WO2013015056A1 - 導電性パターン及びその製造方法 - Google Patents

導電性パターン及びその製造方法 Download PDF

Info

Publication number
WO2013015056A1
WO2013015056A1 PCT/JP2012/065951 JP2012065951W WO2013015056A1 WO 2013015056 A1 WO2013015056 A1 WO 2013015056A1 JP 2012065951 W JP2012065951 W JP 2012065951W WO 2013015056 A1 WO2013015056 A1 WO 2013015056A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
mass
resin
meth
Prior art date
Application number
PCT/JP2012/065951
Other languages
English (en)
French (fr)
Inventor
公恵 斉藤
亘 冨士川
白髪 潤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2012546659A priority Critical patent/JP5218878B1/ja
Priority to KR1020137026217A priority patent/KR101495699B1/ko
Priority to DE112012003081.8T priority patent/DE112012003081T5/de
Priority to CN201280023258.2A priority patent/CN103535120B/zh
Priority to US14/234,191 priority patent/US20140144684A1/en
Publication of WO2013015056A1 publication Critical patent/WO2013015056A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to a conductive pattern that can be used in an electric circuit or the like and a method for manufacturing the same.
  • ink-jet printer-related industries where growth has been remarkable, have dramatically improved the performance of ink-jet printers and improved ink, making it easy to produce high-definition and clear printability images similar to silver halide photographs. It is becoming possible to obtain. For this reason, inkjet printers are beginning to be considered for use not only in home use but also in the production of large advertising signs and the like.
  • a conductive ink containing a conductive substance such as silver is printed on a substrate by an inkjet printing method, and a conductive pattern such as an electronic circuit is printed.
  • the method of forming is mentioned.
  • a method for producing a conductive pattern by drawing a pattern by a predetermined method using a conductive ink on an ink receiving substrate provided with a latex layer is known. It is known that can be used (refer patent document 1).
  • the conductive ink receiving layer made of the latex layer constituting the conductive pattern may cause bleeding of the conductive ink, etc., it is generally required to realize high density of electronic circuits and the like. In some cases, however, it is difficult to form a conducting wire composed of a thin wire having a width of approximately 0.01 ⁇ m to 200 ⁇ m.
  • the surface of the conductive pattern is often plated for the purpose of further improving the conductivity.
  • the plating agent used in the plating process and the agent used in the cleaning process are usually strongly alkaline or strongly acidic, it causes dissolution of the conductive pattern, the conductive ink receiving layer, etc. As a result, disconnection or the like may occur.
  • the conductive pattern has a fine line-shaped pattern that can be used for, for example, an electric circuit, and is repeatedly immersed in the drug for a long time, the conductive ink receiving pattern There is a demand for durability that does not cause dissolution of the layer.
  • the problem to be solved by the present invention is that a conductive pattern excellent in fine lineability can be formed, and even when a solvent such as a plating agent or a cleaning agent adheres, It is to form a conductive pattern with excellent durability that can maintain good current conduction without causing peeling.
  • the present inventors have applied conductive ink to a conductive ink receiving substrate provided with a conductive ink receiving layer having a specific composition, and then the conductive ink receiving layer. It has been found that the problem of the present invention can be solved by forming a crosslinked structure therein.
  • the present invention is a conductive pattern having a layer (A) comprising a support, a receiving layer (B) and a conductive layer (C), On the surface of the resin layer (B1) containing a vinyl resin (b1) obtained by polymerizing a monomer mixture containing 10% by mass to 70% by mass of methyl (meth) acrylate, the receiving layer (B), A conductive pattern formed by applying a conductive ink containing a conductive substance (c) for forming a conductive layer (C) and then crosslinking the resin layer (B1). It is about.
  • the present invention is a method for producing a conductive pattern comprising a layer (A) comprising a support, a receiving layer (B), and a conductive layer (C),
  • a resin composition for forming a receiving layer comprising a vinyl resin (b1) obtained by polymerizing a monomer mixture containing 10% by mass to 70% by mass of methyl (meth) acrylate on a part or all of the surface of the support.
  • the resin layer (B1) was formed by applying and drying the product, and then a conductive ink containing a conductive substance (c) was applied to part or all of the surface of the resin layer (B1). Then, by heating, the resin layer (B1) undergoes a crosslinking reaction to form a receiving layer (B) having a crosslinked structure, and relates to a method for producing a conductive pattern.
  • the conductive pattern of the present invention is excellent in thin lineability and good without causing dissolution or peeling of the conductive ink receiving layer even when a solvent such as a plating agent or a cleaning agent adheres. Since it has durability at a level that can maintain electrical conductivity, for example, formation of an electronic circuit using a conductive ink containing a conductive substance such as silver, an organic solar cell or an electronic book terminal, an organic EL, an organic transistor, New fields commonly referred to as the printed electronics field, such as the formation of each layer and peripheral wiring that composes RFID such as flexible printed circuit boards and contactless IC cards, electromagnetic shielding wiring for plasma displays, integrated circuits, and organic transistor manufacturing Can be used in
  • the receptor layer (B) comprises 10 (methyl) methyl acrylate among the layers (A), the receptor layer (B), and the conductive layer (C) made of a support.
  • a conductive substance (c) that forms a conductive layer (C) on the surface of a resin layer (B1) containing a vinyl resin (b1) obtained by polymerizing a monomer mixture containing from 70% by mass to 70% by mass
  • the resin layer (B1) is crosslinked to form the conductive ink.
  • “methyl (meth) acrylate” represents one or both of methyl acrylate and methyl methacrylate.
  • the conductive pattern of the present invention comprises at least a layer (A) composed of the above-mentioned support, a receiving layer (B), and a conductive layer (C).
  • the receiving layer (B) constituting the conductive pattern may be provided on a part or all of the surface of the layer (A) comprising the support, and is provided on one or both of the front and back surfaces. Also good.
  • the resin layer (B1) capable of forming the receptor layer (B) is provided on the entire surface of the support, and a necessary portion of the surface of the resin layer (B1) is provided. Only after applying (printing) the conductive ink, the resin layer (B1) is crosslinked to form the receiving layer (B), and the conductive layer (C) containing the conductive substance (c) Can be formed.
  • the said receiving layer (B) may be provided only in the part which provides the said conductive layer (C) among the surfaces of the said support body.
  • the conductive pattern of the present invention has other layers between the support layer (A) and the receiving layer (B) and between the receiving layer (B) and the conductive layer (C).
  • the receiving layer (B) is provided on the surface of the layer (A), and the conductive layer (C) is provided on the surface of the receiving layer (B).
  • the electroconductive pattern of this invention may have a plating layer (D) as needed on the surface of the said electroconductive layer (C).
  • the conductive pattern produces a conductive ink receiving substrate having a resin layer (B1) capable of forming a receiving layer (B) on part or all of the surface of the support on which the layer (A) can be formed.
  • the step (1), the step (2) of applying the conductive ink containing the conductive substance (c) to the conductive ink receiving substrate, and the coated product obtained in the step (2) can be produced by performing a step (3) of forming a crosslinked structure in the resin layer (B1) and forming a receiving layer (B) by heating or the like.
  • the step (1) is a step of producing a conductive ink receiving substrate having a resin layer (B1) capable of forming the receiving layer (B) on part or all of the surface of the support.
  • the support examples include polyimide resin, polyamideimide resin, polyamide resin, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylic resin such as acrylonitrile-butadiene-styrene (ABS), poly (meth) methyl acrylate, and polyvinylidene fluoride.
  • a support made of polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyethylene, polypropylene, polyurethane, cellulose nanofiber, silicon, ceramics, glass or the like, a porous support made of these, and the like can be used.
  • the support generally used as a support in forming a conductive pattern such as a circuit board, from polyimide resin, polyethylene terephthalate, polyethylene naphthalate, glass, cellulose nanofiber, etc. It is preferable to use a support.
  • the support When the support is used for applications that require flexibility, it is possible to use a material that is relatively flexible and capable of being bent. Is preferable in obtaining. Specifically, it is preferable to use a film or sheet-like support formed by uniaxial stretching or the like.
  • the film or sheet-like support examples include a polyethylene terephthalate film, a polyimide film, and a polyethylene naphthalate film.
  • the support it is preferable to use a support having a thickness of about 1 ⁇ m to 200 ⁇ m from the viewpoint of realizing a lightweight and thin conductive pattern and a final product in which the conductive pattern is used.
  • examples of the resin layer (B1) provided on a part or all of the surface of the support include those composed of the vinyl resin (A) and other additives as required.
  • the resin layer (B1) provided on the conductive ink receiving base material is a resin layer that does not substantially form a crosslinked structure before the conductive ink is applied in the step (2).
  • the phrase “substantially does not form a crosslinked structure” includes an embodiment in which the crosslinked structure is not formed at all, and within about 5% of the number of functional groups involved in the formation of the crosslinked structure is partially crosslinked. Refers to the structure formed.
  • the coated surface is heated or irradiated with light to crosslink the resin layer (B1). Even when a solvent such as a plating agent or a cleaning agent adheres by forming the structure, it does not cause dissolution of the receptor layer (B), peeling from the support, etc. Can be imparted with a level of durability that can be maintained.
  • the resin layer (B1) includes a vinyl resin (b1) obtained by polymerizing a monomer mixture containing 10% by mass to 70% by mass of methyl (meth) acrylate, and other additives as required. The one containing is used.
  • the resin layer (B1) can be formed by applying a resin composition for forming a receiving layer containing the vinyl resin (b1) or the like to a desired portion of the support and drying it.
  • the resin composition for forming a receiving layer that can be used for forming the resin layer (B1) hardly undergoes a crosslinking reaction in the step of forming the resin layer (B1) on the surface of the support, and has a substantially crosslinked structure.
  • the cross-linking reaction proceeds rapidly by applying a process such as heating or light irradiation, and a receiving layer (B) having a cross-linked structure is formed. It is possible.
  • the resin composition for forming the receiving layer for example, among vinyl resins obtained by polymerizing a vinyl monomer mixture, methyl (meth) acrylate is added in an amount of 10% by mass to the total amount of the vinyl monomer mixture.
  • Vinyl resin (b1) obtained by polymerizing a vinyl monomer mixture contained in the range of 70% by mass, and optionally a crosslinking agent (b2), a solvent such as water or an organic solvent, and other additives Use the one containing.
  • the vinyl resin (b1) when a vinyl resin obtained by polymerizing a vinyl monomer mixture containing 5% by mass of methyl (meth) acrylate is used, It tends to cause bleeding, and as a result, it may cause a decrease in fine line property. In addition, the adhesiveness between the conductive ink and the receiving layer may be reduced.
  • the vinyl resin (b1) a vinyl resin obtained by polymerizing a resin containing methyl (meth) acrylate in the range of 40% by mass to 65% by mass with respect to the total amount of the vinyl monomer mixture. Is preferable, and it is more preferable to use a vinyl resin obtained by polymerizing one containing 50 to 65% by mass.
  • said vinyl resin (b1) it is preferable to use what has a weight average molecular weight of 100,000 or more from a viewpoint of providing the outstanding thin wire property.
  • the vinyl resin (b1) and an organic solvent are used in combination as the receiving layer forming resin composition.
  • the vinyl resin (b1) having a weight average molecular weight of 100,000 to 1,000,000 is used. It is preferable.
  • the resin composition for forming the receiving layer when the vinyl resin (b1) and an aqueous medium are used in combination, the vinyl resin (b1) having a weight average molecular weight of 1 million or more is used. It is preferable.
  • the vinyl resin (b1) having the above molecular weight may be used from the viewpoint of forming a receiving layer (B) of a conductive ink that is free from blurring and excellent in fine linearity. preferable.
  • the measurement of the weight average molecular weight of the vinyl resin (b1) was performed by mixing 80 mg of the vinyl resin (b1) and 20 ml of tetrahydrofuran and stirring for 12 hours as a measurement sample.
  • Gel permeation chromatography (GPC method) Can be done by. Use a high-performance liquid chromatograph HLC-8220 manufactured by Tosoh Corporation as a measuring device, a TSKgelGMH XL ⁇ 4 column manufactured by Tosoh Corporation as a column, tetrahydrofuran as an eluent, and an RI detector as a detector. Can do.
  • the molecular weight of the vinyl resin (b1) exceeds about 1 million, it may be difficult to measure the molecular weight of the vinyl resin (b1) by a general molecular weight measurement method using the GPC method or the like. is there.
  • a resin having a hydrophilic group such as an anionic group may be used from the viewpoint of imparting good water dispersibility in the aqueous medium. preferable.
  • anionic group examples include a carboxylate group formed by neutralizing a carboxyl group, a sulfonic acid group, and a neutralizing agent made of a basic compound such as a basic metal compound or a basic nonmetal compound. Sulfonate groups can be used.
  • anionic group such as the carboxyl group may serve as a cross-linking point with a cross-linking agent (D) described later when forming the receiving layer (B).
  • Examples of the neutralizing agent include basic metal compounds such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and calcium carbonate; ammonia; monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monopropylamine Basic nonmetallic compounds such as dimethylpropylamine, monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, and diethylenetriamine can be used.
  • the carboxyl group and the like can be present in the vinyl resin (b1) as the hydrophilic group and as a crosslinkable functional group described later.
  • the carboxyl group or the like is introduced in the range where the acid value of the vinyl resin (b1) is in the range of 0 to 10, preferably 0.5 to 5, so that the conductive pattern having excellent durability can be obtained. It is more preferable in obtaining.
  • the vinyl resin which has a crosslinkable functional group can be used from a viewpoint of forming the receiving layer (B) which formed the crosslinked structure by heating etc.
  • the crosslinkable functional group may form a crosslink structure by a crosslink reaction between the crosslinkable functional groups of the vinyl resin.
  • the crosslinkable functional group reacts with the functional group of the crosslinker (D) to crosslink.
  • a structure may be formed.
  • the crosslinkable functional group that the vinyl resin (b1) may have has a crosslinkable structure by applying a conductive ink to the conductive ink receiving substrate (printing) and then performing a crosslinking reaction by heating or the like.
  • a conductive pattern having excellent durability can be formed.
  • crosslinkable functional group for example, it is preferable to use those capable of forming a crosslink structure by heating to approximately 100 ° C. or more, specifically, methylolamide group and alkoxymethylamide. It is preferable to use one or more thermally crosslinkable functional groups selected from the group consisting of groups.
  • the alkoxymethylamide group include an amide group formed by bonding a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, or the like to a nitrogen atom.
  • a crosslinking agent (b2) as a resin composition for receiving layers, as said vinyl resin (b1), what has functional groups, such as a hydroxyl group and a carboxyl group, is used, for example. It is preferable. Moreover, an amino group can also be used when the conditions at the time of forming the said receiving layer (B) can fully be controlled.
  • the vinyl resin (b1) it is preferable to use a resin having a glass transition temperature of 1 ° C. to 70 ° C. from the viewpoint of producing a conductive pattern having excellent thinness. Further, the film-forming property when forming the receiving layer (B), and when the conductive ink receiving substrate is laminated, the receiving layer (B) constituting the ink receiving substrate and the ink receiving group A material having a glass transition temperature of 10 ° C. to 40 ° C. is used from the viewpoint of providing a level of anti-blocking property that does not cause sticking with the back surface of the layer (A) comprising the support constituting the material. It is preferable.
  • the vinyl resin (b1) is a vinyl monomer containing 10% by mass to 70% by mass of methyl (meth) acrylate and, if necessary, other vinyl monomers such as a vinyl monomer having a crosslinkable functional group.
  • the body mixture can be produced by radical polymerization or the like.
  • Examples of the vinyl monomer having a crosslinkable functional group include one or more amide groups selected from the group consisting of a methylolamide group and an alkoxymethylamide group, and other amide groups, hydroxyl groups, glycidyl groups, amino groups.
  • a vinyl monomer having the crosslinkable functional group such as a group, a silyl group, an aziridinyl group, an isocyanate group, an oxazoline group, a cyclopentenyl group, an allyl group, a carbonyl group, and an acetoacetyl group can be used.
  • Examples of the vinyl monomer having one or more amide groups selected from the group consisting of a methylolamide group and an alkoxymethylamide group that can be used for the vinyl monomer having a crosslinkable functional group include N-methylol (meta ) Acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide N-isobutoxymethyl (meth) acrylamide, N-pentoxymethyl (meth) acrylamide, N-ethoxymethyl-N-methoxymethyl (meth) acrylamide, N, N′-dimethylol (meth) acrylamide, N-ethoxymethyl -N-propoxyme Ru (meth) acrylamide, N, N'-dipropoxymethyl (meth) acrylamide, N-butoxymethyl-N-prop
  • Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl (meth) acrylamide are used when the wire has excellent thinness and adheres to solvents such as plating agents and cleaning agents. Even if it exists, since the electroconductive pattern excellent in durability of the level which can maintain favorable electroconductivity can be formed, without melt
  • vinyl monomer having a crosslinkable functional group examples include those other than those described above, such as vinyl monomers having an amide group such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, (meth) 2-hydroxypropyl acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate , Vinyl monomers having a hydroxyl group such as glycerol (meth) acrylate, polyethylene glycol (meth) acrylate, N-hydroxyethyl (meth) acrylamide, etc .: glycidyl (meth) acrylate, allyl glycidyl ether (meth) acrylate, etc.
  • an amide group such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, (meth)
  • Polymerizable monomer having a glycidyl group (meth) acrylic Polymerizable monomers having an amino group such as aminoethyl, N-monoalkylaminoalkyl (meth) acrylate, N, N-dialkylaminoalkyl (meth) acrylate; vinyltrichlorosilane, vinyltrimethoxysilane, vinyltri Ethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ - (meth) acryloxypropyltrimethoxysilane, ⁇ - (meth) acryloxypropyltriethoxysilane, ⁇ - (meth) acryloxypropylmethyldimethoxysilane, ⁇ - (Meth) acryloxypropylmethyldiethoxysilane, ⁇ - (meth) acryloxypropyltriisopropoxysilane, N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -a
  • N-butoxymethyl (meth) acrylamide and N-isobutoxymethyl (meth) acrylamide which can undergo a self-crosslinking reaction by heating or the like are used alone or in combination.
  • (meth) acrylamide and a vinyl monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate are preferably used in combination.
  • N-butoxymethyl (meth) acrylamide is preferably used in order to further improve the durability of the conductive pattern.
  • the functional group which can become a crosslinking point with a crosslinking agent (b2) for example, a hydroxyl group, (meth) acrylic acid It is more preferable to use 2-hydroxyethyl, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • the use of the vinyl monomer having a hydroxyl group is preferable when an isocyanate crosslinking agent is used as the crosslinking agent (b2) described later.
  • the vinyl monomer having a crosslinkable functional group can be used in the range of 0% by mass to 50% by mass with respect to the total amount of the vinyl monomer mixture used for producing the vinyl resin (b1).
  • the said crosslinking agent (b2) carries out a self-crosslinking reaction, it is not necessary to use the vinyl monomer which has the said crosslinkable functional group.
  • the vinyl monomer having an amide group is used for the production of the vinyl resin (b1) when introducing a self-crosslinking reactive methylolamide group or the like. It is preferably used in the range of 0.1% by mass to 50% by mass and more preferably in the range of 1% by mass to 30% by mass with respect to the total amount of the vinyl monomer mixture to be processed.
  • other vinyl monomers having an amide group used in combination with the self-crosslinking reactive methylolamide group, and vinyl monomers having a hydroxyl group are vinyl monomers used for the production of the vinyl resin (b1). It is preferably used in the range of 0.1% by mass to 30% by mass and more preferably in the range of 1% by mass to 20% by mass with respect to the total amount of the monomer mixture.
  • the vinyl monomer having the hydroxyl group is dependent on the type of the crosslinking agent (b2) used in combination, but the vinyl resin (b1) It is preferably used in a range of approximately 0.05% to 50% by mass and preferably in a range of 0.05% to 30% by mass with respect to the total amount of the vinyl monomer mixture used for production. More preferably, it is used at 0.1 to 10% by mass.
  • the equivalent ratio of the crosslinkable functional group in the vinyl resin (b1) and the crosslinkable functional group in the crosslinker (b2) is [crosslinkable functional group in the vinyl resin (b1) / crosslinker.
  • Crosslinkable functional group in (b2)] 100/1 to 100/500 is preferable, 100/2 to 100/200 is preferable, and 100/5 to 100/100 is more preferable. .
  • vinyl monomers that can be used in the production of the vinyl resin (b1) include, for example, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, ( T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, (meth) acrylic acid (Meth) acrylates such as dodecyl, stearyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate; (Meth) acrylic acid 2,2,2-trifluoroethyl, (meth) acrylic
  • (meth) acrylic acid alkyl ester having an alkyl group having 2 to 12 carbon atoms in combination with the above-mentioned methyl (meth) acrylate because it can provide excellent thinness. It is more preferable to use an acrylic acid alkyl ester having an alkyl group having 3 to 8 atoms.
  • the (meth) acrylic acid alkyl ester having an alkyl group having 2 to 12 carbon atoms a conductive pattern having excellent thinness can be formed, and therefore n-butyl (meth) acrylate may be used. preferable.
  • the (meth) acrylic acid alkyl ester having an alkyl group having 2 to 12 carbon atoms such as n-butyl (meth) acrylate is added to the total amount of vinyl monomers used in the production of the vinyl resin (b1).
  • the use in the range of 10% by mass to 60% by mass is preferable for imparting excellent printability and fine lineability without ink bleeding because a conductive pattern having excellent fine lineability can be formed.
  • vinyl monomers that can be used in the production of the vinyl resin (b1) include, in addition to those described above, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl versatate, methyl vinyl ether, ethyl vinyl ether, Propyl vinyl ether, butyl vinyl ether, amyl vinyl ether, hexyl vinyl ether, (meth) acrylonitrile, styrene, ⁇ -methylstyrene, vinyl toluene, vinyl anisole, ⁇ -halostyrene, vinyl naphthalene, divinyl styrene, isoprene, chloroprene, butadiene, ethylene, tetrafluoro Ethylene, vinylidene fluoride, N-vinylpyrrolidone, polyethylene glycol mono (meth) acrylate, glycerol mono (meth) acrylate, vinyl sulfonic acid, Tylene sulfonic acid, allyl
  • the vinyl resin (b1) can be produced by polymerizing the above vinyl monomer by a conventionally known method. Specifically, it can be produced by a solution polymerization method in an organic solvent or an emulsion polymerization method, and is preferably produced by an emulsion polymerization method.
  • the emulsion polymerization method for example, water, the vinyl monomer, a polymerization initiator, and, if necessary, a chain transfer agent, an emulsifier, a dispersion stabilizer, and the like are collectively supplied and mixed in a reaction vessel.
  • An emulsion method or the like can be applied.
  • the reaction temperature of the emulsion polymerization method varies depending on the type of vinyl monomer and polymerization initiator used, but is preferably about 30 ° C. to 90 ° C., and the reaction time is preferably about 1 hour to 10 hours, for example.
  • polymerization initiator examples include persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate, organic peroxides such as benzoyl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide, and peroxides. There is hydrogen, etc., and radical polymerization is performed using only these peroxides, or the above-mentioned peroxides and metal salts of ascorbic acid, formaldehyde sulfoxylate, sodium thiosulfate, sodium bisulfite, ferric chloride, etc.
  • persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate
  • organic peroxides such as benzoyl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide
  • peroxides There is hydrogen, etc., and radical polymerization is performed using only these peroxides, or
  • Polymerization can also be achieved by a redox polymerization initiator system combined with such a reducing agent, and 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2-amidinopropane) dihydrochloride, etc.
  • a redox polymerization initiator system combined with such a reducing agent, and 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2-amidinopropane) dihydrochloride, etc.
  • azo initiators can also be used, and one or a mixture of two or more thereof can be used.
  • emulsifiers that can be used for the production of the vinyl resin (b1) include anionic surfactants, nonionic surfactants, cationic surfactants, and zwitterionic surfactants. It is preferable to use an anionic surfactant.
  • anionic surfactant examples include sulfates of higher alcohols and salts thereof, alkylbenzene sulfonates, polyoxyethylene alkylphenyl sulfonates, polyoxyethylene alkyl diphenyl ether sulfonates, and polyoxyethylene alkyl ethers.
  • non-ionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl phenyl ether.
  • Ethylene diphenyl ether, polyoxyethylene-polyoxypropylene block copolymer, acetylenic diol surfactant and the like can be used.
  • cationic surfactant for example, an alkyl ammonium salt or the like can be used.
  • alkyl (amido) betaine alkyldimethylamine oxide and the like can be used.
  • emulsifier in addition to the above-mentioned surfactants, fluorine-based surfactants, silicone-based surfactants, and emulsifiers having a polymerizable unsaturated group generally called “reactive emulsifier” in the molecule Can also be used.
  • Examples of the reactive emulsifier include “Latemul S-180” (manufactured by Kao Corporation) having a sulfonic acid group and a salt thereof, and “Eleminol JS-2, RS-30” (manufactured by Sanyo Chemical Industries, Ltd.) Etc .; “Aqualon HS-10, HS-20, KH-1025” (Daiichi Kogyo Seiyaku Co., Ltd.) having sulfate groups and salts thereof, “Adekaria soap SE-10, SE-20” (Asahi Denka Kogyo) "New Frontier A-229E” having a phosphate group (Daiichi Kogyo Seiyaku Co., Ltd.), etc .; “Aqualon RN-10, RN-20, RN-” having a nonionic hydrophilic group 30, RN-50 ”(Daiichi Kogyo Seiyaku Co., Ltd.) and the like can be used.
  • aqueous medium used for the production of the vinyl resin (b1) for example, only water may be used, or a mixed solution of water and a water-soluble solvent may be used.
  • a water-soluble solvent for example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, and polar solvents such as N-methylpyrrolidone can be used.
  • chain transfer agent that can be used for the production of the vinyl resin (b1)
  • lauryl mercaptan or the like can be used as a chain transfer agent that can be used for the production of the vinyl resin (b1).
  • the chain transfer agent is preferably used in the range of 0% by mass to 0.15% by mass with respect to the total amount of vinyl monomers used in the production of the vinyl resin (b1), and 0% by mass to 0.00%. A range of 08% by mass is more preferable.
  • the vinyl resin (b1) can also be produced by radical polymerization by the solution polymerization method.
  • a polymerization initiator can be used as necessary.
  • the polymerization initiator include methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene.
  • Examples of the organic solvent that can be used in the solution polymerization method include alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol methyl ether, and diethylene glycol methyl ether, and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol methyl ether, and diethylene glycol methyl ether
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, hydrocarbons such as hexane, heptane, and octane, aromatics such as benzene, toluene, xylene, cumene, ethyl acetate, butyl acetate, etc. Can do.
  • the vinyl resin (b1) obtained by the above method is preferably contained in the range of 5% by mass to 60% by mass with respect to the total amount of the resin composition for forming a receiving layer used in the present invention. More preferably, it is contained in the range of ⁇ 50 mass%.
  • the resin composition for forming the receiving layer it is preferable to use a resin containing a solvent such as an aqueous medium or an organic solvent from the viewpoint of improving the workability on the surface of the support.
  • aqueous medium for example, only water may be used, or a mixed solution of water and a water-soluble solvent may be used.
  • a water-soluble solvent for example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, and polar solvents such as N-methylpyrrolidone can be used.
  • the aqueous medium is preferably contained in the range of 30% by mass to 95% by mass with respect to the total amount of the resin composition for forming a receiving layer used in the present invention. More preferably, it is contained in the range of 90% by mass.
  • the organic solvent for example, toluene, ethyl acetate, methyl ethyl ketone, or the like can be used.
  • the organic solvent is preferably contained in the range of 30% by mass to 95% by mass with respect to the total amount of the resin composition for forming a receiving layer used in the present invention, and 40% by mass to More preferably, it is contained in the range of 90% by mass.
  • the receptor layer-forming resin composition includes a crosslinking agent (b2) as necessary, a pH adjuster, a film forming aid, a leveling agent, and a thickener.
  • a crosslinking agent b2
  • a pH adjuster a pH adjuster
  • a film forming aid a leveling agent
  • a thickener a crosslinking agent that adjusts the pH of the receptor layer-forming resin composition.
  • known substances such as water repellents and antifoaming agents may be appropriately added and used.
  • crosslinking agent (b2) examples include heat that can react at a relatively low temperature of about 25 ° C. to less than 100 ° C. to form a crosslinked structure, such as metal chelate compounds, polyamine compounds, aziridine compounds, metal salt compounds, and isocyanate compounds. It reacts at a relatively high temperature of approximately 100 ° C. or higher, such as one or more selected from the group consisting of the crosslinking agent (b2-1), melamine compounds, epoxy compounds, oxazoline compounds, carbodiimide compounds, and blocked isocyanate compounds.
  • a thermal crosslinking agent (b2-2) capable of forming a crosslinked structure and various photocrosslinking agents can be used.
  • the receptor layer-forming resin composition containing the thermal crosslinking agent (b2-1) is, for example, coated on the surface of the support, dried at a relatively low temperature, and then coated (printed) with conductive ink. Even when a solvent such as a plating agent or a cleaning agent adheres by heating to a temperature of less than 100 ° C. to form a crosslinked structure, dissolution of the receiving layer (B), peeling from the support, etc. Thus, it is possible to form a conductive pattern excellent in durability at a level that can maintain good electrical conductivity.
  • the resin composition for forming a receiving layer containing the thermal crosslinking agent (b2-2) is, for example, applied to the surface of the support and dried at a low temperature of room temperature (25 ° C.) to less than about 100 ° C.
  • An ink-receiving substrate that does not form a crosslinked structure is manufactured, and then a conductive ink or the like is applied, followed by heating at a temperature of, for example, 100 ° C. or more, preferably about 120 ° C. to 300 ° C. to form a crosslinked structure.
  • the conductive layer (B) does not cause dissolution, peeling from the support, etc.
  • a conductive pattern having excellent durability can be obtained.
  • Examples of the metal chelate compound that can be used for the thermal crosslinking agent (b2-1) include acetylacetone, which is a polyvalent metal such as aluminum, iron, copper, zinc, tin, titanium, nickel, antimony, magnesium, vanadium, chromium, and zirconium. Coordination compounds, acetoacetate coordination compounds and the like can be used, and it is preferable to use acetylacetone aluminum which is an acetylacetone coordination compound of aluminum.
  • a polyamine compound that can be used for the thermal crosslinking agent (b2-1) for example, a tertiary amine such as triethylamine, triethylenediamine, dimethylethanolamine or the like can be used.
  • Examples of the metal salt compound that can be used as the crosslinking agent (b1-1) include aluminum sulfate, aluminum alum, aluminum sulfite, aluminum thiosulfate, polyaluminum chloride, aluminum nitrate nonahydrate, and aluminum chloride hexahydrate.
  • Water-soluble metal salts such as aluminum-containing compounds such as titanium tetrachloride, tetraisopropyl titanate, titanium acetylacetonate, and titanium lactate can be used.
  • isocyanate compounds that can be used in the thermal crosslinking agent (b2-1) include tolylene diisocyanate, hydrogenated tolylene diisocyanate, triphenylmethane triisocyanate, methylene bis (4-phenylmethane) triisocyanate, isophorone diisocyanate, hexamethylene.
  • a polyisocyanate such as diisocyanate and xylylene diisocyanate, an isocyanurate type polyisocyanate compound obtained by using them, an adduct comprising them and trimethylolpropane, the polyisocyanate compound and a polyol such as trimethylolpropane.
  • Polyisocyanate group-containing urethane obtained by reacting can be used.
  • hexamethylene diisocyanate nurate adduct of hexamethylene diisocyanate and trimethylolpropane
  • adduct of tolylene diisocyanate and trimethylol propane adduct of xylylene diisocyanate and trimethylol propane, etc. are used. It is preferable.
  • Examples of the melamine compound that can be used in the thermal crosslinking agent (b2-2) include hexamethoxymethyl melamine, hexaethoxymethyl melamine, hexapropoxymethyl melamine, hexabutoxymethyl melamine, hexapentyloxymethyl melamine, hexahexyl.
  • Oxymethyl melamine or a mixed etherified melamine obtained by combining these two types can be used.
  • trimethoxymethyl melamine and hexamethoxymethyl melamine are preferably used.
  • Examples of commercially available products include Becamine M-3, APM, J-101 (manufactured by DIC Corporation), and the like.
  • a catalyst such as an organic amine salt may be used to promote the self-crosslinking reaction.
  • catalyst ACX, 376 etc. can be used.
  • the catalyst is preferably in the range of approximately 0.01% by mass to 10% by mass with respect to the total amount of the melamine compound.
  • Examples of the epoxy compound that can be used for the thermal crosslinking agent (b2-2) include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether, cyclohexanediol diglycidyl ether, and glycerin diglycidyl ether.
  • Polyglycidyl ethers of aliphatic polyhydric alcohols such as glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether; polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether
  • Polyglycidyl ethers of polyalkylene glycols such as 1,3-bis (N, Polyglycidylamines such as' -diglycidylaminoethyl) cyclohexane; polyglycidyl esters of polycarboxylic acids [succinic acid, adipic acid, butanetricarboxylic acid, maleic acid, phthalic acid, terephthalic acid, isophthalic acid, benzenetricarboxylic acid, etc.] Bisphenol A-based
  • polyglycidylamines such as 1,3-bis (N, N′-diglycidylaminoethyl) cyclohexane and polyglycidyl ethers of aliphatic polyhydric alcohols such as glycerin diglycidyl ether.
  • Examples of the epoxy compound include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, and ⁇ -glycidoxypropyl other than those described above.
  • a glycidyl group-containing silane compound such as ⁇ -glycidoxypropyltriisopropenyloxysilane can be used.
  • Examples of the oxazoline compound that can be used for the thermal crosslinking agent (d1-2) include 2,2′-bis- (2-oxazoline), 2,2′-methylene-bis- (2-oxazoline), 2 , 2'-ethylene-bis- (2-oxazoline), 2,2'-trimethylene-bis- (2-oxazoline), 2,2'-tetramethylene-bis- (2-oxazoline), 2,2'- Hexamethylene-bis- (2-oxazoline), 2,2'-octamethylene-bis- (2-oxazoline), 2,2'-ethylene-bis- (4,4'-dimethyl-2-oxazoline), 2 , 2'-p-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (4,4'- Dimethyl-2-oxa Phosphorus), bis - (2-oxazolinyl sulfony
  • oxazoline compound for example, a polymer having an oxazoline group obtained by polymerizing a combination of the following addition polymerizable oxazoline and other monomers as required may be used.
  • Examples of the addition polymerizable oxazoline include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline. , 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, etc., alone or in combination Can do. Of these, the use of 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • carbodiimide compounds that can be used for the thermal crosslinking agent (b2-2) include poly [phenylenebis (dimethylmethylene) carbodiimide] and poly (methyl-1,3-phenylenecarbodiimide).
  • poly [phenylenebis (dimethylmethylene) carbodiimide] examples include poly [phenylenebis (dimethylmethylene) carbodiimide] and poly (methyl-1,3-phenylenecarbodiimide).
  • Carbodilite V-01, V-02, V-03, V-04, V-05, V-06 manufactured by Nisshinbo Co., Ltd.
  • UCARLINK XL-29SE UCARLINK XL-29SE
  • XL-29MP Union Carbide Corp.
  • the blocked isocyanate compound that can be used in the thermal crosslinking agent (b2-2) part or all of the isocyanate groups of the isocyanate compound exemplified as the thermal crosslinking agent (b2-1) What was sealed can be used.
  • the blocking agent examples include phenol, cresol, 2-hydroxypyridine, butyl cellosolve, propylene glycol monomethyl ether, benzyl alcohol, methanol, ethanol, n-butanol, isobutanol, dimethyl malonate, diethyl malonate, methyl acetoacetate, Ethyl acetoacetate, acetylacetone, butyl mercaptan, dodecyl mercaptan, acetanilide, acetic acid amide, ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, succinimide, maleic imide, imidazole, 2-methylimidazole, urea, thiourea, Ethyleneurea, formamide oxime, acetaldoxime, acetone oxime, methyl ethyl ketoxime, methyl isobutyl ketoxime, cyclohexano Oxime, dipheny
  • the (block) isocyanate compound, melamine compound, oxazoline compound, and carbodiimide compound are used as a crosslinking agent (b2), and a vinyl resin having a hydroxyl group or a carboxyl group is used as the vinyl resin (b1). Is preferred.
  • the cross-linking agent (b2) varies depending on the type and the like, but usually it is preferably used in a range of 0.01% by mass to 60% by mass with respect to the vinyl resin (b1), preferably 0.1% by mass to 50%. It is preferable to use in the range of mass% in order to obtain a conductive pattern excellent in fine lineability.
  • the melamine compound as the crosslinking agent (b2) can undergo a self-condensation reaction, it is preferably used in the range of 0.1% by mass to 30% by mass with respect to the vinyl resin (B2). It is preferably used in the range of 10% by mass to 10% by mass, and more preferably in the range of 0.5% by mass to 5% by mass.
  • the cross-linking agent (b2) is preferably added and used before coating or impregnating the support layer-forming resin composition on the support surface.
  • the resin composition for forming a receiving layer used in the present invention includes a solvent-soluble or solvent-dispersible thermosetting resin such as a phenol resin, a urea resin, a melamine resin, and a polyester.
  • a resin, a polyamide resin, a urethane resin, or the like can be mixed and used.
  • Examples of the method for forming the resin layer (B1) on the part or the whole of the support surface using the resin composition for forming a receptor layer include, for example, a part or the whole of the support surface and a support.
  • a method of coating or impregnating the receptor layer-forming resin composition on one or both sides of a body and removing a solvent such as an aqueous medium or a solvent that may be contained in the receptor layer-forming resin composition Can be mentioned.
  • a known and commonly used method can be used as a method of applying or impregnating the receptor layer-forming resin composition to a part or the whole of the support surface.
  • a gravure method a coating method, a screen method, A roller method, a rotary method, a spray method, an ink jet method, or the like can be applied.
  • a method for removing a solvent such as an aqueous medium or a solvent that may be contained in the resin composition for forming a receiving layer after coating the resin composition for forming a receiving layer on a support for example, A method of drying using a dryer is common.
  • the drying temperature can dry the coated material obtained by the coating at a temperature that does not cause deformation of the support.
  • the resin layer (B1) is heated at a temperature at which the crosslinking reaction proceeds and a crosslinked structure is not formed. is important. Specifically, it is preferable to dry at a temperature of approximately 25 ° C. to less than 100 ° C.
  • Adhesion amount of the receiving layer forming resin composition onto the support good production efficiency in terms of maintaining its 0.1 g / m 2 ⁇ the solids content area of the support 50 g / m 2
  • 0.5 g / m 2 to 40 g / m 2 is particularly preferable.
  • the coloring property of the obtained printed matter can be further improved by increasing the adhesion amount of the resin composition for forming a receiving layer on the support.
  • the texture of the printed matter tends to become slightly hard.
  • good flexibility such as a foldable organic EL
  • it relatively thin such as m 2 .
  • the step (2) is a step of applying (printing) the conductive ink to the conductive ink receiving substrate obtained in the step (1).
  • an ink containing a conductive substance (c), a solvent, and, if necessary, an additive such as a dispersant can be used.
  • a transition metal or a compound thereof can be used as the conductive substance (c).
  • an ionic transition metal for example, it is preferable to use a transition metal such as copper, silver, gold, nickel, palladium, platinum, cobalt, and to use silver, gold, copper, or the like. It is more preferable because a conductive pattern having low electric resistance and strong against corrosion can be formed.
  • the conductive substance (c) it is preferable to use a particulate material having an average particle diameter of about 1 nm to 50 nm.
  • the said average particle diameter means a center particle diameter (D50), and shows the value at the time of measuring with a laser diffraction scattering type particle size distribution measuring apparatus.
  • the conductive substance (c) such as metal is preferably used in the range of 5% by mass to 60% by mass with respect to the total amount of the conductive ink, and is contained in the range of 10% by mass to 50% by mass. Is more preferable.
  • the solvent used for the conductive ink various organic solvents and an aqueous medium such as water can be used.
  • a solvent-based conductive ink mainly containing an organic solvent as a solvent of the conductive ink, an aqueous conductive ink mainly containing water as the solvent, and a conductive containing both the organic solvent and water.
  • a suitable ink can be selected and used. Since the conductive ink is used for forming a pattern of an electric circuit or the like, generally, it is often applied in a thin line shape, and a solvent that contacts the surface of the resin layer (B1) to which the conductive ink is applied. The amount is relatively small compared to the case of printing a photograph or the like using a normal pigment ink or the like. Therefore, the resin layer (B1) absorbs the conductive material (c) contained in the conductive ink, even if the solvent contained in the conductive ink is an aqueous medium or an organic solvent. It can be fixed.
  • a conductive ink mainly containing water as a solvent for the conductive ink and a conductive ink containing both the organic solvent and water. It is preferable to use a solvent-based conductive ink mainly containing an organic solvent as the solvent of the ink or the conductive ink, and use a solvent-based conductive ink mainly containing an organic solvent as the solvent of the conductive ink. Is more preferable.
  • Examples of the solvent used in the solvent-based conductive ink include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, and decanol.
  • the conductive ink containing a glycol-based solvent can be used in combination with the resin layer (B1) to prevent bleeding or lowering of adhesion that can be caused by the glycol-based solvent. It is suitable for realizing a thin line level at a level that can be used for realizing higher density of electronic circuits and the like.
  • glycol solvents ethylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, and the like are more preferable.
  • the solvent-based conductive ink can be used in combination with a ketone-based solvent such as acetone, cyclohexanone, methyl ethyl ketone, etc. in order to adjust physical properties.
  • ester solvents such as ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate, hydrocarbon solvents such as toluene, especially hydrocarbon solvents having 8 or more carbon atoms
  • nonpolar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, and trimethylbenzenecyclohexane can be used in combination as necessary.
  • solvents such as mineral spirits and solvent naphtha,
  • aqueous medium that can be used for the solvent of the conductive ink
  • only water may be used, or a mixed solution of water and a water-soluble solvent may be used.
  • water-soluble solvent for example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, and polar solvents such as N-methylpyrrolidone can be used.
  • the solvent contained in the conductive ink is more preferably contained in the range of 35% by mass to 90% by mass with respect to the total amount of the conductive ink.
  • the polar solvent is preferably contained in an amount of 10% by mass to 100% by mass with respect to the total amount of the solvent.
  • various additives can be used as necessary for the conductive ink.
  • a dispersant can be used from the viewpoint of improving dispersibility of the metal in the solvent.
  • the dispersant examples include amine-based polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone, hydrocarbon-based polymer dispersants having a carboxylic acid group in the molecule such as polyacrylic acid and carboxymethylcellulose, and polyvinyl alcohol.
  • a polymer dispersant having a polar group such as a styrene-maleic acid copolymer, an olefin-maleic acid copolymer, or a copolymer having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule.
  • the polyvinyl alcohol may be used as a dispersant even when a solvent-based conductive ink is used.
  • Examples of a method for applying (printing) the conductive ink to the conductive ink receiving substrate described above include, for example, an ink jet printing method, a screen printing method, a letterpress reverse printing method, a gravure offset printing method, an offset printing method, and a spin coating. Method, spray coating method, bar coating method, die coating method, slit coating method, roll coating method, dip coating method and the like.
  • an ink jet printing method when printing a thin line of about 0.01 ⁇ m to 100 ⁇ m, which is required when realizing high density of electronic circuits, etc., an ink jet printing method, a screen printing method, a letterpress reverse printing method, or a gravure offset printing method. Is preferably employed, and an ink jet printing method is more preferably employed.
  • an ink jet printer As the ink jet printing method, what is generally called an ink jet printer can be used. Specific examples include Konica Minolta EB100 and XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dimatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), and the like. .
  • the screen printing method is a method in which a conductive ink is applied to the surface of the resin layer (B1) on which the receiving layer (B) can be formed by using a mesh screen plate.
  • a conductive pattern having a predetermined pattern shape can be formed by printing a conductive pattern in a predetermined pattern shape using a metal screen plate generally called a metal mesh.
  • the letterpress reverse printing method is a method in which a conductive ink is applied on a blanket to form a conductive ink application surface, which is transferred to the resin layer (B1).
  • the blanket it is preferable to use a silicone blanket made of silicone.
  • conductive ink is applied on the blanket to form a layer made of conductive ink.
  • the conductive ink contacting the relief plate is transferred from the blanket onto the relief plate surface by pressing a relief plate provided with a plate corresponding to a predetermined pattern shape as necessary to the layer made of the conductive ink. Is done.
  • the conductive ink remaining on the blanket is transferred to the surface of the resin layer (B1) by bringing the blanket into contact with the resin layer (B1).
  • a conductive pattern having a predetermined pattern can be formed.
  • the gravure offset printing method for example, after supplying conductive ink to a groove portion of an intaglio printing plate having a predetermined pattern shape, the conductive ink is applied onto the blanket by pressing the blanket on the surface thereof. And then transferring the conductive ink on the blanket to the resin layer (B1).
  • a gravure plate for example, a glass intaglio plate formed by etching a glass plate, or the like can be used.
  • the blanket a blanket having a multilayer structure including a silicone rubber layer, a polyethylene terephthalate layer, a sponge-like layer, etc. can be used and is usually wound around a rigid cylinder called a blanket cylinder. Is used.
  • the conductive ink is applied (printed) on the surface of the conductive ink receiving substrate obtained in the step (1), and then included in the conductive ink. From the viewpoint of forming a conductive layer (C) having conductivity by closely bonding and bonding the conductive substance (c) to be bonded, it is preferable to undergo a firing step.
  • the firing is preferably performed in the range of approximately 80 ° C. to 300 ° C. for approximately 2 minutes to 200 minutes.
  • the calcination may be performed in the air, but part or all of the calcination step may be performed in a reducing atmosphere from the viewpoint of preventing oxidation of the metal.
  • the said baking process can be performed using oven, a hot air type drying furnace, an infrared drying furnace, laser irradiation etc., for example.
  • the method of heating the printed matter is adopted as a method of forming a crosslinked structure in the resin layer (B1) after applying the conductive ink, immediately after applying the conductive ink. It progresses to the process (3) mentioned later, and the heat for the purpose of forming the said crosslinked structure can be performed. Since this heating step can also serve as the firing step, the formation of the crosslinked structure and the provision of conductivity can be performed simultaneously.
  • step (3) it is preferable to proceed to step (3) to form a crosslinked structure in the resin layer (B1).
  • the step (3) forms a cross-linked structure in the resin layer (B1) to which the conductive substance (c) is fixed by, for example, heating or irradiating the coated material obtained in the step (2). It is a process.
  • the cross-linked structure may be, for example, a cross-linking reaction between the cross-linkable functional group of the vinyl resin (b1) and the cross-linking agent (b2), a cross-link reaction between the cross-linkable functional groups of the vinyl resin (b1), It can be formed by the self-crosslinking reaction of the crosslinking agent (b2).
  • the crosslinking reaction can proceed, for example, by heating. Especially, since the method of carrying out a crosslinking reaction by heating can serve the said baking process, it is preferable when improving the production efficiency of an electroconductive pattern.
  • the heating temperature varies depending on the type of the crosslinking agent (b2) used, the combination of crosslinkable functional groups, and the like, but is preferably in the range of about 80 ° C to 300 ° C, more preferably 100 ° C to 300 ° C. 120 ° C. to 300 ° C. is particularly preferable.
  • the upper limit of the temperature is preferably 200 ° C. or lower, more preferably 150 ° C. or lower.
  • an oven, a hot air drying furnace, an infrared drying furnace, or the like can be used.
  • the conductive pattern obtained by the above method is a case where a solvent such as a plating agent or a cleaning agent adheres because a crosslinked structure is formed in the resin layer (B1) after applying the conductive ink.
  • the conductive pattern has excellent printability with respect to conductive ink containing the conductive substance (c), and is generally required to form a conductive pattern such as an electronic circuit.
  • Electronic lines and integrated circuits using silver ink or the like can be printed with fine lines having a width of about 01 ⁇ m to 200 ⁇ m, preferably about 0.01 ⁇ m to 150 ⁇ m without causing bleeding (thin line properties). Formation of circuit forming substrates used in, etc., formation of organic solar cells, electronic book terminals, organic EL, organic transistors, flexible printed circuit boards, RFID and other layers and peripheral wiring, wiring for plasma display electromagnetic shielding, etc. In the printed electronics field, etc.
  • Example 1 Preparation of Receptive Layer Forming Resin Composition (I-1) and Production of Conductive Ink Receiving Substrate (II-1) Using the Same>
  • a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, a thermometer, and a dropping funnel, 115 parts by mass of deionized water and 4 parts by mass of Latemul E-118B (produced by Kao Corporation: active ingredient 25% by mass).
  • the temperature was raised to 75 ° C. while blowing nitrogen.
  • a vinyl monomer comprising 51 parts by weight of methyl methacrylate, 15 parts by weight of Nn-butoxymethylacrylamide, 31 parts by weight of n-butyl acrylate, 2 parts by weight of acrylamide and 1 part by weight of methacrylic acid in a reaction vessel under stirring.
  • Part of monomer pre-emulsion obtained by mixing 4 parts by mass of mixture and Aqualon KH-1025 (Daiichi Kogyo Seiyaku Co., Ltd .: active ingredient 25% by mass) and 15 parts by mass of deionized water (5 parts by mass)
  • 0.1 part by mass of potassium persulfate was added, and polymerization was performed for 60 minutes while maintaining the temperature in the reaction vessel at 75 ° C.
  • the remaining monomer pre-emulsion 114 parts by mass
  • 30 parts by mass of an aqueous solution of potassium persulfate active ingredient 1.0% by mass
  • the temperature in the reaction vessel was cooled to 40 ° C., and aqueous ammonia (active ingredient 10% by mass) was used so that the pH of the aqueous dispersion in the reaction vessel was 8.5.
  • the resin composition for forming a receiving layer (I-1) used in the present invention was obtained by filtering with 200 mesh filter cloth. .
  • the resin composition for forming a receiving layer (I-1) obtained above was applied to the surface of three kinds of base materials shown in the following (i) to (iii) so that the dry film thickness was 3 ⁇ m.
  • Each of the three types of conductive ink-receiving substrates (II-) having a conductive ink-receiving layer formed on each substrate was coated by using a hot air dryer and dried at 70 ° C. for 3 minutes using a hot air dryer. 1) was obtained.
  • Examples 2 to 4 Preparation of Receptive Layer Forming Resin Compositions (I-2) to (I-4) and Production of Conductive Ink Receiving Substrates (II-2) to (II-4) Using them > A resin composition for forming a receiving layer having a nonvolatile content of 40% by mass (I), except that the composition of the vinyl monomer mixture is changed to the composition shown in Table 1 below, respectively. -2) to (I-4) were prepared.
  • Example 1 except that the receiving layer forming resin compositions (I-2) to (I-4) are used in place of the receiving layer forming resin composition (I-1), respectively.
  • Conductive ink receiving substrates (II-2) to (II-4) were prepared in the same manner as described above.
  • Example 5 Preparation of Receptor Layer Forming Resin Composition (I-5) and Production of Conductive Ink Receiving Substrate (II-5) Using the Same>
  • a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, a thermometer, and a dropping funnel 115 parts by mass of deionized water and 4 parts by mass of Latemul E-118B (produced by Kao Corporation: active ingredient 25% by mass). The temperature was raised to 75 ° C. while blowing nitrogen.
  • a vinyl monomer mixture and aqualon comprising 57 parts by weight of methyl methacrylate, 35 parts by weight of butyl acrylate, 2 parts by weight of acrylamide, 1 part by weight of methacrylic acid, and 5 parts by weight of 4-hydroxybutyl acrylate.
  • a part (5 parts by mass) of a monomer pre-emulsion obtained by mixing 4 parts by mass of KH-1025 (Daiichi Kogyo Seiyaku Co., Ltd .: active ingredient 25% by mass) and 15 parts by mass of deionized water is added.
  • 0.1 part by mass of potassium persulfate was added, and polymerization was performed for 60 minutes while maintaining the temperature in the reaction vessel at 75 ° C.
  • the remaining monomer pre-emulsion 114 parts by mass
  • 30 parts by mass of an aqueous solution of potassium persulfate active ingredient 1.0% by mass
  • the temperature in the reaction vessel was cooled to 40 ° C., and aqueous ammonia (active ingredient 10% by mass) was used so that the pH of the aqueous dispersion in the reaction vessel was 8.5.
  • the mixture was filtered with a 200 mesh filter cloth to obtain a mixture (non-volatile content 40% by mass) containing the vinyl polymer and water.
  • Example 6 Preparation of Receptor Layer Forming Resin Composition (I-6) and Production of Conductive Ink Receiving Substrate (II-6) Using the Same>
  • a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, a thermometer, and a dropping funnel, 115 parts by mass of deionized water and 4 parts by mass of Latemul E-118B (produced by Kao Corporation: active ingredient 25% by mass). The temperature was raised to 75 ° C. while blowing nitrogen.
  • a vinyl monomer mixture consisting of 60 parts by weight of methyl methacrylate, 37 parts by weight of n-butyl acrylate, 2.0 parts by weight of acrylamide, and 1 part by weight of methacrylic acid and Aqualon KH-1025 (first A part (5 parts by mass) of a monomer pre-emulsion obtained by mixing 4 parts by mass with an active ingredient 25 mass%) and 15 parts by mass of deionized water was added, followed by persulfuric acid. 0.1 parts by mass of potassium was added, and polymerization was performed for 60 minutes while maintaining the temperature in the reaction vessel at 75 ° C.
  • the remaining monomer pre-emulsion 114 parts by mass
  • 30 parts by mass of an aqueous solution of potassium persulfate active ingredient 1.0% by mass
  • the temperature in the reaction vessel was cooled to 40 ° C., and aqueous ammonia (active ingredient 10% by mass) was used so that the pH of the aqueous dispersion in the reaction vessel was 8.5.
  • the mixture was filtered with a 200 mesh filter cloth to obtain a mixture (non-volatile content 40% by mass) containing the vinyl polymer and water.
  • a resin composition (I-6) was obtained.
  • Examples 7 to 8 Preparation of Receptive Layer Forming Resin Compositions (I-7) to (I-8) and Production of Conductive Ink Receiving Substrates (II-7) to (II-8) Using them > A resin composition for forming a receiving layer having a nonvolatile content of 40% by mass (I), except that the composition of the vinyl monomer mixture is changed to the composition shown in Table 2 below, respectively. -7) to (I-8) were prepared.
  • Example 1 except that the receiving layer forming resin compositions (I-7) to (I-8) are used in place of the receiving layer forming resin composition (I-1), respectively.
  • Conductive ink receiving substrates (II-7) to (II-8) were prepared in the same manner as described above.
  • Example 9 Preparation of Receptive Layer Forming Resin Composition (I-9) and Production of Conductive Ink Receiving Substrate (II-9) Using the Same>
  • a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer 51 parts by mass of methyl methacrylate, 17 parts by mass of Nn-butoxymethylacrylamide, 31 parts by mass of n-butyl acrylate, 1 part by mass of methacrylic acid
  • a vinyl monomer mixture containing parts and ethyl acetate were added, the temperature was raised to 50 ° C.
  • the weight average molecular weight is a high performance liquid chromatograph HLC-8220 manufactured by Tosoh Corp., the column is a TSKgelGMH XL ⁇ 4 column manufactured by Tosoh Corp., tetrahydrofuran is used as an eluent, and an RI detector.
  • GPC method gel permeation chromatography
  • Comparative Examples 1 to 3 ⁇ Reception Layer Forming Resin Compositions (I′-1) to (I′-3) for Preparation and Conductive Ink Receiving Substrates (II′-1) to (II) Using the Same Production of '-3)> Except for changing the composition of the vinyl monomer mixture to the composition shown in Table 2 below, in the same manner as described in Example 1, for the formation of a comparative receiving layer having a nonvolatile content of 40% by mass Resin compositions (I′-1) to (I′-3) were prepared.
  • the comparative receiving layer forming resin compositions (I′-1) to (I′-3) obtained above are used, respectively. Except for this, conductive ink receiving substrates (II′-1) to (II′-3) were prepared in the same manner as described in Example 1.
  • [Ink preparation method] [Preparation of nano silver ink 1 for inkjet printing] Silver particles having an average particle diameter of 30 nm are dispersed in a mixed solvent composed of 65 parts by mass of diethylene glycol diethyl ether, 18 parts by mass of ⁇ -butyrolactone, 15 parts by mass of tetraethylene glycol dimethyl ether, and 2 parts by mass of tetraethylene glycol monobutyl ether. Thus, a solvent-based nano silver ink 1 for ink jet printing was prepared.
  • a water-based nano silver ink 2 for inkjet printing was prepared by dispersing silver particles having an average particle size of 30 nm in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water.
  • a solvent-based nano silver ink 3 for inkjet printing was prepared by dispersing silver particles having an average particle diameter of 30 nm in a solvent made of tetradodecane.
  • the nano silver inks 1 to 3 for inkjet printing were respectively applied to the surfaces of three kinds of conductive ink receiving substrates obtained by using the supports (i), (ii) and (iii).
  • a straight line having a line width of 100 ⁇ m and a film thickness of 0.5 ⁇ m was printed about 1 cm, and then at 150 ° C. for 30 minutes.
  • a printed matter (conductive pattern) was obtained by drying.
  • the receiving step is performed for 30 minutes under the condition of 150 ° C.
  • a cross-linked structure was formed in the layer. Whether or not a crosslinked structure is formed, as shown in Table 3 and Table 4, "the gel fraction of the receiving layer formed by drying at room temperature (23 ° C) and then heating at 70 ° C", The determination was made based on “the gel fraction of the receiving layer formed by heating at 150 ° C.”. That is, the gel fraction of the receiving layer obtained by heating at 150 ° C. is 25% by mass compared with the gel fraction (uncrosslinked state) of the receiving layer obtained by drying at room temperature and then heating at 70 ° C. From the above, it was judged that a crosslinked structure was formed by high-temperature heating.
  • the gel fraction of the conductive ink receiving layer formed by drying at normal temperature (23 ° C.) and heating at 70 ° C. was calculated by the following method.
  • a resin composition for forming a receiving layer is poured onto a polypropylene film surrounded by cardboard so that the film thickness after drying becomes 100 ⁇ m, dried under conditions of a temperature of 23 ° C. and a humidity of 65% for 24 hours, and then 70 ° C.
  • the receptor layer was formed by heat treatment for 3 minutes.
  • the obtained receiving layer was peeled off from the polypropylene film and cut into a size of 3 cm in length and 3 cm in width to make a test piece.
  • the test piece 1 After measuring the mass (X) of the test piece 1, the test piece 1 was immersed in 50 ml of methyl ethyl ketone adjusted to 25 ° C. for 24 hours. By the immersion, the residue (insoluble matter) of the test piece 1 that did not dissolve in methyl ethyl ketone was filtered through a 300-mesh wire mesh. The mass (Y) of the residue obtained above was dried at 108 ° C. for 1 hour and measured. Subsequently, the gel fraction was calculated based on the formula of [(Y) / (X)] ⁇ 100 using the values of the masses (X) and (Y).
  • the “gel fraction of the receiving layer formed by heating at 150 ° C.” was calculated by the following method.
  • a resin composition for forming a receiving layer is poured onto a polypropylene film surrounded by cardboard so that the film thickness after drying is 100 ⁇ m, dried under conditions of a temperature of 23 ° C. and a humidity of 65% for 24 hours, and then 150 ° C.
  • the receptor layer was formed by heating and drying for 30 minutes.
  • the obtained receiving layer was peeled off from the polypropylene film and cut into a size of 3 cm in length and 3 cm in width to make a test piece 2. After measuring the mass (X ′) of the test piece 2, the test piece 2 was immersed in 50 ml of methyl ethyl ketone adjusted to 25 ° C.
  • a screen plate of metal mesh 250 is used on the surface of three kinds of conductive ink receiving substrates obtained by using the silver paste for screen printing using the supports (i), (ii) and (iii), respectively. Then, a straight line having a line width of 50 ⁇ m and a film thickness of 1 ⁇ m was printed by about 1 cm, and then dried at 150 ° C. for 30 minutes to obtain a printed matter (conductive pattern). With respect to the conductive ink receiving substrates described in Examples 1 to 9 and Comparative Examples 1 to 3, after receiving printing using the above ink, the receiving layer was subjected to a drying step for 30 minutes at 150 ° C. A crosslinked structure was formed.
  • a line-shaped relief printing plate was used as the printing plate.
  • T-60 (Blanket manufactured by Kinyo Co., Ltd.) was used as a blanket.
  • the conductive ink was uniformly applied to the surface of the blanket using a bar coater, and the relief printing plate was pressed against the application surface to transfer a part of the silver ink to the relief printing plate.
  • the silver ink remaining on the surface of the blanket was transferred to the surface of the surface of the receiving layer constituting the conductive ink receiving substrate.
  • a conductive pattern having a line width of 20 ⁇ m and a film thickness of 0.5 ⁇ m was obtained.
  • the boundary between the non-printing portion and the non-printing portion is partially unclear, the entire line portion is smooth and usable level is “C”, which is about 1/3 of the outer edge portion of the printing portion (line portion). Bleeding can be confirmed in a range of about 1 ⁇ 2, and the boundary between the printed part and the non-printed part becomes partially unclear at that part, and the outer edge part and the middle part of the line part are unclear. “D” indicates that the part was not smooth, and bleeding was confirmed in a range of about 1 ⁇ 2 or more of the outer edge part of the printing part (line part), and the boundary between the printing part and the non-printing part was uniform in that part. What was unclear in the part and was not smooth between the outer edge part and the central part of the line part was evaluated as “E”.
  • the nano silver ink 1 for inkjet printing was applied to the surface of a conductive ink receiving substrate obtained using the support (ii), respectively, and an inkjet printer (Konica Minolta IJ Co., Ltd. inkjet testing machine EB100, for evaluation) Using a printer head KM512L and a discharge amount of 42 pl), a rectangular area (area) of 3 cm in length and 1 cm in width is printed with a film thickness of 0.5 ⁇ m, and then dried at 150 ° C. for 30 minutes, respectively. (Conductive pattern) was obtained.
  • the ink receiving substrate was subjected to a drying process for 30 minutes at 150 ° C. after printing using the ink. A cross-linked structure was formed in the layer.
  • the printed matter was cut into 3 cm ⁇ 3 cm and adjusted to 40 ° C. and 5% by mass hydrochloric acid aqueous solution and 5% by mass hydroxylation so that both the printed part and the ink receiving layer of the non-printed part could be observed. The appearance after soaking for 24 hours in a sodium aqueous solution was confirmed.
  • the nano silver ink 1 for inkjet printing was applied to the surface of two kinds of conductive ink receiving substrates obtained by using the supports (i) and (ii), respectively, and an inkjet printer (manufactured by Konica Minolta IJ Co., Ltd.).
  • an inkjet testing machine EB100 an evaluation printer head KM512L, and a discharge amount of 42 pl
  • a rectangular range (area) of 3 cm in length and 1 cm in width was printed with a film thickness of 0.5 ⁇ m, and then at 150 ° C. for 30 minutes
  • a printed matter (conductive pattern) was obtained by drying.
  • the ink receiving substrate was subjected to a drying process for 30 minutes at 150 ° C. after printing using the ink.
  • a cross-linked structure was formed in the layer.
  • the volume resistivity of the solid printed portion formed on the surface of the printed matter (conductive pattern) obtained by the above-described method within a rectangular range of 3 cm in length and 1 cm in width was measured using a Loresta pointer meter (MCP-T610 manufactured by Mitsubishi Chemical Corporation). ).
  • What volume resistivity is less than 5 ⁇ 10 -6 ⁇ ⁇ cm "A”, 5 ⁇ 10 -6 or 9 ⁇ 10 -6 ⁇ ⁇ less than cm "B what is sufficient available levels “C”, a level that is 9 ⁇ 10 ⁇ 6 or more and less than 5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm and that can be used, and “C” that is 5 ⁇ 10 ⁇ 5 or more and less than 9 ⁇ 10 ⁇ 5 ⁇ ⁇ cm Was evaluated as “E” when it was “D”, 9 ⁇ 10 ⁇ 5 or more and difficult to use practically.
  • the conductive patterns obtained in Examples 1 and 2 were provided with excellent characteristics in terms of thin lineability, durability, and electrical conductivity.
  • the conductive pattern obtained in Example 3, which is different from the conductive pattern described in Example 1 in terms of the amount of N-butoxymethyl (meth) acrylamide used, has excellent fineness and durability, and good electrical conductivity. It was equipped with.
  • the conductive pattern described in Example 4 obtained by using N-isobutoxymethyl (meth) acrylamide in place of N-butoxymethyl (meth) acrylamide has excellent durability as well as excellent thin-line property and electrical conductivity. It was.
  • the conductive patterns described in Examples 5 and 6 obtained by using a combination of a cross-linking agent in addition to the vinyl resin showed good thin lines although a slight reduction in fine line was observed with respect to some conductive inks. , Durability, and electrical conductivity.
  • the conductive patterns described in Examples 7 and 9 with a large amount of methyl methacrylate used, and the conductive patterns described in Example 8 with a small amount of methyl methacrylate used show a slight decrease in fineness and durability. However, it had good fineness, durability and conductivity.
  • the conductive pattern described in Comparative Examples 1 and 2 in which the amount of methyl methacrylate used is outside the predetermined range has a receptor layer having a cross-linked structure, but all of the thin lineability, durability, and conductivity are practical. It was not enough.
  • the conductive pattern described in Comparative Example 3 having no cross-linked structure had excellent fineness and electrical conductivity, but caused a significant decrease in durability. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、支持体からなる層(A)と受容層(B)と導電層(C)とを有する導電性パターンであって、前記受容層(B)が、(メタ)アクリル酸メチルを10質量%~70質量%含む単量体混合物を重合して得られるビニル樹脂(b1)を含有する樹脂層(B1)の表面に、導電層(C)を形成する導電性物質(c)を含有する導電性インクを塗布した後、前記樹脂層(B1)を架橋することによって形成されたものであることを特徴とする導電性パターンに関するものである。

Description

導電性パターン及びその製造方法
 本発明は、電気回路等に使用可能な導電性パターン及びその製造方法に関する。
 近年、成長が著しいインクジェット印刷関連業界では、インクジェットプリンターの高性能化やインキの改良等が飛躍的に進み、一般家庭でも容易に銀塩写真並みの高精細で鮮明な印刷性に優れた画像を得ることが可能となりつつある。このため、インクジェットプリンターは、家庭内での使用にとどまらず、大型広告看板等の製造に使用することも検討されはじめている。
 また、前記インクジェット印刷の技術は、電子回路等を作成する場面で使用することが検討されつつある。これは、近年の電子機器の高性能化や小型化、薄型化の要求に伴って、それに使用される電子回路や集積回路にも高密度化や薄型化が強く求められるためである。
 前記インクジェット印刷技術を用いて電子回路等の導電性パターンを製造する方法としては、例えば銀等の導電性物質を含む導電性インクをインクジェット印刷方式によって基板上に印刷し電子回路等の導電性パターンを形成する方法が挙げられる。
 具体的には、ラテックス層を設けたインク受容基材に、導電性インクを用いて、所定の方法によりパターンを描画することによって導電性パターンを作製する方法が知られ、前記ラテックス層としてアクリル樹脂を使用できることが知られている(特許文献1参照。)。
 しかし、前記導電性パターンを構成する前記ラテックス層からなる導電性インク受容層は、導電性インクのにじみ等を引き起こす場合があるため、電子回路等の高密度化等を実現するうえで一般に求められる、概ね0.01μm~200μm程度の幅の細線からなる導線を形成することが困難な場合があった。
 また、前記導電性パターンを形成する際には、導電性の更なる向上を目的として、導電性パターン表面にめっき処理を行う場合が多い。
 しかし、前記めっき処理に使用するめっき薬剤や、その洗浄工程で使用する薬剤は、通常、強アルカリ性や強酸性であるため、導電性パターンやその導電性インク受容層等の溶解等を引き起こし、その結果、断線等を引き起こす場合がある。
 したがって、前記導電性パターンには、例えば電気回路等に使用可能なレベルの細線状のパターンを有し、かつ、前記薬剤等に繰り返し長時間にわたって浸漬等した場合であっても、導電性インク受容層の溶解等を引きこさないレベルの耐久性が求められている。
特開2009-49124号公報
 本発明が解決しようとする課題は、細線性に優れた導電性パターンを形成でき、かつ、めっき薬剤や洗浄剤等の溶剤が付着等した場合であっても、導電性インク受容層の溶解や剥離等を引き起こすことなく、良好な通電性を維持可能なレベルの耐久性に優れた導電性パターンを形成することである。
 本発明者等は、前記課題を解決すべく検討した結果、特定の組成からなる導電性インク受容層を備えた導電性インク受容基材に導電性インクを塗布した後、前記導電性インク受容層中に架橋構造を形成することによって、本発明の課題を解決できることを見出した。
 すなわち、本発明は、支持体からなる層(A)と受容層(B)と導電層(C)とを有する導電性パターンであって、
前記受容層(B)が、(メタ)アクリル酸メチルを10質量%~70質量%含む単量体混合物を重合して得られるビニル樹脂(b1)を含有する樹脂層(B1)の表面に、導電層(C)を形成する導電性物質(c)を含有する導電性インクを塗布した後、前記樹脂層(B1)を架橋することによって形成されたものであることを特徴とする導電性パターンに関するものである。
 また、本発明は、支持体からなる層(A)と、受容層(B)と、導電層(C)とを備えた導電性パターンの製造方法であって、
前記支持体の表面の一部または全部に、(メタ)アクリル酸メチルを10質量%~70質量%含む単量体混合物を重合して得られるビニル樹脂(b1)を含む受容層形成用樹脂組成物を塗布し、乾燥することによって樹脂層(B1)を形成し、次いで、前記樹脂層(B1)の表面の一部または全部に、導電性物質(c)を含有する導電性インクを塗布した後、加熱することによって、前記樹脂層(B1)が架橋反応し架橋構造を備えた受容層(B)を形成することを特徴とする導電性パターンの製造方法に関するものである。
 本発明の導電性パターンは、細線性に優れ、かつ、めっき薬剤や洗浄剤等の溶剤が付着等した場合であっても、導電性インク受容層の溶解や剥離等を引き起こすことなく、良好な通電性を維持可能なレベルの耐久性を備えることから、例えば銀等の導電性物質を含む導電性インク等を用いた電子回路の形成、有機太陽電池や電子書籍端末、有機EL、有機トランジスタ、フレキシブルプリント基板、非接触ICカード等のRFID等を構成する各層や周辺配線の形成、プラズマディスプレイの電磁波シールドの配線、集積回路、有機トランジスタの製造等の、一般にプリンテッド・エレクトロニクス分野といわれる新規分野で使用することができる。
 本発明の導電性パターンは、支持体からなる層(A)と受容層(B)と導電層(C)とを有するもののうち、前記受容層(B)が、(メタ)アクリル酸メチルを10質量%~70質量%含む単量体混合物を重合して得られるビニル樹脂(b1)を含有する樹脂層(B1)の表面に、導電層(C)を形成する導電性物質(c)を含有する導電性インクを塗布した後、前記樹脂層(B1)を架橋することによって形成されたものであることを特徴とする。なお、本発明でいう「(メタ)アクリル酸メチル」は、アクリル酸メチルとメタクリル酸メチルとのいずれか一方または両方を表す。
 本発明の導電性パターンは、少なくとも、前記した支持体からなる層(A)と、受容層(B)と、導電層(C)とから構成される。
 前記導電性パターンを構成する前記受容層(B)は、前記支持体からなる層(A)の表面の一部または全部に設けられてもよく、その表面及び裏面の一方または両方に設けられてもよい。
 例えば、前記導電性パターンとしては、支持体の表面の全面に、前記受容層(B)を形成しうる前記樹脂層(B1)を設け、その樹脂層(B1)の表面のうち必要な部分にのみ、導電性インクを塗布(印刷)した後、前記樹脂層(B1)を架橋することによって前記受容層(B)を形成し、かつ、前記導電性物質(c)を含む導電層(C)を形成することができる。
 前記受容層(B)は、前記支持体の表面のうち、前記導電層(C)を設ける部分のみに設けられていてもよい。
 本発明の導電性パターンは、前記支持体からなる層(A)と受容層(B)との間や、前記受容層(B)と導電層(C)との間に、その他の層を有していてもよいが、前記層(A)の表面に前記受容層(B)が設けられ、前記受容層(B)の表面に前記導電層(C)が設けられていることが好ましい。また、本発明の導電性パターンは、前記導電層(C)の表面に、必要に応じてめっき層(D)を有していてもよい。
 前記導電性パターンは、前記層(A)を形成しうる支持体の表面の一部または全部に、受容層(B)を形成しうる樹脂層(B1)を有する導電性インク受容基材を製造する工程(1)、前記導電性インク受容基材に、導電性物質(c)を含有する導電性インクを用いて塗布する工程(2)、及び、前記工程(2)で得た塗布物を、例えば加熱等することによって、前記樹脂層(B1)中に架橋構造を形成し受容層(B)を形成する工程(3)を経ることによって製造することができる。
 はじめに工程(1)について説明する。
 前記工程(1)は、支持体の表面の一部または全部に、前記受容層(B)を形成しうる樹脂層(B1)を有する導電性インク受容基材を製造する工程である。
 前記支持体としては、例えばポリイミド樹脂やポリアミドイミド樹脂、ポリアミド樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン(ABS)、ポリ(メタ)アクリル酸メチル等のアクリル樹脂、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリウレタン、セルロースナノファイバー、シリコン、セラミックス、ガラス等からなる支持体や、それらからなる多孔質の支持体等を使用することができる。
 なかでも、前記支持体としては、一般に、回路基板等の導電性パターンを形成する際の支持体として使用されることの多い、ポリイミド樹脂やポリエチレンテレフタレート、ポリエチレンナフタレート、ガラス、セルロースナノファイバーなどからなる支持体を使用することが好ましい。
 前記支持体としては、柔軟性が必要な用途等に使用される場合、比較的柔軟で折り曲げ等が可能なものを使用することが、導電性パターンに柔軟性を付与し、折り曲げ可能な最終製品を得るうえで好ましい。具体的には、一軸延伸等することによって形成されたフィルムまたはシート状の支持体を使用することが好ましい。
 前記フィルムまたはシート状の支持体としては、例えばポリエチレンテレフタレートフィルムやポリイミドフィルム、ポリエチレンナフタレートフィルム等が挙げられる。
 前記支持体としては、導電性パターンやそれの使用される最終製品の軽量化及び薄型化を実現する観点から1μm~200μm程度の厚さのものを使用することが好ましい。
 また、前記支持体の表面の一部または全部に設けられる前記樹脂層(B1)としては、前記ビニル樹脂(A)及び必要に応じてその他の添加剤によって構成されるものが挙げられる。
 ここで、前記導電性インク受容基材に設けられる前記樹脂層(B1)は、前記工程(2)において導電性インクを塗布する前に、実質的に架橋構造を形成していない樹脂層である。前記「実質的に架橋構造を形成していない」とは、前記架橋構造が全く形成されていない態様を含むとともに、前記架橋構造の形成に関与する官能基数の約5%以内が部分的に架橋構造を形成したものを指す。
 このような、実質的に架橋構造を形成していない樹脂層(B1)の表面に導電性インクを塗布した後、その塗布面を加熱や光照射等し、その樹脂層(B1)中に架橋構造を形成することによって、めっき薬剤や洗浄剤等の溶剤が付着等した場合であっても、前記受容層(B)の溶解や、支持体からの剥離等を引き起こすことなく、良好な通電性を維持可能なレベルの耐久性を付与することができる。
 前記樹脂層(B1)としては、(メタ)アクリル酸メチルを10質量%~70質量%含む単量体混合物を重合して得られるビニル樹脂(b1)、及び、必要に応じてその他の添加物を含有するものを使用する。
 前記樹脂層(B1)は、前記ビニル樹脂(b1)等を含む受容層形成用樹脂組成物を、前記支持体の所望の箇所に塗布し、乾燥することによって形成することができる。
 前記樹脂層(B1)の形成に使用可能な受容層形成用樹脂組成物は、支持体の表面に前記樹脂層(B1)を形成する工程において、殆ど架橋反応せず、実質的に架橋構造を形成することがないのに対し、導電性インクを塗布した後、例えば加熱や光照射等の工程を経ることによって、架橋反応が速やかに進行し、架橋構造を形成した受容層(B)を形成しうるものである。
 前記受容層形成用樹脂組成物としては、例えばビニル単量体混合物を重合して得られるビニル樹脂のうち、前記ビニル単量体混合物の全量に対して(メタ)アクリル酸メチルを10質量%~70質量%の範囲で含有するビニル単量体混合物を重合して得られるビニル樹脂(b1)、及び、必要に応じて架橋剤(b2)や、水、有機溶剤等の溶媒、その他の添加剤を含むものを使用する。
 ここで、前記ビニル樹脂(b1)の代わりに、(メタ)アクリル酸メチルを5質量%含むビニル単量体混合物を重合して得られたビニル樹脂を使用した場合、前記細線等の印刷部のにじみを引き起こしやすく、その結果、細線性の低下を引き起こす場合がある。また、前記導電性インクとその受容層との密着性の低下を引き起こす場合もある。
 一方、前記ビニル樹脂(b1)の代わりに、(メタ)アクリル酸メチルを80質量%含むビニル単量体を重合して得られたビニル樹脂を使用した場合には、細線性の低下等を引き起こす場合がある。
 したがって、前記ビニル樹脂(b1)としては、前記ビニル単量体混合物の全量に対して(メタ)アクリル酸メチルを40質量%~65質量%の範囲で含有するものを重合して得られるビニル樹脂を使用することが好ましく、50質量%~65質量%の範囲で含有するものを重合して得られるビニル樹脂を使用することがより好ましい。
 また、前記ビニル樹脂(b1)としては、優れた細線性を付与する観点から10万以上の重量平均分子量を有するものを使用することが好ましい。
 前記受容層形成用樹脂組成物として、前記ビニル樹脂(b1)と有機溶剤とを組み合わせ使用する場合には、前記ビニル樹脂(b1)として10万~100万の重量平均分子量を有するものを使用することが好ましい。
 一方、前記受容層形成用樹脂組成物として、前記ビニル樹脂(b1)と水性媒体とを組み合わせ使用する場合には、前記ビニル樹脂(b1)として100万以上の重量平均分子量を有するものを使用することが好ましい。
 前記ビニル樹脂(b1)の重量平均分子量の上限値としては、特に限定されないが、概ね1000万以下であることが好ましく、500万以下であることが好ましい。また、導電性パターンの形成に使用する際に、にじみがなく細線性に優れた導電性インクの受容層(B)を形成する観点からも、前記分子量のビニル樹脂(b1)を使用することが好ましい。
 前記ビニル樹脂(b1)の重量平均分子量の測定は、前記ビニル樹脂(b1)80mgとテトラヒドロフラン20mlを混合し12時間攪拌したものを測定試料として用い、ゲル・パーミエーション・クロマトグラフ法(GPC法)によって行うことができる。測定装置としては、東ソー(株)製高速液体クロマトグラフHLC-8220型、カラムとしては東ソー(株)製TSKgelGMH XL×4カラム、溶離液としてはテトラヒドロフラン、検出器としてはRI検出器を使用することができる。
 しかし、前記ビニル樹脂(b1)の分子量が概ね100万を超える場合には、前記GPC法等を用いた一般的な分子量測定方法でビニル樹脂(b1)の分子量を測定することが困難な場合がある。
 具体的には、重量平均分子量が100万を超えるビニル樹脂(b1)80mgをテトラヒドロフラン20mlと混合し12時間攪拌しても、前記ビニル樹脂(b1)が完全に溶解しておらず、前記混合液を1μmのメンブレンフィルターを用いてろ過した場合に、前記メンブレンフィルター上に、ビニル樹脂(b1)からなる残渣が確認できる場合がある。
 このような残渣は、概ね100万を超える分子量を有するビニル樹脂に由来するものであるため、前記ろ過で得られたろ液を用い、前記GPC法によって分子量を測定しても、適切な重量平均分子量を測定することが困難な場合がある。
 そこで、本発明では、前記濾過の結果、前記メンブレンフィルター上に残渣が確認できたものについては、重量平均分子量が100万を超えるビニル樹脂であると判断した。
 前記ビニル樹脂(b1)としては、溶媒として水性媒体を使用した場合に、水性媒体中における良好な水分散性を付与する観点から、アニオン性基等の親水性基を有するものを使用することが好ましい。
 前記アニオン性基としては、カルボキシル基、スルホン酸基、それらを塩基性金属化合物や塩基性非金属化合物等の塩基性化合物からなる中和剤を用い中和することによって形成されたカルボキシレート基やスルホネート基を使用することができる。
 また、前記カルボキシル基等のアニオン性基は、前記受容層(B)を形成する際に、後述する架橋剤(D)との架橋点となってもよい。
 前記中和剤としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸カルシウム等の塩基性金属化合物;アンモニア;モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノプロピルアミン、ジメチルプロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン等の塩基性非金属化合物等を使用することができる。
 前記カルボキシル基等は、前記親水性基として、及び、後述する架橋性官能基としてビニル樹脂(b1)中に存在することもできる。前記カルボキシル基等は、前記ビニル樹脂(b1)の酸価が0~10、好ましくは0.5~5の範囲となる範囲で導入されていることが、優れた耐久性を備えた導電性パターンを得るうえでより好ましい。
 前記ビニル樹脂(b1)としては、加熱等によって架橋構造を形成した受容層(B)を形成する観点から、架橋性官能基を有するビニル樹脂を使用することができる。前記架橋性官能基は、ビニル樹脂が有する架橋性官能基間で架橋反応し架橋構造を形成してもよい。また、前記受容層形成用樹脂組成物としてビニル樹脂(b1)とともに架橋剤(D)を組み合わせ使用する場合には、前記架橋性官能基は、架橋剤(D)の有する官能基と反応し架橋構造を形成してもよい。
 前記ビニル樹脂(b1)が有していてもよい前記架橋性官能基は、前記導電性インク受容基材に導電性インクを塗布(印刷)した後、加熱等することによって架橋反応し、架橋構造を有する受容層(B)を形成する。これにより、めっき薬剤や洗浄剤等の溶剤が付着等した場合であっても、受容層(B)の溶解や、支持体からの剥離等を引き起こすことなく、良好な通電性を維持可能なレベルの耐久性に優れた導電性パターンを形成することができる。
 前記架橋性官能基としては、例えば、概ね100℃以上に加熱することによって架橋反応し、前記架橋構造を形成しうるものを使用することが好ましく、具体的には、メチロールアミド基及びアルコキシメチルアミド基からなる群より選ばれる1種以上の熱架橋性官能基を使用することが好ましい。
 前記アルコキシメチルアミド基としては、具体的には、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基等が窒素原子に結合し形成したアミド基が挙げられる。
 また、受容層形成用樹脂組成物として架橋剤(b2)を含有するものを使用する場合には、前記ビニル樹脂(b1)としては、例えば水酸基やカルボキシル基等の官能基を有するものを使用することが好ましい。また、前記受容層(B)を形成する際の条件を十分に制御できる場合には、アミノ基を使用することもできる。
 前記ビニル樹脂(b1)としては、細線性に優れた導電性パターンを製造する観点から、1℃~70℃のガラス転移温度を有するものを使用することが好ましい。また、前記受容層(B)を形成する際の良好な造膜性や、導電性インク受容基材を積層した際に、インク受容基材を構成する前記受容層(B)と、インク受容基材を構成する支持体からなる層(A)の裏面との経時的な貼りつきを引き起こさないレベルの耐ブロッキング性を付与する観点から、10℃~40℃のガラス転移温度を有するものを使用することが好ましい。
 前記ビニル樹脂(b1)は、(メタ)アクリル酸メチルを10質量%~70質量%と、必要に応じて架橋性官能基を有するビニル単量体等のその他のビニル単量体含むビニル単量体混合物をラジカル重合等することによって製造することができる。
 前記架橋性官能基を有するビニル単量体としては、例えば、メチロールアミド基及びアルコキシメチルアミド基からなる群より選ばれる1種以上のアミド基や、前記以外のアミド基、水酸基、グリシジル基、アミノ基、シリル基、アジリジニル基、イソシアネート基、オキサゾリン基、シクロペンテニル基、アリル基、カルボニル基、アセトアセチル基等の前記架橋性官能基を有するビニル単量体を使用することができる。
 前記架橋性官能基を有するビニル単量体に使用可能なメチロールアミド基及びアルコキシメチルアミド基からなる群より選ばれる1種以上のアミド基を有するビニル単量体としては、例えばN-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド、N-イソプロポキシメチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、N-ペントキシメチル(メタ)アクリルアミド、N-エトキシメチル-N-メトキシメチル(メタ)アクリルアミド、N,N’-ジメチロール(メタ)アクリルアミド、N-エトキシメチル-N-プロポキシメチル(メタ)アクリルアミド、N,N’-ジプロポキシメチル(メタ)アクリルアミド、N-ブトキシメチル-N-プロポキシメチル(メタ)アクリルアミド、N,N-ジブトキシメチル(メタ)アクリルアミド、N-ブトキシメチル-N-メトキシメチル(メタ)アクリルアミド、N,N’-ジペントキシメチル(メタ)アクリルアミド、N-メトキシメチル-N-ペントキシメチル(メタ)アクリルアミド等を使用することができる。なお、上記「(メタ)アクリル」の記載は、アクリルまたはメタクリルの一方または両方を指す。以下、「(メタ)アクリル酸」も同様である。
 なかでも、N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミドを使用することが、細線性に優れ、かつ、めっき薬剤や洗浄剤等の溶剤が付着等した場合であっても、受容層(B)の溶解や、支持体からの剥離等を引き起こすことなく、良好な通電性を維持可能なレベルの耐久性に優れた導電性パターンを形成できるため好ましい。
 前記架橋性官能基を有するビニル単量体としては、前記したもの以外にも、例えば(メタ)アクリルアミド等のアミド基を有するビニル単量体、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸(4-ヒドロキシメチルシクロヘキシル)メチル、(メタ)アクリル酸グリセロール、(メタ)アクリル酸ポリエチレングリコール、N-ヒドロキシエチル(メタ)アクリルアミド等の水酸基を有するビニル単量体:(メタ)アクリル酸グリシジル、(メタ)アクリル酸アリルグリシジルエーテル等のグリシジル基を有する重合性単量体;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N-モノアルキルアミノアルキル、(メタ)アクリル酸N,N-ジアルキルアミノアルキル等のアミノ基を有する重合性単量体;ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジエトキシシラン、γ-(メタ)アクリロキシプロピルトリイソプロポキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン及びその塩酸塩等のシリル基を有する重合性単量体;(メタ)アクリル酸2-アジリジニルエチル等のアジリジニル基を有する重合性単量体;(メタ)アクリロイルイソシアネート、(メタ)アクリロイルイソシアネートエチルのフェノール或いはメチルエチルケトオキシム付加物等のイソシアネート基及び/またはブロック化イソシアネート基を有する重合性単量体;2-イソプロペニル-2-オキサゾリン、2-ビニル-2-オキサゾリン等のオキサゾリン基を有する重合性単量体;(メタ)アクリル酸ジシクロペンテニル等のシクロペンテニル基を有する重合性単量体;(メタ)アクリル酸アリル等のアリル基を有する重合性単量体;アクロレイン、ジアセトン(メタ)アクリルアミド等のカルボニル基を有する重合性単量体;(メタ)アクリル酸アセトアセトキシエチル等のアセトアセチル基を有する重合性単量体、アクリル酸、メタクリル酸、β-カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイルプロピオン酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸ハーフエステル、マレイン酸ハーフエステル、無水マレイン酸、無水イタコン酸等の酸基を有するビニル単量体等を使用することができる。
 前記架橋性官能基を有するビニル単量体としては、前記したとおり、加熱等によって自己架橋反応しうるN-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミドを単独、または、それらと前記(メタ)アクリルアミドや、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基を有するビニル単量体とを組み合わせて使用することが好ましい。
 前記架橋性官能基を有するビニル単量体としては、N-ブトキシメチル(メタ)アクリルアミドを使用することが、導電性パターンの耐久性をより一層向上するうえで好ましい。
 また、後述する架橋剤(b2)を使用する場合には、架橋剤(b2)との架橋点となりうる官能基、例えば水酸基等をビニル樹脂(b1)に導入するうえで、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチルを使用することがより好ましい。前記水酸基を有するビニル単量体を使用することは、後述する架橋剤(b2)としてイソシアネート架橋剤を使用する場合に好ましい。
 前記架橋性官能基を有するビニル単量体は、前記ビニル樹脂(b1)の製造に使用するビニル単量体混合物の全量に対して0質量%~50質量%の範囲で使用できる。なお、前記架橋剤(b2)が自己架橋反応する場合には、前記架橋性官能基を有するビニル単量体を使用しなくてもよい。
 前記架橋性官能基を有するビニル単量体のうち、前記アミド基を有するビニル単量体は、自己架橋反応性のメチロールアミド基等を導入するうえで、前記ビニル樹脂(b1)の製造に使用するビニル単量体混合物の全量に対して0.1質量%~50質量%の範囲で使用することが好ましく、1質量%~30質量%の範囲で使用することがより好ましい。
 また、前記自己架橋反応性のメチロールアミド基と組み合わせて使用するその他のアミド基を有するビニル単量体や、水酸基を有するビニル単量体は、前記ビニル樹脂(b1)の製造に使用するビニル単量体混合物の全量に対して0.1質量%~30質量%の範囲で使用することが好ましく、1質量%~20質量%の範囲で使用することがより好ましい。
 また、前記架橋性官能基を有するビニル単量体のうち、前記水酸基を有するビニル単量体等は、組み合わせ使用する架橋剤(b2)の種類等にもよるが、前記ビニル樹脂(b1)の製造に使用するビニル単量体混合物の全量に対して概ね0.05質量%~50質量%の範囲で使用することが好ましく、0.05質量%~30質量%の範囲で使用することが好ましく、0.1質量%~10質量%で使用することがより好ましい。
 より具体的には、ビニル樹脂(b1)中の架橋性官能基と、架橋剤(b2)中の架橋性官能基との当量割合が[ビニル樹脂(b1)中の架橋性官能基/架橋剤(b2)中の架橋性官能基]=100/1~100/500であることが好ましく、100/2~100/200であることが好ましく、100/5~100/100であることがより好ましい。
 また、前記ビニル樹脂(b1)の製造に使用可能なその他のビニル単量体としては、例えば(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸エステル類;(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸2,2,3,3-ペンタフルオロプロピル、(メタ)アクリル酸パーフルオロシクロヘキシル、(メタ)アクリル酸2,2,3,3,-テトラフルオロプロピル、(メタ)アクリル酸β-(パーフルオロオクチル)エチル等の(メタ)アクリル酸アルキルエステルを使用することができる。
 なかでも、炭素原子数2~12個のアルキル基を有する(メタ)アクリル酸アルキルエステルを、前記(メタ)アクリル酸メチル等と組み合わせ使用することが、優れた細線性を付与できるため好ましく、炭素原子数3~8個のアルキル基を有するアクリル酸アルキルエステルを使用することがより好ましい。前記炭素原子数2~12個のアルキル基を有する(メタ)アクリル酸アルキルエステルとしては、細線性に優れた導電性パターン等を形成できることから、(メタ)アクリル酸n-ブチルを使用することが好ましい。
 前記(メタ)アクリル酸n-ブチル等の炭素原子数2~12個のアルキル基を有する(メタ)アクリル酸アルキルエステルは、前記ビニル樹脂(b1)の製造に使用するビニル単量体の全量に対して10質量%~60質量%の範囲で使用することが、細線性に優れた導電性パターン等を形成できることから、インクのにじみがなく優れた印刷性と細線性を付与するうえで好ましい。
 また、前記ビニル樹脂(b1)の製造に使用可能なその他のビニル単量体としては、前記した以外にも、酢酸ビニル、プロピオン酸ビニル、ビニルブチラート、バーサチック酸ビニル、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、アミルビニルエーテル、ヘキシルビニルエーテル、(メタ)アクリロニトリル、スチレン、α-メチルスチレン、ビニルトルエン、ビニルアニソール、α-ハロスチレン、ビニルナフタリン、ジビニルスチレン、イソプレン、クロロプレン、ブタジエン、エチレン、テトラフルオロエチレン、フッ化ビニリデン、N-ビニルピロリドンや、ポリエチレングリコールモノ(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、2-メチルアリルスルホン酸、(メタ)アクリル酸2-スルホエチル、(メタ)アクリル酸2-スルホプロピル、(メタ)アクリルアミド-t-ブチルスルホン酸、「アデカリアソープPP-70、PPE-710」((株)ADEKA製)等またはそれらの塩、水酸基、スルホン酸基、サルフェート基、リン酸基、リン酸エステル基等の他の親水性基を有するビニル単量体を使用することができる。
 前記ビニル樹脂(b1)は、前記したビニル単量体を従来から知られている方法で重合することによって製造することができる。具体的には有機溶剤中での溶液重合法や、乳化重合法で製造することができ、乳化重合法で製造することが好ましい。
 前記乳化重合法としては、例えば水と、前記ビニル単量体と、重合開始剤と、必要に応じて連鎖移動剤や乳化剤や分散安定剤等とを、反応容器中に一括供給、混合して重合する方法や、前記ビニル単量体を反応容器中に滴下し重合するモノマー滴下法や、ビニル単量体と乳化剤等と水とを予め混合したものを、反応容器中に滴下し重合するプレエマルジョン法等を適用することができる。
 前記乳化重合法の反応温度は、使用するビニル単量体や重合開始剤の種類によって異なるが、例えば30℃~90℃程度、反応時間は例えば1時間~l0時間程度であることが好ましい。
 前記重合開始剤としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩類、過酸化ベンゾイル、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物類、過酸化水素等があり、これら過酸化物のみを用いてラジカル重合するか、或いは前記過酸化物と、アスコルビン酸、ホルムアルデヒドスルホキシラートの金属塩、チオ硫酸ナトリウム、重亜硫酸ナトリウム、塩化第二鉄等のような還元剤とを併用したレドックス重合開始剤系によっても重合でき、また、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩等のアゾ系開始剤を使用することも可能であり、これらの1種または2種以上の混合物が使用できる。
 前記ビニル樹脂(b1)の製造に使用可能な乳化剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、両性イオン性界面活性剤等が挙げられ、なかでも陰イオン性界面活性剤を使用することが好ましい。
 前記陰イオン性界面活性剤としては、例えば、高級アルコールの硫酸エステル及びその塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルフェニルスルホン酸塩、ポリオキシエチレンアルキルジフェニルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルの硫酸ハーフエステル塩、アルキルジフェニルエーテルジスルホン酸塩、コハク酸ジアルキルエステルスルホン酸塩、等が挙げられ、非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンジフェニルエーテル、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体、アセチレンジオール系界面活性剤等を使用することができる。
 また、前記陽イオン性界面活性剤としては、例えば、アルキルアンモニウム塩等を使用することができる。
 また、両性イオン性界面活性剤としては、例えば、アルキル(アミド)ベタイン、アルキルジメチルアミンオキシド等を使用することができる。
 前記乳化剤としては、上記の界面活性剤の他に、フッ素系界面活性剤やシリコーン系界面活性剤や、一般的に「反応性乳化剤」と称される重合性不飽和基を分子内に有する乳化剤を使用することもできる。
 前記反応性乳化剤としては、例えば、スルホン酸基及びその塩を有する「ラテムルS-180」(花王(株)製)、「エレミノールJS-2、RS-30」(三洋化成工業(株)製)等;硫酸基及びその塩を有する「アクアロンHS-10、HS-20、KH-1025」(第一工業製薬(株)製)、「アデカリアソープSE-10、SE-20」(旭電化工業(株)製)等;リン酸基を有する「ニューフロンティアA-229E」(第一工業製薬(株)製)等;非イオン性親水基を有する「アクアロンRN-10、RN-20、RN-30、RN-50」(第一工業製薬(株)製)等を使用することができる。
 また、前記ビニル樹脂(b1)の製造に使用する水性媒体としては、例えば水のみを使用してもよいし、或いは、水と水溶性溶剤の混合溶液を使用してもよい。前記水溶性溶剤としては、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール類、N-メチルピロリドン等の極性溶剤を使用することができる。
 前記ビニル樹脂(b1)の製造に使用可能な連鎖移動剤としては、ラウリルメルカプタン等を使用することができる。前記連鎖移動剤は、前記ビニル樹脂(b1)の製造に使用するビニル単量体の全量に対して0質量%~0.15質量%の範囲で使用することが好ましく、0質量%~0.08質量%の範囲であることがより好ましい。
 また、前記ビニル樹脂(b1)は、前記溶液重合法によりラジカル重合することによって製造することもできる。
 前記溶液重合法では、必要に応じて重合開始剤を使用することができ、前記重合開始剤としては、例えば、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ラウロイルパーオキサイド、t-ブチルパーオキシオクトエート、t-ブチルパーオキシベンゾエート、ラウロイルパーオキサイド、商品名「ナイパーBMT-K40」(日油(株)製;m-トルオイルパーオキサイドとベンゾイルパーオキサイドの混合物)等の有機過酸化物や、アゾビスイソブチロニトリル、商品名「ABN-E」[(株)日本ファインケム製;2,2’-アゾビス(2-メチルブチロニトリル)]等のアゾ系化合物等を使用することができる。
 また、前記溶液重合法で使用可能な有機溶剤としては、例えばメタノール、エタノール、プロパノール、ブタノール、エチレングリコールメチルエーテル、ジエチレングリコールメチルエーテルなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル類、ヘキサン、ヘプタン、オクタンなどの炭化水素類、ベンゼン、トルエン、キシレン、クメンなどの芳香族類、酢酸エチル、酢酸ブチル等を使用することができる。
 前記方法で得られたビニル樹脂(b1)は、本発明で使用する受容層形成用樹脂組成物の全量に対して、5質量%~60質量%の範囲で含まれることが好ましく、10質量%~50質量%の範囲で含まれることがより好ましい。
 前記受容層形成用樹脂組成物としては、支持体表面への塗工作業性等を向上する観点から、水性媒体や有機溶剤等の溶媒を含有するものを使用することが好ましい。
 前記水性媒体としては、例えば水のみを使用してもよいし、或いは、水と水溶性溶剤の混合溶液を使用してもよい。前記水溶性溶剤としては、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール類、N-メチルピロリドン等の極性溶剤を使用することができる。
 前記水性媒体を使用する場合、水性媒体は、本発明で使用する受容層形成用樹脂組成物の全量に対して、30質量%~95質量%の範囲で含まれることが好ましく、40質量%~90質量%の範囲で含まれることがより好ましい。
 また、前記溶媒に使用可能な有機溶剤としては、例えばトルエンや酢酸エチル、メチルエチルケトン等を使用することができる。前記有機溶剤を使用する場合、前記有機溶剤は本発明で使用する受容層形成用樹脂組成物の全量に対して、30質量%~95質量%の範囲で含まれることが好ましく、40質量%~90質量%の範囲で含まれることがより好ましい。
 前記受容層形成用樹脂組成物は、前記ビニル樹脂(b1)や前記溶媒のほかに、必要に応じて架橋剤(b2)をはじめ、pH調整剤、被膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤等公知のものを適宜添加して使用してもよい。
 前記架橋剤(b2)としては、例えば金属キレート化合物、ポリアミン化合物、アジリジン化合物、金属塩化合物、イソシアネート化合物等の、概ね25℃~100℃未満の比較的低温で反応し架橋構造を形成しうる熱架橋剤(b2-1)や、メラミン系化合物、エポキシ系化合物、オキサゾリン化合物、カルボジイミド化合物、及び、ブロックイソシアネート化合物からなる群より選ばれる1種以上等の概ね100℃以上の比較的高温で反応し架橋構造を形成しうる熱架橋剤(b2-2)や、各種光架橋剤を使用することができる。
 前記熱架橋剤(b2-1)を含む受容層形成用樹脂組成物は、例えばそれを支持体表面に塗布し、比較的低温で乾燥し、次いで、導電性インクを塗布(印刷)した後に、100℃未満の温度に加温し架橋構造を形成することで、めっき薬剤や洗浄剤等の溶剤が付着等した場合であっても、受容層(B)の溶解や、支持体からの剥離等を引き起こすことなく、良好な通電性を維持可能なレベルの耐久性に優れた導電性パターンを形成することができる。
 一方、前記熱架橋剤(b2-2)を含む受容層形成用樹脂組成物は、例えばそれを支持体表面に塗布し、常温(25℃)~概ね100℃未満の低温で乾燥することで、架橋構造を形成していないインク受容基材を製造し、次いで、導電性インク等を塗布した後に、例えば100℃以上、好ましくは120℃~300℃程度の温度で加熱し架橋構造を形成することで、めっき薬剤や洗浄剤等の溶剤が付着等した場合であっても、受容層(B)の溶解や、支持体からの剥離等を引き起こすことなく、良好な通電性を維持可能なレベルの耐久性に優れたに優れた導電性パターンを得ることができる。
 前記熱架橋剤(b2-1)に使用可能な金属キレート化合物としては、例えばアルミニウム、鉄、銅、亜鉛、スズ、チタン、ニッケル、アンチモン、マグネシウム、バナジウム、クロム、ジルコニウム等の多価金属のアセチルアセトン配位化合物、アセト酢酸エステル配位化合物等を使用することができ、アルミニウムのアセチルアセトン配位化合物であるアセチルアセトンアルミニウムを使用することが好ましい。
 また、前記熱架橋剤(b2-1)に使用可能なポリアミン化合物としては、例えばトリエチルアミン、トリエチレンジアミン、ジメチルエタノールアミン等の3級アミンを使用することもできる。
 また、前記熱架橋剤(b2-1)に使用可能なアジリジン化合物としては、例えば2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、1,6-ヘキサメチレンジエチレンウレア、ジフェニルメタン-ビス-4,4’-N,N’-ジエチレンウレア等を使用することができる。
 また、前記架橋剤(b1-1)として使用可能な金属塩化合物としては、例えば硫酸アルミニウム、アルミニウムミョウバン、亜硫酸アルミニウム、チオ硫酸アルミニウム、ポリ塩化アルミニウム、硝酸アルミニウム九水和物、塩化アルミニウム六水和物等のアルミニウム含有化合物、四塩化チタン、テトライソプロピルチタネート、チタンアセチルアセトネート、乳酸チタン等の水溶性金属塩を使用することができる。
 前記熱架橋剤(b2-1)に使用可能なイソシアネート化合物としては、例えばトリレンジイソシアネート、水素化トリレンジイソシアネート、トリフェニルメタントリイソシアネート、メチレンビス(4-フェニルメタン)トリイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート等のポリイソシアネートや、それらを用いて得られるイソシアヌレート型ポリイソシアネート化合物や、それらとトリメチロールプロパン等とからなるアダクト体、前記ポリイソシアネート化合物とトリメチロールプロパンなどのポリオールとを反応させて得られるポリイソシアネート基含有ウレタン等を使用することができる。なかでもヘキサメチレンジイソシアネートのヌレート体、ヘキサメチレンジイソシアネートとトリメチロールプロパン等とのアダクト体、トリレンジイソシアネートとトリメチロールプロパン等とのアダクト体、キシリレンジイソシアネートとトリメチロールプロパン等とのアダクト体を使用することが好ましい。
 また、前記熱架橋剤(b2-2)に使用可能なメラミン化合物としては、例えばヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサブトキシメチルメラミン、ヘキサペンチルオキシメチルメラミン、ヘキサヘキレルオキシメチルメラミンあるいはこれらの2種を組み合わせた混合エーテル化メラミン等を使用することができる。なかでも、トリメトキシメチルメラミン、ヘキサメトキシメチルメラミンを使用することが好ましい。市販品としては、ベッカミン M-3、APM、J-101(DIC(株)製)等を使用することができる。
 前記メラミン化合物を使用する場合には、その自己架橋反応を促進するうえで、有機アミン塩等の触媒を使用してもよい。市販品としては、キャタリスト ACX、376等を使用することができる。前記触媒は、前記メラミン化合物の全量に対して概ね0.01質量%~10質量%の範囲であることが好ましい。
 また、前記熱架橋剤(b2-2)に使用可能なエポキシ化合物としては、例えばエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ヘキサメチレングリコールジグリシジルエーテル、シクロヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等の脂肪族多価アルコールのポリグリシジルエーテル類;ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル等のポリアルキレングリコールのポリグリシジルエーテル類;1,3-ビス(N,N’-ジグリシジルアミノエチル)シクロヘキサン等のポリグリシジルアミン類;多価カルボン酸[蓚酸、アジピン酸、ブタントリカルボン酸、マレイン酸、フタル酸、テレフタル酸、イソフタル酸、ベンゼントリカルボン酸等]のポリグリシジルエステル類;;ビスフェノールAとエピクロルヒドリンの縮合物、ビスフェノールAとエピクロルヒドリンの縮合物のエチレンオキシド付加物等のビスフェノールA系エポキシ樹脂;フェノールノボラック樹脂、;側鎖にエポキシ基を有する各種ビニル系(共)重合体等を使用することができる。なかでも1,3-ビス(N,N’-ジグリシジルアミノエチル)シクロヘキサン等のポリグリシジルアミン類、グリセリンジグリシジルエーテル等の脂肪族多価アルコールのポリグリシジルエーテル類、を使用することが好ましい。
 また、前記エポキシ化合物としては、前記したものの他に例えばγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシランもしくはγ-グリシドキシプロピルトリイソプロぺニルオキシシラン等のグリシジル基含有シラン化合物を使用することもできる。
 また、前記熱架橋剤(d1-2)に使用可能なオキサゾリン化合物としては、例えば2,2’-ビス-(2-オキサゾリン)、2,2’-メチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(2-オキサゾリン)、2,2’-トリメチレン-ビス-(2-オキサゾリン)、2,2’-テトラメチレン-ビス-(2-オキサゾリン)、2,2’-ヘキサメチレン-ビス-(2-オキサゾリン)、2,2’-オクタメチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、ビス-(2-オキサゾリニルシクロヘキサン)スルフィド、ビス-(2-オキサゾリニルノルボルナン)スルフィド等を使用することができる。
 また、前記オキサゾリン化合物としては、例えば下記付加重合性オキサゾリンと、必要に応じてその他の単量体とを組み合わせ重合して得られるオキサゾリン基を有する重合体を使用することもできる。
 前記付加重合性オキサゾリンとしては、例えば、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を単独または2種以上組み合わせ使用することができる。なかでも、2-イソプロペニル-2-オキサゾリンを使用することが、工業的に入手し易いため好ましい。
 また、前記熱架橋剤(b2-2)に使用可能なカルボジイミド化合物としては、例えばポリ[フェニレンビス(ジメチルメチレン)カルボジイミド]やポリ(メチル-1,3-フェニレンカルボジイミド)等を使用することができる。市販品では、カルボジライトV-01、V-02、V-03、V-04、V-05、V-06(日清紡(株)製)、UCARLINK XL-29SE、XL-29MP(ユニオンカーバイド(株)製)等を使用することができる。
 また、前記熱架橋剤(b2-2)に使用可能なブロックイソシアネート化合物としては、前記熱架橋剤(b2-1)として例示したイソシアネート化合物の有するイソシアネート基の一部または全部が、ブロック化剤によって封止されたものを使用することができる。
 前記ブロック化剤としては、例えばフェノール、クレゾール、2-ヒドロキシピリジン、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ベンジルアルコール、メタノール、エタノール、n-ブタノール、イソブタノール、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン、ブチルメルカプタン、ドデシルメルカプタン、アセトアニリド、酢酸アミド、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、コハク酸イミド、マレイン酸イミド、イミダゾール、2-メチルイミダゾール、尿素、チオ尿素、エチレン尿素、ホルムアミドオキシム、アセトアルドオキシム、アセトンオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、シクロヘキサノンオキシム、ジフェニルアニリン、アニリン、カルバゾール、エチレンイミン、ポリエチレンイミン等を使用することができる。
 前記ブロックイソシアネート化合物としては、水分散型の市販品としてエラストロン BN-69(第一工業製薬(株)製)等を使用することができる。
 前記架橋剤(b2)を使用する場合、前記ビニル樹脂(b1)として前記架橋剤(b2)の有する架橋性官能基と反応しうる基を有するものを使用することが好ましい。具体的には、前記(ブロック)イソシアネート化合物やメラミン化合物、オキサゾリン化合物、カルボジイミド化合物を架橋剤(b2)として使用するとともに、前記ビニル樹脂(b1)として水酸基やカルボキシル基を有するビニル樹脂を使用することが好ましい。
 前記架橋剤(b2)は、種類等によって異なるものの、通常、前記ビニル樹脂(b1)に対して0.01質量%~60質量%の範囲で使用することが好ましく、0.1質量%~50質量%の範囲で使用することが、細線性に優れた導電性パターンを得るうえで好ましい。
 特に、前記架橋剤(b2)としてメラミン化合物は、自己縮合反応しうることから、ビニル樹脂(B2)に対して0.1質量%~30質量%の範囲で使用することが好ましく、0.1質量%~10質量%の範囲で使用することが好ましく、0.5質量%~5質量%の範囲で使用することがより好ましい。
 また、前記架橋剤(b2)は、前記受容層形成用樹脂組成物を支持体表面に塗工又は含浸する前に、予め添加して使用することが好ましい。
 また、本発明で使用する受容層形成用樹脂組成物としては、前記した添加剤の他に、溶剤溶解性または溶剤分散性の熱硬化性樹脂、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリエステル樹脂、ポリアミド樹脂、ウレタン樹脂等を混和して使用することもできる。
 前記支持体表面の一部または全部に、前記受容層形成用樹脂組成物を用いて前記樹脂層(B1)を形成する方法としては、例えば、前記支持体表面の一部または全部、ならびに、支持体の片面または両面に、前記受容層形成用樹脂組成物を塗工または含浸し、前記受容層形成用樹脂組成物中に含まれていてもよい水性媒体や溶剤等の溶媒を除去する方法が挙げられる。
 前記支持体表面の一部または全部に、前記受容層形成用樹脂組成物を塗工又は含浸する方法としては、公知慣用の方法を用いることができ、例えば、グラビア方式、コーティング方式、スクリーン方式、ローラー方式、ロータリー方式、スプレー方式、インクジェット方式等を適用することができる。
 前記受容層形成用樹脂組成物を支持体上に塗工等した後、前記受容層形成用樹脂組成物中に含まれていてもよい水性媒体や溶剤等の溶媒の除去方法としては、例えば、乾燥機を用いて乾燥させる方法が一般的である。乾燥温度は、前記塗工して得られた塗工物を、前記支持体の変形等を引きこさない程度の温度で乾燥することができる。但し、前記受容層形成用樹脂組成物が熱架橋性を有する場合には、前記乾燥工程において、前記樹脂層(B1)の架橋反応が進行し、架橋構造を形成しない程度の温度で加熱することが重要である。具体的には、概ね25℃~100℃未満の温度で乾燥することが好ましい。
 支持体上への前記受容層形成用樹脂組成物の付着量は、良好な生産効率を維持する観点から、その固形分が支持体の面積に対して0.1g/m~50g/mの範囲であることが好ましく、インク吸収性と製造コストを勘案すると0.5g/m~40g/mが特に好ましい。
 また、前記支持体への前記受容層形成用樹脂組成物の付着量を増加させることで、得られる印刷物の発色性をより一層向上させることができる。ただし、付着量が増加すると、印刷物の風合いが若干硬くなる傾向があるため、例えば、折り曲げ可能な有機EL等の良好な柔軟性の求められる場合には、概ね0.5g/m~30g/m程度の比較的薄めにすることが好ましい。一方、用途等によっては、概ね30g/mを超え100g/m以下程度の比較的厚膜となる態様で使用してもよい。
 次に、前記工程(2)について説明する。
 前記工程(2)は、前記工程(1)で得た導電性インク受容基材に、導電性インクを塗布(印刷)する工程である。
 前記塗布に使用する導電性インクとしては、例えば導電性物質(c)と溶媒と、必要に応じて分散剤等の添加剤を含有するものを使用することができる。
 前記導電性物質(c)としては、遷移金属やその化合物を使用することができる。なかでもイオン性の遷移金属を使用することが好ましく、例えば銅、銀、金、ニッケル、パラジウム、白金、コバルト等の遷移金属を使用することが好ましく、銀、金、銅等を使用することが、電気抵抗が低く、腐食に強い導電性パターンを形成できるのでより好ましい。
 前記導電性物質(c)としては、概ね1nm~50nm程度の平均粒径を有する粒子状のものを使用することが好ましい。なお、前記平均粒径は、中心粒径(D50)を意味するものであり、レーザー回折散乱式粒度分布測定装置で測定した場合の値を示す。
 前記金属等の導電性物質(c)は、前記導電性インクの全量に対して5質量%~60質量%の範囲で使用することが好ましく、10質量%~50質量%の範囲で含まれることがより好ましい。
 前記導電性インクに使用する溶媒は、各種有機溶剤をはじめ、水等の水性媒体を使用することができる。
 本発明では、前記導電性インクの溶媒として主に有機溶剤を含む溶剤系導電性インクや、前記溶媒として主に水を含む水性導電性インク、更には、前記有機溶剤及び水の両方を含む導電性インクを適宜選択し使用することができる。
 前記導電性インクは、電気回路等のパターンの形成に使用されるため、一般に、細線状に塗布される場合が多く、前記導電性インクが塗布される前記樹脂層(B1)表面に接触する溶媒量は、通常の顔料インク等を用いて写真等を印刷する場合と比較して、比較的少量である。そのため、前記樹脂層(B1)は、前記導電性インクに含まれる溶媒が水性媒体、有機溶剤のいずれであっても、それらを吸収し、前記導電性インクに含まれる導電性物質(c)を定着することができる。
 なかでも、形成する導電性パターン等の細線性や密着性等を向上する観点から、前記導電性インクの溶媒として主に水を含む導電性インクや、前記有機溶剤及び水の両方を含む導電性インクや、前記導電性インクの溶媒として主に有機溶剤を含む溶剤系導電性インクを使用することが好ましく、前記導電性インクの溶媒として主に有機溶剤を含む溶剤系導電性インクを使用することがより好ましい。
 前記溶剤系の導電性インクに使用する溶媒としては、例えばメタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、セリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール等のアルコール系溶剤、2-エチル1,3-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールジアセテート、プロピレングリコールフェニルエーテル、ジプロピレングリコールジメチルエーテル等のグリコールエーテル系溶剤、グリセリンをはじめとする極性溶剤を使用することができる。
 前記極性溶剤のなかでも、グリコール系溶剤を含む導電性インクは、前記樹脂層(B1)との組み合わせで使用することが、前記グリコール系溶剤によって引き起こされうるにじみや密着性の低下等を防止し、電子回路等の高密度化等の実現に供しうるレベルの細線性を実現するうえで好適である。
 前記グリコール系溶剤のなかでも、特にエチレングリコール、ジエチレングリコール、トリエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール等を使用することがより好ましい。
 また、前記溶剤系導電性インクは、物性調整のため、アセトン、シクロヘキサノン、メチルエチルケトン等のケトン系溶剤を組み合わせ使用することができる。その他、酢酸エチル、酢酸ブチル、3―メトキシブチルアセテート、3-メトキシ-3-メチル-ブチルアセテート等のエステル系溶剤、トルエン等の炭化水素系溶剤、特に炭素数が8以上の炭化水素系溶剤、例えば、オクタン、ノナン、デカン、ドデカン、トリデカン、テトラデカン、シクロオクタン、キシレン、メシチレン、エチルベンゼン、ドデシルベンゼン、テトラリン、トリメチルベンゼンシクロヘキサン等の非極性溶剤を、必要に応じて組み合わせ使用することもできる。更に、混合溶剤であるミネラルスピリット及びソルベントナフサ等の溶媒を併用することもできる。
 また、前記導電性インクの溶媒に使用可能な水性媒体としては、例えば水のみを使用してもよいし、或いは、水と水溶性溶剤の混合溶液を使用してもよい。前記水溶性溶剤としては、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール類、N-メチルピロリドン等の極性溶剤を使用することができる。
 前記導電性インク中に含まれる溶媒は、導電性インク全量に対して35質量%~90質量%の範囲で含まれることがより好ましい。また、前記極性溶剤は、前記溶媒の全量に対して10質量%~100質量%含まれることが好ましい。
 また、前記導電性インクには、前記金属及び溶媒の他に、必要に応じて各種添加剤を使用することができる。
 前記添加剤としては、例えば前記金属の前記溶媒中における分散性を向上する観点から、分散剤を使用することができる。
 前記分散剤としては、例えばポリエチレンイミン、ポリビニルピロリドン等のアミン系の高分子分散剤、またポリアクリル酸、カルボキシメチルセルロース等の分子中にカルボン酸基を有する炭化水素系の高分子分散剤、ポリビニルアルコール、スチレン-マレイン酸共重合体、オレフィン-マレイン酸共重合体、或いは1分子中にポリエチレンイミン部分とポリエチレンオキサイド部分とを有する共重合体等の極性基を有する高分子分散剤等を使用することができる。なお、前記ポリビニルアルコールは、溶剤系の導電性インクを使用する場合であっても、分散剤として使用してもよい。
 前記した導電性インク受容基材等に、前記導電性インクを塗布(印刷)する方法としては、例えばインクジェット印刷法、スクリーン印刷法、凸版反転印刷法、グラビアオフセット印刷法、オフセット印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等が挙げられる。
 なかでも、電子回路等の高密度化を実現する際に求められる概ね0.01μm~100μm程度の細線を印刷する場合には、インクジェット印刷法、スクリーン印刷法、凸版反転印刷法またはグラビアオフセット印刷法を採用することが好ましく、インクジェット印刷法を採用することがより好ましい。
 前記インクジェット印刷法としては、一般にインクジェットプリンターといわれるものを使用することができる。具体的には、コニカミノルタEB100、XY100(コニカミノルタIJ株式会社製)や、ダイマティックス・マテリアルプリンターDMP-3000、ダイマティックス・マテリアルプリンターDMP-2831(冨士フィルム株式会社製)等が挙げられる。
 前記スクリーン印刷法は、メッシュ状のスクリーン版を用いることによって、導電性インクを、前記受容層(B)を形成しうる前記樹脂層(B1)表面に塗布する方法である。具体的には、一般にメタルメッシュといわれる金属製のスクリーン版を用い、所定のパターン形状に導電性パターンを印刷することによって、所定のパターン形状を備えた導電性パターンを形成することができる。
 また、前記凸版反転印刷法は、ブランケット上に導電性インクを塗布して導電性インク塗布面を形成し、それを前記樹脂層(B1)に転写する方法である。
 前記ブランケットとしては、シリコーンからなるシリコーンブランケットを使用することが好ましい。
 はじめに、前記ブランケット上に導電性インクを塗布し、導電性インクからなる層を形成する。次いで、前記導電性インクからなる層に、必要に応じて所定のパターン形状に対応した版を備えた凸版を押圧することで、前記凸版に接触した導電性インクがブランケット上から前記凸版表面に転写される。
 次いで、前記ブランケットと、前記樹脂層(B1)とを接触することによって、前記ブランケット上に残存した導電性インクが前記樹脂層(B1)表面に転写される。このような方法によって、所定のパターンを備えた導電性パターンを形成することができる。
 また、前記グラビアオフセット印刷法としては、例えば所定のパターン形状を備えた凹版印刷版の溝部に導電性インクを供給した後、その表面にブランケットを押圧することによって、前記ブランケット上に前記導電性インクを転写し、次いで、前記ブランケット上の導電性インクを前記樹脂層(B1)に転写する方法が挙げられる。
 前記凹版印刷版としては、例えばグラビア版、ガラス板をエッチングすることによって形成されたガラス凹版等を使用することができる。
 前記ブランケットとしては、シリコーンゴム層や、ポリエチレンテレフタレート層や、スポンジ状の層等を備えた多層構造を有するものを使用することができ、通常、ブランケット胴といわれる剛性のある円筒に巻きついたものを使用する。
 本発明の導電性パターンを製造する際には、前記工程(1)で得た導電性インク受容基材の表面に、前記導電性インクを塗布(印刷)した後、前記導電性インク中に含まれる導電性物質(c)を密着し接合することによって導電性を備えた導電層(C)を形成する観点から、焼成工程を経ることが好ましい。
 前記焼成は、概ね80℃~300℃の範囲で、概ね2分~200分程度行うことが好ましい。前記焼成は大気中で行っても良いが、前記金属の酸化を防止する観点から、焼成工程の一部または全部を還元雰囲気下で行っても良い。
 また、前記焼成工程は、例えばオーブンや熱風式乾燥炉、赤外線乾燥炉、レーザー照射等を用いて行うことができる。
 なお、前記導電性インクを塗布した後、前記樹脂層(B1)中に架橋構造を形成する方法として、その印刷物を加熱する方法を採用する場合には、前記導電性インクを塗布した後、直ちに後述する工程(3)に進み、前記架橋構造を形成することを目的とした加熱を行うことができる。かかる加熱工程は、前記焼成工程をかねることができるため、前記架橋構造の形成と、導電性の付与とを同時に行うことが可能となる。
 一方、前記導電性インクを塗布した後に、前記樹脂層(B1)中に架橋構造を形成し受容層(B)を形成する方法として、その印刷表面に光照射する方法を採用する場合には、前記焼成工程を経ることによって導電性を付与した後に、工程(3)へ進み、前記樹脂層(B1)中に架橋構造を形成することが好ましい。
 次に、前記工程(3)について説明する。
 前記工程(3)は、前記工程(2)で得た塗布物を、例えば加熱や光照射することによって、前記導電性物質(c)が固着した樹脂層(B1)中に架橋構造を形成する工程である。
 前記架橋構造は、例えば前記ビニル樹脂(b1)の有する架橋性官能基と、前記架橋剤(b2)との架橋反応や、前記ビニル樹脂(b1)の有する架橋性官能基間の架橋反応や、前記架橋剤(b2)の自己架橋反応等によって形成することができる。
 前記架橋反応は、例えば加熱等することによって進行することが可能である。なかでも、加熱によって架橋反応する方法が、前記焼成工程をかねることができるため、導電性パターンの生産効率を向上するうえで好ましい。
 前記加熱温度は、使用する前記架橋剤(b2)等の種類や架橋性官能基の組み合わせ等によって異なるが、概ね80℃~300℃の範囲であることが好ましく、100℃~300℃がより好ましく、120℃~300℃が特に好ましい。なお、前記支持体が比較的熱に弱い場合には、温度の上限が好ましくは200℃以下、より好ましくは150℃以下である。前記工程(3)では、例えばオーブンや熱風式乾燥炉、赤外線乾燥炉等を使用することができる。
 前記方法で得られた導電性パターンは、導電性インクを塗布した後に、樹脂層(B1)中に架橋構造が形成されるため、めっき薬剤や洗浄剤等の溶剤が付着等した場合であっても、受容層(B)の溶解や、支持体からの剥離等を引き起こすことなく、良好な通電性を維持可能なレベルの耐久性を有する。
 また、前記導電性パターンは、導電性物質(c)を含む導電性インクに対しても優れた印刷性を有し、例えば電子回路等の導電性パターンを形成する際に求められる、概ね0.01μm~200μm程度、好ましくは0.01μm~150μm程度の幅からなる細線を、にじみを引き起こすことなく印刷することが可能であることから(細線性)、銀インク等を用いた電子回路や集積回路等に使用される回路形成用基板の形成、有機太陽電池や電子書籍端末、有機EL、有機トランジスタ、フレキシブルプリント基板、RFID等を構成する各層や周辺配線の形成、プラズマディスプレイの電磁波シールドの配線等のプリンテッド・エレクトロニクス分野等でも好適にすることができる。
 以下、実施例により本発明を詳細に説明する。
 実施例1<受容層形成用樹脂組成物(I-1)の調製及びそれを用いた導電性インク受容基材(II-1)の作製>
 撹拌機、還流冷却管、窒素導入管、温度計、滴下漏斗を備えた反応容器に脱イオン水115質量部、ラテムルE-118B(花王(株)製:有効成分25質量%)4質量部を入れ、窒素を吹き込みながら75℃まで昇温した。
 撹拌下、反応容器中にメタクリル酸メチル51質量部、N-n-ブトキシメチルアクリルアミド15質量部、アクリル酸n-ブチル31質量部、アクリルアミド2質量部及びメタクリル酸1質量部からなるビニル単量体混合物とアクアロンKH-1025(第一工業製薬(株)製:有効成分25質量%)4質量部と脱イオン水15質量部とを混合して得られたモノマープレエマルジョンの一部(5質量部)を添加し、続いて過硫酸カリウム0.1質量部を添加し、反応容器内温度を75℃に保ちながら60分間で重合させた。
 次いで、反応容器内の温度を75℃に保ちながら、残りのモノマープレエマルジョン(114質量部)と、過硫酸カリウムの水溶液(有効成分1.0質量%)30質量部とを、各々別の滴下漏斗を使用して、180分間かけて滴下した。滴下終了後、同温度にて60分間撹拌した。
 前記反応容器内の温度を40℃に冷却し、反応容器中の水分散体のpHが8.5になるようにアンモニア水(有効成分10質量%)を使用した。
 ついで、不揮発分が40質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、本発明で使用する受容層形成用樹脂組成物(I-1)を得た。
 前記で得た受容層形成用樹脂組成物(I-1)を、乾燥膜厚が3μmになるように、下記(i)~(iii)で示される3種類の基材の表面に、バーコーターを用いてそれぞれ塗工し、熱風乾燥機を用いて70℃で3分間乾燥することによって、各基材上に導電性インク受容層の形成された3種類の導電性インク受容基材(II-1)を得た。
 [支持体]
 (i)PET;ポリエチレンテレフタレートフィルム(東洋紡績株式会社製 コスモシャインA4300,厚さ50μm)
 (ii)PI;ポリイミドフィルム(東レ・デュポン株式会社製Kapton200H,厚さ50μm)
 (iii)GL;ガラス:ガラス板,JIS R3202,厚さ2mm
 実施例2~4<受容層形成用樹脂組成物(I-2)~(I-4)の調製及びそれらを用いた導電性インク受容基材(II-2)~(II-4)の作製>
 ビニル単量体混合物の組成を下記表1に記載の組成にそれぞれ変更すること以外は、実施例1記載の方法と同様の方法で、不揮発分40質量%の受容層形成用樹脂組成物(I-2)~(I-4)を調製した。
 また、前記受容層形成用樹脂組成物(I-1)の代わりに、前記受容層形成用樹脂組成物(I-2)~(I-4)をそれぞれ使用すること以外は、実施例1記載の方法と同様の方法で、導電性インク受容基材(II-2)~(II-4)を作製した。
 実施例5<受容層形成用樹脂組成物(I-5)の調製及びそれを用いた導電性インク受容基材(II-5)の作製>
 撹拌機、還流冷却管、窒素導入管、温度計、滴下漏斗を備えた反応容器に脱イオン水115質量部、ラテムルE-118B(花王(株)製:有効成分25質量%)4質量部を入れ、窒素を吹き込みながら75℃まで昇温した。
 撹拌下、反応容器中にメタクリル酸メチル57質量部、アクリル酸ブチル35質量部、アクリルアミド2質量部、メタクリル酸1質量部、アクリル酸4-ヒドロキシブチル5質量部からなるビニル単量体混合物とアクアロンKH-1025(第一工業製薬(株)製:有効成分25質量%)4質量部と脱イオン水15質量部とを混合して得られたモノマープレエマルジョンの一部(5質量部)を添加し、続いて過硫酸カリウム0.1質量部を添加し、反応容器内温度を75℃に保ちながら60分間で重合させた。
 次いで、反応容器内の温度を75℃に保ちながら、残りのモノマープレエマルジョン(114質量部)と、過硫酸カリウムの水溶液(有効成分1.0質量%)30質量部とを、各々別の滴下漏斗を使用して、180分間かけて滴下した。滴下終了後、同温度にて60分間撹拌した。
 前記反応容器内の温度を40℃に冷却し、反応容器中の水分散体のpHが8.5になるようにアンモニア水(有効成分10質量%)を使用した。
 ついで、不揮発分が40質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、ビニル重合体と水とを含む混合物(不揮発分40質量%)を得た。
 次いで、前記混合物の200質量部と、エラストロン BN-69(第一工業製薬(株)製:イソシアネート化合物、有効成分40質量%)]5質量部と、脱イオン水を混合することによって、不揮発分40質量%の受容層形成用樹脂組成物(I-5)を得た。
 また、前記受容層形成用樹脂組成物(I-1)の代わりに、前記受容層形成用樹脂組成物(I-5)をそれぞれ使用すること以外は、実施例1記載の方法と同様の方法で、支持体の異なる3種類の導電性インク受容基材(II-5)を作製した。
 実施例6<受容層形成用樹脂組成物(I-6)の調製及びそれを用いた導電性インク受容基材(II-6)の作製>
 撹拌機、還流冷却管、窒素導入管、温度計、滴下漏斗を備えた反応容器に脱イオン水115質量部、ラテムルE-118B(花王(株)製:有効成分25質量%)4質量部を入れ、窒素を吹き込みながら75℃まで昇温した。
撹拌下、反応容器中にメタクリル酸メチル60質量部、アクリル酸n-ブチル37質量部、アクリルアミド2.0質量部、メタクリル酸1質量部からなるビニル単量体混合物とアクアロンKH-1025(第一工業製薬(株)製:有効成分25質量%)4質量部と脱イオン水15質量部とを混合して得られたモノマープレエマルジョンの一部(5質量部)を添加し、続いて過硫酸カリウム0.1質量部を添加し、反応容器内温度を75℃に保ちながら60分間で重合させた。
 次いで、反応容器内の温度を75℃に保ちながら、残りのモノマープレエマルジョン(114質量部)と、過硫酸カリウムの水溶液(有効成分1.0質量%)30質量部とを、各々別の滴下漏斗を使用して、180分間かけて滴下した。滴下終了後、同温度にて60分間撹拌した。
 前記反応容器内の温度を40℃に冷却し、反応容器中の水分散体のpHが8.5になるようにアンモニア水(有効成分10質量%)を使用した。
 ついで、不揮発分が40質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、ビニル重合体と水とを含む混合物(不揮発分40質量%)を得た。
 次いで、前記混合物の200質量部と、メラミン系化合物[ベッカミン M-3(DIC(株)製)]3質量部と、脱イオン水を混合することによって、不揮発分40質量%の受容層形成用樹脂組成物(I-6)を得た。
 また、前記受容層形成用樹脂組成物(I-1)の代わりに、前記受容層形成用樹脂組成物(I-6)をそれぞれ使用すること以外は、実施例1記載の方法と同様の方法で、支持体の異なる3種類の導電性インク受容基材(II-6)を作製した。
 実施例7~8<受容層形成用樹脂組成物(I-7)~(I-8)の調製及びそれらを用いた導電性インク受容基材(II-7)~(II-8)の作製>
 ビニル単量体混合物の組成を下記表2に記載の組成にそれぞれ変更すること以外は、実施例1記載の方法と同様の方法で、不揮発分40質量%の受容層形成用樹脂組成物(I-7)~(I-8)を調製した。
 また、前記受容層形成用樹脂組成物(I-1)の代わりに、前記受容層形成用樹脂組成物(I-7)~(I-8)をそれぞれ使用すること以外は、実施例1記載の方法と同様の方法で、導電性インク受容基材(II-7)~(II-8)を作製した。
 実施例9<受容層形成用樹脂組成物(I-9)の調製及びそれを用いた導電性インク受容基材(II-9)の作製>
 攪拌機、環流冷却管、窒素導入管、温度計を備えた反応容器に、メタクリル酸メチル51質量部、N-n-ブトキシメチルアクリルアミド17質量部、アクリル酸n-ブチル31質量部、メタクリル酸1質量部を含むビニル単量体混合物と、酢酸エチルとを仕込み、窒素雰囲気下で撹拌しながら50℃まで昇温し、その後、2、2’-アゾビス(2-メチルブチロニトリル)を2質量部仕込み、反応容器内温度を50℃に保ちながら24時間反応させた。
 ついで、不揮発分が20質量%になるように酢酸エチルを使用した後、前記反応容器内の温度を40℃に冷却することによって、重量平均分子量40万のビニル樹脂と酢酸エチルとを含む受容層形成用樹脂組成物(I-9)を得た。なお、前記重量平均分子量は、東ソー(株)製高速液体クロマトグラフHLC-8220型を用い、カラムは東ソー(株)製TSKgelGMH XL×4カラムを使用し、溶離液としてテトラヒドロフランを用い、RI検出器を用い、ゲル・パーミエーション・クロマトグラフ法(GPC法)により測定した。
 また、前記受容層形成用樹脂組成物(I-1)の代わりに、前記受容層形成用樹脂組成物(I-9)を使用すること以外は、実施例1記載の方法と同様の方法で、導電性インク受容基材(II-9)を作製した。
 比較例1~3<比較用受容層形成用樹脂組成物(I’-1)~(I’-3)の調製及びそれを用いた導電性インク受容基材(II’-1)~(II’-3)の作製>
 ビニル単量体混合物の組成を下記表2に記載の組成にそれぞれ変更すること以外は、実施例1記載の方法と同様の方法で、不揮発分が40質量%である比較用の受容層形成用樹脂組成物(I’-1)~(I’-3)を調製した。
 また、前記受容層形成用樹脂組成物(I-1)の代わりに、前記で得た比較用の受容層形成用樹脂組成物(I’-1)~(I’-3)をそれぞれ使用すること以外は、実施例1記載の方法と同様の方法で、導電性インク受容基材(II’-1)~(II’-3)を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1~3中の略称の説明
 MMA:メタクリル酸メチル
 NBMAM:N-n-ブトキシメチルアクリルアミド
 NIBMAM:N-イソブトキシメチルアクリルアミド
 BA :アクリル酸n-ブチル
 MAA:メタクリル酸
 AM :アクリルアミド
 HEMA;2-ヒドロキシエチルメタクリレート
 CHMA:メタクリル酸シクロヘキシル
 4HBA:アクリル酸4-ヒドロキシブチル
 架橋剤1:ブロックイソシアネート化合物[エラストロン BN-69(第一工業製薬(株)製)]
 架橋剤2:メラミン系化合物[ベッカミン M-3(DIC(株)製)、トリメトキシメチルメラミン]
 [インクの調製方法]
 [インクジェット印刷用ナノ銀インク1の調製]
 ジエチレングリコールジエチルエーテル65質量部と、γ-ブチロラクトン18質量部と、テトラエチレングリコールジメチルエーテル15質量部と、テトラエチレングリコールモノブチルエーテル2質量部とからなる混合溶媒に、平均粒径30nmの銀粒子を分散させることによって溶剤系のインクジェット印刷用ナノ銀インク1を調製した。
 [インクジェット印刷用ナノ銀インク2の調製]
 エチレングリコール45質量部と、イオン交換水55質量部との混合溶媒に、平均粒径30nmの銀粒子を分散させることによって水系のインクジェット印刷用ナノ銀インク2を調製した。
 [インクジェット印刷用ナノ銀インク3の調製]
 テトラドデカンからなる溶媒に平均粒径30nmの銀粒子を分散させることによって溶剤系のインクジェット印刷用ナノ銀インク3を調製した。
 [スクリーン印刷用銀ペーストの調製]
 銀 ペースト(ハリマ化成(株)製 NPS)を用いた。
 [凸版反転印刷用銀インクの調製]
 導電性粒子として、ファインスクエアSVE102(日本ペイント(株)製、固形分約30質量%)を48質量%、粘度調整剤として、メタノールを50質量%、表面エネルギー調整剤として、TF-1303(DIC(株)製/固形分約30質量%)を2質量%を配合することによって、凸版反転印刷用インクを調製した。
 [グラビアオフセット印刷用銀インクの調製]
 導電性粒子として、シルベストAGS-050(株式会社徳力化学研究所製)を85質量%、バインダー樹脂として、バイロン200(東洋紡績(株)製)を5質量%、ジエチレングリコールモノエチルエーテルアセテートを10質量%を混合することによって、グラビアオフセット印刷用銀インクを調製した。
 [インクジェット印刷法による印刷]
 前記インクジェット印刷用ナノ銀インク1~3を、それぞれ、前記支持体(i)、(ii)及び(iii)を用いて得られた3種の導電性インク受容基材表面に、インクジェットプリンター(コニカミノルタIJ(株)製インクジェット試験機EB100、評価用プリンタヘッドKM512L、吐出量42pl)を用い、線幅100μm、膜厚0.5μmの直線を約1cm印刷し、次いで150℃の条件下で30分間乾燥することによって、それぞれ印刷物(導電性パターン)を得た。実施例1~9及び比較例1~3に記載の導電性インク受容基材については、上記インクを用いて印刷した後の、前記150℃の条件で30分間乾燥工程を経ることによって、前記受容層に架橋構造が形成された。架橋構造が形成されたか否かは、表3及び表4中に示すように、「常温(23℃)で乾燥し、その後70℃で加熱して形成された受容層のゲル分率」と、「150℃で加熱することによって形成された受容層のゲル分率」とに基づいて判断した。すなわち、150℃で加熱して得た受容層のゲル分率が、常温乾燥した後、70℃で加熱して得た受容層のゲル分率(未架橋状態)と比較して、25質量%以上増加したものを、高温加熱により架橋構造が形成されたと判断した。
 常温(23℃)で乾燥し、70℃で加熱して形成された導電性インク受容層のゲル分率は、以下の方法により算出した。
 厚紙で囲いをしたポリプロピレンフィルム上に乾燥後の膜厚が100μmとなるように受容層形成用樹脂組成物を流し入れ、温度23℃及び湿度65%の状況下で、24時間乾燥し、次いで70℃で3分間加熱処理することによって受容層を形成した。得られた受容層を前記ポリプロピレンフィルムから剥離し縦3cm及び横3cmの大きさに切り取ったものを試験片とした。前記試験片1の質量(X)を測定した後、前記試験片1を25℃に調整した50mlのメチルエチルケトンに24時間浸漬した。
 前記浸漬により、メチルエチルケトンに溶解しなかった試験片1の残渣(不溶解分)を300メッシュの金網で濾過した。
 前記で得た残渣を108℃で1時間、乾燥したものの質量(Y)を測定した。
 次いで、前記質量(X)及び(Y)の値を用い、[(Y)/(X)]×100の式に基づいてゲル分率を算出した。
 また、前記「150℃で加熱することによって形成された受容層のゲル分率」は、下記の方法によって算出した。
 厚紙で囲いをしたポリプロピレンフィルム上に乾燥後の膜厚が100μmとなるように受容層形成用樹脂組成物を流し入れ、温度23℃及び湿度65%の状況下で24時間乾燥し、次いで、150℃で30分間加熱乾燥することによって受容層を形成した。得られた受容層を前記ポリプロピレンフィルムから剥離し縦3cm及び横3cmの大きさに切り取ったものを試験片2とした。前記試験片2の質量(X’)を測定した後、前記試験片2を25℃に調整した50mlのメチルエチルケトンに24時間浸漬した。
 前記浸漬により、メチルエチルケトンに溶解しなかった試験片2の残渣(不溶解分)を300メッシュの金網で濾過した。
 前記で得た残渣を108℃で1時間、乾燥したものの質量(Y’)を測定した。
 次いで、前記質量(X’)及び(Y’)の値を用い、[(Y’)/(X’)]×100の式に基づいてゲル分率を算出した。
 [スクリーン印刷法による印刷]
 前記スクリーン印刷用銀ペーストを、それぞれ、前記支持体(i)、(ii)及び(iii)を用いて得られた3種の導電性インク受容基材表面に、メタルメッシュ250のスクリーン版を用いて、線幅50μm、膜厚1μmの直線を約1cm印刷し、次いで150℃の条件下で30分間乾燥することによって印刷物(導電性パターン)を得た。
実施例1~9及び比較例1~3に記載の導電性インク受容基材については、上記インクを用いて印刷した後の、前記150℃の条件で30分間乾燥工程を経ることによって、受容層に架橋構造が形成された。
 [凸版反転印刷法による印刷]
 印刷版としてライン形状凸版を使用した。また、ブランケットとしてT-60(株式会社金陽社製、ブランケット)を使用した。前記導電性インクを前記ブランケットの表面にバーコーターを用いて均一に塗布し、その塗布面に、前記凸版を押し付けることによって、前記銀インクの一部を前記凸版に転写した。次いで、前記ブランケットの表面に残存した銀インクを、前記導電性インク受容基材を構成する受容層の面の表面に転写した。次いで、180℃30分間乾燥することによって、線幅20μm、膜厚0.5μmの導電性パターンを得た。 
 [グラビアオフセット印刷法による印刷]
 印刷版としてライン形状にエッチングされた凹版を使用した。また、ブランケットとしてT-60(株式会社金陽社製、ブランケット)を使用した。前記導電性インクを、ドクターブレードを用いて前記凹版に塗布し、その表面に前記ブランケットを備えたブランケット胴を押圧することによって、前記凹版表面にある導電性インクの一部を、前記ブランケットの表面に転写した。次いで、前記ブランケットの表面に、前記導電性インク受容基材を構成する受容層の面を押圧することによって、その導電性インクを前記受容層表
面に転写した。次いで、120℃30分間焼成することによって線幅50μm、膜厚3μm導電性パターンを得た。 
 [細線性(線のにじみの有無)の評価方法]
 前記した方法で得られた印刷物(導電性パターン)表面に形成された印刷部(線部)全体を、光学顕微鏡((株)キーエンス製デジタルマイクロスコープVHX-100)を用いて観察し、該印刷部のにじみの有無を確認した。
 具体的には、印刷部(線部)の外縁部ににじみが見られず、印刷部と非印刷部との境界が明確であり、線部の外縁部と中央部とで高さに差が見られず線部全体として平滑であるものを「A」、印刷部(線部)の外縁部のごく一部に、若干のにじみが確認できたものの、全体として印刷部と非印刷部との境界が明確であり、線部全体が平滑であるものを「B」、印刷部(線部)の外縁部の約1/3以内の範囲に、若干のにじみが確認でき、その部分において印刷部と非印刷部との境界が一部で不明確であるものの、線部全体は平滑であり使用可能なレベルであるものを「C」、印刷部(線部)の外縁部の約1/3~1/2程度の範囲でにじみが確認でき、その部分において印刷部と非印刷部との境界が一部で不明確となり、線部の外縁部と中央部とで平滑でなかったものを「D」、印刷部(線部)の外縁部の約1/2以上の範囲でにじみが確認でき、その部分において印刷部と非印刷部との境界が一部で不明確となり、線部の外縁部と中央部とで平滑でなかったものを「E」と評価した。
 [耐久性の評価方法]
 前記インクジェット印刷用ナノ銀インク1を、それぞれ、前記支持体(ii)を用いて得られた導電性インク受容基材表面に、インクジェットプリンター(コニカミノルタIJ(株)製インクジェット試験機EB100、評価用プリンタヘッドKM512L、吐出量42pl)を用い、縦3cm、横1cmの長方形の範囲(面積)を、膜厚0.5μmで印刷し、次いで150℃の条件下で30分間乾燥することによって、それぞれ印刷物(導電性パターン)を得た。実施例1~9及び比較例1~3に記載の導電性インク受容基材については、上記インクを用いて印刷した後の、前記150℃の条件で30分間乾燥工程を経ることによって、インク受容層に架橋構造が形成された。
 前記印刷物(導電性パターン)の印刷部と非印刷部のインク受容層の両方が観察できるよう、前記印刷物を3cm×3cmに切り取り、40℃に調整した5質量%塩酸水溶液及び5質量%水酸化ナトリウム水溶液にそれぞれ24時間ずつ浸漬した後の外観を確認した。具体的には、前記浸漬後、常温下で乾燥した前記印刷物の印刷部と非印刷部の外観を目視で観察し、外観に全く変化が見られなかったものを[A]、印刷部には変化が見られないが、非印刷部のごく一部で白化が見られたものの実用上問題ないレベルであるものを[B]、印刷部には変化が見られないが、非印刷部のほぼ全面が白化したものを[C]、インク受容層の一部が溶解し、印刷部及び非印刷部を構成するインク受容層の一部が支持体表面から欠落したものを[D]、インク受容層のほぼ半分以上の範囲が溶解し、印刷部及び非印刷部を構成するインク受容層の半分以上が支持体表面から欠落したものを[E]と評価した。
 [通電性の評価方法]
 前記インクジェット印刷用ナノ銀インク1を、それぞれ、前記支持体(i)及び(ii)を用いて得られた2種の導電性インク受容基材表面に、インクジェットプリンター(コニカミノルタIJ(株)製インクジェット試験機EB100、評価用プリンタヘッドKM512L、吐出量42pl)を用い、縦3cm、横1cmの長方形の範囲(面積)を、膜厚0.5μmで印刷し、次いで150℃の条件下で30分間乾燥することによって、それぞれ印刷物(導電性パターン)を得た。実施例1~9及び比較例1~3に記載の導電性インク受容基材については、上記インクを用いて印刷した後の、前記150℃の条件で30分間乾燥工程を経ることによって、インク受容層に架橋構造が形成された。
 また、前記スクリーン印刷用銀ペーストを、それぞれ、前記支持体(i)及び(ii)を用いて得られた2種の導電性インク受容基材表面に、メタルメッシュ250のスクリーン版を用いて、縦3cm、横1cmの長方形の範囲(面積)を、膜厚1μm印刷し、次いで150℃の条件下で30分間乾燥することによって印刷物(導電性パターン)を得た。
 前記した方法で得られた印刷物(導電性パターン)表面に形成された縦3cm、横1cmの長方形の範囲のベタ印刷部の体積抵抗率を、ロレスタ指針計(三菱化学(株)製MCP-T610)を用いて測定した。体積抵抗率が5×10-6Ω・cm未満であったものを「A」、5×10-6以上9×10-6Ω・cm未満であり十分使用可能なレベルであるものを「B」、9×10-6以上5×10-5Ω・cm未満であって使用可能であるレベルのものを「C」、5×10-5以上9×10-5Ω・cm未満であるものを「D」、9×10-5以上であって実用上使用することが困難であるものを「E」と評価した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1及び2で得た導電性パターンは、細線性や耐久性、通電性の点で優れた特性を備えたものであった。
 N-ブトキシメチル(メタ)アクリルアミドの使用量の点で実施例1記載の導電性パターンと相違する実施例3で得た導電性パターンは、優れた細線性及び耐久性と、良好な通電性とを備えたものであった。
 N-ブトキシメチル(メタ)アクリルアミドの代わりにN-イソブトキシメチル(メタ)アクリルアミドを使用して得た実施例4記載の導電性パターンは、優れた細線性と通電性とともに良好な耐久性を備えたものであった。
 ビニル樹脂とは別に架橋剤を組み合わせ使用して得た実施例5及び6記載の導電性パターンは、一部の導電性インクに対して若干の細線性の低下がみられたものの、良好な細線性と耐久性と通電性とを備えたものであった。
 メタクリル酸メチルの使用量が多い実施例7及び9記載の導電性パターン、ならびに、メタクリル酸メチルの使用量が少ない実施例8記載の導電性パターンは、細線性や耐久性の若干の低下がみられるものの、良好な細線性、耐久性及び導電性を備えたものであった。
 一方、メタクリル酸メチルの使用量が所定の範囲外である比較例1及び2記載の導電性パターンは、架橋構造を備えた受容層を有するものの、細線性、耐久性、通電性のいずれも実用上十分でなかった。
 また、所定量のメタクリル酸メチルを使用したものの、架橋構造を有さない比較例3記載の導電性パターンは、優れた細線性や通電性を有するものの、耐久性の点で著しい低下を引き起こした。

Claims (10)

  1. 支持体からなる層(A)と受容層(B)と導電層(C)とを有する導電性パターンであって、
    前記受容層(B)が、(メタ)アクリル酸メチルを10質量%~70質量%含むビニル単量体混合物を重合して得られるビニル樹脂(b1)を含有する樹脂層(B1)の表面に、導電層(C)を形成する導電性物質(c)を含有する導電性インクを塗布した後、前記樹脂層(B1)を架橋することによって形成されたものであることを特徴とする導電性パターン。
  2. 前記ビニル樹脂(b1)が架橋性官能基を有するものである請求項1記載の導電性パターン。
  3. 前記架橋性官能基が、100℃以上に加熱することによって架橋反応し架橋構造を形成しうるものである請求項2に記載の導電性パターン。
  4. 前記架橋性官能基が、メチロールアミド基及びアルコキシメチルアミド基からなる群より選ばれる1種以上の熱架橋性官能基である請求項3に記載の導電性パターン。
  5. 前記樹脂層(B1)が、前記ビニル樹脂(b1)と架橋剤(b2)とを含有するものである請求項1に記載の導電性パターン。
  6. 前記架橋剤(b2)が、100℃以上に加熱することによって架橋反応し架橋構造を形成しうるものである請求項5に記載の導電性パターン。
  7. 前記架橋剤(b2)が、メラミン系化合物、エポキシ系化合物、ブロックイソシアネート化合物、オキサゾリン化合物、及び、カルボジイミド化合物からなる群より選ばれる1種以上の熱架橋剤である請求項5に記載の導電性パターン。
  8. 前記導電性インクの塗布が、インクジェット印刷法、スクリーン印刷法、凸版反転印刷法またはグラビアオフセット印刷法によって行われたものである請求項1または5に記載の導電性パターン。
  9. 請求項1~8のいずれか1項に記載の導電性パターンからなる電気回路。
  10. 支持体からなる層(A)と、受容層(B)と、導電層(C)とを備えた導電性パターンの製造方法であって、
    前記支持体の表面の一部または全部に、(メタ)アクリル酸メチルを10質量%~70質量%含む単量体混合物を重合して得られるビニル樹脂(b1)を含む受容層形成用樹脂組成物を塗布し、乾燥することによって樹脂層(B1)を形成し、次いで、前記樹脂層(B1)の表面の一部または全部に、導電性物質(c)を含有する導電性インクを塗布した後、加熱することによって、前記樹脂層(B1)が架橋反応し架橋構造を有する受容層(B)を形成することを特徴とする導電性パターンの製造方法。
PCT/JP2012/065951 2011-07-22 2012-06-22 導電性パターン及びその製造方法 WO2013015056A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012546659A JP5218878B1 (ja) 2011-07-22 2012-06-22 導電性パターン及びその製造方法
KR1020137026217A KR101495699B1 (ko) 2011-07-22 2012-06-22 도전성 패턴 및 그 제조 방법
DE112012003081.8T DE112012003081T5 (de) 2011-07-22 2012-06-22 Leiterbild und Verfahren zum Herstellen desselben
CN201280023258.2A CN103535120B (zh) 2011-07-22 2012-06-22 导电性图案及其制造方法
US14/234,191 US20140144684A1 (en) 2011-07-22 2012-06-22 Conductive pattern and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011160871 2011-07-22
JP2011-160871 2011-07-22

Publications (1)

Publication Number Publication Date
WO2013015056A1 true WO2013015056A1 (ja) 2013-01-31

Family

ID=47600915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065951 WO2013015056A1 (ja) 2011-07-22 2012-06-22 導電性パターン及びその製造方法

Country Status (7)

Country Link
US (1) US20140144684A1 (ja)
JP (1) JP5218878B1 (ja)
KR (1) KR101495699B1 (ja)
CN (1) CN103535120B (ja)
DE (1) DE112012003081T5 (ja)
TW (1) TWI495413B (ja)
WO (1) WO2013015056A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142008A1 (ja) * 2013-03-12 2014-09-18 Dic株式会社 高精細金属パターンの形成方法、高精細金属パターン及び電子部品
WO2014142007A1 (ja) * 2013-03-12 2014-09-18 Dic株式会社 導電性高精細パターンの形成方法、導電性高精細パターン及び電気回路
WO2015137132A1 (ja) * 2014-03-10 2015-09-17 Dic株式会社 シールドフィルム、シールドプリント配線板及びそれらの製造方法
JP2017160319A (ja) * 2016-03-09 2017-09-14 株式会社アルバック 凸版反転印刷用導電性金属インク

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147047A1 (ja) * 2012-03-29 2013-10-03 Dic株式会社 導電性インキ組成物、導電性パターンの製造方法及び導電性回路
US20180230287A1 (en) * 2015-08-07 2018-08-16 Taiyo Ink Mfgs. Co., Ltd. Electroconductive composition, conductor, and flexible printed wiring board
CN105235406A (zh) * 2015-11-20 2016-01-13 浙江维涅斯装饰材料股份有限公司 一种圆网印刷工艺
EP3677650B1 (en) * 2017-08-29 2022-09-28 FUJIFILM Corporation Ink composition, method for producing same, and image forming method
CN115558069B (zh) * 2022-09-26 2023-08-29 上海交通大学 一种pH敏感聚氨酯材料及其在构建二维表面图案及力致结构色信息储存中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345322A (ja) * 2003-05-26 2004-12-09 Toppan Forms Co Ltd 導電性インクジェットインク受容層形成用インクおよびそれを用いたシート
JP2004345321A (ja) * 2003-05-26 2004-12-09 Toppan Forms Co Ltd 導電性インクジェットインク受容層形成用インクおよびそれを用いた導電回路を有するシート
JP2006082453A (ja) * 2004-09-17 2006-03-30 Chugai Photo Chemical Co Ltd インクジェット受容層用組成物及びインクジェット用メディア並びに画像形成方法
JP2007335442A (ja) * 2006-06-12 2007-12-27 Konica Minolta Holdings Inc 導電性パターン及び導電性パターンの作製方法
JP2010225659A (ja) * 2009-03-19 2010-10-07 Fujifilm Corp 電子回路基板製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023782B2 (ja) * 2002-02-27 2007-12-19 トッパン・フォームズ株式会社 導電性インク受容層形成用インクを用いた導電回路を有するシート
JP3691030B2 (ja) * 2002-07-01 2005-08-31 大日本インキ化学工業株式会社 水圧転写用フィルム及びそれを用いた水圧転写体の製造方法
JP3924587B2 (ja) * 2005-05-27 2007-06-06 積水化学工業株式会社 液晶表示装置の製造方法及びスペーサ粒子分散液
WO2009096438A1 (ja) * 2008-01-30 2009-08-06 Mitsubishi Paper Mills Limited 導電パターンの作製方法
JP5219140B2 (ja) * 2008-10-24 2013-06-26 東洋紡株式会社 めっき用低温硬化導電性ペースト、およびそれを使用した電気配線
CN102300415B (zh) * 2010-06-22 2014-06-18 上海朗亿功能材料有限公司 一种导电性均匀的印制电子用银导线的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345322A (ja) * 2003-05-26 2004-12-09 Toppan Forms Co Ltd 導電性インクジェットインク受容層形成用インクおよびそれを用いたシート
JP2004345321A (ja) * 2003-05-26 2004-12-09 Toppan Forms Co Ltd 導電性インクジェットインク受容層形成用インクおよびそれを用いた導電回路を有するシート
JP2006082453A (ja) * 2004-09-17 2006-03-30 Chugai Photo Chemical Co Ltd インクジェット受容層用組成物及びインクジェット用メディア並びに画像形成方法
JP2007335442A (ja) * 2006-06-12 2007-12-27 Konica Minolta Holdings Inc 導電性パターン及び導電性パターンの作製方法
JP2010225659A (ja) * 2009-03-19 2010-10-07 Fujifilm Corp 電子回路基板製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150127568A (ko) * 2013-03-12 2015-11-17 디아이씨 가부시끼가이샤 도전성 고정세 패턴의 형성 방법, 도전성 고정세 패턴 및 전기 회로
WO2014142008A1 (ja) * 2013-03-12 2014-09-18 Dic株式会社 高精細金属パターンの形成方法、高精細金属パターン及び電子部品
JP5652687B1 (ja) * 2013-03-12 2015-01-14 Dic株式会社 高精細金属パターンの形成方法、高精細金属パターン及び電子部品
CN104583455A (zh) * 2013-03-12 2015-04-29 Dic株式会社 高精细金属图案的形成方法、高精细金属图案及电子构件
JP5733481B2 (ja) * 2013-03-12 2015-06-10 Dic株式会社 導電性高精細パターンの形成方法、導電性高精細パターン及び電気回路
KR102097385B1 (ko) * 2013-03-12 2020-04-06 디아이씨 가부시끼가이샤 고정밀 금속 패턴의 형성 방법, 고정밀 금속 패턴 및 전자 부품
WO2014142007A1 (ja) * 2013-03-12 2014-09-18 Dic株式会社 導電性高精細パターンの形成方法、導電性高精細パターン及び電気回路
KR20150130899A (ko) * 2013-03-12 2015-11-24 디아이씨 가부시끼가이샤 고정밀 금속 패턴의 형성 방법, 고정밀 금속 패턴 및 전자 부품
KR102065955B1 (ko) * 2013-03-12 2020-01-14 디아이씨 가부시끼가이샤 도전성 고정세 패턴의 형성 방법, 도전성 고정세 패턴 및 전기 회로
US9629253B2 (en) 2013-03-12 2017-04-18 Dic Corporation Method for forming high-definition metal pattern, high-definition metal pattern, and electronic component
US20160007477A1 (en) * 2013-03-12 2016-01-07 Dic Corporation Method for forming electrically conductive ultrafine pattern, electrically conductive ultrafine pattern, and electric circuit
US10470312B2 (en) 2013-03-12 2019-11-05 DIC Corporation (Tokyo) Method for forming electrically conductive ultrafine pattern, electrically conductive ultrafine pattern, and electric circuit
WO2015137132A1 (ja) * 2014-03-10 2015-09-17 Dic株式会社 シールドフィルム、シールドプリント配線板及びそれらの製造方法
JP2017160319A (ja) * 2016-03-09 2017-09-14 株式会社アルバック 凸版反転印刷用導電性金属インク

Also Published As

Publication number Publication date
CN103535120B (zh) 2016-09-07
KR101495699B1 (ko) 2015-02-25
JPWO2013015056A1 (ja) 2015-02-23
US20140144684A1 (en) 2014-05-29
KR20130132636A (ko) 2013-12-04
DE112012003081T5 (de) 2014-06-12
JP5218878B1 (ja) 2013-06-26
TWI495413B (zh) 2015-08-01
TW201311080A (zh) 2013-03-01
CN103535120A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5218878B1 (ja) 導電性パターン及びその製造方法
EP2620290B1 (en) Method for producing a conductive pattern
JP5201433B1 (ja) 受容層形成用樹脂組成物ならびにそれを用いて得られる受容基材、印刷物、導電性パターン及び電気回路
JP5382279B1 (ja) 導電性パターン、電気回路、電磁波シールド、及び、導電性パターンの製造方法
JP2012218318A (ja) 導電性インク受容層形成用樹脂組成物、導電性インク受容基材及び回路形成用基板ならびに印刷物、導電性パターン及び回路基板
KR102097385B1 (ko) 고정밀 금속 패턴의 형성 방법, 고정밀 금속 패턴 및 전자 부품
JP5733481B2 (ja) 導電性高精細パターンの形成方法、導電性高精細パターン及び電気回路
JP2012232434A (ja) 導電性インク受容層形成用樹脂組成物、導電性インク受容基材及び回路形成用基板ならびに印刷物、導電性パターン及び回路基板
JP5218709B1 (ja) インク受容層形成用樹脂組成物ならびにそれを用いて得られるインク受容基材、印刷物及び導電性パターン
WO2014142004A1 (ja) 受容層形成用樹脂組成物ならびにそれを用いて得られる受容基材、印刷物、導電性パターン及び電気回路
WO2013172229A1 (ja) 導電性パターン、導電回路及び導電性パターンの製造方法
WO2013179965A1 (ja) 導電性パターン、導電回路及び導電性パターンの製造方法
JP6160863B2 (ja) 導電性パターン及び導電回路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012546659

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137026217

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234191

Country of ref document: US

Ref document number: 1120120030818

Country of ref document: DE

Ref document number: 112012003081

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817863

Country of ref document: EP

Kind code of ref document: A1