WO2013015349A1 - 光断層画像測定装置および光断層画像測定システム - Google Patents

光断層画像測定装置および光断層画像測定システム Download PDF

Info

Publication number
WO2013015349A1
WO2013015349A1 PCT/JP2012/068935 JP2012068935W WO2013015349A1 WO 2013015349 A1 WO2013015349 A1 WO 2013015349A1 JP 2012068935 W JP2012068935 W JP 2012068935W WO 2013015349 A1 WO2013015349 A1 WO 2013015349A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
tomographic image
optical tomographic
measurement
Prior art date
Application number
PCT/JP2012/068935
Other languages
English (en)
French (fr)
Inventor
俊道 青田
康 照井
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2013015349A1 publication Critical patent/WO2013015349A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium

Definitions

  • the present invention relates to an optical tomographic image measuring apparatus and an optical tomographic image measuring system for performing optical tomographic measurement.
  • OCT Optical Coherence Tomography: Optical Coherence Tomography
  • OCT optical Coherence Tomography: Optical Coherence Tomography
  • light emitted from a light source is divided into signal light and reference light. Then, the signal light is irradiated to the measurement object.
  • the reference light is not irradiated onto the measurement object. Therefore, the signal light whose phase has been changed by irradiating the measurement object is in a state of being out of phase with respect to the reference light.
  • the interference light is detected and processed, so that the OCT detects a phase shift between the signal light and the reference light, and is detected from the surface of the measurement target object. Get the structural information in the vertical direction.
  • Such OCT measurement methods can be broadly divided into two types: TD (Time Domain) -OCT and FD (Fourier Domain) -OCT.
  • TD-OCT is a method for acquiring an interference reflected light intensity distribution corresponding to a position in a depth direction of a measurement object by measuring the interference light intensity while changing the optical path length of the reference light to various lengths. It is.
  • Patent Document 1 discloses a light reflection image measurement apparatus based on such TD-OCT.
  • FD-OCT performs measurement by decomposing an interference signal between signal light and reference light that has passed through a measurement object into a wavelength spectrum, and Fourier-transforming the measurement signal, so that the position of the measurement object in the depth direction is measured.
  • the interference reflected light intensity distribution corresponding to the above is acquired.
  • FD-OCT has the advantage that the measurement time can be shortened compared to TD-OCT because the optical path length of the reference light does not need to be changed.
  • Patent Document 2 discloses an optical tomography and optical surface profile measuring apparatus based on spectral interference that can be acquired without a reduction in resolving power in surface profile measurement and optical cross-sectional image photography by FD-OCT.
  • the optical measurement device disclosed in Patent Document 3 measures the optical characteristics of a measurement object using TD-OCT after dividing the reference light into a plurality of optical paths. According to this technique, the measurement time can be shortened while using TD-OCT.
  • an optical multiplexer / demultiplexer that divides reference light and a reference light modulation mechanism that performs different modulation on each divided reference light are provided in an optical measurement apparatus that uses light of low coherence length.
  • the optical path of each reference light is oscillated and changed at each frequency by an optical measurement device.
  • the combined light of the reference light and the signal light is incident on the photoelectric converter.
  • the combined light of the reference light and measurement light is set in advance to include information on multiple measurement points with different depths, and the computer calculates optical characteristic data on the multiple measurement points from the output of the photoelectric converter To do.
  • JP-A-4-174345 Japanese Patent Laid-Open No. 11-325849 Japanese Patent Laid-Open No. 10-267830
  • TD-OCT (the technique described in Patent Document 1) has a problem that the measurement time becomes long because it is necessary to change the optical path length of the reference light.
  • FD-OCT (Technique described in Patent Document 2) uses a spectroscope to separate the light reflected or scattered from the measurement sample and the interference light of the reference light, and uses an array detector or the like for one exposure. The measurement in the depth direction is acquired at once. For this reason, the measurement time of FD-OCT can be made shorter than that of TD-OCT as described above.
  • the measurement range in the optical axis direction of FD-OCT (the distance in the depth direction that can be measured by one exposure) has a characteristic that is proportional to the reciprocal of the wavelength resolution of the spectrometer. For this reason, in FD-OCT, if the measurement range in the optical axis direction that can be acquired at one time is to be expanded, it is necessary to increase the wavelength resolution of the spectrometer. Therefore, if it is intended to expand the measurement range in the optical axis direction that can be acquired at once, it is necessary to prepare a device that can detect light with high wavelength resolution, and the device becomes highly accurate and expensive.
  • each reference light divided in order to further expand the measurement range that can be performed by one exposure is the position of the mirror and the optical path of the reference light as in TD-OCT.
  • the length of the optical fiber is changed at the frequency determined for each optical path of the reference light. Measurement is performed for each change. For this reason, in the technique described in Patent Document 3, it is necessary to prepare a precise movement mechanism on the order of submicrons in order to move the mirror and change the length of the optical fiber. For this reason, the technique described in Patent Document 3 has a problem that the measurement time becomes long due to the movement of the mirror and the change in the length of the optical fiber. If the measurement time is long, there is a problem that the signal-to-noise ratio is deteriorated because the variation of the measurement target position during measurement increases.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide an optical tomographic image measuring apparatus and an optical tomographic image measuring system with high sensitivity and short measurement time.
  • the present invention provides a first light splitting unit that splits light incident from a light source into reference light that is not irradiated onto the measurement object and signal light that is irradiated onto the measurement object. And second light splitting means for splitting the reference light into a plurality of reference lights, and reflected signal light that is reflected from the measurement object after irradiating the signal light to the measurement object.
  • a third light splitting means for splitting into the same number of reflected signal lights as the number of splits of the reference light, and combining the split reference light and reflected signal light, thereby dividing the split reference light
  • an optical combining unit that generates interference light corresponding to the reflected signal light
  • an analysis unit that acquires a wavelength spectrum from each of the interference light and performs a Fourier transform on the acquired wavelength spectrum.
  • an optical tomographic image measuring apparatus and an optical tomographic image measuring system with high sensitivity and short measurement time.
  • FIG. 1 is a diagram illustrating a configuration example of an optical tomographic image measurement apparatus according to the first embodiment.
  • the optical tomographic image measuring apparatus 1 is specifically an OCT measuring apparatus.
  • the light is split into reference light and signal light by the light splitting means 11 which is a light splitting means.
  • the reference light travels along the optical path LR1, and the signal light travels through LS1.
  • the arrow on each optical path indicates the traveling direction of light.
  • the optical path of the reference light will be described.
  • the reference light after being split by the light splitting means 11, passes through the optical path LR1, and enters the light splitting means 21 that is the second light splitting means.
  • LR2c and is incident on the optical multiplexing means 41 installed for each optical path LR2.
  • Each optical path LR ⁇ b> 2 has a different length depending on the optical path length changing unit 101. Note that, unlike the technique described in Patent Document 3, the lengths of the optical paths LR2a to LR2c are fixed. That is, the lengths of the respective optical paths in the divided reference light are fixed to be different by the respective optical path length changing units 101.
  • the signal light is incident on the circulator 31 through the optical path LS1 after being split by the light splitting means 11.
  • the circulator 31 extracts the signal light from the optical path LS1
  • the circulator 31 sends the extracted signal light to the probe 32 via the optical path LS3.
  • the probe 32 irradiates the measurement object 3 with the light transmitted from the circulator 31 via the collimator lens 33.
  • the broken line in FIG. 1 has shown irradiation light and reflected light.
  • Reflected light from the measurement object 3 is incident on the probe 32 via the collimator lens 33.
  • the collimator lens 33 may be omitted.
  • the probe 32 sends the incident reflected light to the circulator 31 via the optical path LS3.
  • the transmitted reflected light (hereinafter referred to as reflected signal light) is sent to the light splitting means 34, which is the third light splitting means, via the optical path LS4.
  • LS2a to LS2c enter each optical multiplexing means 41.
  • the optical multiplexing means 41 multiplexes the reference light incident through the optical path LR2 and the reflected signal light incident through the optical path LS2 for each optical path, and analyzes the combined light (interference light). To the analysis unit 50.
  • the analysis unit 50 calculates optical tomographic measurement data of the measurement object 3 from the interference light, and an analysis method in FD-OCT is used.
  • FD-OCT optical tomographic measurements in different depth directions (optical axis directions) can be performed for each of the optical paths LR2 having different lengths of the divided reference lights. That is, as shown in the example of FIG. 2, in the optical tomographic measurement on the measurement object 3, the analysis unit 50 determines the optical axis direction of the signal light from the interference light of the optical path LS ⁇ b> 2 a (FIG. 1) and the optical path LR ⁇ b> 2 a (FIG. 1).
  • optical tomographic measurement data of a depth range (hereinafter referred to as a depth range) D1 is obtained.
  • the analysis unit 50 obtains optical tomographic measurement data in the depth range D2 from the interference light of the optical path LS2b and the optical path LR2b, and from the interference light of the optical path LS2c and the optical path LR2c, the analysis unit 50 Obtain optical tomographic data.
  • the lengths of the optical paths LR2a to LR2c are adjusted so that a part of the depth range D1 of the optical tomographic measurement data and a part of the depth range D2 overlap as shown in FIG. Although the adjustment is made so that a part of the depth range D2 and a part of the depth range D3 overlap, the adjustment may be made so that they do not overlap.
  • the analyzing unit 50 includes a spectroscopic unit 51 and a light detecting unit 52 corresponding to each optical multiplexing unit 41.
  • the spectroscopic means 51 splits the incident interference light into light for each wavelength, and makes the light of the wavelength instructed by the calculation means 53 enter the light detection means 52.
  • the light detection unit 52 detects the light intensity for each wavelength
  • the light detection unit 52 transmits the detected light intensity at each wavelength to the calculation unit 53.
  • the calculating means 53 calculates optical tomographic measurement data by performing Fourier transform on the wavelength spectrum obtained by detecting the interference light. In this way, the calculation means 53 performs light from the interference light transmitted from each optical multiplexing means 41 based on the FD-OCT analysis method for calculating the reflected light intensity distribution corresponding to the depth position of the measurement object. Compute tomographic data.
  • optical fibers for the optical paths L1, LR1, LR2, LS1 to LS4, and the like.
  • the light source 2 preferably uses SLD (Super Luminescent Diode), ASE (Amplified Spontaneous Emission), or the like.
  • the light splitting means 11 is preferably a 1 ⁇ 2 (or 2 ⁇ 2) optical fiber coupler or the like.
  • the optical multiplexing means 41 is preferably a 2 ⁇ 1 optical fiber coupler.
  • the spectroscopic means 51 preferably uses a diffraction grating, a prism, a grism or the like.
  • the light detection means 52 is preferably a diode array detector capable of two-dimensional detection.
  • the light detection means 52 is one of means for efficiently acquiring the wavelength spectrum, and is not limited to the diode array detector as long as it can detect the wavelength spectrum.
  • each optical path LR2 uses an optical fiber having a different length.
  • the optical path LS2 of signal light is installed so that it may become the same length regarding each divided
  • the optical path length is changed in each optical path LR2 in the reference light, but the length of each optical path LS2 in the reflected signal light may be changed. That is, the length of each optical path in the divided signal light may be fixed differently. In this case, the length of each optical path LR2 of the reference light is the same.
  • the reference light and the signal light are each divided into three parts. However, the present invention is not limited to this.
  • the difference between the technique described in the present embodiment and the technique described in Patent Document 3 will be described.
  • the reference light is divided and TD-OCT is performed for each divided reference light.
  • TD-OCT only a cross-sectional captured image of only one point in the depth direction can be obtained for one reference beam.
  • the technique described in Patent Document 3 if the reference light is divided into three parts and TD-OCT is used for each reference light, the three reference lights have three different depths. Only a cross-sectional captured image in the depth direction “0” can be obtained.
  • the technique disclosed in Patent Document 3 mechanically and periodically changes the optical path of each reference light after the division, thereby obtaining a cross-sectional image having a constant width in the depth direction for each reference light. I have an image.
  • each reference light is changed without changing the optical path of each divided reference light (or each signal light) as in the technique described in Patent Document 3.
  • a cross-sectional captured image having a constant width in the depth direction can be obtained for each (or for each signal light).
  • the reference mirror drive system (or the optical path length variable drive system) can be eliminated, so that the measurement time can be reduced compared to the technique described in Patent Document 3. Can be shortened.
  • the drive system is not required as described above, the measurement time can be shortened and the cost of the optical tomographic image measurement apparatus 1 can be reduced as compared with the technique described in Patent Document 3.
  • an optical tomographic image having a predetermined depth can be obtained by measuring by dividing the depth direction into short parts and connecting the measurement results. For this reason, in this embodiment, it is not necessary to measure the depth direction large at a time. Accordingly, the wavelength accuracy of the spectroscopic means 51 can be lowered as compared with the technique of measuring the depth direction at a time, and the optical system caused by thermal expansion due to vibrations of the optical system in the spectroscopic means 51 and environmental temperature changes. The influence of misalignment can be reduced.
  • FIG. 3 is a diagram illustrating a configuration example of an optical tomographic image measurement system according to the second embodiment.
  • the optical tomographic image measurement system 100 shown in FIG. 3 includes three optical tomographic image measurement apparatuses 1 (1a to 1c).
  • the light emitted from the light source 2 is split by the light splitting means 5 and enters the optical tomographic image measuring apparatuses 1a to 1c via the optical paths L1a to L1c.
  • the optical tomographic image measuring apparatuses 1a to 1c have the same configuration as the optical tomographic image measuring apparatus 1 shown in FIG.
  • FIG. 4 is a diagram for explaining the effect of the optical tomographic image measurement system according to the second embodiment.
  • the collimator lens 33 is omitted.
  • the probes 32a to 32c are probes provided in the optical tomographic image measurement apparatuses 1a to 1c in FIG. 3, respectively.
  • the optical tomographic image measurement system 100 FIG. 3 according to the second embodiment, in addition to the effects of the first embodiment, as shown in FIG. Measurement at different positions in the plane direction of the measurement object 3 can be made possible.
  • FIG. 5 is a diagram illustrating a configuration example of an optical tomographic image measurement system according to the third embodiment.
  • the optical tomographic image measurement system 100a according to the third embodiment is different from the optical tomographic image measurement system 100 (FIG. 3) according to the second embodiment in that the light divided by the light dividing means 5 is measured for each optical tomographic image.
  • the length of each of the optical paths L1d to L1f is changed by the optical path length adjustment unit 201. Since other than that is the same as that of 2nd Embodiment, a code
  • FIG. 6 is a diagram for explaining the effect of the optical tomographic image measurement system according to the third embodiment.
  • the same components as those in FIG. 4 are denoted by the same reference numerals and description thereof is omitted.
  • the collimator lens 33 is omitted.
  • the scattered light (scattered light M) from each measurement point may be affected by signal light from the neighboring probes 32a to 32c. There is. Therefore, as in the optical tomographic image measurement system 100a according to the third embodiment (FIG. 1), the probe is applied to the signal light S irradiated to the measurement object 3 by changing the length of the optical paths L1d to L1f.
  • a delay can be given for each of 32a to 32c, and the influence of scattering of reflected light can be prevented. That is, according to the optical tomographic image measurement system 100a according to the third embodiment, in addition to the effects of the first embodiment and the second embodiment, the influence of scattering of reflected light can be prevented.
  • the optical tomographic image measurement systems 100 and 100a include the three optical tomographic image measuring apparatuses 1a to 1c. Any number may be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 本発明の光断層画像測定装置(1)および光断層画像測定システムは高感度かつ測定時間が短くなるように構成されることを課題とする。 光源(2)から入射された光を、参照光と、信号光と、に分割する光分割手段(11)と、測定対象物(3)から反射された反射信号光を複数の反射信号光に分割する光分割手段(34)と、参照光を、反射信号光の分割数と同じ数の参照光に分割する光分割手段(21)と、分割された参照光および反射信号光のそれぞれを合波することによって、分割された参照光および反射信号光に対応する干渉光を生成する光合波手段(41)と、波長スペクトルをそれぞれの干渉光から取得し、取得したそれぞれの波長スペクトルをフーリエ変換する解析部(53)と、を有し、分割された参照光または反射信号光におけるそれぞれの光路の長さが、異なるよう固定されている光路長変化部(101)を有することを特徴とする。

Description

光断層画像測定装置および光断層画像測定システム
 本発明は、光断層測定を行う光断層画像測定装置および光断層画像測定システムの技術に関する。
 測定対象物の内部構造を非破壊で、高分解能に得ることができる手段として、OCT(Optical Coherence Tomography:光干渉断層計)が知られている。OCTでは、光源から出射された光を、信号光と参照光とに分割する。そして、信号光は測定対象物に照射される。一方、参照光は測定対象物に照射されない。従って、測定対象物に照射されることで、位相が変化した信号光は、参照光と比較して、位相がずれた状態となる。その後、信号光と参照光とを光学的に干渉させることで、干渉光を検出処理することにより、OCTは信号光と、参照光との位相のずれを検出し、測定対象物体の表面から深さ方向の構造情報を取得する。
 このようなOCTの計測方法には、大きく分けてTD(Time Domain)-OCTとFD(Fourier Domain)-OCTの2種類がある。
 TD-OCTは、参照光の光路長を、いろいろな長さに変更しながら干渉光強度を測定することにより、測定対象物の深さ方向の位置に対応した干渉反射光強度分布を取得する方法である。例えば、特許文献1には、このようなTD-OCTによる光反射像測定装置が開示されている。
 また、FD-OCTは、測定対象物を経由した信号光と参照光との干渉信号を波長スペクトルに分解して測定し、測定信号をフーリエ変換することで、測定対象物の深さ方向の位置に対応した干渉反射光強度分布を取得する方法である。FD-OCTは、参照光の光路長を変更しなくてもいいので、TD-OCTと比較して、測定時間を短くできるという利点がある。例えば、特許文献2には、FD-OCTによる表面プロファイル測定および光断面画像撮影において、解像力の低下を伴うことなく取得できるスペクトル干渉に基づく光学・トモグラフィーおよび光学表面プロファイル測定装置が開示されている。
 特許文献3に開示されている光学測定装置は、参照光を複数の光路に分割した上で、TD-OCTを用い、測定対象物の光学特性を測定するものである。この技術によれば、TD-OCTを用いながら、測定時間を短縮することができる。この技術では、低コヒーレント長の光を用いた光学測定装置内に、参照光を分割する光合分波器と、分割された各参照光に異なる変調を施す参照光変調機構を設けている。ここで、各参照光の光路は、光学測定装置によって、それぞれの振動数で振動・変化している。そして、参照光と、信号光との合波光が光電変換器に入射される。参照光と測定光の合波光に深さの異なる複数の測定点に関する情報が含まれるよう予め設定されており、コンピュータは、光電変換器の出力から、それら複数の測定点に関する光学特性データを算出する。
特開平4-174345号公報 特開平11-325849号公報 特開平10-267830号公報
 TD-OCT(特許文献1に記載の技術)は、参照光の光路長を変化させる必要があるため、測定時間が長くなるという問題がある。
 FD-OCT(特許文献2に記載の技術)は、測定試料からの反射あるいは散乱した光と、参照光の干渉光を分光器で分光し、アレー検出器などを使うことで、1回の露光で深さ方向の測定を一括して取得している。このため、FD-OCTは、前記の通りTD-OCTよりも測定時間を短くすることができる。
 ここで、FD-OCTの光軸方向の測定範囲(1回の露光で測定可能な深さ方向の距離)は分光器の波長分解能の逆数に比例する特性がある。
 そのためFD-OCTにおいて、一度に取得できる光軸方向の測定範囲を広げようとすると、分光器の波長分解能を高くすることが必要となる。そのため、一度に取得できる光軸方向の測定範囲を広げようとすると、高い波長分解能で光検出できる装置を用意する必要があり、装置が高精度化、高価格化してしまう。
 特許文献3に記載の技術は、一回の露光で可能な測定範囲をさらに広げるため、分割された、それぞれの参照光を、TD-OCTのようにミラーの位置や、参照光の光路である光ファイバの長さを、参照光の光路毎に定められている振動数で変化させている。そして、その変化毎に測定がなされる。このため、特許文献3に記載の技術では、ミラーの移動や、光ファイバの長さの変化のため、サブミクロンオーダの精密な移動機構を用意する必要がある。このため、特許文献3に記載の技術は、ミラーの移動や、光ファイバの長さの変化により測定時間が長くなるという問題がある。
 測定時間が長くなると、測定中の測定対象位置の変動が大きくなるためシグナルノイズ比が悪化するという問題がある。
 このような背景に鑑みて本発明がなされたのであり、本発明は、高感度かつ測定時間が短い光断層画像測定装置および光断層画像測定システムを提供することを課題とする。
 前記課題を解決するため、本発明は、光源から入射された光を、測定対象物に照射されない参照光と、前記測定対象物に照射される信号光と、に分割する第1の光分割手段と、前記参照光を、複数の参照光に分割する第2の光分割手段と、前記測定対象物に前記信号光を照射した後、前記測定対象物から反射された光である反射信号光を、前記参照光の分割数と同じ数の反射信号光に分割する第3の光分割手段と、前記分割された参照光および反射信号光のそれぞれを合波することによって、前記分割された参照光および反射信号光に対応する干渉光を生成する光合波手段と、波長スペクトルをそれぞれの前記干渉光から取得し、前記取得したそれぞれの波長スペクトルをフーリエ変換する解析手段と、を有し、前記分割された参照光または反射信号光におけるそれぞれの光路の長さが、異なるよう固定されていることを特徴とする。
 その他の解決手段については、実施形態中で後記する。
 本発明によれば、高感度かつ測定時間が短い光断層画像測定装置および光断層画像測定システムを提供することができる。
第1実施形態に係る光断層画像測定装置の構成例を示す図である。 第1実施形態に係る光断層画像測定装置で得ることができる光断層測定データの深さ範囲を示す模式図である。 第2実施形態に係る光断層画像測定システムの構成例を示す図である。 第2実施形態に係る光断層画像測定システムの効果を説明するための図である。 第3実施形態に係る光断層画像測定システムの構成例を示す図である。 第3実施形態に係る光断層画像測定システムの効果を説明するための図である。
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。
(第1実施形態)
 図1は、第1実施形態に係る光断層画像測定装置の構成例を示す図である。
 光断層画像測定装置1は、具体的にはOCT計測装置であり、光源2から光路L1を介して低コヒーレント長の光が光断層画像測定装置1に入射されると、この光は第1の光分割手段である光分割手段11によって参照光と、信号光とに分割される。そして、参照光は光路LR1を進み、信号光はLS1を進む。ここで、各光路上の矢印は光の進行方向を示している。
 まず、参照光の光路から説明する。参照光は、光分割手段11による分割後、光路LR1を通って、第2の光分割手段である光分割手段21に入射される。参照光は、光分割手段21でn個の光(本実施形態では、n=3)に分割された後、分割された各参照光は、参照光毎の光路LR2(本実施形態ではLR2a~LR2c)を通って、光路LR2毎に設置されている光合波手段41に入射される。各光路LR2は、光路長変化部101によって異なる長さとなるようになっている。なお、特許文献3に記載の技術とは異なり、各光路LR2a~LR2cの長さは固定されている。つまり、各光路長変化部101によって、分割された参照光におけるそれぞれの光路の長さが、異なるよう固定されている。
 一方、信号光は、光分割手段11による分割後、光路LS1を介してサーキュレータ31に入射される。サーキュレータ31は、光路LS1から信号光を抽出すると、光路LS3を介してプローブ32へ抽出した信号光を送る。プローブ32は、サーキュレータ31から送られた光を、コリメータレンズ33を介して測定対象物3へ照射する。なお、図1における破線は、照射光および反射光を示している。
 測定対象物3からの反射光は、コリメータレンズ33を介して、プローブ32に入射される。なお、コリメータレンズ33は省略されてもよい。プローブ32は、入射された反射光をサーキュレータ31に光路LS3を介して送る。送られた反射光(以下、反射信号光と称する)は、光路LS4を介して、第3の光分割手段である光分割手段34へ送られる。反射信号光が、光分割手段34でn個の光(本実施形態ではn=3)に分割された後、分割された各反射信号光は、反射信号光毎の光路LS2(本実施形態ではLS2a~LS2c)を通って各光合波手段41に入射される。
 光合波手段41は、光路LR2を通って入射された参照光と、光路LS2を通って入射された反射信号光とを、光路毎に合波し、合波した光(干渉光)を解析手段である解析部50へ送る。
 解析部50は、干渉光から測定対象物3の光断層測定データを算出するものであり、FD-OCTにおける解析手法が用いられる。このように、解析方法としてFD-OCTを用いることで、分割された各参照光の異なる長さの光路LR2毎に、異なる深さ方向(光軸方向)の光断層測定が可能となる。つまり、図2の例に示すように、測定対象物3における光断層測定において、光路LS2a(図1)と光路LR2a(図1)の干渉光から、解析部50は、信号光の光軸方向SAに対し、深さの範囲(以降、深さ範囲と称する)D1の光断層測定データを得る。同様に、光路LS2bと光路LR2bの干渉光から、解析部50は、深さ範囲D2の光断層測定データを得、光路LS2cと光路LR2cの干渉光から、解析部50は、深さ範囲D3の光断層測定データを得る。なお、光路LR2a~LR2cにおけるそれぞれの長さは、図2に示すように、光断層測定データの深さ範囲D1の一部と、深さ範囲D2の一部とが重なるように調整されるとともに、深さ範囲D2の一部と、深さ範囲D3の一部とが重なるように調整されているが、重ならないよう調整されてもよい。
 図1の説明に戻る。
 解析部50は、分光手段51と、光検出手段52とが、各光合波手段41に対応して設けられている。
 分光手段51は、入射された干渉光を波長毎の光に分光し、算出手段53から指示された波長の光を光検出手段52へ入射する。光検出手段52は、波長毎の光の強度を検出すると、検出した各波長における光の強度を算出手段53へ送信する。算出手段53は、干渉光の検出により得られた波長スペクトルにフーリエ変換を行うことで、光断層測定データを算出する。このようにして、算出手段53は、測定対象物の深さ位置に対応した反射光強度分布を算出するFD-OCTの解析手法に基づいて各光合波手段41から送られてきた干渉光から光断層測定データを算出する。
 なお、本実施形態において、光路L1,LR1,LR2,LS1~LS4などは光ファイバを用いるのが好ましい。
 また、光源2は、SLD(Super Luminescent Diode)や、ASE(Amplified Spontaneous Emission)などを用いるのが好ましい。
 また、光分割手段11は、1×2(または、2×2)の光ファイバカプラなどを用いるのが好ましい。
 そして、光分割手段21,34は、1×n(本実施形態ではn=3)の光ファイバカプラなどを用いるのが好ましい。
 また、光合波手段41は、2×1の光ファイバカプラなどを用いるのが好ましい。
 そして、分光手段51は、回折格子、プリズム、グリズムなどを用いるのが好ましい。
 また、光検出手段52は、2次元検出可能な、例えばダイオードアレイ検出器を用いるのが好ましい。なお、光検出手段52は、波長スペクトルを効率よく取得するための手段の1つであるので、波長スペクトルを検出できるものであれば、ダイオードアレイ検出器に限らない。
 第1実施形態では、各光路LR2に異なる長さを与えるため、例えば、各光路LR2は異なる長さの光ファイバを使用している。そして、信号光の光路LS2は、分割された各反射光に関して同じ長さとなるように設置されている。
 なお、本実施形態では、参照光における各光路LR2において、光路長を変えているが、反射信号光における各光路LS2の長さを変えるようにしてもよい。つまり、分割された信号光におけるそれぞれの光路の長さが、異なるよう固定されてもよい。この場合、参照光の各光路LR2の長さが同じとなる。
 また、第1実施形態では、参照光および信号光を、各3つずつに分割しているが、これに限らず、2以上であれば、いくつに分割してもよい。
 ここで、本実施形態に記載の技術と、特許文献3に記載の技術との差異を説明する。
 特許文献3に記載の技術では、参照光を分割し、分割した参照光毎にTD-OCTを行っている。一般にTD-OCTでは、1つの参照光に対し深さ方向1点のみの断面撮像画像しか得ることができない。例えば、特許文献3に記載の技術において、参照光を3つに分割して、それぞれの参照光に対してTD-OCTを用いるとすると、この3つの参照光からは、深さの異なる3点(深さ方向「0」)の断面撮像画像しか得ることができない。
 この点を補うため、特許文献3に記載の技術では、分割後における各参照光の光路を機械的かつ周期的に変化させることで、参照光毎に深さ方向に対して一定幅の断面撮像画像を得ている。
 これに対し、本実施形態では、FD-OCTを用いることで、特許文献3に記載の技術のように分割後の各参照光(または各信号光)の光路を変化させることなく、各参照光毎(または各信号光毎)に対し深さ方向において一定幅の断面撮像画像を得ることができる。
 つまり、本実施形態によれば、参照ミラーの駆動系(あるいは、光路の長さの可変駆動系)を不要とすることができるので、特許文献3に記載の技術と比較して、計測時間を短くすることができる。また、前記したように駆動系を必要としないため、特許文献3に記載の技術と比較して、測定時間を短くすることができ、光断層画像測定装置1のコストを下げることができる。
 さらに、測定時間が短くなることで、測定中における測定対象物の移動によるノイズを低減でき、高感度かつ高精度な光断層測定が可能となる。本実施形態によれば、深さ方向を短く分割して測定し、各測定結果をつなげて所定の深さの光断層画像を得ることができる。このため、本実施形態では、一度に深さ方向を大きく測定する必要がない。従って、一度に深さ方向を大きく測定する技術と比較して、分光手段51の波長精度を低くすることができ、かつ、分光手段51における光学系の振動や環境温度変化による熱膨張起因の光学的ずれの影響を小さくすることができる。
(第2実施形態)
 図3は、第2実施形態に係る光断層画像測定システムの構成例を示す図である。
 図3に示す光断層画像測定システム100は、3つの光断層画像測定装置1(1a~1c)を備えている。
 図3に示す光断層画像測定システム100では、光源2から出射された光は、光分割手段5によって分割され、光路L1a~L1cを介して各光断層画像測定装置1a~1cへ入射される。光分割手段5としては、1×n(本実施形態ではn=3)の光ファイバカプラなどを用いるのが好ましい。
 なお、光断層画像測定装置1a~1cは、図1に示す光断層画像測定装置1と同様の構成を有するため、符号および説明を省略する。
 図4は、第2実施形態に係る光断層画像測定システムの効果を説明するための図である。なお、図4においてコリメータレンズ33は省略してある。
 プローブ32a~32cは、それぞれ図3における光断層画像測定装置1a~1cに備えられているプローブである。
 第2実施形態に係る光断層画像測定システム100(図3)では、第1実施形態の効果に加えて、図4に示すように、プローブ32a~32c毎に、信号光Sの進行方向に対し、測定対象物3の平面方向に異なる位置の測定を可能とすることができる。
(第3実施形態)
 図5は、第3実施形態に係る光断層画像測定システムの構成例を示す図である。
 第3実施形態に係る光断層画像測定システム100aが、第2実施形態に係る光断層画像測定システム100(図3)と異なる点は、光分割手段5で分割された光を各光断層画像測定装置1a~1cへ導く光路L1d~L1fにおいて、各光路L1d~L1fを光路長調整部201で長さを変化させている点である。
 それ以外は、第2実施形態と同様であるため、符号を同一とし、説明を省略する。
 図6は、第3実施形態に係る光断層画像測定システムの効果を説明するための図である。なお、図6において、図4と同様の構成要素については、同一の符号を付して説明を省略する。また、図6においてコリメータレンズ33は省略してある。
 第2実施形態に係る光断層画像測定システム100aで測定を行うと、各測定点からの反射光の散乱(散乱光M)によって、近隣のプローブ32a~32cによる信号光の影響を受けてしまうおそれがある。
 そこで、第3実施形態に係る光断層画像測定システム100a(図1)のように、光路L1d~L1fの長さを変化させることで、測定対象物3に照射される信号光Sに対し、プローブ32a~32c毎に遅延を与えることができ、反射光の散乱による影響を防止することができる。つまり、第3実施形態に係る光断層画像測定システム100aによれば、第1実施形態および第2実施形態の効果に加えて、反射光の散乱による影響を防止することができる。
 なお、第2実施形態および第3実施形態において、光断層画像測定システム100,100aは、3つの光断層画像測定装置1a~1cを備えるとしたが、2以上の光断層画像測定装置1であれば、いくつ備えてもよい。
 1   光断層画像測定装置
 2   光源
 3   測定対象物
 11  光分割手段(第1の光分割手段)
 21  光分割手段(第2の光分割手段)
 34  光分割手段(第3の光分割手段)
 31  サーキュレータ
 32  プローブ
 33  コリメータレンズ
 41  光合波手段
 50  解析部(解析手段)
 51  分光手段
 52  光検出手段
 53  算出手段
 100,100a 光断層画像測定システム
 101,201 光路長調整部
 L1,L1a~L1f,LR1,LR2,LR2a~LR2c,LS1~LS4,LS2a~LS2c 光路
 S   信号光
 M   散乱光

Claims (5)

  1.  光源から入射された光を、測定対象物に照射されない参照光と、前記測定対象物に照射される信号光と、に分割する第1の光分割手段と、
     前記参照光を、複数の参照光に分割する第2の光分割手段と、
     前記測定対象物に前記信号光を照射した後、前記測定対象物から反射された光である反射信号光を、前記参照光の分割数と同じ数の反射信号光に分割する第3の光分割手段と、
     前記分割された参照光および反射信号光のそれぞれを合波することによって、前記分割された参照光および反射信号光に対応する干渉光を生成する光合波手段と、
     波長スペクトルをそれぞれの前記干渉光から取得し、前記取得したそれぞれの波長スペクトルをフーリエ変換する解析手段と、
     を有し、
     前記分割された参照光または反射信号光におけるそれぞれの光路の長さが、異なるよう固定されている
     ことを特徴とする光断層画像測定装置。
  2.  前記光源から入射される光は、低コヒーレントの光である
     ことを特徴とする請求の範囲第1項に記載の光断層画像測定装置。
  3.  前記それぞれの光路の長さは、それぞれの前記干渉光から得られる前記フーリエ変換の結果である、それぞれの光断層測定データの深さ範囲が重なるよう、調整されている
     ことを特徴とする請求の範囲第1項または請求の範囲第2項に記載の光断層画像測定装置。
  4.  請求の範囲第1項から請求の範囲第3項のいずれか一項に記載の光断層画像測定装置を複数有し、
     各々の前記光断層画像測定装置には、同一の光源から光が入射される
     ことを特徴とする光断層画像測定システム。
  5.  前記光源から、前記各々の光断層画像測定装置までの光路の光路長が、前記各々の光断層画像測定装置毎に異なる
     ことを特徴とする請求の範囲第4項に記載の光断層画像測定システム。
PCT/JP2012/068935 2011-07-26 2012-07-26 光断層画像測定装置および光断層画像測定システム WO2013015349A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011163501A JP2013029317A (ja) 2011-07-26 2011-07-26 光断層画像測定装置および光断層画像測定システム
JP2011-163501 2011-07-26

Publications (1)

Publication Number Publication Date
WO2013015349A1 true WO2013015349A1 (ja) 2013-01-31

Family

ID=47601187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068935 WO2013015349A1 (ja) 2011-07-26 2012-07-26 光断層画像測定装置および光断層画像測定システム

Country Status (2)

Country Link
JP (1) JP2013029317A (ja)
WO (1) WO2013015349A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727326B2 (ja) * 2011-08-02 2015-06-03 株式会社トプコン 光断層画像化装置およびその動作制御方法
EP3694392B1 (en) 2017-10-12 2023-12-06 The General Hospital Corporation System for multiple reference arm spectral domain optical coherence tomography
WO2023210116A1 (ja) * 2022-04-27 2023-11-02 パナソニックIpマネジメント株式会社 光干渉計測装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101250A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 光断層画像化方法
JP2008128709A (ja) * 2006-11-17 2008-06-05 Fujifilm Corp 光断層画像化装置
WO2010011656A1 (en) * 2008-07-21 2010-01-28 Optovue, Inc. Extended range imaging
JP2010517017A (ja) * 2007-01-19 2010-05-20 ザ ジェネラル ホスピタル コーポレイション 光周波数領域イメージングにおける測定深度を制御するための装置及び方法
JP2010164574A (ja) * 2010-02-24 2010-07-29 Univ Of Tsukuba 多重化スペクトル干渉光コヒーレンストモグラフィー
JP2010167253A (ja) * 2008-12-26 2010-08-05 Canon Inc 光断層画像撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101250A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 光断層画像化方法
JP2008128709A (ja) * 2006-11-17 2008-06-05 Fujifilm Corp 光断層画像化装置
JP2010517017A (ja) * 2007-01-19 2010-05-20 ザ ジェネラル ホスピタル コーポレイション 光周波数領域イメージングにおける測定深度を制御するための装置及び方法
WO2010011656A1 (en) * 2008-07-21 2010-01-28 Optovue, Inc. Extended range imaging
JP2010167253A (ja) * 2008-12-26 2010-08-05 Canon Inc 光断層画像撮像装置
JP2010164574A (ja) * 2010-02-24 2010-07-29 Univ Of Tsukuba 多重化スペクトル干渉光コヒーレンストモグラフィー

Also Published As

Publication number Publication date
JP2013029317A (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
JP4378533B2 (ja) 光コヒーレンストモグラフィーの構成機器の較正方法
KR102456213B1 (ko) 이미징 기반 오버레이 계측을 위한 포커스 최적화를 위한 시스템 및 방법
KR20180098255A (ko) 얇은 층이 있는 상태에서의 높이를 측정하기 위한 장치 및 방법
WO2013118541A1 (ja) 光断層画像測定装置
JP7082137B2 (ja) スペクトル制御干渉法による曲率半径測定
CN104204775A (zh) 光学相干层析成像设备以及光学相干层析成像方法
EP2420796B1 (en) Shape measuring method and shape measuring apparatus using white light interferometry
WO2019131298A1 (ja) 光ビーム制御器およびこれを用いた光干渉断層撮像器
JP2013152191A (ja) 多波長干渉計
WO2013015349A1 (ja) 光断層画像測定装置および光断層画像測定システム
KR20130035464A (ko) 편광을 이용한 3차원 형상 및 두께 측정 장치
JP2013096877A (ja) 計測装置
WO2014061498A1 (ja) 光断層画像取得装置
JP2013064682A (ja) 計測装置
JP2013024734A (ja) 形状測定装置および形状測定方法
WO2012029809A2 (ja) 形状測定装置および形状測定方法
US9423236B2 (en) Apparatus for optical interferometric measurement and method for the same
JP2012173218A (ja) 干渉計及び測定方法
JP5079755B2 (ja) 光コヒーレンストモグラフィーの構成機器の較正方法
JP2015158477A (ja) 距離測定装置、及び距離測定方法
KR101796443B1 (ko) 위상광 측정 시스템
JP5894464B2 (ja) 計測装置
JP5376284B2 (ja) 干渉測定方法および干渉計
JP2006300664A (ja) フーリエ分光装置,測定タイミング検出方法
JP2008309638A (ja) 寸法測定装置及び寸法測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12818056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12818056

Country of ref document: EP

Kind code of ref document: A1