WO2013014766A1 - 電子制御装置 - Google Patents

電子制御装置 Download PDF

Info

Publication number
WO2013014766A1
WO2013014766A1 PCT/JP2011/067111 JP2011067111W WO2013014766A1 WO 2013014766 A1 WO2013014766 A1 WO 2013014766A1 JP 2011067111 W JP2011067111 W JP 2011067111W WO 2013014766 A1 WO2013014766 A1 WO 2013014766A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
arithmetic processing
processing unit
unit
voltage
Prior art date
Application number
PCT/JP2011/067111
Other languages
English (en)
French (fr)
Inventor
篠原 比呂志
陽亮 米田
敬純 木口
Original Assignee
株式会社タカラトミー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タカラトミー filed Critical 株式会社タカラトミー
Priority to CN201190001083.6U priority Critical patent/CN203859661U/zh
Priority to JP2013525501A priority patent/JP5735648B2/ja
Priority to PCT/JP2011/067111 priority patent/WO2013014766A1/ja
Publication of WO2013014766A1 publication Critical patent/WO2013014766A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle

Definitions

  • the present invention relates to an electronic control device, and more particularly, to an electronic control device including a power generation unit that generates an alternating voltage according to a change in the direction of magnetic flux accompanying rotation of a permanent magnet.
  • toys such as vehicle toys equipped with a power generation unit are known.
  • a driving force such as hand-pushing
  • an induced electromotive force is generated in a coil disposed in the vicinity of the permanent magnet and used as operating power for a light emitting element or the like. It has become.
  • Patent Document 1 As a technique related to the power generation unit provided in such a toy, a technique for reducing the size and improving the power generation efficiency has been proposed (see Patent Document 1: hereinafter referred to as a conventional example).
  • a conventional technique two coils are arranged in the vicinity of the permanent magnet so as to sandwich the permanent magnet, and these coils are connected in series in order to improve the power generation efficiency. Then, the operating power is directly supplied to the light emitting diode as the light emitting element from both ends of the coil in which the two coils are connected in series.
  • the AC voltage generated by the power generation unit is directly used as the operating power of the light emitting diode. For this reason, when trying to expand the conventional technology to supply power to components other than light-emitting diodes, it is limited to components that can operate with AC voltage operating power, and DC voltage operating power is required. Multi-functionalization such as addition of a voice output function under the control of an arithmetic processing unit including a microprocessor cannot be realized.
  • the present invention has been made in view of the above circumstances, and does not include an auxiliary power source for backup, but has a configuration including only a simple power generation unit as a power source, and power loss for an installed arithmetic processing unit
  • An object of the present invention is to provide an electronic control device that can avoid such a situation.
  • An electronic control device includes a power generation unit having a composite coil in which a first coil and a second coil that generate an alternating voltage in response to a change in the direction of magnetic flux accompanying rotation of a permanent magnet are connected in series; A first power supply unit that smoothes a result of full-wave rectification after full-wave rectification according to the generated AC voltage; rectification according to the AC voltage generated in the first coil; and generated in the second coil A second power supply unit that smoothes a voltage at a connection point between the first coil and the second coil while performing rectification according to an AC voltage to be operated; operates electric power supplied from the first power supply unit An electronic processing unit that operates as electric power; and a functional operation unit that operates using electric power supplied from the second power supply unit as operating power under the control of the arithmetic processing unit. Control device .
  • the first power supply unit includes four rectifying elements constituting the first bridge circuit for full wave rectification; and smoothes the result of full wave rectification by the first bridge circuit.
  • a second capacitive element that smoothes a result of full-wave rectification by the second bridge circuit.
  • the electronic control device of the present invention further includes a voltage monitoring unit that monitors the output voltage of the first power supply unit and reports to the arithmetic processing unit whether the operation execution state or the operation stop state should be reported. Can be provided.
  • the content of the report to the arithmetic processing unit is changed so that the voltage monitoring unit has a hysteresis characteristic with respect to a change in the output voltage of the first power supply unit under the control of the arithmetic processing unit. You can make it.
  • the functional operation unit can be a sound output unit having a speaker.
  • the arithmetic processing unit detects a rotation speed of the permanent magnet based on a voltage change at one terminal of the composite coil, and performs sound output control corresponding to the detected rotation speed. Can be done against.
  • the electronic control device of the present invention may further include a light-emitting element that receives operating power from any of the output terminals of the composite coil and whose blinking is controlled by the arithmetic processing unit.
  • the arithmetic processing unit detects a rotation speed of the permanent magnet based on a voltage change at one terminal of the composite coil, and performs flashing control corresponding to the detected rotation speed on the light emitting element. Can be done.
  • the AC voltage generated by the combined coil in which the first coil and the second coil of the power generation unit are connected in series is smoothed after full-wave rectification, and the arithmetic processing unit is used as the operating power. Supplied to.
  • the voltage at the connection point between the first coil and the second coil is smoothed while the rectification according to the AC voltage generated in the first coil and the rectification according to the AC voltage generated in the second coil are performed. And supplied to a functional operation unit other than the arithmetic processing unit. For this reason, since only one of the first coil and the second coil is used at each time point for supplying power to the functional operation unit, avoid the situation of power loss for the arithmetic processing unit. Can do.
  • the configuration includes only a simple power generation unit as a power source without including an auxiliary power source for backup, and for the arithmetic processing unit accompanying an increase in power consumption in the functional operation unit. The situation of power loss can be avoided.
  • the first power supply unit smoothes the result of the full wave rectification by the four rectifying elements constituting the first bridge circuit for full wave rectification and the first bridge circuit.
  • a second power supply unit configured to include two of the four rectifier elements, a first coil and a second coil for full-wave rectification.
  • the output impedance of the power supply for the functional operation unit is reduced from the output impedance of the power supply for the arithmetic processing unit Can be made. Therefore, efficient power supply can be performed when the functional operation unit is a low impedance load such as a speaker.
  • the arithmetic processing is performed when the rotation speed of the permanent magnet in the power generation unit is decreased or the power supply capability is decreased when the rotation is stopped.
  • the current consumption amount of the arithmetic processing unit is so small that it can be covered by the residual charge of the first capacitor element for smoothing in the first power supply unit It becomes. For this reason, it is possible to avoid a situation in which the rotation speed of the permanent magnet in the power generation unit is reduced or the power is lost to the arithmetic processing unit when the rotation is stopped.
  • the voltage monitoring unit has a hysteresis characteristic with respect to a change in the output voltage of the first power supply unit due to a driving force with a large variation such as hand pressing under the control of the arithmetic processing unit. If the report content for the arithmetic processing unit is changed, the operation execution state and the operation stop state of the arithmetic processing unit can be appropriately switched.
  • the functional operation unit is set as a sound output
  • the arithmetic processing unit detects the rotation speed of the permanent magnet and performs sound output control corresponding to the detected rotation speed on the sound output unit.
  • the sound output pattern can be changed according to the rotational speed of the permanent magnet.
  • the light emitting element when the operation power is supplied from one of the output terminals of the composite coil and the light emitting element whose blinking is controlled by the arithmetic processing unit is further provided, the light emitting element is arranged in various patterns. Can be flashed. In addition, the load on the power generation unit due to light emission of the light emitting element can be minimized, and the possibility of power loss for the arithmetic processing unit and the sound output unit can be reduced.
  • the arithmetic processing unit detects the rotation speed of the permanent magnet and performs the blinking control of the light emitting element corresponding to the detected rotation speed, the light emitting element according to the level of the rotation speed of the permanent magnet.
  • the flashing pattern can be changed.
  • FIG. 1 is a block diagram showing the configuration of an electronic control device 10 according to an embodiment.
  • the electronic control device 10 will be described below on the assumption that it is mounted on a vehicle toy.
  • connection means an electrically conductive connection.
  • the electronic control device 10 includes a power generation unit 20 and a power supply unit 30 as first and second power supply units.
  • the electronic control device 10 includes an arithmetic processing unit 40, a sound output unit 50, and a voltage monitoring unit 60.
  • the electronic control device 10 includes light emitting diodes LED1 and LED2 as light emitting elements, and a resistance element R1.
  • the power generation unit 20 includes a permanent magnet PMG, a coil L1 as a first coil, and a coil L2 as a second coll.
  • the terminal b of the coil L1 and the terminal c of the coil L2 are connected.
  • the coil L1 and the coil L2 are coils having the same specifications.
  • Permanent magnet PMG is rotated in conjunction with the wheel when the wheel of the vehicle toy on which electronic control device 10 is mounted is rotated by hand. As the permanent magnet PMG rotates, the direction of the magnetic flux generated by the permanent magnet PMG changes. As a result of the change in the direction of the magnetic flux causing electromotive force in the coils L1 and L2, an AC voltage (hereinafter also referred to as “first AC voltage”) is generated between the terminal a and the terminal b of the coil L1. At the same time, an AC voltage (hereinafter also referred to as “second AC voltage”) is generated between the terminal c and the terminal d of the coil L2.
  • an AC voltage (hereinafter also referred to as “third AC voltage”) is generated between the terminal a of the coil L1 and the terminal d of the coil L2, which are both terminals of the combined coil of the coil L1 and the coil L2. .
  • the coil L1 and the coil L2 are coils of the same specification, and therefore the amplitude of the first AC voltage and the amplitude of the second AC voltage are the same.
  • the amplitude of the third AC voltage is twice the amplitude of the first AC voltage or the second AC voltage.
  • the power supply unit 30 includes four diodes D1 to D4 and two electrolytic capacitors C1 and C2.
  • the cathode terminal of the diode D1 and the cathode terminal of the diode D2 are connected.
  • the anode terminal of the diode D1 and the cathode terminal of the diode D3 are connected to each other and to the terminal d of the coil L2.
  • the anode terminal of the diode D2 and the cathode terminal of the diode D4 are connected to each other and to the terminal a of the coil L1. Further, the anode terminal of the diode D3 and the anode terminal of the diode D4 are at the ground level.
  • the + side terminal of the electrolytic capacitor C1 is connected to the cathode terminal of the diode D1 and the cathode terminal of the diode D2, and is also connected to the power supply terminal CVDD of the arithmetic processing unit 40.
  • the negative terminal of the electrolytic capacitor C1 is at the ground level.
  • the + side terminal of the electrolytic capacitor C2 is connected to the terminal b of the coil L1 and the terminal c of the coil L2, and to the power supply terminal AVDD of the sound output unit 50.
  • the negative terminal of the electrolytic capacitor C2 is at the ground level.
  • the arithmetic processing unit 40 includes a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), and peripheral circuits, and controls the operation of the electronic control device 10 by executing a program.
  • the arithmetic processing unit 40 has input port terminals IP1 and IP2, output port terminals OP1 to OP3, and an audio signal output terminal ASO in addition to the power supply terminal CVDD described above.
  • the arithmetic processing unit 40 receives an AC voltage half-wave rectified signal generated at the terminal a of the coil L1 at the input port terminal IP1.
  • the input port terminal IP1 receives the half-wave rectified signal via the resistance element R1. Furthermore, the arithmetic processing unit 40 receives the voltage monitoring result sent from the voltage monitoring unit 60 at the input port terminal IP2.
  • the arithmetic processing unit 40 outputs the first blinking signal from the output port terminal OP1 and the second blinking signal from the output port terminal OP2.
  • the arithmetic processing unit 40 outputs a switch control signal from the output port terminal OP3 terminal. Further, the arithmetic processing unit 40 outputs an audio signal from the audio signal output terminal ASO.
  • the sound output unit 50 is configured with a speaker SP.
  • the sound output unit 50 has an audio signal input terminal ASI connected to the audio signal output terminal ASO of the arithmetic processing unit 40 in addition to the power supply terminal AVDD described above. And the sound output part 50 outputs the audio
  • the voltage monitoring unit 60 includes a PNP transistor TR, a switch element SW, three resistance elements R2 to R4, and a Zener diode DZ.
  • the resistance values of the resistance elements R2 to R4 and the breakdown voltage of the Zener diode DZ are selected in advance according to a design specification that is determined to report a hysteresis characteristic that will be described later. Note that the resistance value of the resistance element R2 is sufficiently higher than the resistance value of the resistance element R3.
  • the switch element SW is constituted by, for example, a mechanical switch element or an FET (Field Effect Transistor) element.
  • the switch element SW receives a switch control signal sent from the arithmetic processing unit 40 via the output port terminal OP3.
  • the switch control signal When “ON” is designated by the switch control signal, the terminal e and the terminal f connected to the power supply terminal CVDD terminal of the arithmetic processing unit 40 become conductive.
  • “OFF” is designated by the switch control signal, the terminal e and the terminal f are in a non-conductive state.
  • the resistor element R2 has one terminal connected to the power supply terminal CVDD terminal of the arithmetic processing unit 40 and the other terminal connected to the base terminal of the transistor TR.
  • the resistor element R3 has one terminal connected to the terminal e of the switch element SW and the other terminal connected to the base terminal of the transistor TR.
  • the resistance element R4 has one terminal connected to the collector terminal of the transistor TR and the input port terminal IP2 of the arithmetic processing unit 40, and the other terminal set to the ground level.
  • the emitter terminal of the transistor TR is connected to the power supply terminal CVDD terminal of the arithmetic processing unit 40.
  • the Zener diode DZ has a cathode terminal connected to the base terminal of the transistor TR and an anode terminal set to the ground level.
  • the light emitting diode LED1 has an anode terminal connected to the terminal d of the coil L2 and a cathode terminal of the diode D3, and a cathode terminal connected to the output port terminal OP1 of the arithmetic processing unit 40.
  • the light emitting diode LED2 has an anode terminal connected to the terminal a of the coil L1 and a cathode terminal of the diode D4, and a cathode terminal connected to the output port terminal OP2 of the arithmetic processing unit 40.
  • the resistance element R1 has one terminal connected to the terminal a of the coil L1 and the cathode terminal of the diode D4, and the other terminal connected to the input port terminal IP1 of the arithmetic processing unit 40.
  • FIG. 2 shows elements of the electronic control device 10 related to power supply to the arithmetic processing unit 40.
  • the first bridge circuit that full-wave rectifies the AC voltage generated in the combined coil of the coil L1 and the coil L2 is configured by the diodes D1 to D4 connected as described above. .
  • the AC voltage generated in the composite coil due to the rotation of the permanent magnet PMG interlocking with the wheels is full-wave rectified by the first bridge circuit.
  • the result of full-wave rectification by the first bridge circuit is smoothed by the electrolytic capacitor C1, and is supplied to the power supply terminal CVDD of the arithmetic processing unit 40 as operating power.
  • FIG. 3 shows elements of the electronic control device 10 related to power supply to the sound output unit 50.
  • the coil L1, the coil L2, the diode D3, and the diode D4 connected as described above constitute a second bridge circuit.
  • the AC voltage generated in the coil L1 due to the rotation of the permanent magnet PMG interlocked with the wheel is half-wave rectified, and the AC voltage generated in the coil L2 is half-wave rectified. Is done.
  • full-wave rectification is executed by the second bridge circuit.
  • the result of full-wave rectification by the second bridge circuit is smoothed by the electrolytic capacitor C2, and supplied to the power supply terminal AVDD of the sound output unit 50 as operating power.
  • the output impedance of the power source for the sound output unit 50 is half of the output impedance of the power source for the arithmetic processing unit 40 described above, and rectification in the power source for the sound output unit 50 is performed.
  • the loss is also half of the rectification loss in the power supply for the arithmetic processing unit 40.
  • the output impedance of the power source for the sound output unit 50 is determined by one impedance of the coil L1 and the coil L2, whereas the output impedance of the power source for the arithmetic processing unit 40 is the coil L1. Is determined by the sum of the impedance of the coil L2 and the impedance of the coil L2.
  • the power supply for the sound output unit 50 is the rectification loss for one stage of the diode, whereas the power supply for the arithmetic processing unit 40 is the rectification loss for two stages of the diode. Because.
  • FIG. 4 shows elements of the electronic control unit 10 related to detection of the rotational speed of the permanent magnet PMG by the arithmetic processing unit 40.
  • FIG. 4 shows elements of the electronic control unit 10 related to detection of the rotational speed of the permanent magnet PMG by the arithmetic processing unit 40.
  • an alternating voltage with a period corresponding to the rotation speed is generated in the composite coil.
  • the result of half-wave rectification of the voltage generated at the terminal a of the composite coil is sent to the input port terminal IP1 of the arithmetic processing unit 40 via the resistance element R1.
  • the arithmetic processing unit 40 that has received the result of the half-wave rectification detects the rotational speed of the permanent magnet PMG, for example, based on the time change of the result of the half-wave rectification.
  • FIG. 5 shows elements of the electronic control device 10 related to blinking of the light emitting diodes LED1 and LED2.
  • the result of half-wave rectification of the generated voltage at the terminal d is supplied to the anode terminal of the light emitting diode LED1
  • the generated voltage at the terminal a is The result of the half wave rectification is supplied to the anode terminal of the light emitting diode LED2.
  • the arithmetic processing unit 40 determines the blinking pattern of the light-emitting diodes LED1 and LED2 based on the rotational speed. Then, the arithmetic processing unit 40 generates a first flashing signal corresponding to the determined flashing pattern of the light emitting diode LED1, and outputs the generated first flashing signal to the cathode of the light emitting diode LED1 via the output port terminal OP1. Send to terminal.
  • the arithmetic processing unit 40 generates a second flashing signal corresponding to the determined flashing pattern of the light emitting diode LED2, and the generated second flashing signal is output to the cathode of the light emitting diode LED2 via the output port terminal OP2. Send to terminal.
  • the light emitting diodes LED1 and LED2 blink in a blinking pattern corresponding to the rotation speed of the permanent magnet PMG.
  • the arithmetic processing unit 40 sets the level of the first blinking signal or the second blinking signal to “L” and turns off the light emitting diode LED1 or the light emitting diode LED2. In this case, the level of the first flashing signal or the second flashing signal is set to “H”.
  • the arithmetic processing unit 40 determines the pattern of the output sound from the sound output unit 50 based on the rotation speed. Then, the arithmetic processing unit 40 generates an audio signal corresponding to the determined output audio pattern, and sends the generated audio signal to the sound output unit 50 via the audio signal output terminal ASO.
  • the sound output unit 50 receives the audio signal sent from the arithmetic processing unit 40 via the audio signal input terminal ASI. And the sound output part 50 outputs the audio
  • FIG. 6 shows elements related to the state transition of the arithmetic processing unit 40.
  • the arithmetic processing unit 40 is in switch operation indicating whether it is in an operation execution state or in an operation stop state (standby state) in which power consumption is dramatically reduced compared to the operation execution state.
  • the signal is sent to the switch element SW of the voltage monitoring unit 60 via the output port terminal OP3.
  • the arithmetic processing unit 40 designates “OFF” by the switch control signal.
  • the arithmetic processing unit 40 maintains “ON” designation by the switch control signal.
  • the voltage monitoring unit 60 determines the operating power voltage (hereinafter referred to as “power supply voltage”) supplied to the power supply terminal CVDD of the arithmetic processing unit 40. Monitor.
  • the Zener diode DZ is shallowly biased only by the resistance element R2 having a high resistance value. . For this reason, the ON state of the transistor TR is maintained even when the power supply voltage is relatively low. For this reason, even if the power supply voltage becomes relatively low, the voltage level at the input port terminal IP2 of the arithmetic processing unit 40 connected to the collector terminal of the transistor TR is maintained at the “H” level.
  • the transistor TR changes to the OFF state.
  • the voltage level at the input port terminal IP2 of the arithmetic processing unit 40 changes to the “L” level.
  • the arithmetic processing unit 40 When it is detected that the voltage level at the input port terminal IP2 has changed from the “H” level to the “L” level, the arithmetic processing unit 40 first designates “ON” by the switch control signal. Subsequently, the arithmetic processing unit 40 transitions from the operation execution state to the operation stop state.
  • the switch element SW When receiving “ON” designation by the switch control signal, the switch element SW becomes conductive, and the power supply voltage is supplied to one terminal of the resistance element R3. As a result, the Zener diode DZ is also biased by the resistance element R3 having a resistance value lower than the resistance value of the resistance element R2, so that the bias of the Zener diode DZ is deepened. For this reason, even when the switch element SW becomes conductive, the transistor TR is maintained in the OFF state, and the voltage level at the input port terminal IP2 of the arithmetic processing unit 40 is maintained at the “L” level.
  • the bias of the Zener diode DZ is deeper than the operation execution state of the arithmetic processing unit 40, so that the transistor TR And the voltage level at the input port terminal IP2 of the arithmetic processing unit 40 is maintained at the “L” level.
  • the transistor TR changes to the on state.
  • the voltage level at the input port terminal IP2 of the arithmetic processing unit 40 changes to the “H” level.
  • the arithmetic processing unit 40 executes a startup process for returning to the operation execution state. In this activation process, the arithmetic processing unit 40 designates “OFF” by the switch control signal. Then, when the activation process is completed, the arithmetic processing unit 40 enters a normal operation execution state.
  • the switch element SW When receiving “OFF” designation by the switch control signal, the switch element SW is opened. As a result, the Zener diode DZ returns to the shallow bias state by only the resistance element R2 having a high resistance value, and prepares for the next power supply voltage drop.
  • the voltage monitoring unit 60 constantly monitors the power supply voltage for the arithmetic processing unit 40 and has a hysteresis characteristic with respect to a change in the power supply voltage under the control of the arithmetic processing unit 40.
  • the operation execution state or the operation stop state is reported.
  • the hysteresis characteristics reported by the voltage monitoring unit 60 are as follows: This is a mode for realizing (a) and (b).
  • the arithmetic processing unit 40 maintains the “ON” designation by the switch control signal and detects the change of the voltage level from the “L” level to the “H” level at the input port terminal IP2.
  • the operating power for such operation is secured by the electric charge accumulated in the electrolytic capacitor C1.
  • the AC voltage generated by the combined coil in which the coil L1 and the coil L2 included in the power generation unit 20 are connected in series is smoothed after full-wave rectification, and is calculated as operating power. 40.
  • the voltage at the connection point between the coil L1 and the coil L2 is smoothed while the rectification according to the AC voltage generated in the coil L1 and the rectification according to the AC voltage generated in the coil L2 are performed, and the sound output Supplied to the unit 50.
  • the sound output unit 50 only one of the coil L1 and the coil L2 is used at each time point, so that a situation of power loss for the arithmetic processing unit 40 is avoided. Can do.
  • the situation of power supply loss for the unit 40 can be avoided.
  • the result of full wave rectification by the first bridge circuit for full wave rectification constituted by the diodes D1 to D4 is smoothed by the electrolytic capacitor C1, and supplied to the arithmetic processing unit 40 as operating power.
  • full-wave rectification by the second bridge circuit composed of the coils L1 and L2 and the diodes D3 and D4 is smoothed by the electrolytic capacitor C2 and supplied to the sound output unit 50 as operating power.
  • the output impedance and rectification loss of the power source for the sound output unit 50 can be half of the output impedance and rectification loss of the power source for the arithmetic processing unit 40. For this reason, an efficient electric power supply can be performed with respect to the sound output part 50 provided with the speaker of a low impedance load.
  • the voltage monitoring unit 60 monitors the power supply voltage value of the arithmetic processing unit 40 and reports to the arithmetic processing unit 40 whether it should be in an operation execution state or an operation stop state. For this reason, when the power supply voltage is lowered, the arithmetic processing unit 40 can appropriately stop the operation (shift to the standby state) before it becomes inoperable. For this reason, by stopping the operation of the arithmetic processing unit 40 when the rotation speed of the permanent magnet PMG in the power generation unit 20 is reduced or the power supply capacity is reduced when the rotation is stopped, the current consumption of the arithmetic processing unit 40 is reduced by electrolysis. The amount is so small that it can be covered by the residual charge of the capacitor C1. For this reason, the situation of the power supply loss for the arithmetic processing part 40 accompanying the fall of the power supply capability of the power generation part 20 can be avoided.
  • the voltage monitoring unit 60 changes the report content to the arithmetic processing unit 40 so as to have a hysteresis characteristic with respect to the change of the power supply voltage under the control of the arithmetic processing unit 40.
  • the hysteresis characteristic effectively prevents a start-up failure due to a load change in the start-up process of the arithmetic processing unit 40 even if there is a change in the power supply voltage due to the use of a driving force with a large hand-change.
  • the operation execution state period of the arithmetic processing unit 40 can be reasonably secured. For this reason, the operation processing unit 40 can be appropriately switched between the operation execution state and the operation stop state.
  • the arithmetic processing unit 40 detects the rotation speed of the permanent magnet PMG and performs sound output control corresponding to the detected rotation speed on the sound output unit 50. For this reason, the sound output pattern can be changed according to the rotational speed of the permanent magnet.
  • the light emitting diodes LED1 and LED2 are supplied with operating power from one of the output terminals of the composite coil, and blinking is controlled by the arithmetic processing unit 40. For this reason, the light emitting elements can be blinked in various patterns. Moreover, while being able to minimize the load of the electric power generation part 20 accompanying light emission of light emitting diode LED1, LED2, the possibility of the power supply loss for the arithmetic processing part 40 and the sound output part 50 can be reduced.
  • the arithmetic processing unit 40 detects the rotation speed of the permanent magnet PMG, and performs blinking control of the light emitting diodes LED1 and LED2 corresponding to the detected rotation speed. For this reason, the flashing pattern of the light emitting diodes LED1 and LED2 can be changed according to the rotational speed of the permanent magnet PMG.
  • the function operation unit is the sound output unit, but may perform other functions.
  • the sound output unit including the switch element and the speaker is arranged separately from the arithmetic processing unit.
  • the detection result of the rotation speed of the permanent magnet is used for determining the output sound pattern and the blinking pattern of the light emitting diode.
  • the arithmetic processing unit makes a transition between the operation execution state and the operation stop state, and omits the voltage monitoring unit in the above embodiment. Can do.
  • an external circuit that appropriately cuts off the charge supply to the electrolytic capacitor that smoothes the power supply voltage under the control of the arithmetic processing unit is prepared. You may make it prevent destruction of a process part.
  • the present invention is applied to an electronic control device mounted on a toy vehicle.
  • the present invention can also be applied to an electronic control device mounted on a toy other than a vehicle toy.
  • the present invention can also be applied to an electronic control device mounted on a device other than the above.
  • the present invention can be applied to an electronic control device including a power generation unit that generates an AC voltage according to a change in the direction of magnetic flux accompanying rotation of a permanent magnet.
  • DESCRIPTION OF SYMBOLS 10 Electronic controller 20 ... Power generation part 30 ... Electric power supply part (1st and 2nd electric power supply part) DESCRIPTION OF SYMBOLS 40 ... Operation processing part 50 ... Sound output part 60 ... Voltage monitoring part PMG ... Permanent magnet L1 ... Coil (1st coil) L2 ... Coil (second coil) D1, D2 ... Diode (rectifier element (part of the first power supply unit)) D3, D4... Diode (rectifier (a part of the first and second power supply units)) C1 ... Electrolytic capacitor (first capacitor element (part of the first power supply unit)) C2 ...
  • Electrolytic capacitor (second capacitance element (part of the second power supply unit)) LED1, LED2 ... Light emitting diode (light emitting element) R1... Resistive element R2 to R4... Resistive element (part of voltage monitoring unit) SW: Switch element (part of voltage monitor) TR ... Transistor (part of voltage monitor) DZ ... Zener diode (part of voltage monitoring unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Toys (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

永久磁石の回転に伴う磁束方向の変化に応じて交流電圧を発生する第1コイル及び第2コイルが直列接続された合成コイルを有する発電部と;前記合成コイルに発生する交流電圧に応じて全波整流した後に全波整流の結果を平滑化する第1電力供給部と;前記第1コイルに発生する交流電圧に応じた整流、及び、前記第2コイルに発生する交流電圧に応じた整流を行いつつ、前記第1コイルと前記第2コイルとの接続点における電圧を平滑化する第2電力供給部と;前記第1電力供給部から供給された電力を動作電力として動作する演算処理部と;前記演算処理部による制御のもとで、前記第2電力供給部から供給された電力を動作電力として動作する機能動作部と;を備えることを特徴とする電子制御装置。

Description

電子制御装置
 本発明は、電子制御装置に係り、特に、永久磁石の回転に伴う磁束方向の変化に応じて交流電圧を発生する発電部を備える電子制御装置に関する。
 従来から、発電部を備える車両玩具等の玩具が知られている。こうした玩具では、例えば手押し等の駆動力を利用して永久磁石を回転させることにより、当該永久磁石の近傍に配置されたコイルに誘導起電力を発生させ、発光素子等の動作電力として利用するようになっている。
 こうした玩具に備えられる発電部に関する技術として、小型化及び発電効率の向上を図るための技術が提案されている(特許文献1参照:以下、従来例という)。この従来例の技術では、発電効率の向上のために、永久磁石の近傍に、当該永久磁石を挟むように2つのコイルを配置し、これらのコイルを直列接続するようになっている。そして、当該2のコイルが直列接続されたコイルの両端から、動作電力を、発光素子である発光ダイオードへ直接的に供給するようになっている。
特開2011-50725号公報
 上述した従来例の技術では、発電部が発生する交流電圧をそのまま発光ダイオードの動作電力としている。このため、従来例の技術を、発光ダイオード以外の部品への電力供給に拡張しようとした場合、交流電圧の動作電力で動作可能な部品に限られることになり、直流電圧の動作電力が必要となるマイクロプロセッサを含む演算処理部による制御のもとにおける音声出力機能の追加等の多機能化を実現することができない。
 そこで、直流電圧の動作電力を供給可能とするために、発電部が発生する交流電圧を直流電圧に変換することが考えられる。この場合、直流電圧の動作電力の供給を受けて動作する部品が演算処理部以外にも存在するときには、演算処理部以外の部品の消費電力量の増大による演算処理部にとっての電源喪失という事態を回避する必要がある。また、変動が大きな手押し等の駆動力により発電部における永久磁石を回転させて電力を発生させることになるので、電力供給能力の不安定さに伴う演算処理部にとっての電源喪失という事態を回避する必要もある。
 これらの事態は、一般に、蓄電池等のバックアップ用の補助電源を備えるようにすることで回避することができると考えられる。しかしながら、バックアップ用の補助電源を備えるようにすると、装置構成の複雑化や、装置の大型化を招くことが懸念される。このため、小型の玩具が備える簡易な発電部を前提としつつ、バックアップ用の補助電源を備えない構成で、演算処理部にとっての電源喪失という事態を回避することができる小型の玩具に適した具体的技術が待望されている。
 本発明は、上記の事情を鑑みてなされたものであり、バックアップ用の補助電源を備えずに、電力源として簡易な発電部のみを備える構成で、搭載されている演算処理部にとっての電源喪失という事態を回避できる電子制御装置を提供することを目的とする。
 本発明の電子制御装置は、永久磁石の回転に伴う磁束方向の変化に応じて交流電圧を発生する第1コイル及び第2コイルが直列接続された合成コイルを有する発電部と;前記合成コイルに発生する交流電圧に応じて全波整流した後に全波整流の結果を平滑化する第1電力供給部と;前記第1コイルに発生する交流電圧に応じた整流、及び、前記第2コイルに発生する交流電圧に応じた整流を行いつつ、前記第1コイルと前記第2コイルとの接続点における電圧を平滑化する第2電力供給部と;前記第1電力供給部から供給された電力を動作電力として動作する演算処理部と;前記演算処理部による制御のもとで、前記第2電力供給部から供給された電力を動作電力として動作する機能動作部と;を備えることを特徴とする電子制御装置である。
 本発明の電子制御装置では、前記第1電力供給部が、前記全波整流用の第1ブリッジ回路を構成する4個の整流素子と;前記第1ブリッジ回路による全波整流の結果を平滑化する第1容量素子と;を備え、前記第2電力供給部が、第2ブリッジ回路を、前記第1コイル及び前記第2コイルとともに構成する前記4個の整流素子のうちの2個の整流素子と;前記第2ブリッジ回路による全波整流の結果を平滑化する第2容量素子と;を備えるようにすることができる。
 本発明の電子制御装置では、前記第1電力供給部の出力電圧を監視し、前記演算処理部に対して、動作実行状態とすべきか、動作停止状態とすべきかを報告する電圧監視部を更に備えるようにすることができる。
 ここで、前記電圧監視部が、前記演算処理部による制御のもとで、前記第1電力供給部の出力電圧の変化に対してヒステリシス特性を有するように、前記演算処理部に対する報告内容を変化させるようにすることができる。
 本発明の電子制御装置では、前記機能動作部を、スピーカを有する音出力部とすることができる。
 ここで、前記演算処理部が、前記合成コイルの一方の端子における電圧変化に基づいて、前記永久磁石の回転速度を検出し、前記検出された回転速度に対応した音出力制御を前記音出力部に対して行うようにすることができる。
 本発明の電子制御装置では、前記合成コイルの出力端子のいずれかから動作電力の供給を受けるとともに、前記演算処理部により点滅が制御される発光素子を更に備えるようにすることができる。
 ここで、前記演算処理部が、前記合成コイルの一方の端子における電圧変化に基づいて、前記永久磁石の回転速度を検出し、前記検出された回転速度に対応した点滅制御を前記発光素子に対して行うようにすることができる。
 本発明の電子制御装置によれば、発電部が有する第1コイル及び第2コイルが直列接続された合成コイルが発生した交流電圧が全波整流された後に平滑化され、動作電力として演算処理部へ供給される。一方、第1コイルに発生する交流電圧に応じた整流、及び、前記第2コイルに発生する交流電圧に応じた整流が行われつつ、第1コイルと第2コイルとの接続点における電圧が平滑化され、演算処理部以外の機能動作部に供給される。このため、機能動作部への電力供給のためには、各時点においては第1コイル及び第2コイルのいずれか一方が利用されるのみなので、演算処理部にとっての電源喪失という事態を回避することができる。
 したがって、本発明の電子制御装置によれば、バックアップ用の補助電源を備えずに、電力源として簡易な発電部のみを備える構成で、機能動作部における消費電力の増大に伴う演算処理部にとっての電源喪失という事態を回避することができる。
 本発明の電子制御装置では、第1電力供給部が、全波整流用の第1ブリッジ回路を構成する4個の整流素子と、当該第1ブリッジ回路による全波整流の結果を平滑化する第1容量素子とを備えるように構成するとともに、第2電力供給部が、当該4個の整流素子のうちの2個、並びに、第1コイル及び第2コイルで構成される全波整流用の第2ブリッジ回路による全波整流の結果を平滑化する第2容量素子を備えるように構成した場合には、機能動作部にとっての電源の出力インピーダンスを、演算処理部にとっての電源の出力インピーダンスよりも低減させることができる。このため、機能動作部がスピーカのように低インピーダンス負荷の場合に、効率的な電力供給を行うことができる。
 また、本発明の電子制御装置では、上述の電圧監視部を更に備えるようにした場合には、発電部における永久磁石の回転速度の低下又は回転停止の際の電力供給能力の低下時に、演算処理部の動作停止(待機状態への移行)を行うことにより、演算処理部の消費電流量は、第1電力供給部における平滑化のための第1容量素子の残留電荷によってまかなえるほど極僅かな量となる。このため、発電部における永久磁石の回転速度の低下又は回転停止の際における演算処理部にとっての電源喪失という事態を回避することができる。
 ここで、当該電圧監視部が、演算処理部による制御のもとで、手押し等の変動が大きな駆動力に起因する第1電力供給部の出力電圧の変化に対してヒステリシス特性を有するように、演算処理部に対する報告内容を変化させるようにすると、演算処理部の動作実行状態と動作停止状態との切換を適切に行うことができる。
 本発明の電子制御装置では、機能動作部を音出力とし、かつ、演算処理部が、永久磁石の回転速度を検出し、当該検出された回転速度に対応した音出力制御を音出力部に対して行うようにすると、永久磁石の回転速度の高低に応じて、音声出力パターンに変化をもたせることができる。
 本発明の電子制御装置では、合成コイルの出力端子のいずれかから動作電力の供給を受けるとともに、演算処理部により点滅が制御される発光素子を更に備える構成とすると、様々なパターンで発光素子を点滅させることができる。また、発光素子の発光に伴う発電部の負荷を最小化できるとともに、演算処理部や音出力部にとっての電源喪失の可能性を低減することができる。
 ここで、演算処理部が、永久磁石の回転速度を検出し、当該検出された回転速度に対応した発光素子の点滅制御を行うようにすると、永久磁石の回転速度の高低に応じて、発光素子の点滅パターンに変化をもたせることができる。
本発明の一実施形態に係る電子制御装置の構成を説明するためのブロック図である。 演算処理部への動作電力の供給に関わる要素を抜き出した図である。 音出力部への動作電力の供給に関わる要素を抜き出した図である。 演算処理部による永久磁石の回転速度の検出に関わる要素を抜き出した図である。 発光ダイオードの点滅に関わる要素を抜き出した図である。 演算処理部の状態遷移に関わる要素を抜き出した図である。
 以下、本発明の一実施形態を、図1~図6を参照して説明する。なお、以下の説明においては、同一の要素には同一の符号を付し、重複する説明を省略する。
 [構成]
 図1には、一実施形態に係る電子制御装置10の構成が、ブロック図にて示されている。なお、電子制御装置10は車両玩具に実装されているものとして、以下の説明を行う。また、以下の説明において「接続」との用語は、電気的な導通接続を意味するものとする。
 図1に示されるように、電子制御装置10は、発電部20と、第1及び第2電力供給部としての電力供給部30とを備えている。また、電子制御装置10は、演算処理部40と、音出力部50と、電圧監視部60とを備えている。さらに、電子制御装置10は、発光素子としての発光ダイオードLED1,LED2と、抵抗素子R1とを備えている。
 上記の発電部20は、永久磁石PMGと、第1コイルとしてのコイルL1と、第2コルとしてのコイルL2とを備えている。ここで、コイルL1の端子bと、コイルL2の端子cとが接続されている。なお、本実施形態では、コイルL1とコイルL2とは同仕様のコイルとなっている。
 永久磁石PMGは、電子制御装置10が実装される車両玩具の車輪が手押しにより回転すると、当該車輪に連動して回転するようになっている。かかる永久磁石PMGの回転に伴って、永久磁石PMGが発生している磁束の方向が変化する。この磁束方向の変化が、コイルL1,L2に起電力を発生させた結果として、コイルL1の端子aと端子bとの間に交流電圧(以下、「第1交流電圧」とも呼ぶ)が発生するとともに、コイルL2の端子cと端子dとの間に交流電圧(以下、「第2交流電圧」とも呼ぶ)が発生する。この結果、コイルL1とコイルL2との合成コイルの両端子であるコイルL1の端子aとコイルL2の端子dとの間にも交流電圧(以下、「第3交流電圧」とも呼ぶ)が発生する。
 なお、上述したように、本実施形態では、コイルL1とコイルL2とは同仕様のコイルとなっているので、第1交流電圧の振幅と第2交流電圧の振幅とは同一となっている。また、第3交流電圧の振幅は、第1交流電圧の振幅又は第2交流電圧の振幅の2倍となっている。
 上記の電力供給部30は、4個のダイオードD1~D4と、2個の電解コンデンサC1,C2とを備えている。ここで、ダイオードD1のカソード端子とダイオードD2のカソード端子とが接続されている。また、ダイオードD1のアノード端子とダイオードD3のカソード端子とは、互いに接続されるとともに、コイルL2の端子dに接続されている。
 また、ダイオードD2のアノード端子とダイオードD4のカソード端子とは、互いに接続されるとともに、コイルL1の端子aに接続されている。さらに、ダイオードD3のアノード端子とダイオードD4のアノード端子とは接地レベルとされている。
 電解コンデンサC1の+側端子は、ダイオードD1のカソード端子及びダイオードD2のカソード端子と接続されるともに、演算処理部40の電源端子CVDDに接続されている。また、電解コンデンサC1の-側端子は接地レベルとされている。
 電解コンデンサC2の+側端子は、コイルL1の端子b及びコイルL2の端子cと接続されるとともに、音出力部50の電源端子AVDDに接続されている。また、電解コンデンサC2の-側端子は接地レベルとされている。
 上記の演算処理部40は、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)及び周辺回路を備えて構成され、プログラム実行により、電子制御装置10の動作を制御する。この演算処理部40は、上述した電源端子CVDDに加えて、入力ポート端子IP1,IP2と、出力ポート端子OP1~OP3と、音声信号出力端子ASOとを有している。
 演算処理部40は、コイルL1の端子aに発生する交流電圧の半波整流信号を、入力ポート端子IP1で受ける。なお、入力ポート端子IP1には、抵抗素子R1を介して、当該半波整流信号を受けるようになっている。さらに、演算処理部40は、電圧監視部60から送られた電圧監視結果を、入力ポート端子IP2で受ける。
 演算処理部40は、出力ポート端子OP1から第1点滅信号を出力するとともに、出力ポート端子OP2から第2点滅信号を出力する。また、演算処理部40は、出力ポート端子OP3端子から、スイッチ制御信号を出力する。さらに、演算処理部40は、音声信号出力端子ASOから音声信号を出力する。
 上記の音出力部50は、スピーカSPを備えて構成される。この音出力部50は、上述した電源端子AVDDに加えて、演算処理部40の音声信号出力端子ASOと接続されている音声信号入力端子ASIを有している。そして、音出力部50は、音声信号入力端子ASIで受けた音声信号に対応する音声をスピーカSPから出力する。
 上記の電圧監視部60は、PNP型のトタンジスタTRと、スイッチ素子SWと、3個の抵抗素子R2~R4と、ツェナーダイオードDZとを備えている。ここで、抵抗素子R2~R4の抵抗値及びツェナーダイオードDZの降伏電圧は、後述するヒステリシス特性を有する報告を行うべく定められた設計仕様に従って、予め選択される。なお、抵抗素子R2の抵抗値は、抵抗素子R3の抵抗値よりも十分に高くされる。
 また、スイッチ素子SWは、例えば、機械的スイッチ素子、又は、FET(Field Effect Transistor)素子により構成される。このスイッチ素子SWは、演算処理部40から、出力ポート端子OP3を介して送られるスイッチ制御信号を受ける。そして、スイッチ制御信号により「ON」が指定されると、端子eと、演算処理部40の電源端子CVDD端子に接続された端子fとが導通状態となる。一方、スイッチ制御信号により「OFF」が指定されると、端子eと端子fとが非導通状態となる。
 抵抗素子R2は、一方の端子が演算処理部40の電源端子CVDD端子に接続されるとともに、他方の端子がトランジスタTRのベース端子に接続される。抵抗素子R3は、一方の端子がスイッチ素子SWの端子eに接続されるとともに、他方の端子がトランジスタTRのベース端子に接続される。抵抗素子R4は、一方の端子がトランジスタTRのコレクタ端子及び演算処理部40の入力ポート端子IP2に接続されるとともに、他方の端子が接地レベルとされる。
 トランジスタTRのエッミタ端子は、演算処理部40の電源端子CVDD端子に接続される。また、ツェナーダイオードDZは、カソード端子がトランジスタTRのベース端子に接続されるともに、アノード端子が接地レベルとされる。
 上記の発光ダイオードLED1は、アノード端子がコイルL2の端子d及びダイオードD3のカソード端子に接続されるとともに、カソード端子が演算処理部40の出力ポート端子OP1に接続される。また、上記の発光ダイオードLED2は、アノード端子がコイルL1の端子a及びダイオードD4のカソード端子に接続されるとともに、カソード端子が演算処理部40の出力ポート端子OP2に接続される。また、抵抗素子R1は、一方の端子がコイルL1の端子a及びダイオードD4のカソード端子に接続されるとともに、他方の端子が演算処理部40の入力ポート端子IP1に接続される。
 [動作]
 次に、上記のように構成された電子制御装置10の動作について説明する。
 <演算処理部40への電力供給>
 図2には、演算処理部40への電力供給に関わる電子制御装置10の要素が示されている。図2に示されているように、上述ように接続されたダイオードD1~D4により、コイルL1とコイルL2との合成コイルに発生する交流電圧を全波整流する第1ブリッジ回路が構成されている。このため、車両玩具が手押しされた結果、車輪に連動する永久磁石PMGの回転に起因して合成コイルに発生する交流電圧が、当該第1ブリッジ回路により全波整流される。そして、第1ブリッジ回路による全波整流の結果が、電解コンデンサC1により平滑化されて、動作電力として、演算処理部40の電源端子CVDDに供給される。
 <音出力部50への電力供給>
 図3には、音出力部50への電力供給に関わる電子制御装置10の要素が示されている。図3に示されているように、上述ように接続されたコイルL1、コイルL2、ダイオードD3及びダイオードD4により、第2ブリッジ回路が構成されている。この場合、車両玩具が手押しされた結果、車輪に連動する永久磁石PMGの回転に起因してコイルL1に発生する交流電圧が半波整流されるとともに、コイルL2に発生する交流電圧が半波整流される。
 この結果、コイルL1及びコイルL2には、互いに相補的に半サイクルずつ電流が流れることになる。したがって、第2ブリッジ回路により全波整流が実行されることになる。そして、第2ブリッジ回路による全波整流の結果が、電解コンデンサC2により平滑化されて、動作電力として、音出力部50の電源端子AVDDに供給される。
 かかる音出力部50への電力供給では、音出力部50にとっての電源の出力インピーダンスが、上述した演算処理部40にとっての電源の出力インピーダンスの半分となるとともに、音出力部50にとっての電源における整流損失も、演算処理部40にとっての電源における整流損失の半分となる。これは、出力インピーダンスについては、音出力部50にとっての電源の出力インピーダンスが、コイルL1及びコイルL2の一方のインピーダンスにより定まるのに対して、演算処理部40にとっての電源の出力インピーダンスは、コイルL1のインピーダンスとコイルL2のインピーダンスとの和で定まるためである。また、整流損失については、音出力部50にとっての電源では、ダイオード1段分の整流損出であるのに対して、演算処理部40にとっての電源では、ダイオード2段分の整流損出であるためである。
 このため、ある程度の電流を必要とする音出力部50におけるスピーカSPの駆動に際して、演算処理部40にとっての電源を共用する場合よりも、スピーカSPの駆動に適した電力供給を行うことができる。さらに、音出力部50への電力供給に際しては、半サイクルごとにコイルL1及びコイルL2の一方のみを介して電力供給が行われるので、大音量の音声を出力するためにスピーカSPへの供給電流量が大きくなった場合であっても、上述した演算処理部40にとっての電源喪失という事態を回避することができる。
 <永久磁石PMGの回転速度検出>
 図4には、演算処理部40による永久磁石PMGの回転速度検出に関わる電子制御装置10の要素が示されている。図4に示されているように、永久磁石PMGが回転すると、その回転速度に対応した周期の交流電圧が合成コイルに発生する。そして、合成コイルの端子aに発生する電圧の半波整流の結果が、抵抗素子R1を介して、演算処理部40の入力ポート端子IP1へ送られる。この半波整流の結果を受けた演算処理部40は、例えば、当該半波整流の結果の時間変化に基づいて、永久磁石PMGの回転速度を検出する。
 <発光ダイオードLED1,LED2の点滅>
 図5には、発光ダイオードLED1,LED2の点滅に関わる電子制御装置10の要素が示されている。図5に示されているように、合成コイルに交流電圧が発生すると、端子dにおける発生電圧の半波整流の結果が、発光ダイオードLED1のアノード端子に供給されるとともに、端子aにおける発生電圧の半波整流の結果が、発光ダイオードLED2のアノード端子に供給される。
 一方、上述したようにして永久磁石PMGの回転速度が検出されると、当該回転速度に基づいて、演算処理部40は、発光ダイオードLED1,LED2の点滅パターンを決定する。そして、演算処理部40は、決定された発光ダイオードLED1の点滅パターンに対応する第1点滅信号を生成し、生成された第1点滅信号を、出力ポート端子OP1を介して、発光ダイオードLED1のカソード端子へ送る。また、演算処理部40は、決定された発光ダイオードLED2の点滅パターンに対応する第2点滅信号を生成し、生成された第2点滅信号を、出力ポート端子OP2を介して、発光ダイオードLED2のカソード端子へ送る。この結果、永久磁石PMGの回転速度に対応した点滅パターンで、発光ダイオードLED1,LED2が点滅する。
 なお、演算処理部40は、発光ダイオードLED1又は発光ダイオードLED2を点灯させる場合には、第1点滅信号又は第2点滅信号のレベルを「L」とし、発光ダイオードLED1又は発光ダイオードLED2を滅灯させる場合には、第1点滅信号又は第2点滅信号のレベルを「H」とするようになっている。
 <音声出力>
 上述したようにして永久磁石PMGの回転速度が検出されると、当該回転速度に基づいて、演算処理部40は、音出力部50からの出力音声のパターンを決定する。そして、演算処理部40は、決定された出力音声のパターンに対応する音声信号を生成し、生成された音声信号を、音声信号出力端子ASOを介して、音出力部50へ送る。
 音出力部50は、演算処理部40から送られた音声信号を、音声信号入力端子ASIを介して受ける。そして、音出力部50は、当該音声信号に対応する音声をスピーカSPから出力する(図1参照)。
 <演算処理部40の状態遷移>
 図6には、演算処理部40の状態遷移に関わる要素が示されている。この図6に示されるように、演算処理部40は、動作実行状態にあるか、動作実行状態と比べて消費電力が飛躍的に少なくなる動作停止状態(待機状態)にあるかを示すスイッチ制御信号を、出力ポート端子OP3を介して電圧監視部60のスイッチ素子SWへ送る。ここで、動作実行状態にある場合には、演算処理部40は、スイッチ制御信号により「OFF」指定を行う。一方、動作停止状態にある場合には、演算処理部40は、スイッチ制御信号により「ON」指定を維持する。こうした演算処理部40によるスイッチ素子SWに対する制御のもとで、電圧監視部60は、演算処理部40の電源端子CVDDに供給されている動作電力の電圧(以下、「電源電圧」と呼ぶ)の監視を行う。
 演算処理部40が動作実行状態であり、スイッチ制御信号による「OFF」指定に従ってスイッチ素子SWが開放状態にある場合には、ツェナーダイオードDZは、抵抗値の高い抵抗素子R2のみで浅くバイアスされる。このため、トランジスタTRのON状態は、電源電圧が比較的低くなっても維持される。このため、電源電圧が比較的低くなっても、トタンジスタTRのコレクタ端子と接続される演算処理部40の入力ポート端子IP2における電圧レベルは、「H」レベルが維持される。
 電源電圧値が更に低くなり、演算処理部40が動作不可となると考えられる第1所定電圧値に近付くと、トランジスタTRがOFF状態に変化する。この結果、演算処理部40の入力ポート端子IP2における電圧レベルが、「L」レベルに変化する。
 入力ポート端子IP2における電圧レベルが「H」レベルから「L」レベルに変化したことを検出すると、演算処理部40は、まず、スイッチ制御信号により「ON」指定を行う。引き続き、演算処理部40は、動作実行状態から動作停止状態に遷移する。
 スイッチ制御信号による「ON」指定を受けると、スイッチ素子SWが導通状態となり、抵抗素子R3の一方の端子に電源電圧が供給されるようになる。この結果、ツェナーダイオードDZは、抵抗素子R2の抵抗値よりも低い抵抗値を有する抵抗素子R3によってもバイアスされるようになるので、ツェナーダイオードDZのバイアスが深くなる。このため、スイッチ素子SWが導通状態となっても、トランジスタTRのOFF状態が維持されるとともに、演算処理部40の入力ポート端子IP2における電圧レベルが、「L」レベルに維持される。
 この後、電源電圧値が上昇し、上記の第1所定電圧値に回復しても、ツェナーダイオードDZのバイアスが、演算処理部40の動作実行状態よりも深い状態となっているので、トランジスタTRのOFF状態が維持されるとともに、演算処理部40の入力ポート端子IP2における電圧レベルが、「L」レベルに維持される。さらに、電源電圧値が上昇し、ツェナーダイオードDZのバイアスが当該深いバイアス状態であってもトタンジスタTRがON状態となる第2所定電圧に達すると、トタンジスタTRがON状態に変化する。この結果、演算処理部40の入力ポート端子IP2における電圧レベルが、「H」レベルに変化する。
 入力ポート端子IP2における電圧レベルが「L」レベルから「H」レベルに変化したことを検出すると、演算処理部40は、動作実行状態に復帰するための起動処理を実行する。この起動処理において、演算処理部40は、スイッチ制御信号による「OFF」指定を行う。そして、起動処理が終了すると、演算処理部40は、通常の動作実行状態となる。
 スイッチ制御信号による「OFF」指定を受けると、スイッチ素子SWが開放状態となる。この結果、ツェナーダイオードDZは、抵抗値の高い抵抗素子R2のみによる浅いバイアス状態に戻り、次の電源電圧の低下に備える。
 すなわち、電圧監視部60は、演算処理部40にとっての電源電圧を常時監視しつつ、演算処理部40による制御のもとで、電源電圧の変化に対してヒステリシス特性をもって、演算処理部40に対して、動作実行状態とすべきか、動作停止状態とすべきかを報告する。ここで、本実施形態のように、変動が大きな手押しの駆動力により発電部20の永久磁石PMGを回転させて動作電力を供給する場合において、電圧監視部60による報告のヒステリシス特性は、次の(a)及び(b)を実現する態様となっている。
 (a)動作停止状態から動作実行状態への移行に際しては、演算処理部40に電力供給を行う際、演算処理部40の動作電流の急激な増大に伴って、発電部20及び電力供給部30のインピーダンスにより生じる電圧降下によって起動不良に陥らないよう、「動作実行状態となった演算処理部40に、動作のために十分な電圧で電力供給が行われると判断される電圧」となったことをもって動作実行状態へ移行すべき報告を行う。
 (b)動作実行状態から動作停止状態への移行に際しては、駆動力の変動に対して演算処理部40を動作実行状態とする電圧範囲を広くするため、動作実行状態から動作停止状態への移行は、「演算処理部40の最低動作電圧近傍」となったことをもって、動作停止状態へ移行すべき報告を行う。
このため、起動処理における発電部20にとっての負荷変動に伴う起動不良を有効に防止するとともに、演算処理部40の動作実行状態の期間を合理的に確保することができる。
 なお、動作停止状態においても演算処理部40は、スイッチ制御信号による「ON」指定の維持と、入力ポート端子IP2における電圧レベルの「L」レベルから「H」レベルへの変化の検出を行うが、かかる動作のための動作電力は、電解コンデンサC1に蓄積されている電荷によって確保する。
 また、電源電圧値が上昇し、ツェナーダイオードDZの降伏電圧値と、トタンジスタTRのベース-エミッタ間電圧との和を超えると、電流が、トタンジスタTRのエミッタ端子、トタンジスタTRのベース端子、及び、ツェナーダイオードDZを順次介して接地レベルへ流れるようになる。この結果、電源電圧値の上昇が抑制される。このため、永久磁石PMGの回転速度が非常に高くなっても、過電圧による演算処理部40の破壊が防止される。
 以上説明したように、本実施形態では、発電部20が有するコイルL1及びコイルL2が直列接続された合成コイルが発生した交流電圧が全波整流された後に平滑化され、動作電力として演算処理部40へ供給される。一方、コイルL1に発生する交流電圧に応じた整流、及び、コイルL2に発生する交流電圧に応じた整流が行われつつ、コイルL1とコイルL2との接続点における電圧が平滑化され、音出力部50に供給される。このため、音出力部50への電力供給のためには、各時点においてはコイルL1及びコイルL2のいずれか一方が利用されるのみなので、演算処理部40にとっての電源喪失という事態を回避することができる。
 したがって、本実施形態によれば、バックアップ用の補助電源を備えずに、電力源として発電部20のみを備える簡易な構成で、大音量出力による音出力部50における消費電力の増大に伴う演算処理部40にとっての電源喪失という事態を回避することができる。
 また、本実施形態では、ダイオードD1~D4から構成される全波整流用の第1ブリッジ回路による全波整流の結果を電解コンデンサC1により平滑化し、動作電力として演算処理部40に供給する。また、コイルL1,L2及びダイオードD3,D4から構成される第2ブリッジ回路による全波整流を電解コンデンサC2により平滑化し、動作電力として音出力部50に供給する。このため、音出力部50にとっての電源の出力インピーダンス及び整流損失を、演算処理部40にとっての電源の出力インピーダンス及び整流損出の半分とすることができる。このため、低インピーダンス負荷のスピーカを備える音出力部50に対して、効率的な電力供給を行うことができる。
 また、本実施形態では、電圧監視部60が、演算処理部40の電源電圧値を監視し、演算処理部40に対して、動作実行状態とすべきか、動作停止状態とすべきかを報告する。このため、演算処理部40は、電源電圧が低下しているときに、動作不能となる前に適切に動作停止(待機状態への移行)を行うことができる。このため、発電部20における永久磁石PMGの回転速度の低下又は回転停止の際の電力供給能力の低下時に演算処理部40の動作停止を行うことにより、演算処理部40の消費電流量は、電解コンデンサC1の残留電荷によってまかなえるほど極僅かな量となる。このため、発電部20の電力供給能力の低下に伴う演算処理部40にとっての電源喪失という事態を回避することができる。
 また、本実施形態では、電圧監視部60が、演算処理部40による制御のもとで電源電圧の変化に対してヒステリシス特性を有するように、演算処理部40に対する報告内容を変化させる。ここで、当該ヒステリシス特性は、手押しという変動が大きな駆動力を利用することに起因する電源電圧の変化があっても、演算処理部40の起動処理における負荷変動に伴う起動不良を有効に防止するとともに、演算処理部40の動作実行状態の期間を合理的に確保することができるものとなっている。このため、演算処理部40の動作実行状態と動作停止状態との切換を適切に行うことができる。
 また、本実施形態では、演算処理部40が、永久磁石PMGの回転速度を検出し、当該検出された回転速度に対応した音出力制御を音出力部50に対して行う。このため、永久磁石の回転速度の高低に応じて、音声出力パターンに変化をもたせることができる。
 また、本実施形態では、発光ダイオードLED1,LED2が、合成コイルの出力端子のいずれかから動作電力の供給を受けるとともに、演算処理部40により点滅が制御される。このため、様々なパターンで発光素子を点滅させることができる。また、発光ダイオードLED1,LED2の発光に伴う発電部20の負荷を最小化できるとともに、演算処理部40や音出力部50にとっての電源喪失の可能性を低減することができる。
 また、本実施形態では、演算処理部40が、永久磁石PMGの回転速度を検出し、当該検出された回転速度に対応した発光ダイオードLED1,LED2の点滅制御を行う。このため、永久磁石PMGの回転速度の高低に応じて、発光ダイオードLED1,LED2の点滅パターンに変化をもたせることができる。
 [実施形態の変形]
 本発明は、上記の実施形態に限定されるものではなく、様々な変形が可能である。
 例えば、上記の実施形態では、機能動作部を音出力部としたが、他の機能を果たすものとしてもよい。
 また、上記の実施形態では、スイッチ素子及びスピーカを含む音出力部を演算処理部とは別途に配置するようにした。これに対し、演算処理部に、スイッチ素子及び音出力部におけるスピーカ以外の部分の少なくとも一方を含めるようにして、1チップ構成としてもよい。
 また、上記の実施形態では、永久磁石の回転速度の検出結果を、出力音声パターン及び発光ダイオードの点滅パターンの決定に利用するようにした。これに対し、永久磁石の回転速度の検出結果に基づいて、演算処理部が、動作実行状態と動作停止状態との間の遷移を行うようにし、上記の実施形態における電圧監視部を省略することができる。また、永久磁石の回転速度が高くなった場合に、演算処理部の制御のもとで、電源電圧を平滑化させる電解コンデンサへの電荷供給を適宜遮断する外部回路を更に用意し、過電圧による演算処理部の破壊を防止するようにしてもよい。
 また、上記の実施形態では、本発明を車両玩具に実装される電子制御装置に適用したが、本発明は、車両玩具以外の玩具に実装される電子制御装置に適用することもできるし、玩具以外の機器に実装される電子制御装置に適用することもできる。
 以上説明したように、本発明は、永久磁石の回転に伴う磁束方向の変化に応じて交流電圧を発生する発電部を備える電子制御装置に適用することができる。
 10        … 電子制御装置
 20        … 発電部
 30        … 電力供給部(第1及び第2電力供給部)
 40        … 演算処理部
 50        … 音出力部
 60        … 電圧監視部
 PMG       … 永久磁石
 L1        … コイル(第1コイル)
 L2        … コイル(第2コイル)
 D1,D2     … ダイオード(整流素子(第1電力供給部の一部))
 D3,D4     … ダイオード(整流素子(第1及び第2電力供給部の一部))
 C1        … 電解コンデンサ(第1容量素子(第1電力供給部の一部))
 C2        … 電解コンデンサ(第2容量素子(第2電力供給部の一部))
 LED1,LED2 … 発光ダイオード(発光素子)
 R1        … 抵抗素子
 R2~R4     … 抵抗素子(電圧監視部の一部)
 SW        … スイッチ素子(電圧監視部の一部)
 TR        … トランジスタ(電圧監視部の一部)
 DZ        … ツェナーダイオード(電圧監視部の一部)

Claims (8)

  1.  永久磁石の回転に伴う磁束方向の変化に応じて交流電圧を発生する第1コイル及び第2コイルが直列接続された合成コイルを有する発電部と、
     前記合成コイルに発生する交流電圧に応じて全波整流した後に全波整流の結果を平滑化する第1電力供給部と、
     前記第1コイルに発生する交流電圧に応じた整流、及び、前記第2コイルに発生する交流電圧に応じた整流を行いつつ、前記第1コイルと前記第2コイルとの接続点における電圧を平滑化する第2電力供給部と、
     前記第1電力供給部から供給された電力を動作電力として動作する演算処理部と、
     前記演算処理部による制御のもとで、前記第2電力供給部から供給された電力を動作電力として動作する機能動作部と、
     を備えることを特徴とする電子制御装置。
  2.  前記第1電力供給部は、
      前記全波整流用の第1ブリッジ回路を構成する4個の整流素子と、
      前記第1ブリッジ回路による全波整流の結果を平滑化する第1容量素子と、を備え、
     前記第2電力供給部は、
      第2ブリッジ回路を、前記第1コイル及び前記第2コイルとともに構成する前記4個の整流素子のうちの2個の整流素子と、
      前記第2ブリッジ回路による全波整流の結果を平滑化する第2容量素子と、を備える、
     ことを特徴とする請求項1に記載の電子制御装置。
  3.  前記第1電力供給部の出力電圧を監視し、前記演算処理部に対して、動作実行状態とすべきか、動作停止状態とすべきかを報告する電圧監視部を更に備える、ことを特徴とする請求項1又は2に記載の電子制御装置。
  4.  前記電圧監視部は、前記演算処理部による制御のもとで、前記第1電力供給部の出力電圧の変化に対してヒステリシス特性を有するように、前記演算処理部に対する報告内容を変化させる、ことを特徴とする請求項3に記載の電子制御装置。
  5.  前記機能動作部は、スピーカを有する音出力部である、ことを特徴とする請求項1~4のいずれか一項に記載の電子制御装置。
  6.  前記演算処理部は、前記合成コイルの一方の端子における電圧変化に基づいて、前記永久磁石の回転速度を検出し、前記検出された回転速度に対応した音出力制御を前記音出力部に対して行う、ことを特徴とする請求項5に記載の電子制御装置。
  7.  前記合成コイルの出力端子のいずれかから動作電力の供給を受けるとともに、前記演算処理部により点滅が制御される発光素子を更に備える、ことを特徴とする請求項1~6のいずれか一項に記載の電子制御装置。
  8.  前記演算処理部は、前記合成コイルの一方の端子における電圧変化に基づいて、前記永久磁石の回転速度を検出し、前記検出された回転速度に対応した点滅制御を前記発光素子に対して行う、ことを特徴とする請求項7に記載の電子制御装置。
PCT/JP2011/067111 2011-07-27 2011-07-27 電子制御装置 WO2013014766A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201190001083.6U CN203859661U (zh) 2011-07-27 2011-07-27 电子控制装置
JP2013525501A JP5735648B2 (ja) 2011-07-27 2011-07-27 電子制御装置
PCT/JP2011/067111 WO2013014766A1 (ja) 2011-07-27 2011-07-27 電子制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067111 WO2013014766A1 (ja) 2011-07-27 2011-07-27 電子制御装置

Publications (1)

Publication Number Publication Date
WO2013014766A1 true WO2013014766A1 (ja) 2013-01-31

Family

ID=47600655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067111 WO2013014766A1 (ja) 2011-07-27 2011-07-27 電子制御装置

Country Status (3)

Country Link
JP (1) JP5735648B2 (ja)
CN (1) CN203859661U (ja)
WO (1) WO2013014766A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481086B2 (ja) 2018-09-28 2024-05-10 住友金属鉱山株式会社 酸化鉱石の製錬方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159137A (ja) * 2000-11-20 2002-05-31 Matsushita Electric Ind Co Ltd 直流電源装置
JP2010226926A (ja) * 2009-03-25 2010-10-07 Honda Motor Co Ltd 回転電機
JP2011050725A (ja) * 2009-08-06 2011-03-17 Tomy Co Ltd 玩具用発電ユニット及び車輌玩具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959234B2 (ja) * 1991-09-18 1999-10-06 国産電機株式会社 燃料噴射式内燃機関用交流発電機の運転方法
JPH11101880A (ja) * 1997-09-26 1999-04-13 Seiko Epson Corp 電子制御式機械時計の制御用発電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159137A (ja) * 2000-11-20 2002-05-31 Matsushita Electric Ind Co Ltd 直流電源装置
JP2010226926A (ja) * 2009-03-25 2010-10-07 Honda Motor Co Ltd 回転電機
JP2011050725A (ja) * 2009-08-06 2011-03-17 Tomy Co Ltd 玩具用発電ユニット及び車輌玩具

Also Published As

Publication number Publication date
JPWO2013014766A1 (ja) 2015-02-23
CN203859661U (zh) 2014-10-01
JP5735648B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
CN1518200B (zh) 开关式电源装置
JP2002330589A (ja) 交流電圧を直流電圧に変換する回路
JP2011211899A (ja) 制御回路及びモータ装置
WO2017038097A1 (ja) 調光装置
US20160366741A1 (en) Dimming lighting circuit and luminaire
JP4724248B1 (ja) 電源装置
JP2017016959A (ja) 調光装置
JP2009303311A (ja) 電源装置及び照明器具
US8390260B2 (en) Power supply for negative voltage load
JP5735648B2 (ja) 電子制御装置
US7282888B2 (en) AC fan motor driving circuit having detecting current wave capability
US5563497A (en) Control device for AC generator
JP2018107052A (ja) 表示装置、それを備えるスイッチ装置、及びスイッチシステム
JP6083668B2 (ja) スイッチング電源回路
CN111505975B (zh) 具有两根导线的家用自动化电子控制装置
JP2013229975A (ja) スイッチング電源装置および発光装置
JP4674122B2 (ja) 電源装置
US9648685B2 (en) Method and apparatus for driving a LED with pulses
CN204069449U (zh) 点灯装置以及照明装置
JP2005312174A (ja) 電源制御装置およびそれを備えた洗濯機
JP2003134816A (ja) スイッチング電源
JP2011193718A (ja) 電源装置
JP6054236B2 (ja) 電力供給回路、半導体集積回路、絶縁型スイッチング電源
JP2002291252A (ja) 交流電圧を直流電圧に変換するための回路
JP2007035529A (ja) 誘導加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190001083.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870076

Country of ref document: EP

Kind code of ref document: A1