WO2013015160A1 - 粒子材料の動的粘弾性測定方法 - Google Patents

粒子材料の動的粘弾性測定方法 Download PDF

Info

Publication number
WO2013015160A1
WO2013015160A1 PCT/JP2012/068146 JP2012068146W WO2013015160A1 WO 2013015160 A1 WO2013015160 A1 WO 2013015160A1 JP 2012068146 W JP2012068146 W JP 2012068146W WO 2013015160 A1 WO2013015160 A1 WO 2013015160A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynamic viscoelasticity
measurement
particulate material
adhesive layer
sheet
Prior art date
Application number
PCT/JP2012/068146
Other languages
English (en)
French (fr)
Inventor
和伸 神谷
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020147001720A priority Critical patent/KR101986391B1/ko
Priority to CN201280036784.2A priority patent/CN103718021B/zh
Priority to EP12817168.3A priority patent/EP2738542A4/en
Priority to US14/124,492 priority patent/US9459197B2/en
Publication of WO2013015160A1 publication Critical patent/WO2013015160A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • G01N2001/2833Collecting samples on a sticky, tacky, adhesive surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0224Thermal cycling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens

Definitions

  • the present invention relates to a method for measuring dynamic viscoelasticity of a particulate material.
  • the glass transition temperature of the resin material is often measured by a DSC (Differential Scanning Calorimetry) method, but depending on the type of material, there are cases where a signal due to the glass transition cannot be detected. In such a case, a relatively large amount of the material to be measured must be prepared and molded into a sheet-like specimen or a fiber-like specimen.
  • the loss tangent tan ⁇ is obtained by dynamic viscoelasticity measurement, and the temperature at the maximum peak is used as the measured glass transition temperature of the resin material.
  • thermosetting epoxy resin 100 parts by mass of a thermosetting epoxy resin is used. It has been proposed that a composition containing 50 to 150 parts by mass of polymer resin particles is poured into a strip-shaped mold and cured to prepare a strip-shaped test piece (Patent Document 1). In addition, it is proposed that a dispersion obtained by dispersing 100 parts by mass of acrylic polymer particles in 100 parts by mass of diisononyl phthalate is cast and heated to prepare a sheet-like test piece (Patent Document 2). ).
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and when measuring the dynamic viscoelasticity of a particulate material, a test piece capable of measuring the dynamic viscoelasticity can be simply, quickly, and reduced.
  • the purpose is to shorten the dynamic viscoelasticity measurement time including the creation time of the sheet-like test piece and to reduce the measurement cost by making it possible to produce at a cost.
  • the present inventor measured the dynamic viscoelasticity of a sheet piece obtained by adhering the particulate material to be measured to the pressure-sensitive adhesive layer of the heat-resistant sheet base material on which the pressure-sensitive adhesive layer was formed. It was found that a maximum peak other than the maximum peak of loss tangent tan ⁇ derived from the layer (that is, the maximum peak of loss tangent tan ⁇ derived from the particle material) was observed, and the present invention was completed.
  • the present invention is a method for measuring the dynamic viscoelasticity of a particulate material.
  • a sample used for measurement of dynamic viscoelasticity a sheet-shaped test piece in which a particle material to be measured is attached to the adhesive layer of the heat-resistant sheet base material on which the adhesive layer is formed is used.
  • a method for measuring viscoelasticity is provided.
  • the particulate material to be measured is attached to the adhesive layer of the heat-resistant sheet substrate on which the adhesive layer is formed.
  • This sheet-shaped test piece can be easily and quickly manufactured at a low cost using a very small amount of particulate material by a method such as spraying, and the adhesive layer is formed on the heat-resistant sheet substrate.
  • An inexpensive commercially available masking tape can be applied as the sheet material. Therefore, the dynamic viscoelasticity measurement time including the creation time of the sheet-like test piece can be shortened and the measurement cost can be reduced.
  • FIG. 1 is a cross-sectional view of a sheet-like test piece.
  • FIG. 2 is a partially enlarged view of the sheet-like test piece of FIG.
  • FIG. 3A is a cross-sectional view of an adhesive sheet used for producing a sheet-like test piece.
  • FIG. 3B is an explanatory diagram of the dispersion of the particulate material at the time of creating the sheet-like test piece.
  • FIG. 3C is an explanatory view of a squeegee at the time of creating a sheet-like test piece.
  • FIG. 3D is an explanatory diagram of the state of the particulate material after the squeegee when the sheet-like test piece is created.
  • FIG. 3E is an explanatory diagram of air blow at the time of producing a sheet-like test piece.
  • FIG. 4A is a dynamic viscoelasticity chart of a peroxide curable silicone adhesive.
  • FIG. 4B is a dynamic viscoelasticity chart of an addition curing type silicone adhesive.
  • FIG. 4C is a dynamic viscoelasticity chart of a two-component acrylic adhesive.
  • FIG. 5 is a dynamic viscoelasticity chart of the heat-resistant masking tape used in producing the sheet-like test piece.
  • 6A is a scanning electron micrograph (magnification 2000 times) of the particulate material adhering surface of the sheet-like test piece used in Example 1.
  • FIG. 1 is a scanning electron micrograph (magnification 2000 times) of the particulate material adhering surface of the sheet-like test piece used in Example 1.
  • FIG. 6B is a scanning electron micrograph (magnification 5000 times) of the particle material adhesion surface of the sheet-like test piece used in Example 1.
  • FIG. 7A is a dynamic viscoelasticity chart of the sheet-like test piece used in Example 1.
  • 7B is a DSC chart of the sheet-like test piece used in Example 1.
  • FIG. 8A is a dynamic viscoelasticity chart of the sheet-like test piece used in Example 2.
  • FIG. 8B is a DSC chart of the sheet-like test piece used in Example 2.
  • FIG. 9A is a particle size distribution chart in terms of volume of the particulate material C used in Example 3.
  • FIG. 9B is a scanning electron micrograph (magnification 2000 times) of the particulate material adhering surface of the sheet-like test piece used in Example 3.
  • FIG. 10A is a particle size distribution chart in terms of volume of the particulate material D used in Example 4.
  • FIG. 10B is a scanning electron micrograph (magnification 2000 times) of the particulate material adhering surface of the sheet-like test piece used in Example 4.
  • FIG. 11 is a dynamic viscoelasticity chart of the sheet-like test pieces used in Examples 3 and 4.
  • FIG. 12A is a scanning electron micrograph (magnification 5000 times) of the particle material adhesion surface of the sheet-like test piece used in Reference Example 5.
  • FIG. 12B is a dynamic viscoelasticity chart of a sheet-like test piece of Reference Example 5 using monodisperse acrylic polymer particles having a CV value of 6.89%.
  • the particulate material to be measured is attached to the adhesive layer of the heat-resistant sheet base material on which the adhesive layer is formed as a sample to be used for measurement of dynamic viscoelasticity.
  • a sheet-like test piece is used.
  • the dynamic viscoelasticity of the particle material can be measured by the dynamic viscoelasticity measuring method of the present invention. That is, as shown in FIG. 1, the sheet-like test piece 10 in which the particulate material 3 adheres to one side of the adhesive layer 2 of the heat-resistant sheet substrate 1 is subjected to, for example, a sinusoidal tensile deformation (arrow in the figure). As shown in FIG. 2, the adhesive layer 2 is also deformed following the deformation of the heat-resistant sheet substrate 1. Further, since the particulate material 3 is held by the adhesive force of the deformable adhesive layer 2, each particulate material 3 is deformed as the adhesive layer 2 is deformed.
  • the individual particle material 3 can be sinusoidally tensile deformed, and as a result, the dynamic viscoelasticity of the particle material can be measured. It is considered to be.
  • the amount of the particulate material 3 to be attached to the adhesive layer 2 may not be attached to the entire surface of the adhesive layer 2 as long as the dynamic viscoelasticity characteristic can be detected with respect to the deformation.
  • the adhesive layer 2 is attached so as to cover the entire surface.
  • the particulate material lump that is not directly deformed by the pressure-sensitive adhesive layer 2 is concerned that the collapse of the lump resulting from the deformation of the pressure-sensitive adhesive layer 2 affects the dynamic viscoelastic properties of the particle material 3. Therefore, it is preferable that the particulate material 3 is adhered to the adhesive layer 2 in a single layer shape.
  • a dynamic viscoelasticity measurement method applied to the present invention a known dynamic viscoelasticity measurement method (see JIS K7244) can be appropriately employed, and a commercially available dynamic viscoelasticity measurement device is also used. (For example, DMS6100, Seiko Instruments Inc.).
  • the measurement deformation mode of the sine wave or synthetic wave control applicable to the dynamic viscoelasticity measuring method of the present invention there are a tensile mode, a shear shear mode, a torsional shear mode, a film shear mode, a three-point bending mode, etc., respectively. It is done. Of these, a sine wave controlled tensile mode is preferable from the viewpoint of measurement accuracy of the sheet-like test piece.
  • variations of dynamic viscoelasticity measurement include frequency dependent measurement, linear viscoelasticity area measurement, temperature dependent measurement, and time dependent measurement.
  • frequency-dependent measurement is to measure dynamic viscoelastic properties while increasing the frequency under a constant stress (or constant strain), in order to evaluate the cohesiveness, entanglement, leveling properties, etc. of the material. Is what you do.
  • the linear viscoelasticity region measurement is to measure dynamic viscoelasticity characteristics while increasing strain (or stress) under a certain frequency, and is used for evaluating the yield behavior of a material.
  • Temperature-dependent measurement measures dynamic viscoelastic properties while changing temperature continuously under constant strain (or constant stress) and constant frequency. This is done to evaluate.
  • Time-dependent measurement measures dynamic viscoelasticity that changes with time under constant strain (or constant stress), and quantitatively evaluates changes in material curing behavior due to curing conditions such as curing wavelength and strength. Is.
  • the temperature at which the loss tangent tan ⁇ shows the maximum peak corresponds to the glass transition temperature of the particle material to be measured.
  • a preferred example of a series of operations for attaching the particulate material to the adhesive layer on the heat-resistant sheet substrate is that when the particulate material is attached to the adhesive layer, the particulate material is applied to one side of the adhesive layer, and then the particle material is applied to the adhesive layer.
  • the squeegee and / or the air blow are performed, and this example will be described below with reference to the drawings.
  • an adhesive sheet having an adhesive layer 2 formed on a heat-resistant sheet substrate 1 is prepared.
  • the maximum peak top of the loss tangent tan ⁇ is the maximum peak of the loss tangent tan ⁇ of the particle material to be measured in the measurement temperature range of the dynamic viscoelasticity measurement. It is preferable to form each from the material which does not overlap with a top. Furthermore, it is more preferable that it is made of a material that does not show a maximum peak of loss tangent tan ⁇ in the measurement temperature range of dynamic viscoelasticity measurement. Thereby, it becomes easy to specify the loss tangent tan ⁇ of the particle material to be measured.
  • an adhesive layer 2 and heat-resistant sheet substrate 1 include a peroxide as a curing agent as the adhesive layer 2 when the measurement temperature range of dynamic viscoelasticity measurement is ⁇ 50 to 250 ° C. What used the thing formed from the polyimide adhesive as the heat-resistant sheet base material 1 is used.
  • FIG. 4A relates to a peroxide curable silicone adhesive
  • FIG. 4B relates to an addition curable silicone adhesive
  • FIG. 4C relates to a two-component acrylic adhesive.
  • the peroxide-curing type silicone adhesive of FIG. 4A does not have a maximum peak in the loss tangent tan ⁇ chart in the measurement temperature range. It can be seen that the present invention can be preferably applied.
  • the maximum peak of their loss tangent tan ⁇ may overlap the maximum peak of the loss tangent tan ⁇ of the particle material in the measurement temperature range of dynamic viscoelasticity measurement.
  • the range of the particulate material that can be measured is expected to be very narrow.
  • the thickness of the heat-resistant sheet substrate 1 is determined according to the deformation mode of dynamic viscoelasticity measurement and the physical properties of the material, but is usually 5 ⁇ m to 1 mm, preferably 10 ⁇ m to 0.1 mm.
  • the thickness of the adhesive layer 2 is also determined according to the deformation mode of the dynamic viscoelasticity measurement, the physical properties of the material, the size of the particle material to be measured, and the like, but is usually 1 ⁇ m to 1 mm, preferably 1 ⁇ m to 0. 1 mm.
  • the particulate material 3 is sprayed from above the adhesive layer 2.
  • a sieve 4 it is preferable to use a sieve 4.
  • the particle material 3 is also preferably pulverized in advance by a known method (for example, jet mill treatment).
  • the particulate material 3 is squeezed with a squeegee tool 5 for printing. Thereby, the particulate material 3 is in a state as shown in FIG. 3D.
  • a squeegee tool 5 As the squeegee tool 5, a rubber spatula, a metal blade, a waste cloth or the like can be used.
  • particles composed of various materials can be used as long as they follow the deformation of the adhesive layer.
  • thermoplastic resin particles, thermosetting resin particles, cured resin particles, polysaccharide particles, protein particles, metal or ceramic-coated resin particles, and the like can be used.
  • the shape of these particle materials is preferably substantially spherical because it is desirable that the entire particle material 3 attached to the adhesive layer 2 be deformed in the same manner.
  • the average particle size is preferably 0.5 to 100 ⁇ m, more preferably 1 to 1 ⁇ m. 30 ⁇ m.
  • the coefficient of variation (CV value) of the particle size distribution is preferably 5 to 70%, more preferably 10 to 50%. This is because the loss tangent tan ⁇ curve of the particulate material becomes broad if it is out of this range, making it difficult to distinguish a clear glass transition temperature. The reason is considered to be because the occupied area ratio of the particulate material 3 on the adhesive layer 2 is reduced even if the CV value is too small or too large.
  • Such a particulate material is a particulate material in which an aluminum chelating agent is held on porous resin particles obtained by interfacial polymerization of a polyfunctional isocyanate (Example 1 of JP-A-2009-212465).
  • Measuring device DMS6100, Seiko Instruments Inc. Measurement temperature: 40-220 ° C Temperature increase rate: 5 ° C / min Measurement frequency: 10Hz Deformation mode: sinusoidal tension mode
  • this masking tape is used for the particle material in which the maximum peak of the loss tangent tan ⁇ is assumed in the measurement temperature range of 40 to 220 ° C. It turns out that it is suitable for dynamic viscoelasticity measurement.
  • Reference example 2 Polyurea-urethane-polydivinylbenzene porous particles were produced in accordance with Example 1 of JP-A-2009-212465 as the particulate material A to be measured for dynamic viscoelasticity.
  • aqueous phase was prepared by placing in a 3 liter interfacial polymerization vessel equipped with a thermometer and mixing uniformly.
  • Reference example 3 Polyurea-urethane-polydivinylbenzene porous aluminum chelate curing catalyst particles were produced according to Example 1 of Japanese Patent Application Laid-Open No. 2009-212465 as the particle material B to be measured for dynamic viscoelasticity.
  • the curing catalyst particles are obtained by holding an aluminum chelating agent in the pores of the porous resin particles (particulate material A) of Reference Example 2.
  • an aqueous phase was prepared in the same manner as in Reference Example 2.
  • the aqueous phase was further mixed with 100 parts by mass of a 24% isopropanol solution of aluminum monoacetylacetonate bis (ethylacetoacetate) (Aluminum Chelate D, Kawaken Fine Chemical Co., Ltd.) and methylenediphenyl-4, polyfunctional isocyanate compound.
  • the polymerization reaction solution is allowed to cool to room temperature, and the polymer particles are filtered off and dried naturally to obtain 80 parts by mass of spherical aluminum chelate curing catalyst particles (particle material B) having a particle size of about 3 ⁇ m. It was.
  • aqueous phase was prepared by placing in a 3 liter interfacial polymerization vessel equipped with a thermometer and mixing uniformly.
  • the aqueous phase was further mixed with 11 parts by mass of a 24% isopropanol solution of aluminum monoacetylacetonate bis (ethylacetoacetate) (Aluminum Chelate D, Kawaken Fine Chemicals Co., Ltd.) and methylenediphenyl-4,4′-diisocyanate ( 3 mol) of trimethylolpropane (1 mol) adduct (D-109, Mitsui Chemicals, Inc.) 11 parts by mass, an oil phase dissolved in 30 parts by mass of ethyl acetate was added, and a homogenizer (11000 rpm / 10 min.
  • Example 1 On a flat table, a heat-resistant masking tape (5413, Sumitomo 3M Co., Ltd.) having a total thickness of 66 ⁇ m in which a peroxide-curing silicone adhesive layer is formed on a polyimide film substrate is placed so that the adhesive layer faces upward. Then, the particulate material A was sprayed on the exposed adhesive layer using a spatula. After spraying, a squeegee was used with a clean wiper (FF-390C, Kuraray Laflex Co., Ltd.), and then the surface was air blown. This obtained the sheet-like test piece for the dynamic viscoelasticity measurement of the particulate material A. Scanning electron micrographs of this sheet-like test piece are shown in FIG. 6A (magnification 2000 times) and FIG. 6B (magnification 5000 times). From these photographs, it can be seen that most of the particulate material A is adhered to the adhesive layer as a single layer.
  • FIG. 7A A dynamic viscoelasticity test was performed on the obtained sheet-like test piece in the same manner as in Reference Example 1, and the obtained dynamic viscoelasticity chart is shown in FIG. 7A.
  • a maximum peak of loss tangent tan ⁇ derived from the particulate material A was observed, and the temperature of the maximum peak was 69.2 ° C. (glass transition temperature).
  • the obtained sheet-like test piece is once subjected to thermal analysis ( (Measurement amount: 5 mmg; temperature increase rate: 10 ° C./min), and then allowed to cool and perform a second thermal analysis.
  • the obtained DSC chart is shown in FIG. 7B.
  • FIG. 7B shows that no inflection point was observed in the second DSC chart. Therefore, it was found that the glass transition temperature of the particulate material A cannot be measured by DSC.
  • Example 2 A sheet-like test piece was prepared in the same manner as in Example 1 except that the particulate material B of Reference Example 3 was used in place of the particulate material A, and dynamic viscoelasticity measurement was performed. The obtained result is shown in FIG. 8A. As can be seen from FIG. 8A, a maximum peak of loss tangent tan ⁇ derived from the particulate material B was observed, and the temperature of the maximum peak was 63.5 ° C. (glass transition temperature). Considering this result and the result of Example 1, it is found that when the aluminum chelating agent is held in the porous resin particles, the polymerization wall is plasticized and the glass transition temperature is lowered by about 5 ° C.
  • the obtained sheet-like test piece is once subjected to thermal analysis ( (Measurement amount: 5 mmg; temperature increase rate: 10 ° C./min), and then allowed to cool and perform a second thermal analysis.
  • the obtained DSC chart is shown in FIG. 8B.
  • FIG. 8B shows that no inflection point was observed in the second DSC chart. Therefore, it was found that the glass transition temperature of the particulate material B cannot be measured by DSC.
  • Examples 3 and 4 One half of the particulate material C of Reference Example 4 was pulverized using a jet mill (AO-JET MILL, Seishin Enterprise Co., Ltd.) into primary particles, and the particulate material D was used. The particle size distribution of each of the particle materials C and D was measured using a particle size distribution meter (SD-2000, Sysmex Corporation). The obtained results (volume conversion) are shown in FIG. 9A (particulate material C) and FIG. 10A (particulate material D). 9A and 10A, the particle size distribution CV value (%) of the particle material C that has not been crushed is 72.1%, and the particle size distribution CV value (%) of the particle material D that has been crushed is 31. It was 8%.
  • a sheet-like test piece is prepared in the same manner as in Example 1 except that the particle material C (Example 3) or the particle material D (Example 4) is used instead of the particle material A, and dynamic viscoelasticity measurement is performed. It was. Scanning electron micrographs of these sheet-like test pieces are shown in FIG. 9B (Example 3, magnification 2000 times) and FIG. 10B (Example 4, magnification 2000 times). Moreover, the obtained dynamic viscoelasticity measurement result is shown in FIG. As can be seen from FIG. 11, a maximum peak of loss tangent tan ⁇ derived from the particle materials C and D is observed, and the temperature of the maximum peak is 64.6 ° C. for the particle material C and 65.1 for the particle material D. Although there was no significant difference between the two, the maximum peak of the loss tangent tan ⁇ of the particle material C in which a relatively large amount of large aggregates existed tended to be broad.
  • Reference Example 5 A sheet similar to Example 1 except that monodisperse acrylic polymer particles (Art Pearl J-5P, Negami Kogyo Co., Ltd.) having a particle size distribution CV value (%) of 6.89% are used in place of the particulate material
  • a test piece was prepared and subjected to dynamic viscoelasticity measurement.
  • a scanning electron micrograph of this sheet-like test piece is shown in FIG. 12A (magnification 5000 times).
  • FIG. 12B the obtained dynamic viscoelasticity measurement result is shown in FIG. 12B.
  • the maximum peak of the loss tangent tan ⁇ is very broad compared to the cases of Examples 3 and 4 with a CV value of 30% or more.
  • the dynamic viscoelasticity measuring method of the present invention is a sheet-like test in which a particulate material to be measured is attached to the adhesive layer of a heat-resistant sheet base material on which an adhesive layer is formed as a sample for measurement of dynamic viscoelasticity.
  • This sheet-shaped test piece can be easily and quickly manufactured at a low cost using a very small amount of particulate material by a method such as spraying, and the adhesive layer is formed on the heat-resistant sheet substrate.
  • An inexpensive commercially available masking tape can be applied as the sheet material. Therefore, since the dynamic viscoelasticity measurement time including the preparation time of the sheet-like test piece can be shortened and the measurement cost can be reduced, it is useful for the dynamic viscoelasticity measurement of the particulate material.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 粒子材料の動的粘弾性測定方法は、動的粘弾性の測定に供するサンプルとして、粘着層が形成された耐熱シート基材の当該粘着層に測定対象である粒子材料を付着させたシート状試験片を使用する。動的粘弾性測定の測定条件としては、測定温度-150~300℃の範囲内の所定温度範囲、昇温速度0.01~100℃/分の範囲内の一定温度、測定周波数0.01~100Hzの範囲内の一定周波数、及び正弦波制御の引張りモードが挙げられる。粒子材料を粘着層に付着させる際、予め解砕処理した粒子材料を粘着層の片面に散布した後、粒子材料の散布面を、スキージ及び/又はエアブローを行う。

Description

粒子材料の動的粘弾性測定方法
 本発明は、粒子材料の動的粘弾性測定方法に関する。
 樹脂材料のガラス転移温度は、DSC(示差走査熱量測定)法により行われることが多いが、材料の種類によってはガラス転移に起因する信号を検出できない場合がある。そのような場合、測定対象となる材料を比較的多量に用意し、それをシート状試験片やファイバー状試験片に成形しなければならないという欠点があるものの、それらの試験片を引張りモードの動的粘弾性測定により損失正接tanδを求め、その極大ピーク時の温度を、測定した樹脂材料のガラス転移温度とすることが行われている。
 ところで、フィラーとして使用するような微細な樹脂粒子材料の場合、粉体の集合体の熱伝導率が低いため、DSC法ではガラス転移に起因する信号を検出できず、必然的に動的粘弾性測定を行わざるを得なかった。しかし、微細な粒子材料の形態のままでは、引張りモードでも剪断モードでも3点曲げモードでも動的粘弾性測定が困難であるという問題があった。
 そのため、微細な樹脂粒子材料を動的粘弾性測定するためには、動的粘弾性測定可能な形状のサンプルを作成することが必要となっており、例えば、熱硬化型エポキシ樹脂100質量部に、ポリマー樹脂粒子50~150質量部を配合した組成物を短冊状金型に流し込み、硬化処理して短冊状試験片(特許文献1)を作成することが提案されている。また、ジイソノニルフタレート100質量部に、アクリル系重合体粒子100質量部を分散させて得た分散物をキャストし、加熱することによりシート状試験片を作成することが提案されている(特許文献2)。
特開平8-231731号公報 特開2005-232297号公報
 ところで、特許文献1及び2の技術では、粒子材料の動的粘弾性測定用のシート状試験片を作成する際に、比較的多量の樹脂粒子材料が必要となるばかりか、粒子材料含有分散物の調製工程、キャスト工程や成形工程、加熱処理工程等の煩雑な工程が必要となる。このため、シート状試験片の作成時間も含めたその動的粘弾性測定時間は増加し、測定コストも増大するという問題があった。
 本発明の目的は、以上の従来の技術の課題を解決しようとするものであり、粒子材料を動的粘弾性測定する際に、動的粘弾性測定可能な試験片を簡便、短時間、低コストで作成できるようにすることにより、シート状試験片の作成時間も含めた動的粘弾性測定時間を短縮し、測定コストも低減できるようにすることを目的とする。
 本発明者は、粘着層が形成された耐熱シート基材の当該粘着層に測定対象である粒子材料を付着させて得たシート片を、動的粘弾性測定したところ、耐熱シート基材と粘着層とに由来する損失正接tanδの極大ピーク以外の極大ピーク(即ち、粒子材料に由来する損失正接tanδの極大ピーク)が観察されることを見出し、本発明を完成させるに至った。
 即ち、本発明は、粒子材料の動的粘弾性測定方法であって、
 動的粘弾性の測定に供するサンプルとして、粘着層が形成された耐熱シート基材の当該粘着層に測定対象である粒子材料を付着させたシート状試験片を使用することを特徴とする動的粘弾性測定方法を提供する。
 本発明の、粒子材料の動的粘弾性測定方法では、動的粘弾性の測定に供するサンプルとして、粘着層が形成された耐熱シート基材の当該粘着層に測定対象である粒子材料を付着させたシート状試験片を使用する。このシート状試験片の作成は、散布などの手法で、非常に少量の粒子材料を用いて、簡便且つ短時間、低コストで行うことができ、しかも粘着層が耐熱シート基材に形成されたシート材料として、廉価な市販のマスキングテープを適用することができる。よって、シート状試験片の作成時間も含めた動的粘弾性測定時間を短縮し、測定コストも低減できる。
図1は、シート状試験片の断面図である。 図2は、図1のシート状試験片の部分拡大図である。 図3Aは、シート状試験片の作成に使用する粘着シートの断面図である。 図3Bは、シート状試験片の作成時における粒子材料の散布説明図である。 図3Cは、シート状試験片の作成時におけるスキージ説明図である。 図3Dは、シート状試験片の作成時におけるスキージ後の粒子材料の状態説明図である。 図3Eは、シート状試験片の作成時におけるエアブロー説明図である。 図4Aは、過酸化物硬化型のシリコーン粘着剤の動的粘弾性チャートである。 図4Bは、付加硬化型のシリコーン粘着剤の動的粘弾性チャートである。 図4Cは、2液型のアクリル粘着剤の動的粘弾性チャートである。 図5は、シート状試験片の作成の際に使用した耐熱マスキングテープの動的粘弾性チャートである。 図6Aは、実施例1で使用したシート状試験片の粒子材料付着面の走査型電子顕微鏡写真(倍率2000倍)である。 図6Bは、実施例1で使用したシート状試験片の粒子材料付着面の走査型電子顕微鏡写真(倍率5000倍)である。 図7Aは、実施例1で使用したシート状試験片の動的粘弾性チャートである。 図7Bは、実施例1で使用したシート状試験片のDSCチャートである。 図8Aは、実施例2で使用したシート状試験片の動的粘弾性チャートである。 図8Bは、実施例2で使用したシート状試験片のDSCチャートである。 図9Aは、実施例3で使用した粒子材料Cの体積換算の粒度分布チャートである。 図9Bは、実施例3で使用したシート状試験片の粒子材料付着面の走査型電子顕微鏡写真(倍率2000倍)である。 図10Aは、実施例4で使用した粒子材料Dの体積換算の粒度分布チャートである。 図10Bは、実施例4で使用したシート状試験片の粒子材料付着面の走査型電子顕微鏡写真(倍率2000倍)である。 図11は、実施例3及び4で使用したシート状試験片の動的粘弾性チャートである。 図12Aは、参考例5で使用したシート状試験片の粒子材料付着面の走査型電子顕微鏡写真(倍率5000倍)である。 図12Bは、CV値6.89%の単分散アクリルポリマー粒子を使用した参考例5のシート状試験片の動的粘弾性チャートである。
 本発明の粒子材料の動的粘弾性測定方法は、動的粘弾性の測定に供するサンプルとして、粘着層が形成された耐熱シート基材の当該粘着層に測定対象である粒子材料を付着させたシート状試験片を使用することを特徴とするものである。
 本発明の動的粘弾性測定方法により粒子材料の動的粘弾性が測定できる理由は、次のように考えられる。即ち、図1に示すように、耐熱シート基材1の粘着層2の片面に粒子材料3が付着したシート状試験片10に対し、例えば、正弦波的に引張り変形(図中、矢印)させると、図2に示すように、粘着層2も耐熱シート基材1の変形に追随して変形する。また、粒子材料3は変形する粘着層2の粘着力により保持されているから、粘着層2の変形に伴って個々の粒子材料3が変形する。よって、シート状試験片10を正弦波的に引張り変形させることにより、個々の粒子材料3を正弦波的に引張り変形させることができ、その結果、粒子材料の動的粘弾性の測定が可能になると考えられる。
 従って、粘着層2に付着させる粒子材料3の量は、変形に対して動的粘弾性特性が検出できる量であれば粘着層2の全面に付着していなくてもよいが、動的粘弾性特性を検出し易くするために、粘着層2の全面を覆うように付着していることが好ましい。また、粘着層2により直接的に変形を受けないような粒子材料塊状物は、粘着層2の変形により生じる塊状物の崩壊が、粒子材料3の動的粘弾性特性に影響を与えることが懸念されるので、粒子材料3が単層状に粘着層2に付着していることが好ましい。
 本発明に適用される動的粘弾性測定の手法としては、公知の動的粘弾性測定手法(JIS K7244参照)を適宜採用することができ、測定装置も市販の動的粘弾性測定装置を使用することができる(例えば、DMS6100、セイコーインスツル(株))。また、本発明の動的粘弾性測定方法に適用できる正弦波あるいは合成波制御の測定変形モードとしては、それぞれ引張りモード、ずり剪断モード、ねじり剪断モード、フィルムずりモード、3点曲げモード等が挙げられる。中でもシート状試験片の測定精度の点から正弦波制御の引張りモードが好ましい。
 また、動的粘弾性測定のバリエーションとしては、周波数依存測定、線形粘弾性域測定、温度依存測定、時間依存測定が挙げられる。ここで、周波数依存測定は、一定応力(又は一定ひずみ)の下、周波数を増大させながら動的粘弾性特性を測定するものであり、材料の凝集性、絡み合い、レベリング性などを評価するために行うものである。線形粘弾性域測定は、一定周波数の下、ひずみ(又は応力)を増大させながら動的粘弾性特性を測定するものであり、材料の降伏挙動を評するために行うためのものである。温度依存測定は、一定ひずみ(又は一定応力)、一定周波数の下、温度を連続的に変化させながら動的粘弾性特性を測定するものであり、材料の硬化・ゲル化・溶融・固化などを評価するために行うものである。時間依存測定は、一定ひずみ(又は一定応力)の下、時間により変化する動的粘弾性を測定するものであり、硬化波長・強度などの硬化条件による材料硬化挙動の変化を定量的に評価するものである。
 本発明の動的粘弾性測定の測定項目としては、測定変形モード等に応じて、貯蔵弾性率E′、損失弾性率E″、損失正接tanδ(=[E″/E′])、損失剛性率G″などが挙げられる。ここで、損失正接tanδの極大ピークを示す温度が、測定対象の粒子材料のガラス転移温度に相当する。
 本発明の粒子材料の動的粘弾性測定の好ましい測定態様としては、動的粘弾性測定が、以下の測定条件で行われる温度依存測定を挙げることができる。
 測定温度-150~300℃の範囲内の所定温度範囲(例えば40~220℃)、
 昇温速度0.01~100℃/分の範囲内の一定温度(例えば5℃/分)、
 測定周波数0.01~100Hzの範囲内の一定周波数(例えば10Hz)
 正弦波制御の引張りモード。
 粒子材料を耐熱シート基材上の粘着層に付着させる一連の操作の好ましい例は、粒子材料を粘着層に付着させる際、粒子材料を粘着層の片面に散布した後、粒子材料の散布面を、スキージおよび/またはエアブローを行うものであり、この例を図面を参照しながら以下に説明する。
 先ず、図3Aに示すように、耐熱シート基材1に粘着層2が形成された粘着シートを用意する。このような耐熱シート基材1や粘着層2としては、動的粘弾性測定の測定温度範囲において、それらの損失正接tanδの極大ピークトップが、測定対象である粒子材料の損失正接tanδの極大ピークトップと重ならない材料からそれぞれ形成されていることが好ましい。更に、動的粘弾性測定の測定温度範囲において、損失正接tanδの極大ピークが現れない材料から形成されていることがより好ましい。これにより、測定対象である粒子材料の損失正接tanδの特定が容易となる。
 このような粘着層2や耐熱シート基材1の具体例としては、動的粘弾性測定の測定温度範囲が-50~250℃である場合に、粘着層2として過酸化物を硬化剤として使用したシリコーン粘着剤から形成されたものを使用し、耐熱シート基材1としてポリイミド樹脂から形成されたものを使用したものが挙げられる。
 従って、粘着層2を形成するための粘着剤を選択するに際しては、対象となる粘着剤の損失正接tanδチャートを取得しておくことが好ましい。図4A、図4B及び図4Cに粘着剤の損失正接tanδチャートの例を示す。図4Aは過酸化物硬化型のシリコーン粘着剤に関するものであり、図4Bは付加硬化型のシリコーン粘着剤に関するものであり、図4Cは2液型のアクリル粘着剤に関するものである。これらの図からわかるように、図4Aの過酸化物硬化型のシリコーン粘着剤は、測定温度範囲において損失正接tanδチャートに極大ピークが存在しないため、本発明の粒子材料の動的粘弾性測定方法に好ましく適用できることがわかる。それに対し、図4B及び図4Cの粘着剤は、動的粘弾性測定の測定温度範囲でそれらの損失正接tanδの極大ピークが、粒子材料の損失正接tanδの極大ピークと重なる可能性があるため、本発明の粒子材料の動的粘弾性測定方法に適用する場合には、測定可能な粒子材料の範囲が非常に狭まることが予想される。
 耐熱シート基材1の厚みは、動的粘弾性測定の変形モードとその素材の物性等に応じて決定されるが、通常5μm~1mm、好ましくは10μm~0.1mmである。
 粘着層2の厚みも、動的粘弾性測定の変形モードとその素材の物性と測定対象となる粒子材料の大きさ等に応じて決定されるが、通常1μm~1mm、好ましくは1μm~0.1mmである。
 次に、図3Bに示すように、粘着層2の上方から粒子材料3を散布する。この場合、篩4を使用することが好ましい。また、粒子材料3も、予め公知の手法(例えば、ジェットミル処理)で解砕処理しておくことが好ましい。
 次に、図3Cに示すように、粘着層2に直接保持されていない粒子材料3′を除去し、また粘着層2に粒子材料3を密に且つ深く押し込むように保持させるために、公知の印刷用のスキージ具5で粒子材料3をスキージする。これにより粒子材料3は、図3Dのような状態となる。スキージ具5としては、ゴムベラ、金属ブレード、ウエス等を使用することもできる。次に、図3Eに示すように、スキージ処理面に対し、エアノズル6からエアブローを行うことにより不要な粒子材料を吹き飛ばし、図1に示すような、粒子材料3が単層で粘着層2に付着した、粒子材料の動的粘弾性測定に適したシート状試験片10が得られる。なお、スキージとエアブローは、そのいずれかだけを行ってもよく、エアブローを行った後にスキージを行ってもよいが、図3A~3Eに示すように、スキージの後にエアブローを行うことが好ましい。
 本発明の動的粘弾性測定方法に適用する粒子材料としては、粘着層の変形に追随するものであれば、種々の材料から構成された粒子を使用することができる。例えば、熱可塑性樹脂粒子、熱硬化性樹脂粒子、硬化樹脂粒子、多糖類粒子、蛋白粒子、金属あるいはセラミック被覆樹脂粒子等を使用することができる。
 また、これらの粒子材料の形状は、粘着層2に付着している粒子材料3全体が同じように変形することが望ましいため、略真球状であることが好ましい。
 粒子材料の大きさは、小さすぎると凝集しやすくなる傾向があり、大きすぎると、粘着層の変形に追随し難くなるので、好ましくは平均粒径が0.5~100μm、より好ましくは1~30μmである。
 また、粒子材料として、その粒径分布の変動係数(CV値)は好ましくは5~70%、より好ましくは10~50%である。これは、この範囲を外れると、粒子材料の損失正接tanδ曲線がブロードになり、明確なガラス転移温度を判別しにくくなるからである。その理由は、CV値が小さすぎても大きすぎても、粘着層2上の粒子材料3の占有面積割合が減少するためと考えられる。
 このような粒子材料の例として、多官能イソシアネートを界面重合させた多孔質樹脂粒子にアルミニウムキレート剤が保持された粒子材料が挙げられる(特開2009-221465号公報の実施例1)。
 以下、本発明を具体的に説明する。
  参考例1
 以下の実施例並びに比較例で使用したポリイミドフィルムに過酸化物硬化型シリコーン粘着層が形成された市販の粘着シート(耐熱マスキングテープ5413、住友3M(株))について、それ自体の動的粘弾性測定を以下の条件で行った。得られた結果を図5に示す。
  測定装置: DMS6100、セイコーインスツル(株)
  測定温度: 40~220℃
  昇温速度: 5℃/分
  測定周波数: 10Hz
  変形モード: 正弦波引張りモード
 図5からわかるように、測定温度範囲には損失正接tanδの極大ピークが観察されないことから、このマスキングテープは、測定温度範囲40~220℃に損失正接tanδの極大ピークが想定される粒子材料の動的粘弾性測定に適していることがわかる。
  参考例2
 動的粘弾性測定対象の粒子材料Aとして、ポリウレア-ウレタン-ポリジビニルベンゼン多孔質粒子を、特開2009-221465号公報の実施例1に従って製造した。
 先ず、蒸留水800質量部と、界面活性剤(ニューレックスR、日油(株))0.05質量部と、分散剤としてポリビニルアルコール(PVA-205、(株)クラレ)4質量部とを、温度計を備えた3リットルの界面重合容器に入れ、均一に混合することにより水相を調製した。
 この水相に、更に、多官能イソシアネート化合物としてメチレンジフェニル-4,4´-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D-109、三井化学(株))70質量部と、ラジカル重合性化合物としてジビニルベンゼン(メルク(株))30質量部と、ラジカル重合開始剤(パーロイルL、日油(株))をラジカル重合性化合物の1質量%相当量(0.3質量部)とを、酢酸エチル100質量部に溶解した油相を投入し、ホモジナイザー(10000rpm/5分:T-50、IKAジャパン(株))で乳化混合後、80℃で6時間、界面重合とラジカル重合とを行った。反応終了後、重合反応液を室温まで放冷し、重合粒子を濾過により濾別し、自然乾燥することにより粒径4μm程度の球状の多孔質樹脂粒子(粒子材料A)40質量部を得た。
  参考例3
 動的粘弾性測定対象の粒子材料Bとして、ポリウレア-ウレタン-ポリジビニルベンゼン多孔質型アルミニウムキレート硬化触媒粒子を、特開2009-221465号公報の実施例1に従って製造した。この硬化触媒粒子は、参考例2の多孔質樹脂粒子(粒子材料A)の孔にアルミニウムキレート剤を保持させたものである。
 先ず、参考例2と同様に水相を調製した。
 この水相に、更に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))100質量部と、多官能イソシアネート化合物としてメチレンジフェニル-4,4´-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D-109、三井化学(株))70質量部と、ラジカル重合性化合物としてジビニルベンゼン(メルク(株))30質量部と、ラジカル重合開始剤(パーロイルL、日油(株))0.3質量部(ラジカル重合性化合物の1質量%相当量)とを、酢酸エチル100質量部に溶解した油相を投入し、ホモジナイザー(10000rpm/5分:T-50、IKAジャパン(株))で乳化混合後、80℃で6時間、界面重合とラジカル重合を行った。反応終了後、重合反応液を室温まで放冷し、重合粒子を濾過により濾別し、自然乾燥することにより粒径3μm程度の球状のアルミニウムキレート硬化触媒粒子(粒子材料B)80質量部を得た。
  参考例4
 動的粘弾性測定対象の粒子材料Cとして、ポリウレア-ウレタン多孔質型アルミニウムキレート硬化触媒粒子を、特許4381255号明細書の実施例1に従って製造した。
 先ず、蒸留水800質量部と、界面活性剤(ニューレックスR、日油(株))0.05質量部と、分散剤としてポリビニルアルコール(PVA-205、(株)クラレ)4質量部とを、温度計を備えた3リットルの界面重合容器に入れ、均一に混合することにより水相を調製した。この水相に、更に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))11質量部と、メチレンジフェニル-4,4’-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D-109、三井化学(株))11質量部とを、酢酸エチル30質量部に溶解した油相を投入し、ホモジナイザー(11000rpm/10分:T-25、IKAジャパン(株))で乳化混合後、60℃で一晩界面重合させた。反応終了後、重合反応液を室温まで放冷し、界面重合粒子を濾過により濾別し、自然乾燥することにより粒径10μm程度の球状のアルミニウムキレート硬化触媒粒子(粒子材料C)20質量部を得た。
  実施例1
 平坦なテーブル上に、ポリイミドフィルム基材に過酸化物硬化型シリコーン粘着層が形成された総厚66μmの耐熱マスキングテープ(5413、住友3M(株))を粘着層が上向きとなるように載置し、露出した粘着層にスパチュラを用いて粒子材料Aを散布した。散布後、クリーンワイパー(FF-390C、クラレクラフレックス(株))を用いてスキージし、続いて表面をエアブローした。これにより、粒子材料Aの動的粘弾性測定用のシート状試験片を得た。このシート状試験片の走査型電子顕微鏡写真を図6A(倍率2000倍)と図6B(倍率5000倍)とに示す。これらの写真から、粒子材料Aの殆どが粘着層に単層で付着していることがわかる。
 得られたシート状試験片に対し、参考例1と同様に動的粘弾性試験を行い、得られた動的粘弾性チャートを図7Aに示す。図7Aからわかるように、粒子材料A由来の損失正接tanδの極大ピークが観察され、その極大ピークの温度は69.2℃(ガラス転移温度)であった。
 なお、得られたシート状試験片を、示差走査熱量測定(DSC)装置(DSC6200,セイコーインスツル(株))を用いて、残留モノマーや残留溶媒の影響を払拭するために、一度熱分析(測定量5mmg;昇温速度10℃/分)を行った後、放冷し2回目の熱分析を行った。得られたDSCチャートを図7Bに示す。図7Bから、2回目のDSCチャートには変極点が観察されなかったことがわかる。従って、粒子材料Aのガラス転移温度は、DSCでは測定することができないことがわかった。
  実施例2
 粒子材料Aに代えて参考例3の粒子材料Bを使用すること以外、実施例1と同様にシート状試験片を作成し、動的粘弾性測定を行った。得られた結果を図8Aに示す。図8Aからわかるように、粒子材料B由来の損失正接tanδの極大ピークが観察され、その極大ピークの温度は63.5℃(ガラス転移温度)であった。この結果と実施例1の結果とを考慮すると、多孔質樹脂粒子にアルミニウムキレート剤を保持させると、重合壁が可塑化されガラス転移温度が約5℃低下することがわかる。
 なお、得られたシート状試験片を、示差走査熱量測定(DSC)装置(DSC6200,セイコーインスツル(株))を用いて、残留モノマーや残留溶媒の影響を払拭するために、一度熱分析(測定量5mmg;昇温速度10℃/分)を行った後、放冷し2回目の熱分析を行った。得られたDSCチャートを図8Bに示す。図8Bから、2回目のDSCチャートには変極点が観察されなかったことがわかる。従って、粒子材料Bのガラス転移温度は、DSCでは測定することができないことがわかった。
  実施例3及び4
 参考例4の粒子材料Cの半分を、ジェットミル(AO-JET MILL、(株)セイシン企業)を用いて解砕処理して一次粒子化したものを粒子材料Dとした。粒子材料C及びDのそれぞれの粒度分布を粒度分布計(SD-2000、シスメックス(株))を用いて測定した。得られた結果(体積換算)を図9A(粒子材料C)と図10A(粒子材料D)に示す。図9A及び図10Aから、解砕処理していない粒子材料Cの粒度分布CV値(%)は72.1%であり、解砕処理した粒子材料Dの粒度分布CV値(%)は31.8%であった。
 粒子材料Aに代えて粒子材料C(実施例3)又は粒子材料D(実施例4)を使用すること以外、実施例1と同様にシート状試験片を作成し、動的粘弾性測定を行った。これらシート状試験片の走査型電子顕微鏡写真を図9B(実施例3、倍率2000倍)と図10B(実施例4、倍率2000倍)とに示す。また、得られた動的粘弾性測定結果を図11に示す。図11からわかるように、粒子材料C及びD由来の損失正接tanδの極大ピークが観察され、その極大ピークの温度は粒子材料Cの場合64.6℃であり、粒子材料Dの場合65.1℃であり、両者に大きな差がないが、大きな凝集物が比較的多く存在している粒子材料Cの損失正接tanδの極大ピークがブロードになる傾向があった。
  参考例5
 粒子材料Aに代えて、粒度分布CV値(%)が6.89%の単分散アクリルポリマー粒子(アートパールJ-5P、根上工業(株))を用いること以外、実施例1と同様にシート状試験片を作成し、動的粘弾性測定を行った。このシート状試験片の走査型電子顕微鏡写真を図12A(倍率5000倍)に示す。また、得られた動的粘弾性測定結果を図12Bに示す。図12Bからわかるように、損失正接tanδの極大ピークが、CV値が30%以上の実施例3及び4の場合に比べて、非常にブロードとなることがわかる。
 本発明の動的粘弾性測定方法は、動的粘弾性の測定に供するサンプルとして、粘着層が形成された耐熱シート基材の当該粘着層に測定対象である粒子材料を付着させたシート状試験片を使用する。このシート状試験片の作成は、散布などの手法で、非常に少量の粒子材料を用いて、簡便且つ短時間、低コストで行うことができ、しかも粘着層が耐熱シート基材に形成されたシート材料として、廉価な市販のマスキングテープを適用することができる。よって、シート状試験片の作成時間も含めた動的粘弾性測定時間を短縮し、測定コストも低減できるので、粒子材料の動的粘弾性測定に有用である。
1 耐熱シート基材
2 粘着層
3、3′ 粒子材料
4 篩
5 スキージ具
6 エアノズル
10 シート状試験片

Claims (9)

  1.  粒子材料の動的粘弾性測定方法であって、
     動的粘弾性の測定に供するサンプルとして、粘着層が形成された耐熱シート基材の当該粘着層に測定対象である粒子材料を付着させたシート状試験片を使用することを特徴とする動的粘弾性測定方法。
  2.  動的粘弾性測定が、以下の測定条件
    測定温度-150~300℃の範囲内の所定温度範囲、
    昇温速度0.01~100℃/分の範囲内の一定温度、
    測定周波数0.01~100Hzの範囲内の一定周波数、及び
    正弦波制御の引張りモード
    で行われる温度依存測定である請求項1記載の動的粘弾性測定方法。
  3.  予め解砕処理しておいた粒子材料を粘着層に付着させる請求項1記載の動的粘弾性測定方法。
  4.  粒子材料を粘着層に付着させる際、粒子材料を粘着層の片面に散布した後、粒子材料の散布面を、スキージ及び/又はエアブローを行う請求項1~3のいずれかに記載の動的粘弾性測定方法。
  5.  動的粘弾性測定として、損失正接tanδを測定する請求項1~4のいずれかに記載の動的粘弾性測定方法。
  6.  粘着層及び耐熱シート基材として、動的粘弾性測定の測定温度範囲において、それらの損失正接tanδの極大ピークトップが、測定対象である粒子材料の損失正接tanδの極大ピークトップと重ならない材料からそれぞれ形成されている請求項2~5のいずれかに記載の動的粘弾性測定方法。
  7.  動的粘弾性測定の測定温度範囲が-50~250℃である場合に、粘着層として過酸化物を硬化剤として使用したシリコーン粘着剤から形成されたものを使用し、耐熱シート基材としてポリイミド樹脂から形成されたものを使用する請求項6記載の動的粘弾性測定方法。
  8.  粒子材料として、粒径分布の変動係数(CV値)が5~70%の樹脂粒子を使用する請求項1~7のいずれかに記載の動的粘弾性測定方法。
  9.  粒子材料が、多官能イソシアネートを界面重合させた多孔質樹脂粒子にアルミニウムキレート剤が保持された粒子材料である請求項8記載の動的粘弾性測定方法。
PCT/JP2012/068146 2011-07-25 2012-07-18 粒子材料の動的粘弾性測定方法 WO2013015160A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147001720A KR101986391B1 (ko) 2011-07-25 2012-07-18 입자 재료의 동적 점탄성 측정 방법
CN201280036784.2A CN103718021B (zh) 2011-07-25 2012-07-18 颗粒材料的动态粘弹性测定方法
EP12817168.3A EP2738542A4 (en) 2011-07-25 2012-07-18 METHOD FOR MEASURING DYNAMIC VISCOELASTICITY OF PARTICULATE MATTER
US14/124,492 US9459197B2 (en) 2011-07-25 2012-07-18 Method for measuring dynamic viscoelasticity of particulate material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011162016A JP5842433B2 (ja) 2011-07-25 2011-07-25 粒子材料の動的粘弾性測定方法
JP2011-162016 2011-07-25

Publications (1)

Publication Number Publication Date
WO2013015160A1 true WO2013015160A1 (ja) 2013-01-31

Family

ID=47601010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068146 WO2013015160A1 (ja) 2011-07-25 2012-07-18 粒子材料の動的粘弾性測定方法

Country Status (6)

Country Link
US (1) US9459197B2 (ja)
EP (1) EP2738542A4 (ja)
JP (1) JP5842433B2 (ja)
KR (1) KR101986391B1 (ja)
CN (1) CN103718021B (ja)
WO (1) WO2013015160A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897567A (zh) * 2015-06-16 2015-09-09 安徽工业大学 一种定量检测涂层不粘性能装置及涂层不粘性能检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631916B (zh) * 2019-11-01 2022-04-08 山东精准产品质量检测有限公司 一种冷轧带肋钢筋检测装置
WO2023215001A1 (en) * 2022-05-03 2023-11-09 Dexerials America Corporation Hard coat film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123696A (ja) * 1992-10-13 1994-05-06 Seiko Instr Inc 動的粘弾性装置
JPH08221741A (ja) * 1995-02-20 1996-08-30 Fuji Photo Film Co Ltd 磁気記録媒体
JP2007086062A (ja) * 2005-08-26 2007-04-05 Shiseido Co Ltd 樹脂を含む材料を通じた流体の透過性の評価方法、生分解性樹脂を含む材料の処理方法、生分解性樹脂を含む材料、及び生分解性樹脂成形体
JP2008186761A (ja) * 2007-01-31 2008-08-14 Tokai Rubber Ind Ltd 粒子転写膜の製造方法および粒子保持膜の製造方法ならびに異方性導電膜
JP2009064043A (ja) * 2008-12-11 2009-03-26 Oji Tac Hanbai Kk 再剥離性粘着シート
JP2010074006A (ja) * 2008-09-19 2010-04-02 Fujifilm Corp 表面処理用マスク及びその製造方法、表面処理方法、光学デバイス、並びに、粒子含有フィルム及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231731A (ja) * 1995-02-23 1996-09-10 Nitto Denko Corp ポリマー粒子およびそれを用いた樹脂組成物
US6660326B2 (en) * 2000-08-04 2003-12-09 Tomoegawa Paper Co. Ltd. Production method for monolayer powder film and production apparatus therefor
CN100537643C (zh) * 2002-10-08 2009-09-09 电气化学工业株式会社 热收缩性薄膜
JP4381255B2 (ja) 2003-09-08 2009-12-09 ソニーケミカル&インフォメーションデバイス株式会社 潜在性硬化剤
WO2005070692A1 (ja) * 2004-01-27 2005-08-04 Asahi Kasei Chemicals Corporation レーザー彫刻可能な印刷基材の製造方法
JP4559745B2 (ja) * 2004-01-28 2010-10-13 大日本印刷株式会社 単粒子膜の形成方法およびこれを用いた電気泳動表示装置の製造方法
JP2005232297A (ja) * 2004-02-19 2005-09-02 Mitsubishi Rayon Co Ltd アクリル系重合体微粒子及びプラスチゾル組成物
US7901857B2 (en) * 2005-03-15 2011-03-08 Fuji Xerox Co., Ltd. Electrostatic latent image developing toner, production method thereof, electrostatic latent image developer, and image forming method
JP4355010B2 (ja) 2006-10-04 2009-10-28 昭栄化学工業株式会社 積層電子部品用導体ペースト
JP5049584B2 (ja) * 2006-12-25 2012-10-17 東レ・ダウコーニング株式会社 過酸化物硬化型シリコーン系感圧接着剤組成物および粘着テープ
JP5458596B2 (ja) * 2008-02-18 2014-04-02 デクセリアルズ株式会社 アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
EP2249208B1 (en) * 2008-02-25 2014-09-24 Canon Kabushiki Kaisha Toner
WO2010032543A1 (ja) * 2008-09-19 2010-03-25 富士フイルム株式会社 表面処理用マスク及びその製造方法、表面処理方法、並びに、粒子含有フィルム及びその製造方法
CN101788281B (zh) * 2009-01-22 2013-06-19 北京航空航天大学 非晶合金自由体积的测定方法
JP2010276938A (ja) * 2009-05-29 2010-12-09 Bridgestone Corp 表示媒体用粒子の色味評価方法
KR20110006452A (ko) * 2009-07-14 2011-01-20 삼성전자주식회사 전자사진용 토너 및 그의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123696A (ja) * 1992-10-13 1994-05-06 Seiko Instr Inc 動的粘弾性装置
JPH08221741A (ja) * 1995-02-20 1996-08-30 Fuji Photo Film Co Ltd 磁気記録媒体
JP2007086062A (ja) * 2005-08-26 2007-04-05 Shiseido Co Ltd 樹脂を含む材料を通じた流体の透過性の評価方法、生分解性樹脂を含む材料の処理方法、生分解性樹脂を含む材料、及び生分解性樹脂成形体
JP2008186761A (ja) * 2007-01-31 2008-08-14 Tokai Rubber Ind Ltd 粒子転写膜の製造方法および粒子保持膜の製造方法ならびに異方性導電膜
JP2010074006A (ja) * 2008-09-19 2010-04-02 Fujifilm Corp 表面処理用マスク及びその製造方法、表面処理方法、光学デバイス、並びに、粒子含有フィルム及びその製造方法
JP2009064043A (ja) * 2008-12-11 2009-03-26 Oji Tac Hanbai Kk 再剥離性粘着シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738542A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897567A (zh) * 2015-06-16 2015-09-09 安徽工业大学 一种定量检测涂层不粘性能装置及涂层不粘性能检测方法
CN104897567B (zh) * 2015-06-16 2017-05-03 安徽工业大学 一种定量检测涂层不粘性能装置

Also Published As

Publication number Publication date
CN103718021B (zh) 2015-12-23
US9459197B2 (en) 2016-10-04
JP5842433B2 (ja) 2016-01-13
EP2738542A1 (en) 2014-06-04
KR101986391B1 (ko) 2019-06-05
KR20140040825A (ko) 2014-04-03
EP2738542A4 (en) 2015-03-18
JP2013024801A (ja) 2013-02-04
US20140102223A1 (en) 2014-04-17
CN103718021A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
Chung et al. Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning
Liu et al. Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test
JP5523310B2 (ja) 接着剤およびシーラント系
Baït et al. Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications
Hurley et al. Measurement of viscoelastic loss tangent with contact resonance modes of atomic force microscopy
JP5842433B2 (ja) 粒子材料の動的粘弾性測定方法
CN110746626A (zh) 一种超轻cpp离型膜及其低温热固化制备工艺
Jensen et al. Strain-dependent solid surface stress and the stiffness of soft contacts
Testa et al. Switchable adhesion of soft composites induced by a magnetic field
CN102183441B (zh) 一种软物质材料的表面粘附能和弹性模量的测量方法
Du et al. A facile approach to prepare strong poly (acrylic acid)/LAPONITE® ionic nanocomposite hydrogels at high clay concentrations
Steck et al. Multiscale stress deconcentration amplifies fatigue resistance of rubber
Wang et al. Bulk and interfacial contributions to the adhesion of acrylic emulsion-based pressure-sensitive adhesives
JP6393994B2 (ja) 接着剤組成物、接着剤組成物を用いた電子部材、及び半導体装置の製造方法
Niinivaara et al. How latex film formation and adhesion at the nanoscale correlate to performance of pressure sensitive adhesives with cellulose nanocrystals
Mallégol et al. Obtaining and interpreting images of waterborne acrylic pressure-sensitive adhesives by tapping-mode atomic force microscopy
Ramanathan et al. Investigation of the influence of surface-activated carbon fibres on debonding energy and frictional stress in polymer-matrix composites by the micro-indentation technique
Mazzeo Characterization of pressure sensitive adhesives by rheology
Buzio et al. Deformation and adhesion of elastomer poly (dimethylsiloxane) colloidal AFM probes
Bohlim et al. Mimicking the surface mechanical properties of rice (Oryzae sativa) leaf using PDMS soft lithography
Chung et al. Material characterization of carbon-nanotube-reinforced polymer composite
JP6330346B2 (ja) 接着剤組成物、接着剤組成物を用いた電子部材、及び半導体装置の製造方法
Gurney Development and Characterisation of Stimuli-Responsive Waterborne Pressure-Sentitive Adhesives
He Nanomechanics of polymer and composite particles
Piatt Damping and Mechanical Behavior of Multiwalled Carbon Nanotube Epoxy Composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14124492

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012817168

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147001720

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE