heat radiation from the side surfaces 500a to 500c is effectively performed, but the other surfaces of the capacitor module 500 are inferior in heat radiation.
 そこで、本実施の形態では、コンデンサモジュール500の冷却性能をより向上させるために、コンデンサモジュール500の底面500fが接触している底面部405fの外周面を、冷却水によって冷却されているハウジング912の取り付け面912e、より正確には取り付け面912eに形成された面912fに接触させるようにした。その結果、コンデンサモジュール500は、ハウジング912によって形成される流路919(919b,919c)を流れる冷却水によっても冷却されることになる。 Therefore, in the present embodiment, in order to further improve the cooling performance of capacitor module 500, the outer peripheral surface of bottom portion 405f with which bottom surface 500f of capacitor module 500 is in contact is cooled by cooling water of housing 912. The mounting surface 912 e is more in contact with the surface 912 f formed on the mounting surface 912 e. As a result, the capacitor module 500 is also cooled by the cooling water flowing through the flow path 919 (919b, 919c) formed by the housing 912.
 図24は、パワーモジュール300U~300Wおよびコンデンサモジュール500が配置されたケース12を、入口配管13および出口配管14の中心で水平に断面した図である。上述したように、ケース12の流路形成部12gにはコの字形状の流路19が形成されており、図示左側の側壁12bに沿って形成された流路区間19bには、U相のパワーモジュール300Uが配置されている。同様に、入口配管13および出口配管14が設けられた側壁12dと反対側の側壁12aに沿って形成された流路区間19aには、V相のパワーモジュール300Vが配置され、右側の側壁12cに沿って形成された流路区間19cにはW相のパワーモジュール300Wが配置されている。 FIG. 24 is a horizontal sectional view of the case 12 in which the power modules 300U to 300W and the capacitor module 500 are disposed, at the centers of the inlet pipe 13 and the outlet pipe 14. As described above, the U-shaped flow path 19 is formed in the flow path forming portion 12g of the case 12, and the flow path section 19b formed along the side wall 12b on the left side of the figure has a U phase A power module 300U is disposed. Similarly, a V-phase power module 300V is disposed in the flow path section 19a formed along the side wall 12a opposite to the side wall 12d on which the inlet pipe 13 and the outlet pipe 14 are provided, on the right side wall 12c. The W-phase power module 300W is disposed in the flow passage section 19c formed along the same.
 本実施の形態では、平面形状が略正方形のケース12の3つの側壁12a~12cに沿ってコの字形状の流路19を形成し、パワーモジュール300U~300Wを各流路区間19a~19cに配置する際に、扁平なパワーモジュール300U~300Wを各側壁12a~12cに平行に配置するようにした。そして、流路19によって囲まれた中央領域(収納空間405)に、電装部品であるコンデンサモジュール500を収納するようにした。このような配置とすることにより、パワーモジュール300U~300Wおよびコンデンサモジュール500が収納されるケース12の小型化が図れ、回転電機900のハウジング912への取り付けが容易になる効果がある。 In the present embodiment, a U-shaped flow path 19 is formed along the three side walls 12a to 12c of the case 12 having a substantially square planar shape, and the power modules 300U to 300W are arranged in the flow path sections 19a to 19c. At the time of arrangement, flat power modules 300U to 300W are arranged in parallel to the side walls 12a to 12c. Then, the capacitor module 500, which is an electrical component, is stored in the central region (storage space 405) surrounded by the flow path 19. Such an arrangement makes it possible to miniaturize the case 12 in which the power modules 300U to 300W and the capacitor module 500 are housed, and has the effect of facilitating the attachment of the rotary electric machine 900 to the housing 912.
 なお、3つのパワーモジュール300U~300Wをコの字形状に配置する場合、図24に示すように、平行に配置された一対のパワーモジュール300U,300Wの間に配置されるパワーモジュール300Vの少なくとも一部が、パワーモジュール300Uと300Wとで挟まれた領域に入り込むように配置することで、より小型化を図ることができる。 When three power modules 300U to 300W are arranged in a U-shape, as shown in FIG. 24, at least one of power modules 300V arranged between a pair of power modules 300U and 300W arranged in parallel. The size can be further reduced by arranging the parts so as to enter the area sandwiched between the power modules 300U and 300W.
 図25は、パワーモジュール300U~300Wの配置を説明するための模式図である。なお、パワーモジュール300U~300Wは同一構造、同一形状を有している。ケース12の側壁12b、12cの幅(平面視における長さ)は、少なくともパワーモジュール300U~300Wの流路に沿った長さL1と連通路12k、12mの長さL2との合計程度が必要である。一方、側壁12aに関しては、少なくとも寸法L1程度が必要になる。もちろん、実際上は、図24に示すように、流路区間の接続部分など冷却水の流れを考慮して寸法を若干調整する必要がある。 FIG. 25 is a schematic diagram for explaining the arrangement of power modules 300U to 300W. The power modules 300U to 300W have the same structure and the same shape. The width (length in plan view) of the side walls 12b and 12c of the case 12 needs to be at least the sum of the length L1 along the flow path of the power modules 300U to 300W and the length L2 of the communication paths 12k and 12m. is there. On the other hand, at least the dimension L1 is required for the side wall 12a. Of course, in practice, as shown in FIG. 24, it is necessary to adjust the dimensions slightly in consideration of the flow of the cooling water such as the connecting portion of the flow path section.
 そのため、電力変換装置200の設置面積をなるべく小さくしようとした場合、平面視で見たときの形状(平面形状)を略正方形とすることで、電力変換装置200の小型化を図ることが考えられる。上述のように側壁12b,12cに沿った方向に関しては連通路が必要であるため、小型化の観点から、図25に示すように、一対のパワーモジュール300U,300Wの間の領域S1にパワーモジュール300Vの一部が含まれるように、パワーモジュール300Vを配置するのが好ましい。 Therefore, when trying to make the installation area of power conversion device 200 as small as possible, it is conceivable to achieve size reduction of power conversion device 200 by making the shape (planar shape) when viewed in a plan view into a substantially square. . As described above, since a communication passage is required for the direction along the side walls 12b and 12c, from the viewpoint of miniaturization, as shown in FIG. 25, the power module is disposed in the region S1 between the pair of power modules 300U and 300W. It is preferable to arrange the power module 300V so that a part of 300V is included.
 図25における配置スペースの図示横方向の寸法(側壁12aの幅寸法)は、パワーモジュールの厚さをL3とすると、少なくともL1+2・L3程度となる。そこで、縦方向の寸法L1+L2+(L3-L4)がL1+L3と同程度となるように、L3およびL4を設定すれば、平面視における面積をより小さくすることができ、略正方形とすることも可能となる。このとき流路区間19aは、図24に示すようにパワーモジュール300U,300Wの間の領域を通るように形成される。なお、図24に示す例では、コンデンサモジュール500の寸法による制約のために、パワーモジュール300U,300Wの間隔は、パワーモジュール300Vの寸法L1よりも若干大きくなっている。 The lateral dimension (width dimension of the side wall 12 a) of the arrangement space in FIG. 25 is at least about L 1 + 2 · L 3, where L 3 is the thickness of the power module. Therefore, if L3 and L4 are set so that the longitudinal dimension L1 + L2 + (L3-L4) becomes almost the same as L1 + L3, the area in plan view can be made smaller and it can be made substantially square Become. At this time, the flow passage section 19a is formed to pass through the region between the power modules 300U and 300W as shown in FIG. In the example shown in FIG. 24, the distance between the power modules 300U and 300W is slightly larger than the dimension L1 of the power module 300V due to the restriction by the dimensions of the capacitor module 500.
 配管13,14の位置を一つの側壁12dに集約することで、入口配管13から流路区間19bまで、および流路区間19cから出口配管14までの冷却水の流れが直線状になるので、圧損を極力小さくすることができる。また、配管の突出による装置の設置スペースが大きくなるのを抑えることができると共に、車載性の向上を図ることができる。さらに、配管13,14を連通路12k,12mに圧入する際に、筐体の一面のみでの圧入作業であるため、作業性および生産性が向上する。 By concentrating the positions of the pipes 13 and 14 in one side wall 12 d, the flow of cooling water from the inlet pipe 13 to the flow path section 19 b and the flow path from the flow path section 19 c to the outlet pipe 14 becomes linear. Can be made as small as possible. Moreover, while being able to suppress that the installation space of the apparatus by protrusion of piping becomes large, the improvement of a vehicle-mounted property can be aimed at. Furthermore, when the pipes 13 and 14 are press-fit into the communication paths 12k and 12m, since the press-fitting operation is performed on only one surface of the housing, workability and productivity are improved.
 また、コンデンサモジュール500の3辺を囲むように流路19が設けられているため、コンデンサモジュール500を効果的に冷却することができる。ところで、電動駆動装置1は、一般的にエンジンルーム内に配置される場合が多い。エンジンルーム内はエンジンや回転電機900などからの熱により比較的高温となるため、電力変換装置200に対する周囲からの熱侵入が問題となる。しかし、図24に示すように、コンデンサモジュール500は冷却水が流れる流路19によって3辺を囲まれているので、装置周囲からの熱侵入を効果的に遮断することができる。さらに、電力変換装置200を回転電機900のハウジング912に取り付ける際に、コンデンサモジュール500が載置される底面部405fの外周面を、冷却水が流れているハウジング912に接触させるようにしたので、コンデンサモジュール500の冷却効果をより高めることができる。 Moreover, since the flow path 19 is provided so as to surround the three sides of the capacitor module 500, the capacitor module 500 can be cooled effectively. By the way, the electric drive 1 is generally disposed in the engine room in many cases. Since the inside of the engine room becomes relatively high temperature due to the heat from the engine, the rotating electric machine 900 and the like, heat intrusion from the surroundings to the power conversion device 200 becomes a problem. However, as shown in FIG. 24, since the capacitor module 500 is surrounded on three sides by the flow path 19 through which the cooling water flows, it is possible to effectively block heat intrusion from the periphery of the apparatus. Furthermore, when attaching the power conversion device 200 to the housing 912 of the rotary electric machine 900, the outer peripheral surface of the bottom surface portion 405f on which the capacitor module 500 is mounted is brought into contact with the housing 912 in which the cooling water flows. The cooling effect of the capacitor module 500 can be further enhanced.
 図26は、電動駆動装置1を軸方向に対して垂直に断面した図であり、フロントブラケット908方向から見た断面図である。上述したように、流路形成部12gに形成された開口部402a~402cは、パワーモジュール300U~300Wのモジュールケース304に設けられたフランジ304Bによって塞がれる。パワーモジュール300U~300Wは、放熱用のフィン305が形成された放熱面307A,307Bが流路19内に配置され、フィン305が設けられていない下端部分は、下カバー420に形成された凸部406の内側窪みの内部に収納されている。これにより、フィン305が形成されていない空間に冷却水が流れ込むのを防止することができ、冷却効果の低下を防止できるる。 FIG. 26 is a cross-sectional view of the electric drive 1 perpendicular to the axial direction, as viewed from the front bracket 908 direction. As described above, the openings 402a to 402c formed in the flow path forming portion 12g are closed by the flange 304B provided on the module case 304 of the power modules 300U to 300W. In the power modules 300U to 300W, the heat dissipation surfaces 307A and 307B on which the fins 305 for heat dissipation are formed are disposed in the flow path 19, and the lower end portion on which the fins 305 are not provided is a convex portion formed on the lower cover 420 It is housed inside the inner recess of 406. Thereby, it is possible to prevent the cooling water from flowing into the space where the fins 305 are not formed, and it is possible to prevent the lowering of the cooling effect.
 本実施の形態の機電一体の電動駆動装置1では、図26に示すように比較的に重量の重いコンデンサモジュール500を電力変換装置200の下部中央に配置している。そのため、電力変換装置200の重心バランスが良く、振動が加わった際に電力変換装置200部分が暴れ難く、機電一体構造に大変適している。 In the machine-electric integrated electric drive device 1 of the present embodiment, as shown in FIG. 26, the relatively heavy capacitor module 500 is disposed at the lower center of the power conversion device 200. Therefore, the center-of-gravity balance of the power conversion device 200 is good, and when vibration is applied, the power conversion device 200 part is hard to go wild, which is very suitable for the mechanical-electrical integrated structure.
 図26において、電力変換装置200は、ケース12の側壁12a~12cとは異なる底面部405fが、ハウジング912の回転電機半径方向に設けられた取付面912eの面912fに接触するように固定されている。底面部405fは面912fに直接接触していても良いし、不図示の放熱シート、グリス等を挟んで間接的に接触していても良い。 26, power conversion device 200 is fixed such that bottom surface portion 405f different from side walls 12a to 12c of case 12 is in contact with surface 912f of mounting surface 912e provided in the radial direction of the rotating electrical machine of housing 912 There is. The bottom surface portion 405f may be in direct contact with the surface 912f, or may be in indirect contact with a heat release sheet (not shown), grease or the like interposed therebetween.
 図26に示すような冷却構造とすることで、コンデンサモジュール500の流路19に対向していない底面500fを、回転電機900を収納するハウジング912の流路919b、919cを流れる冷却水により冷却することができる。すなわち、コンデンサモジュール500は、電力変換装置200の流路19を流れる冷却水だけでなく、回転電機900の流路919b、919cを流れる冷却水も用いてダブルで冷却することができる。
その結果、コンデンサモジュール500の冷却効果が向上する。
With the cooling structure as shown in FIG. 26, the bottom surface 500f not facing the flow path 19 of the capacitor module 500 is cooled by the cooling water flowing in the flow paths 919b and 919c of the housing 912 housing the rotary electric machine 900. be able to. That is, the capacitor module 500 can perform double cooling using not only the cooling water flowing through the flow path 19 of the power conversion device 200 but also the cooling water flowing through the flow paths 919 b and 919 c of the rotary electric machine 900.
As a result, the cooling effect of the capacitor module 500 is improved.
 次に、図24、26を用いて、電力変換装置200のハウジング912への取り付け位置に関して説明する。本実施の形態では、上述したように回転電機900の半径方向に電力変換装置200を取り付ける際に、ケース12の底面部405fをハウジング912の面912fに接触させるようにした。ハウジング912の流路919は、図26に示すようにハウジング912の周方向にリング状に形成されており、コンデンサモジュール500の熱の一部は、矢印Hのように底面部405f、面912fを通して流路919の冷却水へと放熱される。そのため、より好適にコンデンサモジュール500を冷却する為には、可能な限りケース12の底面部405fと回転電機900の軸芯Jとの半径方向距離を小さくしてハウジング912の流路919に近づけるのが良い。この時、コンデンサモジュール500の底面500fはバランスよく冷却する必要があり、底面500fから回転電機900の流路919b,919cまでの最小距離Rminと最大距離Rmaxとの差が小さくなるのが望ましい。 Next, the mounting position of the power converter 200 on the housing 912 will be described with reference to FIGS. In the present embodiment, when the power conversion device 200 is attached in the radial direction of the rotary electric machine 900 as described above, the bottom surface portion 405 f of the case 12 is in contact with the surface 912 f of the housing 912. As shown in FIG. 26, the flow passage 919 of the housing 912 is formed in a ring shape in the circumferential direction of the housing 912, and a part of the heat of the capacitor module 500 passes through the bottom portion 405f and the surface 912f as shown by arrow H. The heat is dissipated to the cooling water of the flow path 919. Therefore, in order to cool the capacitor module 500 more suitably, the distance in the radial direction between the bottom portion 405f of the case 12 and the axis J of the rotary electric machine 900 is reduced as close as possible to the flow path 919 of the housing 912. Is good. At this time, it is necessary to cool the bottom surface 500f of the capacitor module 500 in a balanced manner, and it is desirable that the difference between the minimum distance Rmin and the maximum distance Rmax from the bottom surface 500f to the flow paths 919b and 919c of the rotary electric machine 900 be small.
 そのため、回転電機900の中心軸の位置(回転電機900の軸芯Jから面912fに引いた垂線の足)が、面912fとケース12の底面部405fとの接触領域に入るように、ケース12をハウジング912に固定するのが良い。より好ましくは、底面部405fの中央位置(図26の左右方向位置に関する中央位置)と回転電機900の軸芯Jの位置とが一致するのが良い。そのような配置とすることで、コンデンサモジュール500の底面500fから回転電機900の流路919までの距離に関して、最小距離Rminと最大距離Rmaxとの差が極小となる。その結果、コンデンサモジュール500の底面500f内における冷却バランスが向上する。 Therefore, case 12 so that the position of the central axis of rotating electric machine 900 (the foot of the perpendicular drawn from axis J of rotating electric machine 900 to surface 912f) enters the contact area between surface 912f and bottom portion 405f of case 12. May be secured to the housing 912. More preferably, the central position of the bottom surface portion 405f (the central position with respect to the horizontal position in FIG. 26) coincides with the position of the axis J of the rotary electric machine 900. With such an arrangement, the difference between the minimum distance Rmin and the maximum distance Rmax is minimized with respect to the distance from the bottom surface 500f of the capacitor module 500 to the flow path 919 of the rotary electric machine 900. As a result, the cooling balance in the bottom surface 500 f of the capacitor module 500 is improved.
 上記のように、コンデンサモジュール500の6面の内、3つの側面500a~500cは、流路区間19a~19cの冷却水により冷却され、底面500fについてはハウジング912を流れる冷却水を利用して冷却することができる。そして、残り二つの面500g,500d(図17参照)に関して検討すると以下のようになる。 As described above, among the six sides of the capacitor module 500, the three side surfaces 500a to 500c are cooled by the cooling water of the flow path sections 19a to 19c, and the bottom surface 500f is cooled using the cooling water flowing through the housing 912 can do. And when it considers regarding the remaining two faces 500g and 500d (refer to Drawing 17), it becomes as follows.
 まず、側面500dを冷却するには、ケース12の側壁12dをハウジング912に設けられた取付面912eに固定する必要がある。しかし、側壁12dには冷却水の入口配管13と出口配管14が設けられているため、ケース12をハウジング912に取り付ける際の障害となり、最良の選択とは言えない。したがって、側壁12dと対向するコンデンサモジュールの側面500dはダブル冷却(流路19の冷却水による冷却と、流路919の冷却水による冷却)に不適である。 First, in order to cool the side surface 500d, the side wall 12d of the case 12 needs to be fixed to the mounting surface 912e provided on the housing 912. However, since the side wall 12d is provided with the inlet pipe 13 and the outlet pipe 14 for the cooling water, this is an obstacle when attaching the case 12 to the housing 912, and can not be said to be the best choice. Therefore, the side surface 500d of the capacitor module facing the side wall 12d is not suitable for double cooling (cooling by the coolant in the flow path 19 and cooling by the coolant in the flow path 919).
 また、面500gの上方側には、ドライバ回路基板22や制御回路基板20や、補助モールド体600の信号端子325U,325L及び直流正極端子315B、直流負極端子319B、交流端子320Bや、交流バスバー802U~802W等が配置される。そのため、面500gを取付面912eの面912fに直接または間接に接触させるのは困難である。したがって、側壁12gと対向するコンデンサモジュールの側面500gはダブル冷却に不適である。 Further, on the upper side of the surface 500g, the driver circuit board 22 and the control circuit board 20, the signal terminals 325U and 325L and the direct current positive terminal 315B of the auxiliary molded body 600, the direct current negative terminal 319B, the alternating current terminal 320B, and the alternating current bus bar 802U. -802 W etc. are arranged. Therefore, it is difficult to bring the surface 500g into direct or indirect contact with the surface 912f of the mounting surface 912e. Therefore, the side surface 500g of the capacitor module facing the side wall 12g is not suitable for double cooling.
 一方、コンデンサモジュール500の底面500fの場合には、ケース12の底面部405fに接触しているので、底面部405fを介してハウジング912の面912fに容易に接触させることができる。これは、本実施の形態の電力変換装置200では、3つのパワーモジュール300U~Wの形状が扁平状であって、図24に示すように、パワーモジュール300U~300Wがケース12の側壁12a~12cにそれぞれ平行になるように、流路19に沿って配置されている。そのような構成としたことで、コンデンサモジュール500の底面500f側に、ケース12の底面部405fおよび下カバー420が配置されるような構造とすることができる。その結果、底面部405fの外周面を下カバー420の凸部406よりも下方に突出させることで、回転電機900のハウジング912に容易に接触させることができ、コンデンサモジュール500の500f面をハウジング912を流れる冷却水を利用して冷却することができる。 On the other hand, in the case of the bottom surface 500f of the capacitor module 500, since it is in contact with the bottom surface portion 405f of the case 12, the surface 912f of the housing 912 can be easily contacted via the bottom surface portion 405f. This is because, in power conversion device 200 of the present embodiment, the shape of three power modules 300U to W is flat, and power modules 300U to 300W are side walls 12a to 12c of case 12 as shown in FIG. Are arranged along the flow path 19 so as to be parallel to each other. With such a configuration, the bottom surface portion 405 f of the case 12 and the lower cover 420 can be disposed on the bottom surface 500 f side of the capacitor module 500. As a result, by causing the outer peripheral surface of the bottom surface portion 405 f to project lower than the convex portion 406 of the lower cover 420, the housing 912 of the rotary electric machine 900 can be easily brought into contact with it. It can be cooled using the cooling water flowing through.
 以上説明したように、本実施の形態に記載の機電一体型の電動駆動装置1は以下のような効果を奏する。 As described above, the electromechanical integrated electric drive apparatus 1 described in the present embodiment has the following effects.
(1)電動駆動装置1は、ロータ930、ステータ940、および流路919が形成されてステータ940を保持するモータハウジング(センターブラケット909、ハウジング912)を有する回転電機900と、インバータ回路140を有しハウジング912の外周に固定される電力変換装置200と、を備える。そして、電力変換装置200は、インバータ回路140の直流入力側に設けられた平滑用のコンデンサモジュール500と、流路19とコンデンサモジュール500が配置される凹部である収納空間405とが形成された流路形成部12gを有するケース12と、電力変換用のパワー半導体素子が収納された有底筒状のモジュールケース304を有し、モジュールケース304の少なくとも一部が流路19内に配置される複数のパワーモジュール300U~300Wと、を備え、電力変換装置200は、コンデンサモジュール500が配置された収納空間405の底面部405fがハウジング912の外周に接触するように該ハウジング912に固定されている。 (1) The electric drive device 1 has the rotary electric machine 900 having the motor housing (center bracket 909, housing 912) having the rotor 930, the stator 940, and the flow path 919 formed therein and holding the stator 940, and the inverter circuit 140. And a power converter 200 fixed to the outer periphery of the housing 912. Power conversion device 200 has a flow in which smoothing capacitor module 500 provided on the DC input side of inverter circuit 140 and storage space 405 which is a recess in which flow path 19 and capacitor module 500 are arranged are formed. A plurality of cases 12 having a case 12 having a passage forming portion 12 g and a bottomed cylindrical module case 304 containing a power semiconductor element for power conversion, wherein at least a part of the module case 304 is disposed in the flow path 19 The power conversion device 200 is fixed to the housing 912 such that the bottom surface portion 405f of the storage space 405 in which the capacitor module 500 is disposed is in contact with the outer periphery of the housing 912.
 そのため、コンデンサモジュール500は、流路形成部12gの流路19を流れる冷媒によって冷却されると共に、底面部405fおよびハウジング912を介して流路919を流れる冷媒によっても冷却されることになる。その結果、コンデンサモジュール500に対する冷却性能を向上させることができる。 Therefore, the capacitor module 500 is cooled by the refrigerant flowing through the flow passage 19 of the flow passage forming portion 12g, and is also cooled by the refrigerant flowing through the flow passage 919 via the bottom surface portion 405f and the housing 912. As a result, the cooling performance for the capacitor module 500 can be improved.
 なお、上述した実施形態では、モータハウジングをセンターブラケット909とハウジング912とで構成して流路919を形成したが、モータハウジングを一部品としても構わない。また、交流バスバー802U~802Wを回転電機900の交流端子902U~902Wに直結しているが、直結する代わりにケーブルを介して接続した構成でも、同様の作用効果を奏することができる。 In the embodiment described above, although the motor housing is configured by the center bracket 909 and the housing 912 to form the flow passage 919, the motor housing may be one component. In addition, although the AC bus bars 802U to 802W are directly connected to the AC terminals 902U to 902W of the rotary electric machine 900, the same function and effect can be achieved by a configuration in which the connection is made via a cable instead of direct connection.
(2)また、流路19は、コンデンサモジュール500を挟むように平行に設けられた流路区間19b,19cと、流路区間19b,19cの相対する一端同士を連通する流路区間19aと、を備え、収納空間405が、流路区間19a~19cによって囲まれた領域に配置されるようにするのが好ましい。このように、コンデンサモジュール500が配置される収納空間405を流路区間19a~19cによって囲むことにより、コンデンサモジュール500から流路19を流れる冷媒への放熱効果を高めることができると共に、電力変換装置200の周囲からコンデンサモジュール500へ侵入する熱を低減することができる。 (2) Further, the flow path 19 includes the flow path sections 19b and 19c provided in parallel to sandwich the capacitor module 500, and the flow path section 19a connecting the opposite ends of the flow path sections 19b and 19c. The storage space 405 is preferably arranged in the area surrounded by the flow path sections 19a to 19c. As described above, by surrounding the storage space 405 in which the capacitor module 500 is disposed by the flow path sections 19a to 19c, the heat dissipation effect from the capacitor module 500 to the refrigerant flowing in the flow path 19 can be enhanced, and the power converter Heat entering the capacitor module 500 from around 200 can be reduced.
 なお、上述した実施の形態では、3つの流路区間19a~19cの各々にパワーモジュールを配置したが、流路区間19bに2つ、流路区間19cに1つ配置するような構成でも良い。また、3相に限らず2相や6相等の場合にも同様に適用することができる。 In the embodiment described above, the power modules are arranged in each of the three flow path sections 19a to 19c, but two power supply sections may be arranged in the flow path section 19b and one may be arranged in the flow path section 19c. Further, the present invention can be applied not only to three phases but also to two phases or six phases.
(3)さらに、ハウジング912の外周には回転電機900の電機子巻線に接続された複数の交流端子902U~902Wがそれぞれ配置され、電力変換装置200に設けられた交流バスバー802U~802Wは、流路19を跨ぐようにパワーモジュール300U~300Wから流路区間19a~19cによって囲まれた領域の外側の領域まで延在し、該外側の領域において交流端子と接続されている。 (3) Furthermore, on the outer periphery of the housing 912, a plurality of AC terminals 902U to 902W connected to the armature winding of the rotary electric machine 900 are respectively disposed, and the AC bus bars 802U to 802W provided in the power conversion device 200 are The power modules 300U-300W extend from the power modules 300U-300W across the flow path 19 to an area outside the area surrounded by the flow path sections 19a-19c, and are connected to the AC terminals in the outer area.
 交流端子902U~902Wは電機子巻線の発熱により高温となり、交流端子902U~902Wに接続された交流バスバー802U~802Wも温度が上昇する。しかし、接続部分が、流路区間19a~19cによって囲まれた領域の外側の領域であるため、接続部分からの輻射熱は流路形成部12gによって遮られ、コンデンサモジュール500への熱的な影響を防止することができる。 The AC terminals 902U to 902W become high temperature due to heat generation of the armature winding, and the temperatures of the AC bus bars 802U to 802W connected to the AC terminals 902U to 902W also rise. However, since the connection portion is a region outside the region surrounded by the flow path sections 19a to 19c, the radiant heat from the connection portion is blocked by the flow path formation portion 12g, and the thermal influence on the capacitor module 500 is It can be prevented.
(4)また、交流端子902U~902Wに接続された交流バスバー802U~802Wを、図21に示すように外側の領域において、電気的絶縁性部材である絶縁シート950を介して流路形成部12gに接触させるようにしても良い。そうすることで交流バスバー802U~802Wが冷却され、交流バスバー802U~802Wの温度上昇を、さらには、それによるコンデンサモジュール500への熱的な影響を低減することができる。 (4) Further, as shown in FIG. 21, in the area outside the AC bus bars 802U to 802W connected to the AC terminals 902U to 902W, the flow path forming portion 12g via the insulating sheet 950 which is an electrically insulating member. You may make it contact. By so doing, AC bus bars 802U to 802W can be cooled, and the temperature rise of AC bus bars 802U to 802W and the thermal effect on capacitor module 500 due to the temperature rise can be reduced.
(5)さらに、図26に示すように、電力変換装置200をハウジング912に固定する際に、は、回転電機900の軸芯から底面部405fが接触するハウジング912の面912fへ引いた垂線が底面部405fと交わるようにすることで、底面500fと流路919との距離が底面500f内においてより均一化され、底面500fをより均一に冷却することができる。また、底面500fと流路919との平均距離もより小さくなるので、流路919の冷媒による冷却効率をより高めることができる。 (5) Furthermore, as shown in FIG. 26, when fixing the power conversion device 200 to the housing 912, the perpendicular drawn from the shaft core of the rotating electrical machine 900 to the surface 912f of the housing 912 which the bottom surface portion 405f contacts. By intersecting the bottom surface portion 405f, the distance between the bottom surface 500f and the flow path 919 can be made more uniform in the bottom surface 500f, and the bottom surface 500f can be cooled more uniformly. Further, since the average distance between the bottom surface 500 f and the flow path 919 is also smaller, the cooling efficiency of the flow path 919 by the refrigerant can be further enhanced.
(6)また、有底筒状のモジュールケース304の底部がケース12のハウジング固定方向を向くように、パワーモジュール300U~300Wを流路19内に配置するようにすると、パワーモジュール300U~300Wの端子等が底面部405fと反対方向を向くので、容易に底面部405fをハウジング912の面912fに接触させることができる。 (6) Further, when the power modules 300U to 300W are arranged in the flow path 19 so that the bottom of the bottomed cylindrical module case 304 faces the housing fixing direction of the case 12, the power modules 300U to 300W Since the terminal or the like faces in the opposite direction to the bottom surface portion 405f, the bottom surface portion 405f can be easily brought into contact with the surface 912f of the housing 912.
(7)電力変換装置200を回転電機900のハウジング912に取り付ける際に、電力変換装置200がハウジング912のみに固定されるような構造とすることで、取付面精度確保のための機械加工はハウジング912のみに行えばよく、生産性が向上する。 (7) When attaching the power conversion device 200 to the housing 912 of the rotary electric machine 900, the power conversion device 200 is fixed only to the housing 912 so that machining for securing the mounting surface accuracy is a housing Productivity can be improved by performing only 912.
(8)流路919と流路19とを連通する連通配管である中継部材14aを備え、流路19に供給された冷媒が、中継部材14aを介して流路919へと導かれるようにすることで、冷却系が簡素化される。この場合、冷媒の流れの上流側に流路19を配置することで、電力変換装置200の冷却を効果的に行うことができる。 (8) The relay member 14a, which is a communication pipe connecting the flow passage 919 and the flow passage 19, is provided, and the refrigerant supplied to the flow passage 19 is led to the flow passage 919 through the relay member 14a. This simplifies the cooling system. In this case, by arranging the flow path 19 on the upstream side of the flow of the refrigerant, the power conversion device 200 can be effectively cooled.
 なお、以上の説明はあくまでも一例であり、発明を解釈する際、上記実施の形態の記載事項と特許請求の範囲の記載事項の対応関係に何ら限定も拘束もされない。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。例えば、上述した実施形態では流路19はコの字形状に形成されているが、流路区間19b、19cのような平行な流路のみを設け、配管13,14が設けられていない側の端部をケース外まで貫通させ、両端部を配管で連通するようにしても良い。 The above description is merely an example, and when interpreting the invention, the correspondence between the items described in the embodiment and the items described in the claims is not limited or restricted at all. Further, the present invention is not limited to the above embodiment as long as the features of the present invention are not impaired. For example, in the embodiment described above, the flow path 19 is formed in a U-shape, but only parallel flow paths such as the flow path sections 19 b and 19 c are provided, and the pipes 13 and 14 are not provided. The end may be penetrated to the outside of the case and the both ends may be connected by piping.
 1:電動駆動装置、12:ケース、12a~12d:側壁、12i:貫通穴、19,919,919b,919c:流路、19a~19c:流路区間、20:制御回路基板、22:ドライバ回路基板、136:バッテリ、140:インバータ回路、200:電力変換装置、300U~300W:パワーモジュール、304:モジュールケース、405:収納空間、405a~405d:側面、405f:底面部、500:コンデンサモジュール、507,950:絶縁シート、802,802U~802W:交流バスバー、900:回転電機、902U~902W:交流端子、908:フロントブラケット、909:センターブラケット、910:リヤブラケット、912:ハウジング、930:ロータ、940:ステータ 1: Electric drive device 12: Case 12a-12d: Side wall 12i: Through hole 19, 1919, 919b, 919c: Flow path 19a-19c: Flow path section 20: Control circuit board 22: Driver circuit Substrate, 136: battery, 140: inverter circuit, 200: power converter, 300 U to 300 W: power module, 304: module case, 405: storage space, 405 a to 405 d: side surface, 405 f: bottom portion, 500: capacitor module, 507, 950: Insulating sheet, 802, 802 U to 802 W: AC bus bar, 900: rotary electric machine, 902 U to 902 W: AC terminal, 908: front bracket, 909: center bracket, 910: rear bracket, 912: housing, 930: rotor , 940: Stator

Claims (8)

  1.  ロータ、ステータ、および第1の冷媒流路が形成されて前記ステータを保持するハウジングを有する回転電機と、
     インバータ回路を有し前記ハウジングの外周に固定される電力変換装置と、を備えた機電一体型の電動駆動装置であって、
     前記電力変換装置は、
     前記インバータ回路の直流入力側に設けられた平滑用コンデンサと、
     第2の冷媒流路と前記平滑コンデンサが配置される凹部とが形成された流路形成部を有するインバータケースと、
     電力変換用のパワー半導体素子が収納された有底筒状のモジュールケースを有し、該モジュールケースの少なくとも一部が前記第2の冷媒流路内に配置される複数のパワー半導体モジュールと、を備え、
     前記電力変換装置は、前記平滑コンデンサが配置された前記凹部の底面部が前記ハウジングの外周に接触するように該ハウジングに固定されていることを特徴とする機電一体型の電動駆動装置。
    A rotating electrical machine having a rotor, a stator, and a housing in which a first refrigerant flow path is formed to hold the stator;
    And a power conversion device including an inverter circuit and fixed to an outer periphery of the housing, the electric drive device being of an integral type.
    The power converter is
    A smoothing capacitor provided on the DC input side of the inverter circuit;
    An inverter case having a flow passage forming portion in which a second refrigerant flow passage and a recess in which the smoothing capacitor is disposed are formed;
    A plurality of power semiconductor modules having a bottomed cylindrical module case containing power semiconductor elements for power conversion, at least a part of the module case being disposed in the second refrigerant flow path; Equipped
    The power conversion device is fixed to the housing such that a bottom surface portion of the concave portion in which the smoothing capacitor is disposed is in contact with an outer periphery of the housing.
  2.  請求項1に記載の機電一体型の電動駆動装置において、
     前記第2の冷媒流路は、前記平滑コンデンサを挟むように平行に設けられた第1および第2の流路区間と、前記第1および第2の流路区間の相対する一端同士を連通する第3の流路区間と、を備え、
     前記凹部は、前記第1乃至第3の流路区間によって囲まれた領域に配置されていることを特徴とする機電一体型の電動駆動装置。
    In the machine-electric integrated type electric drive apparatus according to claim 1,
    The second refrigerant flow path communicates first and second flow path sections provided in parallel so as to sandwich the smoothing capacitor, and opposite ends of the first and second flow path sections. A third flow path section,
    The mechanical-electrical integrated type electric drive apparatus is characterized in that the concave portion is disposed in a region surrounded by the first to third flow path sections.
  3.  請求項2に記載の機電一体型の電動駆動装置において、
     前記ハウジングの外周には前記回転電機の電機子巻線に接続された複数の交流端子がそれぞれ配置され、
     前記電力変換装置は、前記複数のパワー導体モジュールと前記複数の交流端子とを接続する複数の交流バスバーを備え、
     前記交流バスバーの各々は、前記第2の冷媒流路を跨ぐように前記パワー導体モジュールから前記流路区間によって囲まれた領域の外側の領域まで延在し、該外側の領域において前記交流端子と接続されていることを特徴とする機電一体型の電動駆動装置。
    In the machine-electric integrated type electric drive apparatus according to claim 2,
    A plurality of alternating current terminals connected to an armature winding of the rotating electrical machine are disposed on the outer periphery of the housing, respectively;
    The power converter includes a plurality of alternating current bus bars connecting the plurality of power conductor modules and the plurality of alternating current terminals,
    Each of the AC bus bars extends from the power conductor module to an area outside the area surrounded by the flow path section so as to straddle the second refrigerant flow path, and A machine-electric integrated electric drive unit characterized in that it is connected.
  4.  請求項3に記載の機電一体型の電動駆動装置において、
     前記複数の交流バスバーは、前記外側の領域において電気的絶縁性部材を介して前記流路形成部と接していることを特徴とする機電一体型の電動駆動装置。
    In the machine-electric integrated type electric drive apparatus according to claim 3,
    The plurality of alternating current bus bars are in contact with the flow path forming portion via an electrically insulating member in the outer region, and the machine-electric integrated type electric drive device.
  5.  請求項1乃至4のいずれか一項に記載の機電一体型の電動駆動装置において、
     前記電力変換装置は、前記回転電機の軸芯から前記底面部が接触するハウジング接触面へ引いた垂線が前記底面部と交わるように、前記ハウジングに固定されていることを特徴とする機電一体型の電動駆動装置。
    In the electromechanical and integral type electric drive apparatus according to any one of claims 1 to 4,
    The power conversion device is fixed to the housing such that a perpendicular drawn from an axial core of the rotating electrical machine to a housing contact surface which the bottom surface contacts contacts the bottom surface. Electric drive unit.
  6.  請求項1乃至5のいずれか一項に記載の機電一体型の電動駆動装置において、
     前記パワー半導体モジュールは、前記有底筒状のモジュールケースの底部が前記ケースのハウジング固定方向を向くように、前記第2の冷媒流路内に配置されていることを特徴とする機電一体型の電動駆動装置。
    In the electromechanical and integral type electric drive apparatus according to any one of claims 1 to 5,
    The power semiconductor module is disposed in the second refrigerant flow channel such that a bottom portion of the bottomed cylindrical module case faces the housing fixing direction of the case. Electric drive.
  7.  請求項1乃至6のいずれか一項に記載の機電一体型の電動駆動装置において、
     前記回転電機は、前記ハウジングの軸方向一端に固定されるフロントブラケットと、前記ハウジングの軸方向他端に固定されるリアブラケットと、を備え、
     前記電力変換装置は、前記ハウジングのみに固定されていることを特徴とする機電一体型の電動駆動装置。
    In the electromechanical and integral type electric drive apparatus according to any one of claims 1 to 6,
    The rotating electrical machine includes a front bracket fixed to one axial end of the housing, and a rear bracket fixed to the other axial end of the housing.
    The electric power conversion device is fixed to only the housing.
  8.  請求項1乃至7のいずれか一項に記載の機電一体型の電動駆動装置において、
     前記第1の冷媒流路と前記第2の冷媒流路とを連通する連通配管を備え、
     前記第2の冷媒流路に供給された冷媒が、前記連通配管を介して前記第1の冷媒流路へと導かれていることを特徴とする機電一体型の電動駆動装置。
    In the electromechanical and integral type electric drive apparatus according to any one of claims 1 to 7,
    A communication pipe connecting the first refrigerant flow path and the second refrigerant flow path;
    A refrigerant coupled to the second refrigerant flow channel is led to the first refrigerant flow channel via the communication pipe, and the electric drive apparatus of the mechanical-electrical integrated type.
PCT/JP2012/078561 2011-11-28 2012-11-05 Electromechanical electric drive device WO2013080747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011259228A JP2013115903A (en) 2011-11-28 2011-11-28 Mechano-electric integration type electrically driven driving device
JP2011-259228 2011-11-28

Publications (1)

Publication Number Publication Date
WO2013080747A1 true WO2013080747A1 (en) 2013-06-06

Family

ID=48535215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078561 WO2013080747A1 (en) 2011-11-28 2012-11-05 Electromechanical electric drive device

Country Status (2)

Country Link
JP (1) JP2013115903A (en)
WO (1) WO2013080747A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515281A (en) * 2014-10-08 2016-04-20 三菱自动车工业株式会社 Motor apparatus for vehicle
EP3007334A3 (en) * 2014-10-08 2016-06-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Motor apparatus for vehicle
US20160248302A1 (en) * 2015-02-20 2016-08-25 Kabushiki Kaisha Yaskawa Denki Drive unit, method for removing inverter, and method for installing inverter
JP2017017863A (en) * 2015-07-01 2017-01-19 日立オートモティブシステムズ株式会社 Power converter
CN106787467A (en) * 2016-12-12 2017-05-31 奇瑞汽车股份有限公司 A kind of Electrical Driving System of Electrical Vehicle
EP3074254B1 (en) 2013-11-26 2019-04-10 Schaeffler Technologies AG & Co. KG Hybrid module and power electronics module with a common coolant flow
EP3944472A4 (en) * 2019-03-20 2022-11-09 LG Magna e-Powertrain Co., Ltd. Intelligent power generation module

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838853B2 (en) * 2014-11-14 2021-03-03 日産自動車株式会社 Rotating electrical system
WO2016098646A1 (en) * 2014-12-15 2016-06-23 アイシン・エィ・ダブリュ株式会社 Vehicular drive device
JP5919421B1 (en) * 2015-05-18 2016-05-18 カルソニックカンセイ株式会社 Power converter
JP6648199B2 (en) * 2018-06-29 2020-02-14 日立オートモティブシステムズ株式会社 Power converter
JP7180265B2 (en) * 2018-10-08 2022-11-30 株式会社デンソー power converter
CN109474135A (en) * 2018-11-05 2019-03-15 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) A kind of electric car drive module
JP2020114087A (en) * 2019-01-10 2020-07-27 マツダ株式会社 In-vehicle cooling device
JP7107251B2 (en) * 2019-03-05 2022-07-27 株式会社デンソー power converter
JP2022087928A (en) 2020-12-02 2022-06-14 トヨタ自動車株式会社 Electric/mechanical integrated unit
KR20230022477A (en) * 2021-08-09 2023-02-16 현대자동차주식회사 Motor integrated inverter apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186222A (en) * 2000-12-18 2002-06-28 Mitsubishi Electric Corp Motor with built-in controller and vehicle loading the same
JP2005020881A (en) * 2003-06-25 2005-01-20 Aisin Aw Co Ltd Drive unit
JP2005036773A (en) * 2003-07-18 2005-02-10 Denso Corp Inverter-integrated motor-driven compressor for vehicle
JP2005224008A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Inverter device, inverter integrated type rotating electric machine and vehicle equipped with rotating machine
JP2008295139A (en) * 2007-05-22 2008-12-04 Denso Corp Power converter integrated with drive device
JP2010119299A (en) * 2008-03-11 2010-05-27 Hitachi Automotive Systems Ltd Power conversion device
JP2010148272A (en) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd Inverter and device for cooling motor
JP2010213447A (en) * 2009-03-10 2010-09-24 Nissan Motor Co Ltd Mechano-electric driver
JP2011233606A (en) * 2010-04-26 2011-11-17 Hitachi Automotive Systems Ltd Power module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186222A (en) * 2000-12-18 2002-06-28 Mitsubishi Electric Corp Motor with built-in controller and vehicle loading the same
JP2005020881A (en) * 2003-06-25 2005-01-20 Aisin Aw Co Ltd Drive unit
JP2005036773A (en) * 2003-07-18 2005-02-10 Denso Corp Inverter-integrated motor-driven compressor for vehicle
JP2005224008A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Inverter device, inverter integrated type rotating electric machine and vehicle equipped with rotating machine
JP2008295139A (en) * 2007-05-22 2008-12-04 Denso Corp Power converter integrated with drive device
JP2010119299A (en) * 2008-03-11 2010-05-27 Hitachi Automotive Systems Ltd Power conversion device
JP2010148272A (en) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd Inverter and device for cooling motor
JP2010213447A (en) * 2009-03-10 2010-09-24 Nissan Motor Co Ltd Mechano-electric driver
JP2011233606A (en) * 2010-04-26 2011-11-17 Hitachi Automotive Systems Ltd Power module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3074254B1 (en) 2013-11-26 2019-04-10 Schaeffler Technologies AG & Co. KG Hybrid module and power electronics module with a common coolant flow
CN105515281A (en) * 2014-10-08 2016-04-20 三菱自动车工业株式会社 Motor apparatus for vehicle
EP3007333A3 (en) * 2014-10-08 2016-06-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Motor apparatus for vehicle
EP3007334A3 (en) * 2014-10-08 2016-06-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Motor apparatus for vehicle
US9837876B2 (en) 2014-10-08 2017-12-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Motor apparatus for vehicle
US9866091B2 (en) 2014-10-08 2018-01-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Motor apparatus for vehicle
US20160248302A1 (en) * 2015-02-20 2016-08-25 Kabushiki Kaisha Yaskawa Denki Drive unit, method for removing inverter, and method for installing inverter
CN105914954A (en) * 2015-02-20 2016-08-31 株式会社安川电机 Drive Unit, Method For Removing Inverter, And Method For Installing Inverter
JP2017017863A (en) * 2015-07-01 2017-01-19 日立オートモティブシステムズ株式会社 Power converter
CN106787467A (en) * 2016-12-12 2017-05-31 奇瑞汽车股份有限公司 A kind of Electrical Driving System of Electrical Vehicle
EP3944472A4 (en) * 2019-03-20 2022-11-09 LG Magna e-Powertrain Co., Ltd. Intelligent power generation module
US11942833B2 (en) 2019-03-20 2024-03-26 Lg Magna E-Powertrain Co., Ltd. Intelligent power generation module

Also Published As

Publication number Publication date
JP2013115903A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
WO2013080747A1 (en) Electromechanical electric drive device
JP7012813B2 (en) Power semiconductor device and power conversion device using it
JP5508357B2 (en) Power converter
JP5563383B2 (en) Power converter
JP5651552B2 (en) Power converter
US9999150B2 (en) Electric power converter
JP4934712B2 (en) Power converter
US9000582B2 (en) Power semiconductor module and power conversion device
JP5592496B2 (en) Power converter
JP5815063B2 (en) Power converter
JP6117361B2 (en) Power converter
JP5707279B2 (en) Power converter
JP5802629B2 (en) Power converter
JP2014087124A (en) Power conversion device
JP2013027259A (en) Case division structure of electric power conversion apparatus
JP5857092B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854063

Country of ref document: EP

Kind code of ref document: A1